
The Glorious Glasgow Haskell
Compilation System User's Guide,

Version 6.8.2
The GHC Team

The Glorious Glasgow Haskell Compilation System User's Guide,
Version 6.8.2
The GHC Team

Table of Contents
The Glasgow Haskell Compiler License ... xi
1. Introduction to GHC ... 1

1.1. Meta-information: Web sites, mailing lists, etc. ... 1
1.2. Reporting bugs in GHC .. 2
1.3. GHC version numbering policy .. 2
1.4. Release notes for version 6.8.2 ... 3
1.5. Release notes for version 6.8.1 ... 4

1.5.1. User-visible compiler changes ... 4
1.5.2. Profiling changes .. 8
1.5.3. GHCi changes .. 8
1.5.4. Boot Libraries .. 8

1.5.4.1. array .. 9
1.5.4.2. base ... 10
1.5.4.3. bytestring .. 11
1.5.4.4. Cabal ... 12
1.5.4.5. containers ... 13
1.5.4.6. directory ... 14
1.5.4.7. filepath ... 14
1.5.4.8. haskell98 .. 14
1.5.4.9. hpc .. 14
1.5.4.10. old-locale .. 15
1.5.4.11. old-time .. 15
1.5.4.12. packedstring .. 15
1.5.4.13. pretty ... 15
1.5.4.14. process ... 15
1.5.4.15. random ... 15
1.5.4.16. readline .. 15
1.5.4.17. template-haskell ... 15
1.5.4.18. unix ... 16
1.5.4.19. Win32 .. 16

1.5.5. GHC As A Library .. 17
2. Installing GHC .. 18

2.1. Installing on Unix-a-likes .. 18
2.1.1. When a platform-specific package is available .. 18
2.1.2. GHC binary distributions ... 18

2.1.2.1. Installing .. 18
2.1.2.2. Testing that GHC seems to be working ... 19

2.2. Installing on Windows ... 19
2.2.1. Installing GHC on Windows ... 19
2.2.2. Moving GHC around ... 20
2.2.3. Installing ghc-win32 FAQ .. 20

2.3. The layout of installed files ... 21
2.3.1. The binary directory .. 21
2.3.2. The library directory .. 21

3. Using GHCi .. 24
3.1. Introduction to GHCi ... 24
3.2. Loading source files ... 24

3.2.1. Modules vs. filenames ... 25
3.2.2. Making changes and recompilation .. 26

3.3. Loading compiled code .. 26
3.4. Interactive evaluation at the prompt .. 27

3.4.1. I/O actions at the prompt .. 28
3.4.2. Using do-notation at the prompt ... 28

iv

3.4.3. What's really in scope at the prompt? .. 30
3.4.3.1. Qualified names ... 31
3.4.3.2. The :main command ... 31

3.4.4. The it variable .. 31
3.4.5. Type defaulting in GHCi .. 32

3.5. The GHCi Debugger .. 33
3.5.1. Breakpoints and inspecting variables .. 34

3.5.1.1. Setting breakpoints ... 37
3.5.1.2. Listing and deleting breakpoints .. 37

3.5.2. Single-stepping .. 38
3.5.3. Nested breakpoints .. 38
3.5.4. The _result variable .. 39
3.5.5. Tracing and history ... 39
3.5.6. Debugging exceptions ... 40
3.5.7. Example: inspecting functions ... 41
3.5.8. Limitations .. 42

3.6. Invoking GHCi ... 43
3.6.1. Packages ... 43
3.6.2. Extra libraries .. 43

3.7. GHCi commands ... 44
3.8. The :set command .. 49

3.8.1. GHCi options ... 49
3.8.2. Setting GHC command-line options in GHCi ... 49

3.9. The .ghci file ... 50
3.10. Compiling to object code inside GHCi ... 50
3.11. FAQ and Things To Watch Out For .. 50

4. Using runghc .. 52
4.1. Flags ... 52

5. Using GHC ... 53
5.1. Options overview .. 53

5.1.1. Command-line arguments ... 53
5.1.2. Command line options in source files ... 53
5.1.3. Setting options in GHCi ... 53

5.2. Static, Dynamic, and Mode options ... 54
5.3. Meaningful file suffixes .. 54
5.4. Modes of operation .. 54

5.4.1. Using ghc ––make ... 55
5.4.2. Expression evaluation mode .. 56
5.4.3. Batch compiler mode ... 56

5.4.3.1. Overriding the default behaviour for a file ... 57
5.5. Help and verbosity options .. 57
5.6. Filenames and separate compilation .. 58

5.6.1. Haskell source files ... 59
5.6.2. Output files .. 59
5.6.3. The search path .. 60
5.6.4. Redirecting the compilation output(s) ... 60
5.6.5. Keeping Intermediate Files ... 62
5.6.6. Redirecting temporary files ... 63
5.6.7. Other options related to interface files ... 63
5.6.8. The recompilation checker .. 63
5.6.9. How to compile mutually recursive modules .. 64
5.6.10. Using make ... 66
5.6.11. Dependency generation .. 67
5.6.12. Orphan modules and instance declarations ... 69

5.7. Warnings and sanity-checking ... 70
5.8. Packages ... 77

5.8.1. Using Packages .. 77
5.8.2. The main package ... 79

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

v

5.8.3. Consequences of packages .. 79
5.8.4. Package Databases .. 79

5.8.4.1. The GHC_PACKAGE_PATH environment variable .. 80
5.8.5. Building a package from Haskell source .. 80
5.8.6. Package management (the ghc-pkg command) .. 81
5.8.7. InstalledPackageInfo: a package specification .. 83

5.9. Optimisation (code improvement) .. 86
5.9.1. -O*: convenient “packages” of optimisation flags. .. 86
5.9.2. -f*: platform-independent flags ... 87

5.10. Options related to a particular phase .. 90
5.10.1. Replacing the program for one or more phases .. 90
5.10.2. Forcing options to a particular phase ... 90
5.10.3. Options affecting the C pre-processor ... 91

5.10.3.1. CPP and string gaps .. 93
5.10.4. Options affecting a Haskell pre-processor .. 93
5.10.5. Options affecting the C compiler (if applicable) .. 93
5.10.6. Options affecting code generation .. 94
5.10.7. Options affecting linking .. 94

5.11. Using Concurrent Haskell ... 97
5.12. Using SMP parallelism ... 97

5.12.1. Options to enable SMP parallelism ... 97
5.12.2. Hints for using SMP parallelism ... 98

5.13. Platform-specific Flags ... 98
5.14. Running a compiled program ... 99

5.14.1. Setting global RTS options ... 99
5.14.2. Miscellaneous RTS options ... 100
5.14.3. RTS options to control the garbage collector .. 100
5.14.4. RTS options for profiling and parallelism .. 102
5.14.5. RTS options for hackers, debuggers, and over-interested souls 102
5.14.6. “Hooks” to change RTS behaviour ... 103
5.14.7. Getting information about the RTS ... 104

5.15. Generating and compiling External Core Files ... 104
5.16. Debugging the compiler .. 105

5.16.1. Dumping out compiler intermediate structures .. 105
5.16.2. Checking for consistency .. 112
5.16.3. How to read Core syntax (from some -ddump flags) ... 113
5.16.4. Unregisterised compilation ... 114

5.17. Flag reference ... 114
5.17.1. Help and verbosity options .. 114
5.17.2. Which phases to run .. 115
5.17.3. Alternative modes of operation .. 115
5.17.4. Redirecting output ... 116
5.17.5. Keeping intermediate files .. 116
5.17.6. Temporary files .. 117
5.17.7. Finding imports .. 117
5.17.8. Interface file options .. 117
5.17.9. Recompilation checking ... 117
5.17.10. Interactive-mode options ... 118
5.17.11. Packages .. 118
5.17.12. Language options .. 118
5.17.13. Warnings ... 121
5.17.14. Optimisation levels .. 123
5.17.15. Individual optimisations ... 123
5.17.16. Profiling options ... 125
5.17.17. Program coverage options ... 125
5.17.18. Haskell pre-processor options .. 125
5.17.19. C pre-processor options .. 126
5.17.20. C compiler options .. 126

6.8.2

vi

5.17.21. Code generation options ... 126
5.17.22. Linking options ... 126
5.17.23. Replacing phases ... 127
5.17.24. Forcing options to particular phases .. 128
5.17.25. Platform-specific options .. 128
5.17.26. External core file options .. 128
5.17.27. Compiler debugging options .. 129
5.17.28. Misc compiler options .. 130

6. Profiling .. 132
6.1. Cost centres and cost-centre stacks ... 132

6.1.1. Inserting cost centres by hand .. 134
6.1.2. Rules for attributing costs ... 134

6.2. Compiler options for profiling ... 135
6.3. Time and allocation profiling ... 136
6.4. Profiling memory usage .. 136

6.4.1. RTS options for heap profiling .. 136
6.4.2. Retainer Profiling ... 138

6.4.2.1. Hints for using retainer profiling ... 139
6.4.3. Biographical Profiling ... 139
6.4.4. Actual memory residency ... 140

6.5. hp2ps––heap profile to PostScript .. 140
6.5.1. Manipulating the hp file ... 141
6.5.2. Zooming in on regions of your profile ... 142
6.5.3. Viewing the heap profile of a running program ... 142
6.5.4. Viewing a heap profile in real time ... 142

6.6. Observing Code Coverage .. 143
6.6.1. A small example: Reciprocation .. 143
6.6.2. Options for instrumenting code for coverage .. 145
6.6.3. The hpc toolkit ... 145

6.6.3.1. hpc report ... 145
6.6.3.2. hpc markup ... 146
6.6.3.3. hpc sum .. 146
6.6.3.4. hpc combine .. 146
6.6.3.5. hpc map ... 147
6.6.3.6. hpc overlay and hpc draft ... 147

6.6.4. Caveats and Shortcomings of Haskell Program Coverage 148
6.7. Using “ticky-ticky” profiling (for implementors) ... 148

7. Advice on: sooner, faster, smaller, thriftier ... 151
7.1. Sooner: producing a program more quickly .. 151
7.2. Faster: producing a program that runs quicker ... 152
7.3. Smaller: producing a program that is smaller .. 155
7.4. Thriftier: producing a program that gobbles less heap space ... 156

8. GHC Language Features ... 157
8.1. Language options .. 157
8.2. Unboxed types and primitive operations .. 159

8.2.1. Unboxed types ... 160
8.2.2. Unboxed Tuples ... 161

8.3. Syntactic extensions ... 162
8.3.1. Hierarchical Modules .. 162
8.3.2. Pattern guards .. 163
8.3.3. The recursive do-notation ... 164
8.3.4. Parallel List Comprehensions .. 165
8.3.5. Rebindable syntax ... 166
8.3.6. Postfix operators ... 167
8.3.7. Record field disambiguation ... 167

8.4. Extensions to data types and type synonyms ... 168
8.4.1. Data types with no constructors ... 168
8.4.2. Infix type constructors, classes, and type variables .. 168

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

vii

8.4.3. Liberalised type synonyms ... 169
8.4.4. Existentially quantified data constructors ... 170

8.4.4.1. Why existential? .. 171
8.4.4.2. Existentials and type classes ... 171
8.4.4.3. Record Constructors ... 172
8.4.4.4. Restrictions ... 173

8.4.5. Declaring data types with explicit constructor signatures .. 174
8.4.6. Generalised Algebraic Data Types (GADTs) .. 177

8.5. Extensions to the "deriving" mechanism .. 179
8.5.1. Inferred context for deriving clauses ... 179
8.5.2. Stand-alone deriving declarations ... 179
8.5.3. Deriving clause for classes Typeable and Data .. 180
8.5.4. Generalised derived instances for newtypes ... 180

8.5.4.1. Generalising the deriving clause .. 180
8.5.4.2. A more precise specification ... 182

8.6. Class and instances declarations ... 182
8.6.1. Class declarations ... 183

8.6.1.1. Multi-parameter type classes .. 183
8.6.1.2. The superclasses of a class declaration ... 183
8.6.1.3. Class method types ... 183

8.6.2. Functional dependencies .. 183
8.6.2.1. Rules for functional dependencies ... 184
8.6.2.2. Background on functional dependencies ... 184

8.6.3. Instance declarations ... 188
8.6.3.1. Relaxed rules for instance declarations ... 188
8.6.3.2. Undecidable instances ... 189
8.6.3.3. Overlapping instances ... 190
8.6.3.4. Type synonyms in the instance head .. 192

8.6.4. Overloaded string literals ... 192
8.7. Other type system extensions ... 193

8.7.1. Type signatures .. 193
8.7.1.1. The context of a type signature ... 193

8.7.2. Implicit parameters ... 194
8.7.2.1. Implicit-parameter type constraints .. 195
8.7.2.2. Implicit-parameter bindings .. 196
8.7.2.3. Implicit parameters and polymorphic recursion .. 196
8.7.2.4. Implicit parameters and monomorphism ... 197

8.7.3. Explicitly-kinded quantification ... 197
8.7.4. Arbitrary-rank polymorphism .. 198

8.7.4.1. Examples .. 199
8.7.4.2. Type inference ... 201
8.7.4.3. Implicit quantification ... 201

8.7.5. Impredicative polymorphism ... 202
8.7.6. Lexically scoped type variables ... 202

8.7.6.1. Overview .. 203
8.7.6.2. Declaration type signatures .. 203
8.7.6.3. Expression type signatures ... 204
8.7.6.4. Pattern type signatures .. 204
8.7.6.5. Class and instance declarations ... 205

8.7.7. Generalised typing of mutually recursive bindings .. 205
8.7.8. Type families ... 206

8.8. Template Haskell .. 206
8.8.1. Syntax .. 206
8.8.2. Using Template Haskell ... 207
8.8.3. A Template Haskell Worked Example .. 207
8.8.4. Using Template Haskell with Profiling ... 208

8.9. Arrow notation ... 209
8.9.1. do-notation for commands .. 210

6.8.2

viii

8.9.2. Conditional commands .. 211
8.9.3. Defining your own control structures .. 212
8.9.4. Primitive constructs ... 213
8.9.5. Differences with the paper .. 214
8.9.6. Portability ... 214

8.10. Bang patterns .. 215
8.10.1. Informal description of bang patterns .. 215
8.10.2. Syntax and semantics ... 216

8.11. Assertions .. 217
8.12. Pragmas ... 217

8.12.1. LANGUAGE pragma .. 218
8.12.2. OPTIONS_GHC pragma .. 218
8.12.3. INCLUDE pragma .. 218
8.12.4. DEPRECATED pragma ... 218
8.12.5. INLINE and NOINLINE pragmas .. 219

8.12.5.1. INLINE pragma ... 219
8.12.5.2. NOINLINE pragma .. 220
8.12.5.3. Phase control ... 220

8.12.6. LINE pragma ... 221
8.12.7. RULES pragma .. 221
8.12.8. SPECIALIZE pragma .. 221
8.12.9. SPECIALIZE instance pragma .. 222
8.12.10. UNPACK pragma ... 223

8.13. Rewrite rules .. 223
8.13.1. Syntax .. 224
8.13.2. Semantics .. 224
8.13.3. List fusion ... 226
8.13.4. Specialisation ... 227
8.13.5. Controlling what's going on .. 228
8.13.6. CORE pragma .. 228

8.14. Special built-in functions .. 229
8.15. Generic classes .. 229

8.15.1. Using generics .. 230
8.15.2. Changes wrt the paper .. 230
8.15.3. Terminology and restrictions ... 230
8.15.4. Another example ... 232

8.16. Control over monomorphism ... 232
8.16.1. Switching off the dreaded Monomorphism Restriction ... 232
8.16.2. Monomorphic pattern bindings .. 232

8.17. Concurrent and Parallel Haskell ... 233
8.17.1. Concurrent Haskell .. 233
8.17.2. Software Transactional Memory .. 233
8.17.3. Parallel Haskell .. 234
8.17.4. Annotating pure code for parallelism .. 234

9. Foreign function interface (FFI) .. 236
9.1. GHC extensions to the FFI Addendum .. 236

9.1.1. Unboxed types ... 236
9.1.2. Newtype wrapping of the IO monad ... 236

9.2. Using the FFI with GHC ... 236
9.2.1. Using foreign export and foreign import ccall "wrapper" with GHC 237

9.2.1.1. Using your own main() ... 237
9.2.1.2. Making a Haskell library that can be called from foreign code 239
9.2.1.3. On the use of hs_exit() .. 239

9.2.2. Using function headers .. 240
9.2.2.1. Finding Header files ... 240

9.2.3. Memory Allocation ... 240
10. What to do when something goes wrong ... 242

10.1. When the compiler “does the wrong thing” ... 242

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

ix

10.2. When your program “does the wrong thing” ... 243
11. Other Haskell utility programs .. 244

11.1. Ctags and Etags for Haskell: hasktags ... 244
11.1.1. Using tags with your editor ... 244

11.2. “Yacc for Haskell”: happy .. 244
11.3. Writing Haskell interfaces to C code: hsc2hs .. 245

11.3.1. command line syntax ... 245
11.3.2. Input syntax ... 246
11.3.3. Custom constructs ... 247

12. Running GHC on Win32 systems .. 248
12.1. Starting GHC on Windows platforms .. 248
12.2. Running GHCi on Windows .. 248
12.3. Interacting with the terminal .. 248
12.4. Differences in library behaviour ... 249
12.5. Using GHC (and other GHC-compiled executables) with cygwin 249

12.5.1. Background ... 249
12.5.2. The problem ... 249
12.5.3. Things to do ... 249

12.6. Building and using Win32 DLLs .. 250
12.6.1. Creating a DLL ... 250
12.6.2. Making DLLs to be called from other languages ... 251
12.6.3. Beware of DllMain()! .. 252

13. Known bugs and infelicities ... 254
13.1. Haskell 98 vs. Glasgow Haskell: language non-compliance ... 254

13.1.1. Divergence from Haskell 98 .. 254
13.1.1.1. Lexical syntax .. 254
13.1.1.2. Context-free syntax ... 254
13.1.1.3. Expressions and patterns .. 255
13.1.1.4. Declarations and bindings .. 255
13.1.1.5. Module system and interface files .. 255
13.1.1.6. Numbers, basic types, and built-in classes ... 255
13.1.1.7. In Prelude support ... 255

13.1.2. GHC's interpretation of undefined behaviour in Haskell 98 256
13.2. Known bugs or infelicities ... 257

13.2.1. Bugs in GHC .. 257
13.2.2. Bugs in GHCi (the interactive GHC) ... 258

Index .. 259

6.8.2

x

The Glasgow Haskell Compiler License
Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETH-
ER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

xi

Chapter 1. Introduction to GHC
This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch compilation sys-
tem for the Haskell 98 [http://www.haskell.org/] language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi), described in
Chapter 3, Using GHCi, and a batch compiler, described throughout Chapter 5, Using GHC. In fact,
GHC consists of a single program which is just run with different options to provide either the interact-
ive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an interactive
session and used in the same way as interpreted code, and in fact when using GHCi most of the library
code will be pre-compiled. This means you get the best of both worlds: fast pre-compiled library code,
and fast compile turnaround for the parts of your program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function interface, ex-
ceptions, type system extensions such as multi-parameter type classes, local universal and existential
quantification, functional dependencies, scoped type variables and explicit unboxed types. These are all
described in Chapter 8, GHC Language Features.

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you've got time to
spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as fast as pos-
sible while not making too much effort to optimise the generated code (although GHC probably isn't
what you'd describe as a fast compiler :-).

GHC's profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell program
in a call-graph like structure. See Chapter 6, Profiling for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1. Meta-information: Web sites, mailing lists,
etc.

On the World-Wide Web, there are several URLs of likely interest:

• Haskell home page [http://www.haskell.org/]

• GHC home page [http://www.haskell.org/ghc/]

• comp.lang.functional FAQ [http://www.cs.nott.ac.uk/~gmh/faq.html]

We run the following mailing lists about Glasgow Haskell. We encourage you to join, as you feel is ap-
propriate.

glasgow-haskell-users: This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ
[http://www.haskell.org/haskellwiki/GHC/FAQ] first.

list email address: <glasgow-haskell-users@h
askell.org>

subscribe at: ht-

1

http://www.haskell.org/
http://www.haskell.org/
http://www.haskell.org/ghc/
http://www.cs.nott.ac.uk/~gmh/faq.html
http://www.haskell.org/haskellwiki/GHC/FAQ

tp://www.haskell.org/mai
lman/
listinfo/glas-
gow-haskell-users.

admin email address: <glasgow-haskell-users-a
dmin@haskell.org>

list archives: ht-
tp://www.haskell.org/pip
ermail/glas-
gow-haskell-users/

cvs-ghc: The hardcore GHC developers hang out here. This list also gets com-
mit message from the GHC darcs repository. There are other lists for
other darcs repositories (most notably cvs-libraries).

list email address: <cvs-ghc@haskell.org>

subscribe at: ht-
tp://www.haskell.org/mai
lman/listinfo/cvs-ghc.

admin email address: <cvs-ghc-admin@haskell.o
rg>

list archives: ht-
tp://www.haskell.org/pip
ermail/cvs-ghc/

There are several other haskell and GHC-related mailing lists served by www.haskell.org. Go to
http://www.haskell.org/mailman/listinfo/ for the full list.

Some Haskell-related discussion also takes place in the Usenet newsgroup
comp.lang.functional.

1.2. Reporting bugs in GHC
Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please see this
wiki page [http://hackage.haskell.org/trac/ghc/wiki/ReportABug] for information on how to report it.

1.3. GHC version numbering policy
As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable Releases Stable branches are numbered x.y, where y is even. Releases on the stable
branch x.y are numbered x.y.z, where z (>= 1) is the patchlevel num-
ber. Patchlevels are bug-fix releases only, and never change the program-
mer interface to any system-supplied code. However, if you install a new
patchlevel over an old one you will need to recompile any code that was
compiled against the old libraries.

The value of __GLASGOW_HASKELL__ (see Section 5.10.3, “Options af-
fecting the C pre-processor”) for a major release x.y.z is the integer xyy

Introduction to GHC

2

http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/mailman/listinfo/
http://hackage.haskell.org/trac/ghc/wiki/ReportABug
http://hackage.haskell.org/trac/ghc/wiki/ReportABug

(if y is a single digit, then a leading zero is added, so for example in ver-
sion 6.8.2 of GHC we would have __GLASGOW_HASKELL__==608).

Stable snapshots We may make snapshot releases of the current stable branch available for
download [http://www.haskell.org/ghc/dist/stable/dist/], and the latest
sources are available from the darcs repositories
[http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories].

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMM-
DD is the date of the sources from which the snapshot was built, and
x.y.z+1 is the next release to be made on that branch. For example,
6.8.1.20040225 would be a snapshot of the 6.8 branch during the
development of 6.8.2.

The value of __GLASGOW_HASKELL__ for a snapshot release is the in-
teger xyy. You should never write any conditional code which tests for
this value, however: since interfaces change on a day-to-day basis, and we
don't have finer granularity in the values of __GLASGOW_HASKELL__,
you should only conditionally compile using predicates which test whether
__GLASGOW_HASKELL__ is equal to, later than, or earlier than a given
major release.

Unstable snapshots We may make snapshot releases of the HEAD available for download
[http://www.haskell.org/ghc/dist/current/dist/], and the latest sources are
available from the darcs repositories
[http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories].

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMM-
DD is the date of the sources from which the snapshot was built. For ex-
ample, 6.7.20040225 would be a snapshot of the HEAD before the cre-
ation of the 6.8 branch.

The value of __GLASGOW_HASKELL__ for a snapshot release is the in-
teger xyy. You should never write any conditional code which tests for
this value, however: since interfaces change on a day-to-day basis, and we
don't have finer granularity in the values of __GLASGOW_HASKELL__,
you should only conditionally compile using predicates which test whether
__GLASGOW_HASKELL__ is equal to, later than, or earlier than a given
major release.

The version number of your copy of GHC can be found by invoking ghc with the ––version flag
(see Section 5.5, “Help and verbosity options”).

1.4. Release notes for version 6.8.2
6.8.2 is a bugfix release over 6.8.1. Many bugs in the compiler, libraries and build system have been
fixed. However, most library APIs have not changed, so code that worked with 6.8.1 should continue to
work with 6.8.2. The notable exceptions, as well as the user interface changes, are listed below.

• The --print-docdir for GHC has been removed, as there were some problems with the imple-
mentation. We'll revisit this area in a future release.

• Standalone deriving declarations now respect scope: You can't derive a Show instance, for example,
unless all the constructors are in scope.

• GHCi now treats all input as unicode, except for the Windows console where we do the correct con-

Introduction to GHC

3

http://www.haskell.org/ghc/dist/stable/dist/
http://www.haskell.org/ghc/dist/stable/dist/
http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories
http://www.haskell.org/ghc/dist/current/dist/
http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories

version from the current code page.

• In GHCi, ":" now repeats the last command.

• In GHCi, :{ ..lines.. :} can be used to give multi-line commands. This is mainly useful in
.ghci files.

• In GHCi, :show languages shows the active language extensions and :show packages
shows the loaded packages.

• In GHCi, :def! now overwrites a previous command with the same name, :def on its own lists
the defined macros, and :undef f g undefines both f and g.

• There is now a variant, :browse!, of :browse.

• Various changes have been made to GHC's internals, so there are some differences in the API ex-
posed by the ghc package. Most notably, checkAndLoadModule has now been implemented.

• The version of base has been increased from 3.0.0.0 to 3.0.1.0.

• The version of Cabal has been increased from 1.2.2.0 to 1.2.3.0.

• The version of containers has been increased from 0.1.0.0 to 0.1.0.1.

• The version of unix has been increased from 2.2.0.0 to 2.3.0.0.

• The version of Win32 has been increased from 2.1.0.0 to 2.1.1.0.

1.5. Release notes for version 6.8.1
The significant changes to the various parts of the compiler are listed in the following sections.

The major changes in this release are adding Haskell Program Coverage (hpc) support to the compiler,
adding a debugger to GHCi, the first phase of the base package split, and pointer tagging in the code
generator (which should mean most code improves by 10-15%, and as a result the compiler is also
faster).

1.5.1. User-visible compiler changes

• The GHC version numbering policy has been changed so 6.8.1 is the first release in this branch; see
Section 1.3, “GHC version numbering policy” for details.

• Registerised builds with gcc >= 4.2 now work.

• While older releases did mostly work on Windows Vista, 6.8.1 fixes some issues, e.g. Windows used
to think that cabal Setup programs were installers and refused to run them. However, Win9x support
has now officially been dropped, as we are not able to test on that platform.

• Haskell Program Coverage Adding hpc tools, as a single program GHC now comes with “Haskell
Program Coverage”, a code coverage tool. This is in the form of a new -fhpc flag and an hpc pro-
gram. See Section 6.6, “Observing Code Coverage” for more details.

• There is the beginnings of support for “associated types” in GHC. However, this is incomplete and
not a supported feature.

• There is the beginnings of support for “nested data parallelism” in GHC. However, this is incom-

Introduction to GHC

4

plete and not a supported feature.

• It is now possible to derive class instances with standalone top-level declarations, rather than having
to attach a deriving clause to the datatype declaration. The syntax is

deriving instance Cxt => Head

For more details see Section 8.5.2, “Stand-alone deriving declarations”.

• GHC now does left-to-right impredicative instantiation, so for example

runST $ foo

will now work. Don't rely on this, though, as it is subject to change in the future!

• A new extension OverloadedStrings means that string literals have type

Data.String.IsString t => t

where Data.String.IsString is a new class with a single method

fromString :: String -> a

• There is a new record field disambiguation extension, enabled by -fdisam-
biguate-record-fields, which allows normally-ambiguous field names to be used when it is
clear which is meant due to the use of a constructor. See Section 8.3.7, “Record field disambigu-
ation” for more details.

• There are also new flags -frecord-puns and -frecord-dot-dot for record punninng, but
these do not work correctly yet, and so are not supported.

• GHC now has an --info flag which prints information about the settings used to build the com-
piler. The information is in a machine-parsable (Haskell) format. For example,

$ ghc --info
[("Project name","The Glorious Glasgow Haskell Compilation System")
,("Project version","6.8.1")
,("Booter version","6.6")
,("Stage","2")
,("Interface file version","6")
,("Have interpreter","YES")
,("Object splitting","NO")
,("Have native code generator","YES")
,("Support SMP","YES")
,("Unregisterised","NO")
,("Tables next to code","YES")
,("Win32 DLLs","")
,("RTS ways"," debug thr thr_p thr_debug")
,("Leading underscore","NO")
]

• The runtime system now has an --info flag which prints various information about the way it was
compiled. Thus you can give +RTS --info flags to any Haskell program, e.g.

Introduction to GHC

5

$ darcs +RTS --info
[("GHC RTS", "Yes")
,("GHC version", "6.8.1")
,("RTS way", "rts_thr")
,("Host platform", "x86_64-unknown-linux")
,("Build platform", "x86_64-unknown-linux")
,("Target platform", "x86_64-unknown-linux")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
]

• GHC now accepts -XFoo and -XNoFoo flags, where Foo is any extension that can be listed in a
LANGUAGE pragma. As a result the following flags are now deprecated:

• -fth (use -XTemplateHaskell)

• -ffi, -fffi (use -XForeignFunctionInterface)

• -farrows (use -XArrows)

• -fgenerics (use -XGenerics)

• -fimplicit-prelude (use -XImplicitPrelude)

• -fbang-patterns (use -XBangPatterns)

• -fmonomorphism-restriction (use -XMonomorphismRestriction)

• -fmono-pat-binds (use -XMonoPatBinds)

• -fextended-default-rules (use -XExtendedDefaultRules)

• -fimplicit-params (use -XImplicitParams)

• -fscoped-type-variables (use -XScopedTypeVariables)

• -fparr (use -XPArr)

• -fallow-overlapping-instances (use -XOverlappingInstances)

• -fallow-undecidable-instances (use -XUndecidableInstances)

• -fallow-incoherent-instances (use -XIncoherentInstances)

• GHC now has a --supported-languages flag which lists the strings it understands as a -X
flag and in a LANGUAGE pragma. You can prepend NO to any of the strings. LANGUAGE pragmas
also only turn on exactly what you asked for now; many of them used to just enable -
fglasgow-exts before.

• GHC now understands GENERATED pragmas, which are used to indicate to tools like HPC where
some tool-generated code came from. They look like

{-# GENERATED "SourceFile" 12:3-14:8 #-} expr

• GHC now has a --print-docdir flag which prints to stdout where GHC believes its document-
ation is located.

Introduction to GHC

6

• The -O no longer enables -fvia-C.

• There is a new flag -fobject-code, which uses the default of -fasm or -fvia-C, and -
fbyte-code, which only works in GHCi and sets byte-code as the target.

• The warning for importing T(..) when T is an abstract type used to be enabled only by -W or -
Wall. It no has its own flag -fwarn-dodgy-imports.

• A new flag -fwarn-tabs warns if there are tab characters in your source files.

• A new flag -fwarn-implicit-prelude warns if your module implicitly imports the Pre-
lude.

• A new flag -fwarn-monomorphism-restriction warns if the monomorphism restriction
applies to your code.

• The “missing type-signature” warning now tells you what type GHC inferred for the function.

• The -w flag now turns off all options, not just those that are enabled by -Wall.

• A new flag -Wwarn makes warnings just warn (the default). It can be used to override -Werror.

• The -keep-hc-file, -keep-s-file and -keep-raw-s-file flags can now have an s ap-
pended to their name (which reads better when using --make). None of them, nor -
keep-tmp-files, can have any other suffix.

• There is a new flag -fspec-threshold which subsumes the now-deprecated -
fliberate-case-threshold.

• A new flag -fprint-explicit-foralls controls whether or not GHC prints explicit for-
alls when printing types.

• A new flag -ddump-to-file allows you to specify that the output of the various ddump flags
should be put in a given file.

• A new flag -ddump-rule-firings makes GHC print out when its RULEs fire.

• A new flag -ddump-mod-cycles, used with the -M mode, make GHC print out any module im-
port loops.

• The -fasm flag no longer takes an argument (which it always used to ignore anyway).

• The new -fhardwire-lib-paths flag means the path to libraries are baked in, using the -
rpath linker option.

• A new RTS flag +RTS --install-signal-handlers=>yes|no< tells the RTS whether or
not to install signal handlers (default is yes). When making a DLL you will probably want to set this
to no.

• When using runghc you can now leave a space after the -f argument telling it where to find GHC.
You can now use -- to separate the -f argument from the GHC arguments, and the GHC argu-
ments from the program to run.

• ghc-pkg has a new command check which prints a list of all packages that are broken and which
dependencies they are missing. Additionally, the list command now puts braces around broken
packages.

• ghc-pkg now has a new flag --names-only, used in conjunction with list -
-simple-output, which prints package names only, i.e. without their version numbers.

Introduction to GHC

7

• Some parts of the documentation, notably the building guide, have been moved to the wiki.

• Linear implicit parameter support has been removed.

• A new RTS flag +RTS -xbXXXXX hints to the OS that we'd like the heap to start at address
0xXXXXX. This is mainly of use to people debugging GHC.

1.5.2. Profiling changes

• It is now possible to get basic per-constructor profiling information from programs not compiled
with -prof, by using the +RTS -hT flag. This is possible even when running code in GHCi.

• There is now support in the run-time system for using PAPI to do CPU performance counter meas-
urements. This is controlled via the +RTS -aX options. Note that it must be enabled when the com-
piler is built, and is still very experimental.

• Ticky-ticky profiling, mainly for use by GHC developers, has been revived. See Section 6.7, “Using
“ticky-ticky” profiling (for implementors)” for more information.

• It is now possible to have the key on a different page in a graph generated by hp2ps, meaning the
graph can be larger and the cost centre names longer. The +RTS -L flag can be used to specify the
maximum length of a cost-centre stack name.

• Uses of _scc_ now give a deprecated warning. Use SCC pragmas instead.

1.5.3. GHCi changes

• GHCi now includes an interactive debugger. See Section 3.5, “The GHCi Debugger” for more in-
formation.

• The GHCi startup banner has been replaced with a single line. Avid fans of the banner can add

putStrLn " ___ ___ _"
putStrLn " / _ \\ /\\ /\\/ __(_)"
putStrLn " / /_\\// /_/ / / | | GHC Interactive, for Haskell 98."
putStrLn "/ /_\\\\/ __ / /___| | http://www.haskell.org/ghc/"
putStrLn "____/\\/ /_/____/|_| Type :? for help."
putStrLn ""

to their ~/.ghci.

• GHCi now has () as the first type in its defaulting list. See Section 3.4.5, “Type defaulting in
GHCi” for more information.

• GHCi now treats import M at its prompt the same as :module +M.

• As well as :set -fno<foo>, you can now also say :unset -f<foo>.

1.5.4. Boot Libraries
These used to be called “core libraries”, but we now call them “boot libraries” (or, more precisely,
“GHC boot libraries”) instead.

Introduction to GHC

8

We now build the libraries with Cabal, rather than our own build system, so it should no longer be pos-
sible for differences to creep in between the libraries as built with GHC and as built with Cabal.

The following new boot libraries have been added:

• hpc

The following boot libraries have been removed:

• parsec

• regex-base

• regex-compat

• regex-posix

• stm

The following boot libraries are new, but composed of modules that used to be in the base library:

• array (Data.Array*)

• bytestring (Data.ByteString*)

• containers (Data.Graph, Data.IntMap, Data.IntSet, Data.Map, Data.Sequence,
Data.Set, Data.Tree)

• directory (System.Directory)

• old-locale (System.Locale)

• old-time (System.Time)

• packedstring (Data.PackedString)

• pretty (Text.PrettyPrint*)

• process (System.Cmd, System.Process*)

• random (System.Random)

Additionally, Control.Parallel* have been moved to a new package “parallel” which is not a
boot library.

1.5.4.1. array

• Version number 0.1 (new library, split off from base).

• The newArray_ method returns a deterministic result in the ST monad, and behaves as before in
other contexts. The old newArray_ is now called unsafeNewArray_; the MArray class there-
fore has one more method than before.

• In order to avoid problems where unusual Ix instances could cause the array code to access memory
it shouldn't, a number of changes have been made:

Introduction to GHC

9

• A method

numElements :: Ix i => a i e -> Int

has been added to the IArray class.

• Data.Array.Base has a new function

safeRangeSize :: Ix i => (i, i) -> Int

which always returns a non-negative result.

• Data.Array.Base has a new function

safeIndex :: Ix i => (i, i) -> Int -> i -> Int

which only returns a result that is non-negative and not less than its second argument.

• The unsafeForeignPtrToStorableArray function now has an Ix i constraint.

1.5.4.2. base

• Version number 3.0 (was 2.1.1).

• A new function

System.Timeout.timeout :: Int -> IO a -> IO (Maybe a)

allows a computation to be timed out after a given number of microseconds.

• There is a new module Data.String, which defines the new IsString(fromString) class.
This class is used by the new overloaded strings extension (see Section 8.6.4, “Overloaded string lit-
erals ”).

• The Data.List module now exports a function

stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]

which drops the given prefix from a list.

• The System.IO.Error module now exports new functions ioeGetLocation and ioeSet-
Location, for manipulating the “location” of an IOError.

• The functions throwErrnoPath, throwErrnoPathIf, throwErrnoPathIf_, throwEr-
rnoPathIfNull, throwErrnoPathIfMinus1, throwErrnoPathIfMinus1_ have
moved from unix:System.Posix.Error to Foreign.C.Error.

• The System.Posix.Signals module has moved to the unix package.

• The Text.Printf.printf function now handles

• The Int8, Int16, Int32, Int64, Word, Word8, Word16, Word32 and Word64 types.

Introduction to GHC

10

• The + flag.

• The X, E and G formatting characters.

• The hash functions in Data.HashTable have been improved.

• The Kleisli composition functions

(>=>) :: (Monad m) => (a -> m b) -> (b -> m c) -> (a -> m c)
(<=<) :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)

together with the combinator

forever :: (Monad m) => m a -> m ()

have been added to Control.Monad.

• There is now a Monoid instance for the Maybe type.

• Data.Monoid now includes two types First and Last, which both newtype Maybe and return
the first and last Just respectively when used a a Monoid.

• Data.Monoid.Dual now derives Eq, Ord, Read, Show and Bounded.

• We no longer put stdin, stdout and stderr into non-blocking mode, so piping Haskell pro-
gram output through programs like tee works properly.

• The type of Data.Generics.Schemes.synthesize has been generalised from

s -> (s -> s -> s) -> GenericQ (s -> s) -> GenericQ s

to

s -> (t -> s -> s) -> GenericQ (s -> t) -> GenericQ t

• GHC.Exts now exports uncheckedShiftL64#, uncheckedShiftRL64#, un-
checkedIShiftL64# and uncheckedIShiftRA64#.

• GHC.Exts no longer defines the Splittable(split) class, which used to be used for linear
implicit parameters.

• The new value GHC.Conc.numCapabilities :: Int is the argument of the +RTS -N flag,
i.e. the number of Haskell threads that can run simultaneously.

• The new function GHC.Environment.getFullArgs returns the complete arguments that the
program was invoked with, including any +RTS arguments etc.

• GHC.Handle.openFd has been renamed to GHC.Handle.fdToHandle' to avoid confusion
with System.Posix.IO.openFd.

1.5.4.3. bytestring

Introduction to GHC

11

• Version number 0.9 (new library, split off from base).

• Data.ByteString.packCStringLen is no longer a pure function; its signature has changed
from

packCStringLen :: Foreign.C.String.CStringLen -> ByteString

to

packCStringLen :: Foreign.C.String.CStringLen -> IO ByteString

• The Data.ByteString.Base module has been split in two. The unsafe functions are now in
Data.ByteString.Unsafe (now part of the stable API), and the others are in
Data.ByteString.Internal (not part of the stable API.

• The internal lazy bytestring representation type has changed; rather than

newtype ByteString = LPS [Strict.ByteString]

it is now

data ByteString = Empty | Chunk !Strict.ByteString ByteString

1.5.4.4. Cabal

• Version number 1.2.2.0 (was 1.1.6.2).

• Configurations have been implemented; these allow things to be set conditionally in .cabal files.

• A new --executable flag for the haddock command also builds documentation for execut-
ables.

• A new --hyperlink-source flag for the haddock command makes the docs link to the
source code, rendered by hscolour.

• A new --html-location flag for the haddock command allows you to say where documenta-
tion for packages we depend on is.

• A new field pkgconfig-depends allows you to specify C libraries you use. The pkg-config
command is used to find what C flags etc are needed to use this library.

• A new field build-tools allows you to specify tool dependencies such as cpphs.

• The includes field now only specifes which include files are automatically included when com-
piling the package. A new install-includes field determines which include files are also in-
stalled.

• There are new flags --docdir and --htmldir for the configure command.

• The configure command now has --with-prog, --prog-option and --prog-options
flags for each program prog.

Introduction to GHC

12

• A new field cpp-options is used when preprocessing Haskell modules.

• Many bug fixes.

• The Cabal API is not yet stable. There have been many API changes.

1.5.4.5. containers

• Version number 0.1 (new library, split off from base).

• Data.Tree.Tree now has Applicative and Monad instances.

• In Data.Map the old functions

minView :: Monad m => Map k a -> m (Map k a, (k, a))
maxView :: Monad m => Map k a -> m (Map k a, (k, a))

have been replaced with

minView :: Monad m => Map k a -> m (a, Map k a)
maxView :: Monad m => Map k a -> m (a, Map k a)
minViewWithKey :: Monad m => Map k a -> m ((k, a), Map k a)
maxViewWithKey :: Monad m => Map k a -> m ((k, a), Map k a)

• In Data.Set the old functions

minView :: Monad m => Set a -> m (Set a, a)
maxView :: Monad m => Set a -> m (Set a, a)

have had their result orders reversed:

maxView :: Monad m => Set a -> m (a, Set a)
minView :: Monad m => Set a -> m (a, Set a)

• The following are new functions in Data.IntMap:

maxView :: Monad m => IntMap a -> m (a, IntMap a)
minView :: Monad m => IntMap a -> m (a, IntMap a)
findMin :: IntMap a -> a
findMax :: IntMap a -> a
deleteMin :: IntMap a -> IntMap a
deleteMax :: IntMap a -> IntMap a
deleteFindMin :: IntMap a -> (a, IntMap a)
deleteFindMax :: IntMap a -> (a, IntMap a)
updateMin :: (a -> a) -> IntMap a -> IntMap a
updateMax :: (a -> a) -> IntMap a -> IntMap a
updateMinWithKey :: (Key -> a -> a) -> IntMap a -> IntMap a
updateMaxWithKey :: (Key -> a -> a) -> IntMap a -> IntMap a
minViewWithKey :: (Monad m) => IntMap a -> m ((Key, a), IntMap a)
maxViewWithKey :: (Monad m) => IntMap a -> m ((Key, a), IntMap a)

• The following are new functions in Data.IntSet:

Introduction to GHC

13

findMin :: IntSet -> Int
findMax :: IntSet -> Int
deleteMin :: IntSet -> IntSet
deleteMax :: IntSet -> IntSet
deleteFindMin :: IntSet -> (Int, IntSet)
deleteFindMax :: IntSet -> (Int, IntSet)
maxView :: Monad m => IntSet -> m (Int, IntSet)
minView :: Monad m => IntSet -> m (Int, IntSet)

1.5.4.6. directory

• Version number 1.0 (new library, split off from base).

• The function

makeRelativeToCurrentDirectory :: FilePath -> IO FilePath

has been moved from the filepath library to System.Directory.

1.5.4.7. filepath

• Version number 1.1 (was 1.0).

• Removed makeRelativeToCurrentDirectory (it has moved to direct-
ory:System.Directory).

• A number of driver-related functions have been added:

splitDrive :: FilePath -> (FilePath, FilePath)
joinDrive :: FilePath -> FilePath -> FilePath
takeDrive :: FilePath -> FilePath
hasDrive :: FilePath -> Bool
dropDrive :: FilePath -> FilePath
isDrive :: FilePath -> Bool

1.5.4.8. haskell98

• Version number 1.0.1 (was 1.0).

• No other change.

1.5.4.9. hpc

• Version number 0.5 (new library).

Introduction to GHC

14

1.5.4.10. old-locale

• Version number 1.0 (new library, split off from base).

• No other change.

1.5.4.11. old-time

• Version number 1.0 (new library, split off from base).

• No other change.

1.5.4.12. packedstring

• Version number 0.1 (new library, split off from base).

• There is now a Data instance for the PackedString type.

1.5.4.13. pretty

• Version number 1.0 (new library, split off from base).

• No other change.

1.5.4.14. process

• Version number 1.0 (new library, split off from base).

• No other change.

1.5.4.15. random

• Version number 1.0 (new library, split off from base).

• No other change.

1.5.4.16. readline

• Version number 1.0.1 (was 1.0).

• No other change.

1.5.4.17. template-haskell

Introduction to GHC

15

• Version number 2.2 (was 2.1).

• We now derive Data and Typeable instances for all the TH types.

• There is now a Functor instance for Q, and Quasi instances have a Functor constraint.

1.5.4.18. unix

• Version number 2.2 (was 2.1).

• System.Posix.Unistd now exports

nanosleep :: Integer -> IO ()

(which throws an exception if the OS doesn't provide it).

• System.Posix.Files now exports

fileTypeModes :: FileMode
blockSpecialMode :: FileMode
characterSpecialMode :: FileMode
namedPipeMode :: FileMode
regularFileMode :: FileMode
directoryMode :: FileMode
symbolicLinkMode :: FileMode
socketMode :: FileMode

for use with functions like createDevice.

• There is a new module System.Posix.Semaphore providing POSIX named semaphore sup-
port.

• There is a new module System.Posix.SharedMem providing POSIX shared memory support.

• System.Posix.Terminal now exports

openPseudoTerminal :: IO (Fd, Fd)
getSlaveTerminalName :: Fd -> IO FilePath

• The functions throwErrnoPath, throwErrnoPathIf, throwErrnoPathIf_, throwEr-
rnoPathIfNull, throwErrnoPathIfMinus1, throwErrnoPathIfMinus1_ have been
removed from System.Posix.Error; they are now available from
base:Foreign.C.Error.

• The System.Posix.Signals module has been moved here from the base package.

1.5.4.19. Win32

• Version number 2.2 (was 2.1.1).

• There is a new module System.Win32.Security providing POSIX shared memory support.

Introduction to GHC

16

1.5.5. GHC As A Library

• Version number 6.8.1.

• The API should now be much more usable than in previous releases.

• There is a new function

compileToCore :: Session -> FilePath -> IO (Maybe [CoreBind])

which compiles a file to core.

• There is a new value defaultObjectTarget that gives the HscTarget used by default. This
name is now preferred to defaultHscTarget.

• The old

data GhcMode
= BatchCompile
| Interactive
| OneShot
| JustTypecheck
| MkDepend

has now been refactored into

data GhcMode
= CompManager -- ^ --make, GHCi, etc.
| OneShot -- ^ ghc -c Foo.hs
| MkDepend -- ^ ghc -M, see Finder for why we need this

and

data GhcLink = NoLink | StaticLink

is now

data GhcLink = NoLink | LinkBinary | LinkInMemory

• The HsSyn types now include all of the haddock comments.

• As the GHC API exposes all the compiler internals there are numerous other changes that is would
be impractical to list, but will have little effect on users of the API.

Introduction to GHC

17

Chapter 2. Installing GHC
Installing from binary distributions is easiest, and recommended! (Why binaries? Because GHC is a
Haskell compiler written in Haskell, so you've got to bootstrap it somehow. We provide machine-gen-
erated C-files-from-Haskell for this purpose, but it's really quite a pain to use them. If you must build
GHC from its sources, using a binary-distributed GHC to do so is a sensible way to proceed.)

This guide is in several parts:

• Installing on Unix-a-likes (Section 2.1, “Installing on Unix-a-likes”).

• Installing on Windows (Section 2.2, “Installing on Windows”).

• The layout of installed files (Section 2.3, “The layout of installed files”). You don't need to know
this to install GHC, but it's useful if you are changing the implementation.

2.1. Installing on Unix-a-likes
2.1.1. When a platform-specific package is available

Most common OSes provide GHC binaries packaged using the native package format for the platform.
This is likely to be by far the best way to install GHC for your platform if one of these packages is avail-
able, since dependencies will automatically be handled and the package system normally provides a way
to uninstall the package at a later date.

Check the distribution packages [http://www.haskell.org/ghc/distribution_packages.html] page to see if
there is a package available for your platform.

2.1.2. GHC binary distributions

Binary distributions come in “bundles,” called ghc-version-platform.tar.bz2. (See the build-
ing guide [http://hackage.haskell.org/trac/ghc/wiki/Building] for the definition of a platform.) Suppose
that you untar a binary-distribution bundle, thus:

% cd /your/scratch/space
% bunzip2 < ghc-version-platform.tar.bz2 | tar xvf -

Then you should find the bundle contents inside a single directory, ghc-version.

2.1.2.1. Installing

OK, so let's assume that you have unpacked your chosen bundles. What next? Well, you will first need
to configure the bundle by changing to the bundle's top-level directory and typing ./configure.
That should convert Makefile-vars.in to Makefile-vars.

The configure script takes a number of flags. The most commonly used is the --prefix=/
path/to/install/in flag, which tells the bundle that you want it to be installed in /
path/to/install/in rather than the default location (/usr/local). To see all the flags that configure
accepts, run configure --help.

18

http://www.haskell.org/ghc/distribution_packages.html
http://hackage.haskell.org/trac/ghc/wiki/Building
http://hackage.haskell.org/trac/ghc/wiki/Building

Then do the following:

1. Run make install. This should work with ordinary Unix make—no need for fancy stuff like
GNU make.

2. If appropriate, add the bin directory to your PATH, as instructed.

3. You may need to run rehash (t?csh or zsh users), in order for your shell to see the new stuff in
your bin directory.

4. Once done, test your “installation” as suggested in Section 2.1.2.2, “Testing that GHC seems to be
working ”. Be sure to use a -v option, so you can see exactly what pathnames it's using. If things
don't work as expected, check the list of known pitfalls in the building guide
[http://hackage.haskell.org/trac/ghc/wiki/Building].

When installing the user-invokable binaries, this installation procedure will install GHC as ghc-x.xx
where x.xx is the version number of GHC. It will also make a link (in the binary installation directory)
from ghc to ghc-x.xx. If you install multiple versions of GHC then the last one “wins”, and “ghc”
will invoke the last one installed. You can change this manually if you want. But regardless, ghc-x.xx
should always invoke GHC version x.xx.

2.1.2.2. Testing that GHC seems to be working

The way to do this is, of course, to compile and run this program (in a file Main.hs):

main = putStr "Hello, world!\n"

Compile the program, using the -v (verbose) flag to verify that libraries, etc., are being found properly:

% ghc -v -o hello Main.hs

Now run it:

% ./hello
Hello, world!

For more information on how to “drive” GHC, read on...

2.2. Installing on Windows
Getting the Glasgow Haskell Compiler (post 5.02) to run on Windows platforms is a snap: the installer
does everything you need.

2.2.1. Installing GHC on Windows
To install GHC, use the following steps:

Installing GHC

19

http://hackage.haskell.org/trac/ghc/wiki/Building

• Download the installer from the GHC download page [http://www.haskell.org/ghc/download.html].

• Run the installer. On Windows, all of GHC's files are installed in a single directory. You can over-
ride it, but by default this directory is c:/ghc/ghc-version. The executable binary for GHC
will be installed in the bin/ sub-directory of the installation directory. If you want to invoke GHC
from a command line, add this to your $PATH environment variable.

When installation is complete, you should find GHCi and the GHC documentation are available in
your Start menu under "Start/All Programs/GHC/ghc-version".

• GHC needs a directory in which to create, and later delete, temporary files. It uses the standard Win-
dows procedure GetTempPath() to find a suitable directory. This procedure returns:

• The path in the environment variable TMP, if TMP is set.

• Otherwise, the path in the environment variable TEMP, if TEMP is set.

• Otherwise, there is a per-user default which varies between versions of Windows. On NT and
XP-ish versions, it might be: c:\Documents and Settings\<username>\Local
Settings\Temp.

The main point is that if you don't do anything GHC will work fine, but if you want to control where
the directory is, you can do so by setting TMP or TEMP.

• To test the fruits of your labour, try now to compile a simple Haskell program:

bash$ cat main.hs
module Main(main) where

main = putStrLn "Hello, world!"
bash$ ghc -o main main.hs
..
bash$./main
Hello, world!
bash$

You do not need the Cygwin toolchain, or anything else, to install and run GHC.

An installation of GHC requires about 365M of disk space. To run GHC comfortably, your machine
should have at least 64M of memory.

2.2.2. Moving GHC around
Once GHC is installed, you can freely move the entire GHC tree just by copying the
c:/ghc/ghc-version directory. (You will need to fix up the links in "Start/All Programs/
GHC/ghc-version" if you do this.)

It is OK to put GHC tree in a directory whose path involves spaces. However, don't do this if you use
want to use GHC with the Cygwin tools, because Cygwin can get confused when this happens. We
haven't quite got to the bottom of this, but so far as we know it's not a problem with GHC itself. Never-
theless, just to keep life simple we usually put GHC in a place with a space-free path.

2.2.3. Installing ghc-win32 FAQ

I'm having trouble with symlinks. Symlinks only work under Cygwin (Section 2.1.2.1, “Installing”),
so binaries not linked to the Cygwin DLL, in particular those built

Installing GHC

20

http://www.haskell.org/ghc/download.html

for Mingwin, will not work with symlinks.

I'm getting “permission denied”
messages from the rm or mv.

This can have various causes: trying to rename a directory when
an Explorer window is open on it tends to fail. Closing the win-
dow generally cures the problem, but sometimes its cause is more
mysterious, and logging off and back on or rebooting may be the
quickest cure.

2.3. The layout of installed files
This section describes what files get installed where. You don't need to know it if you are simply in-
stalling GHC, but it is vital information if you are changing the implementation.

GHC is installed in two directory trees:

Library directory, known as $(libdir), holds all the support files needed to run GHC. On
Unix, this directory is usually something like /
usr/lib/ghc/ghc-5.02.

Binary directory known as $(bindir), holds executables that the user is expected to in-
voke. Notably, it contains ghc and ghci. On Unix, this directory can be
anywhere, but is typically something like /usr/local/bin. On Win-
dows, however, this directory must be $(libdir)/bin.

When GHC runs, it must know where its library directory is. It finds this out in one of two ways:

• $(libdir) is passed to GHC using the -B flag. On Unix (but not Windows), the installed ghc is
just a one-line shell script that invokes the real GHC, passing a suitable -B flag. [All the user-
supplied flags follow, and a later -B flag overrides an earlier one, so a user-supplied one wins.]

• On Windows (but not Unix), if no -B flag is given, GHC uses a system call to find the directory in
which the running GHC executable lives, and derives $(libdir) from that. [Unix lacks such a
system call.] That is why $(bindir) must be $(libdir)/bin.

2.3.1. The binary directory
The binary directory, $(bindir), contains user-visible executables, notably ghc and ghci. You
should add it to your $PATH.

On Unix, the user-invokable ghc invokes $(libdir)/ghc-version, passing a suitable -B flag to
tell ghc-version where $(libdir) is. Similarly ghci, except the extra flag --interactive is
passed.

On Win32, the user-invokable ghc binary is the Real Thing (no intervening shell scripts or .bat files).
Reason: we sometimes invoke GHC with very long command lines, and cmd.exe (which executes
.bat files) truncates them. Similarly ghci is a C wrapper program that invokes ghc -
-interactive (passing on all other arguments), not a .bat file.

2.3.2. The library directory
The layout of the library directory, $(libdir), is almost identical on Windows and Unix, as follows.
Differences between Windows and Unix are annotated [Win32 only] and are commented below.

Installing GHC

21

$(libdir)/
package.conf GHC package configuration
ghc-usage.txt Message displayed by ghc ––help
ghci-usage.txt Message displayed by ghci ––help

bin/ [Win32 only] User-visible binaries
ghc.exe
ghci.exe

unlit Remove literate markup

touchy.exe [Win32 only]
perl.exe [Win32 only]
gcc.exe [Win32 only]

ghc-x.xx GHC executable [Unix only]

ghc-split Asm code splitter
ghc-asm Asm code mangler

gcc-lib/ [Win32 only] Support files for gcc
specs gcc configuration

cpp0.exe gcc support binaries
as.exe
ld.exe

crt0.o Standard
..etc.. binaries

libmingw32.a Standard
..etc.. libraries

*.h Include files

hslibs-imports/ GHC interface files for the...
ghc/*.hi ...'ghc' library

include/ C header files
StgMacros.h GHC-specific
..etc.. header files

mingw/*.h [Win32 only] Mingwin header files

lib/ GHC's library
base-2.1
..etc..

libHSrts*.a GHC RTS archive
libHSghc.a GHC package archive

HSrts.o GHC RTS linkable, used by ghci
HSghc.o GHC package linkable, used by ghci

Note that:

• $(libdir) also contains support binaries. These are not expected to be on the user's PATH, but
are invoked directly by GHC. In the Makefile system, this directory is also called
$(libexecdir), but you are not free to change it. It must be the same as $(libdir).

Installing GHC

22

• We distribute gcc with the Win32 distribution of GHC, so that users don't need to install gcc, nor
need to care about which version it is. All gcc's support files are kept in $(libdir)/gcc-lib/.

• Similarly, we distribute perl and a touch replacement (touchy.exe) with the Win32 distribu-
tion of GHC.

• The support programs ghc-split and ghc-asm are Perl scripts. The first line says
#!/usr/bin/perl; on Unix, the script is indeed invoked as a shell script, which invokes Perl; on
Windows, GHC invokes $(libdir)/perl.exe directly, which treats the #!/usr/bin/perl
as a comment. Reason: on Windows we want to invoke the Perl distributed with GHC, rather than
assume some installed one.

Installing GHC

23

1The ‘i’ stands for “Interactive”
2except foreign export, at the moment

Chapter 3. Using GHCi
GHCi1 is GHC's interactive environment, in which Haskell expressions can be interactively evaluated
and programs can be interpreted. If you're familiar with Hugs [http://www.haskell.org/hugs/], then you'll
be right at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all2 the language extensions that GHC provides. . GHCi also includes an interact-
ive debugger (see Section 3.5, “The GHCi Debugger”).

3.1. Introduction to GHCi
Let's start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 6.8.1: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which the prompt
is shown. As the banner says, you can type :? to see the list of commands available, and a half line de-
scription of each of them.

We'll explain most of these commands as we go along. For Hugs users: many things work the same as in
Hugs, so you should be able to get going straight away.

Haskell expressions can be typed at the prompt:

Prelude> 1+2
3
Prelude> let x = 42 in x / 9
4.666666666666667
Prelude>

GHCi interprets the whole line as an expression to evaluate. The expression may not span several lines -
as soon as you press enter, GHCi will attempt to evaluate it.

3.2. Loading source files
Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current direct-
ory3 then we will need to change to the right directory in GHCi:

24

http://www.haskell.org/hugs/

3If you started up GHCi from the command line then GHCi's current directory is the same as the current directory of the shell from which it was
started. If you started GHCi from the “Start” menu in Windows, then the current directory is probably something like C:\Documents and
Settings\user name.
4Note that in GHCi, and ––make mode, the -i option is used to specify the search path for source files, whereas in standard batch-compilation
mode the -i option is used to specify the search path for interface files, see Section 5.6.3, “The search path”.

Prelude> :cd dir

where dir is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the :load command:

Prelude> :load Main
Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.
*Main>

GHCi has loaded the Main module, and the prompt has changed to “*Main>” to indicate that the cur-
rent context for expressions typed at the prompt is the Main module we just loaded (we'll explain what
the * means later in Section 3.4.3, “What's really in scope at the prompt?”). So we can now type expres-
sions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost” module
to the :load command (hint: :load can be abbreviated to :l). The topmost module will normally be
Main, but it doesn't have to be. GHCi will discover which modules are required, directly or indirectly,
by the topmost module, and load them all in dependency order.

3.2.1. Modules vs. filenames
Question: How does GHC find the filename which contains module M? Answer: it looks for the file
M.hs, or M.lhs. This means that for most modules, the module name must match the filename. If it
doesn't, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with :load, or specify it when
you invoke ghci, you can give a filename rather than a module name. This filename is loaded if it ex-
ists, and it may contain any module you like. This is particularly convenient if you have several Main
modules in the same directory and you can't call them all Main.hs.

The search path for finding source files is specified with the -i option on the GHCi command line, like
so:

ghci -idir
1
:...:dir

n

or it can be set using the :set command from within GHCi (see Section 3.8.2, “Setting GHC com-
mand-line options in GHCi”)4

One consequence of the way that GHCi follows dependencies to find modules to load is that every mod-
ule must have a source file. The only exception to the rule is modules that come from a package, includ-
ing the Prelude and standard libraries such as IO and Complex. If you attempt to load a module for
which GHCi can't find a source file, even if there are object and interface files for the module, you'll get

Using GHCi

25

an error message.

3.2.2. Making changes and recompilation
If you make some changes to the source code and want GHCi to recompile the program, give the
:reload command. The program will be recompiled as necessary, with GHCi doing its best to avoid
actually recompiling modules if their external dependencies haven't changed. This is the same mechan-
ism we use to avoid re-compiling modules in the batch compilation setting (see Section 5.6.8, “The re-
compilation checker”).

3.3. Loading compiled code
When you load a Haskell source module into GHCi, it is normally converted to byte-code and run using
the interpreter. However, interpreted code can also run alongside compiled code in GHCi; indeed, nor-
mally when GHCi starts, it loads up a compiled copy of the base package, which contains the Pre-
lude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than interpreted
code, but takes about 2x longer to produce (perhaps longer if optimisation is on). So it pays to compile
the parts of a program that aren't changing very often, and use the interpreter for the code being actively
developed.

When loading up source files with :load, GHCi looks for any corresponding compiled object files, and
will use one in preference to interpreting the source if possible. For example, suppose we have a
4-module program consisting of modules A, B, C, and D. Modules B and C both import D only, and A
imports both B & C:

A
/ \
B C
\ /
D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c D.hs
Prelude> :load A
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.
*Main>

In the messages from the compiler, we see that there is no line for D. This is because it isn't necessary to
compile D, because the source and everything it depends on is unchanged since the last compilation.

At any time you can use the command :show modules to get a list of the modules currently loaded
into GHCi:

*Main> :show modules
D (D.hs, D.o)
C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)
*Main>

Using GHCi

26

If we now modify the source of D (or pretend to: using the Unix command touch on the source file is
handy for this), the compiler will no longer be able to use the object file, because it might be out of date:

*Main> :! touch D.hs
*Main> :reload
Compiling D (D.hs, interpreted)
Ok, modules loaded: A, B, C, D.
*Main>

Note that module D was compiled, but in this instance because its source hadn't really changed, its inter-
face remained the same, and the recompilation checker determined that A, B and C didn't need to be re-
compiled.

So let's try compiling one of the other modules:

*Main> :! ghc -c C.hs
*Main> :load A
Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

We didn't get the compiled version of C! What happened? Well, in GHCi a compiled module may only
depend on other compiled modules, and in this case C depends on D, which doesn't have an object file,
so GHCi also rejected C's object file. Ok, so let's also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here's another lesson: newly compiled modules aren't picked up by :reload, only
:load:

*Main> :load A
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

HINT: since GHCi will only use a compiled object file if it can be sure that the compiled version is up-
to-date, a good technique when working on a large program is to occasionally run ghc ––make to
compile the whole project (say before you go for lunch :-), then continue working in the interpreter. As
you modify code, the changed modules will be interpreted, but the rest of the project will remain com-
piled.

3.4. Interactive evaluation at the prompt
When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Using GHCi

27

Prelude> 5+5
10

3.4.1. I/O actions at the prompt
GHCi does more than simple expression evaluation at the prompt. If you type something of type IO a
for some a, then GHCi executes it as an IO-computation.

Prelude> "hello"
"hello"
Prelude> putStrLn "hello"
hello

Furthermore, GHCi will print the result of the I/O action if (and only if):

• The result type is an instance of Show.

• The result type is not ().

For example, remembering that putStrLn :: String -> IO ():

Prelude> putStrLn "hello"
hello
Prelude> do { putStrLn "hello"; return "yes" }
hello
"yes"

3.4.2. Using do-notation at the prompt
GHCi actually accepts statements rather than just expressions at the prompt. This means you can bind
values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax of a statement
in a Haskell do expression. However, there's no monad overloading here: statements typed at the
prompt must be in the IO monad.

Prelude> x <- return 42
42
Prelude> print x
42
Prelude>

The statement x <- return 42 means “execute return 42 in the IO monad, and bind the result
to x”. We can then use x in future statements, for example to print it as we did above.

GHCi will print the result of a statement if and only if:

• The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly one variable.

• The variable's type is not polymorphic, is not (), and is an instance of Show

The automatic printing of binding results can be suppressed with :set -
fno-print-bind-result (this does not suppress printing the result of non-binding statements). .

Using GHCi

28

You might want to do this to prevent the result of binding statements from being fully evaluated by the
act of printing them, for example.

Of course, you can also bind normal non-IO expressions using the let-statement:

Prelude> let x = 42
Prelude> x
42
Prelude>

Another important difference between the two types of binding is that the monadic bind (p <- e) is
strict (it evaluates e), whereas with the let form, the expression isn't evaluated immediately:

Prelude> let x = error "help!"
Prelude> print x
*** Exception: help!
Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

Hint: you can also use let-statements to define functions at the prompt:

Prelude> let add a b = a + b
Prelude> add 1 2
3
Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups of mutually
recursive functions, because the complete definition has to be given on a single line, using explicit
braces and semicolons instead of layout:

Prelude> let { f op n [] = n ; f op n (h:t) = h `op` f op n t }
Prelude> f (+) 0 [1..3]
6
Prelude>

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in :{ and
:} (each on a single line of its own):

Prelude> :{
Prelude| let { g op n [] = n
Prelude| ; g op n (h:t) = h `op` g op n t
Prelude| }
Prelude| :}
Prelude> g (*) 1 [1..3]
6

Such multiline commands can be used with any GHCi command, and the lines between :{ and :} are
simply merged into a single line for interpretation. That implies that each such group must form a single
valid command when merged, and that no layout rule is used. The main purpose of multiline commands
is not to replace module loading but to make definitions in .ghci-files (see Section 3.9, “The .ghci
file”) more readable and maintainable.

Using GHCi

29

Any exceptions raised during the evaluation or execution of the statement are caught and printed by the
GHCi command line interface (for more information on exceptions, see the module Con-
trol.Exception in the libraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that are in scope
in the current module context.

WARNING: temporary bindings introduced at the prompt only last until the next :load or :reload
command, at which time they will be simply lost. However, they do survive a change of context with
:module: the temporary bindings just move to the new location.

HINT: To get a list of the bindings currently in scope, use the :show bindings command:

Prelude> :show bindings
x :: Int
Prelude>

HINT: if you turn on the +t option, GHCi will show the type of each variable bound by a statement. For
example:

Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

3.4.3. What's really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi provides a
flexible way to control exactly how the context for an expression is constructed. Let's start with the
simple cases; when you start GHCi the prompt looks like this:

Prelude>

Which indicates that everything from the module Prelude is currently in scope. If we now load a file
into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of the top-level
of the Main module. Everything that is in scope at the top-level in the module Main we just loaded is
also in scope at the prompt (probably including Prelude, as long as Main doesn't explicitly hide it).

The syntax *module indicates that it is the full top-level scope of module that is contributing to the
scope for expressions typed at the prompt. Without the *, just the exports of the module are visible.

We're not limited to a single module: GHCi can combine scopes from multiple modules, in any mixture
of * and non-* forms. GHCi combines the scopes from all of these modules to form the scope that is in
effect at the prompt. For technical reasons, GHCi can only support the *-form for modules which are in-
terpreted, so compiled modules and package modules can only contribute their exports to the current
scope.

Using GHCi

30

The scope is manipulated using the :module command. For example, if the current scope is
Prelude, then we can bring into scope the exports from the module IO like so:

Prelude> :module +IO
Prelude IO> hPutStrLn stdout "hello\n"
hello
Prelude IO>

(Note: you can use import M as an alternative to :module +M, and :module can also be shortened
to :m). The full syntax of the :module command is:

:module [+|-] [*]mod
1
... [*]mod

n

Using the + form of the module commands adds modules to the current scope, and - removes them.
Without either + or -, the current scope is replaced by the set of modules specified. Note that if you use
this form and leave out Prelude, GHCi will assume that you really wanted the Prelude and add it in
for you (if you don't want the Prelude, then ask to remove it with :m -Prelude).

The scope is automatically set after a :load command, to the most recently loaded "target" module, in
a *-form if possible. For example, if you say :load foo.hs bar.hs and bar.hs contains module
Bar, then the scope will be set to *Bar if Bar is interpreted, or if Bar is compiled it will be set to
Prelude Bar (GHCi automatically adds Prelude if it isn't present and there aren't any *-form
modules).

With multiple modules in scope, especially multiple *-form modules, it is likely that name clashes will
occur. Haskell specifies that name clashes are only reported when an ambiguous identifier is used, and
GHCi behaves in the same way for expressions typed at the prompt.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and type J<tab>
then GHCi will expand it to “Just ”.

3.4.3.1. Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import quali-
fied declaration for every module in every package, and every module currently loaded into GHCi.

3.4.3.2. The :main command

When a program is compiled and executed, it can use the getArgs function to access the command-
line arguments. However, we cannot simply pass the arguments to the main function while we are test-
ing in ghci, as the main function doesn't take its directly.

Instead, we can use the :main command. This runs whatever main is in scope, with any arguments be-
ing treated the same as command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

3.4.4. The it variable
Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt, GHCi impli-

Using GHCi

31

citly binds its value to the variable it. For example:

Prelude> 1+2
3
Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn't have an IO type, then it
transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or GHCi will
complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of `print' at <interactive>:1:0-1

Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type IO a for some a, then it will be bound to the result of the IO
computation, which is of type a. eg.:

Prelude> Time.getClockTime
Wed Mar 14 12:23:13 GMT 2001
Prelude> print it
Wed Mar 14 12:23:13 GMT 2001

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the old value
of it is lost.

3.4.5. Type defaulting in GHCi
Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse []) (which is

Using GHCi

32

what GHCi computes here) has type Show a => a and how that displays depends on the type a. For
example:

ghci> (reverse []) :: String
""
ghci> (reverse []) :: [Int]
[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell's type-
defaulting rules (Section 4.3.4 of the Haskell 98 Report (Revised)) as follows. The standard rules take
each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and defaults the
type variable if

1. The type variable a appears in no other constraints

2. All the classes Ci are standard.

3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the -XExtendedDefaultRules flag is given, the following
additional differences apply:

• Rule 2 above is relaxed thus: All of the classes Ci are single-parameter type classes.

• Rule 3 above is relaxed this: At least one of the classes Ci is numeric, or is Show, Eq, or Ord.

• The unit type () is added to the start of the standard list of types which are tried when doing type
defaulting.

The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means IO a actions default to IO (), which in turn means that
ghci won't try to print a result when running them. This is particularly important for printf, which has
an instance that returns IO a. However, it is only able to return undefined (the reason for the in-
stance having this type is so that printf doesn't require extensions to the class system), so if the type de-
faults to Integer then ghci gives an error when running a printf.

3.5. The GHCi Debugger
GHCi contains a simple imperative-style debugger in which you can stop a running computation in or-
der to examine the values of variables. The debugger is integrated into GHCi, and is turned on by de-
fault: no flags are required to enable the debugging facilities. There is one major restriction: breakpoints
and single-stepping are only available in interpreted modules; compiled code is invisible to the debug-
ger.

The debugger provides the following:

Using GHCi

33

• The ability to set a breakpoint on a function definition or expression in the program. When the func-
tion is called, or the expression evaluated, GHCi suspends execution and returns to the prompt,
where you can inspect the values of local variables before continuing with the execution.

• Execution can be single-stepped: the evaluator will suspend execution approximately after every re-
duction, allowing local variables to be inspected. This is equivalent to setting a breakpoint at every
point in the program.

• Execution can take place in tracing mode, in which the evaluator remembers each evaluation step as
it happens, but doesn't suspend execution until an actual breakpoint is reached. When this happens,
the history of evaluation steps can be inspected.

• Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to help locate
the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features provide a
useful second-best, which will often be enough to establish the context of an error.

3.5.1. Breakpoints and inspecting variables
Let's use quicksort as a running example. Here's the code:

qsort [] = []
qsort (a:as) = qsort left ++ [a] ++ qsort right
where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :l qsort.hs
[1 of 1] Compiling Main (qsort.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Now, let's set a breakpoint on the right-hand-side of the second equation of qsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in this case
qsort.hs. Specifically, it picks the leftmost complete subexpression on that line on which to set the
breakpoint, which in this case is the expression (qsort left ++ [a] ++ qsort right).

Now, we run the program:

*Main> main
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a

Using GHCi

34

5We originally provided bindings for all variables in scope, rather than just the free variables of the expression, but found that this affected per-
formance considerably, hence the current restriction to just the free variables.

left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are currently
stopped at a breakpoint, and the location: [qsort.hs:2:15-46]. To further clarify the location, we
can use the :list command:

[qsort.hs:2:15-46] *Main> :list
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list command lists the source code around the current breakpoint. If your output device supports
it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables5 of the expression on which the breakpoint was
placed (a, left, right), and additionally a binding for the result of the expression (_result). These
variables are just like other variables that you might define in GHCi; you can use them in expressions
that you type at the prompt, you can ask for their types with :type, and so on. There is one important
difference though: these variables may only have partial types. For example, if we try to display the
value of left:

[qsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable `a' in the constraint:
`Show a' arising from a use of `print' at <interactive>:1:0-3

Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type information at
runtime, it cannot determine the runtime types of free variables that involve type variables. Hence, when
you ask to display left at the prompt, GHCi can't figure out which instance of Show to use, so it emits
the type error above.

Fortunately, the debugger includes a generic printing command, :print, which can inspect the actual
runtime value of a variable and attempt to reconstruct its type. If we try it on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *Main> :print left
left = (_t1::[a])

This isn't particularly enlightening. What happened is that left is bound to an unevaluated computa-
tion (a suspension, or thunk), and :print does not force any evaluation. The idea is that :print can
be used to inspect values at a breakpoint without any unfortunate side effects. It won't force any evalu-
ation, which could cause the program to give a different answer than it would normally, and hence it
won't cause any exceptions to be raised, infinite loops, or further breakpoints to be triggered (see Sec-
tion 3.5.3, “Nested breakpoints”). Rather than forcing thunks, :print binds each thunk to a fresh vari-
able beginning with an underscore, in this case _t1.

Using GHCi

35

The flag -fprint-evld-with-show instructs :print to reuse available Show instances when
possible. This happens only when the contents of the variable being inspected are completely evaluated.

If we aren't concerned about preserving the evaluatedness of a variable, we can use :force instead of
:print. The :force command behaves exactly like :print, except that it forces the evaluation of
any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since :force has inspected the runtime value of left, it has reconstructed its type. We can see
the results of this type reconstruction:

[qsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]
a :: Integer
left :: [Integer]
right :: [Integer]
_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been resolved. So
we can ask for the value of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell's seq function to evaluate individual thunks rather than evaluat-
ing the whole expression with :force. For example:

[qsort.hs:2:15-46] *Main> :print right
right = (_t1::[Integer])
[qsort.hs:2:15-46] *Main> seq _t1 ()
()
[qsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the _t1 thunk, revealing the head of the list, and the tail is another thunk now bound
to _t2. The seq function is a little inconvenient to use here, so you might want to use :def to make a
nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[qsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the breakpoint for a
second time.

Using GHCi

36

3.5.1.1. Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to name a top-level
function:

:break identifier

Where identifier names any top-level function in an interpreted module currently loaded into
GHCi (qualified names may be used). The breakpoint will be set on the body of the function, when it is
fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line
:break line column
:break module line
:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subexpression
that begins and ends on that line. If two complete subexpressions start at the same column, the longest
one is picked. If there is no complete subexpression on the line, then the leftmost expression starting on
the line is picked, and failing that the rightmost expression that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpression that
encloses that location on which to set the breakpoint. Note: GHC considers the TAB character to have a
width of 1, wherever it occurs; in other words it counts characters, rather than columns. This matches
what some editors do, and doesn't match others. The best advice is to avoid tab characters in your source
code altogether (see -fwarn-tabs in Section 5.7, “Warnings and sanity-checking”).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not considered to
be breakpoint locations (unless the variable is the right-hand-side of a function definition, lambda, or
case alternative). The rule of thumb is that all redexes are breakpoint locations, together with the bodies
of functions, lambdas, case alternatives and binding statements. There is normally no breakpoint on a let
expression, but there will always be a breakpoint on its body, because we are usually interested in in-
specting the values of the variables bound by the let.

3.5.1.2. Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using :show breaks:

*Main> :show breaks
[0] Main qsort.hs:1:11-12
[1] Main qsort.hs:2:15-46

To delete a breakpoint, use the :delete command with the number given in the output from
:show breaks:

*Main> :delete 0
*Main> :show breaks
[1] Main qsort.hs:2:15-46

Using GHCi

37

To delete all breakpoints at once, use :delete *.

3.5.2. Single-stepping
Single-stepping is a great way to visualise the execution of your program, and it is also a useful tool for
identifying the source of a bug. GHCi offers two variants of stepping. Use :step to enable all the
breakpoints in the program, and execute until the next breakpoint is reached. Use :steplocal to limit
the set of enabled breakpoints to those in the current top level function. Similarly, use :stepmodule
to single step only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr begins the evaluation of expr in single-stepping mode. If expr is omit-
ted, then it single-steps from the current breakpoint. :stepover works similarly.

The :list command is particularly useful when single-stepping, to see where you currently are:

[qsort.hs:5:7-47] *Main> :list
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it automatic-
ally do :list:

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46
_result :: [Integer]
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:14-46] *Main>

3.5.3. Nested breakpoints
When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a second break-
point, the new breakpoint becomes the “current” one, and the old one is saved on a stack. An arbitrary
number of breakpoint contexts can be built up in this way. For example:

[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]
... [qsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with :step
qsort [1,3]. This new evaluation stopped after one step (at the definition of qsort). The prompt
has changed, now prefixed with ..., to indicate that there are saved breakpoints beyond the current
one. To see the stack of contexts, use :show context:

Using GHCi

38

... [qsort.hs:(1,0)-(3,55)] *Main> :show context
--> main
Stopped at qsort.hs:2:15-46

--> qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)

... [qsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon:

... [qsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon
*Main>

3.5.4. The _result variable
When stopped at a breakpoint or single-step, GHCi binds the variable _result to the value of the cur-
rently active expression. The value of _result is presumably not available yet, because we stopped its
evaluation, but it can be forced: if the type is known and showable, then just entering _result at the
prompt will show it. However, there's one caveat to doing this: evaluating _result will be likely to
trigger further breakpoints, starting with the breakpoint we are currently stopped at (if we stopped at a
real breakpoint, rather than due to :step). So it will probably be necessary to issue a :continue im-
mediately when evaluating _result. Alternatively, you can use :force which ignores breakpoints.

3.5.5. Tracing and history
A question that we often want to ask when debugging a program is “how did I get here?”. Traditional
imperative debuggers usually provide some kind of stack-tracing feature that lets you see the stack of
active function calls (sometimes called the “lexical call stack”), describing a path through the code to the
current location. Unfortunately this is hard to provide in Haskell, because execution proceeds on a de-
mand-driven basis, rather than a depth-first basis as in strict languages. The “stack“ in GHC's execution
engine bears little resemblance to the lexical call stack. Ideally GHCi would maintain a separate lexical
call stack in addition to the dynamic call stack, and in fact this is exactly what our profiling system does
(Chapter 6, Profiling), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn't maintain a lexical call stack (there are some technical challenges to be overcome). Instead, we
provide a way to backtrack from a breakpoint to previous evaluation steps: essentially this is like single-
stepping backwards, and should in many cases provide enough information to answer the “how did I get
here?” question.

To use tracing, evaluate an expression with the :trace command. For example, if we set a breakpoint
on the base case of qsort:

*Main> :list qsort
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)
4
*Main> :b 1
Breakpoint 1 activated at qsort.hs:1:11-12
*Main>

and then run a small qsort with tracing:

Using GHCi

39

*Main> :trace qsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[qsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[qsort.hs:1:11-12] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:3:24-38
-7 : qsort.hs:3:23-55
-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24
-10 : qsort.hs:2:15-46
-11 : qsort.hs:3:24-38
-12 : qsort.hs:3:23-55
-13 : qsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24
-15 : qsort.hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back:

[qsort.hs:1:11-12] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be examined as
usual. Also note that the prompt has changed to indicate that we're currently examining the first step in
the history: -1. The command :forward can be used to traverse forward in the history.

The :trace command can be used with or without an expression. When used without an expression,
tracing begins from the current breakpoint, just like :step.

The history is only available when using :trace; the reason for this is we found that logging each
breakpoint in the history cuts performance by a factor of 2 or more. GHCi remembers the last 50 steps in
the history (perhaps in the future we'll make this configurable).

3.5.6. Debugging exceptions
Another common question that comes up when debugging is “where did this exception come from?”.
Exceptions such as those raised by error or head [] have no context information attached to them.
Finding which particular call to head in your program resulted in the error can be a painstaking pro-
cess, usually involving Debug.Trace.trace, or compiling with profiling and using +RTS -xc
(see Section 6.3, “Time and allocation profiling”).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and without
modifying or recompiling the source code. One way would be to set a breakpoint on the location in the

Using GHCi

40

source code that throws the exception, and then use :trace and :history to establish the context.
However, head is in a library and we can't set a breakpoint on it directly. For this reason, GHCi
provides the flags -fbreak-on-exception which causes the evaluator to stop when an exception is
thrown, and -fbreak-on-error, which works similarly but stops only on uncaught exceptions.
When stopping at an exception, GHCi will act just as it does when a breakpoint is hit, with the deviation
that it will not show you any source code location. Due to this, these commands are only really useful in
conjunction with :trace, in order to log the steps leading up to the exception. For example:

*Main> :set -fbreak-on-exception
*Main> :trace qsort ("abc" ++ undefined)
"Stopped at <exception thrown>
_exception :: e
[<exception thrown>] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:(1,0)-(3,55)
<end of history>
[<exception thrown>] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined
[-1: qsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c' : (_t1::[Char])

The exception itself is bound to a new variable, _exception.

Breaking on exceptions is particularly useful for finding out what your program was doing when it was
in an infinite loop. Just hit Control-C, and examine the history to find out what was going on.

3.5.7. Example: inspecting functions
It is possible to use the debugger to examine function values. When we are at a breakpoint and a func-
tion is in scope, the debugger cannot show you the source code for it; however, it is possible to get some
information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process by means of
an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5
Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]
Stopped at map.hs:(4,0)-(5,12)

Using GHCi

41

_result :: [b]
x :: a
f :: a -> b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known yet, and
thus it is not possible to apply it to any arguments. Nevertheless, observe that the type of its first argu-
ment is the same as the type of x, and its result type is shared with _result.

As we demonstrated earlier (Section 3.5.1, “Breakpoints and inspecting variables”), the debugger has
some intelligence built-in to update the type of f whenever the types of x or _result are discovered.
So what we do in this scenario is force x a bit, in order to recover both its type and the argument part of
f.

*Main> seq x ()
*Main> :print x
x = 1

We can check now that as expected, the type of x has been reconstructed, and with it the type of f has
been too:

*Main> :t x
x :: Integer
*Main> :t f
f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:

Ambiguous type variable `b' in the constraint:
`Show b' arising from a use of `print' at <interactive>:1:0

*Main> :p b
b = (_t2::a)
*Main> seq b ()
()
*Main> :t b
b :: a
*Main> :p b
b = Just 10
*Main> :t b
b :: Maybe Integer
*Main> :t f
f :: Integer -> Maybe Integer
*Main> f 20
Just 20
*Main> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover the result
type of f. But after that, we are free to use f normally.

3.5.8. Limitations

Using GHCi

42

• When stopped at a breakpoint, if you try to evaluate a variable that is already under evaluation, the
second evaluation will hang. The reason is that GHC knows the variable is under evaluation, so the
new evaluation just waits for the result before continuing, but of course this isn't going to happen be-
cause the first evaluation is stopped at a breakpoint. Control-C can interrupt the hung evaluation and
return to the prompt.

The most common way this can happen is when you're evaluating a CAF (e.g. main), stop at a break-
point, and ask for the value of the CAF at the prompt again.

• Implicit parameters (see Section 8.7.2, “Implicit parameters”) are only available at the scope of a
breakpoint if there is an explicit type signature.

3.6. Invoking GHCi
GHCi is invoked with the command ghci or ghc ––interactive. One or more modules or file-
names can also be specified on the command line; this instructs GHCi to load the specified modules or
filenames (and all the modules they depend on), just as if you had said :load modules at the GHCi
prompt (see Section 3.7, “GHCi commands”). For example, to start GHCi and load the program whose
topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Chapter 5, Using GHC) also make sense in in-
teractive mode. The ones that don't make sense are mostly obvious.

3.6.1. Packages
Most packages (see Section 5.8.1, “Using Packages ”) are available without needing to specify any extra
flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the -package flag:

$ ghci -package readline
GHCi, version 6.8.1: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you'll be dumped
back into the Prelude.

3.6.2. Extra libraries
Extra libraries may be specified on the command line using the normal -llib option. (The term library
here refers to libraries of foreign object code; for using libraries of Haskell source code, see Sec-
tion 3.2.1, “Modules vs. filenames”.) For example, to load the “m” library:

Using GHCi

43

$ ghci -lm

On systems with .so-style shared libraries, the actual library loaded will the liblib.so. GHCi
searches the following places for libraries, in this order:

• Paths specified using the -Lpath command-line option,

• the standard library search path for your system, which on some systems may be overridden by set-
ting the LD_LIBRARY_PATH environment variable.

On systems with .dll-style shared libraries, the actual library loaded will be lib.dll. Again, GHCi
will signal an error if it can't find the library.

GHCi can also load plain object files (.o or .obj depending on your platform) from the command-
line. Just add the name the object file to the command line.

Ordering of -l options matters: a library should be mentioned before the libraries it depends on (see
Section 5.10.7, “Options affecting linking”).

3.7. GHCi commands
GHCi commands all begin with ‘:’ and consist of a single command name followed by zero or more
parameters. The command name may be abbreviated, with ambiguities being resolved in favour of the
more commonly used commands.

:abandon Abandons the current evaluation (only available when stopped at a breakpoint).

:add module
...

Add module(s) to the current target set, and perform a reload.

:back Travel back one step in the history. See Section 3.5.5, “Tracing and history”. See
also: :trace, :history, :forward.

:break
[identifier
| [module]
line
[column]]

Set a breakpoint on the specified function or line and column. See Section 3.5.1.1,
“Setting breakpoints”.

:browse[!]
[[*]module] ...

Displays the identifiers defined by the module module, which must be either
loaded into GHCi or be a member of a package. If module is omitted, the most re-
cently-loaded module is used.

If the * symbol is placed before the module name, then all the identifiers in scope in
module are shown; otherwise the list is limited to the exports of module. The *-
form is only available for modules which are interpreted; for compiled modules
(including modules from packages) only the non-* form of :browse is available.
If the ! symbol is appended to the command, data constructors and class methods
will be listed individually, otherwise, they will only be listed in the context of their
data type or class declaration. The !-form also annotates the listing with comments
giving possible imports for each group of entries.

Prelude> :browse! Data.Maybe
-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a

Using GHCi

44

Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session, in the scope of Pre-
lude, the first group of items from Data.Maybe have not been imported (but are
available in fully qualified form in the GHCi session - see Section 3.4.3, “What's
really in scope at the prompt?”), whereas the second group of items have been im-
ported via Prelude and are therefore available either unqualified, or with a Pre-
lude. qualifier.

:cd dir Changes the current working directory to dir. A ‘˜’ symbol at the beginning of
dir will be replaced by the contents of the environment variable HOME.

NOTE: changing directories causes all currently loaded modules to be unloaded.
This is because the search path is usually expressed using relative directories, and
changing the search path in the middle of a session is not supported.

:cmd expr Executes expr as a computation of type IO String, and then executes the res-
ulting string as a list of GHCi commands. Multiple commands are separated by
newlines. The :cmd command is useful with :def and :set stop.

:continue Continue the current evaluation, when stopped at a breakpoint.

:ctags [file-
name] :etags
[filename]

Generates a “tags” file for Vi-style editors (:ctags) or Emacs-style editors
(:etags). If no filename is specified, the default tags or TAGS is used, respect-
ively. Tags for all the functions, constructors and types in the currently loaded mod-
ules are created. All modules must be interpreted for these commands to work.

See also Section 11.1, “Ctags and Etags for Haskell: hasktags”.

:def[!]
[name expr]

:def is used to define new commands, or macros, in GHCi. The command :def
name expr defines a new GHCi command :name, implemented by the Haskell
expression expr, which must have type String -> IO String. When
:name args is typed at the prompt, GHCi will run the expression (name
args), take the resulting String, and feed it back into GHCi as a new sequence
of commands. Separate commands in the result must be separated by ‘\n’.

That's all a little confusing, so here's a few examples. To start with, here's a new
GHCi command which doesn't take any arguments or produce any results, it just
outputs the current date & time:

Prelude> let date _ = Time.getClockTime >>= print >> return ""
Prelude> :def date date
Prelude> :date
Fri Mar 23 15:16:40 GMT 2001

Here's an example of a command that takes an argument. It's a re-implementation of
:cd:

Using GHCi

45

Prelude> let mycd d = Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc ––make Main” in the current dir-
ectory:

Prelude> :def make (_ -> return ":! ghc ––make Main")

We can define a command that reads GHCi input from a file. This might be useful
for creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command :., by analogy with the ‘.’ Unix shell com-
mand that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine
an existing command name results in an error unless the :def! form is used, in
which case the old command with that name is silently overwritten.

:delete * |
num ...

Delete one or more breakpoints by number (use :show breaks to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:edit [file] Opens an editor to edit the file file, or the most recently loaded module if file
is omitted. The editor to invoke is taken from the EDITOR environment variable, or
a default editor on your system if EDITOR is not set. You can change the editor us-
ing :set editor.

:etags See :ctags.

:force iden-
tifier ...

Prints the value of identifier in the same way as :print. Unlike :print,
:force evaluates each thunk that it encounters while traversing the value. This
may cause exceptions or infinite loops, or further breakpoints (which are ignored,
but displayed).

:forward Move forward in the history. See Section 3.5.5, “Tracing and history”. See also:
:trace, :history, :back.

:help , :? Displays a list of the available commands.

: Repeat the previous command.

:history
[num]

Display the history of evaluation steps. With a number, displays that many steps
(default: 20). For use with :trace; see Section 3.5.5, “Tracing and history”.

:info name ... Displays information about the given name(s). For example, if name is a class, then
the class methods and their types will be printed; if name is a type constructor, then
its definition will be printed; if name is a function, then its type will be printed. If
name has been loaded from a source file, then GHCi will also display the location
of its definition in the source.

Using GHCi

46

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions
name, and (b) all the other things mentioned in the instance are in scope (either
qualified or otherwise) as a result of a :load or :module commands.

:kind type Infers and prints the kind of type. The latter can be an arbitrary type expression,
including a partial application of a type constructor, such as Either Int.

:load module
...

Recursively loads the specified modules, and all the modules they depend on.
Here, each module must be a module name or filename, but may not be the name
of a module in a package.

All previously loaded modules, except package modules, are forgotten. The new set
of modules is known as the target set. Note that :load can be used without any ar-
guments to unload all the currently loaded modules and bindings.

After a :load command, the current context is set to:

• module, if it was loaded successfully, or

• the most recently successfully loaded module, if any other modules were loaded
as a result of the current :load, or

• Prelude otherwise.

:main arg
1

... arg
n

When a program is compiled and executed, it can use the getArgs function to ac-
cess the command-line arguments. However, we cannot simply pass the arguments
to the main function while we are testing in ghci, as the main function doesn't take
its arguments directly.

Instead, we can use the :main command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

:module
[+|-]
[*]mod1 ...
[*]mod

n
, im-

port mod

Sets or modifies the current context for statements typed at the prompt. The form
import mod is equivalent to :module +mod. See Section 3.4.3, “What's really
in scope at the prompt?” for more details.

:print names
...

Prints a value without forcing its evaluation. :print may be used on values whose
types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value,
:print attempts to reconstruct the type of the value, and will elaborate the type in
GHCi's environment if possible. If any unevaluated components (thunks) are en-
countered, then :print binds a fresh variable with a name beginning with _t to
each thunk. See Section 3.5.1, “Breakpoints and inspecting variables” for more in-
formation. See also the :sprint command, which works like :print but does
not bind new variables.

:quit Quits GHCi. You can also quit by typing control-D at the prompt.

:reload Attempts to reload the current target set (see :load) if any of the modules in the
set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Using GHCi

47

:set
[option...]

Sets various options. See Section 3.8, “The :set command” for a list of available
options and Section 5.17.10, “Interactive-mode options” for a list of GHCi-specific
flags. The :set command by itself shows which options are currently set. It also
lists the current dynamic flag settings, with GHCi-specific flags listed separately.

:set args arg
...

Sets the list of arguments which are returned when the program calls Sys-
tem.getArgs.

:set editor
cmd

Sets the command used by :edit to cmd.

:set prog
prog

Sets the string to be returned when the program calls System.getProgName.

:set prompt
prompt

Sets the string to be used as the prompt in GHCi. Inside prompt, the sequence %s
is replaced by the names of the modules currently in scope, and %% is replaced by %.

:set stop
[num] cmd

Set a command to be executed when a breakpoint is hit, or a new item in the history
is selected. The most common use of :set stop is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the spe-
cified breakpoint (only) is hit. This can be quite useful: for example, :set stop
1 :continue effectively disables breakpoint 1, by running :continue
whenever it is hit (although GHCi will still emit a message to say the breakpoint
was hit). What's more, with cunning use of :def and :cmd you can use :set
stop to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using sim-
ilar techniques.

:show bind-
ings

Show the bindings made at the prompt and their types.

:show breaks List the active breakpoints.

:show con-
text

List the active evaluations that are stopped at breakpoints.

:show mod-
ules

Show the list of modules currently loaded.

:show pack-
ages

Show the currently active package flags, as well as the list of packages currently
loaded.

:show lan-
guages

Show the currently active language flags.

:show
[args|prog|p
rompt|editor
|stop]

Displays the specified setting (see :set).

:sprint Prints a value without forcing its evaluation. :sprint is similar to :print, with
the difference that unevaluated subterms are not bound to new variables, they are
simply denoted by ‘_’.

:step [expr] Single-step from the last breakpoint. With an expression argument, begins evalu-
ation of the expression with a single-step.

:trace
[expr]

Evaluates the given expression (or from the last breakpoint if no expression is giv-
en), and additionally logs the evaluation steps for later inspection using
:history. See Section 3.5.5, “Tracing and history”.

Using GHCi

48

:type ex-
pression

Infers and prints the type of expression, including explicit forall quantifiers for
polymorphic types. The monomorphism restriction is not applied to the expression
during type inference.

:undef name Undefines the user-defined command name (see :def above).

:unset op-
tion...

Unsets certain options. See Section 3.8, “The :set command” for a list of avail-
able options.

:! command... Executes the shell command command.

3.8. The :set command
The :set command sets two types of options: GHCi options, which begin with ‘+’, and
“command-line” options, which begin with ‘-’.

NOTE: at the moment, the :set command doesn't support any kind of quoting in its arguments: quotes
will not be removed and cannot be used to group words together. For example, :set -DFOO='BAR
BAZ' will not do what you expect.

3.8.1. GHCi options
GHCi options may be set using :set and unset using :unset.

The available GHCi options are:

+r Normally, any evaluation of top-level expressions (otherwise known as CAFs or
Constant Applicative Forms) in loaded modules is retained between evaluations.
Turning on +r causes all evaluation of top-level expressions to be discarded after
each evaluation (they are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large
amounts of space, or if you need repeatable performance measurements.

+s Display some stats after evaluating each expression, including the elapsed time
and number of bytes allocated. NOTE: the allocation figure is only accurate to the
size of the storage manager's allocation area, because it is calculated at every GC.
Hence, you might see values of zero if no GC has occurred.

+t Display the type of each variable bound after a statement is entered at the prompt.
If the statement is a single expression, then the only variable binding will be for
the variable ‘it’.

3.8.2. Setting GHC command-line options in GHCi
Normal GHC command-line options may also be set using :set. For example, to turn on -
fglasgow-exts, you would say:

Prelude> :set -fglasgow-exts

Any GHC command-line option that is designated as dynamic (see the table in Section 5.17, “Flag refer-
ence”), may be set using :set. To unset an option, you can set the reverse option:

Using GHCi

49

Prelude> :set -fno-glasgow-exts

Section 5.17, “Flag reference” lists the reverse for each option where applicable.

Certain static options (-package, -I, -i, and -l in particular) will also work, but some may not take
effect until the next reload.

3.9. The .ghci file
When it starts, unless the -ignore-dot-ghci flag is given, GHCi reads and executes commands
from ./.ghci, followed by $HOME/.ghci.

The .ghci in your home directory is most useful for turning on favourite options (eg. :set +s), and
defining useful macros. Placing a .ghci file in a directory with a Haskell project is a useful way to set
certain project-wide options so you don't have to type them everytime you start GHCi: eg. if your
project uses GHC extensions and CPP, and has source files in three subdirectories A, B and C, you
might put the following lines in .ghci:

:set -fglasgow-exts -cpp
:set -iA:B:C

(Note that strictly speaking the -i flag is a static one, but in fact it works to set it using :set like this.
The changes won't take effect until the next :load, though.)

Two command-line options control whether the .ghci files are read:

-ig-
nore-
dot-ghci

Don't read either ./.ghci or $HOME/.ghci when starting up.

-
read-
dot-ghci

Read .ghci and $HOME/.ghci. This is normally the default, but the -
read-dot-ghci option may be used to override a previous -ig-
nore-dot-ghci option.

3.10. Compiling to object code inside GHCi
By default, GHCi compiles Haskell source code into byte-code that is interpreted by the runtime system.
GHCi can also compile Haskell code to object code: to turn on this feature, use the -fobject-code
flag either on the command line or with :set (the option -fbyte-code restores byte-code compila-
tion again). Compiling to object code takes longer, but typically the code will execute 10-20 times faster
than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled applica-
tion, because the :reload command typically runs much faster than restarting GHC with --make
from the command-line, because all the interface files are already cached in memory.

There are disadvantages to compiling to object-code: you can't set breakpoints in object-code modules,
for example. Only the exports of an object-code module will be visible in GHCi, rather than all top-level
bindings as in interpreted modules.

3.11. FAQ and Things To Watch Out For

Using GHCi

50

The interpreter can't load modules
with foreign export declarations!

Unfortunately not. We haven't implemented it yet. Please compile
any offending modules by hand before loading them into GHCi.

-O doesn't work with GHCi! For technical reasons, the bytecode compiler doesn't interact well
with one of the optimisation passes, so we have disabled optim-
isation when using the interpreter. This isn't a great loss: you'll get
a much bigger win by compiling the bits of your code that need to
go fast, rather than interpreting them with optimisation turned on.

Unboxed tuples don't work with
GHCi

That's right. You can always compile a module that uses unboxed
tuples and load it into GHCi, however. (Incidentally the previous
point, namely that -O is incompatible with GHCi, is because the
bytecode compiler can't deal with unboxed tuples).

Concurrent threads don't carry on
running when GHCi is waiting for
input.

This should work, as long as your GHCi was built with the -
threaded switch, which is the default. Consult whoever sup-
plied your GHCi installation.

After using getContents, I can't
use stdin again until I do :load
or :reload.

This is the defined behaviour of getContents: it puts the stdin
Handle in a state known as semi-closed, wherein any further I/O
operations on it are forbidden. Because I/O state is retained
between computations, the semi-closed state persists until the next
:load or :reload command.

You can make stdin reset itself after every evaluation by giving
GHCi the command :set +r. This works because stdin is
just a top-level expression that can be reverted to its unevaluated
state in the same way as any other top-level expression (CAF).

I can't use Control-C to interrupt
computations in GHCi on Win-
dows.

See Section 12.2, “Running GHCi on Windows”.

The default buffering mode is dif-
ferent in GHCi to GHC.

In GHC, the stdout handle is line-buffered by default. However,
in GHCi we turn off the buffering on stdout, because this is nor-
mally what you want in an interpreter: output appears as it is gen-
erated.

Using GHCi

51

Chapter 4. Using runghc
runghc allows you to run Haskell programs without first having to compile them.

4.1. Flags
The runghc commandline looks like:

runghc [runghc flags] [GHC flags] module [program flags]

The only runghc flag currently is -f /path/to/ghc, which tells runghc which GHC to use to run
the program. If it is not given then runghc will search for GHC in the directories in the system search
path.

runghc will try to work out where the boundaries between [runghc flags] and [GHC flags],
and [GHC flags] and module are, but you can use a -- flag if it doesn't get it right. For example,
runghc -- -fglasgow-exts Foo means runghc won't try to use glasgow-exts as the path
to GHC, but instead will pass the flag to GHC.

52

Chapter 5. Using GHC
5.1. Options overview

GHC's behaviour is controlled by options, which for historical reasons are also sometimes referred to as
command-line flags or arguments. Options can be specified in three ways:

5.1.1. Command-line arguments
An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO is different from -v -O. Options
need not precede filenames: e.g., ghc *.o -o foo. All options are processed and then applied to all
files; you cannot, for example, invoke ghc -c -O1 Foo.hs -O2 Bar.hs to apply different op-
timisation levels to the files Foo.hs and Bar.hs.

5.1.2. Command line options in source files
Sometimes it is useful to make the connection between a source file and the command-line options it re-
quires quite tight. For instance, if a Haskell source file uses GHC extensions, it will always need to be
compiled with the -fglasgow-exts option. Rather than maintaining the list of per-file options in a
Makefile, it is possible to do this directly in the source file using the OPTIONS_GHC pragma :

{-# OPTIONS_GHC -fglasgow-exts #-}
module X where
...

OPTIONS_GHC pragmas are only looked for at the top of your source files, upto the first
(non-literate,non-empty) line not containing OPTIONS_GHC. Multiple OPTIONS_GHC pragmas are re-
cognised. Do not put comments before, or on the same line as, the OPTIONS_GHC pragma.

Note that your command shell does not get to the source file options, they are just included literally in
the array of command-line arguments the compiler maintains internally, so you'll be desperately disap-
pointed if you try to glob etc. inside OPTIONS_GHC.

NOTE: the contents of OPTIONS_GHC are appended to the command-line options, so options given in
the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some cir-
cumstances, the OPTIONS_GHC pragma is the Right Thing. (If you use -keep-hc-file and have
OPTION flags in your module, the OPTIONS_GHC will get put into the generated .hc file).

5.1.3. Setting options in GHCi
Options may also be modified from within GHCi, using the :set command. See Section 3.8, “The
:set command” for more details.

53

5.2. Static, Dynamic, and Mode options
Each of GHC's command line options is classified as static, dynamic or mode:

Mode flags For example, --make or -E. There may only be a single mode flag on the com-
mand line. The available modes are listed in Section 5.4, “Modes of operation”.

Dynamic Flags Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a GHC_OPTIONS pragma in a source file, or set using :set in
GHCi.

Static Flags A few flags are "static", which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCi run.

The flag reference tables (Section 5.17, “Flag reference”) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi's :set command;
these are listed as “static/:set” in the table.

5.3. Meaningful file suffixes
File names with “meaningful” suffixes (e.g., .lhs or .o) cause the “right thing” to happen to those
files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hi A Haskell interface file, probably compiler-generated.

.hc Intermediate C file produced by the Haskell compiler.

.c A C file not produced by the Haskell compiler.

.s An assembly-language source file, usually produced by the compiler.

.o An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

5.4. Modes of operation
GHC's behaviour is firstly controlled by a mode flag. Only one of these flags may be given, but it does
not necessarily need to be the first option on the command-line. The available modes are:

ghc -
-
interactive

Interactive mode, which is also available as ghci. Interactive mode is described in
more detail in Chapter 3, Using GHCi.

ghc --make In this mode, GHC will build a multi-module Haskell program automatically, figur-
ing out dependencies for itself. If you have a straightforward Haskell program, this is
likely to be much easier, and faster, than using make. Make mode is described in
Section 5.4.1, “Using ghc ––make”.

Using GHC

54

ghc -e expr Expression-evaluation mode. This is very similar to interactive mode, except that
there is a single expression to evaluate (expr) which is given on the command line.
See Section 5.4.2, “Expression evaluation mode” for more details.

ghc -E ghc
-c ghc -S
ghc -c

This is the traditional batch-compiler mode, in which GHC can compile source files
one at a time, or link objects together into an executable. This mode also applies if
there is no other mode flag specified on the command line, in which case it means
that the specified files should be compiled and then linked to form a program. See
Section 5.4.3, “Batch compiler mode”.

ghc -M Dependency-generation mode. In this mode, GHC can be used to generate depend-
ency information suitable for use in a Makefile. See Section 5.6.11, “Dependency
generation”.

ghc -
-mk-dll

DLL-creation mode (Windows only). See Section 12.6.1, “Creating a DLL”.

ghc --help
ghc -?

Cause GHC to spew a long usage message to standard output and then exit.

ghc -
-show-iface
file

Read the interface in file and dump it as text to stdout. For example ghc -
-show-iface M.hi.

ghc -
-
supported-
languages

Print the supported language extensions.

ghc --info Print information about the compiler.

ghc -
-version
ghc -V

Print a one-line string including GHC's version number.

ghc -
-nu-
meric-
version

Print GHC's numeric version number only.

ghc -
-
print-lib-
dir

Print the path to GHC's library directory. This is the top of the directory tree contain-
ing GHC's libraries, interfaces, and include files (usually something like /
usr/local/lib/ghc-5.04 on Unix). This is the value of $libdir in the
package configuration file (see Section 5.8, “ Packages ”).

5.4.1. Using ghc ––make

When given the ––make option, GHC will build a multi-module Haskell program by following depend-
encies from one or more root modules (usually just Main). For example, if your Main module is in a
file called Main.hs, you could compile and link the program like this:

ghc ––make Main.hs

The command line may contain any number of source file names or module names; GHC will figure out
all the modules in the program by following the imports from these initial modules. It will then attempt
to compile each module which is out of date, and finally, if there is a Main module, the program will
also be linked into an executable.

The main advantages to using ghc ––make over traditional Makefiles are:

• GHC doesn't have to be restarted for each compilation, which means it can cache information
between compilations. Compiling a multi-module program with ghc ––make can be up to twice as
fast as running ghc individually on each source file.

• You don't have to write a Makefile.

Using GHC

55

• GHC re-calculates the dependencies each time it is invoked, so the dependencies never get out of
sync with the source.

Any of the command-line options described in the rest of this chapter can be used with ––make, but
note that any options you give on the command line will apply to all the source files compiled, so if you
want any options to apply to a single source file only, you'll need to use an OPTIONS_GHC pragma (see
Section 5.1.2, “Command line options in source files”).

If the program needs to be linked with additional objects (say, some auxiliary C code), then the object
files can be given on the command line and GHC will include them when linking the executable.

Note that GHC can only follow dependencies if it has the source file available, so if your program in-
cludes a module for which there is no source file, even if you have an object and an interface file for the
module, then GHC will complain. The exception to this rule is for package modules, which may or may
not have source files.

The source files for the program don't all need to be in the same directory; the -i option can be used to
add directories to the search path (see Section 5.6.3, “The search path”).

5.4.2. Expression evaluation mode
This mode is very similar to interactive mode, except that there is a single expression to evaluate which
is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as in interact-
ive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

5.4.3. Batch compiler mode
In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined by a flag.
If no relevant flag is present, then go all the way through to linking. This table summarises:

Phase of the compilation
system

Suffix saying “start here” Flag saying “stop after” (suffix of) output file

literate pre-processor .lhs - .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Using GHC

56

Phase of the compilation
system

Suffix saying “start here” Flag saying “stop after” (suffix of) output file

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hc or .c -S .s

assembler .s -c .o

linker other - a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on whether a native-code generator is used
(producing assembly language) or not (producing C). See Section 5.10.6, “Options affecting code gener-
ation” for more details.

Note: C pre-processing is optional, the -cpp flag turns it on. See Section 5.10.3, “Options affecting the
C pre-processor” for more details.

Note: The option -E runs just the pre-processing passes of the compiler, dumping the result in a file.

5.4.3.1. Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This behaviour
can be overridden using the -x option:

-x
su
ff
ix

Causes all files following this option on the command line to be processed as if they had the suffix
suffix. For example, to compile a Haskell module in the file M.my-hs, use ghc -c -x hs
M.my-hs.

5.5. Help and verbosity options
See also the --help, --version, --numeric-version, and --print-libdir modes in Sec-
tion 5.4, “Modes of operation”.

-n Does a dry-run, i.e. GHC goes through all the motions of compiling as normal, but
does not actually run any external commands.

-v The -v option makes GHC verbose: it reports its version number and shows (on
stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly
some other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran
the right bits in the right order is always the first thing we want to verify.

-vn To provide more control over the compiler's verbosity, the -v flag takes an op-
tional numeric argument. Specifying -v on its own is equivalent to -v3, and the
other levels have the following meanings:

Using GHC

57

-v0 Disable all non-essential messages (this is the default).

-v1 Minimal verbosity: print one line per compilation (this is the default when
––make or ––interactive is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to -
dshow-passes).

-v3 The same as -v2, except that in addition the full command line (if appro-
priate) for each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after
each compilation phase is also printed (excluding preprocessed and C/
assembly files).

-ferror-spans Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic en-
tity only.

For example:

test.hs:3:6: parse error on input `where'

becomes:

test296.hs:3:6-10: parse error on input `where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for `a'
Bound at: test.hs:5:4

test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero.
This choice was made to follow existing convention (i.e. this is how Emacs does
it).

-Hsize Set the minimum size of the heap to size. This option is equivalent to
+RTS -Hsize, see Section 5.14.3, “RTS options to control the garbage collect-
or”.

-Rghc-timing Prints a one-line summary of timing statistics for the GHC run. This option is
equivalent to +RTS -tstderr, see Section 5.14.3, “RTS options to control the
garbage collector”.

5.6. Filenames and separate compilation
This section describes what files GHC expects to find, what files it creates, where these files are stored,
and what options affect this behaviour.

Note that this section is written with hierarchical modules in mind (see Section 8.3.1, “Hierarchical
Modules”); hierarchical modules are an extension to Haskell 98 which extends the lexical syntax of

Using GHC

58

module names to include a dot ‘.’. Non-hierarchical modules are thus a special case in which none of the
module names contain dots.

Pathname conventions vary from system to system. In particular, the directory separator is ‘/’ on Unix
systems and ‘\’ on Windows systems. In the sections that follow, we shall consistently use ‘/’ as the
directory separator; substitute this for the appropriate character for your system.

5.6.1. Haskell source files
Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name by direct-
ory separators. For example, on a Unix system, the module A.B.C should be placed in the file A/
B/C.hs, relative to some base directory. If the module is not going to be imported by another module
(Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encodings are not recognised. However,
invalid UTF-8 sequences will be ignored in comments, so it is possible to use other encodings such as
Latin-1, as long as the non-comment source code is ASCII only.

5.6.2. Output files
When asked to compile a source file, GHC normally generates two files: an object file, and an interface
file.

The object file, which normally ends in a .o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC needs in or-
der to compile further modules that depend on this module. It contains things like the types of exported
functions, definitions of data types, and so on. It is stored in a binary format, so don't try to read one; use
the --show-iface option instead (see Section 5.6.7, “Other options related to interface files”).

You should think of the object file and the interface file as a pair, since the interface file is in a sense a
compiler-readable description of the contents of the object file. If the interface file and object file get out
of sync for any reason, then the compiler may end up making assumptions about the object file that
aren't true; trouble will almost certainly follow. For this reason, we recommend keeping object files and
interface files in the same place (GHC does this by default, but it is possible to override the defaults as
we'll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules, where osuf
is the object-file suffix (this can be changed with the -osuf option).

• If there is no -odir option (the default), then the object filename is derived from the source file-
name (ignoring the module name) by replacing the suffix with osuf.

• If -odir dir has been specified, then the object filename is dir/mod.osuf, where mod is the
module name with dots replaced by slashes. GHC will silently create the necessary directory struc-
ture underneath dir, if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is hisuf (.hi by
default) instead of osuf, and the relevant options are -hidir and -hisuf instead of -odir and -
osuf respectively.

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or -

Using GHC

59

hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.

For any module that is imported, GHC requires that the name of the module in the import statement ex-
actly matches the name of the module in the interface file (or source file) found using the strategy spe-
cified in Section 5.6.3, “The search path”. This means that for most modules, the source file name
should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this only works
because GHC never needs to search for the interface for module Main (because it is never imported). It
is therefore possible to have several Main modules in separate source files in the same directory, and
GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -o option, and
the name of the interface file can be specified directly using the -ohi option.

5.6.3. The search path
In your program, you import a module Foo by saying import Foo. In --make mode or GHCi, GHC
will look for a source file for Foo and arrange to compile it first. Without --make, GHC will look for
the interface file for Foo, which should have been created by an earlier compilation of Foo. GHC uses
the same strategy in each of these cases for finding the appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each of these dir-
ectories, it tries appending basename.extension to the directory, and checks whether the file ex-
ists. The value of basename is the module name with dots replaced by the directory separator ('/' or '\',
depending on the system), and extension is a source extension (hs, lhs) if we are in --make mode
or GHCi, or hisuf otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in --make mode
looking for the source file for a module A.B.C. GHC will look in d1/A/B/C.hs, d1/A/B/C.lhs,
d2/A/B/C.hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The following op-
tions can be used to add to or change the contents of the search path:

-idirs This flag appends a colon-separated list of dirs to the search path.

-i resets the search path back to nothing.

This isn't the whole story: GHC also looks for modules in pre-compiled libraries, known as packages.
See the section on packages (Section 5.8, “ Packages ”) for details.

5.6.4. Redirecting the compilation output(s)

-o file GHC's compiled output normally goes into a .hc, .o, etc., file, depending on the
last-run compilation phase. The option -o file re-directs the output of that last-
run phase to file.

Note: this “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the in-
termediate C code in the file foo.o, name notwithstanding!

This option is most often used when creating an executable file, to set the filename
of the executable. For example:

ghc -o prog --make Main

Using GHC

60

will compile the program starting with module Main and put the executable in the
file prog.

Note: on Windows, if the result is an executable file, the extension ".exe" is ad-
ded if the specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in
foo.exe (not foo).

If you use ghc --make and you don't use the -o, the name GHC will choose for
the executable will be based on the name of the file containing the module Main.
Note that with GHC the Main module doesn't have to be put in file Main.hs.
Thus both

ghc --make Prog

and

ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

-odir dir Redirects object files to directory dir. For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir `arch`

The object files, Foo.o, Bar.o, and Bumble.o would be put into a subdirect-
ory named after the architecture of the executing machine (x86, mips, etc).

Note that the -odir option does not affect where the interface files are put; use
the -hidir option for that. In the above example, they would still be put in
parse/Foo.hi, parse/Bar.hi, and gurgle/Bumble.hi.

-ohi file The interface output may be directed to another file bar2/Wurble.iface with
the option -ohi bar2/Wurble.iface (not recommended).

WARNING: if you redirect the interface file somewhere that GHC can't find it,
then the recompilation checker may get confused (at the least, you won't get any
recompilation avoidance). We recommend using a combination of -hidir and -
hisuf options instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the in-
terface into the bit bucket: -ohi /dev/null, for example.

-hidir dir Redirects all generated interface files into dir, instead of the default.

-stubdir dir Redirects all generated FFI stub files into dir. Stub files are generated when the
Haskell source contains a foreign export or foreign import
"&wrapper" declaration (see Section 9.2.1, “Using foreign export and
foreign import ccall "wrapper" with GHC”). The -stubdir option
behaves in exactly the same way as -odir and -hidir with respect to hierarch-
ical modules.

Using GHC

61

-osuf suffix ,
-hisuf suffix
, -hcsuf suf-
fix

The -osuf suffix will change the .o file suffix for object files to whatever
you specify. We use this when compiling libraries, so that objects for the profiling
versions of the libraries don't clobber the normal ones.

Similarly, the -hisuf suffix will change the .hi file suffix for non-system
interface files (see Section 5.6.7, “Other options related to interface files”).

Finally, the option -hcsuf suffix will change the .hc file suffix for compiler-
generated intermediate C files.

The -hisuf/-osuf game is particularly useful if you want to compile a pro-
gram both with and without profiling, in the same directory. You can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

5.6.5. Keeping Intermediate Files
The following options are useful for keeping certain intermediate files around, when normally GHC
would throw these away after compilation:

Using GHC

62

, -
keep-hc-files

Keep intermediate .hc files when doing .hs-to-.o compilations via C (NOTE:
.hc files aren't generated when using the native code generator, you may need to
use -fvia-C to force them to be produced).

-keep-s-file,
-keep-s-files

Keep intermediate .s files.

-
keep-
raw-s-file, -
keep-
raw-s-files

Keep intermediate .raw-s files. These are the direct output from the C compiler,
before GHC does “assembly mangling” to produce the .s file. Again, these are
not produced when using the native code generator.

-
keep-
tmp-files

Instructs the GHC driver not to delete any of its temporary files, which it normally
keeps in /tmp (or possibly elsewhere; see Section 5.6.6, “Redirecting temporary
files”). Running GHC with -v will show you what temporary files were generated
along the way.

5.6.6. Redirecting temporary files

-tmpdir If you have trouble because of running out of space in /tmp (or wherever your in-
stallation thinks temporary files should go), you may use the -tmpdir <dir>
option to specify an alternate directory. For example, -tmpdir . says to put
temporary files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the
directory where temporary files should be put. GCC and other programs will hon-
our the TMPDIR variable as well.

Even better idea: Set the DEFAULT_TMPDIR make variable when building GHC,
and never worry about TMPDIR again. (see the build documentation).

5.6.7. Other options related to interface files

-ddump-hi Dumps the new interface to standard output.

-
ddump-
hi-diffs

The compiler does not overwrite an existing .hi interface file if the new one is
the same as the old one; this is friendly to make. When an interface does change,
it is often enlightening to be informed. The -ddump-hi-diffs option will
make GHC run diff on the old and new .hi files.

-
ddump-min-
imal-imports

Dump to the file "M.imports" (where M is the module being compiled) a "minim-
al" set of import declarations. You can safely replace all the import declarations in
"M.hs" with those found in "M.imports". Why would you want to do that? Be-
cause the "minimal" imports (a) import everything explicitly, by name, and (b) im-
port nothing that is not required. It can be quite painful to maintain this property
by hand, so this flag is intended to reduce the labour.

--show-iface
file

where file is the name of an interface file, dumps the contents of that interface
in a human-readable (ish) format. See Section 5.4, “Modes of operation”.

5.6.8. The recompilation checker

Using GHC

63

fforce-recomp Turn off recompilation checking (which is on by default). Recompilation checking
normally stops compilation early, leaving an existing .o file in place, if it can be
determined that the module does not need to be recompiled.

In the olden days, GHC compared the newly-generated .hi file with the previous version; if they were
identical, it left the old one alone and didn't change its modification date. In consequence, importers of a
module with an unchanged output .hi file were not recompiled.

This doesn't work any more. Suppose module C imports module B, and B imports module A. So changes
to module A might require module C to be recompiled, and hence when A.hi changes we should check
whether C should be recompiled. However, the dependencies of C will only list B.hi, not A.hi, and
some changes to A (changing the definition of a function that appears in an inlining of a function expor-
ted by B, say) may conceivably not change B.hi one jot. So now…

GHC keeps a version number on each interface file, and on each type signature within the interface file.
It also keeps in every interface file a list of the version numbers of everything it used when it last com-
piled the file. If the source file's modification date is earlier than the .o file's date (i.e. the source hasn't
changed since the file was last compiled), and the recompilation checking is on, GHC will be clever. It
compares the version numbers on the things it needs this time with the version numbers on the things it
needed last time (gleaned from the interface file of the module being compiled); if they are all the same
it stops compiling rather early in the process saying “Compilation IS NOT required”. What a beautiful
sight!

Patrick Sansom had a workshop paper about how all this is done (though the details have changed quite
a bit). Ask him [mailto:sansom@dcs.gla.ac.uk] if you want a copy.

5.6.9. How to compile mutually recursive modules
GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs-boot file. Suppose that modules
A.hs and B.hs are Haskell source files, thus:

module A where
import B(TB(..))

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

Here A imports B, but B imports A with a {-# SOURCE #-} pragma, which breaks the circular de-
pendency. For every module A.hs that is {-# SOURCE #-}-imported in this way there must exist a
source file A.hs-boot. This file contains an abbreviated version of A.hs, thus:

module A where
newtype TA = MkTA Int

Using GHC

64

mailto:sansom@dcs.gla.ac.uk

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot
ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o
ghc -o foo A.o B.o -- Linking the program

There are several points to note here:

• The file A.hs-boot is a programmer-written source file. It must live in the same directory as its
parent source file A.hs. Currently, if you use a literate source file A.lhs you must also use a liter-
ate boot file, A.lhs-boot; and vice versa.

• A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When its par-
ent module A.hs is compiled, the two are compared, and an error is reported if the two are incon-
sistent.

• Just as compiling A.hs produces an interface file A.hi, and an object file A.o, so compiling
A.hs-boot produces an interface file A.hi-boot, and an pseudo-object file A.o-boot:

• The pseudo-object file A.o-boot is empty (don't link it!), but it is very useful when using a
Makefile, to record when the A.hi-boot was last brought up to date (see Section 5.6.10,
“Using make”).

• The hi-boot generated by compiling a hs-boot file is in the same machine-generated binary
format as any other GHC-generated interface file (e.g. B.hi). You can display its contents with
ghc --show-iface. If you specify a directory for interface files, the -ohidir flag, then that af-
fects hi-boot files too.

• If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE #-}
import is considered to refer to the hs-boot file, then the module import graph must have no cycles.
The command ghc -M will report an error if a cycle is found.

• A module M that is {-# SOURCE #-}-imported in a program will usually also be ordinarily im-
ported elsewhere. If not, ghc --make automatically adds M to the set of modules it tries to compile
and link, to ensure that M's implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrapping pro-
cess started. For example, it doesn't need to contain declarations for everything that module A exports,
only the things required by the module(s) that import A recursively.

A hs-boot file is written in a subset of Haskell:

• The module header (including the export list), and import statements, are exactly as in Haskell, and
so are the scoping rules. Hence, to mention a non-Prelude type or class, you must import it.

• There must be no value declarations, but there can be type signatures for values. For example:

double :: Int -> Int

Using GHC

65

• Fixity declarations are exactly as in Haskell.

• Type synonym declarations are exactly as in Haskell.

• A data type declaration can either be given in full, exactly as in Haskell, or it can be given abstractly,
by omitting the '=' sign and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension: see Sec-
tion 8.4.1, “Data types with no constructors”), but in an hi-boot file it means "I don't know or care
what the constructors are". This is the most common form of data type declaration, because it's easy
to get right. You can also write out the constructors but, if you do so, you must write it out precisely
as in its real definition.

If you do not write out the constructors, you may need to give a kind annotation (Section 8.7.3,
“Explicitly-kinded quantification”), to tell GHC the kind of the type variable, if it is not "*". (In
source files, this is worked out from the way the type variable is used in the constructors.) For ex-
ample:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration instead.

• Class declarations is exactly as in Haskell, except that you may not put default method declarations.
You can also omit all the superclasses and class methods entirely; but you must either omit them all
or put them all in.

• You can include instance declarations just as in Haskell; but omit the "where" part.

5.6.10. Using make
It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name your
source files the same as your modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm -f $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

Standard suffix rules
.o.hi:

@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

Using GHC

66

.hs.o:
$(HC) -c $< $(HC_OPTS)

.o-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

(Sophisticated make variants may achieve some of the above more elegantly. Notably, gmake's pattern
rules let you write the more comprehensible:

%.o : %.lhs
$(HC) -c $< $(HC_OPTS)

What we've shown should work with any make.)

Note the cheesy .o.hi rule: It records the dependency of the interface (.hi) file on the source. The
rule says a .hi file can be made from a .o file by doing…nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and once for hs-
boot files (see Section 5.6.9, “How to compile mutually recursive modules”).

Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks for a
rule to do so; one of the preceding suffix rules does the job nicely. These dependencies can be generated
automatically by ghc; see Section 5.6.11, “Dependency generation”

5.6.11. Dependency generation
Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather er-
ror-prone. Don't worry, GHC has support for automatically generating the required dependencies. Add
the following to your Makefile:

depend :
ghc -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do make de-
pend before you do make cool_pgm. The command ghc -M will append the needed dependencies to
your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its imports
(transitively), it adds to the Makefile:

Using GHC

67

1This is a change in behaviour relative to 6.2 and earlier.

• A line recording the dependence of the object file on the source file.

M.o : M.hs

(or M.lhs if that is the filename you used).

• For each import declaration import X in M, a line recording the dependence of M on X:

M.o : X.hi

• For each import declaration import {-# SOURCE #-} X in M, a line recording the dependence
of M on X:

M.o : X.hi-boot

(See Section 5.6.9, “How to compile mutually recursive modules” for details of hi-boot style in-
terface files.)

If M imports multiple modules, then there will be multiple lines with M.o as the target.

There is no need to list all of the source files as arguments to the ghc -M command; ghc traces the de-
pendencies, just like ghc --make (a new feature in GHC 6.4).

Note that ghc -M needs to find a source file for each module in the dependency graph, so that it can
parse the import declarations and follow dependencies. Any pre-compiled modules without source files
must therefore belong to a package1.

By default, ghc -M generates all the dependencies, and then concatenates them onto the end of make-
file (or Makefile if makefile doesn't exist) bracketed by the lines "# DO NOT DELETE: Be-
ginning of Haskell dependencies" and "# DO NOT DELETE: End of Haskell
dependencies". If these lines already exist in the makefile, then the old dependencies are deleted
first.

Don't forget to use the same -package options on the ghc -M command line as you would when
compiling; this enables the dependency generator to locate any imported modules that come from pack-
ages. The package modules won't be included in the dependencies generated, though (but see the
––include-pkg-deps option below).

The dependency generation phase of GHC can take some additional options, which you may find useful.
For historical reasons, each option passed to the dependency generator from the GHC command line
must be preceded by -optdep. For example, to pass -f .depend to the dependency generator, you
say

ghc -M -optdep-f -optdep.depend ...

The options which affect dependency generation are:

-ddump-mod-cycles Display a list of the cycles in the module graph. This is useful when
trying to eliminate such cycles. You do not need the -optdep pre-
fix for this flag.

-w Turn off warnings about interface file shadowing.

Using GHC

68

-v2 Print a full list of the module dependencies to stdout. (This is the
standard verbosity flag, so the list will also be displayed with -v3
and -v4; Section 5.5, “Help and verbosity options”.)

-f file Use file as the makefile, rather than makefile or Makefile.
If file doesn't exist, mkdependHS creates it. We often use -f
.depend to put the dependencies in .depend and then include
the file .depend into Makefile.

-s <suf> Make extra dependencies that declare that files with suffix
.<suf>_<osuf> depend on interface files with suffix
.<suf>_hi, or (for {-# SOURCE #-} imports) on
.hi-boot. Multiple -s flags are permitted. For example, -o hc
-s a -s b will make dependencies for .hc on .hi, .a_hc on
.a_hi, and .b_hc on .b_hi. (Useful in conjunction with NoFib
"ways".)

––exclude-module=<file> Regard <file> as "stable"; i.e., exclude it from having dependen-
cies on it.

-x same as ––exclude-module

––include-pkg-deps Regard modules imported from packages as unstable, i.e., generate
dependencies on any imported package modules (including Pre-
lude, and all other standard Haskell libraries). Dependencies are
not traced recursively into packages; dependencies are only gener-
ated for home-package modules on external-package modules dir-
ectly imported by the home package module. This option is nor-
mally only used by the various system libraries.

5.6.12. Orphan modules and instance declarations
Haskell specifies that when compiling module M, any instance declaration in any module "below" M is
visible. (Module A is "below" M if A is imported directly by M, or if A is below a module that M im-
ports directly.) In principle, GHC must therefore read the interface files of every module below M, just
in case they contain an instance declaration that matters to M. This would be a disaster in practice, so
GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type or class men-
tioned in the head of the instance declaration, then GHC has to visit that interface file anyway. Example:

module A where
instance C a => D (T a) where ...
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited A's in-
terface file to find T's definition.

The only problem comes when a module contains an instance declaration and GHC has no other reason
for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Using GHC

69

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”. GHC
identifies orphan modules, and visits the interface file of every orphan module below the module being
compiled. This is usually wasted work, but there is no avoiding it. You should therefore do your best to
have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But suppose class
E had a functional dependency:

module Lib where
class E x y | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be "improved" by setting a =
Int, even though there is no explicit mention of T in M.
These considerations lead to the following definition of an orphan module:

• An orphan module contains at least one orphan instance or at least one orphan rule.

• An instance declaration in a module M is an orphan instance if

• The class of the instance declaration is not declared in M, and

• Either the class has no functional dependencies, and none of the type constructors in the instance
head is declared in M; or there is a functional dependency for which none of the type construct-
ors mentioned in the non-determined part of the instance head is defined in M.

Only the instance head (the part after the “=>”) counts. In the example above, it is not good enough
for C's declaration to be in module A; it must be the declaration of D or T.

• A rewrite rule in a module M is an orphan rule if none of the variables, type constructors, or classes
that are free in the left hand side of the rule are declared in M.

GHC will warn you if you are creating an orphan module, if you add `-fwarn-orphan-modules`. You can
identify an orphan module by looking in its interface file, M.hi, using the --show-iface mode. If
there is a [orphan module] on the first line, GHC considers it an orphan module.

5.7. Warnings and sanity-checking
GHC has a number of options that select which types of non-fatal error messages, otherwise known as
warnings, can be generated during compilation. By default, you get a standard set of warnings which are
generally likely to indicate bugs in your program. These are: -fwarn-overlapping-patterns, -
fwarn-deprecations, -fwarn-duplicate-exports, -fwarn-missing-fields, and -
fwarn-missing-methods. The following flags are simple ways to select standard “packages” of
warnings:

-W:
Provides the standard warnings plus -fwarn-incomplete-patterns, -
fwarn-dodgy-imports, -fwarn-unused-matches, -
fwarn-unused-imports, and -fwarn-unused-binds.

Using GHC

70

-Wall:
Turns on all warning options that indicate potentially suspicious code. The warnings that
are not enabled by -Wall are -fwarn-simple-patterns, -fwarn-tabs, -
fwarn-incomplete-record-updates, -
fwarn-monomorphism-restriction, and -fwarn-implicit-prelude.

-w:
Turns off all warnings, including the standard ones and those that -Wall doesn't enable.

Using GHC

71

:
Makes any warning into a fatal error. Useful so that you don't miss warnings when doing
batch compilation.

-Wwarn:
Warnings are treated only as warnings, not as errors. This is the default, but can be useful
to negate a -Werror flag.

The full set of warning options is described below. To turn off any warning, simply give the correspond-
ing -fno-warn-... option on the command line.

-fwarn-deprecations:
Causes a warning to be emitted when a deprecated function or
type is used. Entities can be marked as deprecated using a
pragma, see Section 8.12.4, “DEPRECATED pragma”.

This option is on by default.

-fwarn-dodgy-imports:
Causes a warning to be emitted when a a datatype T is imported
with all constructors, i.e. T(..), but has been exported ab-
stractly, i.e. T.

Using GHC

72

:
Have the compiler warn about duplicate entries in export lists.
This is useful information if you maintain large export lists, and
want to avoid the continued export of a definition after you've de-
leted (one) mention of it in the export list.

This option is on by default.

-fwarn-hi-shadowing:
Causes the compiler to emit a warning when a module or interface
file in the current directory is shadowing one with the same mod-
ule name in a library or other directory.

-fwarn-implicit-prelude:
Have the compiler warn if the Prelude is implicitly imported. This
happens unless either the Prelude module is explicitly imported
with an import ... Prelude ... line, or this implicit im-
port is disabled (either by -fno-implicit-prelude or a
LANGUAGE NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to
the Prelude, even if -fno-implicit-prelude would change
whether it refers to the Prelude. For example, no warning is given
when 368 means Prelude.fromInteger
(368::Prelude.Integer) (where Prelude refers to the
actual Prelude module, regardless of the imports of the module
being compiled).

This warning is off by default.

-
fwarn-incom-
plete-patterns:

Similarly for incomplete patterns, the function g below will fail
when applied to non-empty lists, so the compiler will emit a
warning about this when -fwarn-incomplete-patterns
is enabled.

g [] = 2

This option isn't enabled by default because it can be a bit noisy,
and it doesn't always indicate a bug in the program. However, it's
generally considered good practice to cover all the cases in your
functions.

-
fwarn-incom-
plete-record-updates:

The function f below will fail when applied to Bar, so the com-
piler will emit a warning about this when -
fwarn-incomplete-record-updates is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x = 6 }

This option isn't enabled by default because it can be very noisy,
and it often doesn't indicate a bug in the program.

Using GHC

73

-fwarn-missing-fields: This option is on by default, and warns you whenever the con-
struction of a labelled field constructor isn't complete, missing ini-
tializers for one or more fields. While not an error (the missing
fields are initialised with bottoms), it is often an indication of a
programmer error.

-fwarn-missing-methods:
This option is on by default, and warns you whenever an instance
declaration is missing one or more methods, and the correspond-
ing class declaration has no default declaration for them.

The warning is suppressed if the method name begins with an un-
derscore. Here's an example where this is useful:

class C a where
_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... _simpleFn ...

The idea is that: (a) users of the class will only call complexFn;
never _simpleFn; and (b) instance declarations can define
either complexFn or _simpleFn.

Using GHC

74

:
If you would like GHC to check that every top-level function/
value has a type signature, use the -
fwarn-missing-signatures option. As part of the warn-
ing GHC also reports the inferred type. The option is off by de-
fault.

-fwarn-name-shadowing:
This option causes a warning to be emitted whenever an inner-
scope value has the same name as an outer-scope value, i.e. the
inner value shadows the outer one. This can catch typographical
errors that turn into hard-to-find bugs, e.g., in the inadvertent cap-
ture of what would be a recursive call in f = ... let f =
id in ... f

-fwarn-orphans:
This option causes a warning to be emitted whenever the module
contains an "orphan" instance declaration or rewrite rule. An in-
stance declaration is an orphan if it appears in a module in which
neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function de-
clared in another module. A module containing any orphans is
called an orphan module.

The trouble with orphans is that GHC must pro-actively read the
interface files for all orphan modules, just in case their instances
or rules play a role, whether or not the module's interface would
otherwise be of any use. Other things being equal, avoid orphan
modules.

-
fwarn-overlap-
ping-patterns:

By default, the compiler will warn you if a set of patterns are
overlapping, e.g.,

f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2

where the last pattern match in f won't ever be reached, as the
second pattern overlaps it. More often than not, redundant pat-
terns is a programmer mistake/error, so this option is enabled by
default.

-fwarn-simple-patterns:
Causes the compiler to warn about lambda-bound patterns that
can fail, eg. \(x:xs)->.... Normally, these aren't treated as
incomplete patterns by -fwarn-incomplete-patterns.

“Lambda-bound patterns” includes all places where there is a
single pattern, including list comprehensions and do-notation. In
these cases, a pattern-match failure is quite legitimate, and trig-
gers filtering (list comprehensions) or the monad fail operation
(monads). For example:

f :: [Maybe a] -> [a]
f xs = [y | Just y <- xs]

Using GHC

75

Switching on -fwarn-simple-patterns will elicit warn-
ings about these probably-innocent cases, which is why the flag is
off by default.

-fwarn-tabs:
Have the compiler warn if there are tabs in your source file.

This warning is off by default.

-fwarn-type-defaults:
Have the compiler warn/inform you where in your source the
Haskell defaulting mechanism for numeric types kicks in. This is
useful information when converting code from a context that as-
sumed one default into one with another, e.g., the ‘default default’
for Haskell 1.4 caused the otherwise unconstrained value 1 to be
given the type Int, whereas Haskell 98 defaults it to Integer.
This may lead to differences in performance and behaviour, hence
the usefulness of being non-silent about this.

This warning is off by default.

-
fwarn-monomorph-
ism-restriction:

Have the compiler warn/inform you where in your source the
Haskell Monomorphism Restriction is applied. If applied silently
the MR can give rise to unexpected behaviour, so it can be helpful
to have an explicit warning that it is being applied.

This warning is off by default.

-fwarn-unused-binds:
Report any function definitions (and local bindings) which are un-
used. For top-level functions, the warning is only given if the
binding is not exported.

A definition is regarded as "used" if (a) it is exported, or (b) it is
mentioned in the right hand side of another definition that is used,
or (c) the function it defines begins with an underscore. The last
case provides a way to suppress unused-binding warnings select-
ively.

Notice that a variable is reported as unused even if it appears in
the right-hand side of another unused binding.

-fwarn-unused-imports:
Report any modules that are explicitly imported but never used.
However, the form import M() is never reported as an unused
import, because it is a useful idiom for importing instance declar-
ations, which are anonymous in Haskell.

-fwarn-unused-matches:
Report all unused variables which arise from pattern matches, in-
cluding patterns consisting of a single variable. For instance f x
y = [] would report x and y as unused. The warning is sup-
pressed if the variable name begins with an underscore, thus:

f _x = True

Using GHC

76

If you're feeling really paranoid, the -dcore-lint option is a good choice. It turns on heavyweight
intra-pass sanity-checking within GHC. (It checks GHC's sanity, not yours.)

5.8. Packages
A package is a library of Haskell modules known to the compiler. GHC comes with several packages:
see the accompanying library documentation [../libraries/index.html]. More packages to install can be
obtained from HackageDB [http://hackage.haskell.org/packages/hackage.html].

Using a package couldn't be simpler: if you're using --make or GHCi, then most of the installed pack-
ages will be automatically available to your program without any further options. The exceptions to this
rule are covered below in Section 5.8.1, “Using Packages ”.

Building your own packages is also quite straightforward: we provide the Cabal
[http://www.haskell.org/cabal/] infrastructure which automates the process of configuring, building, in-
stalling and distributing a package. All you need to do is write a simple configuration file, put a few files
in the right places, and you have a package. See the Cabal documentation [../Cabal/index.html] for de-
tails, and also the Cabal libraries (Distribution.Simple [../libraries/Cabal/Distribution-Simple.html], for
example).

5.8.1. Using Packages
GHC only knows about packages that are installed. To see which packages are installed, use the ghc-
pkg command:

$ ghc-pkg list
/usr/lib/ghc-6.4/package.conf:

base-1.0, haskell98-1.0, template-haskell-1.0, mtl-1.0, unix-1.0,
Cabal-1.0, haskell-src-1.0, parsec-1.0, network-1.0,
QuickCheck-1.0, HUnit-1.1, fgl-1.0, X11-1.1, HGL-3.1, OpenGL-2.0,
GLUT-2.0, stm-1.0, readline-1.0, (lang-1.0), (concurrent-1.0),
(posix-1.0), (util-1.0), (data-1.0), (text-1.0), (net-1.0),
(hssource-1.0), rts-1.0

An installed package is either exposed or hidden by default. Packages hidden by default are listed in par-
entheses (eg. (lang-1.0)) in the output above. Command-line flags, described below, allow you to
expose a hidden package or hide an exposed one. Only modules from exposed packages may be impor-
ted by your Haskell code; if you try to import a module from a hidden package, GHC will emit an error
message.

To see which modules are provided by a package use the ghc-pkg command (see Section 5.8.6,
“Package management (the ghc-pkg command)”):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,

Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

Using GHC

77

../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
../Cabal/index.html
../libraries/Cabal/Distribution-Simple.html

-package P This option causes the installed package P to be exposed. The package P
can be specified in full with its version number (e.g. network-1.0) or
the version number can be omitted if there is only one version of the pack-
age installed.

If there are multiple versions of P installed, then all other versions will be-
come hidden.

The -package P option also causes package P to be linked into the res-
ulting executable. In ––make mode and GHCi, the compiler normally de-
termines which packages are required by the current Haskell modules, and
links only those. In batch mode however, the dependency information isn't
available, and explicit -package options must be given when linking.

For example, to link a program consisting of objects Foo.o and Main.o,
where we made use of the network package, we need to give GHC the -
package flag thus:

$ ghc -o myprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source,
because GHC still reckons it's in batch mode:

$ ghc -o myprog Foo.hs Main.hs -package network

In --make and --interactive modes (Section 5.4, “Modes of opera-
tion”), however, GHC figures out the packages required for linking
without further assistance.

The one other time you might need to use -package to force linking a
package is when the package does not contain any Haskell modules (it
might contain a C library only, for example). In that case, GHC will never
discover a dependency on it, so it has to be mentioned explicitly.

-hide-all-packages Ignore the exposed flag on installed packages, and hide them all by default.
If you use this flag, then any packages you require (including base) need
to be explicitly exposed using -package options.

This is a good way to insulate your program from differences in the glob-
ally exposed packages, and being explicit about package dependencies is a
Good Thing. Cabal always passes the -hide-all-packages flag to
GHC, for exactly this reason.

-hide-package P This option does the opposite of -package: it causes the specified pack-
age to be hidden, which means that none of its modules will be available
for import by Haskell import directives.

Note that the package might still end up being linked into the final pro-
gram, if it is a dependency (direct or indirect) of another exposed package.

-ignore-package P Causes the compiler to behave as if package P, and any packages that de-
pend on P, are not installed at all.

Saying -ignore-package P is the same as giving -hide-package
flags for P and all the packages that depend on P. Sometimes we don't
know ahead of time which packages will be installed that depend on P,
which is when the -ignore-package flag can be useful.

-package-name foo Tells GHC the the module being compiled forms part of package foo. If

Using GHC

78

2it used to in GHC 6.4, but not since 6.6

this flag is omitted (a very common case) then the default package main is
assumed.

Note: the argument to -package-name should be the full package iden-
tifier for the package, that is it should include the version number. For ex-
ample: -package mypkg-1.2.

5.8.2. The main package
Every complete Haskell program must define main in module Main in package main. (Omitting the -
package-name flag compiles code for package main.) Failure to do so leads to a somewhat obscure
link-time error of the form:

/usr/bin/ld: Undefined symbols:
_ZCMain_main_closure
___stginit_ZCMain

5.8.3. Consequences of packages
It is possible that by using packages you might end up with a program that contains two modules with
the same name: perhaps you used a package P that has a hidden module M, and there is also a module M
in your program. Or perhaps the dependencies of packages that you used contain some overlapping
modules. Perhaps the program even contains multiple versions of a certain package, due to dependencies
from other packages.

None of these scenarios gives rise to an error on its own2, but they may have some interesting con-
sequences. For instance, if you have a type M.T from version 1 of package P, then this is not the same
as the type M.T from version 2 of package P, and GHC will report an error if you try to use one where
the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely identified
by the pair of the module name in which it is defined and its name. In GHC, an entity is uniquely
defined by a triple: package, module, and name.

5.8.4. Package Databases
A package database is a file, normally called package.conf which contains descriptions of installed
packages. GHC usually knows about two package databases:

• The global package database, which comes with your GHC installation.

• A package database private to each user. On Unix systems this will be
$HOME/.ghc/arch-os-version/package.conf, and on Windows it will be something
like C:\Documents And Settings\user\ghc. The ghc-pkg tool knows where this file
should be located, and will create it if it doesn't exist (see Section 5.8.6, “Package management (the
ghc-pkg command)”).

When GHC starts up, it reads the contents of these two package databases, and builds up a list of the
packages it knows about. You can see GHC's package table by running GHC with the -v flag.

Using GHC

79

Package databases may overlap: for example, packages in the user database will override those of the
same name in the global database.

You can control the loading of package databases using the following GHC options:

-package-conf file Read in the package configuration file file in addition to the system
default file and the user's local file. Packages in additional files read
this way will override those in the global and user databases.

-no-user-package-conf Prevent loading of the user's local package database.

To create a new package database, just create a new file and put the string “[]” in it. Packages can be
added to the file using the ghc-pkg tool, described in Section 5.8.6, “Package management (the ghc-
pkg command)”.

5.8.4.1. The GHC_PACKAGE_PATH environment variable

The GHC_PACKAGE_PATH environment variable may be set to a :-separated (;-separated on Win-
dows) list of files containing package databases. This list of package databases is used by GHC and ghc-
pkg, with earlier databases in the list overriding later ones. This order was chosen to match the beha-
viour of the PATH environment variable; think of it as a list of package databases that are searched left-
to-right for packages.

If GHC_PACKAGE_PATH ends in a separator, then the default user and system package databases are
appended, in that order. e.g. to augment the usual set of packages with a database of your own, you
could say (on Unix):

$ export GHC_PACKAGE_PATH=$HOME/.my-ghc-packages.conf:

(use ; instead of : on Windows).

To check whether your GHC_PACKAGE_PATH setting is doing the right thing, ghc-pkg list will
list all the databases in use, in the reverse order they are searched.

5.8.5. Building a package from Haskell source
We don't recommend building packages the hard way. Instead, use the Cabal [../Cabal/index.html] infra-
structure if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so a few hints for those brave souls follow.

• You need to build an "installed package info" file for passing to ghc-pkg when installing your
package. The contents of this file are described in Section 5.8.7, “ InstalledPackageInfo: a
package specification ”.

• The Haskell code in a package may be built into one or more archive libraries (e.g. libHSfoo.a),
or a single DLL on Windows (e.g. HSfoo.dll). The restriction to a single DLL on Windows is be-
cause the package system is used to tell the compiler when it should make an inter-DLL call rather
than an intra-DLL call (inter-DLL calls require an extra indirection). Building packages as DLLs
doesn't work at the moment; see Section 12.6.1, “Creating a DLL” for the gory details.

Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo.a A.o B.o C.o ...

Using GHC

80

../Cabal/index.html

where A.o, B.o and so on are the compiled Haskell modules, and libHSfoo.a is the library you
wish to create. The syntax may differ slightly on your system, so check the documentation if you run
into difficulties.

Versions of the Haskell libraries for use with GHCi may also be included: GHCi cannot load .a
files directly, instead it will look for an object file called HSfoo.o and load that. On some systems,
the ghc-pkg tool can automatically build the GHCi version of each library, see Section 5.8.6,
“Package management (the ghc-pkg command)”. To build these libraries by hand from the .a
archive, it is possible to use GNU ld as follows:

ld -r ––whole-archive -o HSfoo.o libHSfoo.a

(replace ––whole-archive with –all_load on MacOS X)

GHC does not maintain detailed cross-package dependency information. It does remember which
modules in other packages the current module depends on, but not which things within those impor-
ted things.

To compile a module which is to be part of a new package, use the -package-name option (Sec-
tion 5.8.1, “Using Packages ”). Failure to use the -package-name option when compiling a package
will probably result in disaster, but you will only discover later when you attempt to import modules
from the package. At this point GHC will complain that the package name it was expecting the module
to come from is not the same as the package name stored in the .hi file.

It is worth noting that on Windows, when each package is built as a DLL, since a reference to a DLL
costs an extra indirection, intra-package references are cheaper than inter-package references. Of course,
this applies to the main package as well.

5.8.6. Package management (the ghc-pkg command)
The ghc-pkg tool allows packages to be added or removed from a package database. By default, the
system-wide package database is modified, but alternatively the user's local package database or another
specified file can be used.

To see what package databases are in use, say ghc-pkg list. The stack of databases that ghc-pkg
knows about can be modified using the GHC_PACKAGE_PATH environment variable (see Sec-
tion 5.8.4.1, “The GHC_PACKAGE_PATH environment variable”, and using --package-conf op-
tions on the ghc-pkg command line.

When asked to modify a database, ghc-pkg modifies the global database by default. Specifying -
-user causes it to act on the user database, or --package-conf can be used to act on another data-
base entirely. When multiple of these options are given, the rightmost one is used as the database to act
upon.

If the environment variable GHC_PACKAGE_PATH is set, and its value does not end in a separator (: on
Unix, ; on Windows), then the last database is considered to be the global database, and will be modi-
fied by default by ghc-pkg. The intention here is that GHC_PACKAGE_PATH can be used to create a
virtual package environment into which Cabal packages can be installed without setting anything other
than GHC_PACKAGE_PATH.

The ghc-pkg program may be run in the ways listed below. Where a package name is required, the
package can be named in full including the version number (e.g. network-1.0), or without the ver-
sion number. Naming a package without the version number matches all versions of the package; the
specified action will be applied to all the matching packages. A package specifier that matches all ver-
sion of the package can also be written pkg-*, to make it clearer that multiple packages are being

Using GHC

81

matched.

ghc-pkg register file Reads a package specification from file (which may be “-” to
indicate standard input), and adds it to the database of installed
packages. The syntax of file is given in Section 5.8.7, “ In-
stalledPackageInfo: a package specification ”.

The package specification must be a package that isn't already in-
stalled.

ghc-pkg update file The same as register, except that if a package of the same
name is already installed, it is replaced by the new one.

ghc-pkg unregister P Remove the specified package from the database.

ghc-pkg expose P Sets the exposed flag for package P to True.

ghc-pkg hide P Sets the exposed flag for package P to False.

ghc-pkg list [P] [-
-simple-output]

This option displays the currently installed packages, for each of
the databases known to ghc-pkg. That includes the global data-
base, the user's local database, and any further files specified us-
ing the -f option on the command line.

Hidden packages (those for which the exposed flag is False)
are shown in parentheses in the list of packages.

If an optional package identifier P is given, then only packages
matching that identifier are shown.

If the option --simple-output is given, then the packages
are listed on a single line separated by spaces, and the database
names are not included. This is intended to make it easier to parse
the output of ghc-pkg list using a script.

ghc-pkg latest P Prints the latest available version of package P.

ghc-pkg describe P Emit the full description of the specified package. The description
is in the form of an InstalledPackageInfo, the same as the
input file format for ghc-pkg register. See Section 5.8.7, “
InstalledPackageInfo: a package specification ” for de-
tails.

ghc-pkg field P field Show just a single field of the installed package description for P.

Additionally, the following flags are accepted by ghc-pkg:

––au
to-
ghci
-
libs

Automatically generate the GHCi .o version of each .a Haskell library, using GNU ld (if that
is available). Without this option, ghc-pkg will warn if GHCi versions of any Haskell libraries
in the package don't exist.

GHCi .o libraries don't necessarily have to live in the same directory as the corresponding .a
library. However, this option will cause the GHCi library to be created in the same directory as
the .a library.

Using GHC

82

, -
pack
age-
conf
file

Adds file to the stack of package databases. Additionally, file will also be the database
modified by a register, unregister, expose or hide command, unless it is overridden
by a later --package-conf, --user or --global option.

––fo
rce

Causes ghc-pkg to ignore missing dependencies, directories and libraries when registering a
package, and just go ahead and add it anyway. This might be useful if your package installation
system needs to add the package to GHC before building and installing the files.

––gl
obal

Operate on the global package database (this is the default). This flag affects the register,
update, unregister, expose, and hide commands.

––he
lp ,
-?

Outputs the command-line syntax.

––us
er

Operate on the current user's local package database. This flag affects the register,
update, unregister, expose, and hide commands.

-V ,
––ve
rsio
n

Output the ghc-pkg version number.

When modifying the package database file, a copy of the original file is saved in file.old, so in an
emergency you can always restore the old settings by copying the old file back again.

5.8.7. InstalledPackageInfo: a package specification
A package specification is a Haskell record; in particular, it is the record InstalledPackageInfo
[../libraries/Cabal/Distribution-InstalledPackageInfo.html#%tInstalledPackageInfo] in the module Distri-
bution.InstalledPackageInfo, which is part of the Cabal package distributed with GHC.

An InstalledPackageInfo has a human readable/writable syntax. The functions parseIn-
stalledPackageInfo and showInstalledPackageInfo read and write this syntax respect-
ively. Here's an example of the InstalledPackageInfo for the unix package:

$ ghc-pkg describe unix
name: unix
version: 1.0
license: BSD3
copyright:
maintainer: libraries@haskell.org
stability:
homepage:
package-url:
description:
category:
author:
exposed: True
exposed-modules: System.Posix,

System.Posix.DynamicLinker.Module,
System.Posix.DynamicLinker.Prim,
System.Posix.Directory,
System.Posix.DynamicLinker,
System.Posix.Env,
System.Posix.Error,
System.Posix.Files,
System.Posix.IO,
System.Posix.Process,
System.Posix.Resource,
System.Posix.Temp,
System.Posix.Terminal,
System.Posix.Time,
System.Posix.Unistd,

Using GHC

83

../libraries/Cabal/Distribution-InstalledPackageInfo.html#%tInstalledPackageInfo

System.Posix.User,
System.Posix.Signals.Exts

import-dirs: /usr/lib/ghc-6.4/libraries/unix
library-dirs: /usr/lib/ghc-6.4/libraries/unix
hs-libraries: HSunix
extra-libraries: HSunix_cbits, dl
include-dirs: /usr/lib/ghc-6.4/libraries/unix/include
includes: HsUnix.h
depends: base-1.0

The full Cabal documentation [../Cabal/index.html] is still in preparation (at time of writing), so in the
meantime here is a brief description of the syntax of this file:

A package description consists of a number of field/value pairs. A field starts with the field name in the
left-hand column followed by a “:”, and the value continues until the next line that begins in the left-
hand column, or the end of file.

The syntax of the value depends on the field. The various field types are:

freeform Any arbitrary string, no interpretation or parsing is done.

string A sequence of non-space characters, or a sequence of arbitrary characters surrounded
by quotes "....".

string list A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, dependencies).

The allowed fields, with their types, are:

name The package's name (without the version).

version The package's version, usually in the form A.B (any number of components are
allowed).

license (string) The type of license under which this package is distributed. This field is a
value of the License [../libraries/Cabal/Distribution-License.html#t:License]
type.

license-file (optional string) The name of a file giving detailed license information for this
package.

copyright (optional freeform) The copyright string.

maintainer (optinoal freeform) The email address of the package's maintainer.

stability (optional freeform) A string describing the stability of the package (eg. stable, pro-
visional or experimental).

homepage (optional freeform) URL of the package's home page.

package-url (optional freeform) URL of a downloadable distribution for this package. The dis-
tribution should be a Cabal package.

description (optional freeform) Description of the package.

Using GHC

84

../Cabal/index.html
../libraries/Cabal/Distribution-License.html#t:License

category (optinoal freeform) Which category the package belongs to. This field is for use in
conjunction with a future centralised package distribution framework, tentatively
titled Hackage.

author (optional freeform) Author of the package.

exposed (bool) Whether the package is exposed or not.

exposed-mod-
ules

(string list) modules exposed by this package.

hidden-mod-
ules

(string list) modules provided by this package, but not exposed to the programmer.
These modules cannot be imported, but they are still subject to the overlapping
constraint: no other package in the same program may provide a module of the
same name.

import-dirs (string list) A list of directories containing interface files (.hi files) for this pack-
age.

If the package contains profiling libraries, then the interface files for those library
modules should have the suffix .p_hi. So the package can contain both normal
and profiling versions of the same library without conflict (see also lib-
rary_dirs below).

library-dirs (string list) A list of directories containing libraries for this package.

hs-libraries (string list) A list of libraries containing Haskell code for this package, with the
.a or .dll suffix omitted. When packages are built as libraries, the lib prefix is
also omitted.

For use with GHCi, each library should have an object file too. The name of the
object file does not have a lib prefix, and has the normal object suffix for your
platform.

For example, if we specify a Haskell library as HSfoo in the package spec, then
the various flavours of library that GHC actually uses will be called:

libHSfoo.a The name of the library on Unix and Windows (mingw) systems.
Note that we don't support building dynamic libraries of Haskell
code on Unix systems.

HSfoo.dll The name of the dynamic library on Windows systems
(optional).

HSfoo.o,
HSfoo.obj

The object version of the library used by GHCi.

extra-
libraries

(string list) A list of extra libraries for this package. The difference between hs-
libraries and extra-libraries is that hs-libraries normally have
several versions, to support profiling, parallel and other build options. The various
versions are given different suffixes to distinguish them, for example the profiling
version of the standard prelude library is named libHSbase_p.a, with the _p
indicating that this is a profiling version. The suffix is added automatically by
GHC for hs-libraries only, no suffix is added for libraries in extra-
libraries.

The libraries listed in extra-libraries may be any libraries supported by
your system's linker, including dynamic libraries (.so on Unix, .DLL on Win-
dows).

Also, extra-libraries are placed on the linker command line after the hs-

Using GHC

85

libraries for the same package. If your package has dependencies in the other
direction (i.e. extra-libraries depends on hs-libraries), and the lib-
raries are static, you might need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.

includes (string list) A list of files to include for via-C compilations using this package.
Typically the include file(s) will contain function prototypes for any C functions
used in the package, in case they end up being called as a result of Haskell func-
tions from the package being inlined.

depends (package name list) Packages on which this package depends. This field contains
packages with explicit versions are required, except that when submitting a pack-
age to ghc-pkg register, the versions will be filled in if they are unambigu-
ous.

hugs-options (string list) Options to pass to Hugs for this package.

cc-options (string list) Extra arguments to be added to the gcc command line when this pack-
age is being used (only for via-C compilations).

ld-options (string list) Extra arguments to be added to the gcc command line (for linking)
when this package is being used.

framework-
dirs

(string list) On Darwin/MacOS X, a list of directories containing frameworks for
this package. This corresponds to the -framework-path option. It is ignored
on all other platforms.

frameworks (string list) On Darwin/MacOS X, a list of frameworks to link to. This corresponds
to the -framework option. Take a look at Apple's developer documentation to
find out what frameworks actually are. This entry is ignored on all other platforms.

haddock-
interfaces

(string list) A list of filenames containing Haddock
[http://www.haskell.org/haddock/] interface files (.haddock files) for this pack-
age.

haddock-html (optional string) The directory containing the Haddock-generated HTML for this
package.

5.9. Optimisation (code improvement)
The -O* options specify convenient “packages” of optimisation flags; the -f* options described later
on specify individual optimisations to be turned on/off; the -m* options specify machine-specific optim-
isations to be turned on/off.

5.9.1. -O*: convenient “packages” of optimisation flags.
There are many options that affect the quality of code produced by GHC. Most people only have a gen-
eral goal, something like “Compile quickly” or “Make my program run like greased lightning.” The fol-
lowing “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed, which can
have an impact on how much of your program needs to be recompiled when you change something. This
is one reason to stick to no-optimisation when developing code.

Using GHC

86

http://www.haskell.org/haddock/

No -O*-type option
specified:

This is taken to mean: “Please compile quickly; I'm not over-bothered about
compiled-code quality.” So, for example: ghc -c Foo.hs

-O0: Means “turn off all optimisation”, reverting to the same settings as if no -O
options had been specified. Saying -O0 can be useful if eg. make has inserted
a -O on the command line already.

-O or -O1: Means: “Generate good-quality code without taking too long about it.” Thus,
for example: ghc -c -O Main.lhs

-O2: Means: “Apply every non-dangerous optimisation, even if it means signific-
antly longer compile times.”

The avoided “dangerous” optimisations are those that can make runtime or
space worse if you're unlucky. They are normally turned on or off individu-
ally.

At the moment, -O2 is unlikely to produce better code than -O.

-Ofile <file>: (NOTE: not supported since GHC 4.x. Please ask if you're interested in this.)

For those who need absolute control over exactly what options are used (e.g.,
compiler writers, sometimes :-), a list of options can be put in a file and then
slurped in with -Ofile.

In that file, comments are of the #-to-end-of-line variety; blank lines and most
whitespace is ignored.

Please ask if you are baffled and would like an example of -Ofile!

We don't use a -O* flag for day-to-day work. We use -O to get respectable speed; e.g., when we want
to measure something. When we want to go for broke, we tend to use -O2 -fvia-C (and we go for
lots of coffee breaks).

The easiest way to see what -O (etc.) “really mean” is to run with -v, then stand back in amazement.

5.9.2. -f*: platform-independent flags
These flags turn on and off individual optimisations. They are normally set via the -O options described
above, and as such, you shouldn't need to set any of them explicitly (indeed, doing so could lead to un-
expected results). However, there are one or two that may be of interest:

-fexcess-precision:
When this option is given, intermediate floating point values can
have a greater precision/range than the final type. Generally this
is a good thing, but some programs may rely on the exact preci-
sion/range of Float/Double values and should not use this op-
tion for their compilation.

-fignore-asserts:
Causes GHC to ignore uses of the function Excep-
tion.assert in source code (in other words, rewriting Ex-
ception.assert p e to e (see Section 8.11, “Assertions ”).
This flag is turned on by -O.

-fno-cse Turns off the common-sub-expression elimination optimisation.

Using GHC

87

Can be useful if you have some unsafePerformIO expres-
sions that you don't want commoned-up.

-fno-strictness Turns off the strictness analyser; sometimes it eats too many
cycles.

-fno-full-laziness Turns off the full laziness optimisation (also known as let-
floating). Full laziness increases sharing, which can lead to in-
creased memory residency.

NOTE: GHC doesn't implement complete full-laziness. When op-
timisation in on, and -fno-full-laziness is not given,
some transformations that increase sharing are performed, such as
extracting repeated computations from a loop. These are the same
transformations that a fully lazy implementation would do, the
difference is that GHC doesn't consistently apply full-laziness, so
don't rely on it.

-fno-state-hack Turn off the "state hack" whereby any lambda with a State#
token as argument is considered to be single-entry, hence it is
considered OK to inline things inside it. This can improve per-
formance of IO and ST monad code, but it runs the risk of redu-
cing sharing.

-fno-state-hack Turn off the "state hack" whereby any lambda with a State#
token as argument is considered to be single-entry, hence it is
considered OK to inline things inside it. This can improve per-
formance of IO and ST monad code, but it runs the risk of redu-
cing sharing.

-fomit-interface-pragmas Tells GHC to omit all inessential information from the interface
file generated for the module being compiled (say M). This means
that a module importing M will see only the types of the functions
that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined in-
to an importing module. The benefit is that modules that import
M will need to be recompiled less often (only when M's exports
change their type, not when they change their implementation).

-
fignore-inter-
face-pragmas

Tells GHC to ignore all inessential information when reading in-
terface files. That is, even if M.hi contains unfolding or strict-
ness information for a function, GHC will ignore that information.

-funbox-strict-fields: This option causes all constructor fields which are marked strict
(i.e. “!”) to be unboxed or unpacked if possible. It is equivalent to
adding an UNPACK pragma to every strict constructor field (see
Section 8.12.10, “UNPACK pragma”).

This option is a bit of a sledgehammer: it might sometimes make
things worse. Selectively unboxing fields by using UNPACK prag-
mas might be better.

-funfold-
ing-update-in-place=n

Switches on an experimental "optimisation". Switching it on
makes the compiler a little keener to inline a function that returns
a constructor, if the context is that of a thunk.

x = plusInt a b

Using GHC

88

If we inlined plusInt we might get an opportunity to use update-
in-place for the thunk 'x'.

Using GHC

89

: (Default: 45) Governs the maximum size that GHC will allow a
function unfolding to be. (An unfolding has a “size” that reflects
the cost in terms of “code bloat” of expanding that unfolding at at
a call site. A bigger function would be assigned a bigger cost.)

Consequences: (a) nothing larger than this will be inlined (unless
it has an INLINE pragma); (b) nothing larger than this will be
spewed into an interface file.

Increasing this figure is more likely to result in longer compile
times than faster code. The next option is more useful:

-funfold-
ing-use-threshold=n (Default: 8) This is the magic cut-off figure for unfolding: below

this size, a function definition will be unfolded at the call-site, any
bigger and it won't. The size computed for a function depends on
two things: the actual size of the expression minus any discounts
that apply (see -funfolding-con-discount).

5.10. Options related to a particular phase
5.10.1. Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation system, in
place of whatever the ghc has wired into it. For example, you might want to try a different assembler.
The following options allow you to change the external program used for a given compilation phase:

-pgmL cmd Use cmd as the literate pre-processor.

-pgmP cmd Use cmd as the C pre-processor (with -cpp only).

-pgmc cmd Use cmd as the C compiler.

-pgmm cmd Use cmd as the mangler.

-pgms cmd Use cmd as the splitter.

-pgma cmd Use cmd as the assembler.

-pgml cmd Use cmd as the linker.

-pgmdll cmd Use cmd as the DLL generator.

-pgmF cmd Use cmd as the pre-processor (with -F only).

-pgmwindres
cmd

Use cmd as the program to use for embedding manifests on Windows. Normally this
is the program windres, which is supplied with a GHC installation. See -
fno-embed-manifest in Section 5.10.7, “Options affecting linking”.

5.10.2. Forcing options to a particular phase
Options can be forced through to a particular compilation phase, using the following flags:

Using GHC

90

-optL op-
tion

Pass option to the literate pre-processor

-optP op-
tion

Pass option to CPP (makes sense only if -cpp is also on).

-optF op-
tion

Pass option to the custom pre-processor (see Section 5.10.4, “Options affecting a
Haskell pre-processor”).

-optc op-
tion

Pass option to the C compiler.

-optm op-
tion

Pass option to the mangler.

-opta op-
tion

Pass option to the assembler.

-optl op-
tion

Pass option to the linker.

-optdll op-
tion

Pass option to the DLL generator.

-optdep op-
tion

Pass option to the dependency generator.

-optwindres
option

Pass option to windres when embedding manifests on Windows. See -
fno-embed-manifest in Section 5.10.7, “Options affecting linking”.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver -
opta-Ewurble (the dash before the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC's runtime system you
can enclose them in +RTS ... -RTS (see Section 5.14, “Running a compiled program”).

5.10.3. Options affecting the C pre-processor

-cpp The C pre-processor cpp is run over your Haskell code only if the -cpp option is
given. Unless you are building a large system with significant doses of conditional
compilation, you really shouldn't need it.

Using GHC

91

] Define macro symbol in the usual way. NB: does not affect -D macros passed to
the C compiler when compiling via C! For those, use the -optc-Dfoo hack… (see
Section 5.10.2, “Forcing options to a particular phase”).

-Usymbol Undefine macro symbol in the usual way.

-Idir Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs files).

The symbols defined by GHC are listed below. To check which symbols are defined by your local GHC
installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn't actually used).

__HASKELL98
__

If defined, this means that GHC supports the language defined by the Haskell 98 re-
port.

__HASKELL__
=98

In GHC 4.04 and later, the __HASKELL__ macro is defined as having the value 98.

__HASKELL1_
_

If defined to n, that means GHC supports the Haskell language defined in the Haskell
report version 1.n. Currently 5. This macro is deprecated, and will probably disappear
in future versions.

__GLASGOW_H
ASKELL__

For version x.y.z of GHC, the value of __GLASGOW_HASKELL__ is the integer
xyy (if y is a single digit, then a leading zero is added, so for example in version 6.2
of GHC, __GLASGOW_HASKELL__==602). More information in Section 1.3,
“GHC version numbering policy”.

With any luck, __GLASGOW_HASKELL__ will be undefined in all other implement-
ations that support C-style pre-processing.

(For reference: the comparable symbols for other systems are: __HUGS__ for Hugs,
__NHC__ for nhc98, and __HBC__ for hbc.)

NB. This macro is set when pre-processing both Haskell source and C source, includ-
ing the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc
files).

__CONCURREN
T_HASKELL__

This symbol is defined when pre-processing Haskell (input) and pre-processing C
(GHC output). Since GHC from version 4.00 now supports concurrent haskell by de-
fault, this symbol is always defined.

__PARALLEL_
HASKELL__

Only defined when -parallel is in use! This symbol is defined when pre-
processing Haskell (input) and pre-processing C (GHC output).

_HOST_OS=
os1

This define allows conditional compilation based on the Operating System, whereos
is the name of the current Operating System (eg. linux, mingw32 for Windows,
solaris, etc.).

_HOST_A
archRCH=1

This define allows conditional compilation based on the host architecture,
wherearch is the name of the current architecture (eg. i386, x86_64, powerpc,
sparc, etc.).

Using GHC

92

5.10.3.1. CPP and string gaps

A small word of warning: -cpp is not friendly to “string gaps”.. In other words, strings such as the fol-
lowing:

strmod = "\
\ p \
\ "

don't work with -cpp; /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp and pos-
sibly other cpps) leaves the backslash-space pairs alone and the string gap works as expected.

5.10.4. Options affecting a Haskell pre-processor

-F A custom pre-processor is run over your Haskell source file only if the -F option is
given.

Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The -F option lets you run a pre-processor as part of the overall GHC compil-
ation pipeline, which has the advantage over running a Haskell pre-processor separ-
ately in that it works in interpreted mode and you can continue to take reap the bene-
fits of GHC's recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the
Haskell input, but after the literate markup has been stripped away and (possibly) the
C pre-processor has washed the Haskell input.

Use -pgmF cmd to select the program to use as the preprocessor. When invoked,
the cmd pre-processor is given at least three arguments on its command-line: the first
argument is the name of the original source file, the second is the name of the file
holding the input, and the third is the name of the file where cmd should write its out-
put to.

Additional arguments to the pre-processor can be passed in using the -optF option.
These are fed to cmd on the command line after the three standard input and output
arguments.

An example of a pre-processor is to convert your source files to the input encoding
that GHC expects, i.e. create a script convert.sh containing the lines:

#!/bin/sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f l1 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The -f l1 option tells iconv to con-
vert your Latin-1 file, supplied in argument $2, while the "-t utf-8" options tell iconv
to return a UTF-8 encoded file. The result is redirected into argument $3. The echo
"{-# LINE 1 \"$2\" #-}" just makes sure that your error positions are repor-
ted as in the original source file.

5.10.5. Options affecting the C compiler (if applicable)
If you are compiling with lots of foreign calls, you may need to tell the C compiler about some

Using GHC

93

#include files. The Right Way to do this is to add an INCLUDE pragma to the top of your source file
(Section 8.12.3, “INCLUDE pragma”):

{-# INCLUDE <X/Xlib.h> #-}

Sometimes this isn't convenient. In those cases there's an equivalent command-line option:

% ghc -c '-#include <X/Xlib.h>' Xstuff.lhs

5.10.6. Options affecting code generation

-fasm Use GHC's native code generator rather than compiling via C. This will compile
faster (up to twice as fast), but may produce code that is slightly slower than compil-
ing via C. -fasm is the default.

-fvia-C Compile via C instead of using the native code generator. This is the default on archi-
tectures for which GHC doesn't have a native code generator.

-fno-code Omit code generation (and all later phases) altogether. Might be of some use if you
just want to see dumps of the intermediate compilation phases.

-
fobject-
code

Generate object code. This is the default outside of GHCi, and can be used with
GHCi to cause object code to be generated in preference to bytecode.

-fbyte-code Generate byte-code instead of object-code. This is the default in GHCi. Byte-code
can currently only be used in the interactive interpreter, not saved to disk. This option
is only useful for reversing the effect of -fobject-code.

-fPIC Generate position-independent code (code that can be put into shared libraries). This
currently works on Mac OS X; it works on PowerPC Linux when using the native
code generator (-fasm). It is not quite ready to be used yet for x86 Linux. On Win-
dows, position-independent code is never used, and on PowerPC64 Linux, position-
independent code is always used, so the flag is a no-op on those platforms.

-dynamic When generating code, assume that entities imported from a different package will
reside in a different shared library or binary. This currently works on Mac OS X; it
works on PowerPC Linux when using the native code generator. As with -fPIC,
x86 Linux support is not quite ready yet. Windows is not supported, and it is a no-op
on PowerPC64 Linux.

Note that this option also causes GHC to use shared libraries when linking.

5.10.7. Options affecting linking
GHC has to link your code with various libraries, possibly including: user-supplied, GHC-supplied, and
system-supplied (-lm math library, for example).

-llib Link in the lib library. On Unix systems, this will be in a file called liblib.a or
liblib.so which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter.
If library foo requires library bar, then in general -lfoo should come before
-lbar on the command line.

Using GHC

94

There's one other gotcha to bear in mind when using external libraries: if the library
contains a main() function, then this will be linked in preference to GHC's own
main() function (eg. libf2c and libl have their own main()s). This is be-
cause GHC's main() comes from the HSrts library, which is normally included
after all the other libraries on the linker's command line. To force GHC's main() to
be used in preference to any other main()s from external libraries, just add the op-
tion -lHSrts before any other libraries on the command line.

-c Omits the link step. This option can be used with ––make to avoid the automatic
linking that takes place if the program contains a Main module.

-package
name

If you are using a Haskell “package” (see Section 5.8, “ Packages ”), don't forget to
add the relevant -package option when linking the program too: it will cause the
appropriate libraries to be linked in with the program. Forgetting the -package op-
tion will likely result in several pages of link errors.

-framework
name

On Darwin/MacOS X only, link in the framework name. This option corresponds to
the -framework option for Apple's Linker. Please note that frameworks and pack-
ages are two different things - frameworks don't contain any haskell code. Rather,
they are Apple's way of packaging shared libraries. To link to Apple's “Carbon” API,
for example, you'd use -framework Carbon.

-Ldir Where to find user-supplied libraries… Prepend the directory dir to the library dir-
ectories path.

-
framework-
pathdir

On Darwin/MacOS X only, prepend the directory dir to the framework directories
path. This option corresponds to the -F option for Apple's Linker (-F already means
something else for GHC).

-split-objs Tell the linker to split the single object file that would normally be generated into
multiple object files, one per top-level Haskell function or type in the module. This
only makes sense for libraries, where it means that executables linked against the lib-
rary are smaller as they only link against the object files that they need. However, as-
sembling all the sections separately is expensive, so this is slower than compiling
normally. We use this feature for building GHC's libraries (warning: don't use it un-
less you know what you're doing!).

-static Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic Tell the linker to use shared Haskell libraries, if available (this option is only suppor-
ted on Mac OS X at the moment, and also note that your distribution of GHC may not
have been supplied with shared libraries).

Note that this option also has an effect on code generation (see above).

-main-is
thing

The normal rule in Haskell is that your program must supply a main function in
module Main. When testing, it is often convenient to change which function is the
"main" one, and the -main-is flag allows you to do so. The thing can be one of:

• A lower-case identifier foo. GHC assumes that the main function is Main.foo.

• An module name A. GHC assumes that the main function is A.main.

• An qualified name A.foo. GHC assumes that the main function is A.foo.
Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the
link step. The flag must be specified when compiling the module containing the spe-
cified main function (e.g. module A in the latter two items above). It has no effect for
other modules, and hence can safely be given to ghc --make. However, if all the

Using GHC

95

modules are otherwise up to date, you may need to force recompilation both of the
module where the new "main" is, and of the module where the "main" function used
to be; ghc is not clever enough to figure out that they both need recompiling. You
can force recompilation by removing the object file, or by using the -
fforce-recomp flag.

-no-hs-main In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of main() at link-time, you
will have to. To signal that to the compiler when linking, use -no-hs-main. See
also Section 9.2.1.1, “Using your own main()”.

Notice that since the command-line passed to the linker is rather involved, you prob-
ably want to use ghc to do the final link of your `mixed-language' application. This is
not a requirement though, just try linking once with -v on to see what options the
driver passes through to the linker.

The -no-hs-main flag can also be used to persuade the compiler to do the link
step in --make mode when there is no Haskell Main module present (normally the
compiler will not attempt linking when there is no Main).

-debug Link the program with a debugging version of the runtime system. The debugging
runtime turns on numerous assertions and sanity checks, and provides extra options
for producing debugging output at runtime (run the program with +RTS -? to see a
list).

-threaded Link the program with the "threaded" version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to
the default runtime system which is purely single-threaded.

Note that you do not need -threaded in order to use concurrency; the single-
threaded runtime supports concurrency between Haskell threads just fine.

The threaded runtime system provides the following benefits:

• Parallelism on a multiprocessor or multicore machine. See Section 5.12, “Using
SMP parallelism”.

The ability to make a foreign call that does not block all other Haskell threads.

The ability to invoke foreign exported Haskell functions from multiple OS
threads.

With -threaded, calls to foreign functions are made using the same OS thread that
created the Haskell thread (if it was created by a call to a foreign exported Haskell
function), or an arbitrary OS thread otherwise (if the Haskell thread was created by
forkIO).

More details on the use of "bound threads" in the threaded runtime can be found in
the Control.Concurrent [../libraries/base/Control-Concurrent.html] module.

-
fno-
gen-
manifest

On Windows, GHC normally generates a manifestfile when linking a binary. The
manifest is placed in the file prog.exe.manifest where prog.exe is the name
of the executable. The manifest file currently serves just one purpose: it disables the
"installer detection"in Windows Vista that attempts to elevate privileges for execut-
ables with certain names (e.g. names containing "install", "setup" or "patch").
Without the manifest file to turn off installer detection, attempting to run an execut-
able that Windows deems to be an installer will return a permission error code to the
invoker. Depending on the invoker, the result might be a dialog box asking the user
for elevated permissions, or it might simply be a permission denied error.

Using GHC

96

../libraries/base/Control-Concurrent.html

Installer detection can be also turned off globally for the system using the security
control panel, but GHC by default generates binaries that don't depend on the user
having disabled installer detection.

The -fno-gen-manifest disables generation of the manifest file. One reason to
do this would be if you had a manifest file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.

-fno-gen-manifest also implies -fno-embed-manifest, see below.

-
fno-em-
bed-
manifest

The manifest file that GHC generates when linking a binary on Windows is also em-
bedded in the executable itself, by default. This means that the binary can be distrib-
uted without having to supply the manifest file too. The embedding is done by run-
ning windres; to see exactly what GHC does to embed the manifest, use the -v
flag. A GHC installation comes with its own copy of windres for this reason.

See also -pgmwindres (Section 5.10.1, “Replacing the program for one or more
phases”) and -optwindres (Section 5.10.2, “Forcing options to a particular
phase”).

5.11. Using Concurrent Haskell
GHC supports Concurrent Haskell by default, without requiring a special option or libraries compiled in
a certain way. To get access to the support libraries for Concurrent Haskell, just import Con-
trol.Concurrent [../libraries/base/Control-Concurrent.html]. More information on Concurrent
Haskell is provided in the documentation for that module.

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:

-Cs Sets the context switch interval to s seconds. A context switch will occur at the next heap block
allocation after the timer expires (a heap block allocation occurs every 4k of allocation). With -
C0 or -C, context switches will occur as often as possible (at every heap block allocation). By
default, context switches occur every 20ms.

5.12. Using SMP parallelism
GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There's a fine distinction between concurrency and parallelism: parallelism is all about making your
program run faster by making use of multiple processors simultaneously. Concurrency, on the other
hand, is a means of abstraction: it is a convenient way to structure a program that must respond to mul-
tiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible to run con-
current threads in parallel, and this is exactly what GHC's SMP parallelism support does. But it is also
possible to obtain performance improvements with parallelism on programs that do not use concurrency.
This section describes how to use GHC to compile and run parallel programs, in Section 8.17,
“Concurrent and Parallel Haskell” we describe the language features that affect parallelism.

5.12.1. Options to enable SMP parallelism

Using GHC

97

../libraries/base/Control-Concurrent.html
../libraries/base/Control-Concurrent.html

In order to make use of multiple CPUs, your program must be linked with the -threaded option (see
Section 5.10.7, “Options affecting linking”). Then, to run a program on multiple CPUs, use the RTS -N
option:

-Nx Use x simultaneous threads when running the program. Normally x should be chosen to match
the number of CPU cores on the machine. There is no means (currently) by which this value may
vary after the program has started.

For example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Whether hyperthreading cores should be counted or not is an open question; please feel free to
experiment and let us know what results you find.

5.12.2. Hints for using SMP parallelism
Add the -sstderr RTS option when running the program to see timing stats, which will help to tell
you whether your program got faster by using more CPUs or not. If the user time is greater than the
elapsed time, then the program used more than one CPU. You should also run the program without -N
for comparison.

GHC's parallelism support is new and experimental. It may make your program go faster, or it might
slow it down - either way, we'd be interested to hear from you.

One significant limitation with the current implementation is that the garbage collector is still single-
threaded, and all execution must stop when GC takes place. This can be a significant bottleneck in a par-
allel program, especially if your program does a lot of GC. If this happens to you, then try reducing the
cost of GC by tweaking the GC settings (Section 5.14.3, “RTS options to control the garbage
collector”): enlarging the heap or the allocation area size is a good start.

5.13. Platform-specific Flags
Some flags only make sense for particular target platforms.

Using GHC

98

: (iX86 machines) GHC tries to “steal” four registers from GCC, for perform-
ance reasons; it almost always works. However, when GCC is compiling
some modules with four stolen registers, it will crash, probably saying:

Foo.hc:533: fixed or forbidden register was spilled.
This may be due to a compiler bug or to impossible asm
statements or clauses.

Just give some registers back with -monly-N-regs. Try `3' first, then `2'.
If `2' doesn't work, please report the bug to us.

5.14. Running a compiled program
To make an executable program, the GHC system compiles your code and then links it with a non-trivial
runtime system (RTS), which handles storage management, profiling, etc.

You have some control over the behaviour of the RTS, by giving special command-line arguments to
your program.

When your Haskell program starts up, its RTS extracts command-line arguments bracketed between
+RTS and -RTS as its own. For example:

% ./a.out -f +RTS -p -S -RTS -h foo bar

The RTS will snaffle -p -S for itself, and the remaining arguments -f -h foo bar will be handed
to your program if/when it calls System.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command line, as in
this example:

% hls -ltr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the program (and
not the RTS), use a ––RTS.

As always, for RTS options that take sizes: If the last character of size is a K or k, multiply by 1000;
if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in the counters is your
fault!)

Giving a +RTS -f option will print out the RTS options actually available in your program (which
vary, depending on how you compiled).

NOTE: since GHC is itself compiled by GHC, you can change RTS options in the compiler using the
normal +RTS ... -RTS combination. eg. to increase the maximum heap size for a compilation to
128M, you would add +RTS -M128m -RTS to the command line.

5.14.1. Setting global RTS options
RTS options are also taken from the environment variable GHCRTS. For example, to set the maximum
heap size to 128M for all GHC-compiled programs (using an sh-like shell):

Using GHC

99

GHCRTS='-M128m'
export GHCRTS

RTS options taken from the GHCRTS environment variable can be overridden by options given on the
command line.

5.14.2. Miscellaneous RTS options

-Vsecs Sets the interval that the RTS clock ticks at. The runtime uses a
single timer signal to count ticks; this timer signal is used to con-
trol the context switch timer (Section 5.11, “Using Concurrent
Haskell”) and the heap profiling timer Section 6.4.1, “RTS op-
tions for heap profiling”. Also, the time profiler uses the RTS
timer signal directly to record time profiling samples.

Normally, setting the -V option directly is not necessary: the res-
olution of the RTS timer is adjusted automatically if a short inter-
val is requested with the -C or -i options. However, setting -V is
required in order to increase the resolution of the time profiler.

Using a value of zero disables the RTS clock completely, and has
the effect of disabling timers that depend on it: the context switch
timer and the heap profiling timer. Context switches will still hap-
pen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it
eliminates a source of non-determinism at runtime.

-
-in-
ye
s|
stall-signal-handlers=no

If yes (the default), the RTS installs signal handlers to catch
things like ctrl-C. This option is primarily useful for when you are
using the Haskell code as a DLL, and want to set your own signal
handlers.

5.14.3. RTS options to control the garbage collector
There are several options to give you precise control over garbage collection. Hopefully, you won't need
any of these in normal operation, but there are several things that can be tweaked for maximum perform-
ance.

-Asize [Default: 256k] Set the allocation area size used by the garbage collector. The alloca-
tion area (actually generation 0 step 0) is fixed and is never resized (unless you use -
H, below).

Increasing the allocation area size may or may not give better performance (a bigger
allocation area means worse cache behaviour but fewer garbage collections and less
promotion).

With only 1 generation (-G1) the -A option specifies the minimum allocation area,
since the actual size of the allocation area will be resized according to the amount of
data in the heap (see -F, below).

-c Use a compacting algorithm for collecting the oldest generation. By default, the old-
est generation is collected using a copying algorithm; this option causes it to be com-
pacted in-place instead. The compaction algorithm is slower than the copying al-
gorithm, but the savings in memory use can be considerable.

Using GHC

100

For a given heap size (using the -H option), compaction can in fact reduce the GC
cost by allowing fewer GCs to be performed. This is more likely when the ratio of
live data to heap size is high, say >30%.

NOTE: compaction doesn't currently work when a single generation is requested us-
ing the -G1 option.

-cn [Default: 30] Automatically enable compacting collection when the live data exceeds
n% of the maximum heap size (see the -M option). Note that the maximum heap size
is unlimited by default, so this option has no effect unless the maximum heap size is
set with -Msize.

-Ffactor [Default: 2] This option controls the amount of memory reserved for the older gener-
ations (and in the case of a two space collector the size of the allocation area) as a
factor of the amount of live data. For example, if there was 2M of live data in the old-
est generation when we last collected it, then by default we'll wait until it grows to
4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually bet-
ter to use -Hsize than to increase -Ffactor.

The -F setting will be automatically reduced by the garbage collector when the max-
imum heap size (the -Msize setting) is approaching.

-Ggenera-
tions

[Default: 2] Set the number of generations used by the garbage collector. The default
of 2 seems to be good, but the garbage collector can support any number of genera-
tions. Anything larger than about 4 is probably not a good idea unless your program
runs for a long time, because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as
you would expect. In a 2-space collector, the -A option (see above) specifies the min-
imum allocation area size, since the allocation area will grow with the amount of live
data in the heap. In a multi-generational collector the allocation area is a fixed size
(unless you use the -H option, see below).

-Hsize [Default: 0] This option provides a “suggested heap size” for the garbage collector.
The garbage collector will use about this much memory until the program residency
grows and the heap size needs to be expanded to retain reasonable performance.

By default, the heap will start small, and grow and shrink as necessary. This can be
bad for performance, so if you have plenty of memory it's worthwhile supplying a big
-Hsize. For improving GC performance, using -Hsize is usually a better bet than
-Asize.

-Iseconds (default: 0.3) In the threaded and SMP versions of the RTS (see -threaded, Sec-
tion 5.10.7, “Options affecting linking”), a major GC is automatically performed if
the runtime has been idle (no Haskell computation has been running) for a period of
time. The amount of idle time which must pass before a GC is performed is set by the
-Iseconds option. Specifying -I0 disables the idle GC.

For an interactive application, it is probably a good idea to use the idle GC, because
this will allow finalizers to run and deadlocked threads to be detected in the idle time
when no Haskell computation is happening. Also, it will mean that a GC is less likely
to happen when the application is busy, and so responsiveness may be improved.
However, if the amount of live data in the heap is particularly large, then the idle GC
can cause a significant delay, and too small an interval could adversely affect inter-
active responsiveness.

Using GHC

101

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-ksize [Default: 1k] Set the initial stack size for new threads. Thread stacks (including the
main thread's stack) live on the heap, and grow as required. The default value is good
for concurrent applications with lots of small threads; if your program doesn't fit this
model then increasing this option may help performance.

The main thread is normally started with a slightly larger heap to cut down on unne-
cessary stack growth while the program is starting up.

-Ksize [Default: 8M] Set the maximum stack size for an individual thread to size bytes.
This option is there purely to stop the program eating up all the available memory in
the machine if it gets into an infinite loop.

-mn Minimum % n of heap which must be available for allocation. The default is 3%.

-Msize [Default: unlimited] Set the maximum heap size to size bytes. The heap normally
grows and shrinks according to the memory requirements of the program. The only
reason for having this option is to stop the heap growing without bound and filling up
all the available swap space, which at the least will result in the program being sum-
marily killed by the operating system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-sfile ,
-Sfile

Write modest (-s) or verbose (-S) garbage-collector statistics into file file. The
default file is program.stat. The file stderr is treated specially, with the
output really being sent to stderr.

This option is useful for watching how the storage manager adjusts the heap size
based on the current amount of live data.

-tfile Write a one-line GC stats summary after running the program. This output is in the
same format as that produced by the -Rghc-timing option.

As with -s, the default file is program.stat. The file stderr is treated
specially, with the output really being sent to stderr.

5.14.4. RTS options for profiling and parallelism
The RTS options related to profiling are described in Section 6.4.1, “RTS options for heap profiling”,
those for concurrency in Section 5.11, “Using Concurrent Haskell”, and those for parallelism in Sec-
tion 5.12.1, “Options to enable SMP parallelism”.

5.14.5. RTS options for hackers, debuggers, and over-
interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what's really happening”, or
(c) because you feel like it. Not recommended for everyday use!

-B Sound the bell at the start of each (major) garbage collection.

Using GHC

102

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of pur-
poses—honestly!—e.g., confirmation that the code/machine is doing something, in-
finite loop detection, gauging cost of recently added code. Certain people can even
tell what stage [the program] is in by the beep pattern. But the major use is for annoy-
ing others in the same office…”

-Dnum An RTS debugging flag; varying quantities of output depending on which bits are set
in num. Only works if the RTS was compiled with the DEBUG option.

-rfile Produce “ticky-ticky” statistics at the end of the program run. The file business
works just like on the -S RTS option (above).

“Ticky-ticky” statistics are counts of various program actions (updates, enters, etc.)
The program must have been compiled using -ticky (a.k.a. “ticky-ticky profil-
ing”), and, for it to be really useful, linked with suitable system libraries. Not a trivial
undertaking: consult the installation guide on how to set things up for easy
“ticky-ticky” profiling. For more information, see Section 6.7, “Using “ticky-ticky”
profiling (for implementors)”.

-xc (Only available when the program is compiled for profiling.) When an exception is
raised in the program, this option causes the current cost-centre-stack to be dumped
to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven't got a clue which bit of code is causing it, compiling
with -prof -auto-all and running with +RTS -xc -RTS will tell you exactly
the call stack at the point the error was raised.

The output contains one line for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each line is of
the form:

< cc
1
, ..., cc

n
>

each cc
i

is a cost centre in the program (see Section 6.1, “Cost centres and cost-
centre stacks”), and the sequence represents the “call stack” at the point the exception
was raised. The leftmost item is the innermost function in the call stack, and the
rightmost item is the outermost function.

-Z Turn off “update-frame squeezing” at garbage-collection time. (There's no particu-
larly good reason to turn it off, except to ensure the accuracy of certain data collected
regarding thunk entry counts.)

5.14.6. “Hooks” to change RTS behaviour
GHC lets you exercise rudimentary control over the RTS settings for any given program, by compiling
in a “hook” that is called by the run-time system. The RTS contains stub definitions for all these hooks,
but by writing your own version and linking it on the GHC command line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don't work under Windows when the program is
built dynamically.

The hook ghc_rts_optslets you set RTS options permanently for a given program. A common use

Using GHC

103

for this is to give your program a default heap and/or stack size that is greater than the default. For ex-
ample, to set -H128m -K1m, place the following definition in a C source file:

char *ghc_rts_opts = "-H128m -K1m";

Compile the C file, and include the object file on the command line when you link your Haskell pro-
gram.

These flags are interpreted first, before any RTS flags from the GHCRTS environment variable and any
flags on the command line.

You can also change the messages printed when the runtime system “blows up,” e.g., on stack overflow.
The hooks for these are as follows:

void OutOf-
HeapHook
(unsigned
long, un-
signed
long)

The heap-overflow message.

void Stack-
Over-
flowHook
(long int)

The stack-overflow message.

void Mal-
locFailHook
(long int)

The message printed if malloc fails.

For examples of the use of these hooks, see GHC's own versions in the file ghc/com-
piler/parser/hschooks.c in a GHC source tree.

5.14.7. Getting information about the RTS
It is possible to ask the RTS to give some information about itself. To do this, use the --info flag, e.g.

$./a.out +RTS --info
[("GHC RTS", "Yes")
,("GHC version", "6.7")
,("RTS way", "rts_p")
,("Host platform", "x86_64-unknown-linux")
,("Build platform", "x86_64-unknown-linux")
,("Target platform", "x86_64-unknown-linux")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
]

The information is formatted such that it can be read as a of type [(String, String)].

5.15. Generating and compiling External Core
Files

GHC can dump its optimized intermediate code (said to be in “Core” format) to a file as a side-effect of
compilation. Core files, which are given the suffix .hcr, can be read and processed by non-GHC back-
end tools. The Core format is formally described in An External Representation for the GHC Core Lan-
guage [http://www.haskell.org/ghc/docs/papers/core.ps.gz], and sample tools (in Haskell) for manipulat-
ing Core files are available in the GHC source distribution directory /
fptools/ghc/utils/ext-core. Note that the format of .hcr files is different (though similar)
to the Core output format generated for debugging purposes (Section 5.16, “Debugging the compiler”).

The Core format natively supports notes which you can add to your source code using the CORE pragma

Using GHC

104

http://www.haskell.org/ghc/docs/papers/core.ps.gz
http://www.haskell.org/ghc/docs/papers/core.ps.gz

(see Section 8.12, “Pragmas”).

-fext-core Generate .hcr files.

GHC can also read in External Core files as source; just give the .hcr file on the command line, in-
stead of the .hs or .lhs Haskell source. A current infelicity is that you need to give the -
fglasgow-exts flag too, because ordinary Haskell 98, when translated to External Core, uses things
like rank-2 types.

5.16. Debugging the compiler
HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

5.16.1. Dumping out compiler intermediate structures

-ddump-pass Make a debugging dump after pass <pass> (may be common enough to need a
short form…). You can get all of these at once (lots of output) by using -v5, or most
of them with -v4. Some of the most useful ones are:

-
ddump-
parsed:

parser output

-ddump-rn: renamer output

-ddump-tc: typechecker output

-
ddump-
splices:

Dump Template Haskell expressions that we splice in, and what
Haskell code the expression evaluates to.

-
ddump-
types:

Dump a type signature for each value defined at the top level of the
module. The list is sorted alphabetically. Using -dppr-debug
dumps a type signature for all the imported and system-defined
things as well; useful for debugging the compiler.

-
ddump-de-
riv:

derived instances

-ddump-ds: desugarer output

Using GHC

105

: output of specialisation pass

-
ddump-
rules:

dumps all rewrite rules (including those generated by the specialisa-
tion pass)

-
ddump-sim-
pl:

simplifier output (Core-to-Core passes)

-
ddump-
inlinings:

inlining info from the simplifier

-
ddump-
cpranal:

CPR analyser output

-
ddump-
stranal:

strictness analyser output

Using GHC

106

: CSE pass output

-
ddump-
workwrap:

worker/wrapper split output

-
ddump-oc-
cur-anal:

`occurrence analysis' output

Using GHC

107

: output of core preparation pass

Using GHC

108

: output of STG-to-STG passes

-
ddump-
flatC:

flattened Abstract C

Using GHC

109

: Print the C-- code out.

-
ddump-
opt-cmm:

Dump the results of C-- to C-- optimising passes.

Using GHC

110

: assembly language from the native-code generator

Using GHC

111

: byte code compiler output

-
ddump-
foreign:

dump foreign export stubs

-
ddump-sim-
pl-
iterations:

Show the output of each iteration of the simplifier (each run of the simplifier has a
maximum number of iterations, normally 4). Used when even -dverbose-simpl
doesn't cut it.

-
ddump-sim-
pl-stats

Dump statistics about how many of each kind of transformation too place. If you add
-dppr-debug you get more detailed information.

-
ddump-
if-trace

Make the interface loader be *real* chatty about what it is upto.

-
ddump-
tc-trace

Make the type checker be *real* chatty about what it is upto.

-
ddump-
rn-trace

Make the renamer be *real* chatty about what it is upto.

-
ddump-
rn-stats

Print out summary of what kind of information the renamer had to bring in.

-
dverbose-
core2core ,
-
dverbose-
stg2stg

Show the output of the intermediate Core-to-Core and STG-to-STG passes, respect-
ively. (Lots of output!) So: when we're really desperate:

% ghc -noC -O -ddump-simpl -dverbose-simpl -dcore-lint Foo.hs

-
dshow-
passes

Print out each pass name as it happens.

-
dfast-
string-
stats

Show statistics for the usage of fast strings by the compiler.

-dppr-debug Debugging output is in one of several “styles.” Take the printing of types, for ex-
ample. In the “user” style (the default), the compiler's internal ideas about types are
presented in Haskell source-level syntax, insofar as possible. In the “debug” style
(which is the default for debugging output), the types are printed in with explicit for-
alls, and variables have their unique-id attached (so you can check for things that
look the same but aren't). This flag makes debugging output appear in the more verb-
ose debug style.

-dp-
pr-
user-length

In error messages, expressions are printed to a certain “depth”, with subexpressions
beyond the depth replaced by ellipses. This flag sets the depth. Its default value is 5.

-
dshow-un-
used-im-
ports

Have the renamer report what imports does not contribute.

5.16.2. Checking for consistency

-dcore-lint Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It
checks GHC's sanity, not yours.)

-dstg-lint: Ditto for STG level. (NOTE: currently doesn't work).

-dcmm-lint: Ditto for C-- level.

5.16.3. How to read Core syntax (from some -ddump

Using GHC

112

flags)
Let's do this by commenting an example. It's from doing -ddump-ds on this code:

skip2 m = m : skip2 (m+2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are
identified by their “Uniques.” These are of the form `letter' plus `number' (both loosely interpreted). The
`letter' gives some idea of where the Unique came from; e.g., _ means “built-in type variable”; t means
“from the typechecker”; s means “from the simplifier”; and so on. The `number' is printed fairly com-
pactly in a `base-62' format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usually printed out when debugging, in some form or
another. So here we go…

Desugared:
Main.skip2{-r1L6-} :: _forall_ a$_4 =>{{Num a$_4}} -> a$_4 -> [a$_4]

--# `r1L6' is the Unique for Main.skip2;
--# `_4' is the Unique for the type-variable (template) `a'
--# `{{Num a$_4}}' is a dictionary argument

NI

--# `_NI_' means "no (pragmatic) information" yet; it will later
--# evolve into the GHC_PRAGMA info that goes into interface files.

Main.skip2{-r1L6-} =
/\ _4 -> \ d.Num.t4Gt ->

let {
{- CoRec -}
+.t4Hg :: _4 -> _4 -> _4
NI
+.t4Hg = (+{-r3JH-} _4) d.Num.t4Gt

fromInt.t4GS :: Int{-2i-} -> _4
NI
fromInt.t4GS = (fromInt{-r3JX-} _4) d.Num.t4Gt

--# The `+' class method (Unique: r3JH) selects the addition code
--# from a `Num' dictionary (now an explicit lambda'd argument).
--# Because Core is 2nd-order lambda-calculus, type applications
--# and lambdas (/\) are explicit. So `+' is first applied to a
--# type (`_4'), then to a dictionary, yielding the actual addition
--# function that we will use subsequently...

--# We play the exact same game with the (non-standard) class method
--# `fromInt'. Unsurprisingly, the type `Int' is wired into the
--# compiler.

lit.t4Hb :: _4
NI
lit.t4Hb =

let {
ds.d4Qz :: Int{-2i-}
NI
ds.d4Qz = I#! 2#

} in fromInt.t4GS ds.d4Qz

--# `I# 2#' is just the literal Int `2'; it reflects the fact that
--# GHC defines `data Int = I# Int#', where Int# is the primitive

Using GHC

113

--# unboxed type. (see relevant info about unboxed types elsewhere...)

--# The `!' after `I#' indicates that this is a *saturated*
--# application of the `I#' data constructor (i.e., not partially
--# applied).

skip2.t3Ja :: _4 -> [_4]
NI
skip2.t3Ja =

\ m.r1H4 ->
let { ds.d4QQ :: [_4]

NI
ds.d4QQ =

let {
ds.d4QY :: _4
NI
ds.d4QY = +.t4Hg m.r1H4 lit.t4Hb

} in skip2.t3Ja ds.d4QY
} in
:! _4 m.r1H4 ds.d4QQ

{- end CoRec -}
} in skip2.t3Ja

(“It's just a simple functional language” is an unregisterised trademark of Peyton Jones Enterprises, plc.)

5.16.4. Unregisterised compilation
The term "unregisterised" really means "compile via vanilla C", disabling some of the platform-specific
tricks that GHC normally uses to make programs go faster. When compiling unregisterised, GHC simply
generates a C file which is compiled via gcc.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the pre-
requisite tools to gcc, as, and ld and nothing more, and furthermore the amount of platform-specific
code that needs to be written in order to get unregisterised compilation going is usually fairly small.

-unreg: Compile via vanilla ANSI C only, turning off platform-specific optimisations.
NOTE: in order to use -unreg, you need to have a set of libraries (including the
RTS) built for unregisterised compilation. This amounts to building GHC with way
"u" enabled.

5.17. Flag reference
This section is a quick-reference for GHC's command-line flags. For each flag, we also list its static/
dynamic status (see Section 5.2, “Static, Dynamic, and Mode options”), and the flag's opposite (if avail-
able).

5.17.1. Help and verbosity options
Section 5.5, “Help and verbosity options”

Flag Description Static/Dynamic Reverse

-? help mode -

-help help mode -

Using GHC

114

Flag Description Static/Dynamic Reverse

-n do a dry run dynamic -

-v verbose mode (equivalent
to -v3)

dynamic -

-vn set verbosity level dynamic -

-V display GHC version mode -

––supported-langua
ges

display the supported lan-
guage extensions

mode -

––info display information about
the compiler

mode -

––version display GHC version mode -

––numeric-version display GHC version
(numeric only)

mode -

––print-libdir display GHC library direct-
ory

mode -

-ferror-spans output full span in error
messages

static -

-Hsize Set the minimum heap size
to size

static -

-Rghc-timing Summarise timing stats for
GHC (same as +RTS -
tstderr)

static -

5.17.2. Which phases to run
Section 5.4.3, “Batch compiler mode”

Flag Description Static/Dynamic Reverse

-E Stop after preprocessing
(.hspp file)

mode -

-C Stop after generating C
(.hc file)

mode -

-S Stop after generating as-
sembly (.s file)

mode -

-c Do not link dynamic -

-x suffix Override default behaviour
for source files

static -

5.17.3. Alternative modes of operation
Section 5.4, “Modes of operation”

Flag Description Static/Dynamic Reverse

--interactive Interactive mode - normally
used by just running ghci;
see Chapter 3, Using GHCi
for details.

mode -

Using GHC

115

Flag Description Static/Dynamic Reverse

--make Build a multi-module
Haskell program, automat-
ically figuring out depend-
encies. Likely to be much
easier, and faster, than us-
ing make; see Sec-
tion 5.4.1, “Using ghc
––make” for details..

mode -

-e expr Evaluate expr; see Sec-
tion 5.4.2, “Expression
evaluation mode” for de-
tails.

mode -

-M Generate dependency in-
formation suitable for use
in a Makefile; see Sec-
tion 5.6.11, “Dependency
generation” for details.

mode -

5.17.4. Redirecting output
Section 5.6.4, “Redirecting the compilation output(s)”

Flag Description Static/Dynamic Reverse

-hcsuf suffix set the suffix to use for in-
termediate C files

dynamic -

-hidir dir set directory for interface
files

dynamic -

-hisuf suffix set the suffix to use for in-
terface files

dynamic -

-o filename set output filename dynamic -

-odir dir set output directory dynamic -

-ohi filename set the filename in which to
put the interface

dynamic

-osuf suffix set the output file suffix dynamic -

-stubdir dir redirect FFi stub files dynamic -

5.17.5. Keeping intermediate files
Section 5.6.5, “Keeping Intermediate Files”

Flag Description Static/Dynamic Reverse

-keep-hc-file or -
keep-hc-files

retain intermediate .hc
files

dynamic -

-keep-s-file or -
keep-s-files

retain intermediate .s files dynamic -

-keep-raw-s-file or
-keep-raw-s-files

retain intermediate
.raw_s files

dynamic -

Using GHC

116

Flag Description Static/Dynamic Reverse

-keep-tmp-files retain all intermediate tem-
porary files

dynamic -

5.17.6. Temporary files
Section 5.6.6, “Redirecting temporary files”

Flag Description Static/Dynamic Reverse

-tmpdir set the directory for tempor-
ary files

dynamic -

5.17.7. Finding imports
Section 5.6.3, “The search path”

Flag Description Static/Dynamic Reverse

-idir1:dir2:... add dir, dir2, etc. to im-
port path

static/:set -

-i Empty the import directory
list

static/:set -

5.17.8. Interface file options
Section 5.6.7, “Other options related to interface files”

Flag Description Static/Dynamic Reverse

-ddump-hi Dump the new interface to
stdout

dynamic -

-ddump-hi-diffs Show the differences vs.
the old interface

dynamic -

-
ddump-minim-
al-imports

Dump a minimal set of im-
ports

dynamic -

--show-iface file See Section 5.4, “Modes of
operation”.

5.17.9. Recompilation checking
Section 5.6.8, “The recompilation checker”

Flag Description Static/Dynamic Reverse

-fforce-recomp Turn off recompilation
checking; implied by any -
ddump-X option

dynamic -fno-force-recomp

Using GHC

117

5.17.10. Interactive-mode options
Section 3.9, “The .ghci file”

Flag Description Static/Dynamic Reverse

-ignore-dot-ghci Disable reading of .ghci
files

static -

-read-dot-ghci Enable reading of .ghci
files

static -

-
fbreak-
on-exception

Break on any exception
thrown

dynamic -
fno-
break-on-exception

-fbreak-on-error Break on uncaught excep-
tions and errors

dynamic -
fno-break-on-error

-
fprint-
evld-with-show

Enable usage of Show in-
stances in :print

dynamic -
fno-
print-
evld-with-show

-
fno-
print-bind-result

Turn off printing of binding
results in GHCi

dynamic -

-
fno-
print-
bind-contents

Turn off printing of binding
contents in GHCi

dynamic -

5.17.11. Packages
Section 5.8, “ Packages ”

Flag Description Static/Dynamic Reverse

-package-name P Compile to be part of pack-
age P

dynamic -

-package P Expose package P static/:set -

-hide-all-packages Hide all packages by de-
fault

static -

-hide-package name Hide package P static/:set -

-ignore-package
name

Ignore package P static/:set -

-package-conf file Load more packages from
file

static -

-
no-
user-package-conf

Don't load the user's pack-
age config file.

static -

5.17.12. Language options
Section 8.1, “Language options”

Using GHC

118

Flag Description Static/Dynamic Reverse

-fglasgow-exts Enable most language ex-
tensions

dynamic -fno-glasgow-exts

-
XOverlappingIn-
stances

Enable overlapping in-
stances

dynamic -
XNoOverlappingIn-
stances

-
XIncoherentIn-
stances

Enable incoherent
instances. Implies -
XOverlappingIn-
stances

dynamic -
XNoIncoherentIn-
stances

-
XUndecidableIn-
stances

Enable undecidable in-
stances

dynamic -
XNoUndecidableIn-
stances

-fcontext-stack=Nn set the limit for context re-
duction. Default is 20.

dynamic

-XArrows Enable arrow notation ex-
tension

dynamic -XNoArrows

-
fdisambiguate-re-
cord-fields

Enable record field disam-
biguation

dynamic -
fno-dis-
ambiguate-re-
cord-fields

-
XForeignFunction-
Interface

Enable foreign function in-
terface (implied by -
fglasgow-exts)

dynamic -
XNoForeignFunc-
tionInterface

-XGenerics Enable generic classes dynamic -XNoGenerics

-XImplicitParams Enable Implicit Parameters.
Implied by -
fglasgow-exts.

dynamic -XNoImplicitParams

-fir-
refutable-tuples

Make tuple pattern match-
ing irrefutable

dynamic -
fno-irre-
futable-tuples

-
XNoImplicitPrelude

Don't implicitly import
Prelude

dynamic -XImplicitPrelude

-
XNoMonomorphis-
mRestriction

Disable the monomorphism
restriction

dynamic -
XMonomorphismR-
restriction

-XNoMonoPatBinds Make pattern bindings
polymorphic

dynamic -XMonoPatBinds

-XRelaxedPolyRec Relaxed checking for mutu-
ally-recursive polymorphic
functions

dynamic -XNoRelaxedPolyRec

-
XExtendedDe-
faultRules

Use GHCi's extended de-
fault rules in a normal mod-
ule

dynamic -
XNoExtendedDe-
faultRules

-
XOverloadedStrings

Enable overloaded string
literals.

dynamic -
XNoOverloaded-
Strings

-XGADTs Enable generalised algebra-
ic data types.

dynamic -XNoGADTs

-XTypeFamilies Enable type families. dynamic -XNoTypeFamilies

Using GHC

119

Flag Description Static/Dynamic Reverse

-
XScopedTypeVari-
ables

Enable lexically-scoped
type variables. Implied by
-fglasgow-exts.

dynamic -
XNoScopedTypeVari-
ables

-XTemplateHaskell Enable Template Haskell.
No longer implied by -
fglasgow-exts.

dynamic -
XNoTemplateHaskell

-XBangPatterns Enable bang patterns. dynamic -XNoBangPatterns

-XCPP Enable the C preprocessor. dynamic -XNoCPP

-XPatternGuards Enable pattern guards. dynamic -XNoPatternGuards

-XUnicodeSyntax Enable unicode syntax. dynamic -XNoUnicodeSyntax

-XMagicHash Enable the “magic hash”. dynamic -XNoMagicHash

-
XPolymorphicCom-
ponents

Enable polymorphic com-
ponents for data construct-
ors.

dynamic -
XNoPolymorphicCom-
ponents

-XRank2Types Enable rank-2 types. dynamic -XNoRank2Types

-XRankNTypes Enable rank-N types. dynamic -XNoRankNTypes

-
XExistentialQuan-
tification

Enable existential quanti-
fication.

dynamic -
XNoExisten-
tialQuantification

-XKindSignatures Enable kind signatures. dynamic -XNoKindSignatures

-
XPatternSignatures

Enable pattern type signa-
tures.

dynamic -
XNoPatternSigna-
tures

-XEmptyDataDecls Enable empty data declara-
tions.

dynamic -XNoEmptyDataDecls

-XParallelListComp Enable parallel list compre-
hensions.

dynamic -
XNoParallelList-
Comp

-XUnliftedFFITypes Enable unlifted FFI types. dynamic -
XNoUnliftedFFI-
Types

-
XLiberalTypeSyn-
onyms

Enable liberalised type syn-
onyms.

dynamic -
XNoLiberalTypeSyn-
onyms

-XTypeOperators Enable type operators. dynamic -XNoTypeOperators

-XRecursiveDo Enable recursive do (mdo)
notation.

dynamic -XNoRecursiveDo

-XPArr Enable parallel arrays. dynamic -XNoPArr

-XRecordWildCards Enable record wildcards. dynamic -
XNoRecordWildCards

-XRecordPuns Enable record puns. dynamic -XNoRecordPuns

-
XDisambiguateR-
ecordFields

Enable record field disam-
biguation.

dynamic -
XNoDisambiguateR-
ecordFields

-XUnboxedTuples Enable unboxed tuples. dynamic -XNoUnboxedTuples

-
XStandaloneDeriv-

Enable standalone deriving. dynamic -
XNoStandaloneDe-

Using GHC

120

Flag Description Static/Dynamic Reverse

ing riving

-
XDeriveDataType-
able

Enable deriving for the
Data and Typeable classes.

dynamic -
XNoDeriveDataType-
able

-
XGeneralizedNewty-
peDeriving

Enable newtype deriving. dynamic -
XNoGeneralizedNew-
typeDeriving

-
XTypeSynonymIn-
stances

Enable type synonyms. dynamic -
XNoTypeSynonymIn-
stances

-XFlexibleContexts Enable flexible contexts. dynamic -
XNoFlexibleCon-
texts

-
XFlexibleInstances

Enable flexible instances. dynamic -
XNoFlexibleIn-
stances

-
XConstrainedClass-
Methods

Enable constrained class
methods.

dynamic -
XNoConstrained-
ClassMethods

-
XMultiParamType-
Classes

Enable multi parameter
type classes.

dynamic -
XNoMultiParamType-
Classes

-
XFunctionalDepend-
encies

Enable functional depend-
encies.

dynamic -
XNoFunctionalDe-
pendencies

5.17.13. Warnings
Section 5.7, “Warnings and sanity-checking”

Flag Description Static/Dynamic Reverse

-W enable normal warnings dynamic -w

-w disable all warnings dynamic -

-Wall enable almost all warnings
(details in Section 5.7,
“Warnings and sanity-
checking”)

dynamic -w

-Werror make warnings fatal dynamic -Wwarn

-Wwarn make warnings non-fatal dynamic -Werror

-
fwarn-deprecations

warn about uses of func-
tions & types that are de-
precated

dynamic -
fno-
warn-deprecations

-
fwarn-duplic-
ate-exports

warn when an entity is ex-
ported multiple times

dynamic -
fno-
warn-duplic-
ate-exports

-
fwarn-hi-shadowing

warn when a .hi file in the
current directory shadows a

dynamic -
fno-

Using GHC

121

Flag Description Static/Dynamic Reverse

library warn-hi-shadowing

-
fwarn-impli-
cit-prelude

warn when the Prelude is
implicitly imported

dynamic -
fno-
warn-impli-
cit-prelude

-
fwarn-incom-
plete-patterns

warn when a pattern match
could fail

dynamic -
fno-
warn-incom-
plete-patterns

-
fwarn-incom-
plete-re-
cord-updates

warn when a record update
could fail

dynamic -
fno-
warn-incom-
plete-re-
cord-updates

-
fwarn-miss-
ing-fields

warn when fields of a re-
cord are uninitialised

dynamic -
fno-
warn-miss-
ing-fields

-
fwarn-miss-
ing-methods

warn when class methods
are undefined

dynamic -
fno-
warn-miss-
ing-methods

-
fwarn-miss-
ing-signatures

warn about top-level func-
tions without signatures

dynamic -
fno-
warn-miss-
ing-signatures

-
fwarn-
name-shadowing

warn when names are shad-
owed

dynamic -
fno-
warn-
name-shadowing

-fwarn-orphans warn when the module con-
tains orphan instance de-
clarations or rewrite rules

dynamic -fno-warn-orphans

-
fwarn-over-
lapping-patterns

warn about overlapping
patterns

dynamic -
fno-
warn-over-
lapping-patterns

-
fwarn-
simple-patterns

warn about lambda-patterns
that can fail

dynamic -
fno-
warn-
simple-patterns

-fwarn-tabs warn if there are tabs in the
source file

dynamic -fno-warn-tabs

-
fwarn-
type-defaults

warn when defaulting hap-
pens

dynamic -
fno-
warn-type-defaults

-
fwarn-mono-
morphism-re-
striction

warn when the Mono-
morphism Restriction is ap-
plied

dynamic -
fno-
warn-mono-
morphism-re-
striction

Using GHC

122

Flag Description Static/Dynamic Reverse

-
fwarn-unused-binds

warn about bindings that
are unused

dynamic -
fno-
warn-unused-binds

-
fwarn-un-
used-imports

warn about unnecessary im-
ports

dynamic -
fno-
warn-un-
used-imports

-
fwarn-un-
used-matches

warn about variables in pat-
terns that aren't used

dynamic -
fno-
warn-un-
used-matches

5.17.14. Optimisation levels
Section 5.9, “Optimisation (code improvement)”

Flag Description Static/Dynamic Reverse

-O Enable default optimisation
(level 1)

dynamic -O0

-On Set optimisation level n dynamic -O0

5.17.15. Individual optimisations
Section 5.9.2, “-f*: platform-independent flags”

Flag Description Static/Dynamic Reverse

-fcase-merge Enable case-merging. Im-
plied by -O.

dynamic -fno-case-merge

-fdicts-strict Make dictionaries strict static -fno-dicts-strict

-fdo-eta-reduction Enable eta-reduction. Im-
plied by -O.

dynamic -
fno-
do-eta-reduction

-
fdo-
lambda-
eta-expansion

Enable lambda eta-
reduction

dynamic -
fno-
do-
lambda-
eta-expansion

-fexcess-precision Enable excess intermediate
precision

dynamic -
fno-ex-
cess-precision

-fignore-asserts Ignore assertions in the
source

dynamic -
fno-ignore-asserts

-
fignore-inter-
face-pragmas

Ignore pragmas in interface
files

dynamic -
fno-ig-
nore-inter-
face-pragmas

-
fomit-inter-

Don't generate interface
pragmas

dynamic -
fno-

Using GHC

123

Flag Description Static/Dynamic Reverse

face-pragmas omit-inter-
face-pragmas

-fmax-worker-args If a worker has that many
arguments, none will be un-
packed anymore (default:
10)

static -

-
fmax-simpli-
fier-iterations

Set the max iterations for
the simplifier

dynamic -

-fno-state-hack Turn off the "state hack"
whereby any lambda with a
real-world state token as ar-
gument is considered to be
single-entry. Hence OK to
inline things inside it.

static -

-fcse Turn on common sub-
expression elimination. Im-
plied by -O.

dynamic -fno-cse

-ffull-laziness Turn on full laziness
(floating bindings out-
wards). Implied by -O.

dynamic -fno-full-laziness

-frewrite-rules Switch on all rewrite rules
(including rules generated
by automatic specialisation
of overloaded functions).
Implied by -O.

dynamic -fno-rewrite-rules

-fstrictness Turn on strictness analysis.
Implied by -O.

dynamic -fno-strictness

-fspec-constr Turn on the SpecConstr
transformation. Implied by
-O2.

dynamic -fno-spec-constr

-fliberate-case Turn on the liberate-case
transformation. Implied by
-O2.

dynamic -fno-liberate-case

-fspec-threshold=n Set the size threshold for
function specialisation to n,
for both the liberate-case
and SpecConstr transforma-
tions (default: 200)

static -

-fun-
box-strict-fields

Flatten strict constructor
fields

dynamic -
fno-un-
box-strict-fields

-fun-
folding-cre-
ation-threshold

Tweak unfolding settings static -
fno-unfold-
ing-cre-
ation-threshold

-fun-
folding-
fun-discount

Tweak unfolding settings static -
fno-unfold-
ing-fun-discount

-fun-
folding-kee-

Tweak unfolding settings static -
fno-unfold-

Using GHC

124

Flag Description Static/Dynamic Reverse

ness-factor ing-keeness-factor

-fun-
folding-up-
date-in-place

Tweak unfolding settings static -
fno-unfold-
ing-up-
date-in-place

-fun-
folding-
use-threshold

Tweak unfolding settings static -
fno-unfold-
ing-use-threshold

-fno-pre-inlining Turn off pre-inlining static -

5.17.16. Profiling options
Chapter 6, Profiling

Flag Description Static/Dynamic Reverse

-auto Auto-add _scc_s to all ex-
ported functions

static -no-auto

-auto-all Auto-add _scc_s to all
top-level functions

static -no-auto-all

-caf-all Auto-add _scc_s to all
CAFs

static -no-caf-all

-prof Turn on profiling static -

-ticky Turn on ticky-ticky profil-
ing

static -

5.17.17. Program coverage options
Section 6.6, “Observing Code Coverage”

Flag Description Static/Dynamic Reverse

-fhpc Turn on Haskell program
coverage instrumentation

static -

-hpcdir dir Directory to deposit .mix
files during compilation
(default is .hpc)

dynamic -

5.17.18. Haskell pre-processor options
Section 5.10.4, “Options affecting a Haskell pre-processor”

Flag Description Static/Dynamic Reverse

-F Enable the use of a pre-
processor (set with -pgmF)

dynamic -

Using GHC

125

5.17.19. C pre-processor options
Section 5.10.3, “Options affecting the C pre-processor”

Flag Description Static/Dynamic Reverse

-cpp Run the C pre-processor on
Haskell source files

dynamic -

-Dsymbol[=value] Define a symbol in the C
pre-processor

dynamic -Usymbol

-Usymbol Undefine a symbol in the C
pre-processor

dynamic -

-Idir Add dir to the directory
search list for #include
files

dynamic -

5.17.20. C compiler options
Section 5.10.5, “Options affecting the C compiler (if applicable)”

Flag Description Static/Dynamic Reverse

-#include file Include file when com-
piling the .hc file

dynamic -

5.17.21. Code generation options
Section 5.10.6, “Options affecting code generation”

Flag Description Static/Dynamic Reverse

-fasm Use the native code gener-
ator

dynamic -fvia-C

-fvia-C Compile via C dynamic -fasm

-fno-code Omit code generation dynamic -

-fbyte-code Generate byte-code dynamic -

-fobject-code Generate object code dynamic -

5.17.22. Linking options
Section 5.10.7, “Options affecting linking”

Flag Description Static/Dynamic Reverse

-fPIC Generate position-inde-
pendent code (where avail-
able)

static -

-dynamic Use dynamic Haskell lib-
raries (if available)

static -

-framework name On Darwin/MacOS X only,
link in the framework

dynamic -

Using GHC

126

Flag Description Static/Dynamic Reverse

name. This option corres-
ponds to the -framework
option for Apple's Linker.

-framework-path
name

On Darwin/MacOS X only,
add dir to the list of dir-
ectories searched for frame-
works. This option corres-
ponds to the -F option for
Apple's Linker.

dynamic -

-llib Link in library lib dynamic -

-Ldir Add dir to the list of dir-
ectories searched for librar-
ies

dynamic -

-main-is Set main module and func-
tion

dynamic -

--mk-dll DLL-creation mode
(Windows only)

dynamic -

-no-hs-main Don't assume this program
contains main

dynamic -

-no-link Omit linking dynamic -

-split-objs Split objects (for libraries) dynamic -

-static Use static Haskell libraries static -

-threaded Use the threaded runtime static -

-debug Use the debugging runtime static -

-fno-gen-manifest Do not generate a manifest
file (Windows only)

dynamic -

-
fno-embed-manifest

Do not embed the manifest
in the executable (Windows
only)

dynamic -

5.17.23. Replacing phases
Section 5.10.1, “Replacing the program for one or more phases”

Flag Description Static/Dynamic Reverse

-pgmL cmd Use cmd as the literate pre-
processor

dynamic -

-pgmP cmd Use cmd as the C pre-
processor (with -cpp only)

dynamic -

-pgmc cmd Use cmd as the C compiler dynamic -

-pgmm cmd Use cmd as the mangler dynamic -

-pgms cmd Use cmd as the splitter dynamic -

-pgma cmd Use cmd as the assembler dynamic -

-pgml cmd Use cmd as the linker dynamic -

-pgmdll cmd Use cmd as the DLL gener-
ator

dynamic -

Using GHC

127

Flag Description Static/Dynamic Reverse

-pgmF cmd Use cmd as the pre-
processor (with -F only)

dynamic -

-pgmwindres cmd Use cmd as the program for
embedding manifests on
Windows.

dynamic -

5.17.24. Forcing options to particular phases
Section 5.10.2, “Forcing options to a particular phase”

Flag Description Static/Dynamic Reverse

-optL option pass option to the literate
pre-processor

dynamic -

-optP option pass option to cpp (with
-cpp only)

dynamic -

-optF option pass option to the custom
pre-processor

dynamic -

-optc option pass option to the C
compiler

dynamic -

-optm option pass option to the man-
gler

dynamic -

-opta option pass option to the assem-
bler

dynamic -

-optl option pass option to the linker dynamic -

-optdll option pass option to the DLL
generator

dynamic -

-optdep option pass option to the de-
pendency generator

dynamic -

-optwindres option pass option to
windres.

dynamic -

5.17.25. Platform-specific options
Section 5.13, “Platform-specific Flags”

Flag Description Static/Dynamic Reverse

-monly-[432]-regs (x86 only) give some re-
gisters back to the C com-
piler

dynamic -

5.17.26. External core file options
Section 5.15, “Generating and compiling External Core Files”

Using GHC

128

Flag Description Static/Dynamic Reverse

-fext-core Generate .hcr external
Core files

static -

5.17.27. Compiler debugging options
Section 5.16, “Debugging the compiler”

Flag Description Static/Dynamic Reverse

-dcore-lint Turn on internal sanity
checking

dynamic -

-ddump-asm Dump assembly dynamic -

-ddump-bcos Dump interpreter byte code dynamic -

-ddump-cmm Dump C-- output dynamic -

-ddump-cpranal Dump output from CPR
analysis

dynamic -

-ddump-cse Dump CSE output dynamic -

-ddump-deriv Dump deriving output dynamic -

-ddump-ds Dump desugarer output dynamic -

-ddump-flatC Dump “flat” C dynamic -

-ddump-foreign Dump foreign export
stubs

dynamic -

-ddump-hpc Dump after instrumentation
for program coverage

dynamic -

-ddump-inlinings Dump inlining info dynamic -

-ddump-occur-anal Dump occurrence analysis
output

dynamic -

-ddump-opt-cmm Dump the results of C-- to
C-- optimising passes

dynamic -

-ddump-parsed Dump parse tree dynamic -

-ddump-prep Dump prepared core dynamic -

-ddump-rn Dump renamer output dynamic -

-ddump-rules Dump rules dynamic -

-ddump-simpl Dump final simplifier out-
put

dynamic -

-
ddump-sim-
pl-iterations

Dump output from each
simplifier iteration

dynamic -

-ddump-spec Dump specialiser output dynamic -

-ddump-splices Dump TH spliced expres-
sions, and what they evalu-
ate to

dynamic -

-ddump-stg Dump final STG dynamic -

-ddump-stranal Dump strictness analyser
output

dynamic -

-ddump-tc Dump typechecker output dynamic -

Using GHC

129

Flag Description Static/Dynamic Reverse

-ddump-types Dump type signatures dynamic -

-
ddump-work-
er-wrapper

Dump worker-wrapper out-
put

dynamic -

-ddump-if-trace Trace interface files dynamic -

-ddump-tc-trace Trace typechecker dynamic -

-ddump-rn-trace Trace renamer dynamic -

-ddump-rn-stats Renamer stats dynamic -

-ddump-simpl-stats Dump simplifier stats dynamic -

-dppr-debug Turn on debug printing
(more verbose)

static -

-dppr-noprags Don't output pragma info in
dumps

static -

-dppr-user-length Set the depth for printing
expressions in error msgs

static -

-dsource-stats Dump haskell source stats dynamic -

-dcmm-lint C-- pass sanity checking dynamic -

-dstg-lint STG pass sanity checking dynamic -

-dstg-stats Dump STG stats dynamic -

-dverb-
ose-core2core

Show output from each
core-to-core pass

dynamic -

-dverbose-stg2stg Show output from each
STG-to-STG pass

dynamic -

-dshow-passes Print out each pass name as
it happens

dynamic -

-dfaststring-stats Show statistics for fast
string usage when finished

dynamic -

-unreg Enable unregisterised com-
pilation

static -

5.17.28. Misc compiler options
Flag Description Static/Dynamic Reverse

-
fno-
hi-version-check

Don't complain about .hi
file mismatches

static -

-dno-black-holing Turn off black holing
(probably doesn't work)

static -

-
fno-method-sharing

Don't share specialisations
of overloaded functions

static -

-fhistory-size Set simplification history
size

static -

-funregisterised Unregisterised compilation
(use -unreg instead)

static -

-fno-asm-mangling Turn off assembly dynamic -

Using GHC

130

Flag Description Static/Dynamic Reverse

mangling (use -unreg in-
stead)

Using GHC

131

Chapter 6. Profiling
Glasgow Haskell comes with a time and space profiling system. Its purpose is to help you improve your
understanding of your program's execution behaviour, so you can improve it.

Any comments, suggestions and/or improvements you have are welcome. Recommended “profiling
tricks” would be especially cool!

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the -prof option, and probably one of the -auto or
-auto-all options. These options are described in more detail in Section 6.2, “Compiler options
for profiling”

2. Run your program with one of the profiling options, eg. +RTS -p -RTS. This generates a file of
profiling information.

3. Examine the generated profiling information, using one of GHC's profiling tools. The tool to use
will depend on the kind of profiling information generated.

6.1. Cost centres and cost-centre stacks
GHC's profiling system assigns costs to cost centres. A cost is simply the time or space required to eval-
uate an expression. Cost centres are program annotations around expressions; all costs incurred by the
annotated expression are assigned to the enclosing cost centre. Furthermore, GHC will remember the
stack of enclosing cost centres for any given expression at run-time and generate a call-graph of cost at-
tributions.

Let's take a look at an example:

main = print (nfib 25)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as follows:

$ ghc -prof -auto-all -o Main Main.hs
$./Main +RTS -p
121393
$

When a GHC-compiled program is run with the -p RTS option, it generates a file called
<prog>.prof. In this case, the file will contain something like this:

Fri May 12 14:06 2000 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.14 secs (7 ticks @ 20 ms)
total alloc = 8,741,204 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

132

nfib Main 100.0 100.0

individual inherited
COST CENTRE MODULE entries %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0
CAF Main 6 0.0 0.0 100.0 100.0
main Main 1 0.0 0.0 100.0 100.0
nfib Main 242785 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total memory alloca-
tion measured during the run of the program (note that the total memory allocation figure isn't the same
as the amount of live memory needed by the program at any one time; the latter can be determined using
heap profiling, which we will describe shortly).

The second part of the file is a break-down by cost centre of the most costly functions in the program. In
this case, there was only one significant function in the program, namely nfib, and it was responsible
for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is roughly a
call-graph profile of the program. In the example above, it is clear that the costly call to nfib came
from main.

The time and allocation incurred by a given part of the program is displayed in two ways: “individual”,
which are the costs incurred by the code covered by this cost centre stack alone, and “inherited”, which
includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 25 + g 25)
f n = nfib n
g n = nfib (n `div` 2)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

COST CENTRE MODULE scc %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0
CAF Main 9 0.0 0.0 100.0 100.0
main Main 1 0.0 0.0 100.0 100.0
g Main 1 0.0 0.0 0.0 0.2
nfib Main 465 0.0 0.2 0.0 0.2
f Main 1 0.0 0.0 100.0 99.8
nfib Main 242785 100.0 99.8 100.0 99.8

Now although we had two calls to nfib in the program, it is immediately clear that it was the call from
f which took all the time.

Profiling

133

The actual meaning of the various columns in the output is:

entries The number of times this particular point in the call graph was entered.

individual %time The percentage of the total run time of the program spent at this point in the
call graph.

individual %alloc The percentage of the total memory allocations (excluding profiling over-
heads) of the program made by this call.

inherited %time The percentage of the total run time of the program spent below this point in
the call graph.

inherited %alloc The percentage of the total memory allocations (excluding profiling over-
heads) of the program made by this call and all of its sub-calls.

In addition you can use the -P RTS option to get the following additional information:

ticks The raw number of time “ticks” which were attributed to this cost-centre; from this, we get the
%time figure mentioned above.

bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number
from which we get the %alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs attrib-
uted? Well, although GHC does keep information about which groups of functions called each other re-
cursively, this information isn't displayed in the basic time and allocation profile, instead the call-graph
is flattened into a tree.

6.1.1. Inserting cost centres by hand
Cost centres are just program annotations. When you say -auto-all to the compiler, it automatically
inserts a cost centre annotation around every top-level function in your program, but you are entirely
free to add the cost centre annotations yourself.

The syntax of a cost centre annotation is

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it appears in the
profiling output, and <expression> is any Haskell expression. An SCC annotation extends as far to
the right as possible when parsing. (SCC stands for "Set Cost Centre").

6.1.2. Rules for attributing costs
The cost of evaluating any expression in your program is attributed to a cost-centre stack using the fol-
lowing rules:

• If the expression is part of the one-off costs of evaluating the enclosing top-level definition, then
costs are attributed to the stack of lexically enclosing SCC annotations on top of the special CAF
cost-centre.

Profiling

134

1The call-site is just the place in the source code which mentions the particular function or variable.

• Otherwise, costs are attributed to the stack of lexically-enclosing SCC annotations, appended to the
cost-centre stack in effect at the call site of the current top-level definition1. Notice that this is a re-
cursive definition.

• Time spent in foreign code (see Chapter 9, Foreign function interface (FFI)) is always attributed to
the cost centre in force at the Haskell call-site of the foreign function.

What do we mean by one-off costs? Well, Haskell is a lazy language, and certain expressions are only
ever evaluated once. For example, if we write:

x = nfib 25

then x will only be evaluated once (if at all), and subsequent demands for x will immediately get to see
the cached result. The definition x is called a CAF (Constant Applicative Form), because it has no argu-
ments.

For the purposes of profiling, we say that the expression nfib 25 belongs to the one-off costs of eval-
uating x.

Since one-off costs aren't strictly speaking part of the call-graph of the program, they are attributed to a
special top-level cost centre, CAF. There may be one CAF cost centre for each module (the default), or
one for each top-level definition with any one-off costs (this behaviour can be selected by giving GHC
the -caf-all flag).

If you think you have a weird profile, or the call-graph doesn't look like you expect it to, feel free to
send it (and your program) to us at <glasgow-haskell-bugs@haskell.org>.

6.2. Compiler options for profiling

-prof: To make use of the profiling system all modules must be compiled and linked with
the -prof option. Any SCC annotations you've put in your source will spring to life.

Without a -prof option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

There are a few other profiling-related compilation options. Use them in addition to -prof. These do
not have to be used consistently for all modules in a program.

-auto: GHC will automatically add _scc_ constructs for all top-level, exported functions.

-auto-all: All top-level functions, exported or not, will be automatically _scc_'d.

-caf-all: The costs of all CAFs in a module are usually attributed to one “big” CAF cost-
centre. With this option, all CAFs get their own cost-centre. An “if all else fails” op-
tion…

Profiling

135

: Ignore any _scc_ constructs, so a module which already has _scc_s can be com-
piled for profiling with the annotations ignored.

6.3. Time and allocation profiling
To generate a time and allocation profile, give one of the following RTS options to the compiled pro-
gram when you run it (RTS options should be enclosed between +RTS...-RTS as usual):

-p or -P: The -p option produces a standard time profile report. It is written into the file pro-
gram.prof.

The -P option produces a more detailed report containing the actual time and alloca-
tion data as well. (Not used much.)

-xc This option makes use of the extra information maintained by the cost-centre-stack
profiler to provide useful information about the location of runtime errors. See Sec-
tion 5.14.5, “RTS options for hackers, debuggers, and over-interested souls”.

6.4. Profiling memory usage
In addition to profiling the time and allocation behaviour of your program, you can also generate a graph
of its memory usage over time. This is useful for detecting the causes of space leaks, when your pro-
gram holds on to more memory at run-time that it needs to. Space leaks lead to longer run-times due to
heavy garbage collector activity, and may even cause the program to run out of memory altogether.

To generate a heap profile from your program:

1. Compile the program for profiling (Section 6.2, “Compiler options for profiling”).

2. Run it with one of the heap profiling options described below (eg. -hc for a basic producer pro-
file). This generates the file prog.hp.

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail in Sec-
tion 6.5, “hp2ps––heap profile to PostScript”.

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a Postscript-
capable printer.

6.4.1. RTS options for heap profiling
There are several different kinds of heap profile that can be generated. All the different profile types
yield a graph of live heap against time, but they differ in how the live heap is broken down into bands.
The following RTS options select which break-down to use:

-hc Breaks down the graph by the cost-centre stack which produced the data.

-hm Break down the live heap by the module containing the code which produced the
data.

-hd Breaks down the graph by closure description. For actual data, the description is

Profiling

136

just the constructor name, for other closures it is a compiler-generated string
identifying the closure.

-hy Breaks down the graph by type. For closures which have function type or un-
known/polymorphic type, the string will represent an approximation to the actual
type.

-hr Break down the graph by retainer set. Retainer profiling is described in more de-
tail below (Section 6.4.2, “Retainer Profiling”).

-hb Break down the graph by biography. Biographical profiling is described in more
detail below (Section 6.4.3, “Biographical Profiling”).

In addition, the profile can be restricted to heap data which satisfies certain criteria - for example, you
might want to display a profile by type but only for data produced by a certain module, or a profile by
retainer for a certain type of data. Restrictions are specified as follows:

-hcname,... Restrict the profile to closures produced by cost-centre stacks with one of the spe-
cified cost centres at the top.

-hCname,... Restrict the profile to closures produced by cost-centre stacks with one of the spe-
cified cost centres anywhere in the stack.

-hmmodule,... Restrict the profile to closures produced by the specified modules.

-hddesc,... Restrict the profile to closures with the specified description strings.

-hytype,... Restrict the profile to closures with the specified types.

-hrcc,... Restrict the profile to closures with retainer sets containing cost-centre stacks with
one of the specified cost centres at the top.

-hbbio,... Restrict the profile to closures with one of the specified biographies, where bio is
one of lag, drag, void, or use.

For example, the following options will generate a retainer profile restricted to Branch and Leaf con-
structors:

prog +RTS -hr -hdBranch,Leaf

There can only be one "break-down" option (eg. -hr in the example above), but there is no limit on the
number of further restrictions that may be applied. All the options may be combined, with one excep-
tion: GHC doesn't currently support mixing the -hr and -hb options.

There are three more options which relate to heap profiling:

-isecs: Set the profiling (sampling) interval to secs seconds (the default is 0.1 second).
Fractions are allowed: for example -i0.2 will get 5 samples per second. This
only affects heap profiling; time profiles are always sampled on a 1/50 second fre-
quency.

-xt Include the memory occupied by threads in a heap profile. Each thread takes up a
small area for its thread state in addition to the space allocated for its stack (stacks
normally start small and then grow as necessary).

Profiling

137

This includes the main thread, so using -xt is a good way to see how much stack
space the program is using.

Memory occupied by threads and their stacks is labelled as “TSO” when display-
ing the profile by closure description or type description.

-Lnum Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to
25.

6.4.2. Retainer Profiling
Retainer profiling is designed to help answer questions like “why is this data being retained?”. We start
by defining what we mean by a retainer:

A retainer is either the system stack, or an unevaluated closure (thunk).

In particular, constructors are not retainers.

An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by recursively
following pointers starting from object B, but not meeting any other retainer objects on the way. Each
live object is retained by one or more retainer objects, collectively called its retainer set, or its retainer
set, or its retainers.

When retainer profiling is requested by giving the program the -hr option, a graph is generated which
is broken down by retainer set. A retainer set is displayed as a set of cost-centre stacks; because this is
usually too large to fit on the profile graph, each retainer set is numbered and shown abbreviated on the
graph along with its number, and the full list of retainer sets is dumped into the file prog.prof.

Retainer profiling requires multiple passes over the live heap in order to discover the full retainer set for
each object, which can be quite slow. So we set a limit on the maximum size of a retainer set, where all
retainer sets larger than the maximum retainer set size are replaced by the special set MANY. The maxim-
um set size defaults to 8 and can be altered with the -R RTS option:

Profiling

138

si
ze

Restrict the number of elements in a retainer set to size (default 8).

6.4.2.1. Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large structure is re-
tained by an unevaluated computation, and will be released once the computation is forced. A good ex-
ample is looking up a value in a finite map, where unless the lookup is forced in a timely manner the un-
evaluated lookup will cause the whole mapping to be retained. These kind of space leaks can often be
eliminated by forcing the relevant computations to be performed eagerly, using seq or strictness an-
notations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only the nearest of
which will be reported by retainer profiling - for example A retains B, B retains C, and C retains a large
structure. There might be a large number of Bs but only a single A, so A is really the one we're inter-
ested in eliminating. However, retainer profiling will in this case report B as the retainer of the large
structure. To move further up the chain of retainers, we can ask for another retainer profile but this time
restrict the profile to B objects, so we get a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn't foolproof, because there might be other B closures in the heap which aren't the retainers
we are interested in, but we've found this to be a useful technique in most cases.

6.4.3. Biographical Profiling
A typical heap object may be in one of the following four states at each point in its lifetime:

• The lag stage, which is the time between creation and the first use of the object,

• the use stage, which lasts from the first use until the last use of the object, and

• The drag stage, which lasts from the final use until the last reference to the object is dropped.

• An object which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states listed above.
Usually the most interesting states are the void and drag states: live heap in these states is more likely to
be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria, by re-
stricting a profile by biography. For example, to show the portion of the heap in the drag or void state by
producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step is usually to
find the retainer(s):

prog +RTS -hr -hccc...

Profiling

139

NOTE: this two stage process is required because GHC cannot currently profile using both biographical
and retainer information simultaneously.

6.4.4. Actual memory residency
How does the heap residency reported by the heap profiler relate to the actual memory residency of your
program when you run it? You might see a large discrepancy between the residency reported by the
heap profiler, and the residency reported by tools on your system (eg. ps or top on Unix, or the Task
Manager on Windows). There are several reasons for this:

• There is an overhead of profiling itself, which is subtracted from the residency figures by the pro-
filer. This overhead goes away when compiling without profiling support, of course. The space over-
head is currently 2 extra words per heap object, which probably results in about a 30% overhead.

• Garbage collection requires more memory than the actual residency. The factor depends on the kind
of garbage collection algorithm in use: a major GC in the standard generation copying collector will
usually require 3L bytes of memory, where L is the amount of live data. This is because by default
(see the +RTS -F option) we allow the old generation to grow to twice its size (2L) before collect-
ing it, and we require additionally L bytes to copy the live data into. When using compacting collec-
tion (see the +RTS -c option), this is reduced to 2L, and can further be reduced by tweaking the -F
option. Also add the size of the allocation area (currently a fixed 512Kb).

• The stack isn't counted in the heap profile by default. See the +RTS -xt option.

• The program text itself, the C stack, any non-heap data (eg. data allocated by foreign libraries, and
data allocated by the RTS), and mmap()'d memory are not counted in the heap profile.

6.5. hp2ps––heap profile to PostScript
Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps converts a heap profile as produced by the -h<break-down> runtime option into
a PostScript graph of the heap profile. By convention, the file to be processed by hp2ps has a .hp ex-
tension. The PostScript output is written to <file>@.ps. If <file> is omitted entirely, then the pro-
gram behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally developed
by Dave Wakeling as part of the HBC/LML heap profiler.

The flags are:

-d In order to make graphs more readable, hp2ps sorts the shaded bands for
each identifier. The default sort ordering is for the bands with the largest
area to be stacked on top of the smaller ones. The -d option causes
rougher bands (those representing series of values with the largest stand-
ard deviations) to be stacked on top of smoother ones.

-b Normally, hp2ps puts the title of the graph in a small box at the top of the
page. However, if the JOB string is too long to fit in a small box (more
than 35 characters), then hp2ps will choose to use a big box instead. The

Profiling

140

-b option forces hp2ps to use a big box.

-e<float>[in|mm|pt] Generate encapsulated PostScript suitable for inclusion in LaTeX docu-
ments. Usually, the PostScript graph is drawn in landscape mode in an
area 9 inches wide by 6 inches high, and hp2ps arranges for this area to
be approximately centred on a sheet of a4 paper. This format is conveni-
ent of studying the graph in detail, but it is unsuitable for inclusion in
LaTeX documents. The -e option causes the graph to be drawn in por-
trait mode, with float specifying the width in inches, millimetres or points
(the default). The resulting PostScript file conforms to the Encapsulated
PostScript (EPS) convention, and it can be included in a LaTeX docu-
ment using Rokicki's dvi-to-PostScript converter dvips.

-g Create output suitable for the gs PostScript previewer (or similar). In this
case the graph is printed in portrait mode without scaling. The output is
unsuitable for a laser printer.

-l Normally a profile is limited to 20 bands with additional identifiers being
grouped into an OTHER band. The -l flag removes this 20 band and lim-
it, producing as many bands as necessary. No key is produced as it won't
fit!. It is useful for creation time profiles with many bands.

-m<int> Normally a profile is limited to 20 bands with additional identifiers being
grouped into an OTHER band. The -m flag specifies an alternative band
limit (the maximum is 20).

-m0 requests the band limit to be removed. As many bands as necessary
are produced. However no key is produced as it won't fit! It is useful for
displaying creation time profiles with many bands.

-p Use previous parameters. By default, the PostScript graph is automatic-
ally scaled both horizontally and vertically so that it fills the page.
However, when preparing a series of graphs for use in a presentation, it is
often useful to draw a new graph using the same scale, shading and or-
dering as a previous one. The -p flag causes the graph to be drawn using
the parameters determined by a previous run of hp2ps on file. These
are extracted from file@.aux.

-s Use a small box for the title.

-t<float> Normally trace elements which sum to a total of less than 1% of the pro-
file are removed from the profile. The -t option allows this percentage
to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring
that all the data will be displayed.

-c Generate colour output.

-y Ignore marks.

-? Print out usage information.

6.5.1. Manipulating the hp file
(Notes kindly offered by Jan-Willhem Maessen.)

Profiling

141

The FOO.hp file produced when you ask for the heap profile of a program FOO is a text file with a par-
ticularly simple structure. Here's a representative example, with much of the actual data omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07
... sample data ...

END_SAMPLE 15.07
BEGIN_SAMPLE 30.23
... sample data ...

END_SAMPLE 30.23
... etc.
BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE_UNIT, VALUE_UNIT) form a header. Each block of lines
starting with BEGIN_SAMPLE and ending with END_SAMPLE forms a single sample (you can think of
this as a vertical slice of your heap profile). The hp2ps utility should accept any input with a properly-
formatted header followed by a series of *complete* samples.

6.5.2. Zooming in on regions of your profile
You can look at particular regions of your profile simply by loading a copy of the .hp file into a text
editor and deleting the unwanted samples. The resulting .hp file can be run through hp2ps and viewed
or printed.

6.5.3. Viewing the heap profile of a running program
The .hp file is generated incrementally as your program runs. In principle, running hp2ps on the in-
complete file should produce a snapshot of your program's heap usage. However, the last sample in the
file may be incomplete, causing hp2ps to fail. If you are using a machine with UNIX utilities installed,
it's not too hard to work around this problem (though the resulting command line looks rather Byz-
antine):

head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in FOO.hp,
and labels each sample with its ending line number. We then select the line number of the last complete
sample using tail and cut. This is used as a parameter to head; the result is as if we deleted the final in-
complete sample from FOO.hp. This results in a properly-formatted .hp file which we feed directly to
hp2ps.

6.5.4. Viewing a heap profile in real time
The gv and ghostview programs have a "watch file" option can be used to view an up-to-date heap pro-
file of your program as it runs. Simply generate an incremental heap profile as described in the previous
section. Run gv on your profile:

gv -watch -seascape FOO.ps

Profiling

142

If you forget the -watch flag you can still select "Watch file" from the "State" menu. Now each time
you generate a new profile FOO.ps the view will update automatically.

This can all be encapsulated in a little script:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

gv -watch -seascape FOO.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

done

Occasionally gv will choke as it tries to read an incomplete copy of FOO.ps (because hp2ps is still run-
ning as an update occurs). A slightly more complicated script works around this problem, by using the
fact that sending a SIGHUP to gv will cause it to re-read its input file:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

gv FOO.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

kill -HUP $gvpsnum
done

6.6. Observing Code Coverage
Code coverage tools allow a programmer to determine what parts of their code have been actually ex-
ecuted, and which parts have never actually been invoked. GHC has an option for generating instru-
mented code that records code coverage as part of the Haskell Program Coverage
[http://www.haskell.org/hpc](HPC) toolkit, which is included with GHC. HPC tools can be used to
render the generated code coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage and boolean-
control coverage. Source coverage is the extent to which every part of the program was used, measured
at three different levels: declarations (both top-level and local), alternatives (among several equations or
case branches) and expressions (at every level). Boolean coverage is the extent to which each of the val-
ues True and False is obtained in every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways: textual reports with summary statistics
(hpc report) and sources with color mark-up (hpc markup). For boolean coverage, there are four possible
outcomes for each guard, condition or qualifier: both True and False values occur; only True; only
False; never evaluated. In hpc-markup output, highlighting with a yellow background indicates a part of
the program that was never evaluated; a green background indicates an always-True expression and a
red background indicates an always-False one.

6.6.1. A small example: Reciprocation
For an example we have a program, called Recip.hs, which computes exact decimal representations of
reciprocals, with recurring parts indicated in brackets.

Profiling

143

http://www.haskell.org/hpc

reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = ('0' : '.' : digits, recur)

| otherwise = error
"attempting to compute reciprocal of number <= 1"

where
(digits, recur) = divide n 1 []

divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | c `elem` cs = ([], position c cs)

| r == 0 = (show q, 0)
| r /= 0 = (show q ++ digits, recur)

where
(q, r) = (c*10) `quotRem` n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n==x = 1

| otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p = length d - r
(d, r) = reciprocal n

main = do
number <- readLn
putStrLn (showRecip number)
main

The HPC instrumentation is enabled using the -fhpc flag.

$ ghc -fhpc Recip.hs --make

HPC index (.mix) files are placed placed in .hpc subdirectory. These can be considered like the .hi files
for HPC.

$./Recip
1/3
= 0.(3)

We can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)

14% guards (1/7), 3 always True,
1 always False,
2 unevaluated

0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)

55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

Profiling

144

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html, hpc_index_alt.html,
hpc_index_exp.html, hpc_index_fun.html.

6.6.2. Options for instrumenting code for coverage
Turning on code coverage is easy, use the -fhpc flag. Instrumented and non-instrumented can be freely
mixed. When compiling the Main module GHC automatically detects when there is an hpc compiled
file, and adds the correct initialization code.

6.6.3. The hpc toolkit
The hpc toolkit uses a cvs/svn/darcs-like interface, where a single binary contains many function units.

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command

Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage

Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file

Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage

Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on .tix file after an instrumented binary has generated it, which hpc acting
as a conduit between the raw .tix file, and the more detailed reports produced.

The hpc tool assumes you are in the top-level directory of the location where you built your application,
and the .tix file is in the same top-level directory. You can use the flag --srcdir to use hpc for any other
directory, and use --srcdir multiple times to analyse programs compiled from difference locations, as is
typical for packages.

We now explain in more details the major modes of hpc.

6.6.3.1. hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are considered in
generating report, unless include or exclude are used. The report is a summary unless the --per-module
flag is used. The --xml-output option allows for tools to use hpc to glean coverage.

$ hpc help report

Profiling

145

Usage: hpc report [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--per-module show module level detail
--decl-list show unused decls
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mix files

default .hpc [rarely used]
--xml-output show output in XML

6.6.3.2. hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mix files

default .hpc [rarely used]
--fun-entry-count show top-level function entry counts
--highlight-covered highlight covered code, rather that code gaps
--destdir=DIR path to write output to

6.6.3.3. hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not change the origin-
al .tix file; it generates a new .tix file.

$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX_FILE> [<TIX_FILE> [<TIX_FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--union use the union of the module namespace (default is intersection)

6.6.3.4. hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between .tix files, to
subtract one .tix file from another, or to add two .tix files. hpc combine does not change the original .tix
file; it generates a new .tix file.

Profiling

146

$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX_FILE> <TIX_FILE>
Combine two .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD

FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is intersection)

6.6.3.5. hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it generates a new .tix
file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX_FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID

FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is intersection)

6.6.3.6. hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is used to gen-
erate a draft overlay from a .tix file, and hpc overlay generates a .tix files from an overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY_FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR sub-directory that contains .mix files
default .hpc [rarely used]

--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX_FILE>

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mix files

default .hpc [rarely used]
--output=FILE output FILE

Profiling

147

6.6.4. Caveats and Shortcomings of Haskell Program
Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the same direct-
ory will exhibit a race condition. There is no way to change the name of the .tix file generated, apart
from renaming the binary. HPC does not work with GHCi.

6.7. Using “ticky-ticky” profiling (for imple-
mentors)

(ToDo: document properly.)

It is possible to compile Glasgow Haskell programs so that they will count lots and lots of interesting
things, e.g., number of updates, number of data constructors entered, etc., etc. We call this “ticky-ticky”
profiling, because that's the sound a Sun4 makes when it is running up all those counters (slowly).

Ticky-ticky profiling is mainly intended for implementors; it is quite separate from the main
“cost-centre” profiling system, intended for all users everywhere.

To be able to use ticky-ticky profiling, you will need to have built the ticky RTS. (This should be de-
scribed in the building guide, but amounts to building the RTS with way "t" enabled.)

To get your compiled program to spit out the ticky-ticky numbers, use a -r RTS option. See Sec-
tion 5.14, “Running a compiled program”.

Compiling your program with the -ticky switch yields an executable that performs these counts. Here
is a sample ticky-ticky statistics file, generated by the invocation foo +RTS -rfoo.ticky.

foo +RTS -rfoo.ticky

ALLOCATIONS: 3964631 (11330900 words total: 3999476 admin, 6098829 goods, 1232595 slop)
total words: 2 3 4 5 6+

69647 (1.8%) function values 50.0 50.0 0.0 0.0 0.0
2382937 (60.1%) thunks 0.0 83.9 16.1 0.0 0.0
1477218 (37.3%) data values 66.8 33.2 0.0 0.0 0.0

0 (0.0%) big tuples
2 (0.0%) black holes 0.0 100.0 0.0 0.0 0.0
0 (0.0%) prim things

34825 (0.9%) partial applications 0.0 0.0 0.0 100.0 0.0
2 (0.0%) thread state objects 0.0 0.0 0.0 0.0 100.0

Total storage-manager allocations: 3647137 (11882004 words)
[551104 words lost to speculative heap-checks]

STACK USAGE:

ENTERS: 9400092 of which 2005772 (21.3%) direct to the entry code
[the rest indirected via Node's info ptr]

1860318 (19.8%) thunks
3733184 (39.7%) data values
3149544 (33.5%) function values

[of which 1999880 (63.5%) bypassed arg-satisfaction chk]
348140 (3.7%) partial applications

Profiling

148

308906 (3.3%) normal indirections
0 (0.0%) permanent indirections

RETURNS: 5870443
2137257 (36.4%) from entering a new constructor

[the rest from entering an existing constructor]
2349219 (40.0%) vectored [the rest unvectored]

RET_NEW: 2137257: 32.5% 46.2% 21.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_OLD: 3733184: 2.8% 67.9% 29.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_UNBOXED_TUP: 2: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

RET_VEC_RETURN : 2349219: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

UPDATE FRAMES: 2241725 (0 omitted from thunks)
SEQ FRAMES: 1
CATCH FRAMES: 1
UPDATES: 2241725

0 (0.0%) data values
34827 (1.6%) partial applications

[2 in place, 34825 allocated new space]
2206898 (98.4%) updates to existing heap objects (46 by squeezing)
UPD_CON_IN_NEW: 0: 0 0 0 0 0 0 0 0 0
UPD_PAP_IN_NEW: 34825: 0 0 0 34825 0 0 0 0 0

NEW GEN UPDATES: 2274700 (99.9%)

OLD GEN UPDATES: 1852 (0.1%)

Total bytes copied during GC: 190096

**
3647137 ALLOC_HEAP_ctr
11882004 ALLOC_HEAP_tot
69647 ALLOC_FUN_ctr
69647 ALLOC_FUN_adm
69644 ALLOC_FUN_gds
34819 ALLOC_FUN_slp
34831 ALLOC_FUN_hst_0
34816 ALLOC_FUN_hst_1

0 ALLOC_FUN_hst_2
0 ALLOC_FUN_hst_3
0 ALLOC_FUN_hst_4

2382937 ALLOC_UP_THK_ctr
0 ALLOC_SE_THK_ctr

308906 ENT_IND_ctr
0 E!NT_PERM_IND_ctr requires +RTS -Z

[... lots more info omitted ...]
0 GC_SEL_ABANDONED_ctr
0 GC_SEL_MINOR_ctr
0 GC_SEL_MAJOR_ctr
0 GC_FAILED_PROMOTION_ctr

47524 GC_WORDS_COPIED_ctr

The formatting of the information above the row of asterisks is subject to change, but hopefully provides
a useful human-readable summary. Below the asterisks all counters maintained by the ticky-ticky sys-
tem are dumped, in a format intended to be machine-readable: zero or more spaces, an integer, a space,
the counter name, and a newline.

In fact, not all counters are necessarily dumped; compile- or run-time flags can render certain counters
invalid. In this case, either the counter will simply not appear, or it will appear with a modified counter
name, possibly along with an explanation for the omission (notice ENT_PERM_IND_ctr appears with

Profiling

149

an inserted ! above). Software analysing this output should always check that it has the counters it ex-
pects. Also, beware: some of the counters can have large values!

Profiling

150

Chapter 7. Advice on: sooner, faster,
smaller, thriftier

Please advise us of other “helpful hints” that should go here!

7.1. Sooner: producing a program more quickly

Don't use -O or (especially) -O2: By using them, you are telling GHC that you are willing to suffer
longer compilation times for better-quality code.

GHC is surprisingly zippy for normal compilations without -O!

Use more memory: Within reason, more memory for heap space means less garbage
collection for GHC, which means less compilation time. If you
use the -Rghc-timing option, you'll get a garbage-collector re-
port. (Again, you can use the cheap-and-nasty +RTS -Sstderr
-RTS option to send the GC stats straight to standard error.)

If it says you're using more than 20% of total time in garbage col-
lecting, then more memory might help: use the -H<size> op-
tion. Increasing the default allocation area size used by the com-
piler's RTS might also help: use the +RTS -A<size> -RTS
option.

If GHC persists in being a bad memory citizen, please report it as
a bug.

Don't use too much memory! As soon as GHC plus its “fellow citizens” (other processes on
your machine) start using more than the real memory on your ma-
chine, and the machine starts “thrashing,” the party is over. Com-
pile times will be worse than terrible! Use something like the csh-
builtin time command to get a report on how many page faults
you're getting.

If you don't know what virtual memory, thrashing, and page faults
are, or you don't know the memory configuration of your ma-
chine, don't try to be clever about memory use: you'll just make
your life a misery (and for other people, too, probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be large, it can take
many real seconds to slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using re-
motely-mounted disks; then link on a slow machine that had your
disks directly mounted.

Don't derive/use Read unnecessar-
ily:

It's ugly and slow.

GHC compiles some program con-
structs slowly:

We'd rather you reported such behaviour as a bug, so that we can
try to correct it.

To figure out which part of the compiler is badly behaved, the -
v2 option is your friend.

151

7.2. Faster: producing a program that runs
quicker

The key tool to use in making your Haskell program run faster are GHC's profiling facilities, described
separately in Chapter 6, Profiling. There is no substitute for finding where your program's time/space is
really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program's performance dramatically is
to use better algorithms. Once profiling has thrown the spotlight on the guilty time-consumer(s), it may
be better to re-think your program than to try all the tweaks listed below.

Another extremely efficient way to make your program snappy is to use library code that has been Seri-
ously Tuned By Someone Else. You might be able to write a better quicksort than the one in
Data.List, but it will take you much longer than typing import Data.List.

Please report any overly-slow GHC-compiled programs. Since GHC doesn't have any credible competi-
tion in the performance department these days it's hard to say what overly-slow means, so just use your
judgement! Of course, if a GHC compiled program runs slower than the same program compiled with
NHC or Hugs, then it's definitely a bug.

Optimise, using -O or -O2: This is the most basic way to make your program go faster. Com-
pilation time will be slower, especially with -O2.

At present, -O2 is nearly indistinguishable from -O.

Compile via C and crank up GCC: The native code-generator is designed to be quick, not mind-
bogglingly clever. Better to let GCC have a go, as it tries much
harder on register allocation, etc.

So, when we want very fast code, we use: -O -fvia-C.

Overloaded functions are not your
friend:

Haskell's overloading (using type classes) is elegant, neat, etc.,
etc., but it is death to performance if left to linger in an inner loop.
How can you squash it?

Give explicit type signatures: Signatures are the basic
trick; putting them on ex-
ported, top-level functions
is good software-engin-
eering practice, anyway.
(Tip: using -
fwarn-miss-
ing-signatures can
help enforce good signa-
ture-practice).

The automatic specialisa-
tion of overloaded func-
tions (with -O) should take
care of overloaded local
and/or unexported func-
tions.

Use SPECIALIZE pragmas:
Specialize the overloading
on key functions in your

Advice on: sooner, faster, smaller,
thriftier

152

program. See Sec-
tion 8.12.8, “SPECIALIZE
pragma” and Sec-
tion 8.12.9, “SPECIALIZE
instance pragma ”.

“But how do I know where over-
loading is creeping in?”:

A low-tech way: grep
(search) your interface files
for overloaded type signa-
tures. You can view inter-
face files using the -
-show-iface option
(see Section 5.6.7, “Other
options related to interface
files”).

% ghc --show-iface Foo.hi | egrep '^[a-z].*::.*=>'

Strict functions are your dear
friends:

and, among other things, lazy pattern-matching is your enemy.

(If you don't know what a “strict function” is, please consult a
functional-programming textbook. A sentence or two of explana-
tion here probably would not do much good.)

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of
lets to get stricter code (a good thing):

f (Wibble x y) # beautiful but slow
= let

(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y

in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->
case (unpackFoo y) of { (a2, b2, c2) ->
...
}}

GHC loves single-constructor data-
types:

It's all the better if a function is strict in a single-constructor type
(a type with only one data-constructor; for example, tuples are
single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a single field, use a
newtype declaration instead of a data declaration. The new-
type will be optimised away in most cases.

Advice on: sooner, faster, smaller,
thriftier

153

“How do I find out a function's
strictness?”

Don't guess—look it up.

Look for your function in the interface file, then for the third field
in the pragma; it should say __S <string>. The <string>
gives the strictness of the function's arguments. L is lazy (bad), S
and E are strict (good), P is “primitive” (good), U(...) is strict
and “unpackable” (very good), and A is absent (very good).

For an “unpackable” U(...) argument, the info inside tells the
strictness of its components. So, if the argument is a pair, and it
says U(AU(LSS)), that means “the first component of the pair
isn't used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”

If the function isn't exported, just compile with the extra flag -
ddump-simpl; next to the signature for any binder, it will print
the self-same pragmatic information as would be put in an inter-
face file. (Besides, Core syntax is fun to look at!)

Force key functions to be
INLINEd (esp. monads):

Placing INLINE pragmas on certain functions that are used a lot
can have a dramatic effect. See Section 8.12.5.1, “INLINE
pragma”.

Explicit export list: If you do not have an explicit export list in a module, GHC must
assume that everything in that module will be exported. This has
various pessimising effects. For example, if a bit of code is actu-
ally unused (perhaps because of unfolding effects), GHC will not
be able to throw it away, because it is exported and some other
module may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it
knows they are not exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your
compilation with -ddump-simpl (don't forget the -O).

If profiling has pointed the finger at particular functions, look at
their Core code. lets are bad, cases are good, dictionaries
(d.<Class>.<Unique>) [or anything overloading-ish] are
bad, nested lambdas are bad, explicit data constructors are good,
primitive operations (e.g., eqInt#) are good,…

Use strictness annotations: Putting a strictness annotation ('!') on a constructor field helps in
two ways: it adds strictness to the program, which gives the strict-
ness analyser more to work with, and it might help to reduce
space leaks.

It can also help in a third way: when used with -fun-
box-strict-fields (see Section 5.9.2, “-f*: platform-
independent flags”), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be re-
moved. Unpacking only happens for single-constructor datatypes
(Int is a good candidate, for example).

Using -funbox-strict-fields is only really a good idea in
conjunction with -O, because otherwise the extra packing and un-
packing won't be optimised away. In fact, it is possible that -
funbox-strict-fields may worsen performance even with

Advice on: sooner, faster, smaller,
thriftier

154

-O, but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC exten-
sion):

When you are really desperate for speed, and you want to get
right down to the “raw bits.” Please see Section 8.2.1, “Unboxed
types ” for some information about using unboxed types.

Before resorting to explicit unboxed types, try using strict con-
structor fields and -funbox-strict-fields first (see
above). That way, your code stays portable.

Use foreign import (a GHC
extension) to plug into fast librar-
ies:

This may take real work, but… There exist piles of massively-
tuned library code, and the best thing is not to compete with it, but
link with it.

Chapter 9, Foreign function interface (FFI) describes the foreign
function interface.

Don't use Floats: If you're using Complex, definitely use Complex Double
rather than Complex Float (the former is specialised heavily,
but the latter isn't).

Floats (probably 32-bits) are almost always a bad idea, any-
way, unless you Really Know What You Are Doing. Use
Doubles. There's rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With
Doubles, you are much less likely to hang yourself with numer-
ical errors.

One time when Float might be a good idea is if you have a lot
of them, say a giant array of Floats. They take up half the space
in the heap compared to Doubles. However, this isn't true on a
64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic arith-
metic element types including Int and Char: see the
Data.Array.Unboxed library for details. These arrays are
likely to be much faster than using standard Haskell 98 arrays
from the Data.Array library.

Use a bigger heap! If your program's GC stats (-S RTS option) indicate that it's do-
ing lots of garbage-collection (say, more than 20% of execution
time), more memory might help—with the -M<size> or -
A<size> RTS options (see Section 5.14.3, “RTS options to con-
trol the garbage collector”).

7.3. Smaller: producing a program that is smal-
ler

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -fun-
folding-use-threshold0 option for the extreme case. (“Only unfoldings with zero cost should
proceed.”) Warning: except in certain specialised cases (like Happy parsers) this is likely to actually in-
crease the size of your program, because unfolding generally enables extra simplifying optimisations to
be performed.

Advice on: sooner, faster, smaller,
thriftier

155

Avoid Read.

Use strip on your executables.

7.4. Thriftier: producing a program that
gobbles less heap space

“I think I have a space leak…” Re-run your program with +RTS -Sstderr, and remove all doubt!
(You'll see the heap usage get bigger and bigger…) [Hmmm…this might be even easier with the -G1
RTS option; so… ./a.out +RTS -Sstderr -G1...]

Once again, the profiling facilities (Chapter 6, Profiling) are the basic tool for demystifying the space
behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous section. Strict
functions get right down to business, rather than filling up the heap with closures (the system's notes to
itself about how to evaluate something, should it eventually be required).

Advice on: sooner, faster, smaller,
thriftier

156

Chapter 8. GHC Language Features
As with all known Haskell systems, GHC implements some extensions to the language. They are all en-
abled by options; by default GHC understands only plain Haskell 98.

Some of the Glasgow extensions serve to give you access to the underlying facilities with which we im-
plement Haskell. Thus, you can get at the Raw Iron, if you are willing to write some non-portable code
at a more primitive level. You need not be “stuck” on performance because of the implementation costs
of Haskell's “high-level” features—you can always code “under” them. In an extreme case, you can
write all your time-critical code in C, and then just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., sloshing MutableByteArray#s
around your program), you may wish to check if there are libraries that provide a “Haskellised veneer”
over the features you want. The separate libraries documentation [../libraries/index.html] describes all
the libraries that come with GHC.

8.1. Language options
The language option flag control what variation of the language are permitted. Leaving out all of them
gives you standard Haskell 98.

Generally speaking, all the language options are introduced by "-X", e.g. -XTemplateHaskell.

All the language options can be turned off by using the prefix "No"; e.g. "-XNoTemplateHaskell".

Language options recognised by Cabal can also be enabled using the LANGUAGE pragma, thus {-#
LANGUAGE TemplateHaskell #-} (see Section 8.12.1, “LANGUAGE pragma”>).

Turning on an option that enables special syntax might cause working Haskell 98 code to fail to compile,
perhaps because it uses a variable name which has become a reserved word. So, together with each op-
tion below, we list the special syntax which is enabled by this option. We use notation and nonterminal
names from the Haskell 98 lexical syntax (see the Haskell 98 Report). There are two classes of special
syntax:

• New reserved words and symbols: character sequences which are no longer available for use as iden-
tifiers in the program.

• Other special syntax: sequences of characters that have a different meaning when this particular op-
tion is turned on.

We are only listing syntax changes here that might affect existing working programs (i.e. "stolen" syn-
tax). Many of these extensions will also enable new context-free syntax, but in all cases programs writ-
ten to use the new syntax would not be compilable without the option enabled.

-fglasgow-exts: This simultaneously enables all of the extensions to Haskell 98 de-
scribed in Chapter 8, GHC Language Features, except where other-
wise noted. We are trying to move away from this portmanteau flag,
and towards enabling features individaully.

New reserved words: forall (only in types), mdo.

Other syntax stolen: varid{#}, char#, string#, integer#,
float#, float##, (#, #), |), {|.

157

../libraries/index.html

Implies these specific language options: -
XForeignFunctionInterface, -XImplicitParams, -
XScopedTypeVariables, -XGADTs, -XTypeFamilies.

-
XForeignFunctionIn-
terface:

This option enables the language extension defined in the Haskell 98
Foreign Function Interface Addendum.

New reserved words: foreign.

-
XMonomorphismRestric-
tion,-XMonoPatBinds:

These two flags control how generalisation is done. See Section 8.16,
“Control over monomorphism”.

GHC Language Features

158

: Use GHCi's extended default rules in a regular module (Section 3.4.5,
“Type defaulting in GHCi”). Independent of the -fglasgow-exts
flag.

-
XOverlappingInstances
, -
XUndecidableInstances
, -
XIncoherentInstances ,
-fcontext-stack=N

See Section 8.6.3, “Instance declarations”. Only relevant if you also
use -fglasgow-exts.

-finline-phase See Section 8.13, “Rewrite rules ”. Only relevant if you also use -
fglasgow-exts.

-XArrows See Section 8.9, “Arrow notation ”. Independent of -
fglasgow-exts.

New reserved words/symbols: rec, proc, -<, >-, -<<, >>-.

Other syntax stolen: (|, |).

-XGenerics See Section 8.15, “Generic classes”. Independent of -
fglasgow-exts.

-XNoImplicitPrelude GHC normally imports Prelude.hi files for you. If you'd rather it
didn't, then give it a -XNoImplicitPrelude option. The idea is
that you can then import a Prelude of your own. (But don't call it
Prelude; the Haskell module namespace is flat, and you must not
conflict with any Prelude module.)

Even though you have not imported the Prelude, most of the built-in
syntax still refers to the built-in Haskell Prelude types and values, as
specified by the Haskell Report. For example, the type [Int] still
means Prelude.[] Int; tuples continue to refer to the standard
Prelude tuples; the translation for list comprehensions continues to use
Prelude.map etc.

However, -XNoImplicitPrelude does change the handling of
certain built-in syntax: see Section 8.3.5, “Rebindable syntax”.

-XImplicitParams Enables implicit parameters (see Section 8.7.2, “Implicit parameters”).
Currently also implied by -fglasgow-exts.

Syntax stolen: ?varid, %varid.

-XOverloadedStrings Enables overloaded string literals (see Section 8.6.4, “Overloaded
string literals ”).

-XScopedTypeVariables Enables lexically-scoped type variables (see Section 8.7.6, “Lexically
scoped type variables ”). Implied by -fglasgow-exts.

-XTemplateHaskell Enables Template Haskell (see Section 8.8, “Template Haskell”). This
flag must be given explicitly; it is no longer implied by -
fglasgow-exts.

Syntax stolen: [|, [e|, [p|, [d|, [t|, $(, $varid.

8.2. Unboxed types and primitive operations
GHC is built on a raft of primitive data types and operations. While you really can use this stuff to write
fast code, we generally find it a lot less painful, and more satisfying in the long run, to use higher-level

GHC Language Features

159

language features and libraries. With any luck, the code you write will be optimised to the efficient un-
boxed version in any case. And if it isn't, we'd like to know about it.

We do not currently have good, up-to-date documentation about the primitives, perhaps because they are
mainly intended for internal use. There used to be a long section about them here in the User Guide, but
it became out of date, and wrong information is worse than none.

The Real Truth about what primitive types there are, and what operations work over those types, is held
in the file fptools/ghc/compiler/prelude/primops.txt.pp. This file is used directly to
generate GHC's primitive-operation definitions, so it is always correct! It is also intended for processing
into text.

Indeed, the result of such processing is part of the description of the External Core language
[http://www.haskell.org/ghc/docs/papers/core.ps.gz]. So that document is a good place to look for a
type-set version. We would be very happy if someone wanted to volunteer to produce an SGML back
end to the program that processes primops.txt so that we could include the results here in the User
Guide.

What follows here is a brief summary of some main points.

8.2.1. Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a pointer to a
heap object. The representation of a Haskell Int, for example, is a two-word heap object. An unboxed
type, however, is represented by the value itself, no pointers or heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int), Double#
(double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are what you might
expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we all know and
love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and
compiler. Primitive types are always unlifted; that is, a value of a primitive type cannot be bottom. We
use the convention that primitive types, values, and operations have a # suffix.

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#. But
this is not necessarily the case: a primitive value might be represented by a pointer to a heap-allocated
object. Examples include Array#, the type of primitive arrays. A primitive array is heap-allocated be-
cause it is too big a value to fit in a register, and would be too expensive to copy around; in a sense, it is
accidental that it is represented by a pointer. If a pointer represents a primitive value, then it really does
point to that value: no unevaluated thunks, no indirections…nothing can be at the other end of the point-
er than the primitive value. A numerically-intensive program using unboxed types can go a lot faster
than its “standard” counterpart—we saw a threefold speedup on one example.

There are some restrictions on the use of primitive types:

• The main restriction is that you can't pass a primitive value to a polymorphic function or store one in
a polymorphic data type. This rules out things like [Int#] (i.e. lists of primitive integers). The
reason for this restriction is that polymorphic arguments and constructor fields are assumed to be
pointers: if an unboxed integer is stored in one of these, the garbage collector would attempt to fol-
low it, leading to unpredictable space leaks. Or a seq operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results. Even worse, the unboxed value might be
larger than a pointer (Double# for instance).

• You cannot define a newtype whose representation type (the argument type of the data constructor)
is an unboxed type. Thus, this is illegal:

GHC Language Features

160

http://www.haskell.org/ghc/docs/papers/core.ps.gz

newtype A = MkA Int#

• You cannot bind a variable with an unboxed type in a top-level binding.

• You cannot bind a variable with an unboxed type in a recursive binding.

• You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding, but any such
variable causes the entire pattern-match to become strict. For example:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

Since b has type Int#, the entire pattern match is strict, and the program behaves as if you had
written

data Foo = Foo Int Int#

f x = case ..rhs.. of { (Foo a b, w) -> ..body.. }

8.2.2. Unboxed Tuples
Unboxed tuples aren't really exported by GHC.Exts, they're available by default with -
fglasgow-exts. An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an unboxed
tuple looks the same.

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap alloca-
tion normally associated with using fully-fledged tuples. When an unboxed tuple is returned, the com-
ponents are put directly into registers or on the stack; the unboxed tuple itself does not have a composite
representation. Many of the primitive operations listed in primops.txt.pp return unboxed tuples. In
particular, the IO and ST monads use unboxed tuples to avoid unnecessary allocation during sequences
of operations.

There are some pretty stringent restrictions on the use of unboxed tuples:

• Values of unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they
may not be stored in polymorphic data structures or passed to polymorphic functions.

• No variable can have an unboxed tuple type, nor may a constructor or function argument have an un-
boxed tuple type. The following are all illegal:

data Foo = Foo (# Int, Int #)

f :: (# Int, Int #) -> (# Int, Int #)

GHC Language Features

161

f x = x

g :: (# Int, Int #) -> Int
g (# a,b #) = a

h x = let y = (# x,x #) in ...

The typical use of unboxed tuples is simply to return multiple values, binding those multiple results with
a case expression, thus:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

You can have an unboxed tuple in a pattern binding, thus

f x = let (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell pattern bind-
ing. The above example desugars like this:

f x = let t = case h x o f{ (# p,q #) -> (p,q)
p = fst t
q = snd t

in ..body..

Indeed, the bindings can even be recursive.

8.3. Syntactic extensions
8.3.1. Hierarchical Modules

GHC supports a small extension to the syntax of module names: a module name is allowed to contain a
dot ‘.’. This is also known as the “hierarchical module namespace” extension, because it extends the
normally flat Haskell module namespace into a more flexible hierarchy of modules.

This extension has very little impact on the language itself; modules names are always fully qualified, so
you can just think of the fully qualified module name as “the module name”. In particular, this means
that the full module name must be given after the module keyword at the beginning of the module; for
example, the module A.B.C must begin

module A.B.C

It is a common strategy to use the as keyword to save some typing when using qualified names with
hierarchical modules. For example:

import qualified Control.Monad.ST.Strict as ST

For details on how GHC searches for source and interface files in the presence of hierarchical modules,
see Section 5.6.3, “The search path”.

GHC Language Features

162

GHC comes with a large collection of libraries arranged hierarchically; see the accompanying library
documentation [../libraries/index.html]. More libraries to install are available from HackageDB
[http://hackage.haskell.org/packages/hackage.html].

8.3.2. Pattern guards
The discussion that follows is an abbreviated version of Simon Peyton Jones's original proposal
[http://research.microsoft.com/~simonpj/Haskell/guards.html]. (Note that the proposal was written be-
fore pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returns Nothing if the supplied key is not in the domain of the mapping, and (Just v)
otherwise, where v is the value that the key maps to. Now consider the following definition:

clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise = var1 + var2
where
m1 = lookup env var1
m2 = lookup env var2
ok1 = maybeToBool m1
ok2 = maybeToBool m2
val1 = expectJust m1
val2 = expectJust m2

The auxiliary functions are

maybeToBool :: Maybe a -> Bool
maybeToBool (Just x) = True
maybeToBool Nothing = False

expectJust :: Maybe a -> a
expectJust (Just x) = x
expectJust Nothing = error "Unexpected Nothing"

What is clunky doing? The guard ok1 && ok2 checks that both lookups succeed, using maybeTo-
Bool to convert the Maybe types to booleans. The (lazily evaluated) expectJust calls extract the
values from the results of the lookups, and binds the returned values to val1 and val2 respectively. If
either lookup fails, then clunky takes the otherwise case and returns the sum of its arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the de-
sired effect. Arguably, a more direct way to write clunky would be to use case expressions:

clunky env var1 var2 = case lookup env var1 of
Nothing -> fail
Just val1 -> case lookup env var2 of
Nothing -> fail
Just val2 -> val1 + val2

where
fail = var1 + var2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded

GHC Language Features

163

../libraries/index.html
../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://research.microsoft.com/~simonpj/Haskell/guards.html

equations as case expressions; that is precisely what the compiler does when compiling equations! The
reason that Haskell provides guarded equations is because they allow us to write down the cases we
want to consider, one at a time, independently of each other. This structure is hidden in the case version.
Two of the right-hand sides are really the same (fail), and the whole expression tends to become more
and more indented.

Here is how I would write clunky:

clunky env var1 var2
| Just val1 <- lookup env var1
, Just val2 <- lookup env var2
= val1 + val2

...other equations for clunky...

The semantics should be clear enough. The qualifiers are matched in order. For a <- qualifier, which I
call a pattern guard, the right hand side is evaluated and matched against the pattern on the left. If the
match fails then the whole guard fails and the next equation is tried. If it succeeds, then the appropriate
binding takes place, and the next qualifier is matched, in the augmented environment. Unlike list com-
prehensions, however, the type of the expression to the right of the <- is the same as the type of the pat-
tern to its left. The bindings introduced by pattern guards scope over all the remaining guard qualifiers,
and over the right hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern
guards. For example:

f x | [y] <- x
, y > 3
, Just z <- h y
= ...

Haskell's current guards therefore emerge as a special case, in which the qualifier list has just one ele-
ment, a boolean expression.

8.3.3. The recursive do-notation
The recursive do-notation (also known as mdo-notation) is implemented as described in A recursive do
for Haskell [http://citeseer.ist.psu.edu/erk02recursive.html], by Levent Erkok, John Launchbury, Haskell
Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. This paper is essential reading for anyone mak-
ing non-trivial use of mdo-notation, and we do not repeat it here.

The do-notation of Haskell does not allow recursive bindings, that is, the variables bound in a do-
expression are visible only in the textually following code block. Compare this to a let-expression,
where bound variables are visible in the entire binding group. It turns out that several applications can
benefit from recursive bindings in the do-notation, and this extension provides the necessary syntactic
support.

Here is a simple (yet contrived) example:

import Control.Monad.Fix

justOnes = mdo xs <- Just (1:xs)
return xs

As you can guess justOnes will evaluate to Just [1,1,1,....

GHC Language Features

164

http://citeseer.ist.psu.edu/erk02recursive.html
http://citeseer.ist.psu.edu/erk02recursive.html

The Control.Monad.Fix library introduces the MonadFix class. It's definition is:

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

The function mfix dictates how the required recursion operation should be performed. For example,
justOnes desugars as follows:

justOnes = mfix (\xs' -> do { xs <- Just (1:xs'); return xs }

For full details of the way in which mdo is typechecked and desugared, see the paper A recursive do for
Haskell [http://citeseer.ist.psu.edu/erk02recursive.html]. In particular, GHC implements the segmenta-
tion technique described in Section 3.2 of the paper.

If recursive bindings are required for a monad, then that monad must be declared an instance of the
MonadFix class. The following instances of MonadFix are automatically provided: List, Maybe, IO.
Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the
MonadFix class for Haskell's internal state monad (strict and lazy, respectively).

Here are some important points in using the recursive-do notation:

• The recursive version of the do-notation uses the keyword mdo (rather than do).

• It is enabled with the flag -XRecursiveDo, which is in turn implied by -fglasgow-exts.

• Unlike ordinary do-notation, but like let and where bindings, name shadowing is not allowed;
that is, all the names bound in a single mdo must be distinct (Section 3.3 of the paper).

• Variables bound by a let statement in an mdo are monomorphic in the mdo (Section 3.1 of the pa-
per). However GHC breaks the mdo into segments to enhance polymorphism, and improve termina-
tion (Section 3.2 of the paper).

The web page: http://www.cse.ogi.edu/PacSoft/projects/rmb/ contains up to date information on recurs-
ive monadic bindings.

Historical note: The old implementation of the mdo-notation (and most of the existing documents) used
the name MonadRec for the class and the corresponding library. This name is not supported by GHC.

8.3.4. Parallel List Comprehensions
Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can be
thought of as a nice syntax for writing maps and filters. Parallel comprehensions extend this to include
the zipWith family.

A parallel list comprehension has multiple independent branches of qualifier lists, each separated by a `|'
symbol. For example, the following zips together two lists:

[(x, y) | x <- xs | y <- ys]

The behavior of parallel list comprehensions follows that of zip, in that the resulting list will have the
same length as the shortest branch.

GHC Language Features

165

http://citeseer.ist.psu.edu/erk02recursive.html
http://citeseer.ist.psu.edu/erk02recursive.html
http://www.cse.ogi.edu/PacSoft/projects/rmb/

We can define parallel list comprehensions by translation to regular comprehensions. Here's the basic
idea:

Given a parallel comprehension of the form:

[e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

where `zipN' is the appropriate zip for the given number of branches.

8.3.5. Rebindable syntax
GHC allows most kinds of built-in syntax to be rebound by the user, to facilitate replacing the Pre-
lude with a home-grown version, for example.

You may want to define your own numeric class hierarchy. It completely defeats that purpose if the lit-
eral "1" means "Prelude.fromInteger 1", which is what the Haskell Report specifies. So the -
XNoImplicitPrelude flag causes the following pieces of built-in syntax to refer to whatever is in
scope, not the Prelude versions:

• An integer literal 368 means "fromInteger (368::Integer)", rather than "Pre-
lude.fromInteger (368::Integer)".

• Fractional literals are handed in just the same way, except that the translation is fromRational
(3.68::Rational).

• The equality test in an overloaded numeric pattern uses whatever (==) is in scope.

• The subtraction operation, and the greater-than-or-equal test, in n+k patterns use whatever (-) and
(>=) are in scope.

• Negation (e.g. "- (f x)") means "negate (f x)", both in numeric patterns, and expressions.

• "Do" notation is translated using whatever functions (>>=), (>>), and fail, are in scope (not the
Prelude versions). List comprehensions, mdo (Section 8.3.3, “The recursive do-notation ”), and par-
allel array comprehensions, are unaffected.

• Arrow notation (see Section 8.9, “Arrow notation ”) uses whatever arr, (>>>), first, app,
(|||) and loop functions are in scope. But unlike the other constructs, the types of these func-
tions must match the Prelude types very closely. Details are in flux; if you want to use this, ask!

In all cases (apart from arrow notation), the static semantics should be that of the desugared form, even
if that is a little unexpected. For emample, the static semantics of the literal 368 is exactly that of fro-
mInteger (368::Integer); it's fine for fromInteger to have any of the types:

GHC Language Features

166

fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use -dcore-lint to
typecheck the desugared program. If Core Lint is happy you should be all right.

8.3.6. Postfix operators
GHC allows a small extension to the syntax of left operator sections, which allows you to define postfix
operators. The extension is this: the left section

(e !)

is equivalent (from the point of view of both type checking and execution) to the expression

((!) e)

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section is equi-
valent to

(\y -> (!) e y)

That is, the operator must be a function of two arguments. GHC allows it to take only one argument, and
that in turn allows you to write the function postfix.

Since this extension goes beyond Haskell 98, it should really be enabled by a flag; but in fact it is en-
abled all the time. (No Haskell 98 programs change their behaviour, of course.)

The extension does not extend to the left-hand side of function definitions; you must define such a func-
tion in prefix form.

8.3.7. Record field disambiguation
In record construction and record pattern matching it is entirely unambiguous which field is referred to,
even if there are two different data types in scope with a common field name. For example:

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where
import M

data T = MkT { x :: Int }

ok1 (MkS { x = n }) = n+1 -- Unambiguous

ok2 n = MkT { x = n+1 } -- Unambiguous

bad1 k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous

Even though there are two x's in scope, it is clear that the x in the pattern in the definition of ok1 can

GHC Language Features

167

only mean the field x from type S. Similarly for the function ok2. However, in the record update in
bad1 and the record selection in bad2 it is not clear which of the two types is intended.

Haskell 98 regards all four as ambiguous, but with the -fdisambiguate-record-fields flag,
GHC will accept the former two. The rules are precisely the same as those for instance declarations in
Haskell 98, where the method names on the left-hand side of the method bindings in an instance declara-
tion refer unambiguously to the method of that class (provided they are in scope at all), even if there are
other variables in scope with the same name. This reduces the clutter of qualified names when you im-
port two records from different modules that use the same field name.

8.4. Extensions to data types and type syn-
onyms
8.4.1. Data types with no constructors

With the -fglasgow-exts flag, GHC lets you declare a data type with no constructors. For example:

data S -- S :: *
data T a -- T :: * -> *

Syntactically, the declaration lacks the "= constrs" part. The type can be parameterised over types of any
kind, but if the kind is not * then an explicit kind annotation must be used (see Section 8.7.3,
“Explicitly-kinded quantification”).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when defining
"phantom types".

8.4.2. Infix type constructors, classes, and type variables
GHC allows type constructors, classes, and type variables to be operators, and to be written infix, very
much like expressions. More specifically:

• A type constructor or class can be an operator, beginning with a colon; e.g. :*:. The lexical syntax
is the same as that for data constructors.

• Data type and type-synonym declarations can be written infix, parenthesised if you want further ar-
guments. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) x = Baz a b x
type (a :++: b) y = Either (a,b) y

• Types, and class constraints, can be written infix. For example

x :: Int :*: Bool
f :: (a :=: b) => a -> b

GHC Language Features

168

• A type variable can be an (unqualified) operator e.g. +. The lexical syntax is the same as that for
variable operators, excluding "(.)", "(!)", and "(*)". In a binding position, the operator must be paren-
thesised. For example:

type T (+) = Int + Int
f :: T Either
f = Left 3

liftA2 :: Arrow (~>)
=> (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)

liftA2 = ...

• Back-quotes work as for expressions, both for type constructors and type variables; e.g. Int
`Either` Bool, or Int `a` Bool. Similarly, parentheses work the same; e.g. (:*:) Int
Bool.

• Fixities may be declared for type constructors, or classes, just as for data constructors. However, one
cannot distinguish between the two in a fixity declaration; a fixity declaration sets the fixity for a
data constructor and the corresponding type constructor. For example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for :*:. Int `a`
Bool.

• Function arrow is infixr with fixity 0. (This might change; I'm not sure what it should be.)

8.4.3. Liberalised type synonyms
Type synonyms are like macros at the type level, and GHC does validity checking on types only after
expanding type synonyms. That means that GHC can be very much more liberal about type synonyms
than Haskell 98:

• You can write a forall (including overloading) in a type synonym, thus:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f x y = (x, show y)

g :: Discard Int -> (Int,String) -- A rank-2 type
g f = f 3 True

• You can write an unboxed tuple in a type synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

• You can apply a type synonym to a forall type:

GHC Language Features

169

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

• You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be changed.)

After expanding type synonyms, GHC does validity checking on types, looking for the following mal-
formedness which isn't detected simply by kind checking:

• Type constructor applied to a type involving for-alls.

• Unboxed tuple on left of an arrow.

• Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = (# Int, Int #)

h :: Pr -> Int
h x = ...

because GHC does not allow unboxed tuples on the left of a function arrow.

8.4.4. Existentially quantified data constructors
The idea of using existential quantification in data type declarations was suggested by Perry, and imple-
mented in Hope+ (Nigel Perry, The Implementation of Practical Functional Programming Languages,
PhD Thesis, University of London, 1991). It was later formalised by Laufer and Odersky (Polymorphic
type inference and abstract data types, TOPLAS, 16(5), pp1411-1430, 1994). It's been in Lennart Au-
gustsson's hbc Haskell compiler for several years, and proved very useful. Here's the idea. Consider the
declaration:

data Foo = forall a. MkFoo a (a -> Bool)

GHC Language Features

170

| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself, which is
plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool; and
MkFoo 'c' isUpper packages a character with a compatible function. These two things are each of
type Foo and can be put in a list.

What can we do with a value of type Foo?. In particular, what happens when we pattern-match on Mk-
Foo?

f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, the only (useful) thing we can do with
them is to apply fn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogenous values together with a bunch of functions that ma-
nipulate them, and then treat that collection of packages in a uniform manner. You can express quite a
bit of object-oriented-like programming this way.

8.4.4.1. Why existential?

What has this to do with existential quantification? Simply that MkFoo has the (nearly) isomorphic type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given above,
thereby avoiding adding a new existential quantification construct.

8.4.4.2. Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

GHC Language Features

171

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you'd expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and when pattern
matching on Baz2 the first matched value can be converted to a string (as well as applying the function
to it). So this program is legal:

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz2 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must store the
dictionaries for Eq and Show respectively, and extract it on pattern matching.

8.4.4.3. Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

Here tag is a public field, with a well-typed selector function tag :: Counter a -> a. The
self type is hidden from the outside; any attempt to apply _this, _inc or _display as functions
will raise a compile-time error. In other words, GHC defines a record selector function only for fields
whose type does not mention the existentially-quantified variables. (This example used an underscore in
the fields for which record selectors will not be defined, but that is only programming style; GHC ig-
nores them.)

To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter

{ _this = i x, _inc = i, _display = d, tag = t }

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x

Now we can define counters with different underlying implementations:

GHC Language Features

172

counterA :: Counter String
counterA = NewCounter

{ _this = 0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counterB = NewCounter

{ _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }

main = do
display (inc counterA) -- prints "1"
display (inc (inc counterB)) -- prints "##"

At the moment, record update syntax is only supported for Haskell 98 data types, so the following func-
tion does not work:

-- This is invalid; use explicit NewCounter instead for now
setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }

8.4.4.4. Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can be use.

• When pattern matching, each pattern match introduces a new, distinct, type for each existential type
variable. These types cannot be unified with any other type, nor can they escape from the scope of
the pattern match. For example, these fragments are incorrect:

f1 (MkFoo a f) = a

Here, the type bound by MkFoo "escapes", because a is the result of f1. One way to see why this is
wrong is to ask what type f1 has:

f1 :: Foo -> a -- Weird!

What is this "a" in the result type? Clearly we don't mean this:

f1 :: forall a. Foo -> a -- Wrong!

The original program is just plain wrong. Here's another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It's ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types arising
from the two Baz1 constructors.

• You can't pattern-match on an existentially quantified constructor in a let or where group of bind-
ings. So this is illegal:

f3 x = a==b where { Baz1 a b = x }

Instead, use a case expression:

GHC Language Features

173

f3 x = case x of Baz1 a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in a case expres-
sion or in the patterns of a function definition. The reason for this restriction is really an implementa-
tion one. Type-checking binding groups is already a nightmare without existentials complicating the
picture. Also an existential pattern binding at the top level of a module doesn't make sense, because
it's not clear how to prevent the existentially-quantified type "escaping". So for now, there's a
simple-to-state restriction. We'll see how annoying it is.

• You can't use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and a value of
type t. That contradicts the idea that newtype should have no concrete representation. You can get
just the same efficiency and effect by using data instead of newtype. If there is no overloading
involved, then there is more of a case for allowing an existentially-quantified newtype, because the
data version does carry an implementation cost, but single-field existentially quantified construct-
ors aren't much use. So the simple restriction (no existential stuff on newtype) stands, unless there
are convincing reasons to change it.

• You can't use deriving to define instances of a data type with existentially quantified data con-
structors. Reason: in most cases it would not make sense. For example:;

data T = forall a. MkT [a] deriving(Eq)

To derive Eq in the standard way we would need to have equality between the single component of
two MkT constructors:

instance Eq T where
(MkT a) == (MkT b) = ???

But a and b have distinct types, and so can't be compared. It's just about possible to imagine ex-
amples in which the derived instance would make sense, but it seems altogether simpler simply to
prohibit such declarations. Define your own instances!

8.4.5. Declaring data types with explicit constructor sig-
natures

GHC allows you to declare an algebraic data type by giving the type signatures of constructors expli-
citly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

The form is called a "GADT-style declaration" because Generalised Algebraic Data Types, described in
Section 8.4.6, “Generalised Algebraic Data Types (GADTs)”, can only be declared using this form.

Notice that GADT-style syntax generalises existential types (Section 8.4.4, “Existentially quantified data
constructors ”). For example, these two declarations are equivalent:

GHC Language Features

174

data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }

Any data type that can be declared in standard Haskell-98 syntax can also be declared using GADT-style
syntax. The choice is largely stylistic, but GADT-style declarations differ in one important respect: they
treat class constraints on the data constructors differently. Specifically, if the constructor is given a type-
class context, that context is made available by pattern matching. For example:

data Set a where
MkSet :: Eq a => [a] -> Set a

makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a `elem` as = MkSet as

| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a) constraint,
as you would expect. The new feature is that pattern-matching on MkSet (as in the definition of in-
sert) makes available an (Eq a) context. In implementation terms, the MkSet constructor has a hid-
den field that stores the (Eq a) dictionary that is passed to MkSet; so when pattern-matching that dic-
tionary becomes available for the right-hand side of the match. In the example, the equality dictionary is
used to satisfy the equality constraint generated by the call to elem, so that the type of insert itself
has no Eq constraint.

For example, one possible application is to reify dictionaries:

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a -> a -> a -> a
plus MkNumInst p q = p + q

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.

All this applies to constructors declared using the syntax of Section 8.4.4.2, “Existentials and type
classes”. For example, the NumInst data type above could equivalently be declared like this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existental, there is no forall, because the Num con-
strains the data type's univerally quantified type variable a. A constructor may have both universal and
existential type variables: for example, the following two declarations are equivalent:

data T1 a
= forall b. (Num a, Eq b) => MkT1 a b

data T2 a where
MkT2 :: (Num a, Eq b) => a -> b -> T2 a

All this behaviour contrasts with Haskell 98's peculiar treatment of contexts on a data type declaration

GHC Language Features

175

(Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set' a = MkSet' [a]

gives MkSet' the same type as MkSet above. But instead of making available an (Eq a) constraint,
pattern-matching on MkSet' requires an (Eq a) constraint! GHC faithfully implements this beha-
viour, odd though it is. But for GADT-style declarations, GHC's behaviour is much more useful, as well
as much more intuitive.

The rest of this section gives further details about GADT-style data type declarations.

• The result type of each data constructor must begin with the type constructor being defined. If the
result type of all constructors has the form T a1 ... an, where a1 ... an are distinct type
variables, then the data type is ordinary; otherwise is a generalised data type (Section 8.4.6,
“Generalised Algebraic Data Types (GADTs)”).

• The type signature of each constructor is independent, and is implicitly universally quantified as usu-
al. Different constructors may have different universally-quantified type variables and different type-
class constraints. For example, this is fine:

data T a where
T1 :: Eq b => b -> T b
T2 :: (Show c, Ix c) => c -> [c] -> T c

• Unlike a Haskell-98-style data type declaration, the type variable(s) in the "data Set a where"
header have no scope. Indeed, one can write a kind signature instead:

data Set :: * -> * where ...

or even a mixture of the two:

data Foo a :: (* -> *) -> * where ...

The type variables (if given) may be explicitly kinded, so we could also write the header for Foo
like this:

data Foo a (b :: * -> *) where ...

• You can use strictness annotations, in the obvious places in the constructor type:

data Term a where
Lit :: !Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

• You can use a deriving clause on a GADT-style data type declaration. For example, these two
declarations are equivalent

data Maybe1 a where {
Nothing1 :: Maybe1 a ;

GHC Language Features

176

Just1 :: a -> Maybe1 a
} deriving(Eq, Ord)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eq, Ord)

• You can use record syntax on a GADT-style data type declaration:

data Person where
Adult { name :: String, children :: [Person] } :: Person
Child { name :: String } :: Person

As usual, for every constructor that has a field f, the type of field f must be the same (modulo alpha
conversion).

At the moment, record updates are not yet possible with GADT-style declarations, so support is lim-
ited to record construction, selection and pattern matching. For example

aPerson = Adult { name = "Fred", children = [] }

shortName :: Person -> Bool
hasChildren (Adult { children = kids }) = not (null kids)
hasChildren (Child {}) = False

• As in the case of existentials declared using the Haskell-98-like record syntax (Section 8.4.4.3,
“Record Constructors”), record-selector functions are generated only for those fields that have well-
typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where
NewCounter { _this :: self

, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

:: Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you can still use
all the field names in pattern matching and record construction.

8.4.6. Generalised Algebraic Data Types (GADTs)
Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing constructors to
have richer return types. Here is an example:

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with ordinary data
types. This generality allows us to write a well-typed eval function for these Terms:

GHC Language Features

177

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero t) = eval t == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
eval (Pair e1 e2) = (eval e1, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in the right
hand side of the equation

eval :: Term a -> a
eval (Lit i) = ...

the type a is refined to Int. That's the whole point! A precise specification of the type rules is beyond
what this user manual aspires to, but the design closely follows that described in the paper Simple uni-
fication-based type inference for GADTs [http://research.microsoft.com/%7Esimonpj/papers/gadt/],
(ICFP 2006). The general principle is this: type refinement is only carried out based on user-supplied
type annotations. So if no type signature is supplied for eval, no type refinement happens, and lots of
obscure error messages will occur. However, the refinement is quite general. For example, if we had:

eval :: Term a -> a -> a
eval (Lit i) j = i+j

the pattern match causes the type a to be refined to Int (because of the type of the constructor Lit),
and that refinement also applies to the type of j, and the result type of the case expression. Hence the
addition i+j is legal.

These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is a longer
introduction on the wiki [http://www.haskell.org/haskellwiki/GADT], and Ralf Hinze's Fun with
phantom types [http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf] also has a number of
examples. Note that papers may use different notation to that implemented in GHC.

The rest of this section outlines the extensions to GHC that support GADTs. The extension is enabled
with -XGADTs.

• A GADT can only be declared using GADT-style syntax (Section 8.4.5, “Declaring data types with
explicit constructor signatures”); the old Haskell-98 syntax for data declarations always declares an
ordinary data type. The result type of each constructor must begin with the type constructor being
defined, but for a GADT the arguments to the type constructor can be arbitrary monotypes. For ex-
ample, in the Term data type above, the type of each constructor must end with Term ty, but the
ty may not be a type variable (e.g. the Lit constructor).

• You cannot use a deriving clause for a GADT; only for an ordinary data type.

• As mentioned in Section 8.4.5, “Declaring data types with explicit constructor signatures”, record
syntax is supported. For example:

data Term a where
Lit { val :: Int } :: Term Int
Succ { num :: Term Int } :: Term Int
Pred { num :: Term Int } :: Term Int
IsZero { arg :: Term Int } :: Term Bool
Pair { arg1 :: Term a

, arg2 :: Term b
} :: Term (a,b)

If { cnd :: Term Bool

GHC Language Features

178

http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://www.haskell.org/haskellwiki/GADT

, tru :: Term a
, fls :: Term a
} :: Term a

However, for GADTs there is the following additional constraint: every constructor that has a field f
must have the same result type (modulo alpha conversion) Hence, in the above example, we cannot
merge the num and arg fields above into a single name. Although their field types are both Term
Int, their selector functions actually have different types:

num :: Term Int -> Term Int
arg :: Term Bool -> Term Int

8.5. Extensions to the "deriving" mechanism
8.5.1. Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

data T0 f a = MkT0 a deriving(Eq)
data T1 f a = MkT1 (f a) deriving(Eq)
data T2 f a = MkT2 (f (f a)) deriving(Eq)

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is still fine, although less obviously. The third is not
Haskell 98, and risks losing termination of instances.

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this: each con-
straint in the inferred instance context must consist only of type variables, with no repetitions.

This rule is applied regardless of flags. If you want a more exotic context, you can write it yourself, us-
ing the standalone deriving mechanism.

8.5.2. Stand-alone deriving declarations
GHC now allows stand-alone deriving declarations, enabled by -XStandaloneDeriving:

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword deriv-
ing, and (b) the absence of the where part. You must supply a context (in the example the context is
(Eq a)), exactly as you would in an ordinary instance declaration. (In contrast the context is inferred
in a deriving clause attached to a data type declaration.) These deriving instance rules obey
the same rules concerning form and termination as ordinary instance declarations, controlled by the
same flags; see ???.

GHC Language Features

179

The stand-alone syntax is generalised for newtypes in exactly the same way that ordinary deriving
clauses are generalised (Section 8.5.4, “Generalised derived instances for newtypes”). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

GHC always treats the last parameter of the instance (Foo in this example) as the type whose instance is
being derived.

8.5.3. Deriving clause for classes Typeable and Data

Haskell 98 allows the programmer to add "deriving(Eq, Ord)" to a data type declaration, to
generate a standard instance declaration for classes specified in the deriving clause. In Haskell 98,
the only classes that may appear in the deriving clause are the standard classes Eq, Ord, Enum, Ix,
Bounded, Read, and Show.

GHC extends this list with two more classes that may be automatically derived (provided the -
XDeriveDataTypeable flag is specified): Typeable, and Data. These classes are defined in the
library modules Data.Typeable and Data.Generics respectively, and the appropriate class must
be in scope before it can be mentioned in the deriving clause.

An instance of Typeable can only be derived if the data type has seven or fewer type parameters, all
of kind *. The reason for this is that the Typeable class is derived using the scheme described in
Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
[http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps]. (Section 7.4 of the paper describes
the multiple Typeable classes that are used, and only Typeable1 up to Typeable7 are provided
in the library.) In other cases, there is nothing to stop the programmer writing a TypableX class, whose
kind suits that of the data type constructor, and then writing the data type instance by hand.

8.5.4. Generalised derived instances for newtypes
When you define an abstract type using newtype, you may want the new type to inherit some instances
from its representation. In Haskell 98, you can inherit instances of Eq, Ord, Enum and Bounded by
deriving them, but for any other classes you have to write an explicit instance declaration. For example,
if you define

newtype Dollars = Dollars Int

and you want to use arithmetic on Dollars, you have to explicitly define an instance of Num:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...

All the instance does is apply and remove the newtype constructor. It is particularly galling that, since
the constructor doesn't appear at run-time, this instance declaration defines a dictionary which is wholly
equivalent to the Int dictionary, only slower!

8.5.4.1. Generalising the deriving clause

GHC now permits such instances to be derived instead, using the flag -
XGeneralizedNewtypeDeriving, so one can write

GHC Language Features

180

http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps

newtype Dollars = Dollars Int deriving (Eq,Show,Num)

and the implementation uses the same Num dictionary for Dollars as for Int. Notionally, the com-
piler derives an instance declaration of the form

instance Num Int => Num Dollars

which just adds or removes the newtype constructor according to the type.

We can also derive instances of constructor classes in a similar way. For example, suppose we have im-
plemented state and failure monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension, we can
make the parser type abstract, without needing to write an instance of class Monad, via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, since Monad is a constructor class, the instance is a partial application of the new type, not
the entire left hand side. We can imagine that the type declaration is "eta-converted" to generate the con-
text of the instance declaration.

We can even derive instances of multi-parameter classes, provided the newtype is the last class paramet-
er. In this case, a ``partial application'' of the class appears in the deriving clause. For example, given
the class

class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...

then we can derive an instance of StateMonad for Parsers by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

As a result of this extension, all derived instances in newtype declarations are treated uniformly (and im-
plemented just by reusing the dictionary for the representation type), except Show and Read, which
really behave differently for the newtype and its representation.

GHC Language Features

181

8.5.4.2. A more precise specification

Derived instance declarations are constructed as follows. Consider the declaration (after expansion of
any type synonyms)

newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm)

where

• The ci are partial applications of classes of the form C t1'...tj', where the arity of C is ex-
actly j+1. That is, C lacks exactly one type argument.

• The k is chosen so that ci (T v1...vk) is well-kinded.

• The type t is an arbitrary type.

• The type variables vk+1...vn do not occur in t, nor in the ci, and

• None of the ci is Read, Show, Typeable, or Data. These classes should not "look through" the
type or its constructor. You can still derive these classes for a newtype, but it happens in the usual
way, not via this new mechanism.

Then, for each ci, the derived instance declaration is:

instance ci t => ci (T v1...vk)

As an example which does not work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variable s occurs in State s m, and so cannot be "eta-converted" away. It is a good
thing that this deriving clause is rejected, because NonMonad m is not, in fact, a monad --- for the
same reason. Try defining >>= with the correct type: you won't be able to.

Notice also that the order of class parameters becomes important, since we can only derive instances for
the last one. If the StateMonad class above were instead defined as

class StateMonad m s | m -> s where ...

then we would not have been able to derive an instance for the Parser type above. We hypothesise
that multi-parameter classes usually have one "main" parameter for which deriving new instances is
most interesting.

Lastly, all of this applies only for classes other than Read, Show, Typeable, and Data, for which the
built-in derivation applies (section 4.3.3. of the Haskell Report). (For the standard classes Eq, Ord, Ix,
and Bounded it is immaterial whether the standard method is used or the one described here.)

8.6. Class and instances declarations

GHC Language Features

182

8.6.1. Class declarations
This section, and the next one, documents GHC's type-class extensions. There's lots of background in
the paper Type classes: exploring the design space
[http://research.microsoft.com/~simonpj/Papers/type-class-design-space/] (Simon Peyton Jones, Mark
Jones, Erik Meijer).

All the extensions are enabled by the -fglasgow-exts flag.

8.6.1.1. Multi-parameter type classes

Multi-parameter type classes are permitted. For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

8.6.1.2. The superclasses of a class declaration

There are no restrictions on the context in a class declaration (which introduces superclasses), except
that the class hierarchy must be acyclic. So these class declarations are OK:

class Functor (m k) => FiniteMap m k where
...

class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a

As in Haskell 98, The class hierarchy must be acyclic. However, the definition of "acyclic" involves
only the superclass relationships. For example, this is OK:

class C a where {
op :: D b => a -> b -> b

}

class C a => D a where { ... }

Here, C is a superclass of D, but it's OK for a class operation op of C to mention D. (It would not be OK
for D to be a superclass of C.)

8.6.1.3. Class method types

Haskell 98 prohibits class method types to mention constraints on the class type variable, thus:

class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool

The type of elem is illegal in Haskell 98, because it contains the constraint Eq a, constrains only the
class type variable (in this case a). GHC lifts this restriction (flag -XConstrainedClassMethods).

8.6.2. Functional dependencies

GHC Language Features

183

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/

Functional dependencies are implemented as described by Mark Jones in “Type Classes with Functional
Dependencies [http://citeseer.ist.psu.edu/jones00type.html]”, Mark P. Jones, In Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag
LNCS 1782, .

Functional dependencies are introduced by a vertical bar in the syntax of a class declaration; e.g.

class (Monad m) => MonadState s m | m -> s where ...

class Foo a b c | a b -> c where ...

There should be more documentation, but there isn't (yet). Yell if you need it.

8.6.2.1. Rules for functional dependencies

In a class declaration, all of the class type variables must be reachable (in the sense mentioned in Sec-
tion 8.7.1, “Type signatures”) from the free variables of each method type. For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type of empty doesn't mention a. Functional dependencies can make the type
variable reachable:

class Coll s a | s -> a where
empty :: s
insert :: s -> a -> s

Alternatively Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

which makes the connection between the type of a collection of a's (namely (s a)) and the element
type a. Occasionally this really doesn't work, in which case you can split the class like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

8.6.2.2. Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from the Hugs
user manual, reproduced here (with minor changes) by kind permission of Mark Jones.

Consider the following class, intended as part of a library for collection types:

class Collects e ce where
empty :: ce
insert :: e -> ce -> ce

GHC Language Features

184

http://citeseer.ist.psu.edu/jones00type.html
http://citeseer.ist.psu.edu/jones00type.html

member :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of the container itself.
Within this framework, we might want to define instances of this class for lists or characteristic func-
tions (both of which can be used to represent collections of any equality type), bit sets (which can be
used to represent collections of characters), or hash tables (which can be used to represent any collection
whose elements have a hash function). Omitting standard implementation details, this would lead to the
following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting implementations. Unfortu-
nately, there are some serious problems with the class declaration. First, the empty function has an am-
biguous type:

empty :: Collects e ce => ce

By "ambiguous" we mean that there is a type variable e that appears on the left of the => symbol, but
not on the right. The problem with this is that, according to the theoretical foundations of Haskell over-
loading, we cannot guarantee a well-defined semantics for any term with an ambiguous type.

We can sidestep this specific problem by removing the empty member from the class declaration.
However, although the remaining members, insert and member, do not have ambiguous types, we still
run into problems when we try to use them. For example, consider the following two functions:

f x y = insert x . insert y
g = f True 'a'

for which GHC infers the following types:

f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for f allows the two parameters x and y to be assigned different types, even though it
attempts to insert each of the two values, one after the other, into the same collection. If we're trying to
model collections that contain only one type of value, then this is clearly an inaccurate type. Worse still,
the definition for g is accepted, without causing a type error. As a result, the error in this code will not be
flagged at the point where it appears. Instead, it will show up only when we try to use g, which might
even be in a different module.

8.6.2.2.1. An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to use
something like the following version of the class declaration:

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor c that is used to form the collection
type c e, and not over that collection type itself, represented by ce in the original class declaration. This

GHC Language Features

185

avoids the immediate problems that we mentioned above: empty has type Collects e c => c e,
which is not ambiguous.

The function f from the previous section has a more accurate type:

f :: (Collects e c) => e -> e -> c e -> c e

The function g from the previous section is now rejected with a type error as we would hope because the
type of f does not allow the two arguments to have different types. This, then, is an example of a mul-
tiple parameter class that does actually work quite well in practice, without ambiguity problems. There
is, however, a catch. This version of the Collects class is nowhere near as general as the original class
seemed to be: only one of the four instances for Collects given above can be used with this version
of Collects because only one of them---the instance for lists---has a collection type that can be written in
the form c e, for some type constructor c, and element type e.

8.6.2.2.2. Adding functional dependencies

To get a more useful version of the Collects class, Hugs provides a mechanism that allows programmers
to specify dependencies between the parameters of a multiple parameter class (For readers with an in-
terest in theoretical foundations and previous work: The use of dependency information can be seen both
as a generalization of the proposal for `parametric type classes' that was put forward by Chen, Hudak,
and Odersky, or as a special case of Mark Jones's later framework for "improvement" of qualified types.
The underlying ideas are also discussed in a more theoretical and abstract setting in a manuscript
[implparam], where they are identified as one point in a general design space for systems of implicit
parameterization.). To start with an abstract example, consider a declaration such as:

class C a b where ...

which tells us simply that C can be thought of as a binary relation on types (or type constructors, de-
pending on the kinds of a and b). Extra clauses can be included in the definition of classes to add in-
formation about dependencies between parameters, as in the following examples:

class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...

The notation a -> b used here between the | and where symbols --- not to be confused with a function
type --- indicates that the a parameter uniquely determines the b parameter, and might be read as "a de-
termines b." Thus D is not just a relation, but actually a (partial) function. Similarly, from the two de-
pendencies that are included in the definition of E, we can see that E represents a (partial) one-one map-
ping between types.

More generally, dependencies take the form x1 ... xn -> y1 ... ym, where x1, ..., xn, and y1,
..., yn are type variables with n>0 and m>=0, meaning that the y parameters are uniquely determined by
the x parameters. Spaces can be used as separators if more than one variable appears on any single side
of a dependency, as in t -> a b. Note that a class may be annotated with multiple dependencies us-
ing commas as separators, as in the definition of E above. Some dependencies that we can write in this
notation are redundant, and will be rejected because they don't serve any useful purpose, and may in-
stead indicate an error in the program. Examples of dependencies like this include a -> a , a -> a
a , a -> , etc. There can also be some redundancy if multiple dependencies are given, as in a->b, b-
>c , a->c , and in which some subset implies the remaining dependencies. Examples like this are not
treated as errors. Note that dependencies appear only in class declarations, and not in any other part of
the language. In particular, the syntax for instance declarations, class constraints, and types is com-
pletely unchanged.

By including dependencies in a class declaration, we provide a mechanism for the programmer to spe-
cify each multiple parameter class more precisely. The compiler, on the other hand, is responsible for
ensuring that the set of instances that are in scope at any given point in the program is consistent with

GHC Language Features

186

any declared dependencies. For example, the following pair of instance declarations cannot appear to-
gether in the same scope because they violate the dependency for D, even though either one on its own
would be acceptable:

instance D Bool Int where ...
instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to be associated with
more than one choice for b, which contradicts the dependency specified in the definition of D. More
generally, this means that, in any instance of the form:

instance D t s where ...

for some particular types t and s, the only variables that can appear in s are the ones that appear in t, and
hence, if the type t is known, then s will be uniquely determined.

The benefit of including dependency information is that it allows us to define more general multiple
parameter classes, without ambiguity problems, and with the benefit of more accurate types. To illus-
trate this, we return to the collection class example, and annotate the original definition of Collects
with a simple dependency:

class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The dependency ce -> e here specifies that the type e of elements is uniquely determined by the type
of the collection ce. Note that both parameters of Collects are of kind *; there are no constructor classes
here. Note too that all of the instances of Collects that we gave earlier can be used together with this new
definition.

What about the ambiguity problems that we encountered with the original definition? The empty func-
tion still has type Collects e ce => ce, but it is no longer necessary to regard that as an ambiguous type:
Although the variable e does not appear on the right of the => symbol, the dependency for class Collects
tells us that it is uniquely determined by ce, which does appear on the right of the => symbol. Hence the
context in which empty is used can still give enough information to determine types for both ce and e,
without ambiguity. More generally, we need only regard a type as ambiguous if it contains a variable on
the left of the => that is not uniquely determined (either directly or indirectly) by the variables on the
right.

Dependencies also help to produce more accurate types for user defined functions, and hence to provide
earlier detection of errors, and less cluttered types for programmers to work with. Recall the previous
definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a c, Collects b c) => a -> b -> c -> c

GHC Language Features

187

Given the dependency information that we have for Collects, however, we can deduce that a and b must
be equal because they both appear as the second parameter in a Collects constraint with the same first
parameter c. Hence we can infer a shorter and more accurate type for f:

f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of g will now be flagged as a type error.

Although we have given only a few examples here, it should be clear that the addition of dependency in-
formation can help to make multiple parameter classes more useful in practice, avoiding ambiguity
problems, and allowing more general sets of instance declarations.

8.6.3. Instance declarations

8.6.3.1. Relaxed rules for instance declarations

An instance declaration has the form

instance (assertion
1
, ..., assertion

n
) => class type

1
... type

m
where ...

The part before the "=>" is the context, while the part after the "=>" is the head of the instance declara-
tion.

In Haskell 98 the head of an instance declaration must be of the form C (T a1 ... an), where C is
the class, T is a type constructor, and the a1 ... an are distinct type variables. Furthermore, the as-
sertions in the context of the instance declaration must be of the form C a where a is a type variable
that occurs in the head.

The -XFlexibleInstances flag loosens these restrictions considerably. Firstly, multi-parameter
type classes are permitted. Secondly, the context and head of the instance declaration can each consist of
arbitrary (well-kinded) assertions (C t1 ... tn) subject only to the following rules:

1. The Paterson Conditions: for each assertion in the context

a. No type variable has more occurrences in the assertion than in the head

b. The assertion has fewer constructors and variables (taken together and counting repetitions)
than the head

2. The Coverage Condition. For each functional dependency, tvs
left

-> tvs
right

, of the class, every
type variable in S(tvs

right
) must appear in S(tvs

left
), where S is the substitution mapping each

type variable in the class declaration to the corresponding type in the instance declaration.

These restrictions ensure that context reduction terminates: each reduction step makes the problem smal-
ler by at least one constructor. Both the Paterson Conditions and the Coverage Condition are lifted if you
give the -fallow-undecidable-instances flag (Section 8.6.3.2, “Undecidable instances”).
You can find lots of background material about the reason for these restrictions in the paper Understand-
ing functional dependencies via Constraint Handling Rules
[http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/].

For example, these are OK:

instance C Int [a] -- Multiple parameters
instance Eq (S [a]) -- Structured type in head

-- Repeated type variable in head

GHC Language Features

188

http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/
http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/

instance C4 a a => C4 [a] [a]
instance Stateful (ST s) (MutVar s)

-- Head can consist of type variables only
instance C a
instance (Eq a, Show b) => C2 a b

-- Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b

But these are not:

-- Context assertion no smaller than head
instance C a => C a where ...

-- (C b b) has more more occurrences of b than the head
instance C b b => Foo [b] where ...

The same restrictions apply to instances generated by deriving clauses. Thus the following is accep-
ted:

data MinHeap h a = H a (h a)
deriving (Show)

because the derived instance

instance (Show a, Show (h a)) => Show (MinHeap h a)

conforms to the above rules.

A useful idiom permitted by the above rules is as follows. If one allows overlapping instance declara-
tions then it's quite convenient to have a "default instance" declaration that applies if something more
specific does not:

instance C a where
op = ... -- Default

8.6.3.2. Undecidable instances

Sometimes even the rules of Section 8.6.3.1, “Relaxed rules for instance declarations” are too onerous.
For example, sometimes you might want to use the following to get the effect of a "class synonym":

class (C1 a, C2 a, C3 a) => C a where { }

instance (C1 a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: C a => ...

instead of

GHC Language Features

189

f :: (C1 a, C2 a, C3 a) => ...

The restrictions on functional dependencies (Section 8.6.2, “Functional dependencies ”) are particularly
troublesome. It is tempting to introduce type variables in the context that do not appear in the head,
something that is excluded by the normal rules. For example:

class HasConverter a b | a -> b where
convert :: a -> b

data Foo a = MkFoo a

instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)

This is dangerous territory, however. Here, for example, is a program that would make the typechecker
loop:

class D a
class F a b | a->b
instance F [a] [[a]]
instance (D c, F a c) => D [a] -- 'c' is not mentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul a b c | a b -> c where
(.*.) :: a -> b -> c

instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v

The third instance declaration does not obey the coverage condition; and indeed the (somewhat strange)
definition:

f = \ b x y -> if b then x .*. [y] else y

makes instance inference go into a loop, because it requires the constraint (Mul a [b] b).

Nevertheless, GHC allows you to experiment with more liberal rules. If you use the experimental flag -
XUndecidableInstances , both the Paterson Conditions and the Coverage Condition (described in
Section 8.6.3.1, “Relaxed rules for instance declarations”) are lifted. Termination is ensured by having a
fixed-depth recursion stack. If you exceed the stack depth you get a sort of backtrace, and the opportun-
ity to increase the stack depth with -fcontext-stack=N.

8.6.3.3. Overlapping instances

In general, GHC requires that that it be unambiguous which instance declaration should be used to re-
solve a type-class constraint. This behaviour can be modified by two flags: -
XOverlappingInstances and -XIncoherentInstances , as this section discusses. Both
these flags are dynamic flags, and can be set on a per-module basis, using an OPTIONS_GHC pragma if
desired (Section 5.1.2, “Command line options in source files”).

When GHC tries to resolve, say, the constraint C Int Bool, it tries to match every instance declara-
tion against the constraint, by instantiating the head of the instance declaration. For example, consider
these declarations:

GHC Language Features

190

instance context1 => C Int a where ... -- (A)
instance context2 => C a Bool where ... -- (B)
instance context3 => C Int [a] where ... -- (C)
instance context4 => C Int [Int] where ... -- (D)

The instances (A) and (B) match the constraint C Int Bool, but (C) and (D) do not. When matching,
GHC takes no account of the context of the instance declaration (context1 etc). GHC's default beha-
viour is that exactly one instance must match the constraint it is trying to resolve. It is fine for there to be
a potential of overlap (by including both declarations (A) and (B), say); an error is only reported if a par-
ticular constraint matches more than one.

The -XOverlappingInstances flag instructs GHC to allow more than one instance to match,
provided there is a most specific one. For example, the constraint C Int [Int] matches instances
(A), (C) and (D), but the last is more specific, and hence is chosen. If there is no most-specific match,
the program is rejected.

However, GHC is conservative about committing to an overlapping instance. For example:

f :: [b] -> [b]
f x = ...

Suppose that from the RHS of f we get the constraint C Int [b]. But GHC does not commit to in-
stance (C), because in a particular call of f, b might be instantiate to Int, in which case instance (D)
would be more specific still. So GHC rejects the program. (If you add the flag -
XIncoherentInstances, GHC will instead pick (C), without complaining about the problem of
subsequent instantiations.)

Notice that we gave a type signature to f, so GHC had to check that f has the specified type. Suppose
instead we do not give a type signature, asking GHC to infer it instead. In this case, GHC will refrain
from simplifying the constraint C Int [Int] (for the same reason as before) but, rather than reject-
ing the program, it will infer the type

f :: C Int b => [b] -> [b]

That postpones the question of which instance to pick to the call site for f by which time more is known
about the type b.

The willingness to be overlapped or incoherent is a property of the instance declaration itself, controlled
by the presence or otherwise of the -XOverlappingInstances and -XIncoherentInstances
flags when that module is being defined. Neither flag is required in a module that imports and uses the
instance declaration. Specifically, during the lookup process:

• An instance declaration is ignored during the lookup process if (a) a more specific match is found,
and (b) the instance declaration was compiled with -XOverlappingInstances. The flag set-
ting for the more-specific instance does not matter.

• Suppose an instance declaration does not match the constraint being looked up, but does unify with
it, so that it might match when the constraint is further instantiated. Usually GHC will regard this as
a reason for not committing to some other constraint. But if the instance declaration was compiled
with -XIncoherentInstances, GHC will skip the "does-it-unify?" check for that declaration.

These rules make it possible for a library author to design a library that relies on overlapping instances
without the library client having to know.

If an instance declaration is compiled without -XOverlappingInstances, then that instance can
never be overlapped. This could perhaps be inconvenient. Perhaps the rule should instead say that the
overlapping instance declaration should be compiled in this way, rather than the overlapped one. Per-

GHC Language Features

191

haps overlap at a usage site should be permitted regardless of how the instance declarations are com-
piled, if the -XOverlappingInstances flag is used at the usage site. (Mind you, the exact usage
site can occasionally be hard to pin down.) We are interested to receive feedback on these points.

The -XIncoherentInstances flag implies the -XOverlappingInstances flag, but not vice
versa.

8.6.3.4. Type synonyms in the instance head

Unlike Haskell 98, instance heads may use type synonyms. (The instance "head" is the bit after the "=>"
in an instance decl.) As always, using a type synonym is just shorthand for writing the RHS of the type
synonym definition. For example:

type Point = (Int,Int)
instance C Point where ...
instance C [Point] where ...

is legal. However, if you added

instance C (Int,Int) where ...

as well, then the compiler will complain about the overlapping (actually, identical) instance declarations.
As always, type synonyms must be fully applied. You cannot, for example, write:

type P a = [[a]]
instance Monad P where ...

This design decision is independent of all the others, and easily reversed, but it makes sense to me.

8.6.4. Overloaded string literals
GHC supports overloaded string literals. Normally a string literal has type String, but with over-
loaded string literals enabled (with -XOverloadedStrings) a string literal has type (IsString
a) => a.

This means that the usual string syntax can be used, e.g., for packed strings and other variations of string
like types. String literals behave very much like integer literals, i.e., they can be used in both expressions
and patterns. If used in a pattern the literal with be replaced by an equality test, in the same way as an in-
teger literal is.

The class IsString is defined as:

class IsString a where
fromString :: String -> a

The only predefined instance is the obvious one to make strings work as usual:

instance IsString [Char] where
fromString cs = cs

The class IsString is not in scope by default. If you want to mention it explicitly (for example, to
give an instance declaration for it), you can import it from module GHC.Exts.

Haskell's defaulting mechanism is extended to cover string literals, when -XOverloadedStrings is
specified. Specifically:

GHC Language Features

192

• Each type in a default declaration must be an instance of Num or of IsString.

• The standard defaulting rule (Haskell Report, Section 4.3.4
[http://www.haskell.org/onlinereport/decls.html#sect4.3.4]) is extended thus: defaulting applies
when all the unresolved constraints involve standard classes or IsString; and at least one is a nu-
meric class or IsString.

A small example:

module Main where

import GHC.Exts(IsString(..))

newtype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where

fromString = MyString

greet :: MyString -> MyString
greet "hello" = "world"
greet other = other

main = do
print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets translated into an equal-
ity comparison.

8.7. Other type system extensions
8.7.1. Type signatures

8.7.1.1. The context of a type signature

Unlike Haskell 98, constraints in types do not have to be of the form (class type-variable) or (class
(type-variable type-variable ...)). Thus, these type signatures are perfectly OK

g :: Eq [a] => ...
g :: Ord (T a ()) => ...

GHC imposes the following restrictions on the constraints in a type signature. Consider the type:

forall tv1..tvn (c1, ...,cn) => type

(Here, we write the "foralls" explicitly, although the Haskell source language omits them; in Haskell 98,
all the free type variables of an explicit source-language type signature are universally quantified, except
for the class type variables in a class declaration. However, in GHC, you can give the foralls if you
want. See Section 8.7.4, “Arbitrary-rank polymorphism ”).

1. Each universally quantified type variable tvi must be reachable from type. A type variable a is
"reachable" if it it appears in the same constraint as either a type variable free in in type, or anoth-

GHC Language Features

193

http://www.haskell.org/onlinereport/decls.html#sect4.3.4

er reachable type variable. A value with a type that does not obey this reachability restriction can-
not be used without introducing ambiguity; that is why the type is rejected. Here, for example, is an
illegal type:

forall a. Eq a => Int

When a value with this type was used, the constraint Eq tv would be introduced where tv is a
fresh type variable, and (in the dictionary-translation implementation) the value would be applied to
a dictionary for Eq tv. The difficulty is that we can never know which instance of Eq to use be-
cause we never get any more information about tv.

Note that the reachability condition is weaker than saying that a is functionally dependent on a type
variable free in type (see Section 8.6.2, “Functional dependencies ”). The reason for this is there
might be a "hidden" dependency, in a superclass perhaps. So "reachable" is a conservative approx-
imation to "functionally dependent". For example, consider:

class C a b | a -> b where ...
class C a b => D a b where ...
f :: forall a b. D a b => a -> a

This is fine, because in fact a does functionally determine b but that is not immediately apparent
from f's type.

2. Every constraint ci must mention at least one of the universally quantified type variables tvi. For
example, this type is OK because C a b mentions the universally quantified type variable b:

forall a. C a b => burble

The next type is illegal because the constraint Eq b does not mention a:

forall a. Eq b => burble

The reason for this restriction is milder than the other one. The excluded types are never useful or
necessary (because the offending context doesn't need to be witnessed at this point; it can be floated
out). Furthermore, floating them out increases sharing. Lastly, excluding them is a conservative
choice; it leaves a patch of territory free in case we need it later.

8.7.2. Implicit parameters
Implicit parameters are implemented as described in "Implicit parameters: dynamic scoping with static
types", J Lewis, MB Shields, E Meijer, J Launchbury, 27th ACM Symposium on Principles of Program-
ming Languages (POPL'00), Boston, Jan 2000.

(Most of the following, still rather incomplete, documentation is due to Jeff Lewis.)

Implicit parameter support is enabled with the option -XImplicitParams.

A variable is called dynamically bound when it is bound by the calling context of a function and static-
ally bound when bound by the callee's context. In Haskell, all variables are statically bound. Dynamic
binding of variables is a notion that goes back to Lisp, but was later discarded in more modern incarna-
tions, such as Scheme. Dynamic binding can be very confusing in an untyped language, and unfortu-
nately, typed languages, in particular Hindley-Milner typed languages like Haskell, only support static
scoping of variables.

GHC Language Features

194

However, by a simple extension to the type class system of Haskell, we can support dynamic binding.
Basically, we express the use of a dynamically bound variable as a constraint on the type. These con-
straints lead to types of the form (?x::t') => t, which says "this function uses a dynamically-
bound variable ?x of type t'". For example, the following expresses the type of a sort function, impli-
citly parameterized by a comparison function named cmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.

An implicit parameter occurs in an expression using the special form ?x, where x is any valid identifier
(e.g. ord ?x is a valid expression). Use of this construct also introduces a new dynamic-binding con-
straint in the type of the expression. For example, the following definition shows how we can define an
implicitly parameterized sort function in terms of an explicitly parameterized sortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

8.7.2.1. Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are automatically
propagated. Thus, when a function is used, its implicit parameters are inherited by the function that
called it. For example, our sort function might be used to pick out the least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = head (sort xs)

Without lifting a finger, the ?cmp parameter is propagated to become a parameter of least as well.
With explicit parameters, the default is that parameters must always be explicit propagated. With impli-
cit parameters, the default is to always propagate them.

An implicit-parameter type constraint differs from other type class constraints in the following way: All
uses of a particular implicit parameter must have the same type. This means that the type of (?x, ?x)
is (?x::a) => (a,a), and not (?x::a, ?x::b) => (a, b), as would be the case for type
class constraints.

You can't have an implicit parameter in the context of a class or instance declaration. For example, both
these declarations are illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a function.
But the ``invocation'' of instance declarations is done behind the scenes by the compiler, so it's hard to
figure out exactly where it is done. Easiest thing is to outlaw the offending types.

Implicit-parameter constraints do not cause ambiguity. For example, consider:

f :: (?x :: [a]) => Int -> Int
f n = n + length ?x

g :: (Read a, Show a) => String -> String

GHC Language Features

195

g s = show (read s)

Here, g has an ambiguous type, and is rejected, but f is fine. The binding for ?x at f's call site is quite
unambiguous, and fixes the type a.

8.7.2.2. Implicit-parameter bindings

An implicit parameter is bound using the standard let or where binding forms. For example, we
define the min function by binding cmp.

min :: [a] -> a
min = let ?cmp = (<=) in least

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bindings can oc-
cur, except at top level. That is, they can occur in a let (including in a list comprehension, or do-
notation, or pattern guards), or a where clause. Note the following points:

• An implicit-parameter binding group must be a collection of simple bindings to implicit-style vari-
ables (no function-style bindings, and no type signatures); these bindings are neither polymorphic or
recursive.

• You may not mix implicit-parameter bindings with ordinary bindings in a single let expression;
use two nested lets instead. (In the case of where you are stuck, since you can't nest where
clauses.)

• You may put multiple implicit-parameter bindings in a single binding group; but they are not treated
as a mutually recursive group (as ordinary let bindings are). Instead they are treated as a non-
recursive group, simultaneously binding all the implicit parameter. The bindings are not nested, and
may be re-ordered without changing the meaning of the program. For example, consider:

f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y

The use of ?x in the binding for ?y does not "see" the binding for ?x, so the type of f is

f :: (?x::Int) => Int -> Int

8.7.2.3. Implicit parameters and polymorphic recursion

Consider these two definitions:

len1 :: [a] -> Int
len1 xs = let ?acc = 0 in len_acc1 xs

len_acc1 [] = ?acc
len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs

len2 :: [a] -> Int
len2 xs = let ?acc = 0 in len_acc2 xs

len_acc2 :: (?acc :: Int) => [a] -> Int

GHC Language Features

196

len_acc2 [] = ?acc
len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs

The only difference between the two groups is that in the second group len_acc is given a type signa-
ture. In the former case, len_acc1 is monomorphic in its own right-hand side, so the implicit paramet-
er ?acc is not passed to the recursive call. In the latter case, because len_acc2 has a type signature,
the recursive call is made to the polymorphic version, which takes ?acc as an implicit parameter. So we
get the following results in GHCi:

Prog> len1 "hello"
0
Prog> len2 "hello"
5

Adding a type signature dramatically changes the result! This is a rather counter-intuitive phenomenon,
worth watching out for.

8.7.2.4. Implicit parameters and monomorphism

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to implicit
parameters. For example, consider:

f :: Int -> Int
f v = let ?x = 0 in

let y = ?x + v in
let ?x = 5 in
y

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the type of y
is simply Int, not (?x::Int) => Int. Hence, (f 9) returns result 9. If you add a type signature
for y, then y will get type (?x::Int) => Int, so the occurrence of y in the body of the let will
see the inner binding of ?x, so (f 9) will return 14.

8.7.3. Explicitly-kinded quantification
Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind explicitly
as (machine-checked) documentation, just as it is nice to give a type signature for a function. On some
occasions, it is essential to do so. For example, in his paper "Restricted Data Types in Haskell" (Haskell
Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for the Unused constructor was to force the correct kind for the type variable cxt.

GHC now instead allows you to specify the kind of a type variable directly, wherever a type variable is
explicitly bound, with the flag -XKindSignatures.

This flag enables kind signatures in the following places:

• data declarations:

data Set (cxt :: * -> *) a = Set [a]

GHC Language Features

197

• type declarations:

type T (f :: * -> *) = f Int

• class declarations:

class (Eq a) => C (f :: * -> *) a where ...

• forall's in type signatures:

f :: forall (cxt :: * -> *). Set cxt Int

The parentheses are required. Some of the spaces are required too, to separate the lexemes. If you write
(f::*->*) you will get a parse error, because "::*->*" is a single lexeme in Haskell.

As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: *) -> Int
g :: forall a. a -> (a :: *)

The syntax is

atype ::= '(' ctype '::' kind ')

The parentheses are required.

8.7.4. Arbitrary-rank polymorphism
Haskell type signatures are implicitly quantified. The new keyword forall allows us to say exactly
what this means. For example:

g :: b -> b

means this:

g :: forall b. (b -> b)

The two are treated identically.

However, GHC's type system supports arbitrary-rank explicit universal quantification in types. For ex-
ample, all the following types are legal:

f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a

f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

GHC Language Features

198

f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool

f4 :: Int -> (forall a. a -> a)

Here, f1 and g1 are rank-1 types, and can be written in standard Haskell (e.g. f1 :: a->b->a). The
forall makes explicit the universal quantification that is implicitly added by Haskell.

The functions f2 and g2 have rank-2 types; the forall is on the left of a function arrow. As g2
shows, the polymorphic type on the left of the function arrow can be overloaded.

The function f3 has a rank-3 type; it has rank-2 types on the left of a function arrow.

GHC has three flags to control higher-rank types:

• -XPolymorphicComponents: data constructors (only) can have polymorphic argment types.

• -XRank2Types: any function (including data constructors) can have a rank-2 type.

• -XRankNTypes: any function (including data constructors) can have an arbitrary-rank type. That
is, you can nest foralls arbitrarily deep in function arrows. In particular, a forall-type (also called
a "type scheme"), including an operational type class context, is legal:

• On the left or right (see f4, for example) of a function arrow

• As the argument of a constructor, or type of a field, in a data type declaration. For example, any
of the f1,f2,f3,g1,g2 above would be valid field type signatures.

• As the type of an implicit parameter

• In a pattern type signature (see Section 8.7.6, “Lexically scoped type variables ”)

Of course forall becomes a keyword; you can't use forall as a type variable any more!

8.7.4.1. Examples

In a data or newtype declaration one can quantify the types of the constructor arguments. Here are
several examples:

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])

The constructors have rank-2 types:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)

-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle

GHC Language Features

199

Notice that you don't need to use a forall if there's an explicit context. For example in the first argu-
ment of the constructor MkSwizzle, an implicit "forall a." is prefixed to the argument type. The
implicit forall quantifies all type variables that are not already in scope, and are mentioned in the
type quantified over.

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write
this:

data T a = MkT (Either a b) (b -> b)

it's just as if you had written this:

data T a = MkT (forall b. Either a b) (forall b. b -> b)

That is, since the type variable b isn't in scope, it's implicitly universally quantified. (Arguably, it would
be better to require explicit quantification on constructor arguments where that is what is wanted. Feed-
back welcomed.)

You construct values of types T1, MonadT, Swizzle by applying the constructor to suitable val-
ues, just as usual. For example,

a1 :: T Int
a1 = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x

b m k = case m of
Just y -> k y
Nothing -> Nothing

in
MkMonad r b

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

The type of the argument can, as usual, be more general than the type required, as (MkSwizzle re-
verse) shows. (reverse does not need the Ord constraint.)

When you use pattern matching, the bound variables may now have polymorphic types. For example:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

GHC Language Features

200

In the function h we use the record selectors return and bind to extract the polymorphic bind and re-
turn functions from the MonadT data structure, rather than using pattern matching.

8.7.4.2. Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm proposed by
Odersky and Laufer ("Putting type annotations to work", POPL'96) to get a decidable algorithm by re-
quiring some help from the programmer. We do not yet have a formal specification of "some help" but
the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an explicit polymorphic
type for x, or GHC's type inference will assume that x's type has no foralls in it.

What does it mean to "provide" an explicit type for x? You can do that by giving a type signature for x
directly, using a pattern type signature (Section 8.7.6, “Lexically scoped type variables ”), thus:

\ f :: (forall a. a->a) -> (f True, f 'c')

Alternatively, you can give a type signature to the enclosing context, which GHC can "push down" to
find the type for the variable:

(\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for f. Similarly,
and more commonly, one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f 'c')

You don't need to give a type signature if the lambda bound variable is a constructor argument. Here is
an example we saw earlier:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

Here we do not need to give a type signature to w, because it is an argument of constructor T1 and that
tells GHC all it needs to know.

8.7.4.3. Implicit quantification

GHC performs implicit quantification as follows. At the top level (only) of user-written types, if and only
if there is no explicit forall, GHC finds all the type variables mentioned in the type that are not
already in scope, and universally quantifies them. For example, the following pairs are equivalent:

f :: a -> a
f :: forall a. a -> a

g (x::a) = let
h :: a -> b -> b
h x y = y

in ...
g (x::a) = let

h :: forall b. a -> b -> b

GHC Language Features

201

h x y = y
in ...

Notice that GHC does not find the innermost possible quantification point. For example:

f :: (a -> a) -> Int
-- MEANS

f :: forall a. (a -> a) -> Int
-- NOT

f :: (forall a. a -> a) -> Int

g :: (Ord a => a -> a) -> Int
-- MEANS the illegal type

g :: forall a. (Ord a => a -> a) -> Int
-- NOT

g :: (forall a. Ord a => a -> a) -> Int

The latter produces an illegal type, which you might think is silly, but at least the rule is simple. If you
want the latter type, you can write your for-alls explicitly. Indeed, doing so is strongly advised for rank-
2 types.

8.7.5. Impredicative polymorphism
GHC supports impredicative polymorphism. This means that you can call a polymorphic function at a
polymorphic type, and parameterise data structures over polymorphic types. For example:

f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing

Notice here that the Maybe type is parameterised by the polymorphic type (forall a. [a] ->
[a]).

The technical details of this extension are described in the paper Boxy types: type inference for higher-
rank types and impredicativity [http://research.microsoft.com/%7Esimonpj/papers/boxy/], which ap-
peared at ICFP 2006.

8.7.6. Lexically scoped type variables
GHC supports lexically scoped type variables, without which some type signatures are simply im-
possible to write. For example:

f :: forall a. [a] -> [a]
f xs = ys ++ ys

where
ys :: [a]
ys = reverse xs

The type signature for f brings the type variable a into scope; it scopes over the entire definition of f. In
particular, it is in scope at the type signature for ys. In Haskell 98 it is not possible to declare a type for
ys; a major benefit of scoped type variables is that it becomes possible to do so.

Lexically-scoped type variables are enabled by -fglasgow-exts.

Note: GHC 6.6 contains substantial changes to the way that scoped type variables work, compared to

GHC Language Features

202

http://research.microsoft.com/%7Esimonpj/papers/boxy/
http://research.microsoft.com/%7Esimonpj/papers/boxy/

earlier releases. Read this section carefully!

8.7.6.1. Overview

The design follows the following principles

• A scoped type variable stands for a type variable, and not for a type. (This is a change from GHC's
earlier design.)

• Furthermore, distinct lexical type variables stand for distinct type variables. This means that every
programmer-written type signature (including one that contains free scoped type variables) denotes a
rigid type; that is, the type is fully known to the type checker, and no inference is involved.

• Lexical type variables may be alpha-renamed freely, without changing the program.

A lexically scoped type variable can be bound by:

• A declaration type signature (Section 8.7.6.2, “Declaration type signatures”)

• An expression type signature (Section 8.7.6.3, “Expression type signatures”)

• A pattern type signature (Section 8.7.6.4, “Pattern type signatures”)

• Class and instance declarations (Section 8.7.6.5, “Class and instance declarations”)

In Haskell, a programmer-written type signature is implicitly quantified over its free type variables (Sec-
tion 4.1.2 [http://www.haskell.org/onlinereport/decls.html#sect4.1.2] of the Haskel Report). Lexically
scoped type variables affect this implicit quantification rules as follows: any type variable that is in
scope is not universally quantified. For example, if type variable a is in scope, then

(e :: a -> a) means (e :: a -> a)
(e :: b -> b) means (e :: forall b. b->b)
(e :: a -> b) means (e :: forall b. a->b)

8.7.6.2. Declaration type signatures

A declaration type signature that has explicit quantification (using forall) brings into scope the expli-
citly-quantified type variables, in the definition of the named function(s). For example:

f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [x :: a]

The "forall a" brings "a" into scope in the definition of "f".

This only happens if the quantification in f's type signature is explicit. For example:

g :: [a] -> [a]
g (x:xs) = xs ++ [x :: a]

This program will be rejected, because "a" does not scope over the definition of "f", so "x::a" means
"x::forall a. a" by Haskell's usual implicit quantification rules.

GHC Language Features

203

http://www.haskell.org/onlinereport/decls.html#sect4.1.2
http://www.haskell.org/onlinereport/decls.html#sect4.1.2

8.7.6.3. Expression type signatures

An expression type signature that has explicit quantification (using forall) brings into scope the ex-
plicitly-quantified type variables, in the annotated expression. For example:

f = runST ((op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool)

Here, the type signature forall a. ST s Bool brings the type variable s into scope, in the annot-
ated expression (op >>= \(x :: STRef s Int) -> g x).

8.7.6.4. Pattern type signatures

A type signature may occur in any pattern; this is a pattern type signature. For example:

-- f and g assume that 'a' is already in scope
f = \(x::Int, y::a) -> x
g (x::a) = x
h ((x,y) :: (Int,Bool)) = (y,x)

In the case where all the type variables in the pattern type signature are already in scope (i.e. bound by
the enclosing context), matters are simple: the signature simply constrains the type of the pattern in the
obvious way.

Unlike expression and declaration type signatures, pattern type signatures are not implictly generalised.
The pattern in a patterm binding may only mention type variables that are already in scope. For ex-
ample:

f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
where
(ys::[a], n) = (reverse xs, length xs) -- OK
zs::[a] = xs ++ ys -- OK

Just (v::b) = ... -- Not OK; b is not in scope

Here, the pattern signatures for ys and zs are fine, but the one for v is not because b is not in scope.

However, in all patterns other than pattern bindings, a pattern type signature may mention a type vari-
able that is not in scope; in this case, the signature brings that type variable into scope. This is particu-
larly important for existential data constructors. For example:

data T = forall a. MkT [a]

k :: T -> T
k (MkT [t::a]) = MkT t3

where
t3::[a] = [t,t,t]

Here, the pattern type signature (t::a) mentions a lexical type variable that is not already in scope.
Indeed, it cannot already be in scope, because it is bound by the pattern match. GHC's rule is that in this
situation (and only then), a pattern type signature can mention a type variable that is not already in
scope; the effect is to bring it into scope, standing for the existentially-bound type variable.

When a pattern type signature binds a type variable in this way, GHC insists that the type variable is
bound to a rigid, or fully-known, type variable. This means that any user-written type signature always
stands for a completely known type.

GHC Language Features

204

If all this seems a little odd, we think so too. But we must have some way to bring such type variables
into scope, else we could not name existentially-bound type variables in subsequent type signatures.

This is (now) the only situation in which a pattern type signature is allowed to mention a lexical variable
that is not already in scope. For example, both f and g would be illegal if a was not already in scope.

8.7.6.5. Class and instance declarations

The type variables in the head of a class or instance declaration scope over the methods defined in
the where part. For example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

in
head ys

8.7.7. Generalised typing of mutually recursive bindings
The Haskell Report specifies that a group of bindings (at top level, or in a let or where) should be
sorted into strongly-connected components, and then type-checked in dependency order (Haskell Re-
port, Section 4.5.1 [http://www.haskell.org/onlinereport/decls.html#sect4.5.1]). As each group is type-
checked, any binders of the group that have an explicit type signature are put in the type environment
with the specified polymorphic type, and all others are monomorphic until the group is generalised
(Haskell Report, Section 4.5.2 [http://www.haskell.org/onlinereport/decls.html#sect4.5.2]).

Following a suggestion of Mark Jones, in his paper Typing Haskell in Haskell
[http://citeseer.ist.psu.edu/424440.html], GHC implements a more general scheme. If -
XRelaxedPolyRec is specified: the dependency analysis ignores references to variables that have an
explicit type signature. As a result of this refined dependency analysis, the dependency groups are smal-
ler, and more bindings will typecheck. For example, consider:

f :: Eq a => a -> Bool
f x = (x == x) || g True || g "Yes"

g y = (y <= y) || f True

This is rejected by Haskell 98, but under Jones's scheme the definition for g is typechecked first, separ-
ately from that for f, because the reference to f in g's right hand side is ignored by the dependency ana-
lysis. Then g's type is generalised, to get

g :: Ord a => a -> Bool

Now, the definition for f is typechecked, with this type for g in the type environment.

The same refined dependency analysis also allows the type signatures of mutually-recursive functions to
have different contexts, something that is illegal in Haskell 98 (Section 4.5.2, last sentence). With -
XRelaxedPolyRec GHC only insists that the type signatures of a refined group have identical type
signatures; in practice this means that only variables bound by the same pattern binding must have the
same context. For example, this is fine:

f :: Eq a => a -> Bool

GHC Language Features

205

http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://citeseer.ist.psu.edu/424440.html

f x = (x == x) || g True

g :: Ord a => a -> Bool
g y = (y <= y) || f True

8.7.8. Type families
GHC supports the definition of type families indexed by types. They may be seen as an extension of
Haskell 98's class-based overloading of values to types. When type families are declared in classes, they
are also known as associated types.

There are two forms of type families: data families and type synonym families. Currently, only the
former are fully implemented, while we are still working on the latter. As a result, the specification of
the language extension is also still to some degree in flux. Hence, a more detailed description of the lan-
guage extension and its use is currently available from the Haskell wiki page on type families
[http://www.haskell.org/haskellwiki/GHC/Indexed_types]. The material will be moved to this user's
guide when it has stabilised.

Type families are enabled by the flag -XTypeFamilies.

8.8. Template Haskell
Template Haskell allows you to do compile-time meta-programming in Haskell. The background to the
main technical innovations is discussed in " Template Meta-programming for Haskell
[http://research.microsoft.com/~simonpj/papers/meta-haskell/]" (Proc Haskell Workshop 2002).

There is a Wiki page about Template Haskell at http://www.haskell.org/th/
[http://www.haskell.org/haskellwiki/Template_Haskell], and that is the best place to look for further de-
tails. You may also consult the online Haskell library reference material
[http://www.haskell.org/ghc/docs/latest/html/libraries/index.html] (search for the type ExpQ).
[Temporary: many changes to the original design are described in "ht-
tp://research.microsoft.com/~simonpj/tmp/notes2.ps"
[http://research.microsoft.com/~simonpj/tmp/notes2.ps]. Not all of these changes are in GHC 6.6.]

The first example from that paper is set out below as a worked example to help get you started.

The documentation here describes the realisation in GHC. (It's rather sketchy just now; Tim Sheard is
going to expand it.)

8.8.1. Syntax
Template Haskell has the following new syntactic constructions. You need to use the flag -
XTemplateHaskell to switch these syntactic extensions on (-XTemplateHaskell is no longer
implied by -fglasgow-exts).

• A splice is written $x, where x is an identifier, or $(...), where the "..." is an arbitrary expres-
sion. There must be no space between the "$" and the identifier or parenthesis. This use of "$" over-
rides its meaning as an infix operator, just as "M.x" overrides the meaning of "." as an infix operator.
If you want the infix operator, put spaces around it.

A splice can occur in place of

• an expression; the spliced expression must have type Q Exp

• a list of top-level declarations; ; the spliced expression must have type Q [Dec]

GHC Language Features

206

http://www.haskell.org/haskellwiki/GHC/Indexed_types
http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://research.microsoft.com/~simonpj/tmp/notes2.ps
http://research.microsoft.com/~simonpj/tmp/notes2.ps

• [Planned, but not implemented yet.] a type; the spliced expression must have type Q Typ.
(Note that the syntax for a declaration splice uses "$" not "splice" as in the paper. Also the type
of the enclosed expression must be Q [Dec], not [Q Dec] as in the paper.)

• A expression quotation is written in Oxford brackets, thus:

• [| ... |], where the "..." is an expression; the quotation has type Expr.

• [d| ... |], where the "..." is a list of top-level declarations; the quotation has type Q
[Dec].

• [t| ... |], where the "..." is a type; the quotation has type Type.

• Reification is written thus:

• reifyDecl T, where T is a type constructor; this expression has type Dec.

• reifyDecl C, where C is a class; has type Dec.

• reifyType f, where f is an identifier; has type Typ.

• Still to come: fixities

8.8.2. Using Template Haskell

• The data types and monadic constructor functions for Template Haskell are in the library Lan-
guage.Haskell.THSyntax.

• You can only run a function at compile time if it is imported from another module. That is, you can't
define a function in a module, and call it from within a splice in the same module. (It would make
sense to do so, but it's hard to implement.)

• Furthermore, you can only run a function at compile time if it is imported from another module that
is not part of a mutually-recursive group of modules that includes the module currently being com-
piled. For example, when compiling module A, you can only run Template Haskell functions impor-
ted from B if B does not import A (directly or indirectly). The reason should be clear: to run B we
must compile and run A, but we are currently type-checking A.

• The flag -ddump-splices shows the expansion of all top-level splices as they happen.

• If you are building GHC from source, you need at least a stage-2 bootstrap compiler to run Template
Haskell. A stage-1 compiler will reject the TH constructs. Reason: TH compiles and runs a program,
and then looks at the result. So it's important that the program it compiles produces results whose
representations are identical to those of the compiler itself.

Template Haskell works in any mode (--make, --interactive, or file-at-a-time). There used to be
a restriction to the former two, but that restriction has been lifted.

8.8.3. A Template Haskell Worked Example
To help you get over the confidence barrier, try out this skeletal worked example. First cut and paste the
two modules below into "Main.hs" and "Printf.hs":

GHC Language Features

207

{- Main.hs -}
module Main where

-- Import our template "pr"
import Printf (pr)

-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ($(pr "Hello"))

{- Printf.hs -}
module Printf where

-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.

-- Import some Template Haskell syntax
import Language.Haskell.TH

-- Describe a format string
data Format = D | S | L String

-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s = [L s]

-- Generate Haskell source code from a parsed representation
-- of the format string. This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: [Format] -> ExpQ
gen [D] = [| \n -> show n |]
gen [S] = [| \s -> s |]
gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- from an input format string.
pr :: String -> ExpQ
pr s = gen (parse s)

Now run the compiler (here we are a Cygwin prompt on Windows):

$ ghc --make -XTemplateHaskell main.hs -o main.exe

Run "main.exe" and here is your output:

$./main
Hello

8.8.4. Using Template Haskell with Profiling
Template Haskell relies on GHC's built-in bytecode compiler and interpreter to run the splice expres-

GHC Language Features

208

sions. The bytecode interpreter runs the compiled expression on top of the same runtime on which GHC
itself is running; this means that the compiled code referred to by the interpreted expression must be
compatible with this runtime, and in particular this means that object code that is compiled for profiling
cannot be loaded and used by a splice expression, because profiled object code is only compatible with
the profiling version of the runtime.

This causes difficulties if you have a multi-module program containing Template Haskell code and you
need to compile it for profiling, because GHC cannot load the profiled object code and use it when ex-
ecuting the splices. Fortunately GHC provides a workaround. The basic idea is to compile the program
twice:

1. Compile the program or library first the normal way, without -prof.

2. Then compile it again with -prof, and additionally use -osuf p_o to name the object files dif-
ferently (you can choose any suffix that isn't the normal object suffix here). GHC will automatic-
ally load the object files built in the first step when executing splice expressions. If you omit the -
osuf flag when building with -prof and Template Haskell is used, GHC will emit an error mes-
sage.

8.9. Arrow notation
Arrows are a generalization of monads introduced by John Hughes. For more details, see

• “Generalising Monads to Arrows”, John Hughes, in Science of Computer Programming 37,
pp67–111, May 2000.

• “A New Notation for Arrows [http://www.soi.city.ac.uk/~ross/papers/notation.html]”, Ross Pater-
son, in ICFP, Sep 2001.

• “Arrows and Computation [http://www.soi.city.ac.uk/~ross/papers/fop.html]”, Ross Paterson, in The
Fun of Programming, Palgrave, 2003.

and the arrows web page at http://www.haskell.org/arrows/. With the -XArrows flag,
GHC supports the arrow notation described in the second of these papers. What follows is a brief intro-
duction to the notation; it won't make much sense unless you've read Hughes's paper. This notation is
translated to ordinary Haskell, using combinators from the Control.Arrow
[../libraries/base/Control-Arrow.html] module.

The extension adds a new kind of expression for defining arrows:

exp10 ::= ...
| proc apat -> cmd

where proc is a new keyword. The variables of the pattern are bound in the body of the proc-
expression, which is a new sort of thing called a command. The syntax of commands is as follows:

cmd ::= exp10 -< exp
| exp10 -<< exp
| cmd0

with cmd0 up to cmd9 defined using infix operators as for expressions, and

cmd10 ::= \ apat ... apat -> cmd

GHC Language Features

209

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html
http://www.haskell.org/arrows/
../libraries/base/Control-Arrow.html

| let decls in cmd
| if exp then cmd else cmd
| case exp of { calts }
| do { cstmt ; ... cstmt ; cmd }
| fcmd

fcmd ::= fcmd aexp
| (cmd)
| (| aexp cmd ... cmd |)

cstmt ::= let decls
| pat <- cmd
| rec { cstmt ; ... cstmt [;] }
| cmd

where calts are like alts except that the bodies are commands instead of expressions.

Commands produce values, but (like monadic computations) may yield more than one value, or none,
and may do other things as well. For the most part, familiarity with monadic notation is a good guide to
using commands. However the values of expressions, even monadic ones, are determined by the values
of the variables they contain; this is not necessarily the case for commands.

A simple example of the new notation is the expression

proc x -> f -< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable x is a new
variable bound within the proc-expression. It refers to the input to the arrow. In the above example, -<
is not an identifier but an new reserved symbol used for building commands from an expression of ar-
row type and an expression to be fed as input to that arrow. (The weird look will make more sense later.)
It may be read as analogue of application for arrows. The above example is equivalent to the Haskell ex-
pression

arr (\ x -> x+1) >>> f

That would make no sense if the expression to the left of -< involves the bound variable x. More gener-
ally, the expression to the left of -< may not involve any local variable, i.e. a variable bound in the cur-
rent arrow abstraction. For such a situation there is a variant -<<, as in

proc x -> f x -<< x+1

which is equivalent to

arr (\ x -> (f x, x+1)) >>> app

so in this case the arrow must belong to the ArrowApply class. Such an arrow is equivalent to a mon-
ad, so if you're using this form you may find a monadic formulation more convenient.

8.9.1. do-notation for commands
Another form of command is a form of do-notation. For example, you can write

proc x -> do
y <- f -< x+1
g -< 2*y
let z = x+y
t <- h -< x*z

GHC Language Features

210

returnA -< t+z

You can read this much like ordinary do-notation, but with commands in place of monadic expressions.
The first line sends the value of x+1 as an input to the arrow f, and matches its output against y. In the
next line, the output is discarded. The arrow returnA is defined in the Control.Arrow
[../libraries/base/Control-Arrow.html] module as arr id. The above example is treated as an abbrevi-
ation for

arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y, x) -> (y, (x, y))) >>>
first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA

Note that variables not used later in the composition are projected out. After simplification using rewrite
rules (see Section 8.13, “Rewrite rules ”) defined in the Control.Arrow
[../libraries/base/Control-Arrow.html] module, this reduces to

arr (\ x -> (x+1, x)) >>>
first f >>>
arr (\ (y, x) -> (2*y, (x, y))) >>>
first g >>>
arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
first h >>>
arr (\ (t, z) -> t+z)

which is what you might have written by hand. With arrow notation, GHC keeps track of all those tuples
of variables for you.

Note that although the above translation suggests that let-bound variables like z must be monomorph-
ic, the actual translation produces Core, so polymorphic variables are allowed.

It's also possible to have mutually recursive bindings, using the new rec keyword, as in the following
example:

counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do

rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1

returnA -< output

The translation of such forms uses the loop combinator, so the arrow concerned must belong to the
ArrowLoop class.

8.9.2. Conditional commands
In the previous example, we used a conditional expression to construct the input for an arrow. Some-
times we want to conditionally execute different commands, as in

proc (x,y) ->
if f x y
then g -< x+1
else h -< y+2

GHC Language Features

211

../libraries/base/Control-Arrow.html
../libraries/base/Control-Arrow.html

which is translated to

arr (\ (x,y) -> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)

Since the translation uses |||, the arrow concerned must belong to the ArrowChoice class.

There are also case commands, like

case input of
[] -> f -< ()
[x] -> g -< x+1
x1:x2:xs -> do

y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys

The syntax is the same as for case expressions, except that the bodies of the alternatives are commands
rather than expressions. The translation is similar to that of if commands.

8.9.3. Defining your own control structures
As we're seen, arrow notation provides constructs, modelled on those for expressions, for sequencing,
value recursion and conditionals. But suitable combinators, which you can define in ordinary Haskell,
may also be used to build new commands out of existing ones. The basic idea is that a command defines
an arrow from environments to values. These environments assign values to the free local variables of
the command. Thus combinators that produce arrows from arrows may also be used to build commands
from commands. For example, the ArrowChoice class includes a combinator

ArrowChoice a => (<+>) :: a e c -> a e c -> a e c

so we can use it to build commands:

expr' = proc x -> do
returnA -< x

<+> do
symbol Plus -< ()
y <- term -< ()
expr' -< x + y

<+> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y

(The do on the first line is needed to prevent the first <+> ... from being interpreted as part of the ex-
pression on the previous line.) This is equivalent to

expr' = (proc x -> returnA -< x)
<+> (proc x -> do

symbol Plus -< ()
y <- term -< ()
expr' -< x + y)

<+> (proc x -> do
symbol Minus -< ()
y <- term -< ()

GHC Language Features

212

expr' -< x - y)

It is essential that this operator be polymorphic in e (representing the environment input to the command
and thence to its subcommands) and satisfy the corresponding naturality property

arr k >>> (f <+> g) = (arr k >>> f) <+> (arr k >>> g)

at least for strict k. (This should be automatic if you're not using seq.) This ensures that environments
seen by the subcommands are environments of the whole command, and also allows the translation to
safely trim these environments. The operator must also not use any variable defined within the current
arrow abstraction.

We could define our own operator

untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
untilA body cond = proc x ->

if cond x then returnA -< ()
else do

body -< x
untilA body cond -< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators; there is
also a more general syntax involving special brackets:

proc x -> do
y <- f -< x+1
(|untilA (increment -< x+y) (within 0.5 -< x)|)

8.9.4. Primitive constructs
Some operators will need to pass additional inputs to their subcommands. For example, in an arrow type
supporting exceptions, the operator that attaches an exception handler will wish to pass the exception
that occurred to the handler. Such an operator might have a type

handleA :: ... => a e c -> a (e,Ex) c -> a e c

where Ex is the type of exceptions handled. You could then use this with arrow notation by writing a
command

body `handleA` \ ex -> handler

so that if an exception is raised in the command body, the variable ex is bound to the value of the ex-
ception and the command handler, which typically refers to ex, is entered. Though the syntax here
looks like a functional lambda, we are talking about commands, and something different is going on.
The input to the arrow represented by a command consists of values for the free local variables in the
command, plus a stack of anonymous values. In all the prior examples, this stack was empty. In the
second argument to handleA, this stack consists of one value, the value of the exception. The com-
mand form of lambda merely gives this value a name.

More concretely, the values on the stack are paired to the right of the environment. So operators like
handleA that pass extra inputs to their subcommands can be designed for use with the notation by
pairing the values with the environment in this way. More precisely, the type of each argument of the
operator (and its result) should have the form

GHC Language Features

213

a (...(e,t1), ... tn) t

where e is a polymorphic variable (representing the environment) and ti are the types of the values on
the stack, with t1 being the “top”. The polymorphic variable e must not occur in a, ti or t. However
the arrows involved need not be the same. Here are some more examples of suitable operators:

bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
runReader :: ... => a e c -> a' (e,State) c
runState :: ... => a e c -> a' (e,State) (c,State)

We can supply the extra input required by commands built with the last two by applying them to ordin-
ary expressions, as in

proc x -> do
s <- ...
(|runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using runReader.

The command versions of lambda abstraction and application are analogous to the expression versions.
In particular, the beta and eta rules describe equivalences of commands. These three features (operators,
lambda abstraction and application) are the core of the notation; everything else can be built using them,
though the results would be somewhat clumsy. For example, we could simulate do-notation by defining

bind :: Arrow a => a e b -> a (e,b) c -> a e c
u `bind` f = returnA &&& u >>> f

bind_ :: Arrow a => a e b -> a e c -> a e c
u `bind_` f = u `bind` (arr fst >>> f)

We could simulate if by defining

cond :: ArrowChoice a => a e b -> a e b -> a (e,Bool) b
cond f g = arr (\ (e,b) -> if b then Left e else Right e) >>> f ||| g

8.9.5. Differences with the paper

• Instead of a single form of arrow application (arrow tail) with two translations, the implementation
provides two forms “-<” (first-order) and “-<<” (higher-order).

• User-defined operators are flagged with banana brackets instead of a new form keyword.

8.9.6. Portability
Although only GHC implements arrow notation directly, there is also a preprocessor (available from the
arrows web page [http://www.haskell.org/arrows/]) that translates arrow notation into Haskell 98 for use
with other Haskell systems. You would still want to check arrow programs with GHC; tracing type er-
rors in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor must
observe some additional restrictions:

• The module must import Control.Arrow [../libraries/base/Control-Arrow.html].

GHC Language Features

214

http://www.haskell.org/arrows/
../libraries/base/Control-Arrow.html

• The preprocessor cannot cope with other Haskell extensions. These would have to go in separate
modules.

• Because the preprocessor targets Haskell (rather than Core), let-bound variables are monomorphic.

8.10. Bang patterns
GHC supports an extension of pattern matching called bang patterns. Bang patterns are under considera-
tion for Haskell Prime. The Haskell prime feature description
[http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns] contains more discussion and ex-
amples than the material below.

Bang patterns are enabled by the flag -XBangPatterns.

8.10.1. Informal description of bang patterns
The main idea is to add a single new production to the syntax of patterns:

pat ::= !pat

Matching an expression e against a pattern !p is done by first evaluating e (to WHNF) and then match-
ing the result against p. Example:

f1 !x = True

This definition makes f1 is strict in x, whereas without the bang it would be lazy. Bang patterns can be
nested of course:

f2 (!x, y) = [x,y]

Here, f2 is strict in x but not in y. A bang only really has an effect if it precedes a variable or wild-card
pattern:

f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]

Here, f3 and f4 are identical; putting a bang before a pattern that forces evaluation anyway does noth-
ing.

Bang patterns work in case expressions too, of course:

g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (f x), binds y to the result,
and then evaluates body.

Bang patterns work in let and where definitions too. For example:

let ![x,y] = e in b

GHC Language Features

215

http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns

is a strict pattern: operationally, it evaluates e, matches it against the pattern [x,y], and then evaluates
b The "!" should not be regarded as part of the pattern; after all, in a function argument ![x,y] means
the same as [x,y]. Rather, the "!" is part of the syntax of let bindings.

8.10.2. Syntax and semantics
We add a single new production to the syntax of patterns:

pat ::= !pat

There is one problem with syntactic ambiguity. Consider:

f !x = 3

Is this a definition of the infix function "(!)", or of the "f" with a bang pattern? GHC resolves this am-
biguity in favour of the latter. If you want to define (!) with bang-patterns enabled, you have to do so
using prefix notation:

(!) f x = 3

The semantics of Haskell pattern matching is described in Section 3.17.2
[http://www.haskell.org/onlinereport/exps.html#sect3.17.2] of the Haskell Report. To this description
add one extra item 10, saying:

• Matching the pattern !pat against a value v behaves as follows:

• if v is bottom, the match diverges

• otherwise, pat is matched against v

Similarly, in Figure 4 of Section 3.17.3 [http://www.haskell.org/onlinereport/exps.html#sect3.17.3], add
a new case (t):

case v of { !pat -> e; _ -> e' }
= v `seq` case v of { pat -> e; _ -> e' }

That leaves let expressions, whose translation is given in Section 3.12
[http://www.haskell.org/onlinereport/exps.html#sect3.12] of the Haskell Report. In the translation box,
first apply the following transformation: for each pattern pi that is of form !qi = ei, transform it to
(xi,!qi) = ((),ei), and and replace e0 by (xi `seq` e0). Then, when none of the left-
hand-side patterns have a bang at the top, apply the rules in the existing box.

The effect of the let rule is to force complete matching of the pattern qi before evaluation of the body is
begun. The bang is retained in the translated form in case qi is a variable, thus:

let !y = f x in b

The let-binding can be recursive. However, it is much more common for the let-binding to be non-
recursive, in which case the following law holds: (let !p = rhs in body) is equivalent to
(case rhs of !p -> body)

A pattern with a bang at the outermost level is not allowed at the top level of a module.

GHC Language Features

216

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12

8.11. Assertions
If you want to make use of assertions in your standard Haskell code, you could define a function like the
following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message -- an assertion failed, but which and
where?

One way out is to define an extended assert function which also takes a descriptive string to include
in the error message and perhaps combine this with the use of a pre-processor which inserts the source
location where assert was used.

Ghc offers a helping hand here, doing all of this for you. For every use of assert in the user's source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Con-
trol.Exception.assert, so you can still define and use your own versions of assert, should
you so wish. If not, import Control.Exception to make use assert in your code.

GHC ignores assertions when optimisation is turned on with the -O flag. That is, expressions of the
form assert pred e will be rewritten to e. You can also disable assertions using the -
fignore-asserts option.

Assertion failures can be caught, see the documentation for the Control.Exception library for the
details.

8.12. Pragmas
GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas don't
normally affect the meaning of the program, but they might affect the efficiency of the generated code.

Pragmas all take the form {-# word ... #-} where word indicates the type of pragma, and is fol-
lowed optionally by information specific to that type of pragma. Case is ignored in word. The various
values for word that GHC understands are described in the following sections; any pragma encountered
with an unrecognised word is (silently) ignored.

Certain pragmas are file-header pragmas. A file-header pragma must precede the module keyword in
the file. There can be as many file-header pragmas as you please, and they can be preceded or followed
by comments.

GHC Language Features

217

8.12.1. LANGUAGE pragma
The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the intention
that all Haskell compilers support the LANGUAGE pragma with the same syntax, although not all exten-
sions are supported by all compilers, of course. The LANGUAGE pragma should be used instead of OP-
TIONS_GHC, if possible.

For example, to enable the FFI and preprocessing with CPP:

{-# LANGUAGE ForeignFunctionInterface, CPP #-}

LANGUAGE is a file-header pragma (see Section 8.12, “Pragmas”).

Every language extension can also be turned into a command-line flag by prefixing it with "-X"; for ex-
ample -XForeignFunctionInterface. (Similarly, all "-X" flags can be written as LANGUAGE
pragmas.

A list of all supported language extensions can be obtained by invoking ghc -
-supported-languages (see Section 5.4, “Modes of operation”).

Any extension from the Extension type defined in Language.Haskell.Extension
[../libraries/Cabal/Language-Haskell-Extension.html] may be used. GHC will report an error if any of
the requested extensions are not supported.

8.12.2. OPTIONS_GHC pragma
The OPTIONS_GHC pragma is used to specify additional options that are given to the compiler when
compiling this source file. See Section 5.1.2, “Command line options in source files” for details.

Previous versions of GHC accepted OPTIONS rather than OPTIONS_GHC, but that is now deprecated.

OPTIONS_GHC is a file-header pragma (see Section 8.12, “Pragmas”).

8.12.3. INCLUDE pragma
The INCLUDE pragma is for specifying the names of C header files that should be #include'd into
the C source code generated by the compiler for the current module (if compiling via C). For example:

{-# INCLUDE "foo.h" #-}
{-# INCLUDE <stdio.h> #-}

INCLUDE is a file-header pragma (see Section 8.12, “Pragmas”).

An INCLUDE pragma is the preferred alternative to the -#include option (Section 5.10.5, “Options
affecting the C compiler (if applicable)”), because the INCLUDE pragma is understood by other com-
pilers. Yet another alternative is to add the include file to each foreign import declaration in your
code, but we don't recommend using this approach with GHC.

8.12.4. DEPRECATED pragma
The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.
There are two forms.

• You can deprecate an entire module thus:

GHC Language Features

218

../libraries/Cabal/Language-Haskell-Extension.html

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...

When you compile any module that import Wibble, GHC will print the specified message.

• You can deprecate a function, class, type, or data constructor, with the following top-level declara-
tion:

{-# DEPRECATED f, C, T "Don't use these" #-}

When you compile any module that imports and uses any of the specified entities, GHC will print
the specified message.

You can only deprecate entities declared at top level in the module being compiled, and you can only
use unqualified names in the list of entities being deprecated. A capitalised name, such as T refers to
either the type constructor T or the data constructor T, or both if both are in scope. If both are in
scope, there is currently no way to deprecate one without the other (c.f. fixities Section 8.4.2, “Infix
type constructors, classes, and type variables”).

Any use of the deprecated item, or of anything from a deprecated module, will be flagged with an appro-
priate message. However, deprecations are not reported for (a) uses of a deprecated function within its
defining module, and (b) uses of a deprecated function in an export list. The latter reduces spurious com-
plaints within a library in which one module gathers together and re-exports the exports of several oth-
ers.

You can suppress the warnings with the flag -fno-warn-deprecations.

8.12.5. INLINE and NOINLINE pragmas
These pragmas control the inlining of function definitions.

8.12.5.1. INLINE pragma

GHC (with -O, as always) tries to inline (or “unfold”) functions/values that are “small enough,” thus
avoiding the call overhead and possibly exposing other more-wonderful optimisations. Normally, if
GHC decides a function is “too expensive” to inline, it will not do so, nor will it export that unfolding
for other modules to use.

The sledgehammer you can bring to bear is the INLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)

#ifdef __GLASGOW_HASKELL__
{-# INLINE key_function #-}
#endif

(You don't need to do the C pre-processor carry-on unless you're going to stick the code through
HBC—it doesn't like INLINE pragmas.)

The major effect of an INLINE pragma is to declare a function's “cost” to be very low. The normal un-
folding machinery will then be very keen to inline it.

GHC Language Features

219

Syntactically, an INLINE pragma for a function can be put anywhere its type signature could be put.

INLINE pragmas are a particularly good idea for the then/return (or bind/unit) functions in a
monad. For example, in GHC's own UniqueSupply monad code, we have:

#ifdef __GLASGOW_HASKELL__
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
#endif

See also the NOINLINE pragma (Section 8.12.5.2, “NOINLINE pragma”).

8.12.5.2. NOINLINE pragma

The NOINLINE pragma does exactly what you'd expect: it stops the named function from being inlined
by the compiler. You shouldn't ever need to do this, unless you're very cautious about code size.

NOTINLINE is a synonym for NOINLINE (NOINLINE is specified by Haskell 98 as the standard way
to disable inlining, so it should be used if you want your code to be portable).

8.12.5.3. Phase control

Sometimes you want to control exactly when in GHC's pipeline the INLINE pragma is switched on. In-
lining happens only during runs of the simplifier. Each run of the simplifier has a different phase
number; the phase number decreases towards zero. If you use -dverbose-core2core you'll see the
sequence of phase numbers for successive runs of the simplifier. In an INLINE pragma you can option-
ally specify a phase number, thus:

• "INLINE[k] f" means: do not inline f until phase k, but from phase k onwards be very keen to
inline it.

• "INLINE[~k] f" means: be very keen to inline f until phase k, but from phase k onwards do not
inline it.

• "NOINLINE[k] f" means: do not inline f until phase k, but from phase k onwards be willing to
inline it (as if there was no pragma).

• "INLINE[~k] f" means: be willing to inline f until phase k, but from phase k onwards do not in-
line it.

The same information is summarised here:

-- Before phase 2 Phase 2 and later
{-# INLINE [2] f #-} -- No Yes
{-# INLINE [~2] f #-} -- Yes No
{-# NOINLINE [2] f #-} -- No Maybe
{-# NOINLINE [~2] f #-} -- Maybe No

{-# INLINE f #-} -- Yes Yes
{-# NOINLINE f #-} -- No No

By "Maybe" we mean that the usual heuristic inlining rules apply (if the function body is small, or it is
applied to interesting-looking arguments etc). Another way to understand the semantics is this:

• For both INLINE and NOINLINE, the phase number says when inlining is allowed at all.

GHC Language Features

220

• The INLINE pragma has the additional effect of making the function body look small, so that when
inlining is allowed it is very likely to happen.

The same phase-numbering control is available for RULES (Section 8.13, “Rewrite rules ”).

8.12.6. LINE pragma
This pragma is similar to C's #line pragma, and is mainly for use in automatically generated Haskell
code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you'd generated the current file from something called Foo.vhs and this line corresponds to line 42
in the original. GHC will adjust its error messages to refer to the line/file named in the LINE pragma.

8.12.7. RULES pragma
The RULES pragma lets you specify rewrite rules. It is described in Section 8.13, “Rewrite rules ”.

8.12.8. SPECIALIZE pragma
(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB: more
code space) specialised to particular types. Thus, if you have an overloaded function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists with Widget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

A SPECIALIZE pragma for a function can be put anywhere its type signature could be put.

A SPECIALIZE has the effect of generating (a) a specialised version of the function and (b) a rewrite
rule (see Section 8.13, “Rewrite rules ”) that rewrites a call to the un-specialised function into a call to
the specialised one.

The type in a SPECIALIZE pragma can be any type that is less polymorphic than the type of the original
function. In concrete terms, if the original function is f then the pragma

{-# SPECIALIZE f :: <type> #-}

is valid if and only if the definition

f_spec :: <type>
f_spec = f

is valid. Here are some examples (where we only give the type signature for the original function, not its
code):

GHC Language Features

221

f :: Eq a => a -> b -> b
{-# SPECIALISE f :: Int -> b -> b #-}

g :: (Eq a, Ix b) => a -> b -> b
{-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}

h :: Eq a => a -> a -> a
{-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}

The last of these examples will generate a RULE with a somewhat-complex left-hand side (try it your-
self), so it might not fire very well. If you use this kind of specialisation, let us know how well it works.

A SPECIALIZE pragma can optionally be followed with a INLINE or NOINLINE pragma, optionally
followed by a phase, as described in Section 8.12.5, “INLINE and NOINLINE pragmas”. The INLINE
pragma affects the specialised version of the function (only), and applies even if the function is recurs-
ive. The motivating example is this:

-- A GADT for arrays with type-indexed representation
data Arr e where
ArrInt :: !Int -> ByteArray# -> Arr Int
ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)

(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i)

Here, (!:) is a recursive function that indexes arrays of type Arr e. Consider a call to (!:) at type
(Int,Int). The second specialisation will fire, and the specialised function will be inlined. It has two
calls to (!:), both at type Int. Both these calls fire the first specialisation, whose body is also inlined.
The result is a type-based unrolling of the indexing function.

Warning: you can make GHC diverge by using SPECIALISE INLINE on an ordinarily-recursive
function.

Note: In earlier versions of GHC, it was possible to provide your own specialised function for a given
type:

{-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}

This feature has been removed, as it is now subsumed by the RULES pragma (see Section 8.13.4,
“Specialisation ”).

8.12.9. SPECIALIZE instance pragma
Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...

}

The pragma must occur inside the where part of the instance declaration.

Compatible with HBC, by the way, except perhaps in the placement of the pragma.

GHC Language Features

222

8.12.10. UNPACK pragma
The UNPACK indicates to the compiler that it should unpack the contents of a constructor field into the
constructor itself, removing a level of indirection. For example:

data T = T {-# UNPACK #-} !Float
{-# UNPACK #-} !Float

will create a constructor T containing two unboxed floats. This may not always be an optimisation: if the
T constructor is scrutinised and the floats passed to a non-strict function for example, they will have to
be reboxed (this is done automatically by the compiler).

Unpacking constructor fields should only be used in conjunction with -O, in order to expose unfoldings
to the compiler so the reboxing can be removed as often as possible. For example:

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxing f1 and f2 by inlining + on floats, but only when -O is on.

Any single-constructor data is eligible for unpacking; for example

data T = T {-# UNPACK #-} !(Int,Int)

will store the two Ints directly in the T constructor, by flattening the pair. Multi-level unpacking is also
supported:

data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int

will store two unboxed Int#s directly in the T constructor. The unpacker can see through newtypes,
too.

If a field cannot be unpacked, you will not get a warning, so it might be an idea to check the generated
code with -ddump-simpl.

See also the -funbox-strict-fields flag, which essentially has the effect of adding
{-# UNPACK #-} to every strict constructor field.

8.13. Rewrite rules
The programmer can specify rewrite rules as part of the source program (in a pragma). GHC applies
these rewrite rules wherever it can, provided (a) the -O flag (Section 5.9, “Optimisation (code improve-
ment)”) is on, and (b) the -frules-off flag (Section 5.9.2, “-f*: platform-independent flags”) is not
specified, and (c) the -fglasgow-exts (Section 8.1, “Language options”) flag is active.

Here is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

GHC Language Features

223

8.13.1. Syntax
From a syntactic point of view:

• There may be zero or more rules in a RULES pragma.

• Each rule has a name, enclosed in double quotes. The name itself has no significance at all. It is only
used when reporting how many times the rule fired.

• A rule may optionally have a phase-control number (see Section 8.12.5.3, “Phase control”), immedi-
ately after the name of the rule. Thus:

{-# RULES
"map/map" [2] forall f g xs. map f (map g xs) = map (f.g) xs

#-}

The "[2]" means that the rule is active in Phase 2 and subsequent phases. The inverse notation "[~2]"
is also accepted, meaning that the rule is active up to, but not including, Phase 2.

• Layout applies in a RULES pragma. Currently no new indentation level is set, so you must lay out
your rules starting in the same column as the enclosing definitions.

• Each variable mentioned in a rule must either be in scope (e.g. map), or bound by the forall (e.g.
f, g, xs). The variables bound by the forall are called the pattern variables. They are separated
by spaces, just like in a type forall.

• A pattern variable may optionally have a type signature. If the type of the pattern variable is poly-
morphic, it must have a type signature. For example, here is the foldr/build rule:

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Since g has a polymorphic type, it must have a type signature.

• The left hand side of a rule must consist of a top-level variable applied to arbitrary expressions. For
example, this is not OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True

In "wrong1", the LHS is not an application; in "wrong2", the LHS has a pattern variable in the
head.

• A rule does not need to be in the same module as (any of) the variables it mentions, though of course
they need to be in scope.

• Rules are automatically exported from a module, just as instance declarations are.

8.13.2. Semantics
From a semantic point of view:

GHC Language Features

224

• Rules are only applied if you use the -O flag.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a substitution
instance of the LHS of a rule, it replaces the expression by the (appropriately-substituted) RHS. By
"a substitution instance" we mean that the LHS can be made equal to the expression by substituting
for the pattern variables.

• The LHS and RHS of a rule are typechecked, and must have the same type.

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the same meaning.
That is undecidable in general, and infeasible in most interesting cases. The responsibility is entirely
the programmer's!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For example:

"loop" forall x,y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.

• If more than one rule matches a call, GHC will choose one arbitrarily to apply.

• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule LHS with an
expression. It seeks a substitution which makes the LHS and expression syntactically equal modulo
alpha conversion. The pattern (rule), but not the expression, is eta-expanded if necessary.
(Eta-expanding the expression can lead to laziness bugs.) But not beta conversion (that's called high-
er-order matching).

Matching is carried out on GHC's intermediate language, which includes type abstractions and ap-
plications. So a rule only matches if the types match too. See Section 8.13.4, “Specialisation ” be-
low.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s = map f
t = map g

in
s (t xs)

The expression s (t xs) does not match the rule "map/map", but GHC will substitute for s and
t, giving an expression which does match. If s or t was (a) used more than once, and (b) large or a
redex, then it would not be substituted, and the rule would not fire.

• In the earlier phases of compilation, GHC inlines nothing that appears on the LHS of a rule, because
once you have substituted for something you can't match against it (given the simple minded match-
ing). So if you write the rule

"map/map" forall f,g. map f . map g = map (f.g)

this won't match the expression map f (map g xs). It will only match something written with
explicit use of ".". Well, not quite. It will match the expression

wibble f g xs

where wibble is defined:

GHC Language Features

225

wibble f g = map f . map g

because wibble will be inlined (it's small). Later on in compilation, GHC starts inlining even
things on the LHS of rules, but still leaves the rules enabled. This inlining policy is controlled by the
per-simplification-pass flag -finline-phasen.

• All rules are implicitly exported from the module, and are therefore in force in any module that im-
ports the module that defined the rule, directly or indirectly. (That is, if A imports B, which imports
C, then C's rules are in force when compiling A.) The situation is very similar to that for instance de-
clarations.

8.13.3. List fusion
The RULES mechanism is used to implement fusion (deforestation) of common list functions. If a
"good consumer" consumes an intermediate list constructed by a "good producer", the intermediate list
should be eliminated entirely.

The following are good producers:

• List comprehensions

• Enumerations of Int and Char (e.g. ['a'..'z']).

• Explicit lists (e.g. [True, False])

• The cons constructor (e.g 3:4:[])

• ++

• map

• take, filter

• iterate, repeat

• zip, zipWith

The following are good consumers:

• List comprehensions

• array (on its second argument)

• ++ (on its first argument)

• foldr

• map

• take, filter

• concat

• unzip, unzip2, unzip3, unzip4

GHC Language Features

226

• zip, zipWith (but on one argument only; if both are good producers, zip will fuse with one but
not the other)

• partition

• head

• and, or, any, all

• sequence_

• msum

• sortBy

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are not in-
cluded, please tell us.

If you want to write your own good consumers or producers, look at the Prelude definitions of the above
functions to see how to do so.

8.13.4. Specialisation
Rewrite rules can be used to get the same effect as a feature present in earlier versions of GHC. For ex-
ample, suppose that:

genericLookup :: Ord a => Table a b -> a -> b
intLookup :: Table Int b -> Int -> b

where intLookup is an implementation of genericLookup that works very fast for keys of type
Int. You might wish to tell GHC to use intLookup instead of genericLookup whenever the lat-
ter was called with type Table Int b -> Int -> b. It used to be possible to write

{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}

This feature is no longer in GHC, but rewrite rules let you do the same thing:

{-# RULES "genericLookup/Int" genericLookup = intLookup #-}

This slightly odd-looking rule instructs GHC to replace genericLookup by intLookup whenever
the types match. What is more, this rule does not need to be in the same file as genericLookup, un-
like the SPECIALIZE pragmas which currently do (so that they have an original definition available to
specialise).

It is Your Responsibility to make sure that intLookup really behaves as a specialised version of gen-
ericLookup!!!

An example in which using RULES for specialisation will Win Big:

GHC Language Features

227

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an intermediate Ra-
tional—is obscenely expensive by comparison.

8.13.5. Controlling what's going on

• Use -ddump-rules to see what transformation rules GHC is using.

• Use -ddump-simpl-stats to see what rules are being fired. If you add -dppr-debug you get
a more detailed listing.

• The definition of (say) build in GHC/Base.lhs looks like this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []

Notice the INLINE! That prevents (:) from being inlined when compiling PrelBase, so that an
importing module will “see” the (:), and can match it on the LHS of a rule. INLINE prevents any
inlining happening in the RHS of the INLINE thing. I regret the delicacy of this.

• In libraries/base/GHC/Base.lhs look at the rules for map to see how to write rules that
will do fusion and yet give an efficient program even if fusion doesn't happen. More rules in GHC/
List.lhs.

8.13.6. CORE pragma
The external core format supports “Note” annotations; the CORE pragma gives a way to specify what
these should be in your Haskell source code. Syntactically, core annotations are attached to expressions
and take a Haskell string literal as an argument. The following function definition shows an example:

f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)

Semantically, this is equivalent to:

g x = show x

However, when external for is generated (via -fext-core), there will be Notes attached to the ex-
pressions show and x. The core function declaration for f is:

f :: %forall a . GHCziShow.ZCTShow a ->
a -> GHCziBase.ZMZN GHCziBase.Char =

\ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
(%note "foo"
%case zddShow %of (tpl::GHCziShow.ZCTShow a)
{GHCziShow.ZCDShow
(tpl1::GHCziBase.Int ->

GHC Language Features

228

a ->
GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha

r)
(tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
(tpl3::GHCziBase.ZMZN a ->

GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
r) ->

tpl2})
(%note "bar"
eta);

Here, we can see that the function show (which has been expanded out to a case expression over the
Show dictionary) has a %note attached to it, as does the expression eta (which used to be called x).

8.14. Special built-in functions
GHC has a few built-in functions with special behaviour. These are now described in the module
GHC.Prim [../libraries/base/GHC-Prim.html] in the library documentation.

8.15. Generic classes
The ideas behind this extension are described in detail in "Derivable type classes", Ralf Hinze and Si-
mon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. An example will give the idea:

import Generics

class Bin a where
toBin :: a -> [Int]
fromBin :: [Int] -> (a, [Int])

toBin {| Unit |} Unit = []
toBin {| a :+: b |} (Inl x) = 0 : toBin x
toBin {| a :+: b |} (Inr y) = 1 : toBin y
toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y

fromBin {| Unit |} bs = (Unit, bs)
fromBin {| a :+: b |} (0:bs) = (Inl x, bs') where (x,bs') = fromBin bs
fromBin {| a :+: b |} (1:bs) = (Inr y, bs') where (y,bs') = fromBin bs
fromBin {| a :*: b |} bs = (x :*: y, bs'') where (x,bs') = fromBin bs

(y,bs'') = fromBin bs'

This class declaration explains how toBin and fromBin work for arbitrary data types. They do so by
giving cases for unit, product, and sum, which are defined thus in the library module Generics:

data Unit = Unit
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b

Now you can make a data type into an instance of Bin like this:

instance (Bin a, Bin b) => Bin (a,b)
instance Bin a => Bin [a]

That is, just leave off the "where" clause. Of course, you can put in the where clause and over-ride

GHC Language Features

229

../libraries/base/GHC-Prim.html

whichever methods you please.

8.15.1. Using generics
To use generics you need to

• Use the flags -fglasgow-exts (to enable the extra syntax), -XGenerics (to generate extra
per-data-type code), and -package lang (to make the Generics library available.

• Import the module Generics from the lang package. This import brings into scope the data types
Unit, :*:, and :+:. (You don't need this import if you don't mention these types explicitly; for ex-
ample, if you are simply giving instance declarations.)

8.15.2. Changes wrt the paper
Note that the type constructors :+: and :*: can be written infix (indeed, you can now use any operator
starting in a colon as an infix type constructor). Also note that the type constructors are not exactly as in
the paper (Unit instead of 1, etc). Finally, note that the syntax of the type patterns in the class declaration
uses "{|" and "|}" brackets; curly braces alone would ambiguous when they appear on right hand sides
(an extension we anticipate wanting).

8.15.3. Terminology and restrictions
Terminology. A "generic default method" in a class declaration is one that is defined using type patterns
as above. A "polymorphic default method" is a default method defined as in Haskell 98. A "generic class
declaration" is a class declaration with at least one generic default method.

Restrictions:

• Alas, we do not yet implement the stuff about constructor names and field labels.

• A generic class can have only one parameter; you can't have a generic multi-parameter class.

• A default method must be defined entirely using type patterns, or entirely without. So this is illegal:

class Foo a where
op :: a -> (a, Bool)
op {| Unit |} Unit = (Unit, True)
op x = (x, False)

However it is perfectly OK for some methods of a generic class to have generic default methods and
others to have polymorphic default methods.

• The type variable(s) in the type pattern for a generic method declaration scope over the right hand
side. So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:

class Foo a where
op :: a -> Bool
op {| p :*: q |} (x :*: y) = op (x :: p)
...

• The type patterns in a generic default method must take one of the forms:

GHC Language Features

230

a :+: b
a :*: b
Unit

where "a" and "b" are type variables. Furthermore, all the type patterns for a single type constructor
(:*:, say) must be identical; they must use the same type variables. So this is illegal:

class Foo a where
op :: a -> Bool
op {| a :+: b |} (Inl x) = True
op {| p :+: q |} (Inr y) = False

The type patterns must be identical, even in equations for different methods of the class. So this too
is illegal:

class Foo a where
op1 :: a -> Bool
op1 {| a :*: b |} (x :*: y) = True

op2 :: a -> Bool
op2 {| p :*: q |} (x :*: y) = False

(The reason for this restriction is that we gather all the equations for a particular type constructor in-
to a single generic instance declaration.)

• A generic method declaration must give a case for each of the three type constructors.

• The type for a generic method can be built only from:

• Function arrows

• Type variables

• Tuples

• Arbitrary types not involving type variables
Here are some example type signatures for generic methods:

op1 :: a -> Bool
op2 :: Bool -> (a,Bool)
op3 :: [Int] -> a -> a
op4 :: [a] -> Bool

Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable inside a list.

This restriction is an implementation restriction: we just haven't got around to implementing the ne-
cessary bidirectional maps over arbitrary type constructors. It would be relatively easy to add specif-
ic type constructors, such as Maybe and list, to the ones that are allowed.

• In an instance declaration for a generic class, the idea is that the compiler will fill in the methods for
you, based on the generic templates. However it can only do so if

• The instance type is simple (a type constructor applied to type variables, as in Haskell 98).

• No constructor of the instance type has unboxed fields.
(Of course, these things can only arise if you are already using GHC extensions.) However, you can

GHC Language Features

231

still give an instance declarations for types which break these rules, provided you give explicit code
to override any generic default methods.

The option -ddump-deriv dumps incomprehensible stuff giving details of what the compiler does
with generic declarations.

8.15.4. Another example
Just to finish with, here's another example I rather like:

class Tag a where
nCons :: a -> Int
nCons {| Unit |} _ = 1
nCons {| a :*: b |} _ = 1
nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)

tag :: a -> Int
tag {| Unit |} _ = 1
tag {| a :*: b |} _ = 1
tag {| a :+: b |} (Inl x) = tag x
tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y

8.16. Control over monomorphism
GHC supports two flags that control the way in which generalisation is carried out at let and where bind-
ings.

8.16.1. Switching off the dreaded Monomorphism Re-
striction

Haskell's monomorphism restriction (see Section 4.5.5
[http://www.haskell.org/onlinereport/decls.html#sect4.5.5] of the Haskell Report) can be completely
switched off by -XNoMonomorphismRestriction.

8.16.2. Monomorphic pattern bindings
As an experimental change, we are exploring the possibility of making pattern bindings monomorphic;
that is, not generalised at all. A pattern binding is a binding whose LHS has no function arguments, and
is not a simple variable. For example:

f x = x -- Not a pattern binding
f = \x -> x -- Not a pattern binding
f :: Int -> Int = \x -> x -- Not a pattern binding

(g,h) = e -- A pattern binding
(f) = e -- A pattern binding
[x] = e -- A pattern binding

Experimentally, GHC now makes pattern bindings monomorphic by default. Use -
XNoMonoPatBinds to recover the standard behaviour.

GHC Language Features

232

http://www.haskell.org/onlinereport/decls.html#sect4.5.5

8.17. Concurrent and Parallel Haskell
GHC implements some major extensions to Haskell to support concurrent and parallel programming.
Let us first establish terminology:

• Parallelism means running a Haskell program on multiple processors, with the goal of improving
performance. Ideally, this should be done invisibly, and with no semantic changes.

• Concurrency means implementing a program by using multiple I/O-performing threads. While a
concurrent Haskell program can run on a parallel machine, the primary goal of using concurrency is
not to gain performance, but rather because that is the simplest and most direct way to write the pro-
gram. Since the threads perform I/O, the semantics of the program is necessarily non-deterministic.

GHC supports both concurrency and parallelism.

8.17.1. Concurrent Haskell
Concurrent Haskell is the name given to GHC's concurrency extension. It is enabled by default, so no
special flags are required. The Concurrent Haskell paper
[http://research.microsoft.com/copyright/accept.asp?path=/users/simonpj/papers/concurrent-haskell.ps.g
z] is still an excellent resource, as is Tackling the awkward squad
[http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/].

To the programmer, Concurrent Haskell introduces no new language constructs; rather, it appears
simply as a library, Control.Concurrent [../libraries/base/Control-Concurrent.html]. The functions expor-
ted by this library include:

• Forking and killing threads.

• Sleeping.

• Synchronised mutable variables, called MVars

• Support for bound threads; see the paper Extending the FFI with concurrency
[http://research.microsoft.com/%7Esimonpj/Papers/conc-ffi/index.htm].

8.17.2. Software Transactional Memory
GHC now supports a new way to coordinate the activities of Concurrent Haskell threads, called Soft-
ware Transactional Memory (STM). The STM papers
[http://research.microsoft.com/%7Esimonpj/papers/stm/index.htm] are an excellent introduction to what
STM is, and how to use it.

The main library you need to use STM is Control.Concurrent.STM
[../libraries/stm/Control-Concurrent-STM.html]. The main features supported are these:

• Atomic blocks.

• Transactional variables.

• Operations for composing transactions: retry, and orElse.

• Data invariants.

GHC Language Features

233

http://research.microsoft.com/copyright/accept.asp?path=/users/simonpj/papers/concurrent-haskell.ps.gz
http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/
../libraries/base/Control-Concurrent.html
http://research.microsoft.com/%7Esimonpj/Papers/conc-ffi/index.htm
http://research.microsoft.com/%7Esimonpj/papers/stm/index.htm
../libraries/stm/Control-Concurrent-STM.html

All these features are described in the papers mentioned earlier.

8.17.3. Parallel Haskell
GHC includes support for running Haskell programs in parallel on symmetric, shared-memory multi-
processor (SMP). By default GHC runs your program on one processor; if you want it to run in parallel
you must link your program with the -threaded, and run it with the RTS -N option; see Section 5.12,
“Using SMP parallelism”). The runtime will schedule the running Haskell threads among the available
OS threads, running as many in parallel as you specified with the -N RTS option.

GHC only supports parallelism on a shared-memory multiprocessor. Glasgow Parallel Haskell (GPH)
supports running Parallel Haskell programs on both clusters of machines, and single multiprocessors.
GPH is developed and distributed separately from GHC (see The GPH Page
[http://www.cee.hw.ac.uk/~dsg/gph/]). However, the current version of GPH is based on a much older
version of GHC (4.06).

8.17.4. Annotating pure code for parallelism
Ordinary single-threaded Haskell programs will not benefit from enabling SMP parallelism alone: you
must expose parallelism to the compiler. One way to do so is forking threads using Concurrent Haskell
(Section 8.17.1, “Concurrent Haskell”), but the simplest mechanism for extracting parallelism from pure
code is to use the par combinator, which is closely related to (and often used with) seq. Both of these
are available from Control.Parallel [../libraries/parallel/Control-Parallel.html]:

infixr 0 `par`
infixr 1 `seq`

par :: a -> b -> b
seq :: a -> b -> b

The expression (x `par` y) sparks the evaluation of x (to weak head normal form) and returns y.
Sparks are queued for execution in FIFO order, but are not executed immediately. If the runtime detects
that there is an idle CPU, then it may convert a spark into a real thread, and run the new thread on the
idle CPU. In this way the available parallelism is spread amongst the real CPUs.

For example, consider the following parallel version of our old nemesis, nfib:

import Control.Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (seq n2 (n1 + n2 + 1))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values of n greater than 1, we use par to spark a thread to evaluate nfib (n-1), and then we use
seq to force the parent thread to evaluate nfib (n-2) before going on to add together these two
subexpressions. In this divide-and-conquer approach, we only spark a new thread for one branch of the
computation (leaving the parent to evaluate the other branch). Also, we must use seq to ensure that the
parent will evaluate n2 before n1 in the expression (n1 + n2 + 1). It is not sufficient to reorder the
expression as (n2 + n1 + 1), because the compiler may not generate code to evaluate the addends
from left to right.

When using par, the general rule of thumb is that the sparked computation should be required at a later
time, but not too soon. Also, the sparked computation should not be too small, otherwise the cost of

GHC Language Features

234

http://www.cee.hw.ac.uk/~dsg/gph/
../libraries/parallel/Control-Parallel.html

forking it in parallel will be too large relative to the amount of parallelism gained. Getting these factors
right is tricky in practice.

More sophisticated combinators for expressing parallelism are available from the Con-
trol.Parallel.Strategies [../libraries/parallel/Control-Parallel-Strategies.html] module. This
module builds functionality around par, expressing more elaborate patterns of parallel computation,
such as parallel map.

GHC Language Features

235

../libraries/parallel/Control-Parallel-Strategies.html
../libraries/parallel/Control-Parallel-Strategies.html

Chapter 9. Foreign function interface
(FFI)

GHC (mostly) conforms to the Haskell 98 Foreign Function Interface Addendum 1.0, whose definition
is available from http://www.haskell.org/.

To enable FFI support in GHC, give the -fffi flag, or the -fglasgow-exts flag which implies -
fffi .

GHC implements a number of GHC-specific extensions to the FFI Addendum. These extensions are de-
scribed in Section 9.1, “GHC extensions to the FFI Addendum”, but please note that programs using
these features are not portable. Hence, these features should be avoided where possible.

The FFI libraries are documented in the accompanying library documentation; see for example the
Foreign [../libraries/base/Control-Concurrent.html] module.

9.1. GHC extensions to the FFI Addendum
The FFI features that are described in this section are specific to GHC. Your code will not be portable to
other compilers if you use them.

9.1.1. Unboxed types
The following unboxed types may be used as basic foreign types (see FFI Addendum, Section 3.2):
Int#, Word#, Char#, Float#, Double#, Addr#, StablePtr# a, MutableByteArray#,
ForeignObj#, and ByteArray#.

9.1.2. Newtype wrapping of the IO monad
The FFI spec requires the IO monad to appear in various places, but it can sometimes be convenient to
wrap the IO monad in a newtype, thus:

newtype MyIO a = MIO (IO a)

(A reason for doing so might be to prevent the programmer from calling arbitrary IO procedures in some
part of the program.)

The Haskell FFI already specifies that arguments and results of foreign imports and exports will be auto-
matically unwrapped if they are newtypes (Section 3.2 of the FFI addendum). GHC extends the FFI by
automatically unwrapping any newtypes that wrap the IO monad itself. More precisely, wherever the
FFI specification requires an IO type, GHC will accept any newtype-wrapping of an IO type. For ex-
ample, these declarations are OK:

foreign import foo :: Int -> MyIO Int
foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int

9.2. Using the FFI with GHC
The following sections also give some hints and tips on the use of the foreign function interface in GHC.

236

http://www.haskell.org/
../libraries/base/Control-Concurrent.html

9.2.1. Using foreign export and foreign import
ccall "wrapper" with GHC

When GHC compiles a module (say M.hs) which uses foreign export or foreign import
"wrapper", it generates two additional files, M_stub.c and M_stub.h. GHC will automatically
compile M_stub.c to generate M_stub.o at the same time.

For a plain foreign export, the file M_stub.h contains a C prototype for the foreign exported
function, and M_stub.c contains its definition. For example, if we compile the following module:

module Foo where

foreign export ccall foo :: Int -> IO Int

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))

Then Foo_stub.h will contain something like this:

#include "HsFFI.h"
extern HsInt foo(HsInt a0);

and Foo_stub.c contains the compiler-generated definition of foo(). To invoke foo() from C,
just #include "Foo_stub.h" and call foo().

The foo_stub.c and foo_stub.h files can be redirected using the -stubdir option; see Sec-
tion 5.6.4, “Redirecting the compilation output(s)”.

When linking the program, remember to include M_stub.o in the final link command line, or you'll
get link errors for the missing function(s) (this isn't necessary when building your program with ghc
––make, as GHC will automatically link in the correct bits).

9.2.1.1. Using your own main()

Normally, GHC's runtime system provides a main(), which arranges to invoke Main.main in the
Haskell program. However, you might want to link some Haskell code into a program which has a main
function written in another language, say C. In order to do this, you have to initialize the Haskell
runtime system explicitly.

Let's take the example from above, and invoke it from a standalone C program. Here's the C code:

#include <stdio.h>
#include "HsFFI.h"

#ifdef __GLASGOW_HASKELL__
#include "foo_stub.h"
#endif

#ifdef __GLASGOW_HASKELL__
extern void __stginit_Foo (void);
#endif

Foreign function interface (FFI)

237

1The outermost hs_exit() will actually de-initialise the system. NOTE that currently GHC's runtime cannot reliably re-initialise after this has
happened.

int main(int argc, char *argv[])
{
int i;

hs_init(&argc, &argv);
#ifdef __GLASGOW_HASKELL__
hs_add_root(__stginit_Foo);

#endif

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();
return 0;

}

We've surrounded the GHC-specific bits with #ifdef __GLASGOW_HASKELL__; the rest of the
code should be portable across Haskell implementations that support the FFI standard.

The call to hs_init() initializes GHC's runtime system. Do NOT try to invoke any Haskell functions
before calling hs_init(): bad things will undoubtedly happen.

We pass references to argc and argv to hs_init() so that it can separate out any arguments for the
RTS (i.e. those arguments between +RTS...-RTS).

Next, we call hs_add_root, a GHC-specific interface which is required to initialise the Haskell mod-
ules in the program. The argument to hs_add_root should be the name of the initialization function
for the "root" module in your program - in other words, the module which directly or indirectly imports
all the other Haskell modules in the program. In a standalone Haskell program the root module is nor-
mally Main, but when you are using Haskell code from a library it may not be. If your program has
multiple root modules, then you can call hs_add_root multiple times, one for each root. The name of
the initialization function for module M is __stginit_M, and it may be declared as an external func-
tion symbol as in the code above. Note that the symbol name should be transformed according to the Z-
encoding:

Character Replacement

. zd

_ zu

` zq

Z ZZ

z zz

After we've finished invoking our Haskell functions, we can call hs_exit(), which terminates the
RTS.

There can be multiple calls to hs_init(), but each one should be matched by one (and only one) call
to hs_exit()1.

NOTE: when linking the final program, it is normally easiest to do the link using GHC, although this
isn't essential. If you do use GHC, then don't forget the flag -no-hs-main, otherwise GHC will try to
link to the Main Haskell module.

Foreign function interface (FFI)

238

9.2.1.2. Making a Haskell library that can be called from foreign code

The scenario here is much like in Section 9.2.1.1, “Using your own main()”, except that the aim is not
to link a complete program, but to make a library from Haskell code that can be deployed in the same
way that you would deploy a library of C code.

The main requirement here is that the runtime needs to be initialized before any Haskell code can be
called, so your library should provide initialisation and deinitialisation entry points, implemented in C or
C++. For example:

HsBool mylib_init(void){
int argc = ...
char *argv[] = ...

// Initialize Haskell runtime
hs_init(&argc, &argv);

// Tell Haskell about all root modules
hs_add_root(__stginit_Foo);

// do any other initialization here and
// return false if there was a problem
return HS_BOOL_TRUE;

}

void mylib_end(void){
hs_exit();

}

The initialisation routine, mylib_init, calls hs_init() and hs_add_root() as normal to ini-
tialise the Haskell runtime, and the corresponding deinitialisation function mylib_end() calls
hs_exit() to shut down the runtime.

9.2.1.3. On the use of hs_exit()

hs_exit() normally causes the termination of any running Haskell threads in the system, and when
hs_exit() returns, there will be no more Haskell threads running. The runtime will then shut down
the system in an orderly way, generating profiling output and statistics if necessary, and freeing all the
memory it owns.

It isn't always possible to terminate a Haskell thread forcibly: for example, the thread might be currently
executing a foreign call, and we have no way to force the foreign call to complete. What's more, the
runtime must assume that in the worst case the Haskell code and runtime are about to be removed from
memory (e.g. if this is a Windows DLL, hs_exit() is normally called before unloading the DLL). So
hs_exit() must wait until all outstanding foreign calls return before it can return itself.

The upshot of this is that if you have Haskell threads that are blocked in foreign calls, then hs_exit()
may hang (or possibly busy-wait) until the calls return. Therefore it's a good idea to make sure you don't
have any such threads in the system when calling hs_exit(). This includes any threads doing I/O, be-
cause I/O may (or may not, depending on the type of I/O and the platform) be implemented using block-
ing foreign calls.

The GHC runtime treats program exit as a special case, to avoid the need to wait for blocked threads
when a standalone executable exits. Since the program and all its threads are about to terminate at the
same time that the code is removed from memory, it isn't necessary to ensure that the threads have ex-
ited first. (Unofficially, if you want to use this fast and loose version of hs_exit(), then call shut-
downHaskellAndExit() instead).

Foreign function interface (FFI)

239

9.2.2. Using function headers
When generating C (using the -fvia-C flag), one can assist the C compiler in detecting type errors by
using the -#include directive (Section 5.10.5, “Options affecting the C compiler (if applicable)”) to
provide .h files containing function headers.

For example,

#include "HsFFI.h"

void initialiseEFS (HsInt size);
HsInt terminateEFS (void);
HsForeignObj emptyEFS(void);
HsForeignObj updateEFS (HsForeignObj a, HsInt i, HsInt x);
HsInt lookupEFS (HsForeignObj a, HsInt i);

The types HsInt, HsForeignObj etc. are described in the H98 FFI Addendum.

Note that this approach is only essential for returning floats (or if sizeof(int) !=
sizeof(int *) on your architecture) but is a Good Thing for anyone who cares about writing solid
code. You're crazy not to do it.

What if you are importing a module from another package, and a cross-module inlining exposes a for-
eign call that needs a supporting -#include? If the imported module is from the same package as the
module being compiled, you should supply all the -#include that you supplied when compiling the
imported module. If the imported module comes from another package, you won't necessarily know
what the appropriate -#include options are; but they should be in the package configuration, which
GHC knows about. So if you are building a package using Cabal, remember to put all those include files
in the package description (see the includes field in the Cabal documentation).

It is also possible, according the FFI specification, to put the -#include option in the foreign import
declaration itself:

foreign import "foo.h f" f :: Int -> IO Int

When compiling this module, GHC will generate a C file that includes the specified -#include.
However, GHC disables cross-module inlining for such foreign calls, because it doesn't transport the -
#include information across module boundaries. (There is no fundamental reason for this; it was just
tiresome to implement. The wrapper, which unboxes the arguments etc, is still inlined across modules.)
So if you want the foreign call itself to be inlined across modules, use the command-line and package-
configuration -#include mechanism.

9.2.2.1. Finding Header files

Header files named by the -#include option or in a foreign import declaration are searched for
using the C compiler's usual search path. You can add directories to this search path using the -I option
(see Section 5.10.3, “Options affecting the C pre-processor”).

Note: header files are ignored unless compiling via C. If you had been compiling your code using the
native code generator (the default) and suddenly switch to compiling via C, then you can get unexpected
errors about missing include files. Compiling via C is enabled automatically when certain options are
given (eg. -O and -prof both enable -fvia-C).

9.2.3. Memory Allocation
The FFI libraries provide several ways to allocate memory for use with the FFI, and it isn't always clear

Foreign function interface (FFI)

240

which way is the best. This decision may be affected by how efficient a particular kind of allocation is
on a given compiler/platform, so this section aims to shed some light on how the different kinds of alloc-
ation perform with GHC.

alloca and friends Useful for short-term allocation when the allocation is intended to scope
over a given IO computation. This kind of allocation is commonly used
when marshalling data to and from FFI functions.

In GHC, alloca is implemented using MutableByteArray#, so
allocation and deallocation are fast: much faster than C's malloc/
free, but not quite as fast as stack allocation in C. Use alloca
whenever you can.

mallocForeignPtr Useful for longer-term allocation which requires garbage collection. If
you intend to store the pointer to the memory in a foreign data structure,
then mallocForeignPtr is not a good choice, however.

In GHC, mallocForeignPtr is also implemented using Mut-
ableByteArray#. Although the memory is pointed to by a For-
eignPtr, there are no actual finalizers involved (unless you add one
with addForeignPtrFinalizer), and the deallocation is done us-
ing GC, so mallocForeignPtr is normally very cheap.

malloc/free If all else fails, then you need to resort to Foreign.malloc and
Foreign.free. These are just wrappers around the C functions of
the same name, and their efficiency will depend ultimately on the im-
plementations of these functions in your platform's C library. We usu-
ally find malloc and free to be significantly slower than the other
forms of allocation above.

Foreign.Marshal.Pool Pools are currently implemented using malloc/free, so while they
might be a more convenient way to structure your memory allocation
than using one of the other forms of allocation, they won't be any more
efficient. We do plan to provide an improved-performance implementa-
tion of Pools in the future, however.

Foreign function interface (FFI)

241

Chapter 10. What to do when
something goes wrong

If you still have a problem after consulting this section, then you may have found a bug—please report
it! See Section 1.2, “Reporting bugs in GHC” for details on how to report a bug and a list of things we'd
like to know about your bug. If in doubt, send a report—we love mail from irate users :-!

(Section 13.1, “Haskell 98 vs. Glasgow Haskell: language non-compliance ”, which describes Glasgow
Haskell's shortcomings vs. the Haskell language definition, may also be of interest.)

10.1. When the compiler “does the wrong
thing”

“Help! The compiler crashed (or
`panic'd)!”

These events are always bugs in the GHC system—please report
them.

“This is a terrible error message.” If you think that GHC could have produced a better error mes-
sage, please report it as a bug.

“What about this warning from the
C compiler?”

For example: “…warning: `Foo' declared `static' but never
defined.” Unsightly, but shouldn't be a problem.

Sensitivity to .hi interface files: GHC is very sensitive about interface files. For example, if it
picks up a non-standard Prelude.hi file, pretty terrible things
will happen. If you turn on -fno-implicit-prelude, the
compiler will almost surely die, unless you know what you are
doing.

Furthermore, as sketched below, you may have big problems run-
ning programs compiled using unstable interfaces.

“I think GHC is producing incor-
rect code”:

Unlikely :-) A useful be-more-paranoid option to give to GHC is
-dcore-lint; this causes a “lint” pass to check for errors
(notably type errors) after each Core-to-Core transformation pass.
We run with -dcore-lint on all the time; it costs about 5% in
compile time.

“Why did I get a link error?” If the linker complains about not finding
_<something>_fast, then something is inconsistent: you
probably didn't compile modules in the proper dependency order.

“Is this line number right?” On this score, GHC usually does pretty well, especially if you
“allow” it to be off by one or two. In the case of an instance or
class declaration, the line number may only point you to the de-
claration, not to a specific method.

Please report line-number errors that you find particularly unhelp-
ful.

10.2. When your program “does the wrong

242

thing”
(For advice about overly slow or memory-hungry Haskell programs, please see Chapter 7, Advice on:
sooner, faster, smaller, thriftier).

“Help! My program crashed!” (e.g., a `segmentation fault' or `core dumped')

If your program has no foreign calls in it, and no calls to known-
unsafe functions (such as unsafePerformIO) then a crash is
always a BUG in the GHC system, except in one case: If your
program is made of several modules, each module must have been
compiled after any modules on which it depends (unless you use
.hi-boot files, in which case these must be correct with respect
to the module source).

For example, if an interface is lying about the type of an imported
value then GHC may well generate duff code for the importing
module. This applies to pragmas inside interfaces too! If the
pragma is lying (e.g., about the “arity” of a value), then duff code
may result. Furthermore, arities may change even if types do not.

In short, if you compile a module and its interface changes, then
all the modules that import that interface must be re-compiled.

A useful option to alert you when interfaces change is -
hi-diffs. It will run diff on the changed interface file, before
and after, when applicable.

If you are using make, GHC can automatically generate the de-
pendencies required in order to make sure that every module is
up-to-date with respect to its imported interfaces. Please see Sec-
tion 5.6.11, “Dependency generation”.

If you are down to your last-compile-before-a-bug-report, we
would recommend that you add a -dcore-lint option (for ex-
tra checking) to your compilation options.

So, before you report a bug because of a core dump, you should
probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -hi-diffs to highlight changes;

as mentioned above, use -dcore-lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets
are off, because you can trash the heap, the stack, or whatever.

“My program entered an `absent'
argument.”

This is definitely caused by a bug in GHC. Please report it (see
Section 1.2, “Reporting bugs in GHC”).

“What's with this `arithmetic (or
`floating') exception' ”?

Int, Float, and Double arithmetic is unchecked. Overflows,
underflows and loss of precision are either silent or reported as an
exception by the operating system (depending on the platform).
Divide-by-zero may cause an untrapped exception (please report
it if it does).

What to do when something goes
wrong

243

Chapter 11. Other Haskell utility
programs

This section describes other program(s) which we distribute, that help with the Great Haskell Program-
ming Task.

11.1. Ctags and Etags for Haskell: hasktags
hasktags is a very simple Haskell program that produces ctags "tags" and etags "TAGS" files for
Haskell programs.

When loaded into an editor such an NEdit, Vim, or Emacs, this allows one to easily navigate around a
multi-file program, finding definitions of functions, types, and constructors.

Invocation Syntax:

hasktags files

This will read all the files listed in files and produce a ctags "tags" file and an etags "TAGS" file in
the current directory.

Example usage

find -name *.*hs | xargs hasktags

This will find all haskell source files in the current directory and below, and create tags files indexing
them in the current directory.

hasktags is a simple program that uses simple parsing rules to find definitions of functions, construct-
ors, and types. It isn't guaranteed to find everything, and will sometimes create false index entries, but it
usually gets the job done fairly well. In particular, at present, functions are only indexed if a type signa-
ture is given for them.

Before hasktags, there used to be fptags and hstags, which did essentially the same job, however neither
of these seem to be maintained any more.

11.1.1. Using tags with your editor
With NEdit, load the "tags" file using "File/Load Tags File". Use "Ctrl-D" to search for a tag.

With XEmacs, load the "TAGS" file using "visit-tags-table". Use "M-." to search for a tag.

11.2. “Yacc for Haskell”: happy
Andy Gill and Simon Marlow have written a parser-generator for Haskell, called happy. Happy is to
Haskell what Yacc is to C.

You can get happy from the Happy Homepage [http://www.haskell.org/happy/].

Happy is at its shining best when compiled by GHC.

244

http://www.haskell.org/happy/

11.3. Writing Haskell interfaces to C code:
hsc2hs

The hsc2hs command can be used to automate some parts of the process of writing Haskell bindings to
C code. It reads an almost-Haskell source with embedded special constructs, and outputs a real Haskell
file with these constructs processed, based on information taken from some C headers. The extra con-
structs deal with accessing C data from Haskell.

It may also output a C file which contains additional C functions to be linked into the program, together
with a C header that gets included into the C code to which the Haskell module will be compiled (when
compiled via C) and into the C file. These two files are created when the #def construct is used (see be-
low).

Actually hsc2hs does not output the Haskell file directly. It creates a C program that includes the head-
ers, gets automatically compiled and run. That program outputs the Haskell code.

In the following, “Haskell file” is the main output (usually a .hs file), “compiled Haskell file” is the
Haskell file after ghc has compiled it to C (i.e. a .hc file), “C program” is the program that outputs the
Haskell file, “C file” is the optionally generated C file, and “C header” is its header file.

11.3.1. command line syntax
hsc2hs takes input files as arguments, and flags that modify its behavior:

-o FILE or
––output=FILE

Name of the Haskell file.

-t FILE or
––template=FILE

The template file (see below).

-c PROG or
––cc=PROG

The C compiler to use (default: ghc)

-l PROG or
––ld=PROG

The linker to use (default: gcc).

-C FLAG or
––cflag=FLAG

An extra flag to pass to the C compiler.

-I DIR Passed to the C compiler.

-L FLAG or
––lflag=FLAG

An extra flag to pass to the linker.

-i FILE or
––include=FILE

As if the appropriate #include directive was placed in the source.

-D NAME[=VALUE]
or
––define=NAME[=
VALUE]

As if the appropriate #define directive was placed in the source.

––no-compile Stop after writing out the intermediate C program to disk. The file name for the
intermediate C program is the input file name with .hsc replaced with
_hsc_make.c.

-? or ––help Display a summary of the available flags and exit successfully.

-V or ––version Output version information and exit successfully.

The input file should end with .hsc (it should be plain Haskell source only; literate Haskell is not suppor-
ted at the moment). Output files by default get names with the .hsc suffix replaced:

.hs Haskell file

_hsc.h C header

Other Haskell utility programs

245

_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path to HsFFI.h
which is automatically included into the C program.

11.3.2. Input syntax
All special processing is triggered by the # operator. To output a literal #, write it twice: ##. Inside
string literals and comments # characters are not processed.

A # is followed by optional spaces and tabs, an alphanumeric keyword that describes the kind of pro-
cessing, and its arguments. Arguments look like C expressions separated by commas (they are not writ-
ten inside parens). They extend up to the nearest unmatched),] or }, or to the end of line if it occurs
outside any () [] {} '' "" /**/ and is not preceded by a backslash. Backslash-newline pairs
are stripped.

In addition #{stuff} is equivalent to #stuff except that it's self-delimited and thus needs not to be
placed at the end of line or in some brackets.

Meanings of specific keywords:

#include <file.h>,
#include "file.h"

The specified file gets included into the C program, the compiled
Haskell file, and the C header. <HsFFI.h> is included automat-
ically.

#define name, #define
name value, #undef name

Similar to #include. Note that #includes and #defines
may be put in the same file twice so they should not assume oth-
erwise.

#let name parameters =
"definition"

Defines a macro to be applied to the Haskell source. Parameter
names are comma-separated, not inside parens. Such macro is in-
voked as other #-constructs, starting with #name. The definition
will be put in the C program inside parens as arguments of
printf. To refer to a parameter, close the quote, put a parameter
name and open the quote again, to let C string literals concatenate.
Or use printf's format directives. Values of arguments must be
given as strings, unless the macro stringifies them itself using the
C preprocessor's #parameter syntax.

#def C_definition The definition (of a function, variable, struct or typedef) is written
to the C file, and its prototype or extern declaration to the C head-
er. Inline functions are handled correctly. struct definitions and ty-
pedefs are written to the C program too. The inline, struct
or typedef keyword must come just after def.

Note

A foreign import of a C function may be inlined across a
module boundary, in which case you must arrange for the import-
ing module to #include the C header file generated by hsc2hs
(see Section 9.2.2, “Using function headers”). For this reason we
avoid using #def in the libraries.

Other Haskell utility programs

246

#error message, #warning
message

Conditional compilation directives are passed unmodified to the C
program, C file, and C header. Putting them in the C program
means that appropriate parts of the Haskell file will be skipped.

#const C_expression The expression must be convertible to long or unsigned
long. Its value (literal or negated literal) will be output.

#const_str C_expression The expression must be convertible to const char pointer. Its value
(string literal) will be output.

#type C_type A Haskell equivalent of the C numeric type will be output. It will
be one of {Int,Word}{8,16,32,64}, Float, Double,
LDouble.

#peek struct_type, field A function that peeks a field of a C struct will be output. It will
have the type Storable b => Ptr a -> IO b. The inten-
tion is that #peek and #poke can be used for implementing the
operations of class Storable for a given C struct (see the For-
eign.Storable module in the library documentation).

#poke struct_type, field Similarly for poke. It will have the type Storable b => Ptr
a -> b -> IO ().

#ptr struct_type, field Makes a pointer to a field struct. It will have the type Ptr a ->
Ptr b.

#offset struct_type,
field

Computes the offset, in bytes, of field in struct_type. It
will have type Int.

#size struct_type Computes the size, in bytes, of struct_type. It will have type
Int.

#enum type, constructor,
value, value, ...

A shortcut for multiple definitions which use #const. Each
value is a name of a C integer constant, e.g. enumeration value.
The name will be translated to Haskell by making each letter fol-
lowing an underscore uppercase, making all the rest lowercase,
and removing underscores. You can supply a different translation
by writing hs_name = c_value instead of a value, in
which case c_value may be an arbitrary expression. The
hs_name will be defined as having the specified type. Its
definition is the specified constructor (which in fact may be
an expression or be empty) applied to the appropriate integer
value. You can have multiple #enum definitions with the same
type; this construct does not emit the type definition itself.

11.3.3. Custom constructs
#const, #type, #peek, #poke and #ptr are not hardwired into the hsc2hs, but are defined in a C
template that is included in the C program: template-hsc.h. Custom constructs and templates can
be used too. Any #-construct with unknown key is expected to be handled by a C template.

A C template should define a macro or function with name prefixed by hsc_ that handles the construct
by emitting the expansion to stdout. See template-hsc.h for examples.

Such macros can also be defined directly in the source. They are useful for making a #let-like macro
whose expansion uses other #let macros. Plain #let prepends hsc_ to the macro name and wraps
the definition in a printf call.

Other Haskell utility programs

247

Chapter 12. Running GHC on Win32
systems
12.1. Starting GHC on Windows platforms

The installer that installs GHC on Win32 also sets up the file-suffix associations for ".hs" and ".lhs" files
so that double-clicking them starts ghci.

Be aware of that ghc and ghci do require filenames containing spaces to be escaped using quotes:

c:\ghc\bin\ghci "c:\\Program Files\\Haskell\\Project.hs"

If the quotes are left off in the above command, ghci will interpret the filename as two, "c:\\Program"
and "Files\\Haskell\\Project.hs".

12.2. Running GHCi on Windows
We recommend running GHCi in a standard Windows console: select the GHCi option from the start
menu item added by the GHC installer, or use Start->Run->cmd to get a Windows console and in-
voke ghci from there (as long as it's in your PATH).

If you run GHCi in a Cygwin or MSYS shell, then the Control-C behaviour is adversely affected. In one
of these environments you should use the ghcii.sh script to start GHCi, otherwise when you hit Con-
trol-C you'll be returned to the shell prompt but the GHCi process will still be running. However, even
using the ghcii.sh script, if you hit Control-C then the GHCi process will be killed immediately,
rather than letting you interrupt a running program inside GHCi as it should. This problem is caused by
the fact that the Cygwin and MSYS shell environments don't pass Control-C events to non-Cygwin child
processes, because in order to do that there needs to be a Windows console.

There's an exception: you can use a Cygwin shell if the CYGWIN environment variable does not contain
tty. In this mode, the Cygwin shell behaves like a Windows console shell and console events are
propagated to child processes. Note that the CYGWIN environment variable must be set before starting
the Cygwin shell; changing it afterwards has no effect on the shell.

This problem doesn't just affect GHCi, it affects any GHC-compiled program that wants to catch con-
sole events. See the GHC.ConsoleHandler [../libraries/base/GHC-ConsoleHandler.html] module.

12.3. Interacting with the terminal
By default GHC builds applications that open a console window when they start. If you want to build a
GUI-only application, with no console window, use the flag -optl-mwindows in the link step.

Warning: Windows GUI-only programs have no stdin, stdout or stderr so using the ordinary Haskell in-
put/output functions will cause your program to fail with an IO exception, such as:

Fail: <stdout>: hPutChar: failed (Bad file descriptor)

However using Debug.Trace.trace is alright because it uses Windows debugging output support rather
than stderr.

For some reason, Mingw ships with the readline library, but not with the readline headers. As a

248

../libraries/base/GHC-ConsoleHandler.html

result, GHC (like Hugs) does not use readline for interactive input on Windows. You can get a close
simulation by using an emacs shell buffer!

12.4. Differences in library behaviour
Some of the standard Haskell libraries behave slightly differently on Windows.

• On Windows, the '^Z' character is interpreted as an end-of-file character, so if you read a file con-
taining this character the file will appear to end just before it. To avoid this, use IO-
Exts.openFileEx to open a file in binary (untranslated) mode or change an already opened file
handle into binary mode using IOExts.hSetBinaryMode. The IOExts module is part of the
lang package.

12.5. Using GHC (and other GHC-compiled ex-
ecutables) with cygwin
12.5.1. Background

The cygwin tools aim to provide a unix-style API on top of the windows libraries, to facilitate ports of
unix software to windows. To this end, they introduce a unix-style directory hierarchy under some root
directory (typically / is C:\cygwin\). Moreover, everything built against the cygwin API (including
the cygwin tools and programs compiled with cygwin's ghc) will see / as the root of their file system,
happily pretending to work in a typical unix environment, and finding things like /bin and /
usr/include without ever explicitly bothering with their actual location on the windows system
(probably C:\cygwin\bin and C:\cygwin\usr\include).

12.5.2. The problem
GHC, by default, no longer depends on cygwin, but is a native windows program. It is built using
mingw, and it uses mingw's ghc while compiling your Haskell sources (even if you call it from cygwin's
bash), but what matters here is that - just like any other normal windows program - neither GHC nor the
executables it produces are aware of cygwin's pretended unix hierarchy. GHC will happily accept either
'/' or '\' as path separators, but it won't know where to find /home/joe/Main.hs or /bin/bash or
the like. This causes all kinds of fun when GHC is used from within cygwin's bash, or in make-sessions
running under cygwin.

12.5.3. Things to do

• Don't use absolute paths in make, configure & co if there is any chance that those might be passed to
GHC (or to GHC-compiled programs). Relative paths are fine because cygwin tools are happy with
them and GHC accepts '/' as path-separator. And relative paths don't depend on where cygwin's root
directory is located, or on which partition or network drive your source tree happens to reside, as
long as you 'cd' there first.

• If you have to use absolute paths (beware of the innocent-looking ROOT=`pwd` in makefile hier-
archies or configure scripts), cygwin provides a tool called cygpath that can convert cygwin's unix-
style paths to their actual windows-style counterparts. Many cygwin tools actually accept absolute
windows-style paths (remember, though, that you either need to escape '\' or convert '\' to '/'), so you
should be fine just using those everywhere. If you need to use tools that do some kind of path-
mangling that depends on unix-style paths (one fun example is trying to interpret ':' as a separator in
path lists..), you can still try to convert paths using cygpath just before they are passed to GHC and

Running GHC on Win32 systems

249

friends.

• If you don't have cygpath, you probably don't have cygwin and hence no problems with it... unless
you want to write one build process for several platforms. Again, relative paths are your friend, but if
you have to use absolute paths, and don't want to use different tools on different platforms, you can
simply write a short Haskell program to print the current directory (thanks to George Russell for this
idea): compiled with GHC, this will give you the view of the file system that GHC depends on
(which will differ depending on whether GHC is compiled with cygwin's gcc or mingw's gcc or on a
real unix system..) - that little program can also deal with escaping '\' in paths. Apart from the banner
and the startup time, something like this would also do:

$ echo "Directory.getCurrentDirectory >>= putStrLn . init . tail . show " | ghci

12.6. Building and using Win32 DLLs
Making Haskell libraries into DLLs doesn't work on Windows at the moment; we hope to re-instate this
facility in the future. Note that building an entire Haskell application as a single DLL is still supported:
it's just multi-DLL Haskell programs that don't work. The Windows distribution of GHC contains static
libraries only.

12.6.1. Creating a DLL
Sealing up your Haskell library inside a DLL is straightforward; compile up the object files that make up
the library, and then build the DLL by issuing a command of the form:

ghc –shared -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option –shared, it will build a DLL rather than produce an ex-
ecutable. The DLL will consist of all the object files and archives given on the command line.

A couple of things to notice:

• By default, the entry points of all the object files will be exported from the DLL when using
–shared. Should you want to constrain this, you can specify the module definition file to use on
the command line as follows:

ghc –shared -o MyDef.def

See Microsoft documentation for details, but a module definition file simply lists what entry points
you want to export. Here's one that's suitable when building a Haskell COM server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the –shared option also creates an import library. The import lib-

Running GHC on Win32 systems

250

rary name is derived from the name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool.dll.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-existence of im-
port libraries with ordinary static libraries (e.g., libHSfoo.a and libHSfoo.dll.a. Addition-
ally, when the compiler driver is linking in non-static mode, it will rewrite occurrence of -lHSfoo
on the command line to -lHSfoo.dll. By doing this for you, switching from non-static to static
linking is simply a question of adding -static to your command line.

12.6.2. Making DLLs to be called from other languages
If you want to package up Haskell code to be called from other languages, such as Visual Basic or C++,
there are some extra things it is useful to know. This is a special case of Section 9.2.1.2, “Making a
Haskell library that can be called from foreign code”; we'll deal with the DLL-specific issues that arise
below. Here's an example:

• Use foreign export declarations to export the Haskell functions you want to call from the out-
side. For example,

module Adder where

adder :: Int -> Int -> IO Int –– gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

• Compile it up:

ghc -c adder.hs -fglasgow-exts

This will produce two files, adder.o and adder_stub.o

• compile up a DllMain() that starts up the Haskell RTS-––a possible implementation is:

#include <windows.h>
#include <Rts.h>

extern void __stginit_Adder(void);

static char* args[] = { "ghcDll", NULL };
/* N.B. argv arrays must end with NULL */

BOOL
STDCALL
DllMain

(HANDLE hModule
, DWORD reason
, void* reserved
)

{
if (reason == DLL_PROCESS_ATTACH) {

/* By now, the RTS DLL should have been hoisted in, but we need to start it up. */
startupHaskell(1, args, __stginit_Adder);
return TRUE;

Running GHC on Win32 systems

251

}
return TRUE;

}

Here, Adder is the name of the root module in the module tree (as mentioned above, there must be
a single root module, and hence a single module tree in the DLL). Compile this up:

ghc -c dllMain.c

• Construct the DLL:

ghc –shared -o adder.dll adder.o adder_stub.o dllMain.o

• Start using adder from VBA-––here's how I would Declare it:

Private Declare Function adder Lib "adder.dll" Alias "adder@8"
(ByVal x As Long, ByVal y As Long) As Long

Since this Haskell DLL depends on a couple of the DLLs that come with GHC, make sure that they
are in scope/visible.

Building statically linked DLLs is the same as in the previous section: it suffices to add -static to
the commands used to compile up the Haskell source and build the DLL.

12.6.3. Beware of DllMain()!
The body of a DllMain() function is an extremely dangerous place! This is because the order in
which DLLs are unloaded when a process is terminating is unspecified. This means that the Dll-
Main() for your DLL may be called when other DLLs containing functions that you call when de-
initializing your DLL have already been unloaded. In other words, you can't put shutdown code inside
DllMain(), unless your shutdown code only requires use of certain functions which are guaranteed to
be available (see the Platform SDK docs for more info).

In particular, if you are writing a DLL that's statically linked with Haskell, it is not safe to call
hs_exit() from DllMain(), since hs_exit() may make use of other DLLs (see also Sec-
tion 9.2.1.3, “On the use of hs_exit()”). What's more, if you wait until program shutdown to execute
your deinitialisation code, Windows will have terminated all the threads in your program except the one
calling DllMain(), which can cause even more problems.

A solution is to always export Begin() and End() functions from your DLL, and call these from the
application that uses the DLL, so that you can be sure that all DLLs needed by any shutdown code in
your End() function are available when it is called.

The following example is untested but illustrates the idea (please let us know if you find problems with
this example or have a better one). Suppose we have a DLL called Lewis which makes use of 2 Haskell
modules Bar and Zap, where Bar imports Zap and is therefore the root module in the sense of Sec-
tion 9.2.1.1, “Using your own main()”. Then the main C++ unit for the DLL would look something
like:

// Lewis.cpp -- compiled using GCC
#include <Windows.h>
#include "HsFFI.h"

Running GHC on Win32 systems

252

#define __LEWIS_DLL_EXPORT
#include "Lewis.h"

#include "Bar_stub.h" // generated by GHC
#include "Zap_stub.h"

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
){

return TRUE;
}

extern "C"{

LEWIS_API HsBool lewis_Begin(){
int argc = ...
char *argv[] = ...

// Initialize Haskell runtime
hs_init(&argc, &argv);

// Tell Haskell about all root modules
hs_add_root(__stginit_Bar);

// do any other initialization here and
// return false if there was a problem
return HS_BOOL_TRUE;

}

LEWIS_API void lewis_End(){
hs_exit();

}

LEWIS_API HsInt lewis_Test(HsInt x){
// use Haskell functions exported by
// modules Bar and/or Zap

return ...
}

} // extern "C"

and some application which used the functions in the DLL would have a main() function like:

// MyApp.cpp
#include "stdafx.h"
#include "Lewis.h"

int main(int argc, char *argv[]){
if (lewis_Begin()){

// can now safely call other functions
// exported by Lewis DLL

}
lewis_End();
return 0;

}

Lewis.h would have to have some appropriate #ifndef to ensure that the Haskell FFI types were
defined for external users of the DLL (who wouldn't necessarily have GHC installed and therefore
wouldn't have the include files like HsFFI.h etc).

Running GHC on Win32 systems

253

Chapter 13. Known bugs and
infelicities
13.1. Haskell 98 vs. Glasgow Haskell: language
non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98. See also the “when
things go wrong” section (Chapter 10, What to do when something goes wrong) for information about
crashes, space leaks, and other undesirable phenomena.

The limitations here are listed in Haskell Report order (roughly).

13.1.1. Divergence from Haskell 98

13.1.1.1. Lexical syntax

• Certain lexical rules regarding qualified identifiers are slightly different in GHC compared to the
Haskell report. When you have module.reservedop, such as M.\, GHC will interpret it as a
single qualified operator rather than the two lexemes M and .\.

13.1.1.2. Context-free syntax

• GHC is a little less strict about the layout rule when used in do expressions. Specifically, the restric-
tion that "a nested context must be indented further to the right than the enclosing context" is relaxed
to allow the nested context to be at the same level as the enclosing context, if the enclosing context is
a do expression.

For example, the following code is accepted by GHC:

main = do args <- getArgs
if null args then return [] else do
ps <- mapM process args
mapM print ps

• GHC doesn't do fixity resolution in expressions during parsing. For example, according to the
Haskell report, the following expression is legal Haskell:

let x = 42 in x == 42 == True

and parses as:

(let x = 42 in x == 42) == True

because according to the report, the let expression “extends as far to the right as possible”. Since it
can't extend past the second equals sign without causing a parse error (== is non-fix), the let-
expression must terminate there. GHC simply gobbles up the whole expression, parsing like this:

254

(let x = 42 in x == 42 == True)

The Haskell report is arguably wrong here, but nevertheless it's a difference between GHC &
Haskell 98.

13.1.1.3. Expressions and patterns

None known.

13.1.1.4. Declarations and bindings

GHC's typechecker makes all pattern bindings monomorphic by default; this behaviour can be disabled
with -fno-mono-pat-binds. See Section 8.1, “Language options”.

13.1.1.5. Module system and interface files

None known.

13.1.1.6. Numbers, basic types, and built-in classes

Multiply-defined array ele-
ments—not checked:

This code fragment should elicit a fatal error, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

GHC's implementation of array takes the value of an array slot
from the last (index,value) pair in the list, and does no checking
for duplicates. The reason for this is efficiency, pure and simple.

13.1.1.7. In Prelude support

Arbitrary-sized tuples Tuples are currently limited to size 100. HOWEVER: standard in-
stances for tuples (Eq, Ord, Bounded, Ix Read, and Show) are
available only up to 16-tuples.

This limitation is easily subvertible, so please ask if you get stuck
on it.

Reading integers GHC's implementation of the Read class for integral types ac-
cepts hexadecimal and octal literals (the code in the Haskell 98 re-
port doesn't). So, for example,

read "0xf00" :: Int

works in GHC.

A possible reason for this is that readLitChar accepts hex and
octal escapes, so it seems inconsistent not to do so for integers
too.

isAlpha The Haskell 98 definition of isAlpha is:

Known bugs and infelicities

255

isAlpha c = isUpper c || isLower c

GHC's implementation diverges from the Haskell 98 definition in
the sense that Unicode alphabetic characters which are neither up-
per nor lower case will still be identified as alphabetic by isAl-
pha.

Strings treated as ISO-8859-1 Various library functions, such as putStrLn, treat Strings as if
they were ISO-8859-1 rather than UTF-8.

13.1.2. GHC's interpretation of undefined behaviour in
Haskell 98

This section documents GHC's take on various issues that are left undefined or implementation specific
in Haskell 98.

The Char type Following the ISO-10646 standard, maxBound :: Char in
GHC is 0x10FFFF.

Sized integral types In GHC the Int type follows the size of an address on the host
architecture; in other words it holds 32 bits on a 32-bit machine,
and 64-bits on a 64-bit machine.

Arithmetic on Int is unchecked for overflow, so all operations
on Int happen modulo 2n where n is the size in bits of the Int
type.

The fromIntegerfunction (and hence also fromIntegral)
is a special case when converting to Int. The value of fromIn-
tegral x :: Int is given by taking the lower n bits of
(abs x), multiplied by the sign of x (in 2's complement n-bit
arithmetic). This behaviour was chosen so that for example writ-
ing 0xffffffff :: Int preserves the bit-pattern in the res-
ulting Int.

Negative literals, such as -3, are specified by (a careful reading
of) the Haskell Report as meaning Prelude.negate
(Prelude.fromInteger 3). So -2147483648 means
negate (fromInteger 2147483648). Since fromIn-
teger takes the lower 32 bits of the representation, fromIn-
teger (2147483648::Integer), computed at type Int is
-2147483648::Int. The negate operation then overflows,
but it is unchecked, so negate (-2147483648::Int) is
just -2147483648. In short, one can write minBound::Int
as a literal with the expected meaning (but that is not in general
guaranteed.

The fromIntegral function also preserves bit-patterns when
converting between the sized integral types (Int8, Int16,
Int32, Int64 and the unsigned Word variants), see the mod-
ules Data.Int and Data.Word in the library documentation.

Unchecked float arithmetic Operations on Float and Double numbers are unchecked for

Known bugs and infelicities

256

overflow, underflow, and other sad occurrences. (note, however
that some architectures trap floating-point overflow and loss-
of-precision and report a floating-point exception, probably ter-
minating the program).

13.2. Known bugs or infelicities
The bug tracker lists bugs that have been reported in GHC but not yet fixed: see the SourceForge GHC
page [http://sourceforge.net/projects/ghc/]. In addition to those, GHC also has the following known bugs
or infelicities. These bugs are more permanent; it is unlikely that any of them will be fixed in the short
term.

13.2.1. Bugs in GHC

• GHC can warn about non-exhaustive or overlapping patterns (see Section 5.7, “Warnings and sanity-
checking”), and usually does so correctly. But not always. It gets confused by string patterns, and by
guards, and can then emit bogus warnings. The entire overlap-check code needs an overhaul really.

• GHC does not allow you to have a data type with a context that mentions type variables that are not
data type parameters. For example:

data C a b => T a = MkT a

so that MkT's type is

MkT :: forall a b. C a b => a -> T a

In principle, with a suitable class declaration with a functional dependency, it's possible that this type
is not ambiguous; but GHC nevertheless rejects it. The type variables mentioned in the context of the
data type declaration must be among the type parameters of the data type.

• GHC's inliner can be persuaded into non-termination using the standard way to encode recursion via
a data type:

data U = MkU (U -> Bool)

russel :: U -> Bool
russel u@(MkU p) = not $ p u

x :: Bool
x = russel (MkU russel)

We have never found another class of programs, other than this contrived one, that makes GHC di-
verge, and fixing the problem would impose an extra overhead on every compilation. So the bug re-
mains un-fixed. There is more background in Secrets of the GHC inliner
[http://research.microsoft.com/~simonpj/Papers/inlining/].

• GHC does not keep careful track of what instance declarations are 'in scope' if they come from other
packages. Instead, all instance declarations that GHC has seen in other packages are all in scope
everywhere, whether or not the module from that package is used by the command-line expression.
This bug affects only the --make mode and GHCi.

Known bugs and infelicities

257

http://sourceforge.net/projects/ghc/
http://sourceforge.net/projects/ghc/
http://research.microsoft.com/~simonpj/Papers/inlining/

13.2.2. Bugs in GHCi (the interactive GHC)

• GHCi does not respect the default declaration in the module whose scope you are in. Instead, for
expressions typed at the command line, you always get the default default-type behaviour; that is,
default(Int,Double).

It would be better for GHCi to record what the default settings in each module are, and use those of
the 'current' module (whatever that is).

• On Windows, there's a GNU ld/BFD bug whereby it emits bogus PE object files that have more than
0xffff relocations. When GHCi tries to load a package affected by this bug, you get an error message
of the form

Loading package javavm ... linking ... WARNING: Overflown relocation field (# relocs found: 30765)

The last time we looked, this bug still wasn't fixed in the BFD codebase, and there wasn't any notice-
able interest in fixing it when we reported the bug back in 2001 or so.

The workaround is to split up the .o files that make up your package into two or more .o's, along the
lines of how the "base" package does it.

Known bugs and infelicities

258

Index
Symbols
+r, 49
+RTS, 99
+s, 49
+t, 30, 49
-#include, 94
--install-signal-handlers

RTS option, 100
--RTS, 99
--show-iface, 63
-?, 83
-A

RTS option, 100
-A<size> RTS option, 151, 155
-auto, 132, 135
-auto-all, 132, 135
-B

RTS option, 102
-C, 55, 57
-c, 55, 57, 95

RTS option, 100
-caf-all, 135, 135
-cpp, 57, 91
-cpp option, 91
-cpp vs string gaps, 93
-Cs

RTS option, 97
-D, 92

RTS option, 103
-dcmm-lint, 112
-dcore-lint, 77, 112
-dcore-lint option, 242
-ddump options, 105
-ddump-asm, 111
-ddump-bcos, 112
-ddump-cmm, 110
-ddump-cpranal, 106
-ddump-cse, 107
-ddump-deriv, 105
-ddump-ds, 105
-ddump-flatC, 109
-ddump-foreign, 112
-ddump-hi, 63
-ddump-hi-diffs, 63
-ddump-if-trace, 112
-ddump-inlinings, 106
-ddump-minimal-imports, 63
-ddump-occur-anal, 107
-ddump-opt-cmm, 110
-ddump-parsed, 105
-ddump-prep, 108
-ddump-rn, 105
-ddump-rn-trace, 112

-ddump-rules, 106
-ddump-simpl, 106
-ddump-simpl-iterations, 112
-ddump-simpl-stats option, 112
-ddump-spec, 106
-ddump-splices, 105
-ddump-stg, 109
-ddump-stranal, 106
-ddump-tc, 105
-ddump-tc-trace, 112
-ddump-types, 105
-ddump-workwrap, 107
-debug, 96
-dfaststring-stats, 112
-dppr-debug, 112
-dppr-user-length, 112
-dshow-passes, 112
-dshow-rn-stats, 112
-dshow-unused-imports, 112
-dstg-lint, 112
-dverbose-core2core, 112
-dverbose-stg2stg, 112
-dynamic, 95
-E, 55, 57
-E option, 57
-f, 82

RTS option, 99
-F, 93, 93

RTS option, 101
-f* options (GHC), 87
-fasm, 94
-fbyte-code, 94
-fcontext-stack, 159
-ferror-spans, 58
-fexcess-precision, 87
-fext-core, 105
-fffi, 236
-fforce-recomp, 64
-fglasgow-exts, 157, 236
-fignore-asserts, 87, 217
-fignore-interface-pragmas, 88
-finline-phase, 159
-fno-* options (GHC), 87
-fno-code, 94
-fno-cse, 87
-fno-embed-manifest, 97
-fno-force-recomp, 64
-fno-full-laziness, 88
-fno-gen-manifest, 96
-fno-implicit-prelude option, 242
-fno-print-bind-result, 28
-fno-state-hack, 88, 88
-fno-strictness, 88
-fobject-code, 94
-fomit-interface-pragmas, 88
-fPIC, 94
-fprint-bind-result, 28
-framework, 95

259

-framework-path, 95
-funbox-strict-fields, 88
-funfolding-creation-threshold, 90
-funfolding-update-in-place, 88
-funfolding-use-threshold, 90
-funfolding-use-threshold0 option, 155
-fvia-C, 94
-fwarn-deprecations, 72
-fwarn-dodgy-imports, 72
-fwarn-duplicate-exports, 73
-fwarn-hi-shadowing, 73
-fwarn-implicit-prelude, 73
-fwarn-incomplete-patterns, 73
-fwarn-incomplete-record-updates, 73
-fwarn-missing-fields, 74
-fwarn-missing-methods, 74
-fwarn-missing-signatures, 75
-fwarn-missing-signatures option, 152
-fwarn-monomorphism-restriction, 76
-fwarn-name-shadowing, 75
-fwarn-orphans, 75
-fwarn-overlapping-patterns, 75
-fwarn-simple-patterns, 75
-fwarn-tabs, 76
-fwarn-type-defaults, 76
-fwarn-unused-binds, 76
-fwarn-unused-imports, 76
-fwarn-unused-matches, 76
-G

RTS option, 101
-G RTS option, 156
-H, 58, 151

RTS option, 101
-h<break-down>, 140
-hb

RTS option, 137, 137
-hc

RTS option, 136, 137
-hC

RTS option, 137
-hcsuf, 62
-hd

RTS option, 136, 137
-hi-diffs option, 243
-hide-package, 78, 78
-hidir, 61
-hisuf, 62
-hm

RTS option, 136, 137
-hr

RTS option, 137, 137
-hy

RTS option, 137, 137
-I, 92

RTS option, 101
-i, 137
-idirs , 60
-ignore-dot-ghci, 50

-ignore-package, 78
-ignore-scc, 136
-k

RTS option, 102
-K

RTS option, 102
-keep-hc-file, 63
-keep-hc-files, 63
-keep-raw-s-file, 63
-keep-raw-s-files, 63
-keep-s-file, 63
-keep-s-files, 63
-keep-tmp-files, 63
-l, 94
-L, 95

RTS option, 138
-m

RTS option, 102
-M

RTS option, 102
-m* options, 98
-M<size> RTS option, 155
-main-is, 95
-monly-N-regs option (iX86 only), 99
-n, 57
-no-hs-main, 96, 238
-no-user-package-conf, 80
-Nx

RTS option, 98
-O, 51, 217
-o, 60
-O option, 87
-O* not specified, 87
-O0, 87
-O1 option, 87
-O2 option, 87
-odir, 61
-Ofile <file> option, 87
-ohi, 61
-opta, 91
-optc, 91
-optdep, 91
-optdll, 91
-optF, 91
-optL, 91
-optl, 91
-optm, 91
-optP, 91
-optwindres, 91
-osuf, 62, 209
-p, 136

RTS option, 132
-P, 134, 136
-package, 78, 95
-package-conf, 80, 83
-package-name, 78
-pgma, 90, 128
-pgmc, 90, 128

Index

260

-pgmdll, 90, 128
-pgmF, 90, 128
-pgmL, 90, 128
-pgml, 90, 128
-pgmm, 90
-pgmP, 90, 128
-pgms, 90
-pgmwindres, 90
-prof, 132, 135, 209
-r

RTS option, 103
-r RTS option, 148
-read-dot-ghci, 50
-Rghc-timing, 58
-RTS, 99
-S, 55, 57

RTS option, 102
-s

RTS option, 102
-S RTS option, 155
-split-objs, 95
-Sstderr RTS option, 156
-static, 95
-stubdir, 61
-t

RTS option, 102
-threaded, 96
-ticky, 103
-tmpdir, 63
-tmpdir <dir> option, 63
-U, 92
-unreg, 114
-V, 55, 83

RTS option, 100
-v, 57, 57, 151
-w, 71
-W option, 70
-Wall, 71
-Werror, 72
-Wwarn, 72
-x, 57
-XArrows, 159
-xc

RTS option, 103, 136
-XExtendedDefaultRules, 159
-XForeignFunctionInterface, 158
-XGenerics, 159
-XIncoherentInstances, 159, 190
-XMonoPatBinds, 232
-XNoImplicitPrelude option, 159
-XNoMonomorphismRestriction, 232
-XNoMonoPatBinds, 232
-XOverlappingInstances, 159, 190
-xt

RTS option, 137
-XTemplateHaskell, 206
-XUndecidableInstances, 159, 190
-Z

RTS option, 103
.ghci

file, 50
.hc files, saving, 62
.hi files, 59
.o files, 59
.s files, saving, 62
:, 46
:!, 49
:?, 46
:abandon, 44
:add, 44
:back, 44
:break,
:browse, 44
:cd, 45
:cmd, 45
:continue, 45
:def, 45
:delete, 46
:edit, 46
:etags, 45, 45
:force, 46
:forward, 46
:help, 46
:history, 46
:info, 46
:kind, 47
:load, 25, 47
:main, 47
:module, 47
:print, 47
:quit, 47
:reload, 26, 47
:set, 48, 49
:set args, 48
:set prog, 48
:show, 48
:show bindings, 48
:show breaks, 48
:show context, 48
:show languages, 48
:show modules, 48
:show packages, 48
:sprint, 48
:step, 48
:trace, 48
:type, 49
:undef, 49
:unset, 49
__CONCURRENT_HASKELL__, 92
__GLASGOW_HASKELL__, 3, 3, 3, 92
__HASKELL1__, 92
__HASKELL98__, 92
__HASKELL__=98, 92
__PARALLEL_HASKELL__, 92
–shared, 250
––--show-iface, 55

Index

261

––auto-ghci-libs, 82
––force , 83
––global, 83
––help, 55, 83
––info, 55
––interactive, 43
––make, 54, 55
––numeric-version, 55
––print-libdir, 55
––supported-languages, 55
––user, 83
––version, 55, 83

A
allocation area, size, 100
arguments

command-line, 53
ASCII, 59
Assertions, 217
author

package specification, 85
auto

package specification, 84

B
Bang patterns, 215
binary installations, 18
binds, unused, 76
bugs

reporting, 2
bundles of binary stuff, 18

C
C calls, function headers, 240
C compiler options, 93
C pre-processor options, 91
CAFs

in GHCi, 49
category

package specification, 85
cc-options

package specification, 86
Char

size of, 256
code coverage, 143
command-line

arguments, 53
compacting garbage collection, 100
compiled code

in GHCi, 26
compiler problems, 242
compiling faster, 151
Concurrent Haskell

using, 97
configure, 18
consistency checks, 112
Constant Applicative Form (see CAFs)

constructor fields, strict, 88
copyright

package specification, 84
CORE pragma, 228
Core syntax, how to read, 113
core, annotation, 228
cost centres

automatically inserting, 135
cost-centre profiling, 132
cpp, pre-processing with, 91
Creating a Win32 DLL, 250
CTAGS for Haskell, 244

D
debugger

in GHCi, 33
debugging options (for GHC), 105
defaulting mechanism, warning, 76
dependencies in Makefiles, 67
dependency-generation mode, 55
depends

package specification, 86
DEPRECATED, 218
deprecations, 72
description

package specification, 84
DLL-creation mode, 55
do-notation

in GHCi, 28
dumping GHC intermediates, 105
duplicate exports, warning, 73
dynamic

options, 49, 54

E
encoding, 59
Environment variable

GHC_PACKAGE_PATH, 80
environment variable

for setting RTS options, 99
eval mode, 55
export lists, duplicates, 73
exposed

package specification, 85
exposed-modules

package specification, 85
extensions

options controlling, 157
extensions, GHC, 157
extra-libraries

package specification, 85

F
faster compiling, 151
faster programs, how to produce, 152
FFI

GHCi support, 24

Index

262

fields, missing, 74
file suffixes for GHC, 54
filenames, 59

of modules, 25
finding interface files, 60
floating-point exceptions, 257
forcing GHC-phase options, 90
foreign export

with GHC, 237
Foreign Function Interface

GHCi support, 24
framework-dirs

package specification, 86
frameworks

package specification, 86
fromInteger, 256
fromIntegral, 256

G
garbage collection

compacting, 100
garbage collector

options, 100
GCC options, 93
generations, number of, 101
getArgs, 48
getProgName, 48
GHC vs the Haskell 98 language, 254
GHC, using, 53
GHCi, 24
ghci, 54
GHCRTS, 99
GHC_PACKAGE_PATH, 80
ghc_rts_opts, 103
Glasgow Haskell mailing lists, 1
Glasgow Parallel Haskell, 234

H
haddock-html

package specification, 86
haddock-interfaces

package specification, 86
Happy, 244
happy parser generator, 244
Haskell 98 language vs GHC, 254
Haskell Program Coverage, 143
hasktags, 244
heap profiles, 140
heap size, factor, 101
heap size, maximum, 102
heap size, suggested, 101
heap space, using less, 156
heap, minimum free, 102
help options, 57
hidden-modules

package specification, 85
homepage

package specification, 84

hooks
RTS, 103

hp2ps, 140
hp2ps program, 140
hpc, 143
hs-boot files, 64
hs-libraries

package specification, 85
hsc2hs, 245
hs_add_root, 238
Hugs, 24
hugs-options

package specification, 86

I
idle GC, 101
implicit prelude, warning, 73
import-dirs

package specification, 85
importing, hi-boot files, 64
imports, unused, 76
improvement, code, 86
include-dirs

package specification, 86
include-file options, 93
includes

package specification, 86
incomplete patterns, warning, 73
incomplete record updates, warning, 73
INLINE, 219
INLINE pragma, 219
inlining, controlling, 90, 90
installation, of binaries, 18
installer detection, 96
Int

size of, 256
interactive (see GHCi)
interactive mode, 54
interface files, 59
interface files, finding them, 60
interface files, options, 63
intermediate code generation, 104
intermediate files, saving, 62
intermediate passes, output, 105
interpreter (see GHCi)
invoking

GHCi, 43
it, 31

L
language

option, 157
LANGUAGE

pragma, 218
language, GHC, 157
Latin-1, 59
ld options, 94
ld-options

Index

263

package specification, 86
lhs suffix, 54
libdir, 55
libraries

with GHCi, 43
library-dirs

package specification, 85
license-file

package specification, 84
LINE

pragma, 221
link, installed as ghc, 19
linker options, 94
linking Haskell libraries with foreign code, 96
lint, 112
list comprehensions

parallel, 165

M
machine-specific options, 98
mailing lists, Glasgow Haskell, 1
maintainer

package specification, 84
make, 66
make and recompilation, 58
make mode, 54
Makefile dependencies, 67
Makefiles

avoiding, 55
MallocFailHook, 104
manifest, 96
matches, unused, 76
memory, using less heap, 156
methods, missing, 74
missing fields, warning, 74
missing methods, warning, 74
mode

options, 54
module system, recursion, 64
modules

and filenames, 25
monomorphism restriction, warning, 76
multicore, 96
multiprocessor, 96

N
name

package specification, 84
native-code generator, 57
NOINLINE, 220
NOTINLINE, 220

O
object files, 59
optimisation, 86
optimise

aggressively, 87

normally, 87
optimising, customised, 87
options

for profiling, 135
GHCi, 49
language, 157

OPTIONS_GHC, 218
OPTIONS_GHC pragma, 53
orphan instance, 70
orphan instances, warning, 75
orphan module, 70
orphan rule, 70
orphan rules, warning, 75
OutOfHeapHook, 104
output-directing options, 60
overflow

Int, 256
overlapping patterns, warning, 75
overloading, death to, 152, 221, 222

P
package-url

package specification, 84
packages, 77

building, 80
management, 81
using, 77
with GHCi, 43

parallel list comprehensions, 165
parallelism, 96, 97, 233
parser generator for Haskell, 244
Pattern guards (Glasgow extension), 163
patterns, incomplete, 73
patterns, overlapping, 75
phases, changing, 90
platform-specific options, 98
postscript, from heap profiles, 140
pragma, 217

LANGUAGE, 218
LINE, 221
OPTIONS_GHC, 218

pragma, CORE, 228
pragma, RULES, 223
pragma, SPECIALIZE, 221
pre-processing: cpp, 91
pre-processing: custom, 93
Pre-processor options, 93
problems, 242
problems running your program, 243
problems with the compiler, 242
profiling, 132

options, 135
ticky ticky, 103
with Template Haskell, 208

profiling, ticky-ticky, 148
prompt

GHCi, 24

Index

264

R
reading Core syntax, 113
recompilation checker, 58, 63
record updates, incomplete, 73
recursion, between modules, 64
redirecting compilation output, 60
reporting bugs, 2
rewrite rules, 223
RTS, 104
RTS behaviour, changing, 103
RTS hooks, 103
RTS options, 99

from the environment, 99
garbage collection, 100

RTS options, concurrent, 97
RTS options, hacking/debugging, 102
RULES pragma, 223
runghc, 52
running, compiled program, 99
runtime control of Haskell programs, 99

S
sanity-checking options, 70
search path, 60
segmentation fault, 243
separate compilation, 55, 58
shadowing

interface files, 73
shadowing, warning, 75
shell commands

in GHCi, 49
Show class, 32
smaller programs, how to produce, 155
SMP, 96, 97, 234
source-file options, 53
space-leaks, avoiding, 156
SPECIALIZE pragma, 152, 221, 222
specifying your own main function, 95
stability

package specification, 84
stack, maximum size, 102
stack, minimum size, 102
StackOverflowHook, 104
startup

files, GHCi, 50
statements

in GHCi, 28
static

options, 50, 54
strict constructor fields, 88
string gaps vs -cpp, 93
structure, command-line, 53
suffixes, file, 54

T
tabs, warning, 76

temporary files
keeping, 63
redirecting, 63

testing a new GHC, 19
ticky ticky profiling, 103
ticky-ticky profiling, 148, 148
time profile, 136
TMPDIR environment variable, 63
Type default, 32
type signatures, missing, 75

U
Unboxed types (Glasgow extension), 160
unfolding, controlling, 90, 90
unicode, 59
UNPACK, 223
unregisterised compilation, 114
unused binds, warning, 76
unused imports, warning, 76
unused matches, warning, 76
using GHC, 53
UTF-8, 59
utilities, Haskell, 244

V
verbosity options, 57
version

package specification, 84
version, of ghc, 2

W
warnings, 70
windres, 97

Y
Yacc for Haskell, 244

Index

265

