The Glorious Glasgow Haskell
Compilation System User's Guide,
Version 6.8.2

The GHC Team

The Glorious Glasgow Haskell Compilation System User's Guide,

Version 6.8.2
The GHC Team

Table of Contents

The Glasgow Haskell CompPIler LICENSEiiiiiiiiiii et Xi
I gl o [Tt o g I (0) €1 PP 1
1.1. Meta-information: Web sites, mailing [iStS, 6tC.viiuuiiiiiiii e 1
1.2. Reporting UGS TN GHC ...t e e e e e e e 2
1.3. GHC version NUMBENNG POIICY .vuiveiieii eaneeeees 2
1.4, Release NOteS fOr VErSION B.8.2uuiiiiiiieeiii ettt et e eeeaans 3
1.5. Rel@ase NOLES fOr VErSION B.8.1ivuiiiiiieii e e e e e e e e e e e eeees 4
1.5.1. User-visible compiler ChangEScoouuuiiiiiii e 4

1.5.2. Profiling ChBNGES ... oeiiiii e e e 8
153 GHECI ChaNQES ...eeieei et e e e e e 8
T N = T o I o] = T =S PP 8
B3t - - LY 9

N N o7 = PSP 10

L1.5.4.3. DBYLESIIING .. ceeveeee et 11

1544, Caal .ovniiiiiiiee e 12

L1545, CONTAINETS ...ouneitieit ettt ettt et e et e et e et e et e e et e e eb e eean e 13

ST G T 1= (] P 14

D547 FIIEPAEN L. 14

15.4.8. haskellO8iriiiiii i 14

BT e oo PP 14

1.5.4.00. 0lA-10CAIEneeeeee e 15

I o o [£ L= PP P UPTRUPRRN 15

ST B 2 o o =0 1 o P 15

Bt I T o 1 15

L5414, PIOCESSeeeieeeeee ettt 15

I B T =g o oo PPN 15

T T 1= o 1 o PPN 15

1.5.4.27. template-haskellooeniiii 15

LT 0 T T PRSP 16

L5409, WIN32 oottt et 16

155 . GHC ASA LIBIary .oooeneeeiiiieee e 17

2. INSEAIIING GHC ..ottt ettt e ettt eeaaas 18
2.2, Installing 0N UNiX-a-liKES ... 18
2.1.1. When a platform-specific packageisavailablec.ccooviiiiiiii i, 18

2.1.2. GHC binary distribUtioNScccuiiiiiiiiiicii e e e e e 18
2.0.2. 0 INSEAIING coieneiie e 18

2.1.2.2. Testing that GHC seemSto beWOrKingcccuuviiiiiiiniiiiiiieiiii e 19
2.2.InStalling ON WINOOWSoevuiiiiiii ettt ettt e et e e e e e eenans 19
2.2.1. Installing GHC 0N WINCOWSceuiiiiiieiiee et e e e 19
2.2.2. MOVING GHC @0UNGuiiiiiiiiie et e e e e e e eaas 20
2.2.3. Instaling ghc-Win32 FAQ ...oeniiiii e e 20

2.3. Thelayout of iNStall€d fIlESiiiii e e 21
2.3.1. TheDINary dir€CLOMYuiiiiii e 21

2.3.2. Thelibrary dir€CLOMYiiiiiii ettt 21

1 U o 1 P 24
3.1 INtroduCtion t0 GHCIiiii e 24
T2 0= o 1 0T K o LU [(or =] == 24
3.2.1. MOdUIES VS. FIIENAIMESuiiiiiii et e e 25
3.2.2. Making changes and recompilationoveeeiuiiiiiii e 26

3.3. Loading COMPITEA COUR ...ttt ettt e e e e enens 26
3.4. Interactive evaluation at the PrompPEc.uiiii e 27
3.4.1. /O actions at the PromMPLoveiiiiei e e e eaas 28

3.4.2. Using do- notation at the promptcouuiiiiiiiiiice e e 28

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

3.4.3. What'sreally in scope at the Prompt?ocouuiiriiiiii e 30
3431 QUAlIfIEO NAMES ..ouiieiii e 31
3.4.3.2.The: M N COMMEBNGcovniiiiieeie et e e e e e e ean e eeees 31
B44.Thei t Variable ... e 31
3.4.5. Type defaulting iNn GHCIcouii e 32
T I 4T X € [1= o1 o o = 33
3.5.1. Breakpoints and inspecting variabl€Sc..oviviiiiiiiiii 34
3.5.1.1. Setting breakPOintSuiee e 37
3.5.1.2. Listing and deleting breakpointsuoviiiiiiniiiii 37
3.5.2. SINGIE-SEEPPING ..eevvneeeeitie ettt ettt eaans 38
3.5.3. Nested Breakpointscoue e 38
35.4.The result variable ..o 39
G I - o o = 1o 1= (o Y 39
3.5.6. DEbUGQING EXCEPLIONS ...vvviiieeeeiii i e e e e e e e e e e e e et e e e e e eanas 40
3.5.7. Example: ingpecting fUNCLIONSoouuuiiiiiii e 41
S T I 1101 = (0] 1P 42
I 111 0] (1 4o €1 = [PP 43
G O = o ¢ o - 43
B.6.2. EXITATIDrarIES ..o 43
A € (O oo 41107 o PP 44
3.8. The: SEt COMMANGuiiiieii et e e e e e e e e e e e e et e e e e eeanaeeees 49
3.8.L. GHOCI OPLIONS ...ttt ettt ettt eaaas 49
3.8.2. Setting GHC command-line optionsSin GHCIcocuiiiiiiiiiiii e 49
3B.9. The . gRCI fil e e e 50
3.10. Compiling to object codeinSide GHCIuiiiiiiiiiii e 50
3.11. FAQ and Things TOWatCh QUL FOrcccuniiiiici e e 50
= 1o [00T o o PSPPSR 52
AL FlBOS ettt et et e s 52
LI U o 1 P 53
5.1, OPtIONS OVEIVIEIW ...ttt ettt et e ettt et e e et e et e e et ea e e ea e e et e e et e eanaeeees 53
5.1.1. Command-liNE argUMENESciueiieiieeieee e ee e e e e e e e e e e e e e e e e e aanas 53
5.1.2. Command line options in SOUrCE fileSocvvviiiiiiiiii i 53
5.1.3. Setting OptionNSiN GHCIiiiiiii e 53
5.2. Static, Dynamic, and MOOE OPLIONSveuniii et e e e eees 54
5.3. Meaningful fil@ SUFFIXEScuniiee e e e 54
SV ToTe (=Y o il e] o< = 1 oo NN PP 54
N B U= T o I | TR o ¢ 1= 55
5.4.2. EXpression evaluatioN MOOEuiiiinieii e e e e e e e e e e e e e anas 56
5.4.3. BaLCh COMPITEr MOOEeviieiiiii et 56
5.4.3.1. Overriding the default behaviour for afile ..., 57
5.5. Help and VerboSity OPLIONSoiueiiiiii e 57
5.6. Filenames and separate COMPIELIONc..uiiiuiiiiiiii e 58
5.6.1. Haskell SOUrCETIIESoveeiiieiiiii e 59
L3 27 @ 11 11 0¥ | 1 = 59
5.6.3. ThesearCh Pathooouiiiiii e 60
5.6.4. Redirecting the compilation OUIPUL(S)cevvuneiemenieiiiiie e 60
5.6.5. Keeping Intermediat@ FilESccuiiiiiiiie e 62
5.6.6. Redirecting temporary fil€So.uiiiiiii e 63
5.6.7. Other optionsrelated to interface fileScovvivii i, 63
5.6.8. The recompilation CRECKEScouiiiii e e 63
5.6.9. How to compile mutually recurSive MOdUIEScccuuuiiiiiiiiiiiiiii e 64
5.6.10. USING MEKE ...ttt et ettt e e et e e b e eenans 66
5.6.11. DePendenCy gENEIEHONciuuuiieun ettt e e e et e e e e e e e e aaaas 67
5.6.12. Orphan modules and instance declarationscooieuiiiiniiiiinii e 69
5.7. Warnings and Sanity-ChECKINGiiiuieiiiiiiii et e e e e e e e e e e e e e e e eees 70
B8, PaCKATES .ivuiiii et 77
B5.8.1L USING PACKAGESveiiieiiii ettt 77

5.8.2. ThEMAIN PACKEOE ceeiii et 79

6.8.2

5.8.3. CoNSeqUENCES Of PACKAGES . .vvvueieeeiei e et ee e e et e et e e e e e e e e e e et e e e e e e e aenas 79

5.8.4. PaCKage Datalasescvvveieii i 79
5.8.4.1. The GHC_PACKAGE_PATH environment variablecccoooviiiiiiiiinenennnn, 80

5.8.5. Building a package from Haskell SOUICEccouuiiiiiiiiiiiiiie e 80
5.8.6. Package management (the ghc- pkg command)ccoooiiiiiiiiiiiiiieee, 81
5.8.7.1 nst al | edPackagel nf o: apackage specificationccooeveeiiiiiiiiiineiineennnn. 83

5.9. Optimisation (COAE IMPIrOVEMENT)ieuuieeiieiie eeanaeeees 86
5.9.1. - O*: convenient “packages’ of optimisation flags.ccceeviviiiiii i, 86
5.9.2. - f *: platform-independent flagscoouuiiiiiiii 87

5.10. Options related to aparticular Phaseviiiiiiiiii e 90
5.10.1. Replacing the program for 0ne or MOre Phasesvveuueiiiieiiiie e 90
5.10.2. Forcing optionsto aparticular phaseooeeeiiiiiiii e 90
5.10.3. Options affecting the C pre-proCESSOruiviiiiiiiieii e e e e e e 91
5.10.3.1. CPP and StIINQG QA0S .vvueeruieeinieeiieeitieeeieeeiseeeeease st eeeaneeenseeenaeeanaeeees 93

5.10.4. Options affecting a Haskell pre-proCeSS0ruu i 93
5.10.5. Options affecting the C compiler (if applicabl€)ocoviiiiiiiiiiiiiii e, 93
5.10.6. Options affecting code generationc..oeeeuiiiiiiiiie e 9
5.10.7. Options affecting [INKINGccouiiiiii e 94

5.11. Using Concurrent Haskellc..uiiiiiiii e e e e 97
5.12. USING SMP Parall&liSMeuieiiiieiii it e e e 97
5.12.1. Optionsto enable SMP parall€liSmcoiiiiiiiiiiiii e 97
5.12.2. Hintsfor using SMP parall€liSmcoouuiiiiiiii e 98

5.13. Platform-SpeCifiC FIAOSuoeeeiiii et 98
5.14. Running & Compiled PrOgraMeeun ittt et e e e e e e e e et eean e eees 99
5.14.1. Setting global RTS OPLIONScvviiiiiieii e ee e e e e e e e e e e 99
5.14.2. MisCellaneouS RTS OPLIONScvvuiiiiiieeieie e ee e e e e e e e e e e e e e e e eeeees 100
5.14.3. RTS options to control the garbage collectoroiviiiiiiiii e 100
5.14.4. RTS options for profiling and parallelismc.oooeiiiiiiiiiii e 102
5.14.5. RTS options for hackers, debuggers, and over-interested soulscccooeevnveennnnene. 102
5.14.6. “Hooks” to change RTS Behaviourc.iviiiiiii e 103
5.14.7. Getting information about the RTSiiiiiiiiiii e 104

5.15. Generating and compiling External Core Fil€Sovvuiiiiiiiii e 104
5.16. Debugging the COMPITESciiii et eeb e 105
5.16.1. Dumping out compiler intermediate SITUCIUIESccvuuieiiiiiiieiiiii e 105
5.16.2. Checking fOr CONSISLENCYciutniiiieeii e 112
5.16.3. How to read Core syntax (from some - ddunp flags)ccooeeviiiiiiiiiiiiiiin, 113
5.16.4. Unregisterised COMPIHationccuveiiiiiiiiieiiie e e e e e e e e e 114

I = o I (= 1= 1= 114
5.17.1. Help and VErbosity OPLIONSueiiiiiieiiii e 114
5.17.2. Which phaseSto rUNoooiiiie e 115
5.17.3. Alternative modes Of OPEIationc..oviiuuiiiiiiiii e 115
5.17.4. REAIr€CING OULPULccuunieie ittt ettt e e e e e e eaa e eees 116
5.17.5. Keegping intermediate filescoovvuiiiiiiiii e 116
LI A ST 1= 110 =V 11 = 117
B5.17.7. FINAING IMPOTS ..eeieiiiiii ettt ettt e et e et et e e e e et eeeaba e eeees 117
5.17.8. Interface fill@ OPLIONSu it 117
5.17.9. Recompilation CheCKingooiiu i 117
5.17.10. INteraCtive-mOde OPLIONSc.uuiieieeie e e e e ea e eees 118
51700 PBCKAGES ...t eeee ettt ettt eene 118

LI I8 2 0o 11 7= o = o] o1 o g 118

oI A O T o] o L ST UPPPTTRSPPIN 121
5.17.14. OptimiSation [EVEISuniiiii e 123
5.17.15. Individual OptimiSatioNSoiiuniiiiiiei e 123
5.17.26. Profiling OPtIONSiiue it 125
5.17.17. Program COVErage OPLIONScuuuierneeeieeeiiieeaneeatieestneesenaeeanseraneeenneesnnaeennaeeees 125
5.17.18. Haskell pre-processor OPtiONSveeuuieeeeieeeneeiieeeeiee e e e e e e e eetseeea e eeaneeeees 125
5.17.19. C Pre-ProCeSSOr OPLIONScceuuueeeettieeeeti e eeeeti e e ettt e e e eet e e eeti e e e eete e e e eeraaeaees 126
5.17.20. C COMPIEr OPLIONS ...eevteiiiiie ettt e et e et e e e et eeeareaeeees 126

Vi

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

5.17.21. Code generation OPLIONSccuuuiieuneeeieeei e e e e e e et e e et e e et e e e e e e e e e e e eaneeeees 126
5.17.22. LiNKING OPLIONS ...eevuiiiiseeie ettt e e e e e e e e e e e e e e et e e e e e eanaeeees 126
5.17.23. REPIACING PhASES ...ttt ettt e 127
5.17.24. Forcing optionsto partiCular PRESESuveiieriieiiiiiie e 128
5.17.25. Platform-specifiC OptioNSoiiuniiiiii e 128
5.17.26. External corefile OptioNSoieue i 128
5.17.27. Compiler debugging OPtiONSccuueiiiiiiieeie e e e e e e e e e e e e e eees 129
5.17.28. MiSC COMPIIEr OPLIONSveeeeieiei e e e e e e e e e e eeees 130

B. PrOFTIING e e e et e 132
6.1. Cost centres and COSE-CENIE SLACKSvuuiiiiiiiei ittt 132
6.1.1. Inserting cost centres by Nandooouiiii i 134
6.1.2. Rules for attribUtiNG COSIScuiiiieie e e 134

6.2. Compiler optionsfor Profilingocveierii i 135
6.3. Timeand allocation Profilingveveeioiii e e 136
6.4. Profiling MEMOIY USAJEuueiiiiei ettt e et e et e e et et e e e eebinaeeees 136
6.4.1. RTSoptionsfor heap profilingcooooeiiiiiiii e 136
6.4.2. Retainer Profilingooouniiiii e 138
6.4.2.1. Hintsfor using retainer profilingcoooiiiiiiii e, 139

6.4.3. Biographical Profilingcc.ieiiiiiiic e 139
6.4.4. Actual MEMOIY FESIAENCY ...ovveeiiti e e e e e e e e e e e eeeees 140

6.5. hp2ps—heap profile to POSISCIIPL ...coevveiiiii e 140
6.5.1. Manipulating the NP file ..o e 141
6.5.2. Zooming in on regions of your Profile ..o 142
6.5.3. Viewing the heap profile of arunning programcooeeeiieeiiieein e 142
6.5.4. Viewing aheap profile in real timec.oovviiiiiiii e 142

6.6. ODSENVING COUE COVEIAgE ..uuevvuieineeeieeet ettt e e et e et e e e et eeet e e et s eetn e eanaeeanaeeeanaeennaees 143
6.6.1. A small example: RECIPrOCALIONuieiiiiiieiiiii e 143
6.6.2. Options for instrumenting code fOr COVEIagEveiiiiiieiiiiiieeieie e 145

6.6.3. ThENPC LOOIKIT ...eeeeeeee e et e e e eees 145
6.6.3. 1. NPC FEPOIT ...ttt 145

LS 7 oo Lo 4 (U o 146

L2 TG T o o= o 146

6.6.3.4. NPC COMDINEceiitee e 146

B.6.3.5. NPCMAD .oeieii e e 147

6.6.3.6. hpc overlay and hpC draftoooeeiiii e 147

6.6.4. Caveats and Shortcomings of Haskell Program Coverageccoovvvivieiiieiieinnennnns 148

6.7. Using “ticky-ticky” profiling (for implementors)ccovevuiiiiiiieiii e 148
7. Advice on: sooner, faster, smaller, thriftier ... 151
7.1. Sooner: producing aprogram more qQUICKIYcoeuuoiiiiiieeie e 151
7.2. Faster: producing a program that runS QUICKEYccoiiuiiiiiiiiiie e 152
7.3. Smaller: producing aprogram that iSSmaller ..o 155
7.4. Thriftier: producing a program that gobbleslessheap spacecoooiiiiiiiiiiiiiis 156
8. GHC LanNQUAQE FEEIUINESieeiiiiiieei et e e e et et e e e e e e e e e e et et e e e et e et e et e en e en e e e e eaneees 157
o300 I =g o 1o =0 o0 157
8.2. Unboxed types and primitive OPErationNScooeuuieiiiiiieiiiin e 159
8.2.1. UNDOXEA LYPES ...ttt e e 160
8.2.2. UNDOXEA TUPIES ...ttt e e e et eeaeeeaes 161

8.3. SYNLACHIC EXLENSIONSite it et ettt e e e e e e e e e e e e e e e e et e et e et e e aeans 162
8.3.1. Hierarchical MOAUIESccoiiiiiiiiii et 162
TG - 1 (= 1o o 163
8.3.3. The recursiVe dO-NOELIONceuuieie et e e e e e e e eees 164

8.3.4. Parallel List COMPreNeNSIONSccouvuiiiiiiiiieiiii e 165
8.3.5. ReDINAADI@ SYNEAXeeniiieie e 166
8.3.6. POSLTIX OPEIGLOISeeeeeeiee ettt 167
8.3.7. Record field disambiguationcoviiiiiiiiiiii e 167

8.4. Extensions to data types and type SYNONYIMScvuniiiieieeieeei e e e e e e e e e e e e e eenaees 168
8.4.1. Datatypes With N0 CONSLIUCTONSc.uuuiiiiiiiieiiiiii et e e 168
8.4.2. Infix type constructors, classes, and typevariablescccoovviiiiiiiiiiiinci 168

Vii

6.8.2

8.4.3. Liberalised type SYNONYIMSuciiiiiii e e e e e e e e e e e e e e e e ea e eees 169
8.4.4. Existentially quantified data CONSITUCLONScvvueiiiiiiiii e 170
8.4.4.1. WhHy eXiStential?ccoouuiiiiiii e 171
8.4.4.2. Existentials and type ClasSescccvuniiiiiiiiieiii e 171
8.4.4.3. RECOrd CONSITUCLOS . .cvtiiiteiit et e e e e e e e e eeas 172

8.4 4.4, RESINCLIONS .. .eeeeieii ettt e eaeas 173
8.4.5. Declaring data types with explicit constructor SIgNatUreSoveveeveveeieeeinneennennn. 174
8.4.6. Generalised Algebraic Data TYPES (GADTS) wvvuevveneiiiiiiii e eeee e e e e e e e e 177
8.5. Extensions to the "deriving” mechanism ... 179
8.5.1. Inferred context for defiving ClALSESuiiiiiiiiie e 179
8.5.2. Stand-alone deriving deClarationS viiuiiieie e 179
8.5.3. Deriving clausefor classes Typeabl e andDat @ccooeevviiiiiiiiiiiiiniceee, 180
8.5.4. Generalised derived instances for NEWLYPEScvveciiii i e 180
8.5.4.1. Generalising the deriving ClalSecc.uvvviiiiiii e 180
8.5.4.2. A more Precise SPECITICAtIONcccouuniiiiiii e 182

8.6. Class and inStanCeS deClarationsvvuuiiiiiei e e e e 182
8.6.1. ClasS UECIAIALIONSieueeiiiieeit ettt e e e e e e ea e eees 183
8.6.1.1. Multi-parameter type ClaSSEScouuiiiiiiiiiie e 183
8.6.1.2. The superclasses of aclassdeclarationcceeeveviiiiiiiiiiieiii e, 183
8.6.1.3. ClassS MEthOU LYPEScvvvieiei e e e e e e 183

8.6.2. FUNCLiONal dEPENTENCIESccovviiieiiiiii e e 183
8.6.2.1. Rulesfor functional dependenCiescoocevvviiieiiiiiiieiii e 184
8.6.2.2. Background on functional dependenciesocoveiiiiiiiiiiiiiiiiii e, 184
8.6.3. INSLANCE AECIAratiONScuuiieieiit et 188
8.6.3.1. Relaxed rules for instance declarationscoveveeiiiieeiiiiineeiiiine e 188
8.6.3.2. UNdeCidable iNStANCESccovviiiiiiiieiii e 189
8.6.3.3. OVErlappiNg INSIANCEScieiiiieeiii e e 190
8.6.3.4. Type synonymsintheinstanceheadccccooviiiiiiiiiiiiiiiiiic e 192

8.6.4. Overloaded String [ITEralSoieeiiii e 192
8.7. Other type SYStEM EXLENSIONS ... ceeeeiieeit ettt e e e et e e e et e e ea e eanas 193
S T Y/ o= T 0 [= 193
8.7.1.1. The context of atypeSIgNAUIecoeuieviriiieiiieei e e e e e 193

8.7.2. IMPIICIt PArAMELEIS ...ttt 194
8.7.2.1. Implicit-parameter type CONSLIAINESuuieieiriieiiiiiee et e e 195
8.7.2.2. Implicit-parameter DiNAdINGScouuiiiiiiiii e 196
8.7.2.3. Implicit parameters and polymorphiC reCurSioNnccoceeueiiiniiiineeiineennnn. 196
8.7.2.4. Implicit parameters and monomMorphismccoceeiieiiiiiiiieein e, 197
8.7.3. Explicitly-kinded quantifiCationcooeiuiiiii i 197
8.7.4. Arbitrary-rank polymorphiSm 198
B.7.4. L EXAMPIES ...uuiieiiiii ettt ettt e e e e e e a e aa 199
8.7.4.2. TYPEINFEIEICE ... et 201
8.7.4.3. Implicit qUaNtITICALIONuiiieiiii e 201
8.7.5. Impredicative polymorphiSmcoouiiii i 202
8.7.6. Lexically scoped type variablesccoeuiviiiiiiiiie e 202
S 30 O Y VT 203
8.7.6.2. Declaration type SIGNBEUIESceeereieeiiii e et e et e et e et e e e eees 203
8.7.6.3. EXPression type SIgNELUIESuieeiieii ettt e e eeeas 204
8.7.6.4. PatterN tyPe SINBIUINESceuuiitiiei et e e e e 204
8.7.6.5. Class and instance deClarationScocuuviieiiiinieiiiie e 205

8.7.7. Generalised typing of mutually recursive bindingsccccoevvviiiiii i, 205
8.7.8. TYPETAMITIES ...t e 206
8.8. Template Haskell ... et e e 206
SRS IS = PRSPPI 206
8.8.2. Using Template Haskellcouuiiiiii e 207
8.8.3. A Template Haskell Worked EXamplecc.veviiiiiiiiiii e 207
8.8.4. Using Template Haskell with Profilingcocveiiiiiiiii e 208
LSS I A 4 011V g o) - o o P 209
8.9.1. do-notation fOr COMMEBNGSc.uuiiieieiie e e eees 210

The Glorious Glasgow Haskell Com-
pilation System User's Guide, Version

8.9.2. Conditional COMMBNGSeiiiiiieiiiii e e et e e e e et eeeetanaeeees 211
8.9.3. Defining your own CONrol SLIUCLUIESvvveeeeieeiieeee e e e e e e e e e e eeees 212
8.9.4. Primitive CONSIIUCESiiie e e et et e e e e e e e e e e eaeeeees 213
8.9.5. Differences With the PADEYcovuiiiiii e 214
8.9.6. POIabIlITY .ovvvuieeiiiiii e aaaa 214
8.10. BANG PALEIMIS ... ettt et e e 215
8.10.1. Informal description of bang Patternscocevveiiiiiiii e 215
8.10.2. Syntax and SEMANLICSueieeeiiiieiei e e e e e e e e e e e e e e e e aeeees 216
STt T AN 1 o 217
R =0 1 07> S ST TUPTPRIN 217
8.12.1. LANGUAGE PIagIMa ...vuuieiiiiiieeiiiiieeeeitieeeeeeiseeeeetsaeeaattseeaeatasaeeeatenaeeestnnaaaees 218
8.12.2. OPTIONS _GHC PragiMal .. ceevveieeeeiieeeeiiie e e e et e e e et e e e et e e e eetesaeeeeteneeeearanaeaees 218
8.12.3. INCLUDE PragMa «...ucvuiieiiiiiiieee et e et e e e e e e e e e e en e e e ea e e e e e e e eaneanaaannas 218
8.12.4. DEPRECATED PragMauveuiinieeeetieetieeieeeeetesteeaneeaseenseenseanseaneenneenaeenaaanns 218
8.12.5. INLINE and NOINLINE PIragMmasccuuieeuneeeieeeiieeeieeeeaeeaiaeeenneeenneeeenneennaeeees 219
8.12.5. 1. INLINE PragMacevvvuieeeiiiiieeeiii e eeeeiieeeeeetseeeeetisaeeeataseeaaaaaneeseannnaeaens 219
8.12.5.2. NOINLINE Pragmaueeeeeuuieeiiiiiieeiiiineeeeiiineeeeetiseeeeeiiseeesatnneesennnnaeeees 220
8.12.5.3. PhaSe CONIOlcceuiiiiiei e 220
Lo 2 I | o = [0= P 221
LS 2 0 | I Y o] o 1 7= 221
8.12.8. SPECIALIZE PragIMal ... eeeieiiieeei ettt ettt e e e e e e enes 221
8.12.9. SPECIALIZE INSLANCE PragiMal .. .ccevuueeeiiieeeeeiie e et et e et e e e e e eeaiaeeees 222
8.12.10. UNPACK PIragIMa ...eevvuuieeiiiieeeeiiiieeeettiaeeeeattsaesaetesaeesateaeesatsaeeennenaeesnrnnaaaees 223
813, REWIITE TUIES ...ttt ettt e e e et e et et e e ea e e ean e 223
S 00 B0 S | - P 224
8132, SEMANTICS ...vteeiiiiie ettt ettt e e et e e et e aaes 224
S 300G T T I T 0 o 226
8.13.4. SPECIAIISALION ...eevveieeiii e et e e et e e r e e e aaaa 227
8.13.5. Controlling What'S gOING ONuieeneiie e e e ea e eees 228
8.13.6. CORE PIragMa ... cvueuneiueiteei ettt ettt et e e et et et et et e e e e e e e e et e eneenaennnas 228
8.14. Special built-iN TUNCHIONSiiiiiii e e e e e e 229
8.1, GENENIC ClASSES ..ttt ab e 229
8.15. 1. USING GENENICS ..eevteeeitieee ettt ettt e e et e ettt e e ettt e e et et e et e et e e e eete e e e eateaeaees 230
8.15.2. ChangeS WIT the PADESciieie ettt e e e 230
8.15.3. Terminology and reStIICHIONSccuuiiiieii e 230
8.15.4. ANOLNEr EXAMPIE .. .eeee e 232
8.16. Control over MONOMOIPNISIM ...iut i eee et eeeaeaaenaaes 232
8.16.1. Switching off the dreaded Monomorphism Restrictionccccceeviviiiiiiiineinnnenn, 232
8.16.2. Monomorphic pattern DINAINGSuiiiiiiiiei e 232
8.17. Concurrent and Parallel Haskelloooeeiiiiii e 233
8.17.1. Concurrent Haskellooeuiiiii e 233
8.17.2. Software Transactional MEMOIYoevuiiiiiei e e a e 233
8.17.3. Parallel Haskellcooouuiiiiiii e 234
8.17.4. Annotating pure code for parallelismccoeveiiiiiiii 234
9. Foreign function iNterfate (FF1) i 236
9.1. GHC extensionsto the FFI Addendumoooouiiiiiii e 236
S R U T 001 o 1Y/ o= PP 236
9.1.2. Newtype wrapping of the IO monadooeeuiiiiiiiii e 236
9.2.UsiNgthe FFI With GHC ..o e e e e e e 236
9.21. Usingforei gn export andforeign inport ccall "wapper" withGHC 237
9.2.1.1. USING YOUr OWN MBI N(1) 1oeeeetiieeiiiii ettt e e e 237
9.2.1.2. Making aHaskell library that can be called from foreign code 239
9.2.1.3.0ntheuse of NS_eXI T () wuirieiiiiiiee e e 239
0.2.2. Using fUNCLION NEAAENScviieiii e 240
9.2.2.1. Finding Header fIl€Scveuiiii e 240
1S G T Y/ = 030 YA A | 1o 1 o o 240
10. What to do when something QOBSWIONGcceevuuieiiit ettt e e e 242
10.1. When the compiler “doesthe wrong thing”oviiiiiiiiiii e 242

6.8.2

10.2. When your program “doesthe Wrong thing”ccoiiiiiiiiiii e 243

11. Other Haskell Utility PrOgramScvueeee et eeaaeaeanaees 244
11.1. Ctags and Etags for Haskell: hasktagscuuviiiiiiiiiiiii e 244
11.1.1. Using tagS With YOUF €ITOriiiiiiiieiiiii e 244
11.2."Yacc for Haskell”: NAPPY ...ooeeieiie e 244

11.3. Writing Haskell interfacesto C code: hSC2hSc.viviiiiii e, 245
11.3.1. cOMMEAND [INE SYNEAX ...ieunieeieeii et et e e e e e aanaees 245

TG T g o1 1 = 246

TG TR 01 o g o] 1 1 o 247

12. RUNNING GHC 0N WIN32 SYSLEIMISueiiiii ettt ettt ettt ettt e e e e e e s 248
12.1. Starting GHC on Windows platformsoooeeiiiiii e 248

12.2. RUNNING GHCI ONWINAOWSouiiiiei e e e e e et e e e e e e eaaeenas 248

12.3. Interacting with theterminal ... 248

12.4. Differencesin library DEhavioUrcccouiiiiiii e 249

12.5. Using GHC (and other GHC-compiled executables) with cygwincccooeveeiiiiinieiinnnnnn. 249
12.5.1. BACKGIOUNGiiiiieeeei ettt ettt e et e e e e e e na s 249

12.5.2. TREPIODIEIM e e e 249

D2 T T I 111 21 (o 1o (o 249

12.6. Building and USINGWIN32 DLLS ...uuuiiiiiiiiieiie e e e e e e e e e e e e e aaas 250
12.6.1. Creating @DLL ..c.uiieiiei e 250

12.6.2. Making DLLsto be called from other [anguagescooooveviniiiiiineciiii e, 251

12.6.3. Beware of DIIMaiN()!uniiiiiiie e 252

13. Known bugs and iNfEIICITIESiiee et e e e e 254
13.1. Haskell 98 vs. Glasgow Haskell: language non-complianCec.coovvieiiiiiiiiiineiiineeennn, 254
13.1.1. Divergence from Haskell 98ccoviiiiiiiii e 254

Tt It I = (o Y | - 254

13.1.1.2. CONEXE-FIEE SYNEAX ..eeeveneeeiiie ettt 254

13.1.1.3. EXPressions and PALtErNSueeiereneeeeiieee ettt 255

13.1.1.4. Declarations and bindingScoeuiiiuniiiiiiiiee e 255

13.1.1.5. Module system and interface filesccovviiiiiii i, 255

13.1.1.6. Numbers, basic types, and built-in Classescccoeevviiiiiiiiiii e, 255

13.1.2.7. INPrel Ude SUPPOIT ..ovuneeii e e e e e e e e e e ans 255

13.1.2. GHC's interpretation of undefined behaviour in Haskell 98ccooevviviviiininnnns 256

13.2. KNOWN bugs OF INFEIICITIES ... 257
3 I 10 o (S o 1 [PSP 257

13.2.2. Bugsin GHCi (theinteraCtive GHC)coouiiiiiii e 258

g0 1= PR 259

The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, thislist of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

» Neither name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS "AS IS' AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETH-
ER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Xi

Chapter 1. Introduction to GHC

Thisisaguide to using the Glasgow Haskell Compiler (GHC): an interactive and batch compilation sys-
tem for the Haskell 98 [http://www.haskell.org/] language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi), described in
Chapter 3, Using GHCi, and a batch compiler, described throughout Chapter 5, Using GHC. In fact,
GHC consists of a single program which is just run with different options to provide either the interact-
ive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an interactive
session and used in the same way as interpreted code, and in fact when using GHCi most of the library
code will be pre-compiled. This means you get the best of both worlds: fast pre-compiled library code,
and fast compile turnaround for the parts of your program being actively devel oped.

GHC supports numerous language extensions, including concurrency, a foreign function interface, ex-
ceptions, type system extensions such as multi-parameter type classes, local universal and existential
quantification, functional dependencies, scoped type variables and explicit unboxed types. These are all
described in Chapter 8, GHC Language Features.

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you've got time to
spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as fast as pos-
sible while not making too much effort to optimise the generated code (although GHC probably isn't
what you'd describe as a fast compiler :-).

GHC's profiling system supports “cost centre stacks’: away of seeing the profile of a Haskell program
in acall-graph like structure. See Chapter 6, Profiling for more details.

GHC comes with anumber of libraries. These are described in separate documentation.

1.1. Meta-information: Web sites, mailing lists,

etc.

On the World-Wide Web, there are several URL s of likely interest:

» Haskell home page [http://www.haskell.org/]
» GHC home page [http://www.haskell.org/ghc/]
» comp.lang.functional FAQ [http://www.cs.nott.ac.uk/~gmh/fag.html]

We run the following mailing lists about Glasgow Haskell. We encourage you to join, as you feel is ap-
propriate.

glasgow-haskell-users: This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ
[http://www.haskell.org/haskel lwiki/GHC/FAQ] first.

list email address: <gl asgow haskel | -user s@
askel | . org>

subscribe at: ht -

http://www.haskell.org/
http://www.haskell.org/
http://www.haskell.org/ghc/
http://www.cs.nott.ac.uk/~gmh/faq.html
http://www.haskell.org/haskellwiki/GHC/FAQ

Introduction to GHC

tp: // www. haskel | . or g/ mai
| man/

listinfo/glas-

gow haskel | - users.

admin email address: <gl asgow haskel | -users-a
dm n@naskel | . or g>

list archives: ht -
tp:// ww. haskel | . org/ pip
ermail / gl as-
gow haskel | - users/

cvs-ghc: The hardcore GHC developers hang out here. Thislist also gets com-
mit message from the GHC darcs repository. There are other lists for
other darcs repositories (most notably cvs- 1 i brari es).

list email address: <cvs-ghc@askel | . org>
subscribe at: ht -

tp: // www. haskel | . or g/ mai
I man/listinfol/cvs-ghc.

admin email address: <cvs-ghc-adm n@askel | .o
rg>
list archives: ht -

tp://ww. haskel | . org/ pip
ermai |l / cvs-ghc/

There are several other haskell and GHC-related mailing lists served by www. haskel | . or g. Go to
http://ww. haskel | . org/ mai | man/1i stinfo/ forthefull list.

Some Haskell-related discussion also takes place in the Usenet newsgroup
conp. | ang. functi onal .

1.2. Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please see this
wiki page [http://hackage.haskell .org/trac/ghc/wiki/ReportABug] for information on how to report it.

1.3. GHC version numbering policy

Asof GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable Releases Stable branches are numbered x. y, wherey is even. Releases on the stable
branch x. y are numbered x. y. z, where z (>= 1) is the patchlevel num-
ber. Patchlevels are bug-fix releases only, and never change the program-
mer interface to any system-supplied code. However, if you install a new
patchlevel over an old one you will need to recompile any code that was
compiled against the old libraries.

Thevalue of _ GLASGOW HASKELL __ (see Section 5.10.3, “Options &f -
fecting the C pre-processor”) for amajor release X. y. z isthe integer xyy

2

http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/pipermail/glasgow-haskell-users/
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/mailman/listinfo/cvs-ghc
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/mailman/listinfo/
http://hackage.haskell.org/trac/ghc/wiki/ReportABug
http://hackage.haskell.org/trac/ghc/wiki/ReportABug

Introduction to GHC

(if y isasingle digit, then a leading zero is added, so for example in ver-
sion 6.8.2 of GHC we would have __ G_LASGOW HASKELL __ ==608).

Stable snapshots We may make snapshot releases of the current stable branch available for
download [http://www.haskell.org/ghc/dist/stable/dist/], and the latest
sources are available from the darcs repositories
[http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories).

Stable snapshot releases are named x. y. z. YYYYMVDD. where YYYYM
DD is the date of the sources from which the snapshot was built, and
X.y.z+1 is the next release to be made on that branch. For example,
6. 8. 1. 20040225 would be a snapshot of the 6. 8 branch during the
development of 6. 8. 2.

The value of _ GLASGOW HASKELL _ for a snapshot release is the in-
teger xyy. You should never write any conditional code which tests for
this value, however: since interfaces change on a day-to-day basis, and we
don't have finer granularity in the values of __ GLASGOW HASKELL __,
you should only conditionally compile using predicates which test whether
_ GLASGOW HASKELL__ is equa to, later than, or earlier than a given
major release.

Unstable snapshots We may make snapshot releases of the HEAD available for download
[http://www.haskell.org/ghc/dist/current/dist/], and the latest sources are
available from the darcs repositories
[http://hackage.haskell .org/trac/ghc/wiki/DarcsRepositories].

Unstable snapshot releases are named x. y. YYYYMVDD. where YYYYMV
DD is the date of the sources from which the snapshot was built. For ex-
ample, 6. 7. 20040225 would be a snapshot of the HEAD before the cre-
ation of the 6. 8 branch.

The value of __ GLASGOW HASKELL __ for a snapshot release is the in-
teger xyy. You should never write any conditional code which tests for
this value, however: since interfaces change on a day-to-day basis, and we
don't have finer granularity in the values of _ GLASGOW HASKELL
you should only conditionally compile using predicates which test whether
__ GLASGOW HASKELL__ isequd to, later than, or earlier than a given
major release.

The version number of your copy of GHC can be found by invoking ghc with the ——ver si on flag
(see Section 5.5, “Help and verbosity options”).

1.4. Release notes for version 6.8.2

6.8.2 is a bugfix release over 6.8.1. Many bugs in the compiler, libraries and build system have been
fixed. However, most library APIs have not changed, so code that worked with 6.8.1 should continue to
work with 6.8.2. The notable exceptions, aswell as the user interface changes, are listed below.

* The--print-docdir for GHC has been removed, as there were some problems with the imple-
mentation. Well revisit thisareain afuture release.

» Standalone deriving declarations now respect scope: You can't derive a Show instance, for example,
unless all the constructors are in scope.

* GHCi now treats all input as unicode, except for the Windows console where we do the correct con-

3

http://www.haskell.org/ghc/dist/stable/dist/
http://www.haskell.org/ghc/dist/stable/dist/
http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories
http://www.haskell.org/ghc/dist/current/dist/
http://hackage.haskell.org/trac/ghc/wiki/DarcsRepositories

Introduction to GHC

version from the current code page.
* InGHCi, ":" now repeats the last command.

e InGHCi,:{ ..lines.. :} canbeused to give multi-line commands. Thisis mainly useful in
. ghci files.

e In GHCI, : show | anguages shows the active language extensions and : show packages
shows the loaded packages.

* In GHCi, : def! now overwrites a previous command with the same name, : def on its own lists
the defined macros, and : undef f g undefinesbothf and g.

 Thereisnow avariant, : br owse! , of : br owse.

» Various changes have been made to GHC's internals, so there are some differences in the APl ex-
posed by the ghc package. Most notably, checkAndLoadModul e has now been implemented.

* Theversion of base has been increased from 3.0.0.0 to 3.0.1.0.

* Theversion of Cabal has been increased from 1.2.2.0t0 1.2.3.0.

* Theversion of containers has been increased from 0.1.0.0 t0 0.1.0.1.
* Theversion of unix has been increased from 2.2.0.0 to 2.3.0.0.

* Theversion of Win32 has been increased from 2.1.0.0 to 2.1.1.0.

1.5. Release notes for version 6.8.1

1.5.1.

The significant changes to the various parts of the compiler are listed in the following sections.

The major changes in this release are adding Haskell Program Coverage (hpc) support to the compiler,
adding a debugger to GHCI, the first phase of the base package split, and pointer tagging in the code
generator (which should mean most code improves by 10-15%, and as a result the compiler is also
faster).

User-visible compiler changes

» The GHC version numbering policy has been changed so 6.8.1 is the first release in this branch; see
Section 1.3, “GHC version numbering policy” for details.

* Registerised builds with gcc >= 4.2 now work.

* While older releases did mostly work on Windows Vista, 6.8.1 fixes some issues, e.g. Windows used
to think that cabal Setup programs were installers and refused to run them. However, Win9x support
has now officially been dropped, as we are not able to test on that platform.

» Haskell Program Coverage Adding hpc tools, as a single program GHC now comes with “Haskell
Program Coverage”, a code coverage tool. Thisisin the form of anew - f hpc flag and an hpc pro-
gram. See Section 6.6, “ Observing Code Coverage” for more details.

* Thereisthe beginnings of support for “associated types’ in GHC. However, this is incomplete and
not a supported feature.

» Thereis the beginnings of support for “nested data parallelism” in GHC. However, this is incom-

4

Introduction to GHC

plete and not a supported feature.

* Itisnow possible to derive class instances with standalone top-level declarations, rather than having
to attach a deriving clause to the datatype declaration. The syntax is

deriving instance Cxt => Head
For more details see Section 8.5.2, “ Stand-alone deriving declarations”.

» GHC now does left-to-right impredicative instantiation, so for example

runST $ foo
will now work. Don't rely on this, though, asit is subject to change in the future!

* A new extension Over | oadedSt ri ngs meansthat string literals have type

Data. String.IsString t =>t

whereDat a. String. | sStri ngisanew classwith asingle method
fronString :: String -> a

e There is a new record field disambiguation extension, enabled by -fdi sam
bi guat e-record-fi el ds, which alows normally-ambiguous field names to be used when it is
clear which is meant due to the use of a constructor. See Section 8.3.7, “Record field disambigu-
ation” for more details.

e There are dso new flags - f r ecor d- puns and - fr ecor d- dot - dot for record punninng, but
these do not work correctly yet, and so are not supported.

* GHC now has an - - i nf o flag which prints information about the settings used to build the com-
piler. The information isin a machine-parsable (Haskell) format. For example,

$ ghc --info

[("Project name","The d orious d asgow Haskell Conpilation Systent)
("Project version","6.8.1")
(" Booter version","6.6")
("Stage","2")
("Interface file version","6")
("Have interpreter","YES")
("Ohject splitting","NO")
("Have native code generator”,"YES")
(" Support SWMP',"YES")
(
(
(
(
(

"Unregi sterised", "NO")
"Tabl es next to code", " YES")
IIW n32 D_LS", n II)

"RTS ways"," debug thr thr_p thr_debug")

Leadi ng underscore", "NO'")

]

* Theruntime system now has an - - i nf o flag which prints various information about the way it was
compiled. Thusyou can give +RTS - - i nf o flags to any Haskell program, e.g.

Introduction to GHC

$ darcs +RTS --info
[("GHC RTS", "Yes")
, ("CGHC version", "6.8.1")
, ("RTS way", "rts_thr")
, ("Host platform, "x86_64-unknown-Iinux")
,("Build platforni, "x86_64-unknown-Iinux")
,("Target platform', "x86_ 64-unknown-Iinux")
, ("Conpi l er unregisterised", "NO')
j("Tabl es next to code", "YES")

GHC now accepts - XFoo and - XNoFoo flags, where Foo is any extension that can be listed in a
LANGUAGE pragma. As aresult the following flags are now deprecated:

e -fth(use- XTenpl at eHaskel |)

-ffi,-fffi (use- XForei gnFuncti onl nt erface)

e -farrows (use- XArrows)

« -fgenerics (use- XGeneri cs)

e -finmplicit-prelude (use-XlnplicitPrelude)

« -fbang-patterns (use- XBangPat t er ns)

e -frononorphi smrestriction (use- XMononor phi snmRestri ction)
e -fnono- pat - bi nds (use- XMonoPat Bi nds)

« -fextended-default-rul es (use- XExt endedDef aul t Rul es)

e -finmplicit-parans (use- Xl nplicitParans)

« -fscoped-type-vari abl es (use- XScopedTypeVari abl es)

e -fparr (use- XPArr)

-fal |l ow over !l appi ng-i nst ances (use- XOver | appi ngl nst ances)

-fal |l ow undeci dabl e-i nst ances (use- XUndeci dabl el nst ances)
« -fallowincoherent-instances (use- Xl ncoher ent | nst ances)

GHC now has a - - support ed- | anguages flag which lists the strings it understands as a - X
flag and in a LANGUAGE pragma. You can prepend NO to any of the strings. LANGUAGE pragmas
aso only turn on exactly what you asked for now; many of them used to just enable -
f gl asgow ext s before.

GHC now understands GENERATED pragmas, which are used to indicate to tools like HPC where
some tool-generated code came from. They look like

{-# CENERATED " SourceFile" 12:3-14:8 #-} expr

GHC now hasa- - pri nt - docdi r flag which prints to stdout where GHC believes its document-
ation islocated.

Introduction to GHC

The- Onolonger enables- f vi a- C.

There is a new flag - f obj ect - code, which uses the default of -fasmor -fvi a- C, and -
f byt e- code, which only worksin GHCi and sets byte-code as the target.

The warning for importing T(. .) when T is an abstract type used to be enabled only by - Wor -
Wal | . It no hasitsown flag - f war n- dodgy- i nports.

A new flag - f war n-t abs warnsif there are tab charactersin your source files.

A new flag - fwarn-i nmplicit-prel ude warns if your module implicitly imports the Pr e-
| ude.

A new flag - f war n- nrononor phi smrestricti on warns if the monomorphism restriction
applies to your code.

The “missing type-signature” warning now tells you what type GHC inferred for the function.

The - wflag now turns off all options, not just those that are enabled by - Vil | .

A new flag - Whar n makes warnings just warn (the default). It can be used to override - V\ér r or .
The- keep-hc-file,-keep-s-fileand-keep-raw s-fil e flagscannow haveans ap-
pended to their name (which reads better when using --nmake). None of them, nor -

keep-t np-fil es, can have any other suffix.

There is a new flag -fspec-threshold which subsumes the now-deprecated -
fli berate-case-threshol d.

A new flag -fprint-explicit-foralls controls whether or not GHC prints explicit f or -
al | swhen printing types.

A new flag - ddunp-to-fil e alows you to specify that the output of the various ddump flags
should be put in agiven file.

A new flag - ddunp-rul e-fi ri ngs makes GHC print out when its RULEsfire.

A new flag - ddunp- nod- cycl es, used with the - Mmode, make GHC print out any module im-
port loops.

The - f asmflag no longer takes an argument (which it always used to ignore anyway).

The new - f har dwi re-1i b- pat hs flag means the path to libraries are baked in, using the -
r pat h linker option.

A new RTSflag +RTS --instal |l -signal - handl er s=>yes| no< tells the RTS whether or
not to install signal handlers (default is yes). When making a DLL you will probably want to set this
to no.

When using runghc you can now leave a space after the - f argument telling it where to find GHC.
You can now use - - to separate the - f argument from the GHC arguments, and the GHC argu-
ments from the program to run.

ghc-pkg has a new command check which prints alist of al packages that are broken and which
dependencies they are missing. Additionally, the | i st command now puts braces around broken
packages.

ghc-pkg now has a new flag --nanes-only, used in conjunction with list -
- si npl e- out put , which prints package names only, i.e. without their version numbers.

Introduction to GHC

1.5.2.

1.5.3.

1.5.4.

Some parts of the documentation, notably the building guide, have been moved to the wiki.
Linear implicit parameter support has been removed.

A new RTS flag +RTS - xbXXXXX hints to the OS that we'd like the heap to start at address
OXXXXXX. Thisismainly of useto people debugging GHC.

Profiling changes

It is now possible to get basic per-constructor profiling information from programs not compiled
with - pr of , by using the +RTS - hT flag. Thisis possible even when running codein GHCi.

There is now support in the run-time system for using PAPI to do CPU performance counter meas-
urements. Thisis controlled viathe +RTS - aX options. Note that it must be enabled when the com-
piler isbuilt, and is still very experimental.

Ticky-ticky profiling, mainly for use by GHC developers, has been revived. See Section 6.7, “Using
“ticky-ticky” profiling (for implementors)” for more information.

It is now possible to have the key on a different page in a graph generated by hp2ps, meaning the
graph can be larger and the cost centre names longer. The +RTS - L flag can be used to specify the
maximum length of a cost-centre stack name.

Usesof _scc_ now give a deprecated warning. Use SCC pragmas instead.

GHCi changes

GHCi now includes an interactive debugger. See Section 3.5, “The GHCi Debugger” for more in-
formation.

The GHCi startup banner has been replaced with asingle line. Avid fans of the banner can add

putStrLn " . "

putStrbn "/ _\\ /AN /NN ()"

putStrin " [/ / NN/ 1 T] GHC Interactive, for Haskell 98."
putStrbn "/ /_\\\N\N/ 1 [__ | | http://ww. haskel | . org/ ghc/™"
putStrin "__ /\\/ [/ _J__ /] _| Type :? for help."

putStrLn ""
to their ~/ . ghci .

GHCi now has () as the first type in its defaulting list. See Section 3.4.5, “Type defaulting in
GHCi” for more information.

GHCi now treatsi nmport Mat its prompt the same as: nodul e +M

Aswell as: set -fno<foo>,youcannowasosay: unset -f<foo>.

Boot Libraries

These used to be called “core libraries’, but we now call them “boot libraries’ (or, more precisely,
“GHC boot libraries’) instead.

Introduction to GHC

We now build the libraries with Cabal, rather than our own build system, so it should no longer be pos-
sible for differences to creep in between the libraries as built with GHC and as built with Cabal.

The following new boot libraries have been added:

* hpc

The following boot libraries have been removed:

* parsec

* regex-base

* regex-compat
* regex-posix
* stm

The following boot libraries are new, but composed of modules that used to be in the base library:

o array (Data. Array*)
e bytestring (Dat a. Byt eStri ng*)

e containers (Dat a. Graph, Dat a. | nt Map, Dat a. | nt Set, Dat a. Map, Dat a. Sequence,
Dat a. Set , Dat a. Tr ee)

» directory (Syst em Di rect ory)

» old-locale(Syst em Local e)

e old-time(System Ti ne)

» packedstring (Dat a. PackedSt ri ng)

e pretty (Text.PrettyPrint*)

» process(Syst em Cnd, Syst em Process*)
e random (Syst em Random

Additionally, Control . Par al | el * have been moved to a new package “parallel” which is not a
boot library.

1.5.4.1. array

* Version number 0.1 (new library, split off from base).

e The newArray_ method returns a deterministic result in the ST monad, and behaves as before in
other contexts. The old newAr r ay _ isnow called unsaf eNewAr r ay_; the MAr r ay class there-
fore has one more method than before.

* Inorder to avoid problems where unusual | x instances could cause the array code to access memory
it shouldn't, a number of changes have been made:

Introduction to GHC

* A method

nunElenents :: Ix i =>ai e ->Int
has been added tothe | Ar r ay class.

e Data. Array. Base hasanew function

safeRangeSize :: Ix i => (i, i) -> Int
which always returns a non-negative result.

e Data. Array. Base hasanew function

safelndex :: Ix i => (i, i) ->1Int ->1i ->Int
which only returns aresult that is non-negative and not less than its second argument.

e« Theunsaf eForei gnPt r ToSt or abl eAr r ay functionnow hasan| x i constraint.

1.5.4.2. base

e Version number 3.0 (was 2.1.1).

* A new function

System Timeout.tinmeout :: Int ->10a -> 10 (Maybe a)
allows a computation to be timed out after a given number of microseconds.

* Thereisanew module Dat a. St ri ng, which definesthenew | sStri ng(frontStri ng) class.
This classis used by the new overloaded strings extension (see Section 8.6.4, “ Overloaded string lit-
erals”).

» TheDat a. Li st module now exports a function

stripPrefix :: EqQ a =>[a] -> [a] -> Maybe [a]
which drops the given prefix from alist.

e TheSystem | O Error module now exports new functionsi oeGet Locat i on and i oeSet -
Locat i on, for manipulating the “location” of an| CEr r or .

e Thefunctionst hr owEr r noPat h, t hr owkr r noPat hl f , t hr owEr r noPat hl f _, t hr owEr -
rnoPat hl fNul |, throwErrnoPat hl f M nusl, throwkrrnoPathlfMnusl have
moved from uni x: Syst em Posi x. Error toForei gn. C. Error.

* TheSystem Posi x. Si gnal s module has moved to the unix package.

e TheText.Printf.printf function now handles

e Thelnt8,1ntl6,Int32,1nt64, Wrd, Wrd8, Wr d16, Wr d32 and Wor d64 types.

10

Introduction to GHC

e The+flag.
e The X, E and Gformatting characters.
» Thehashfunctionsin Dat a. HashTabl e have been improved.

» TheKlIeidli composition functions

(>=>) :: (Mnad | => (a -> mb) -> (b ->mc) ->(a->mcg)
(<=<) :: (Monad m) => (b ->mc) ->(a->mb) ->(a->mc)
together with the combinator

forever :: (Mnad m) => ma -> m ()

have been added to Cont r ol . Monad.
e Thereisnow aMbnoi d instance for the Maybe type.

* Dat a. Monoi d now includes two types Fi r st and Last , which both newtype Maybe and return
thefirst and last Just respectively when used aaMonoi d.

e Dat a. Monoi d. Dual now derives Eq, Or d, Read, Showand Bounded.

* Weno longer put st di n, stdout and st derr into non-blocking mode, so piping Haskell pro-
gram output through programs like tee works properly.

* Thetypeof Dat a. Generi cs. Schenes. synt hesi ze has been generalised from

s ->(s ->s ->5s) -> CGenericQ (s ->s) -> GenericQ s

to
s ->(t ->s ->5) ->CenericQ (s ->t) -> CGenericQ't
e GHC Exts now exports uncheckedShiftL64#, uncheckedShiftRL64#, un-

checkedl Shi f t L64# and uncheckedl Shi f t RAG4#.

* GHC. Ext s no longer definesthe Splittabl e(split) class, which used to be used for linear
implicit parameters.

» Thenew value GHC. Conc. numCapabilities :: |nt istheargument of the +RTS - Nflag,
i.e. the number of Haskell threads that can run simultaneously.

e The new function GHC. Envi r onnent . get Ful | Ar gs returns the complete arguments that the
program was invoked with, including any +RTS arguments etc.

* GHC. Handl e. openFd has been renamed to GHC. Handl e. f dToHandl e' to avoid confusion
with Syst em Posi x. | O. openFd.

1.5.4.3. bytestring

11

Introduction to GHC

» Version number 0.9 (new library, split off from base).

 Data.ByteString. packCStringLen isno longer a pure function; its signature has changed
from
packCStringLen :: Foreign.C String.CStringLen -> ByteString

to
packCStringLen :: Foreign.C. String.CStringLen -> 10 ByteString

 The Dat a. Byt eStri ng. Base module has been split in two. The unsafe functions are now in
Dat a. ByteString. Unsafe (now pat of the stable API), and the others are in
Dat a. Byt eStri ng. I nt er nal (not part of the stable API.

* Theinterna lazy bytestring representation type has changed; rather than

newtype ByteString = LPS [Strict. ByteString]

itisnow

data ByteString = Enpty | Chunk !'Strict.ByteString ByteString

1.5.4.4. Cabal

* Version number 1.2.2.0 (was 1.1.6.2).
» Configurations have been implemented; these allow things to be set conditionally in. cabal files.

* A new --execut abl e flag for the haddock command also builds documentation for execut-
ables.

* A new --hyperlink-source flag for the haddock command makes the docs link to the
source code, rendered by hscolour.

e Anew--htnl-1ocati on flag for the haddock command allows you to say where documenta-
tion for packages we depend on is.

* A new field pkgconfi g- depends alows you to specify C libraries you use. The pkg-config
command is used to find what C flags etc are needed to use thislibrary.

» Anewfieldbui | d-t ool s alowsyou to specify tool dependencies such as cpphs.

e Thei ncl udes field now only specifes which include files are automatically included when com-
piling the package. A new i nst al | -i ncl udes field determines which include files are aso in-
stalled.

* Therearenew flags- - docdi r and--ht ml di r for theconf i gur e command.

 Theconfi gur e command now has- - wi t h- prog, - - prog- opti on and - - prog-opti ons
flags for each program pr og.

12

Introduction to GHC

» A new field cpp- opt i ons isused when preprocessing Haskell modules.
e Many bug fixes.

» The Cabal API isnot yet stable. There have been many API changes.

1.5.4.5. containers

» Version number 0.1 (new library, split off from base).
« Data. Tree. Tree now hasAppl i cat i ve and Monad instances.

* InDat a. Map the old functions

mnView :: Mnad m=> Map k a -> m(Map k a, (k, a))
maxView :: Monad m=> Map k a -> m(Map k a, (k, a))
have been replaced with
mnView :: Minad m=> Map k a -> m(a, Map k a)
maxView :: Monad m=> Map k a -> m(a, Map k a)
m nViewNthKey :: Monad m=> Map k a -> m ((k, a), Map k a)
maxVi ewNt hKey :: Monad m=> Map k a -> m ((k, a), Map k a)
* InDat a. Set theold functions
mnView:: Minad m=> Set a -> m(Set a, a)
maxView :: Minad m=> Set a -> m(Set a, a)
have had their result orders reversed:
maxView :: Monad m=> Set a -> m(a, Set a)
mnView :: Mnad m=> Set a -> m(a, Set a)
» Thefollowing are new functionsin Dat a. | nt Map:
maxVi ew :: Monad m=> IntMap a -> m(a, IntMap a)
m nVi ew :: Monad m=> IntMap a -> m(a, IntMap a)
findMn : IntMap a -> a
fi ndMax : IntMap a -> a
deleteMn o IntMap a -> IntMap a
del et eMax o IntMap a -> IntMap a
del et eFi ndM n : IntMap a -> (a, IntMap a)
del et eFi ndMax o IntMap a -> (a, IntMap a)
updat eM n :: (a->a) ->IntMap a -> IntMap a
updat eMax :: (a->a) ->IntMap a -> IntMap a
updat eM nW t hKey . (Key ->a ->a) ->IntMap a -> IntMap a
updat eMaxW t hKey . (Key ->a ->a) ->IntMap a -> IntMap a
m nVi ewW t hKey . (Monad m => IntMap a -> m ((Key, a), |
maxVi ewW t hKey :: (Mnad m) => IntMap a -> m ((Key, a), |

» Thefollowing are new functionsin Dat a. | nt Set :

13

Introduction to GHC

findMn I ntSet ->
fi ndMax I ntSet ->
del eteM n I ntSet ->
del et eMax o IntSet ->
deleteFindMn :: IntSet ->
del et eFi ndMax :: IntSet ->
maxVi ew :: Monad m =
m nVi ew Monad m =

1.5.4.6. directory

e Version number 1.0 (new library, split

e Thefunction

makeRel ativeToCurrentDirectory ::

t, IntSet)
t, IntSet)
tSet ->m
t

off from base).

FilePath -> IO Fil ePath

has been moved from the filepath library to Syst em Di rect ory.

1.5.4.7. filepath

* Version number 1.1 (was 1.0).

» Removed rmakeRel ativeToCurrentDirectory

ory: System Di rectory).

has moved to

(it

* A number of driver-related functions have been added:

splitDrive ::
joinDrive ::
t akeDrive
hasDri ve
dropDri ve

i sDrive

1.5.4.8. haskell98

* Version number 1.0.1 (was 1.0).

» No other change.

1.5.4.9. hpc

e Version number 0.5 (new library).

FilePath -> (FilePath, FilePath)
FilePath -> FilePath -> Fil ePath
FilePath -> Fil ePath

Fil ePath -> Bool

FilePath -> Fil ePath

Fil ePath -> Bool

direct-

14

Introduction to GHC

1.5.4.10.

1.5.4.17.

old-locale

Version number 1.0 (new library, split off from base).

No other change.

. old-time

Version number 1.0 (new library, split off from base).

No other change.

. packedstring

Version number 0.1 (new library, split off from base).

Thereisnow aDat a instance for the PackedSt ri ng type.

. pretty

Version number 1.0 (new library, split off from base).

No other change.

. process

Version number 1.0 (new library, split off from base).

No other change.

.random

Version number 1.0 (new library, split off from base).

No other change.

. readline

Version number 1.0.1 (was 1.0).

No other change.

template-haskell

15

Introduction to GHC

1.5.4.19

Version number 2.2 (was 2.1).
We now derive Dat a and Typeabl e instancesfor al the TH types.

Thereisnow aFunct or instancefor Q and Quasi instances haveaFunct or constraint.

. unix

Version number 2.2 (was 2.1).
Syst em Posi x. Uni st d now exports
nanosleep :: Integer -> 10 ()
(which throws an exception if the OS doesn't provide it).
Syst em Posi x. Fi | es now exports
fileTypehMbdes i Fil eMbde
bl ockSpeci al Mbde :: Fil eMbde
char act er Speci al Mode :: Fil eMode
namedPi peMode .. Fil eMbde
regul ar Fi | eMbde .. Fil eMbde
di rect or yMode .. Fil eMbde
synbol i cLi nkMode .. Fil eMode
socket Mbde ;. Fil eMbde
for use with functions like cr eat eDevi ce.
There is a new module Syst em Posi x. Sermmaphor e providing POSIX named semaphore sup-
port.
Thereisanew module Syst em Posi x. Shar edMemproviding POSIX shared memory support.
Syst em Posi x. Ter mi nal now exports
openPseudoTerminal :: 10 (Fd, Fd)
getSlaveTerminal Nane :: Fd -> 10 Fil ePath
The functions t hr owEr r noPat h, t hr owEr r noPat hl f , t hr owEr r noPat hl f _, t hr owEr -
rnoPat hl f Nul | , t hr owEr r noPat hl f M nus1, t hr owkr r noPat hl f M nus1_ have been
removed from Syst em Posi x. Error; they are now available from
base: Forei gn. C Error.
The Syst em Posi x. Si gnal s module has been moved here from the base package.
. Win32

Version number 2.2 (was 2.1.1).

Thereisanew module Syst em W n32. Securi ty providing POSIX shared memory support.

16

Introduction to GHC

1.5.5. GHC As A Library

* Version number 6.8.1.
» The API should now be much more usable than in previous releases.

* Thereisanew function

conpi | eToCore :: Session -> FilePath -> | O (Maybe [CoreBind])
which compiles afileto core.

» Thereisanew value def aul t Obj ect Tar get that givesthe HscTar get used by default. This
nameis now preferred to def aul t HscTar get .

e Theold

data CGhcMode
= Bat chConpi |l e
| I'nteractive
| OneShot
| Just Typecheck
| MDepend

has now been refactored into

data CGhcMode

= ConpManager -- "~ --make, GHG, etc.

| OneShot -- N ghc -c Foo. hs

| MDepend -- N~ ghc -M see Finder for why we need this
and

data CGhcLink = NoLink | StaticLink

is now

data ChclLi nk NoLi nk | LinkBinary | LinklnMenory

e TheHsSyn types now include al of the haddock comments.

» Asthe GHC API exposes al the compiler internals there are numerous other changes that is would
be impractical to list, but will have little effect on users of the API.

17

Chapter 2. Installing GHC

Installing from binary distributions is easiest, and recommended! (Why binaries? Because GHC is a
Haskell compiler written in Haskell, so you've got to bootstrap it somehow. We provide machine-gen-
erated C-files-from-Haskell for this purpose, but it's really quite a pain to use them. If you must build
GHC from its sources, using a binary-distributed GHC to do so is a sensible way to proceed.)

Thisguideisin severa parts:

e Installing on Unix-a-likes (Section 2.1, “Installing on Unix-a-likes).
* Ingtalling on Windows (Section 2.2, “Installing on Windows”").

e The layout of installed files (Section 2.3, “The layout of installed files’). You don't need to know
thistoinstall GHC, but it's useful if you are changing the implementation.

2.1. Installing on Unix-a-likes

2.1.1.

2.1.2.

When a platform-specific package is available

Most common OSes provide GHC binaries packaged using the native package format for the platform.
Thisislikely to be by far the best way to install GHC for your platform if one of these packagesis avail-
able, since dependencies will automatically be handled and the package system normally provides a way
to uninstall the package at alater date.

Check the distribution packages [http://www.haskell.org/ghc/distribution_packages.html] page to see if
thereis a package available for your platform.

GHC binary distributions

Binary distributions come in “bundles,” called ghc- ver si on-pl atform t ar. bz2. (Seethe build-
ing guide [http://hackage.haskell.org/trac/ghc/wiki/Building] for the definition of a platform.) Suppose
that you untar a binary-distribution bundle, thus:

% cd /your/scratch/space
% bunzi p2 < ghc-version-platformtar.bz2 | tar xvf -

Then you should find the bundle contents inside a single directory, ghc- ver si on.

2.1.2.1. Installing

OK, so let's assume that you have unpacked your chosen bundles. What next? Well, you will first need
to conf i gur e the bundle by changing to the bundle's top-level directory and typing . / confi gur e.
That should convert Makefi | e-vars.intoMakefile-vars.

The confi gure script takes a number of flags. The most commonly used is the - - prefi x=/
path/to/install/in flag, which tells the bundle that you want it to be installed in /
pat h/to/install/in rather than the default location (/usr/local). To see al the flags that configure
accepts, runconfi gure --hel p.

18

http://www.haskell.org/ghc/distribution_packages.html
http://hackage.haskell.org/trac/ghc/wiki/Building
http://hackage.haskell.org/trac/ghc/wiki/Building

Installing GHC

Then do the following:

1. Runnmeke install. Thisshould work with ordinary Unix make—no need for fancy stuff like
GNU nake.

2. |f appropriate, add the bin directory to your PATH, asinstructed.

3. You may need to run r ehash (t?csh or zsh users), in order for your shell to see the new stuff in
your bin directory.

4. Once done, test your “installation” as suggested in Section 2.1.2.2, “Testing that GHC seems to be
working . Be sure to use a - v option, so you can see exactly what pathnames it's using. If things
dont work as expected, check the list of known pitfalls in the building guide
[http://hackage.haskell .org/trac/ghc/wiki/Building].

When installing the user-invokable binaries, this installation procedure will install GHC as ghc- x. xx
where x. xx isthe version number of GHC. It will also make alink (in the binary installation directory)
from ghc to ghc- x. xx. If you install multiple versions of GHC then the last one “wins’, and “ghc”
will invoke the last one installed. Y ou can change this manually if you want. But regardless, ghc- x. xx
should always invoke GHC version X. XX.

2.1.2.2. Testing that GHC seems to be working

Theway to do thisis, of course, to compile and run this program (in afile Mai n. hs):

main = putStr "Hello, world!\n"

Compile the program, using the - v (verbose) flag to verify that libraries, etc., are being found properly:
% ghc -v -0 hell o Min.hs

Now run it:

% ./hello
Hel | o, worl d!

For more information on how to “drive” GHC, read on...

2.2. Installing on Windows

Getting the Glasgow Haskell Compiler (post 5.02) to run on Windows platforms is a snap: the installer
does everything you need.

2.2.1. Installing GHC on Windows

Toinstall GHC, use the following steps:

19

http://hackage.haskell.org/trac/ghc/wiki/Building

Installing GHC

2.2.2.

2.2.3.

» Download the installer from the GHC download page [http://www.haskell.org/ghc/downl oad.html].

* Run the installer. On Windows, al of GHC's files are installed in a single directory. You can over-
ride it, but by default this directory is c: / ghc/ ghc- ver si on. The executable binary for GHC
will beinstalled in the bi n/ sub-directory of the installation directory. If you want to invoke GHC
from acommand line, add this to your $PATH environment variable.

When installation is complete, you should find GHCi and the GHC documentation are available in
your Start menu under "Start/All Programs/GHC/ghc-ver si on".

* GHC needs adirectory in which to create, and later delete, temporary files. It uses the standard Win-
dows procedure Get TenpPat h() to find a suitable directory. This procedure returns:

e The path in the environment variable TMP, if TMPis set.
e Otherwisg, the path in the environment variable TEMP, if TEMPis set.

e Otherwise, there is a per-user default which varies between versions of Windows. On NT and
XP-ish versions, it might be: c¢:\ Docunents and Settings\<usernanme>\Local
Setti ngs\ Tenp.

The main point is that if you don't do anything GHC will work fine, but if you want to control where

the directory is, you can do so by setting TMP or TEMP.

* Totest thefruits of your labour, try now to compile asimple Haskell program:

bash$ cat main. hs
nodul e Mai n(mai n) where

main = putStrLn "Hello, world!"
bash$ ghc -0 main main. hs

bash$./ main
Hel | o, worl d!
bash$

Y ou do not need the Cygwin toolchain, or anything else, to install and run GHC.

An installation of GHC requires about 365M of disk space. To run GHC comfortably, your machine
should have at least 64M of memory.

Moving GHC around

Once GHC is installed, you can freely move the entire GHC tree just by copying the
c:/ ghc/ ghc-versi on directory. (You will need to fix up the links in "Start/All Programs/
GHCl/ghc-ver si on" if you do this.)

It is OK to put GHC tree in a directory whose path involves spaces. However, don't do this if you use
want to use GHC with the Cygwin tools, because Cygwin can get confused when this happens. We
haven't quite got to the bottom of this, but so far as we know it's not a problem with GHC itself. Never-
theless, just to keep life simple we usually put GHC in a place with a space-free path.

Installing ghc-win32 FAQ

I'm having trouble with symlinks. Symlinks only work under Cygwin (Section 2.1.2.1, “Installing”),
so hinaries not linked to the Cygwin DLL, in particular those built

20

http://www.haskell.org/ghc/download.html

Installing GHC

for Mingwin, will not work with symlinks.

I'm getting “permission denied” This can have various causes: trying to rename a directory when

messages from therm or mv. an Explorer window is open on it tends to fail. Closing the win-
dow generally cures the problem, but sometimes its cause is more
mysterious, and logging off and back on or rebooting may be the
quickest cure.

2.3. The layout of installed files

2.3.1.

2.3.2.

This section describes what files get installed where. You don't need to know it if you are simply in-
stalling GHC, but it isvital information if you are changing the implementation.

GHC isinstaled in two directory trees:

Library directory, known as $(1 i bdi r), holds al the support files needed to run GHC. On
Unix, this directory is usudly something like /
usr/1ib/ghc/ghc-5.02.

Binary directory known as $(bi ndi r) , holds executables that the user is expected to in-
voke. Notably, it contains ghc and ghci . On Unix, this directory can be
anywhere, but is typically something like / usr/ | ocal / bi n. On Win-
dows, however, this directory must be $(1 i bdi r)/ bi n.

When GHC runs, it must know where itslibrary directory is. It finds this out in one of two ways:

* $(libdir) ispassedto GHC using the - B flag. On Unix (but not Windows), the installed ghc is
just a one-line shell script that invokes the real GHC, passing a suitable - B flag. [All the user-
supplied flags follow, and alater - B flag overrides an earlier one, so a user-supplied one wins.]

* On Windows (but not Unix), if no - B flag is given, GHC uses a system call to find the directory in
which the running GHC executable lives, and derives $(1 i bdi r) from that. [Unix lacks such a
system call.] That iswhy $(bi ndi r) mustbe$(!li bdir)/bin.

The binary directory

The binary directory, $(bi ndi r), contains user-visible executables, notably ghc and ghci . You
should add it to your $PATH.

On Unix, the user-invokable ghc invokes $(1 i bdi r) / ghc- ver si on, passing a suitable - B flag to
tell ghc- ver si on where$(1i bdir) is. Similarly ghci , except the extraflag--i nteracti ve is
passed.

On Win32, the user-invokable ghc binary isthe Real Thing (no intervening shell scriptsor . bat files).
Reason: we sometimes invoke GHC with very long command lines, and cnd. exe (which executes
. bat files) truncates them. Similarly ghci is a C wrapper program that invokes ghc -
-interactive (passing on all other arguments), not a. bat file.

The library directory

The layout of the library directory, $(1 i bdi r), isamost identical on Windows and Unix, as follows.
Differences between Windows and Unix are annotated [W n32 onl y] and are commented below.

21

Installing GHC

$(libdir)/
package. conf GHC package configuration
ghc- usage. t xt Message di spl ayed by ghc —hel p
ghci - usage. t xt Message di spl ayed by ghci —help
bi n/ [Wn32 only] User-visible binaries
ghc. exe
ghci . exe
unlit Renove |iterate markup
t ouchy. exe [Wn32 only]
perl . exe [Wn32 only]
gcc. exe [Wn32 only]
ghc- x. xx GHC execut abl e [Uni x only]
ghc-split Asm code splitter
ghc-asm Asm code mangl er
gce-lib/ [Wn32 only] Support files for gcc
specs gcc configuration
cppO0. exe gcc support binaries
as. exe
I d. exe
crt0.0 St andar d
..etc.. bi nari es
i bm ngw32. a St andard
..etc.. libraries
*.h Include files
hsli bs-i nports/ GHC interface files for the..
ghc/ *. hi ... 'ghc' library
i ncl ude/ C header files
St gMacros. h GHC-specific
..etc.. header files
m ngw *. h [Wn32 only] M ngw n header files
I'ib/ GHC s library
base-2.1
..etc..
i bHSrts*. a GHC RTS archive
I i bHSghc. a GHC package archive
HSrts.o GHC RTS |inkabl e, used by ghc
HSghc. o GHC package |inkabl e, used by ghc
Note that:

e $(libdir) aso contains support binaries. These are not expected to be on the user's PATH, but
are invoked directly by GHC. In the Makefile system, this directory is aso caled
$(1 i bexecdi r), but you are not freeto changeit. It must bethesameas$(i bdir).

22

Installing GHC

We distribute gcc with the Win32 distribution of GHC, so that users don't need to install gcc, nor
need to care about which version it is. All gcc's support filesarekeptin $(1i bdir)/gcc-1ib/.

Similarly, we distribute per | and at ouch replacement (t ouchy. exe) with the Win32 distribu-
tion of GHC.

The support programs ghc-split and ghc-asm are Perl scripts. The first line says
#! [usr/ bi n/ per| ; on Unix, the script isindeed invoked as a shell script, which invokes Perl; on
Windows, GHC invokes $(1 i bdi r)/ per| . exe directly, which treatsthe #! / usr / bi n/ per |
as a comment. Reason: on Windows we want to invoke the Perl distributed with GHC, rather than
assume some installed one.

23

Chapter 3. Using GHCi

GHCi' is GHC's interactive environment, in which Haskell expressions can be interactively evaluated
and programs can be interpreted. If you're familiar with Hugs [http://www.haskell.org/hugs/], then you'll
be right at home with GHCI However, GHCi also has support for interactively loading compiled code,
as well as supporting all? the language extensions that GHC provides. . GHCi ‘also includes an interact-
ive debugger (see Section 3.5, “The GHCi Debugger”).

3.1. Introduction to GHCi

Let's start with an example GHCi session. Y ou can fire up GHCi with the command ghci :

$ ghci

GHCi, version 6.8.1: http://ww. haskell.org/ghc/ :? for help
Loadi ng package base ... linking ... done.

Prel ude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which the prompt
is shown. As the banner says, you can type : ? to see the list of commands available, and a half line de-
scription of each of them.

WEe'l explain most of these commands as we go along. For Hugs users: many things work the same asin
Hugs, so you should be able to get going straight away.

Haskell expressions can be typed at the prompt:

Pr el ude> 1+2
3
Prelude> let x =42 inx / 9

4, 666666666666667
Pr el ude>

GHCi interprets the whole line as an expression to evaluate. The expression may not span several lines -
as soon as you press enter, GHCi will attempt to evauate it.

3.2. Loading source files

Suppose we have the following Haskell source code, which we placein afile Mai n. hs:

main = print (fac 20)

fac O
fac n

1
n* fac (n-1)

You can save Mai n. hs anywhere you like, but if you save it somewhere other than the current direct-
ory then we will need to change to theright directory in GHCi:

The*i’ stands for “Interactive’
2exceptf orei gn export, at the moment

24

http://www.haskell.org/hugs/

Using GHCi

3.2.1.

Prel ude> :cd dir

wheredi r isthedirectory (or folder) in which you saved Mai n. hs.

To load aHaskell sourcefileinto GHCI, usethe: | oad command:

Prel ude> : |1 oad Main

Conpi ling Main (Main.hs, interpreted)
Ok, nodul es | oaded: Main.
*Mai n>

GHCi has loaded the Mai n module, and the prompt has changed to “* Mai n>" to indicate that the cur-
rent context for expressions typed at the prompt is the Mai n module we just loaded (we'll explain what
the* means later in Section 3.4.3, “What's really in scope at the prompt?’). So we can how type expres-
sions involving the functions from Mai n. hs:

*Mai n> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost” module
tothe: | oad command (hint: : | oad can be abbreviated to : |). The topmost module will normally be
Mai n, but it doesn't have to be. GHCi will discover which modules are required, directly or indirectly,
by the topmost module, and load them all in dependency order.

Modules vs. filenames

Question: How does GHC find the filename which contains module M? Answer: it looks for the file
M hs, or M | hs. This means that for most modules, the module name must match the filename. If it
doesn't, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : | oad, or specify it when
you invoke ghci , you can give afilename rather than a module name. This filename is loaded if it ex-
ists, and it may contain any module you like. This is particularly convenient if you have several Mai n
modules in the same directory and you can't call them all Mai n. hs.

The search path for finding source filesis specified with the - i option on the GHCi command line, like
S0

or it can be set using the : set command from within GHCi (see Section 3.8.2, “Setting GHC com-
mand-line optionsin GHCi”)*

One consequence of the way that GHCi follows dependencies to find modules to load is that every mod-
ule must have a source file. The only exception to the rule is modules that come from a package, includ-
ing the Pr el ude and standard libraries such as | Oand Conpl ex. If you attempt to load a module for
which GHCi can't find a source file, even if there are object and interface files for the module, you'll get

& you started up GHCi from the command line then GHCi's current directory is the same as the current directory of the shell from which it was
started. If you started GHCi from the “Start” menu in Windows, then the current directory is probably something like C: \ Docunent s and
Set tings\user nane.

Note that in GHCIi, and —nake mode, the - i option is used to specify the search path for source files, whereas in standard batch-compilation
modethe- i option isused to specify the search path for interface files, see Section 5.6.3, “The search path”.

25

Using GHCi

3.2.2.

an error message.

Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give the
: r el oad command. The program will be recompiled as necessary, with GHCi doing its best to avoid
actually recompiling modules if their external dependencies haven't changed. This is the same mechan-
ism we use to avoid re-compiling modules in the batch compilation setting (see Section 5.6.8, “The re-
compilation checker”).

3.3. Loading compiled code

When you load a Haskell source module into GHCI, it is normally converted to byte-code and run using
the interpreter. However, interpreted code can also run alongside compiled code in GHCi; indeed, nor-
mally when GHCi starts, it loads up a compiled copy of the base package, which contains the Pr e-
| ude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than interpreted
code, but takes about 2x longer to produce (perhaps longer if optimisation is on). So it pays to compile
the parts of a program that aren't changing very often, and use the interpreter for the code being actively
developed.

When loading up source fileswith : | oad, GHCi looks for any corresponding compiled object files, and
will use one in preference to interpreting the source if possible. For example, suppose we have a
4-module program consisting of modules A, B, C, and D. Modules B and C both import D only, and A
importsboth B & C:

A
/A
B C
\
D

We can compile D, then load the whole program, like this:

Prel ude> :! ghc -c D. hs
Prel ude> :load A

Conpiling B (B.hs, interpreted)
Compiling C (Chs, interpreted)
Conpiling A A hs, interpreted)
Ok, nodul es |oaded: A B, C D

*Mai n>

In the messages from the compiler, we see that thereis no line for D. Thisis because it isn't necessary to
compile D, because the source and everything it depends on is unchanged since the last compilation.

At any time you can use the command : show nodul es to get alist of the modules currently loaded
into GHCi:

*NMai n> : show nodul es

D (D.hs, Do

C (Chs, interpreted)
B (B.hs, interpreted)
A (A hs, interpreted)
*Mai n>

26

Using GHCi

If we now modify the source of D (or pretend to: using the Unix command t ouch on the source file is
handy for this), the compiler will no longer be able to use the object file, because it might be out of date:

*Mai n> :! touch D. hs
*Mai n> :rel oad

Conpiling D (D.hs, interpreted)
Ok, modul es | oaded: A B, C D
*Mai n>

Note that module D was compiled, but in this instance because its source hadn't really changed, its inter-
face remained the same, and the recompilation checker determined that A, B and C didn't need to be re-
compiled.

So let's try compiling one of the other modules:

*Main> :! ghc -c C hs

*Mai n> :load A

Conpi ling D (D.hs, interpreted)
Conpiling B (B.hs, interpreted)
Conpiling C (Chs, interpreted)
Conpiling A (Ahs, interpreted)
Gk, modul es | oaded: A B, C D

We didn't get the compiled version of C! What happened? Well, in GHCi a compiled module may only
depend on other compiled modules, and in this case C depends on D, which doesn't have an object file,
so GHCi also rejected C's object file. Ok, so let's also compile D:

*Main> :! ghc -c D. hs
*Mai n> :rel oad
Ok, nmodul es | oaded: A, B, C, D

Nothing happened! Here's another lesson: newly compiled modules aren't picked up by : r el oad, only
.| oad:

*Mai n> :load A

Conpiling B (B.hs, interpreted)
Conpiling A (A hs, interpreted)
Ok, nodules |oaded: A B, C D

HINT: since GHCi will only use a compiled object file if it can be sure that the compiled version is up-
to-date, a good technique when working on a large program is to occasionaly run ghc ——make to
compile the whole project (say before you go for lunch :-), then continue working in the interpreter. As
you modify code, the changed modules will be interpreted, but the rest of the project will remain com-
piled.

3.4. Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result;

Pr el ude> reverse "hel |l 0"
"ol | en"

27

Using GHCi

3.4.1.

3.4.2.

Pr el ude> 5+5
10

I/O actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you type something of typel O a
for some a, then GHCi executes it as an |O-computation.

Pr el ude> "hel | o"

"hel | 0"

Prel ude> putStrLn "hell 0"
hel |l o

Furthermore, GHCi will print the result of the I/O action if (and only if):

» Theresult typeisan instance of Show.
» Theresulttypeisnot ().

For example, remembering that put StrLn :: String -> 10 ():

Prel ude> putStrLn "hell 0"

hel | o

Prelude> do { putStrLn "hello"; return "yes" }
hel | o

"yes"

Using do- notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you can bind
values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax of a statement
in a Haskell do expression. However, there's no monad overloading here: statements typed at the
prompt must be in the | O monad.

Prel ude> x <- return 42
42

Prel ude> print x

42

Pr el ude>

The statement X <- return 42 means“executer et urn 42 inthel Omonad, and bind the result
to x”. We can then use x in future statements, for example to print it as we did above.

GHCi will print the result of a statement if and only if:

» The statement is not abinding, or it isamonadic binding (p <- e) that binds exactly one variable.
« Thevariable'stypeisnot polymorphic, isnot () , and is an instance of Show

The automatic printing of binding results can be suppressed with : set -
f no- print-bind-result (this does not suppress printing the result of non-binding statements). .

28

Using GHCi

Y ou might want to do this to prevent the result of binding statements from being fully evaluated by the
act of printing them, for example.

Of course, you can also bind normal non-10 expressionsusing the | et -statement:

Prel ude> let x = 42
Pr el ude> x

42

Pr el ude>

Another important difference between the two types of binding is that the monadic bind (p <- e)is
gtrict (it evaluates), whereas with thel et form, the expression isn't evaluated immediately:

Prelude> let x = error "help!"
Prel ude> print x

*** Exception: help!

Prel ude>

Notethat | et bindings do not automatically print the value bound, unlike monadic bindings.

Hint: you can also use| et -statements to define functions at the prompt:

Prelude> let add a b =a + b
Prel ude> add 1 2

3

Pr el ude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups of mutually
recursive functions, because the complete definition has to be given on a single line, using explicit
braces and semicolons instead of layout:

Prelude> let { f opn[] =n; f opn(h:it) =h "op> f opnt }
Prelude> f (+) 0 [1..3]
6

Pr el ude>

To aleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in : { and
. } (each on asingleline of its own):

Prel ude> :{

Prelude| let { gop n][] =n

Pr el ude| i gopn (h:t) =h "op gopnt
Pr el ude| }

Prel ude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and the lines between : { and : } are
simply merged into a single line for interpretation. That implies that each such group must form asingle
valid command when merged, and that no layout rule is used. The main purpose of multiline commands
is not to replace module loading but to make definitions in .ghci-files (see Section 3.9, “The . ghci
file”) more readable and maintainable.

29

Using GHCi

3.4.3.

Any exceptions raised during the evaluation or execution of the statement are caught and printed by the
GHCi command line interface (for more information on exceptions, see the module Con-
trol . Excepti on inthelibraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that are in scope
in the current modul e context.

WARNING: temporary bindings introduced at the prompt only last until the next : | oad or : r el oad
command, at which time they will be ssimply lost. However, they do survive a change of context with
: modul e: the temporary bindings just move to the new location.

HINT: To get alist of the bindings currently in scope, usethe: show bi ndi ngs command:

Pr el ude> : show bi ndi ngs
X 1o Int
Prel ude>

HINT: if you turn on the +t option, GHCi will show the type of each variable bound by a statement. For
example:

Prel ude> :set +t

Prelude> let (x:xs) =[1..]
X . Integer

Xs :: [Integer]

What's really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi provides a
flexible way to control exactly how the context for an expression is constructed. Let's start with the
simple cases; when you start GHCi the prompt looks like this:

Pr el ude>

Which indicates that everything from the module Pr el ude is currently in scope. If we now load afile
into GHCi, the prompt will change:

Prel ude> :1oad Min. hs
Conpi ling Main (Main.hs, interpreted)
*Mal n>

The new prompt is* Mai n, which indicates that we are typing expressions in the context of the top-level
of the Mai n module. Everything that is in scope at the top-level in the module Mai n we just loaded is
also in scope at the prompt (probably including Pr el ude, aslong as Mai n doesn't explicitly hideit).

The syntax * nodul e indicates that it is the full top-level scope of nodul e that is contributing to the
scope for expressions typed at the prompt. Without the * , just the exports of the module are visible.

We're not limited to a single module: GHCi can combine scopes from multiple modules, in any mixture
of * and non-* forms. GHCi combines the scopes from all of these modules to form the scope that isin
effect at the prompt. For technical reasons, GHCi can only support the * -form for modules which are in-
terpreted, so compiled modules and package modules can only contribute their exports to the current
scope.

30

Using GHCi

The scope is manipulated using the : nodul e command. For example, if the current scope is
Pr el ude, then we can bring into scope the exports from the module | Olike so:

Pr el ude> : nodule +1 O

Prelude 1G> hPut StrLn stdout "hello\n"
hell o

Prel ude 1 O

(Note: you canusei nport Masan dternativeto: nodul e +M and : nodul e can aso be shortened
to: m). Thefull syntax of the: nodul e command is:

tmodule [+ -] [*]nmod, ... [*]nDd

Using the + form of the nodul e commands adds modules to the current scope, and - removes them.
Without either + or -, the current scope is replaced by the set of modules specified. Note that if you use
thisform and leave out Pr el ude, GHCi will assume that you really wanted the Pr el ude and add it in
for you (if you don't want the Pr el ude, then ask to remove it with: m - Pr el ude).

The scope is automatically set after a: | oad command, to the most recently loaded "target" module, in
a* -formif possible. For example, if yousay : | oad f 0o. hs bar. hs and bar . hs contains module
Bar , then the scope will be set to * Bar if Bar is interpreted, or if Bar is compiled it will be set to
Prel ude Bar (GHCi automatically adds Pr el ude if it isn't present and there aren't any * -form
modules).

With multiple modules in scope, especially multiple * -form modules, it is likely that name clashes will
occur. Haskell specifies that name clashes are only reported when an ambiguous identifier is used, and
GHCi behavesin the same way for expressions typed at the prompt.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and type J<t ab>
then GHCi will expand itto “Just ".

3.4.3.1. Qualified names

To make life dightly easier, the GHCi prompt also behaves as if thereisan impliciti mport qual i -
f i ed declaration for every module in every package, and every module currently loaded into GHCI.

3.4.3.2. The : mai n command

3.4.4.

When a program is compiled and executed, it can use the get Ar gs function to access the command-
line arguments. However, we cannot simply pass the arguments to the mai n function while we are test-
ing in ghci, asthe mai n function doesn't take its directly.

Instead, we can use the : mai n command. This runs whatever mai n isin scope, with any arguments be-
ing treated the same as command-line arguments, e.g.:

Prel ude> l et nain = System Environnent. get Args >>= print
Prel ude> : main foo bar
["f OOII , n bar ll]

The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt, GHCi impli-

31

Using GHCi

3.4.5.

citly bindsitsvalueto the variablei t . For example:

Pr el ude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn't have an | Otype, then it
transformsit as follows: an expression e turnsinto

let it = e;
print it
which isthen run as an 10-action.
Hence, the original expression must have a type which is an instance of the Show class, or GHCi will
complain:
Prel ude> id
<interactive>:1:0:

No i nstance for (Show (a -> a))

arising fromuse of “print' at <interactive>: 1:0-1

Possi bl e fix: add an instance declaration for (Show (a -> a))

In the expression: print it

In a 'do' expression: print it
The error message contains some clues as to the transformation happening internally.
If the expression was instead of type | O a for some a, then i t will be bound to the result of the | O

computation, which is of typea. eg.:

Pr el ude> Ti ne. get d ockTi ne
Wed Mar 14 12:23:13 GMVTI 2001
Prel ude> print it

Wed Mar 14 12:23:13 GMVTI 2001

The corresponding translation for an 10-typed e is
it <- e

Note that i t is shadowed by the new value each time you evaluate a new expression, and the old value
ofi t islost.

Type defaulting in GHCi

Consider this GHCi session:

ghci > reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse []) (whichis

32

Using GHCi

what GHCi computes here) has type Show a => a and how that displays depends on the type a. For

example;
ghci > (reverse []) :: String
ghci > (reverse []) :: [Int]

[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell's type-
defaulting rules (Section 4.3.4 of the Haskell 98 Report (Revised)) as follows. The standard rules take
each group of constraints (CL a, C2 a, ..., Cn a) for each type variable a, and defaults the
type variable if

1. Thetypevariable a appearsin no other constraints
2. AlltheclassesC are standard.
3. Atleast oneof theclassesCi isnumeric.

At the GHCi prompt, or with GHC if the - XExt endedDef aul t Rul es flag is given, the following
additional differences apply:

* Rule2aboveisrelaxed thus: All of the classes Ci are single-parameter type classes.
* Rule3aboveisreaxed this: At least one of the classes Ci is numeric, or is Show, Eq, or Or d.

» The unit type () is added to the start of the standard list of types which are tried when doing type
defaulting.

The last point means that, for example, this program:

main :: 10 ()
main = print def

i nstance Num ()

def :: (Numa, Enuma) => a
def = toEnum O

prints () rather than O asthetypeisdefaultedto () rather than| nt eger .

The motivation for the change isthat it means| O a actionsdefaulttol O (), which in turn means that
ghci won't try to print aresult when running them. Thisis particularly important for pri nt f , which has
an instance that returns | O a. However, it is only able to return undef i ned (the reason for the in-
stance having this type is so that printf doesn't require extensions to the class system), so if the type de-
faultsto | nt eger then ghci gives an error when running a printf.

3.5. The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computation in or-
der to examine the values of variables. The debugger is integrated into GHCI, and is turned on by de-
fault: no flags are required to enable the debugging facilities. There is one major restriction: breakpoints
and single-stepping are only available in interpreted modules, compiled code is invisible to the debug-
ger.

The debugger provides the following:

33

Using GHCi

3.5.1.

» The ability to set a breakpoint on a function definition or expression in the program. When the func-
tion is called, or the expression evaluated, GHCi suspends execution and returns to the prompt,
where you can inspect the values of local variables before continuing with the execution.

» Execution can be single-stepped: the evaluator will suspend execution approximately after every re-
duction, allowing local variables to be inspected. This is equivalent to setting a breakpoint at every
point in the program.

» Execution can take place in tracing mode, in which the evaluator remembers each evaluation step as
it happens, but doesn't suspend execution until an actual breakpoint is reached. When this happens,
the history of evaluation steps can be inspected.

» Exceptions (e.g. pattern matching failure and er r or) can be treated as breakpoints, to help locate
the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features provide a
useful second-best, which will often be enough to establish the context of an error.

Breakpoints and inspecting variables

Let's use quicksort as a running example. Here's the code:

gsort [] =[] ,
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
First, load the module into GHCi:

Prel ude> :| qgsort. hs

[1 of 1] Conpiling Main (gsort.hs, interpreted)
Ok, nodul es | oaded: Main.

*Mai n>

Now, let's set a breakpoint on the right-hand-side of the second equation of gsort:

*Mai n> : break 2
Breakpoint 0 activated at qgsort.hs:2:15-46
*Mai n>

The command : br eak 2 sets a breakpoint on line 2 of the most recently-loaded module, in this case
gsort . hs. Specifically, it picks the leftmost complete subexpression on that line on which to set the
breakpoint, which in thiscaseisthe expression (gqsort left ++ [a] ++ gsort right).

Now, we run the program:

*Mai N> mai n

St opped at qgsort. hs: 2:15-46
_result :: [a]

a:: a

Using GHCi

left :: [a]
right :: [a]
[gsort. hs:2:15-46] *Min>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are currently
stopped at a breakpoint, and the location: [gsor t . hs: 2: 15- 46] . To further clarify the location, we
canusethe: | i st command:

[gsort. hs:2:15-46] *Main> :1list

1 gsort [] =[]

2 gsort (aras) = gsort left ++ [a] ++ gsort right
ter

[
3 where (left,right) = (filter (<=a) as, fil (>a) as)

The: i st command lists the source code around the current breakpoint. If your output device supports
it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the breakpoint was
placed (a, | ef t, ri ght), and additionally a binding for the result of the expression (_r esul t). These
variables are just like other variables that you might define in GHCi; you can use them in expressions
that you type at the prompt, you can ask for their types with : t ype, and so on. There is one important
difference though: these variables may only have partial types. For example, if we try to display the
vaueof | eft:

[gsort. hs: 2:15-46] *Main> |eft

<interactive>:1:0:
Anbi guous type variable “a' in the constraint:
“Show a' arising froma use of “print' at <interactive>:1:0-3
Cannot resol ve unknown runtine types: a
Use :print or :force to determ ne these types

Thisisbecause qsort isapolymorphic function, and because GHCi does not carry type information at
runtime, it cannot determine the runtime types of free variables that involve type variables. Hence, when
you ask to display | ef t at the prompt, GHCi can't figure out which instance of Showto use, so it emits
the type error above.

Fortunately, the debugger includes a generic printing command, : pri nt , which can inspect the actual
runtime value of avariable and attempt to reconstruct itstype. If wetry itonl ef t :

[gsort.hs:2:15-46] *Main> :set -fprint-evld-wth-show
[gsort.hs:2:15-46] *Main> :print |eft
left = (_t1::[a])

This isn't particularly enlightening. What happened is that | ef t is bound to an unevaluated computa-
tion (a suspension, or thunk), and : pri nt does not force any evaluation. Theideaisthat : pri nt can
be used to inspect values at a breakpoint without any unfortunate side effects. It won't force any evalu-
ation, which could cause the program to give a different answer than it would normally, and hence it
won't cause any exceptions to be raised, infinite loops, or further breakpoints to be triggered (see Sec-
tion 3.5.3, “Nested breakpoints’). Rather than forcing thunks, : pri nt binds each thunk to a fresh vari-
able beginning with an underscore, inthiscase _t 1.

Swe originally provided bindings for all variables in scope, rather than just the free variables of the expression, but found that this affected per-
formance considerably, hence the current restriction to just the free variables.

35

Using GHCi

The flag - f pri nt - evl d-wi t h- show instructs : pri nt to reuse available Show instances when
possible. This happens only when the contents of the variable being inspected are completely evaluated.

If we aren't concerned about preserving the evaluatedness of a variable, we can use : f or ce instead of

;print.The:force command behaves exactly like : pri nt, except that it forces the evaluation of
any thunks it encounters:

[gsort. hs: 2:15-46] *Main> :force |eft
left =[4,0,3,1]

Now, since: f or ce has inspected the runtime value of | ef t , it has reconstructed its type. We can see
the results of this type reconstruction:

[gsort. hs: 2:15-46] *Mai n> :show bi ndi ngs

_result :: [Integer]
a .. Integer

left :: [Integer]
right :: [Integer]
_t1 :: [Integer]

Not only do we now know the type of | ef t, but all the other partial types have also been resolved. So
we can ask for the value of a, for example:

[gsort. hs: 2:15-46] *Main> a
8

You might find it useful to use Haskell's seq function to evaluate individual thunks rather than evaluat-
ing the whole expression with : f or ce. For example:

[gsort. hs: 2 15 46] *Mai n> :print right
right = (_tl::[Integer])
[gsort. hs: 2 15- 46] *Main> seq _t1 ()

[gsort.hs:2:15-46] *Main> :print right
right =23 : (_t2::[Integer])

We evaluated only the _t 1 thunk, revealing the head of the list, and the tail is another thunk now bound
to_t 2. Theseq function is alittle inconvenient to use here, so you might want to use : def to make a
nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort. hs:2:15-46] *Main> :continue
St opped at qgsort. hs: 2:15-46

_result :: [a]
a:: a

left :: [a]
right :: [a]

[gsort. hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the breakpoint for a
second time.

36

Using GHCi

3.5.1.1. Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint isto name atop-level
function:

:break identifier

Where i denti fi er names any top-level function in an interpreted module currently loaded into
GHCi (quaified names may be used). The breakpoint will be set on the body of the function, when it is
fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break |ine

:break |ine colum

:break nodul e line

:break nodul e line col um

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subexpression
that begins and ends on that line. If two complete subexpressions start at the same column, the longest
oneis picked. If there is no complete subexpression on the line, then the leftmost expression starting on
thelineis picked, and failing that the rightmost expression that partially or completely coverstheline.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpression that
encloses that |ocation on which to set the breakpoint. Note: GHC considers the TAB character to have a
width of 1, wherever it occurs; in other words it counts characters, rather than columns. This matches
what some editors do, and doesn't match others. The best advice isto avoid tab charactersin your source
code altogether (see- f war n- t abs in Section 5.7, “Warnings and sanity-checking”).

If the module is omitted, then the most recently-loaded moduleis used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not considered to
be breakpoint locations (unless the variable is the right-hand-side of a function definition, lambda, or
case dternative). The rule of thumb is that all redexes are breakpoint locations, together with the bodies
of functions, lambdas, case alternatives and binding statements. There is normally no breakpoint on alet
expression, but there will always be a breakpoint on its body, because we are usually interested in in-
specting the values of the variables bound by the let.

3.5.1.2. Listing and deleting breakpoints

Thelist of breakpoints currently enabled can be displayed using : show br eaks:

*Mai n> : show breaks
[0] Main gsort.hs:1:11-12
[1] Main gsort.hs:2:15-46

To delete a breakpoint, use the : del et e command with the number given in the output from
: show br eaks:

*Mai n> :delete O
*Mai n> : show breaks
[1] Main gsort.hs:2:15-46

37

Using GHCi

3.5.2.

3.5.3.

To delete all breakpointsat once, use: del ete *.
Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a useful tool for
identifying the source of a bug. GHCi offers two variants of stepping. Use : st ep to enable al the
breakpoints in the program, and execute until the next breakpoint is reached. Use: st epl ocal tolimit
the set of enabled breakpoints to those in the current top level function. Similarly, use : st epnodul e
to single step only on breakpoints contained in the current module. For example:

*Mai n> :step nmain
St opped at qgsort.hs:5:7-47
_result :: 10 ()

The command : st ep expr begins the evaluation of expr in single-stepping mode. If expr is omit-
ted, then it single-steps from the current breakpoint. : st epover works similarly.

The: |i st command is particularly useful when single-stepping, to see where you currently are:

[gsort.hs:5:7-47] *Main> :list
4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[gsort.hs:5:7-47] *Mai n>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it automatic-
alydo:list:

[gsort.hs:5:7-47] *Main> :set stop :list
[gsort.hs:5:7-47] *Main> :step

St opped at qgsort. hs:5:14-46

result :: [Integer]

4
5 min=print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[gsort. hs:5:14-46] *Min>

Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a second break-
point, the new breakpoint becomes the “current” one, and the old one is saved on a stack. An arbitrary
number of breakpoint contexts can be built up in thisway. For example:

[gsort. hs:2:15-46] *Main> :st qsort [1, 3]
St opped at gsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *Min>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with : st ep
gsort [1, 3]. This new evaluation stopped after one step (at the definition of gsor t). The prompt
has changed, now prefixed with . . ., to indicate that there are saved breakpoints beyond the current
one. To seethe stack of contexts, use: show cont ext :

38

Using GHCi

3.5.4.

3.5.5.

[gsort.hs:(1,0)-(3,55)] *Min> :show context
--> main
St opped at qgsort. hs: 2:15-46
-->qgsort [1,3]
St opped at qgsort. hs: (1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *Min>

To abandon the current evaluation, use : abandon:

... [qgsort.hs:(1,0)-(3,55)] *Min> :abandon
[gsort. hs: 2:15-46] *Mai n> : abandon
*Mai n>

The result variable

When stopped at a breakpoint or single-step, GHCi binds the variable _r esul t to the value of the cur-
rently active expression. Thevalue of _r esul t is presumably not available yet, because we stopped its
evaluation, but it can be forced: if the type is known and showable, then just entering _resul t at the
prompt will show it. However, there's one caveat to doing this. evaluating _resul t will be likely to
trigger further breakpoints, starting with the breakpoint we are currently stopped at (if we stopped at a
real breakpoint, rather than dueto : st ep). So it will probably be necessary to issuea: cont i nue im-
mediately when evaluating _r esul t . Alternatively, you can use: f or ce which ignores breakpoints.

Tracing and history

A question that we often want to ask when debugging a program is “how did | get here?’. Traditional
imperative debuggers usually provide some kind of stack-tracing feature that lets you see the stack of
active function calls (sometimes called the “lexical call stack™), describing a path through the code to the
current location. Unfortunately this is hard to provide in Haskell, because execution proceeds on a de-
mand-driven basis, rather than a depth-first basis as in strict languages. The “stack” in GHC's execution
engine bears little resemblance to the lexical call stack. Ideally GHCi would maintain a separate lexical
call stack in addition to the dynamic call stack, and in fact thisis exactly what our profiling system does
(Chapter 6, Profiling), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn't maintain a lexical call stack (there are some technical challenges to be overcome). Instead, we
provide a way to backtrack from a breakpoint to previous evaluation steps: essentially thisislike single-
stepping backwards, and should in many cases provide enough information to answer the “how did | get
here?’ question.

To use tracing, evaluate an expression with the : t r ace command. For example, if we set a breakpoint
on the base case of gsort :

*Mai n> :list gsort

1 qgsort [] =11

2 qgsort (a:as) = qgsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1
Breakpoint 1 activated at qgsort.hs:1:11-12
*Mai n>

and then run asmall gsor t with tracing:

39

Using GHCi

3.5.6.

*Mai n> :trace qgsort [3,2,1]
St opped at qgsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

1 —

sort.hs:1:11-12] *Mai n> : hi st
. gsort. hs: 3:24-38
gsort. hs: 3:23-55
gsort.hs:(1,0)-(3,55)
gsort. hs: 2:15-24
gsort. hs: 2:15-46
gsort. hs: 3:24-38
gsort.hs: 3:23-55
gsort.hs:(1,0)-(3,55)
: qgsort.hs:2:15-24
0 : gsort.hs:2:15-46
-11 : qgsort.hs:3:24-38
-12 : qgsort.hs:3:23-55
-13 : qgsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24
-15 : qsort. hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
<end of history>

[T T T
RPOO~NOOUOIRWNERO

To examine one of the stepsin the history, use : back:

[gsort.hs:1:11-12] *Mai n> : back
Logged breakpoi nt at qgsort.hs: 3:24-38
_result :: [a]

as :: [a]

a:: a

[-1: gsort.hs:3:24-38] *Min>

Note that the local variables at each step in the history have been preserved, and can be examined as
usual. Also note that the prompt has changed to indicate that we're currently examining the first step in
the history: - 1. The command : f or war d can be used to traverse forward in the history.

The: t race command can be used with or without an expression. When used without an expression,
tracing begins from the current breakpoint, just like: st ep.

The history is only available when using : t r ace; the reason for this is we found that logging each
breakpoint in the history cuts performance by afactor of 2 or more. GHCi remembers the last 50 stepsin
the history (perhapsin the future we'll make this configurable).

Debugging exceptions

Another common question that comes up when debugging is “where did this exception come from?”.
Exceptions such as those raised by er r or or head [] have no context information attached to them.
Finding which particular call to head in your program resulted in the error can be a painstaking pro-
cess, usualy involving Debug. Tr ace. t race, or compiling with profiling and using +RTS - xc
(see Section 6.3, “Time and alocation profiling”).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and without
modifying or recompiling the source code. One way would be to set a breakpoint on the location in the

40

Using GHCi

3.5.7.

source code that throws the exception, and then use : t race and : hi st ory to establish the context.
However, head is in a library and we can't set a breskpoint on it directly. For this reason, GHCi
providesthe flags - f br eak- on- except i on which causes the evaluator to stop when an exception is
thrown, and - f br eak- on- error, which works similarly but stops only on uncaught exceptions.
When stopping at an exception, GHCi will act just as it does when a breakpoint is hit, with the deviation
that it will not show you any source code location. Due to this, these commands are only really useful in
conjunction with : t r ace, in order to log the steps leading up to the exception. For example:

*Mai n> :set -fbreak-on-exception
*Mai n> :trace gsort ("abc" ++ undefi ned)
" St opped at <exception thrown>
_exception :: e
[<exception thrown>] *Main> :hist

: gsort.hs: 3:24-38
gsort. hs: 3:23-55
gsort.hs:(1,0)-(3,55)
gsort. hs: 2:15-24
gsort.hs: 2:15-46
. qgsort.hs:(1,0)-(3,55)
<end of history>
[<exception thrown>] *Mai n> : back
Logged breakpoint at qgsort. hs: 3:24-38
_result :: [a]
as :: [a]
a:: a
[-1: gsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined
[-1: gsort.hs:3:24-38] *Main> :print as
as ='b'" : 'c'" : (_tl::[Char])

OO~ WNE

The exception itself is bound to anew variable, _excepti on.

Breaking on exceptions is particularly useful for finding out what your program was doing when it was
in aninfinite loop. Just hit Control-C, and examine the history to find out what was going on.

Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint and a func-
tion isin scope, the debugger cannot show you the source code for it; however, it is possible to get some
information by applying it to some arguments and observing the result.

The processis dightly complicated when the binding is polymorphic. We show the process by means of
an example. To keep things simple, we will use the well known map function:

i mport Prelude hiding (nmap)

map :: (a->b) ->[a] -> [b]
map f [] =[]
map f (x:xs) =f x: map f xs

We set a breakpoint on map, and call it.

*Mai n> :break 5

Breakpoint O activated at nap. hs:5:15-28
*Mai n> map Just [1..5]

St opped at map. hs: (4,0)-(5,12)

41

Using GHCi

result :: [b]
Troa
ra->b
s 1 [4]

X = X|

GHCi tells us that, among other bindings, f isin scope. However, its type is not fully known yet, and
thus it is not possible to apply it to any arguments. Nevertheless, observe that the type of its first argu-
ment is the same as the type of x, and itsresult type is shared with _resul t .

As we demonstrated earlier (Section 3.5.1, “Breakpoints and inspecting variables’), the debugger has
some intelligence built-in to update the type of f whenever the types of x or _resul t are discovered.
So what we do in this scenario is force x abit, in order to recover both its type and the argument part of
f.

*Mai n> seq x ()
*Mai n> :print X
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type of f has
been too:

*Main> :t X

X . Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> it b
b:: b
*Main> b
<interactive>: 1:0:

Anbi guous type variable “b' in the constraint:

“Show b' arising froma use of “print' at <interactive>: 1:0

*Main> :p b
b =(_t2::a)
*Mai n> seq b ()

*Main> :t b

b:: a

*Main> :p b

b = Just 10

*Main> it b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer
*Mai n> f 20

Just 20

*Main> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f , we had to do some more type reconstruction in order to recover the result
type of f . But after that, we are freeto usef normally.

3.5.8. Limitations

42

Using GHCi

* When stopped at a breakpoint, if you try to evaluate a variable that is already under evaluation, the
second evaluation will hang. The reason is that GHC knows the variable is under evauation, so the
new evaluation just waits for the result before continuing, but of course thisisn't going to happen be-
cause the first evaluation is stopped at a breakpoint. Control-C can interrupt the hung evaluation and
return to the prompt.

The most common way this can happen is when you're evaluating a CAF (e.g. main), stop at a break-
point, and ask for the value of the CAF at the prompt again.

» Implicit parameters (see Section 8.7.2, “Implicit parameters’) are only available at the scope of a
breskpoint if thereis an explicit type signature.

3.6. Invoking GHCi

3.6.1.

3.6.2.

GHCi is invoked with the command ghci or ghc —i nt eracti ve. One or more modules or file-
names can also be specified on the command line; this instructs GHCi to load the specified modules or
filenames (and all the modules they depend on), just asif you had said : | oad nodul es at the GHCi
prompt (see Section 3.7, “GHCi commands’). For example, to start GHCi and load the program whose
topmost moduleisin thefile Mai n. hs, we could say:

$ ghci Main. hs

Most of the command-line options accepted by GHC (see Chapter 5, Using GHC) also make sensein in-
teractive mode. The ones that don't make sense are mostly obvious.

Packages

Most packages (see Section 5.8.1, “Using Packages ") are available without needing to specify any extra
flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the - package flag:

$ ghci -package readline
GHGi, version 6.8.1: http://ww. haskell.org/ghc/ :? for help

Loadi ng package base ... linking ... done.
Loadi ng package readline-1.0 ... linking ... done.
Prel ude>

The following command works to load new packages into a running GHCi:
Prel ude> :set -package nane

But note that doing this will cause all currently loaded modules to be unloaded, and you'll be dumped
back into the Pr el ude.

Extra libraries

Extra libraries may be specified on the command line using the normal - | | i b option. (Theterm library
here refers to libraries of foreign object code; for using libraries of Haskell source code, see Sec-
tion 3.2.1, “Modules vs. filenames™.) For example, to load the “m” library:

43

Using GHCi

$ ghci -Im

On systems with . so-style shared libraries, the actual library loaded will the I'i bl i b. so. GHCi

searches the following places for libraries, in this order:

» Paths specified using the - Lpat h command-line option,

» the standard library search path for your system, which on some systems may be overridden by set-
tingthe LD _LI BRARY_PATH environment variable.

On systems with . dI | -style shared libraries, the actua library loaded will bel i b. dl | . Again, GHCi

will signal an error if it can't find the library.

GHCi can aso load plain object files (. 0 or . obj depending on your platform) from the command-
line. Just add the name the object file to the command line.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends on (see
Section 5.10.7, “ Options affecting linking™).

3.7. GHCi commands

GHCi commands all begin with *: " and consist of a single command name followed by zero or more
parameters. The command name may be abbreviated, with ambiguities being resolved in favour of the
more commonly used commands.

: abandon Abandons the current evaluation (only available when stopped at a breakpoint).

: add nodul e Add nodul e(s) to the current target set, and perform areload.

: back Travel back one step in the history. See Section 3.5.5, “Tracing and history”. See
aso::trace,: history,: forward.

: break Set a breakpoint on the specified function or line and column. See Section 3.5.1.1,

[identifier “ Setting breskpoints’.

| [nodul e]

| bhewse[!] Displays the identifiers defined by the module nodul e, which must be either

[[&breaa]) @] ... loaded into GHCi or be amember of a package. If nodul e is omitted, the most re-

cently-loaded moduleis used.

If the* symbol is placed before the module name, then all the identifiersin scopein
nmodul e are shown; otherwise the list is limited to the exports of nodul e. The * -
form is only available for modules which are interpreted; for compiled modules
(including modules from packages) only the non-* form of : br owse is available.
If the! symbol is appended to the command, data constructors and class methods
will be listed individually, otherwise, they will only be listed in the context of their
data type or class declaration. The ! -form aso annotates the listing with comments
giving possible imports for each group of entries.

Prel ude> : browse! Data. Maybe

-- not currently inported

Dat a. Maybe. cat Maybes :: [Maybe a] -> [a]
Dat a. Maybe. fromJust :: Maybe a -> a

Dat a. Maybe. fromvaybe :: a -> Maybe a -> a

44

Using GHCi

Dat a. Maybe. i sJust :: Maybe a -> Bool

Dat a. Maybe. i sNot hing :: Maybe a -> Bool

Dat a. Maybe. | i st ToMaybe :: [a] -> Maybe a

Dat a. Maybe. mapMaybe :: (a -> Maybe b) -> [a] -> [Db]
Dat a. Maybe. maybeToLi st :: Maybe a -> [a]

-- inported via Prelude

Just :: a -> Maybe a

data Maybe a = Nothing | Just a

Not hing :: Maybe a

maybe :: b -> (a ->b) -> Maybe a -> b

This output shows that, in the context of the current session, in the scope of Pr e-

| ude, the first group of items from Dat a. Maybe have not been imported (but are
available in fully qualified form in the GHCi session - see Section 3.4.3, “What's
really in scope at the prompt?’), whereas the second group of items have been im-
ported via Pr el ude and are therefore available either unqualified, or with a Pr e-

| ude. qudlifier.

ccddir Changes the current working directory to di r. A *~’ symbol at the beginning of
di r will be replaced by the contents of the environment variable HOVE.

NOTE: changing directories causes al currently loaded modules to be unloaded.
This is because the search path is usually expressed using relative directories, and
changing the search path in the middle of a session is not supported.

:cmd expr Executes expr as a computation of type | O St ri ng, and then executes the res-
ulting string as a list of GHCi commands. Multiple commands are separated by
newlines. The: crmd command isuseful with : def and: set st op.

. continue Continue the current evaluation, when stopped at a breakpoint.

:ctags|[file- Generates a “tags’ file for Vi-style editors (: ct ags) or Emacs-style editors

nane] : etags (: et ags). If no filename is specified, the default t ags or TAGS is used, respect-

[fil enane] ively. Tags for al the functions, constructors and types in the currently loaded mod-
ules are created. All modules must be interpreted for these commands to work.

See also Section 11.1, “Ctags and Etags for Haskell: hasktags'.

cdef[!] : def isused to define new commands, or macros, in GHCi. The command : def

[name expr] nane expr defines a new GHCi command : nane, implemented by the Haskell
expression expr, which must have type String -> 10 String. When
:name args is typed at the prompt, GHCi will run the expression (hanme
ar gs) , take the resulting St r i ng, and feed it back into GHCi as a new sequence
of commands. Separate commands in the result must be separated by ‘\ n’.

That's all a little confusing, so here's a few examples. To start with, here's a new
GHCi command which doesn't take any arguments or produce any results, it just
outputs the current date & time:

Prelude> | et date _ = Tine.getCd ockTime >>= print >> return
Prel ude> : def date date
Prel ude> :date

Fri Mar 23 15:16:40 GVII 2001

Here's an example of a command that takes an argument. It's a re-implementation of
:cd:

45

Using GHCi

cdelete * |
num . ..

cedit [file]

: et ags

:force iden-
tifier

:forward

thelp,:?

“history
[num

;i nfonane ..

Prelude> let nycd d = Directory.setCurrentDirectory d >> return

Prel ude> :def mycd nycd
Prel ude> :nycd ..

Or | could define asimple way toinvoke “ghc —nake Mai n” in the current dir-
ectory:

Prel ude> :def make (_ -> return ":! ghc ——make Main")

We can define a command that reads GHCi input from afile. This might be useful
for creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prel ude> :. cnds. ghci

Notice that we named the command : . , by analogy with the *. * Unix shell com-
mand that does the same thing.

Typing : def on its own lists the currently-defined macros. Attempting to redefine
an existing command name results in an error unless the : def ! form is used, in
which case the old command with that name is silently overwritten.

Delete one or more breakpoints by number (use : show br eaks to see the num-
ber of each breakpoint). The* form deletes all the breakpoints.

Opens an editor to edit thefilefi | e, or the most recently loaded module if fi | e
is omitted. The editor to invoke is taken from the EDI TOR environment variable, or
adefault editor on your system if EDI TOR is not set. You can change the editor us-
ing: set editor.

See: ct ags.

Prints the value of i denti fi er inthesameway as: pri nt. Unlike: print,
: f or ce evauates each thunk that it encounters while traversing the value. This
may cause exceptions or infinite loops, or further breakpoints (which are ignored,
but displayed).

Move forward in the history. See Section 3.5.5, “Tracing and history”. See also:
:trace,: history,: back.

Displays alist of the available commands.
Repeat the previous command.

Display the history of evaluation steps. With a number, displays that many steps
(default: 20). For usewith : t r ace; see Section 3.5.5, “Tracing and history”.

Displays information about the given name(s). For example, if name isaclass, then
the class methods and their types will be printed; if nane is atype constructor, then
its definition will be printed; if name is a function, then its type will be printed. If
nane has been loaded from a source file, then GHCi will also display the location
of its definition in the source.

46

Using GHCi

tkindtype

;| oad nodul e

;. mai n arg,
arg,

:modul e

[+ -]
[*]rDd1 ...
[*] nndn,i m
ppr t nhodames

Jquit

:rel oad

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (@) its head mentions
nane, and (b) al the other things mentioned in the instance are in scope (either
qualified or otherwise) asaresult of a: | oad or : nodul e commands.

Infers and prints the kind of t ype. The latter can be an arbitrary type expression,
including a partia application of atype constructor, suchasEi t her Int.

Recursively loads the specified nodul es, and al the modules they depend on.
Here, each nodul e must be a module name or filename, but may not be the name
of amodule in a package.

All previously loaded modules, except package modules, are forgotten. The new set
of modulesis known as the target set. Notethat : | oad can be used without any ar-
guments to unload all the currently loaded modules and bindings.

After a: | oad command, the current context is set to:
e nodul e, if it was loaded successfully, or

« the most recently successfully loaded module, if any other modules were |oaded
asaresult of the current : | oad, or

¢ Prel ude otherwise.

When a program is compiled and executed, it can use the get Ar gs function to ac-
cess the command-line arguments. However, we cannot simply pass the arguments
to the mai n function while we are testing in ghci, as the mai n function doesn't take
its arguments directly.

Instead, we can use the : mai n command. This runs whatever nai n is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> |l et nmain = System Environnent. get Args >>= print
Prel ude> : main foo bar
[Ilf ooIl , n bar Il]

Sets or modifies the current context for statements typed at the prompt. The form
i mport nod isequivaentto: nodul e +nopd. See Section 3.4.3, “What's really
in scope at the prompt?’ for more details.

Prints a value without forcing its evaluation. : pri nt may be used on values whose
types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value,
:print attempts to reconstruct the type of the value, and will elaborate the typein
GHCi's environment if possible. If any unevaluated components (thunks) are en-
countered, then : pri nt binds a fresh variable with a name beginning with _t to
each thunk. See Section 3.5.1, “Breakpoints and inspecting variables’ for more in-
formation. See also the : spri nt command, which works like : pri nt but does
not bind new variables.

Quits GHCi. You can also quit by typing control-D at the prompt.
Attempts to reload the current target set (see : | oad) if any of the modules in the

set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

47

Using GHCi

:set
[option..]

:set args arg

:set editor
cnd

. set prog
prog

. set pronpt
pr onpt

:set stop
[num cnd

: show bi nd-
i ngs
: show br eaks

: show con-
t ext

: show npd-
ul es

: show pack-
ages

:show | an-
guages

: show

[args| prog|p
r 8ppt pedi t or
| st op]

:step [expr]

‘trace
[expr]

Sets various options. See Section 3.8, “The : set command” for alist of available
options and Section 5.17.10, “Interactive-mode options’ for alist of GHCi-specific
flags. The : set command by itself shows which options are currently set. It also
lists the current dynamic flag settings, with GHCi-specific flags listed separately.

Sets the list of arguments which are returned when the program calls Sys-
tem get Args.

Setsthe command used by : edi t tocnd.
Sets the string to be returned when the program calls Syst em get Pr ogNane.

Sets the string to be used as the prompt in GHCI. Inside pr onpt , the sequence ¥%s
is replaced by the names of the modules currently in scope, and %®%is replaced by %

Set a command to be executed when a breakpoint is hit, or a new item in the history
is selected. The most common use of : set st op isto display the source code at
the current location, e.g. : set stop :list.

If a number is given before the command, then the commands are run when the spe-
cified breakpoint (only) is hit. This can be quite useful: for example, : set st op
1 :continue effectively disables breakpoint 1, by running :conti nue
whenever it is hit (although GHCi will still emit a message to say the breakpoint
was hit). What's more, with cunning use of : def and : cnd you can use : set
st op toimplement conditional breakpoints:

*Mai n> :def cond \expr -> return (":crmd if (" ++ expr ++
*Mai n> :set stop O :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using sim-
ilar techniques.

Show the bindings made at the prompt and their types.

List the active breakpoints.

List the active evaluations that are stopped at breakpoints.

Show the list of modules currently loaded.

Show the currently active package flags, as well as the list of packages currently
loaded.

Show the currently active language flags.
Displays the specified setting (see: set).
Prints a value without forcing its evaluation. : spri nt issimilarto: pri nt, with
the difference that unevaluated subterms are not bound to new variables, they are

simply denoted by * .

Single-step from the last breakpoint. With an expression argument, begins evalu-
ation of the expression with a single-step.

Evaluates the given expression (or from the last breakpoint if no expression is giv-
en), and additionaly logs the evaluation steps for later inspection using
: hi st ory. See Section 3.5.5, “Tracing and history”.

48

") then rett

Using GHCi

:type ex- Infers and prints the type of expr essi on, including explicit forall quantifiers for
pression polymorphic types. The monomorphism restriction is not applied to the expression

during type inference.

: undef nane Undefines the user-defined command nane (see: def above).

lunset op- Unsets certain options. See Section 3.8, “The : set command” for alist of avail-
tion.. able options.
;1 command... Executes the shell command conmand.

3.8. The: set command

3.8.1.

3.8.2.

The :set command sets two types of options. GHCi options, which begin with ‘+', and
“command-line” options, which begin with *-'.

NOTE: at the moment, the : set command doesn't support any kind of quoting in its arguments: quotes
will not be removed and cannot be used to group words together. For example, : set - DFOO=" BAR
BAZ' will not do what you expect.

GHCi options

GHCi options may be set using : set and unset using : unset .

The available GHCi options are:

+r Normally, any evaluation of top-level expressions (otherwise known as CAFs or
Constant Applicative Forms) in loaded modules is retained between evaluations.
Turning on +r causes al evaluation of top-level expressions to be discarded after
each evaluation (they are till retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large
amounts of space, or if you need repeatabl e performance measurements.

+s Display some stats after evaluating each expression, including the elapsed time
and number of bytes allocated. NOTE: the allocation figure is only accurate to the
size of the storage manager's allocation area, because it is calculated at every GC.
Hence, you might see values of zero if no GC has occurred.

+t Display the type of each variable bound after a statement is entered at the prompt.
If the statement is a single expression, then the only variable binding will be for
thevariable‘i t ’.

Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using : set. For example, to turn on -
f gl asgow ext s, you would say:

Prel ude> :set -fglasgow exts

Any GHC command-line option that is designated as dynamic (see the table in Section 5.17, “Flag refer-
ence’), may be set using : set . To unset an option, you can set the reverse option;

49

Using GHCi

Prel ude> :set -fno-gl asgow exts

Section 5.17, “Flag reference” lists the reverse for each option where applicable.

Certain static options (- package, - | ,-i,and -1 in particular) will also work, but some may not take
effect until the next reload.

3.9. The . ghci file

When it starts, unless the - i gnor e- dot - ghci flag is given, GHCi reads and executes commands
from. /. ghci , followed by $HOVE/ . ghci .

The. ghci inyour home directory is most useful for turning on favourite options (eg. : set +s), and
defining useful macros. Placing a. ghci filein adirectory with a Haskell project is a useful way to set
certain project-wide options so you don't have to type them everytime you start GHCi: eg. if your
project uses GHC extensions and CPP, and has source files in three subdirectories A, B and C, you
might put the following linesin . ghci :

| asgow exts -cpp

.set -fg
-iA'B: C

:set

(Note that strictly speaking the - i flag isastatic one, but in fact it worksto set it using : set like this.
The changes won't take effect until the next : | oad, though.)

Two command-line options control whether the . ghci filesare read:

-ig- Don't read either . / . ghci or $HOVE/ . ghci when starting up.

nor e-

dot - ghci Read . ghci and $HOVE/ . ghci. This is normaly the default, but the -
read- read-dot-ghci option may be used to overide a previous -ig-
dot - ghci nor e- dot - ghci option.

3.10. Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the runtime system.
GHCi can aso compile Haskell code to object code: to turn on this feature, use the - f obj ect - code
flag either on the command line or with : set (the option - f byt e- code restores byte-code compila-
tion again). Compiling to object code takes longer, but typically the code will execute 10-20 times faster
than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled applica-
tion, because the : r el oad command typicaly runs much faster than restarting GHC with - - nake
from the command-line, because al the interface files are already cached in memory.

There are disadvantages to compiling to object-code: you can't set breakpoints in object-code modules,

for example. Only the exports of an object-code module will be visible in GHCI, rather than all top-level
bindings as in interpreted modules.

3.11. FAQ and Things To Watch Out For

50

Using GHCi

The interpreter can't load modules
with foreign export declarations!

- Odoesn't work with GHCi!

Unboxed tuples don't work with
GHCi

Concurrent threads don't carry on
running when GHCi is waiting for
input.

After using get Cont ent s, | can't
usest di nagainuntil | do: | oad
or:rel oad.

| can't use Control-C to interrupt
computations in GHCi on Win-
dbeslefault buffering mode is dif-
ferent in GHCi to GHC.

Unfortunately not. We haven't implemented it yet. Please compile
any offending modules by hand before loading them into GHCi.

For technical reasons, the bytecode compiler doesn't interact well
with one of the optimisation passes, so we have disabled optim-
isation when using the interpreter. Thisisn't agreat loss. you'll get
amuch bigger win by compiling the bits of your code that need to
go fast, rather than interpreting them with optimisation turned on.

That's right. Y ou can always compile a module that uses unboxed
tuples and load it into GHCi, however. (Incidentally the previous
point, namely that - Ois incompatible with GHCI, is because the
bytecode compiler can't deal with unboxed tuples).

This should work, as long as your GHCi was built with the -
t hr eaded switch, which is the default. Consult whoever sup-
plied your GHCi installation.

This is the defined behaviour of get Cont ent s: it puts the stdin
Handle in a state known as semi-closed, wherein any further 1/0O
operations on it are forbidden. Because 1/O state is retained
between computations, the semi-closed state persists until the next
>l oad or: r el oad command.

You can make st di n reset itself after every evaluation by giving
GHCi the command : set +r. This works because st di n is
just atop-level expression that can be reverted to its unevaluated
state in the same way as any other top-level expression (CAF).

See Section 12.2, “Running GHCi on Windows”.

In GHC, the stdout handle is line-buffered by default. However,
in GHCi we turn off the buffering on stdout, because this is nor-
mally what you want in an interpreter: output appears as it is gen-
erated.

51

Chapter 4. Using runghc

runghc allows you to run Haskell programs without first having to compile them.

4.1. Flags

The runghc commandline looks like:
runghc [runghc flags] [GHC flags] nodul e [program fl ags]

The only runghc flag currently is-f / pat h/ t o/ ghc, which tells runghc which GHC to use to run
the program. If it is not given then runghc will search for GHC in the directories in the system search
path.

runghc will try to work out where the boundaries between [r unghc fl ags] and [GHC fl ags],
and [GHC fl ags] and nodul e are, but you can use a- - flag if it doesn't get it right. For example,
runghc -- -fglasgow exts Foo meansrunghc won't try to use gl asgow- ext s as the path
to GHC, but instead will pass the flag to GHC.

52

Chapter 5. Using GHC

5.1. Options overview

5.1.1.

5.1.2.

5.1.3.

GHC's behaviour is controlled by options, which for historical reasons are also sometimes referred to as
command-line flags or arguments. Options can be specified in three ways:

Command-line arguments

An invocation of GHC takes the following form:
ghc [argunent...]

Command-line arguments are either options or file names.

Command-line options begin with - . They may not be grouped: - vOis different from - v - O Options
need not precede filenames: e.g., ghc *. 0 -0 foo. All options are processed and then applied to al
files; you cannot, for example, invoke ghc -¢ -OL Foo. hs - Q2 Bar. hs to apply different op-
timisation levelsto thefilesFoo. hs and Bar . hs.

Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line options it re-
quires quite tight. For instance, if a Haskell source file uses GHC extensions, it will always need to be
compiled with the - f gl asgow ext s option. Rather than maintaining the list of per-file optionsin a
Makef i | e, itispossibleto do this directly in the source file using the OPTI ONS_GHC pragma.:

{-# OPTIONS_GHC - fgl asgow exts #-}
nodul e X where

OPTI ONS_CGHC pragmas are only looked for at the top of your source files, upto the first
(non-literate,non-empty) line not containing OPTI ONS_GHC. Multiple OPTI ONS_GHC pragmas are re-
cognised. Do not put comments before, or on the same line as, the OPTI ONS_ GHC pragma.

Note that your command shell does not get to the source file options, they are just included literally in
the array of command-line arguments the compiler maintains internally, so you'll be desperately disap-
pointed if you try to glob etc. inside OPTI ONS_GHC.

NOTE: the contents of OPTIONS_GHC are appended to the command-line options, so options given in
the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some cir-

cumstances, the OPTI ONS_GHC pragma is the Right Thing. (If you use - keep- hc-fi | e and have
OPTION flagsin your module, the OPTIONS GHC will get put into the generated .hc file).

Setting options in GHCi

Options may also be modified from within GHCIi, using the : set command. See Section 3.8, “The
: set command” for more details.

53

Using GHC

5.2. Static, Dynamic, and Mode options

Each of GHC's command line optionsiis classified as static, dynamic or mode:

Mode flags For example, - - make or - E. There may only be a single mode flag on the com-
mand line. The available modes are listed in Section 5.4, “Maodes of operation”.

Dynamic Flags Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a GHC_OPTI ONS pragma in a source file, or set using : set in
GHCi.

Stetic Flags A few flags are "static", which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCi run.

The flag reference tables (Section 5.17, “Flag reference”) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi's : set command;
these arelisted as “static/: set ” inthetable.

5.3. Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . | hs or . 0) cause the “right thing” to happen to those

files.

. hs A Haskell module.

.I'hs A “literate Haskell” module.

. hi A Haskell interface file, probably compiler-generated.

. hc Intermediate C file produced by the Haskell compiler.

.C A Cfilenot produced by the Haskell compiler.

.S An assembly-language source file, usually produced by the compiler.
.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

5.4. Modes of operation

GHC's behaviour is firstly controlled by a mode flag. Only one of these flags may be given, but it does
not necessarily need to be the first option on the command-line. The available modes are:

ghc - Interactive mode, which is also available as ghci. Interactive mode is described in

- more detail in Chapter 3, Using GHCi.

i nteractive

ghc --make Inthis mode, GHC will build a multi-module Haskell program automatically, figur-
ing out dependencies for itself. If you have a straightforward Haskell program, thisis
likely to be much easier, and faster, than using make. Make mode is described in
Section 5.4.1, “Using ghc —nake”.

54

Using GHC

5.4.1.

ghc -eexpr

ghc -Eghc
-cghc -S
ghc -c
ghc -M
ghc -
-nk-dl |
ghc --help
ghc -?
ghc -

-showi face
file
ghc -

ghppor t BllO
| anguages
ghc -
-version
ghe -V

- nu-

gbei e-
version
print-1ib-
dir

Expression-evaluation mode. This is very similar to interactive mode, except that
thereis a single expression to evaluate (expr) which is given on the command line.
See Section 5.4.2, “Expression evaluation mode” for more details.

This is the traditional batch-compiler mode, in which GHC can compile source files
one at atime, or link objects together into an executable. This mode aso applies if
there is no other mode flag specified on the command line, in which case it means
that the specified files should be compiled and then linked to form a program. See
Section 5.4.3, “Batch compiler mode”.

Dependency-generation mode. In this mode, GHC can be used to generate depend-
ency information suitable for use in a Makef i | e. See Section 5.6.11, “Dependency
generation”.

DL L -creation mode (Windows only). See Section 12.6.1, “Creatinga DLL".

Cause GHC to spew along usage message to standard output and then exit.

Read the interface in fi | e and dump it as text to st dout . For example ghc -
-showiface M hi.

Print the supported language extensions.

Print information about the compiler.

Print aone-line string including GHC's version number.

Print GHC's numeric version number only.

Print the path to GHC's library directory. Thisis the top of the directory tree contain-
ing GHC's libraries, interfaces, and include files (usually something like /

usr/local /li b/ ghc-5.04 on Unix). This is the value of $li bdir in the
package configuration file (see Section 5.8, “ Packages™).

Using ghc —make

When given the —nake option, GHC will build a multi-module Haskell program by following depend-
encies from one or more root modules (usually just Mai n). For example, if your Mai n module isin a
file called Mai n. hs, you could compile and link the program like this:

ghc ——nake Main. hs

The command line may contain any number of source file names or module names; GHC will figure out
all the modules in the program by following the imports from these initial modules. It will then attempt
to compile each module which is out of date, and finally, if there is a Mai n module, the program will
also be linked into an executable.

The main advantagesto using ghc ——rmake over traditional Makef i | esare:

* GHC doesn't have to be restarted for each compilation, which means it can cache information
between compilations. Compiling a multi-module program with ghc ——rmake can be up to twice as
fast as running ghc individually on each sourcefile.

* Youdon't havetowriteaMakefi | e.

55

Using GHC

5.4.2.

5.4.3.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never get out of
sync with the source.

Any of the command-line options described in the rest of this chapter can be used with ——nake, but
note that any options you give on the command line will apply to all the source files compiled, so if you
want any options to apply to a single source file only, you'll need to use an OPTI ONS_GHC pragma (see
Section 5.1.2, “Command line options in source files’).

If the program needs to be linked with additional objects (say, some auxiliary C code), then the object
files can be given on the command line and GHC will include them when linking the executable.

Note that GHC can only follow dependencies if it has the source file available, so if your program in-
cludes a module for which there is no source file, even if you have an object and an interface file for the
module, then GHC will complain. The exception to thisruleis for package modules, which may or may
not have sourcefiles.

The source files for the program don't all need to be in the same directory; the- i option can be used to
add directories to the search path (see Section 5.6.3, “The search path”).

Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to evaluate which
is specified on the command line as an argument to the - e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as in interact-
ive mode. The expression is evaluated in the context of the |loaded modules.

For example, to load and run a Haskell program containing a module Mai n, we might say
ghc -e Main.nmain Min. hs
or we can just use this mode to evaluate expressions in the context of the Pr el ude:

$ ghc -e "interact
hel |l o
ol I eh

(unlines. map reverse.lines)"

Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined by aflag.
If no relevant flag is present, then go all the way through to linking. This table summarises:

Phase of the compilation
system

Suffix saying “ start here”

Flag saying “ stop after”

(suffix of) output file

literate pre-processor .I'hs - . hs
C pre-processor (opt.) . hs (with - cpp) -E . hspp

56

Using GHC

Phase of the compilation |Suffix saying “start here” |Flag saying “stop after” |(suffix of) output file
system

Haskell compiler . hs -C,-S .he,.s

C compiler (opt.) .hcor.c -S

assembler .S -C .0

linker ot her - a. out

Thus, acommon invocation would be:

ghc -c Foo. hs

to compile the Haskell sourcefile Foo. hs to an object file Foo. o.

Note: What the Haskell compiler proper produces depends on whether a native-code generator is used
(producing assembly language) or not (producing C). See Section 5.10.6, “ Options affecting code gener-
ation” for more details.

Note: C pre-processing is optional, the - cpp flag turns it on. See Section 5.10.3, “ Options affecting the
C pre-processor” for more details.

Note: The option - E runsjust the pre-processing passes of the compiler, dumping the result in afile.

5.4.3.1. Overriding the default behaviour for a file

As described above, the way in which afileis processed by GHC depends on its suffix. This behaviour
can be overridden using the - x option:

-x Causes dll files following this option on the command line to be processed asif they had the suffix
su suf fi x. For example, to compile a Haskell module in the file M ny- hs, useghc -¢ -x hs

ff Mny-hs.

i X

5.5. Help and verbosity options

Seedsothe- - hel p,--version,--numeric-version,and--print-Iibdir modesin Sec-
tion 5.4, “Modes of operation”.

-vn

Does adry-run, i.e. GHC goes through al the motions of compiling as normal, but
does not actually run any external commands.

The - v option makes GHC verbose: it reports its version number and shows (on
stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the - v flag to most phases; each reports its version number (and possibly
some other information).

Please, oh please, use the - v option when reporting bugs! Knowing that you ran
theright bitsin the right order is always the first thing we want to verify.

To provide more control over the compiler's verbosity, the - v flag takes an op-
tional numeric argument. Specifying - v on its own is equivalent to - v3, and the
other levels have the following meanings:

57

Using GHC

-v0 Disable all non-essential messages (thisis the default).

-v1l Minimal verbosity: print one line per compilation (this is the default when
——make or —i nt eracti ve ison).

-v2 Print the name of each compilation phase as it is executed. (equivalent to -
dshow passes).

-v3 Thesameas- v2, except that in addition the full command line (if appro-
priate) for each compilation phase is also printed.

-v4 The same as - v3 except that the intermediate program representation after
each compilation phase is also printed (excluding preprocessed and C/
assembly files).

-ferror-spans Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic en-
tity only.

For example:

test.hs:3:6: parse error on input " where'

becomes:

test 296. hs: 3: 6-10: parse error on input "“where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for "a
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero.
This choice was made to follow existing convention (i.e. this is how Emacs does

it).

- Hsi ze Set the minimum size of the heap to si ze. This option is equivalent to
+RTS - Hsi ze, see Section 5.14.3, “RTS options to control the garbage collect-
or’.

-Rghc-timng Prints a oneline summary of timing statistics for the GHC run. This option is
equivalent to +RTS -t st derr, see Section 5.14.3, “RTS options to control the
garbage collector”.

5.6. Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files are stored,
and what options affect this behaviour.

Note that this section is written with hierarchical modules in mind (see Section 8.3.1, “Hierarchica
Modules); hierarchical modules are an extension to Haskell 98 which extends the lexical syntax of

58

Using GHC

5.6.1.

5.6.2.

module namesto include adot ‘.. Non-hierarchical modules are thus a special case in which none of the
module names contain dots.

Pathname conventions vary from system to system. In particular, the directory separator is‘/ ' on Unix
systems and ‘\ ’ on Windows systems. In the sections that follow, we shall consistently use ‘/’ as the
directory separator; substitute this for the appropriate character for your system.

Haskell source files

Each Haskell source module should be placed in afile on its own.

Usually, the file should be named after the module name, replacing dots in the module name by direct-
ory separators. For example, on a Unix system, the module A. B. C should be placed in the file A/
B/ C. hs, relative to some base directory. If the module is not going to be imported by another module
(Mai n, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encodings are not recognised. However,
invalid UTF-8 sequences will be ignored in comments, so it is possible to use other encodings such as
Latin-1, aslong as the non-comment source code is ASCII only.

Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an interface
file.

The object file, which normally endsin a. o suffix, contains the compiled code for the module.

The interface file, which normally endsin a. hi suffix, contains the information that GHC needs in or-
der to compile further modules that depend on this module. It contains things like the types of exported
functions, definitions of data types, and so on. It is stored in a binary format, so don't try to read one; use
the- - show i f ace option instead (see Section 5.6.7, “ Other options related to interface files’).

Y ou should think of the object file and the interface file as a pair, since the interface file isin a sense a
compiler-readable description of the contents of the object file. If the interface file and object file get out
of sync for any reason, then the compiler may end up making assumptions about the object file that
aren't true; trouble will almost certainly follow. For this reason, we recommend keeping object files and
interface files in the same place (GHC does this by default, but it is possible to override the defaults as
we'll explain shortly).

Every module has a module name defined in its source code (nodul e A. B. C where ...).

The name of the object file generated by GHC is derived according to the following rules, where osuf

is the object-file suffix (this can be changed with the - osuf option).

» If thereisno - odi r option (the default), then the object filename is derived from the source file-
name (ignoring the module name) by replacing the suffix with osuf .

e If -odir dir has been specified, then the object filename is di r /mrod.osuf , where nod is the

module name with dots replaced by dashes. GHC will silently create the necessary directory struc-
ture underneath di r , if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is hi suf (. hi by
default) instead of osuf , and the relevant options are - hi di r and - hi suf instead of - odi r and -
osuf respectively.

For example, if GHC compiles the module A. B. Cin the filesrc/ A/ B/ C. hs, withno - odi r or -

59

Using GHC

5.6.3.

5.6.4.

hi di r flags, theinterface filewill beputinsrc/ A/ B/ C. hi and the object fileinsrc/ A/ B/ C. o.

For any module that is imported, GHC requires that the name of the module in the import statement ex-
actly matches the name of the module in the interface file (or source file) found using the strategy spe-
cified in Section 5.6.3, “The search path”. This means that for most modules, the source file name
should match the module name.

However, note that it is reasonable to have amodule Mai n in afile named f 00. hs, but this only works
because GHC never needs to search for the interface for module Mai n (because it is never imported). It
is therefore possible to have several Mai n modules in separate source files in the same directory, and
GHC will not get confused.

In batch compilation mode, the name of the object file can aso be overridden using the - o option, and
the name of the interface file can be specified directly using the - ohi option.

The search path

In your program, you import amodule Foo by sayingi nport Foo. In- - nake mode or GHCi, GHC
will look for a source file for Foo and arrange to compile it first. Without - - make, GHC will 1ook for
the interface file for Foo, which should have been created by an earlier compilation of Foo. GHC uses
the same strategy in each of these cases for finding the appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each of these dir-
ectories, it tries appending basenane. ext ensi on to the directory, and checks whether the file ex-
ists. The value of basenane is the module name with dots replaced by the directory separator (/' or '\',
depending on the system), and ext ensi on isasource extension (hs, | hs) if wearein - - mrake mode
or GHCIi, or hi suf otherwise.

For example, suppose the search path contains directoriesdl, d2, and d3, and we arein - - nrake mode
looking for the source file for a module A. B. C. GHC will look ind1/ A/ B/ C. hs,d1/ A/ B/ C. | hs,
d2/ A/ B/ C. hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The following op-
tions can be used to add to or change the contents of the search path:

-idirs Thisflag appendsacolon-separated list of di r s to the search path.

-1 resets the search path back to nothing.

This isn't the whole story: GHC aso looks for modules in pre-compiled libraries, known as packages.
See the section on packages (Section 5.8, “ Packages ™) for details.

Redirecting the compilation output(s)

-ofile GHC's compiled output normally goesinto a. hc, . o, etc,, file, depending on the
last-run compilation phase. The option - 0 fi | e re-directs the output of that last-
run phasetofil e.

Note: this “feature” can be counterintuitive: ghc -C -0 foo.o foo.hs will put the in-
termediate C codein thefilef 00. 0, name notwithstanding!

This option is most often used when creating an executablefile, to set the filename
of the executable. For example:

ghc -0 prog --nake Min

60

Using GHC

-odirdir

-ohi file

-hidirdir

-stubdir dir

will compile the program starting with module Mai n and put the executable in the
filepr og.

Note: on Windows, if the result is an executable file, the extension ". exe" is ad-
ded if the specified filename does not already have an extension. Thus

ghc -o foo Main. hs

will compile and link the module Mai n. hs, and put the resulting executable in
f 00. exe (not f 00).

If you use ghc --make and you don't use the - o, the name GHC will choose for
the executable will be based on the name of the file containing the module Mai n.
Note that with GHC the Mai n module doesn't have to be put in file Mai n. hs.
Thus both

ghc --nmake Prog

and

ghc --nmake Prog. hs
will produce Pr og (or Pr og. exe if you are on Windows).

Redirects object files to directory di r . For example:

$ ghc -c parse/ Foo. hs parse/ Bar. hs gurgl e/ Bunbl e. hs - odi

The object files, Foo. o, Bar . 0, and Bunbl e. o would be put into a subdirect-
ory named after the architecture of the executing machine (x86, m ps, €tc).

Note that the - odi r option does not affect where the interface files are put; use
the - hi di r option for that. In the above example, they would still be put in
par se/ Foo. hi ,parse/ Bar . hi ,andgur gl e/ Bunbl e. hi .

The interface output may be directed to another file bar 2/ Wir bl e. i f ace with
the option - ohi bar 2/ Wir bl e. i f ace (not recommended).

WARNING: if you redirect the interface file somewhere that GHC can't find it,
then the recompilation checker may get confused (at the least, you won't get any
recompilation avoidance). We recommend using a combination of - hi di r and -
hi suf optionsinstead, if possible.

To avoid generating an interface at all, you could use this option to redirect the in-
terface into the bit bucket: - ohi / dev/ nul | , for example.

Redirects all generated interface filesinto di r , instead of the default.

Redirects all generated FFI stub filesinto di r . Stub files are generated when the
Haskell source contains a foreign export or foreign inmport
" &wr apper " declaration (see Section 9.2.1, “Using f orei gn export and
foreign inmport ccall "wapper" withGHC"). The- st ubdi r option
behaves in exactly the same way as- odi r and - hi di r with respect to hierarch-
ical modules.

61

r

“arch’

Using GHC

-osuf suffix, The-osuf suffix will change the . o file suffix for object files to whatever
- hi suf suffix you specify. We use this when compiling libraries, so that objects for the profiling
, - hcsuf suf - versions of the libraries don't clobber the normal ones.
fix
Similarly, the - hi suf suf fi x will change the . hi file suffix for non-system
interface files (see Section 5.6.7, “ Other options related to interface files’).

Finally, the option - hcsuf suf f i x will changethe. hc file suffix for compiler-
generated intermediate C files.

The - hi suf /- osuf game is particularly useful if you want to compile a pro-
gram both with and without profiling, in the same directory. Y ou can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

5.6.5. Keeping Intermediate Files

The following options are useful for keeping certain intermediate files around, when normally GHC
would throw these away after compilation:

62

Using GHC

5.6.6.

5.6.7.

i<eep- hc-files

-keep-s-file,
-keep-s-files

keep-
raws-file,-
keep-
raws-files
keep-
tnp-files

Keep intermediate . hc files when doing . hs-to-. o compilations via C (NOTE:
. hc files aren't generated when using the native code generator, you may need to
use- f vi a- Cto force them to be produced).

Keep intermediate . s files.

Keep intermediate . r aw- s files. These are the direct output from the C compiler,
before GHC does “assembly mangling” to produce the . s file. Again, these are
not produced when using the native code generator.

Instructs the GHC driver not to delete any of its temporary files, which it normally
keepsin/t mp (or possibly elsewhere; see Section 5.6.6, “Redirecting temporary
files”). Running GHC with - v will show you what temporary files were generated
aong the way.

Redirecting temporary files

-tnpdir

If you have trouble because of running out of spacein/ t np (or wherever your in-
stallation thinks temporary files should go), you may use the -t npdi r <di r >
option to specify an aternate directory. For example, -t npdi r . says to put
temporary filesin the current working directory.

Alternatively, use your TMPDI R environment variable. Set it to the name of the
directory where temporary files should be put. GCC and other programs will hon-
our the TMPDI Rvariable aswell.

Even better idea: Set the DEFAULT_TMPDI R make variable when building GHC,
and never worry about TMPDI R again. (see the build documentation).

Other options related to interface files

- ddunp- hi

ddunp-
hi-diffs

ddunp- m n-
i ml -inmports

--showi face
file

Dumps the new interface to standard output.

The compiler does not overwrite an existing . hi interface file if the new one is
the same as the old one; this is friendly to make. When an interface does change,
it is often enlightening to be informed. The - ddunp- hi - di f fs option will
make GHC run diff onthe old and new . hi files.

Dump to the file "M.imports" (where M is the module being compiled) a "minim-
a" set of import declarations. Y ou can safely replace all the import declarations in
"M.hs* with those found in "M.imports'. Why would you want to do that? Be-
cause the "minimal" imports (a) import everything explicitly, by name, and (b) im-
port nothing that is not required. It can be quite painful to maintain this property
by hand, so thisflag isintended to reduce the labour.

wheref i | e isthe name of an interface file, dumps the contents of that interface
in a human-readable (ish) format. See Section 5.4, “Modes of operation”.

5.6.8. The recompilation checker

63

Using GHC

5.6.9.

fforce-reconp Turn off recompilation checking (which is on by default). Recompilation checking
normally stops compilation early, leaving an existing . o file in place, if it can be
determined that the module does not need to be recompiled.

In the olden days, GHC compared the newly-generated . hi file with the previous version; if they were
identical, it left the old one alone and didn't change its modification date. In consequence, importers of a
module with an unchanged output . hi file were not recompiled.

This doesn't work any more. Suppose module C imports module B, and B imports module A. So changes
to module A might require module C to be recompiled, and hence when A. hi changes we should check
whether C should be recompiled. However, the dependencies of C will only list B. hi , not A. hi , and
some changes to A (changing the definition of a function that appears in an inlining of a function expor-
ted by B, say) may conceivably not change B. hi onejot. So now...

GHC keeps a version number on each interface file, and on each type signature within the interface file.
It also keeps in every interface file alist of the version numbers of everything it used when it last com-
piled the file. If the source file's modification date is earlier than the . o file's date (i.e. the source hasn't
changed since the file was last compiled), and the recompilation checking is on, GHC will be clever. It
compares the version numbers on the things it needs this time with the version numbers on the things it
needed |ast time (gleaned from the interface file of the module being compiled); if they are al the same
it stops compiling rather early in the process saying “Compilation 1S NOT required”. What a beautiful
sight!

Patrick Sansom had a workshop paper about how all this is done (though the details have changed quite
ahit). Ask him [mailto:sansom@dcs.gla.ac.uk] if you want a copy.

How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs- boot file. Suppose that modules
A. hs and B. hs are Haskell source files, thus:

nodul e A where
import B(TB(..))
new ype TA = MTA I nt

f .. TB->TA
f (MKTB x) = MKTA X

nodul e B where
import {-# SOURCE #-} A(TA(..))

data TB = MNKTB !l nt

g:: TA->TB
g (MKTA x) = MKTB x

Here A imports B, but B imports A with a{-# SOURCE #-} pragma, which breaks the circular de-
pendency. For every module A. hs that is{-# SOURCE #-} -imported in this way there must exist a
sourcefile A. hs- boot . Thisfile contains an abbreviated version of A. hs, thus:

nodul e A where
newt ype TA = MTA I nt

mailto:sansom@dcs.gla.ac.uk

Using GHC

To compile these three files, issue the following commands:

ghc -c A hs-boot -- Produces A hi-boot, A o-boot

ghc -c B. hs -- Consunes A hi-boot, produces B.hi, B.o
ghc -c A hs -- Consumes B. hi, produces A hi, Ao
ghc -o foo Ao B.o -- Linking the program

There are several pointsto note here:

The file A. hs- boot is a programmer-written source file. It must live in the same directory as its
parent source file A. hs. Currently, if you use a literate source file A. | hs you must also use a liter-
ate boot file, A. | hs- boot ; and vice versa.

A hs- boot fileiscompiled by GHC, just likeahs file:

ghc -c¢ A hs-boot

When a hs-boot file A. hs- boot iscompiled, it is checked for scope and type errors. When its par-
ent module A. hs is compiled, the two are compared, and an error is reported if the two are incon-
Sistent.

Just as compiling A. hs produces an interface file A. hi, and an object file A. 0, so compiling
A. hs- boot produces aninterfacefile A. hi - boot , and an pseudo-object file A. 0- boot :

« The pseudo-object file A. 0- boot is empty (don't link it!), but it is very useful when using a
Makefile, to record when the A. hi - boot was last brought up to date (see Section 5.6.10,
“Using make”).

* Thehi - boot generated by compiling ahs- boot fileisin the same machine-generated binary
format as any other GHC-generated interface file (e.g. B. hi). You can display its contents with
ghc --show-iface. If you specify a directory for interface files, the - ohi di r flag, then that af-
fectshi - boot filestoo.

If hs-boot files are considered distinct from their parent source files, and if a{-# SOURCE #-}
import is considered to refer to the hs-boot file, then the module import graph must have no cycles.
The command ghc -M will report an error if acycle isfound.

A module Mthat is{ - # SOURCE #-}-imported in a program will usually also be ordinarily im-
ported elsewhere. If not, ghc --make automatically adds Mto the set of modules it tries to compile
and link, to ensure that Ms implementation isincluded in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrapping pro-
cess started. For example, it doesn't need to contain declarations for everything that module A exports,
only the things required by the module(s) that import A recursively.

A hs-boot file iswritten in a subset of Haskell:

The module header (including the export list), and import statements, are exactly as in Haskell, and
so are the scoping rules. Hence, to mention a non-Prelude type or class, you must import it.

There must be no value declarations, but there can be type signatures for values. For example:

double :: Int -> Int

65

Using GHC

» Fixity declarations are exactly asin Haskell.
» Type synonym declarations are exactly asin Haskell.
» A datatype declaration can either be given in full, exactly asin Haskell, or it can be given abstractly,
by omitting the '=' sign and everything that follows. For example:
data T a b
In a source program this would declare TA to have no constructors (a GHC extension: see Sec-
tion 8.4.1, “Data types with no constructors’), but in an hi-boot file it means "I don't know or care
what the constructors are". Thisis the most common form of data type declaration, because it's easy
to get right. Y ou can also write out the constructors but, if you do so, you must write it out precisely
asinitsreal definition.
If you do not write out the constructors, you may need to give a kind annotation (Section 8.7.3,
“Explicitly-kinded quantification”), to tell GHC the kind of the type variable, if it is not "*". (In
source files, this is worked out from the way the type variable is used in the constructors.) For ex-
ample:
data R(x :: * ->*) y
You cannot useder i vi ng on adatatype declaration; writeani nst ance declaration instead.
e Classdeclarations is exactly asin Haskell, except that you may not put default method declarations.
Y ou can also omit all the superclasses and class methods entirely; but you must either omit them all
or put them all in.

* You caninclude instance declarations just asin Haskell; but omit the "where" part.

5.6.10. Using make

It is reasonably straightforward to set up a Makefi | e to use with GHC, assuming you name your
source files the same as your modules. Thus:

HC = ghc

HC _OPTS = -cpp $(EXTRA _HC OPTS)
SRCS = Main.l hs Foo.lhs Bar.|hs
OBJS = Main.o Foo. o Bar. o

.SUFFIXES : .o .hs .hi .lhs .hc .s
cool _pgm: $(0OBJIS)

rm-f $@

$(HC) -0 $@3$(HC OPTS) $(OBIS)
Standard suffix rules
. 0. hi:

@

.l hs.o:
$(HO) -c $< $(HC OPTS)

66

Using GHC

. hs. o:
$(HO) -c $< $(HC OPTS)

. 0- boot . hi - boot :
.l hs-boot . o- boot :
$(HO) -c $< $(HC_OPTS)

. hs-boot . o- boot:
$(HO) -c $< $(HC_OPTS)

I nter-nodul e dependenci es
Foo. o Foo. hc Foo. s . Baz. hi # Foo inports Baz
Main.o Main.hc Main.s : Foo. hi Baz. hi # Main inports Foo and Baz

(Sophisticated make variants may achieve some of the above more elegantly. Notably, gmake's pattern
rules let you write the more comprehensible:

%0 : %Ihs
$(HO) -c $< $(HC OPTS)

What we've shown should work with any make.)

Note the cheesy . 0. hi rule: It records the dependency of the interface (. hi) file on the source. The
rulesaysa. hi file can be madefroma. o file by doing...nothing. Which istrue.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and once for hs-
boot files (see Section 5.6.9, “How to compile mutually recursive modules”).

Note also the inter-modul e dependencies at the end of the Makefile, which take the form

Foo. o Foo. hc Foo.s : Baz. hi # Foo inports Baz

They tell make that if any of Foo. o, Foo. hc or Foo. s have an earlier modification date than
Baz. hi , then the out-of-date file must be brought up to date. To bring it up to date, make looks for a
rule to do so; one of the preceding suffix rules does the job nicely. These dependencies can be generated
automatically by ghc; see Section 5.6.11, “ Dependency generation”

5.6.11. Dependency generation

Putting inter-dependencies of the form Foo. o : Bar. hi into your Makef i | e by hand is rather er-
ror-prone. Don't worry, GHC has support for automatically generating the required dependencies. Add
the following to your Makef i | e:

depend :
ghc -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change thei nport s in your program, do make de-
pend before you do make cool_pgm. The command ghc -M will append the needed dependencies to
your Makefil e.

In general, ghc -M Foo does the following. For each module Min the set Foo plus al its imports
(transitively), it addsto the Makefile:

67

Using GHC

* A linerecording the dependence of the object file on the source file.

Mo : Mhs
(or M | hs if that is the filename you used).

» For eachimport declarationi nport Xin M aline recording the dependence of Mon X:
Mo : X hi

» For each import declarationi nport {-# SOURCE #-} XinM aline recording the dependence
of Mon X:

Mo : X hi-boot

(See Section 5.6.9, “How to compile mutually recursive modules’ for details of hi - boot stylein-
terface files.)

If Mimports multiple modules, then there will be multiple lineswith M o as the target.

There is no need to list al of the source files as arguments to the ghc -M command; ghc traces the de-
pendencies, just like ghc --make (anew featurein GHC 6.4).

Note that ghc - Mneeds to find a source file for each module in the dependency graph, so that it can
parse the import declarations and follow dependencies. Any pre-compiled modules without source files
must therefore belong to a package®.

By default, ghc -M generates all the dependencies, and then concatenates them onto the end of nake-

file(orMakefil eif makefil e doesn't exist) bracketed by thelines"# DO NOT DELETE: Be-

gi nni ng of Haskell dependencies" and"# DO NOT DELETE: End of Haskell

dependenci es". If these lines aready exist in the makef i | e, then the old dependencies are deleted
first.

Don't forget to use the same - package options on the ghc - Mcommand line as you would when
compiling; this enables the dependency generator to locate any imported modules that come from pack-
ages. The package modules won't be included in the dependencies generated, though (but see the
—i ncl ude- pkg- deps option below).

The dependency generation phase of GHC can take some additional options, which you may find useful.
For historical reasons, each option passed to the dependency generator from the GHC command line
must be preceded by - opt dep. For example, to pass-f . depend to the dependency generator, you

say

ghc -M -optdep-f -optdep. depend ...

The options which affect dependency generation are:

- ddunp- nod- cycl es Display alist of the cycles in the module graph. Thisis useful when
trying to eliminate such cycles. You do not need the - opt dep pre-
fix for thisflag.

-w Turn off warnings about interface file shadowing.

Thisisachange in behaviour relativeto 6.2 and earlier.

68

Using GHC

-v2 Print a full list of the module dependencies to stdout. (This is the
standard verbosity flag, so the list will also be displayed with - v3
and - v4; Section 5.5, “Help and verbosity options’.)

-ffile Usefi | e asthe makefile, rather than makef i | e or Makefi |l e.
If fil e doesn't exist, mkdependHS creates it. We often use - f
. depend to put the dependenciesin . depend and then include
thefile. depend into Makefi | e.

-s <suf> Make extra dependencies that declare that files with suffix
.<suf> <osuf> depend on interfface files with suffix
.<suf>_hi, or (for {-# SOURCE #-} imports) on
. hi - boot . Multiple - s flags are permitted. For example, - 0 hc
-s a -s b will make dependencies for . hc on. hi,.a_hc on
.a_hi,and.b_hcon.b_hi. (Useful in conjunction with NoFib

"ways'.)

—excl ude- modul e=<fil e> R_egard_<fi | e> as"stable"; i.e., exclude it from having dependen-
ciesonit.

- X same as——excl ude- nodul e

—i ncl ude- pkg- deps Regard modules imported from packages as unstable, i.e., generate

dependencies on any imported package modules (including Pr e-
| ude, and al other standard Haskell libraries). Dependencies are
not traced recursively into packages; dependencies are only gener-
ated for home-package modules on external-package modules dir-
ectly imported by the home package module. This option is nor-
mally only used by the various system libraries.

5.6.12. Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module "below" M is
visible. (Module A is"below" M if A isimported directly by M, or if A is below a module that M im-
ports directly.) In principle, GHC must therefore read the interface files of every module below M, just
in case they contain an instance declaration that matters to M. This would be a disaster in practice, so
GHC triesto be clever.

In particular, if an instance declaration is in the same module as the definition of any type or class men-
tioned in the head of the instance declaration, then GHC hasto visit that interface file anyway. Example:

nodul e A where
instance Ca => D (T a) where ...
data T a = ...

The instance declaration is only relevant if thetype T isin use, and if so, GHC will have visited A'sin-
terface fileto find T's definition.

The only problem comes when a module contains an instance declaration and GHC has no other reason
for visiting the module. Example:

nmodul e Orphan where
instance Ca => D (T a) where ...
class C a where ...

69

Using GHC

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules’. GHC
identifies orphan modules, and visits the interface file of every orphan module below the module being
compiled. Thisis usually wasted work, but there is no avoiding it. You should therefore do your best to
have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

nodul e B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But suppose class
E had afunctional dependency:

nodul e Li b where
class Exy | y -> x where ...

Then in some importing module M, the constraint (E a | nt) should be "improved" by settinga =
I nt , even though thereis no explicit mention of T in M.
These considerations lead to the following definition of an orphan module:

» Anorphan module contains at |east one orphan instance or at least one orphan rule.
e Aninstance declaration in amodule M is an orphan instance if
« Theclass of the instance declaration is not declared in M, and

« Either the class has no functional dependencies, and none of the type constructors in the instance
head is declared in M; or there is afunctional dependency for which none of the type construct-
ors mentioned in the non-determined part of the instance head is defined in M.

Only the instance head (the part after the “=>") counts. In the example above, it is not good enough
for C's declaration to bein module A; it must be the declaration of D or T.

* A rewriterulein amodule M is an orphan rule if none of the variables, type constructors, or classes
that are free in the left hand side of the rule are declared in M.

GHC will warn you if you are creating an orphan module, if you add “-fwarn-orphan-modules’. Y ou can
identify an orphan module by looking in its interface file, M hi , using the - - show- i f ace mode. If
thereisa[or phan nodul e] onthefirst line, GHC considersit an orphan module.

5.7. Warnings and sanity-checking

GHC has a humber of options that select which types of non-fatal error messages, otherwise known as
warnings, can be generated during compilation. By default, you get a standard set of warnings which are
generaly likely to indicate bugs in your program. These are: - f war n- over | appi ng- patterns, -
fwar n- depr ecati ons, - fwarn-dupl i cat e-exports, -fwarn-m ssing-fields, and -
fwar n- m ssi ng- net hods. The following flags are simple ways to select standard “packages’ of
warnings:

-W
Provides the standard warnings plus -fwarn-inconpl ete-patterns, -
fwar n- dodgy-i nports, - f war n- unused- mat ches, -
f war n- unused-i nport s, and - f war n- unused- bi nds.

70

Using GHC

-Vl |l

Turns on al warning options that indicate potentially suspicious code. The warnings that
are not enabled by -Vall are -fwarn-sinple-patterns, -fwarn-tabs, -
fwar n-i nconpl et e-record- updat es, -
f war n- nononor phi smrestriction,and-fwarn-inplicit-prel ude.

Turns off al warnings, including the standard ones and those that - V&l | doesn't enable.

71

Using GHC

Makes any warning into a fatal error. Useful so that you don't miss warnings when doing
batch compilation.

- Whar n:
Warnings are treated only as warnings, not as errors. This is the default, but can be useful

to negatea- Wr r or flag.

The full set of warning options is described below. To turn off any warning, ssmply give the correspond-
ing - f no-war n-. .. option on the command line.

- fwar n- depr ecati ons:
Causes a warning to be emitted when a deprecated function or

type is used. Entities can be marked as deprecated using a
pragma, see Section 8.12.4, “DEPRECATED pragma’.

Thisoption is on by default.

- fwar n- dodgy-i nports:
Causes a warning to be emitted when a a datatype T is imported
with al constructors, i.e. T(..), but has been exported ab-
stractly, i.e. T.

72

Using GHC

- fwar n- hi - shadow ng:

-fwarn-inplicit-prelude:

fwarn-incom
pl et e- patterns:

fwarn-incom
pl et e-record- updat es:

Have the compiler warn about duplicate entries in export lists.
This is useful information if you maintain large export lists, and
want to avoid the continued export of a definition after you've de-
leted (one) mention of it in the export list.

Thisoption is on by default.

Causes the compiler to emit awarning when amodule or interface
file in the current directory is shadowing one with the same mod-
ule namein alibrary or other directory.

Have the compiler warn if the Prelude isimplicitly imported. This
happens unless either the Prelude module is explicitly imported
withaninport ... Prelude ... ling or thisimplicitim-
port is disabled (either by -fno-inplicit-prelude or a
LANGUAGE Nol npli ci t Pr el ude pragma).

Note that no warning is given for syntax that implicitly refers to
the Prelude, eveniif - f no-i npl i ci t - pr el ude would change
whether it refers to the Prelude. For example, no warning is given
when 368 means Pr el ude. f rom nt eger
(368:: Prel ude. I nt eger) (where Prel ude refers to the
actual Prelude module, regardless of the imports of the module
being compiled).

Thiswarning is off by default.

Similarly for incomplete patterns, the function g below will fail
when applied to non-empty lists, so the compiler will emit a
warning about this when - f war n-i nconpl et e- patterns
is enabled.

gl] =2

This option isn't enabled by default because it can be a bit noisy,
and it doesn't always indicate a bug in the program. However, it's
generally considered good practice to cover al the cases in your
functions.

The function f below will fail when applied to Bar , so the com-
piler will emit a warning about this when -
fwar n-i nconpl et e-r ecor d- updat es isenabled.

data Foo = Foo { x :: Int }
| Bar
f :: Foo -> Foo

f foo = foo { x =6}

This option isn't enabled by default because it can be very noisy,
and it often doesn't indicate a bug in the program.

73

Using GHC

-fwarn-m ssing-fields:

- fwar n- m ssi ng- net hods:

This option is on by default, and warns you whenever the con-
struction of alabelled field constructor isn't complete, missing ini-
tializers for one or more fields. While not an error (the missing
fields are initialised with bottoms), it is often an indication of a
programmer error.

This option is on by default, and warns you whenever an instance
declaration is missing one or more methods, and the correspond-
ing class declaration has no default declaration for them.

The warning is suppressed if the method name begins with an un-
derscore. Here's an example where thisis useful:

class C a where
_simpleFn :: a -> String
conplexFn :: a ->a -> String

conplexFn x y = ... _sinmpleFn ...

Theideaisthat: (a) users of the class will only call conpl exFn;
never _si npl eFn; and (b) instance declarations can define
either conpl exFn or _si npl eFn.

74

Using GHC

- f war n- nane- shadow ng:

- fwar n- or phans:

fwar n- over | ap-
pi ng- patterns:

-fwarn-si npl e-patterns:

If you would like GHC to check that every top-level function/
value has a type signature, use the -
fwar n- m ssi ng- si gnat ur es option. As part of the warn-
ing GHC also reports the inferred type. The option is off by de-
fault.

This option causes a warning to be emitted whenever an inner-
scope value has the same name as an outer-scope value, i.e. the
inner value shadows the outer one. This can catch typographical
errors that turn into hard-to-find bugs, e.g., in the inadvertent cap-
ture of what would be arecursivecall inf = ... let f =
idin ... f

This option causes a warning to be emitted whenever the module
contains an "orphan" instance declaration or rewrite rule. An in-
stance declaration is an orphan if it appears in a module in which
neither the class nor the type being instanced are declared in the
same module. A ruleis an orphan if it isarule for a function de-
clared in another module. A module containing any orphans is
called an orphan module.

The trouble with orphans is that GHC must pro-actively read the
interface files for all orphan modules, just in case their instances
or rules play a role, whether or not the modul€e's interface would
otherwise be of any use. Other things being equal, avoid orphan
modules.

By default, the compiler will warn you if a set of patterns are
overlapping, e.g.,

f :: String -> Int
fr]

f (_:xs)
f Il2ll

1
N O

where the last pattern match in f won't ever be reached, as the
second pattern overlaps it. More often than not, redundant pat-
terns is a programmer mistake/error, so this option is enabled by
default.

Causes the compiler to warn about lambda-bound patterns that
can fail, eg. \ (x: xs) ->. ... Normally, these aren't treated as
incomplete patterns by - f war n-i nconpl et e- patt erns.

“Lambda-bound patterns’ includes all places where there is a
single pattern, including list comprehensions and do-notation. In
these cases, a pattern-match failure is quite legitimate, and trig-
gersfiltering (list comprehensions) or the monad f ai | operation
(monads). For example:

; [M[aybe a] -> [a]

XS y | Just y <- xs]

75

Using GHC

-fwar n-t abs:

-fwarn-type-defaul ts:

f war n- nononor ph-
ismrestriction:

- f war n- unused- bi nds:

- fwar n- unused-i nports:

- fwar n- unused- mat ches:

Switching on - f war n- si npl e- patt erns will eicit warn-
ings about these probably-innocent cases, which iswhy theflag is
off by default.

Have the compiler warn if there are tabs in your source file.

Thiswarning is off by default.

Have the compiler warn/inform you where in your source the
Haskell defaulting mechanism for numeric types kicks in. Thisis
useful information when converting code from a context that as-
sumed one default into one with another, e.g., the ‘default default’
for Haskell 1.4 caused the otherwise unconstrained value 1 to be
given the type | nt , whereas Haskell 98 defaults it to | nt eger .
This may lead to differences in performance and behaviour, hence
the usefulness of being non-silent about this.

Thiswarning is off by default.

Have the compiler warn/inform you where in your source the
Haskell Monomorphism Restriction is applied. If applied silently
the MR can give rise to unexpected behaviour, so it can be helpful
to have an explicit warning that it is being applied.

Thiswarning is off by default.

Report any function definitions (and local bindings) which are un-
used. For top-level functions, the warning is only given if the
binding is not exported.

A definition is regarded as "used" if (@) it is exported, or (b) itis
mentioned in the right hand side of another definition that is used,
or (c) the function it defines begins with an underscore. The last
case provides a way to suppress unused-binding warnings select-
ively.

Notice that a variable is reported as unused even if it appearsin
the right-hand side of another unused binding.

Report any modules that are explicitly imported but never used.
However, the form i nport M) is never reported as an unused
import, because it is a useful idiom for importing instance declar-
ations, which are anonymous in Haskell.

Report all unused variables which arise from pattern matches, in-
cluding patterns consisting of a single variable. For instancef x
y = [] would report x and y as unused. The warning is sup-
pressed if the variable name begins with an underscore, thus;

f x = True

76

Using GHC

5.8.

5.8.1.

If you're fedling really paranoid, the - dcor e- | i nt option is a good choice. It turns on heavyweight
intra-pass sanity-checking within GHC. (It checks GHC's sanity, not yours.)

Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several packages:
see the accompanying library documentation [../libraries/index.html]. More packages to install can be
obtained from HackageDB [http://hackage.haskell.org/packages/hackage.html].

Using a package couldn't be simpler: if you're using - - make or GHCIi, then most of the installed pack-
ages will be automatically available to your program without any further options. The exceptions to this
rule are covered below in Section 5.8.1, “Using Packages”.

Building your own packages is also quite straightforward: we provide the Cabd
[http://www.haskell.org/cabal /] infrastructure which automates the process of configuring, building, in-
stalling and distributing a package. All you need to do is write a simple configuration file, put afew files
in the right places, and you have a package. See the Cabal documentation [../Cabal/index.html] for de-
tails, and aso the Cabal libraries (Distribution.Simple [../libraries/Cabal/Distribution-Simple.html], for
example).

Using Packages

GHC only knows about packages that are installed. To see which packages are installed, use the ghc-
pkg command:

$ ghc-pkg |ist

/usr/lib/ghc-6. 4/ package. conf:
base- 1.0, haskell98-1.0, tenpl ate-haskell-1.0, ntl-1.0, unix-1.0,
Cabal -1.0, haskell-src-1.0, parsec-1.0, network-1.0,
Qui ckCheck-1.0, HUnit-1.1, fgl-1.0, X11-1.1, HG-3.1, OpenG.-2.0,
GLUT-2.0, stm1.0, readline-1.0, (lang-1.0), (concurrent-1.0),
(posix-1.0), (util-1.0), (data-1.0), (text-1.0), (net-1.0),
(hssource-1.0), rts-1.0

Aninstaled package is either exposed or hidden by default. Packages hidden by default are listed in par-
entheses (eg. (| ang- 1. 0)) in the output above. Command-line flags, described below, allow you to
expose a hidden package or hide an exposed one. Only modules from exposed packages may be impor-
ted by your Haskell code; if you try to import a module from a hidden package, GHC will emit an error

message.

To see which modules are provided by a package use the ghc- pkg command (see Section 5.8.6,
“Package management (the ghc- pkg command)”):

$ ghc-pkg field network exposed- nodul es
exposed- nodul es: Net wor k. BSD,

Net wor k. C4 ,

Net wor k. Socket ,

Net wor k. URI ,

Net wor k

The GHC command line options that control packages are:

77

../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
../Cabal/index.html
../libraries/Cabal/Distribution-Simple.html

Using GHC

- package P

- hi de-al | - packages

- hi de- package P

-ignore-package P

- package- nane f oo

This option causes the installed package P to be exposed. The package P
can be specified in full with its version number (e.g. net wor k- 1. 0) or
the version number can be omitted if there is only one version of the pack-
ageinstalled.

If there are multiple versions of P installed, then all other versions will be-
come hidden.

The - package P option also causes package P to be linked into the res-
ulting executable. In ——make mode and GHCi, the compiler normally de-
termines which packages are required by the current Haskell modules, and
links only those. In batch mode however, the dependency information isn't
available, and explicit - package options must be given when linking.

For example, to link a program consisting of objects Foo. o and Mai n. o,
where we made use of the net wor k package, we need to give GHC the -
package flag thus:

$ ghc -0 nyprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source,
because GHC still reckonsit'sin batch mode:

$ ghc -0 nmyprog Foo. hs Main. hs -package network

In--make and - -i nt eract i ve modes (Section 5.4, “Modes of opera
tion”), however, GHC figures out the packages required for linking
without further assistance.

The one other time you might need to use - package to force linking a
package is when the package does not contain any Haskell modules (it
might contain a C library only, for example). In that case, GHC will never
discover a dependency on it, so it has to be mentioned explicitly.

Ignore the exposed flag on installed packages, and hide them all by default.
If you use this flag, then any packages you require (including base) need
to be explicitly exposed using - package options.

Thisis a good way to insulate your program from differences in the glob-
aly exposed packages, and being explicit about package dependenciesis a
Good Thing. Caba aways passes the - hi de- al | - packages flag to
GHC, for exactly this reason.

This option does the opposite of - package: it causes the specified pack-
age to be hidden, which means that none of its modules will be available
for import by Haskell i mport directives.

Note that the package might still end up being linked into the final pro-
gram, if it is a dependency (direct or indirect) of another exposed package.

Causes the compiler to behave as if package P, and any packages that de-
pend on P, are not installed at all.

Saying - i gnor e- package P isthesameasgiving - hi de- package
flags for P and all the packages that depend on P. Sometimes we don't
know ahead of time which packages will be installed that depend on P,
whichiswhenthe - i gnor e- package flag can be useful.

Tells GHC the the module being compiled forms part of package f oo. If

78

Using GHC

thisflag is omitted (a very common case) then the default package mai n is
assumed.

Note: the argument to - package- nane should be the full package iden-
tifier for the package, that is it should include the version number. For ex-
ample: - package mnmypkg- 1. 2.

5.8.2. The main package

Every complete Haskell program must define mai n in module Mai n in package mai n. (Omitting the -
package- nane flag compiles code for package mai n.) Failure to do so leads to a somewhat obscure
link-time error of the form:

fusr/bin/ld: Undefined synbol s:
_ZCMai n_mai n_cl osure
___stginit_ZCMain

5.8.3. Consequences of packages

It is possible that by using packages you might end up with a program that contains two modules with
the same name: perhaps you used a package P that has a hidden module M, and there is a'so a module M
in your program. Or perhaps the dependencies of packages that you used contain some overlapping
modules. Perhaps the program even contains multiple versions of a certain package, due to dependencies
from other packages.

None of these scenarios gives rise to an error on its own?, but they may have some interesting con-
seguences. For instance, if you have atype M T from version 1 of package P, then this is not the same
asthe type M T from version 2 of package P, and GHC will report an error if you try to use one where
the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely identified
by the pair of the module name in which it is defined and its name. In GHC, an entity is uniquely
defined by atriple: package, module, and name.

5.8.4. Package Databases

A package database is afile, normally called package. conf which contains descriptions of installed
packages. GHC usually knows about two package databases:

* Theglobal package database, which comes with your GHC installation.

e A package database privale to each wuser. On Unix systems this will be
$HOVE/ . ghc/ ar ch- os- ver si on/ package. conf, and on Windows it will be something
like C.:\ Docunents And Settings\user\ghc. The ghc-pkg tool knows where this file
should be located, and will create it if it doesn't exist (see Section 5.8.6, “Package management (the
ghc- pkg command)”).

When GHC starts up, it reads the contents of these two package databases, and builds up a list of the
packages it knows about. Y ou can see GHC's package table by running GHC with the - v flag.

2t used to in GHC 6.4, but not since 6.6

79

Using GHC

Package databases may overlap: for example, packages in the user database will override those of the
same name in the global database.

Y ou can control the loading of package databases using the following GHC options:

- package-conf file Read in the package configuration filef i | e in addition to the system
default file and the user's local file. Packages in additional files read
thisway will override those in the global and user databases.

- no- user - package- conf Prevent loading of the user's local package database.

To create a new package database, just create a new file and put the string “[] ” in it. Packages can be

added to the file using the ghc- pkg tool, described in Section 5.8.6, “ Package management (the ghc-
pkg command)”.

5.8.4.1. The GHC PACKAGE PATHenvironment variable

5.8.5.

The GHC_PACKAGE _PATH environment variable may be set to a : -separated (; -separated on Win-
dows) list of files containing package databases. Thislist of package databasesis used by GHC and ghc-
pkg, with earlier databases in the list overriding later ones. This order was chosen to match the beha-
viour of the PATH environment variable; think of it asalist of package databases that are searched |eft-
to-right for packages.

If GHC_PACKAGE_PATH ends in a separator, then the default user and system package databases are
appended, in that order. e.g. to augment the usual set of packages with a database of your own, you
could say (on Unix):

$ export GHC PACKAGE PATH=$HOWE/ . ny- ghc- packages. conf:

(use; instead of : on Windows).

To check whether your GHC PACKAGE_PATH setting is doing the right thing, ghc- pkg 1i st will
list all the databasesin use, in the reverse order they are searched.

Building a package from Haskell source

We don't recommend building packages the hard way. Instead, use the Cabal [../Cabal/index.html] infra-
structure if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so afew hints for those brave souls follow.

e You need to build an "installed package info" file for passing to ghc- pkg when installing your
package. The contents of this file are described in Section 5.8.7, “ | nst al | edPackagel nf o: a
package specification ”.

» The Haskell code in a package may be built into one or more archive libraries (e.g. | i bHSf 00. a),
or asingle DLL on Windows (e.g. HSf 0o. dI |). Therestriction to asingle DLL on Windowsis be-
cause the package system is used to tell the compiler when it should make an inter-DLL call rather
than an intra-DLL call (inter-DLL calls require an extra indirection). Building packages as DLLs
doesn't work at the moment; see Section 12.6.1, “ Creating a DLL” for the gory details.

Building astatic library is done by using thear tool, like so:

ar cqs libHSfoo.a Ao B.o C.o ...

80

../Cabal/index.html

Using GHC

5.8.6.

where A. 0, B. 0 and so on are the compiled Haskell modules, and | i bHSf 00. a isthe library you
wish to create. The syntax may differ slightly on your system, so check the documentation if you run
into difficulties.

Versions of the Haskell libraries for use with GHCi may also be included: GHCi cannot load . a
files directly, instead it will look for an object file called HSf 00. 0 and load that. On some systems,
the ghc- pkg tool can automatically build the GHCi version of each library, see Section 5.8.6,
“Package management (the ghc- pkg command)”. To build these libraries by hand from the . a
archive, itis possibleto use GNU Id asfollows:

Id -r —whol e-archive -0 HSfoo.o |ibHSfoo. a

(replace —whol e- ar chi ve with—al | _| oad on MacOS X)

GHC does not maintain detailed cross-package dependency information. It does remember which
modules in other packages the current module depends on, but not which things within those impor-
ted things.

To compile a module which is to be part of a new package, use the - package- nane option (Sec-
tion 5.8.1, “Using Packages "). Failure to use the - package- nane option when compiling a package
will probably result in disaster, but you will only discover later when you attempt to import modules
from the package. At this point GHC will complain that the package name it was expecting the module
to come from is not the same as the package name stored in the . hi file.

It is worth noting that on Windows, when each package is built as a DLL, since a reference to a DLL
costs an extra indirection, intra-package references are cheaper than inter-package references. Of course,
this applies to the mai n package as well.

Package management (the ghc- pkg command)

The ghc- pkg tool allows packages to be added or removed from a package database. By default, the
system-wide package database is modified, but alternatively the user's local package database or another
specified file can be used.

To see what package databases are in use, say ghc- pkg | i st . The stack of databases that ghc- pkg
knows about can be modified using the GHC PACKAGE PATH environment variable (see Sec-
tion 5.8.4.1, “The GHC_PACKAGE_PATH environment variable’, and using - - package- conf op-
tions on the ghc- pkg command line.

When asked to modify a database, ghc- pkg modifies the global database by default. Specifying -
- user causesit to act on the user database, or - - package- conf can be used to act on another data-
base entirely. When multiple of these options are given, the rightmost one is used as the database to act
upon.

If the environment variable GHC _PACKAGE_PATH s set, and its value does not end in a separator (: on
Unix, ; on Windows), then the last database is considered to be the global database, and will be modi-
fied by default by ghc- pkg. The intention here is that GHC_PACKAGE_PATH can be used to create a
virtual package environment into which Cabal packages can be installed without setting anything other
than GHC_PACKAGE_PATH.

The ghc- pkg program may be run in the ways listed below. Where a package name is reguired, the
package can be named in full including the version number (e.g. net wor k- 1. 0), or without the ver-
sion number. Naming a package without the version number matches all versions of the package; the
specified action will be applied to all the matching packages. A package specifier that matches all ver-
sion of the package can also be written pkg- *, to make it clearer that multiple packages are being

81

Using GHC

matched.

ghc-pkg register file

ghc-pkg update file

ghc- pkg unregister P
ghc- pkg expose P
ghc- pkg hide P

ghc-pkg list [P] [-
- si npl e- out put]

ghc-pkg latest P
ghc- pkg describe P

ghc-pkg field P field

Reads a package specification from f i | e (which may be “- " to
indicate standard input), and adds it to the database of installed
packages. The syntax of fi | e is given in Section 5.8.7, “ | n-
st al | edPackagel nf o: apackage specification ”.

The package specification must be a package that isn't already in-
stalled.

The same as r egi st er, except that if a package of the same
nameis already installed, it is replaced by the new one.

Remove the specified package from the database.
Setsthe exposed flag for package P to Tr ue.
Setsthe exposed flag for package P to Fal se.

This option displays the currently installed packages, for each of
the databases known to ghc- pkg. That includes the global data-
base, the user's local database, and any further files specified us-
ing the- f option on the command line.

Hidden packages (those for which the exposed flag is Fal se)
are shown in parenthesesin the list of packages.

If an optiona package identifier P is given, then only packages
matching that identifier are shown.

If the option - - si npl e- out put is given, then the packages
are listed on a single line separated by spaces, and the database
names are not included. Thisisintended to make it easier to parse
the output of ghc- pkg |i st using ascript.

Prints the latest available version of package P.

Emit the full description of the specified package. The description
isintheform of anl nst al | edPackagel nf o, the same as the
input file format for ghc- pkg regi st er. See Section 5.8.7, “
I nst al | edPackagel nf o: a package specification ” for de-
tails.

Show just asinglefield of the installed package description for P.

Additionally, the following flags are accepted by ghc- pkg:

——au Automatically generate the GHCi . o version of each . a Haskell library, using GNU |d (if that
t o- isavailable). Without this option, ghc- pkg will warn if GHCi versions of any Haskell libraries

ghci inthe package don't exist.

i bs GHCi . o libraries don't necessarily have to live in the same directory as the corresponding . a
library. However, this option will cause the GHCi library to be created in the same directory as

the. a library.

82

Using GHC

5.8.7.

- Adds fi | e to the stack of package databases. Additionaly, fi | e will also be the database
pack modified by aregi st er,unregi ster,expose or hi de command, unlessit is overridden
age- by alater- - package- conf,--user or--gl obal option.

f+fe Causes ghc- pkg toignore missing dependencies, directories and libraries when registering a
rce package, and just go ahead and add it anyway. This might be useful if your package installation
system needs to add the package to GHC before building and installing the files.

——gl Operate on the globa package database (this is the default). This flag affects the r egi st er,
obal updat e, unregi st er,expose, and hi de commands.

——he Outputs the command-line syntax.

I p,
—2us Operate on the current user's local package database. This flag affects the regi ster,
er updat e, unr egi st er, expose, and hi de commands.

-V, Output the ghc- pkg version number.

rsio
Mvhen modifying the package databasef i | e, acopy of the original fileissavedinfi | e. ol d, soinan
emergency you can always restore the old settings by copying the old file back again.

| nst al | edPackagel nf o: a package specification

A package specification is a Haskell record; in particular, it is the record InstalledPackagelnfo
[../libraries/Cabal/Distribution-I nstalledPackagel nfo.html#%tI nstalledPackagel nfo] in the module Distri-
bution.InstalledPackagelnfo, which is part of the Cabal package distributed with GHC.

An | nst al | edPackagel nf o has a human readable/writable syntax. The functions par sel n-
st al | edPackagel nf o and showl nst al | edPackagel nf o read and write this syntax respect-
ively. Here'san example of the | nst al | edPackagel nf o for theuni x package:

$ ghc-pkg describe unix
name: uni x

version: 1.0

i cense: BSD3

copyri ght:

mal ntai ner: libraries@askell.org
stability:

honepage:

package-url :
description:

cat egory:

aut hor:

exposed: True

exposed- nodul es: Syst em Posi X,
Syst em Posi x. Dynam cLi nker. Mbdul e,
Syst em Posi x. Dynam cLi nker. Prim
System Posi x. Directory,
Syst em Posi x. Dynani cLi nker,
Syst em Posi x. Env,
Syst em Posi x. Error,
Syst em Posi x. Fi | es,
Syst em Posi x. 1 Q,
Syst em Posi x. Process,
Syst em Posi x. Resour ce,
Syst em Posi x. Tenp,
Syst em Posi x. Ter m nal ,
Syst em Posi x. Ti ne,
Syst em Posi x. Uni std,

83

../libraries/Cabal/Distribution-InstalledPackageInfo.html#%tInstalledPackageInfo

Using GHC

i mport-dirs:

library-dirs:
hs-1ibraries:

Syst em Posi x. User,
Syst em Posi x. Si gnal s. Exts

fusr/lib/ghc-6.4/1ibraries/unix
/fusr/lib/ghc-6.4/1ibraries/unix
HSuni x

extra-libraries: HSunix chits, d

i nclude-dirs: /usr/lib/ghc-6.4/1ibraries/unix/include
i ncl udes: HsUni x. h

depends: base-1.0

The full Cabal documentation [../Cabal/index.html] is still in preparation (at time of writing), so in the
meantime here is a brief description of the syntax of thisfile:

A package description consists of a number of field/value pairs. A field starts with the field name in the
left-hand column followed by a“: ”, and the value continues until the next line that begins in the |eft-
hand column, or the end of file.

The syntax of the value depends on the field. The variousfield types are:

freeform

string

string list

Any arbitrary string, no interpretation or parsing is done.

A sequence of non-space characters, or a sequence of arbitrary characters surrounded
by quotes". ... ".

A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, dependencies).

The allowed fields, with their types, are:

nane

ver si on

| i cense

li cense-file

copyri ght
mai nt ai ner

stability

honepage

package- url

description

The package's name (without the version).

The package's version, usualy in the form A. B (any number of components are
alowed).

(string) The type of license under which this package is distributed. Thisfield isa
value of the License [../libraries/Cabal/Distribution-License.html#t:License]

type.

(optional string) The name of a file giving detailed license information for this
package.

(optional freeform) The copyright string.
(optinoal freeform) The email address of the package's maintainer.

(optional freeform) A string describing the stability of the package (eg. stable, pro-
visional or experimental).

(optional freeform) URL of the package's home page.

(optional freeform) URL of a downloadable distribution for this package. The dis-
tribution should be a Cabal package.

(optional freeform) Description of the package.

../Cabal/index.html
../libraries/Cabal/Distribution-License.html#t:License

Using GHC

cat egory

aut hor
exposed
exposed- nod-
ul es

hi dden- npd-
ul es

i mport-dirs

library-dirs

hs-libraries

extra-
libraries

(optinoal freeform) Which category the package belongsto. Thisfield isfor usein
conjunction with a future centralised package distribution framework, tentatively
titled Hackage.

(optional freeform) Author of the package.
(bool) Whether the package is exposed or not.
(string list) modules exposed by this package.

(string list) modules provided by this package, but not exposed to the programmer.
These modules cannot be imported, but they are still subject to the overlapping
constraint: no other package in the same program may provide a module of the
same name,

(string list) A list of directories containing interface files (. hi files) for this pack-
age.

If the package contains profiling libraries, then the interface files for those library
modules should have the suffix . p_hi . So the package can contain both normal
and profiling versions of the same library without conflict (see aso |i b-
rary_dirs below).

(string list) A list of directories containing libraries for this package.

(string list) A list of libraries containing Haskell code for this package, with the
.aor.dl |l suffix omitted. When packages are built aslibraries, thel i b prefix is
also omitted.

For use with GHCi, each library should have an object file too. The name of the
object file does not have al i b prefix, and has the normal object suffix for your
platform.

For example, if we specify a Haskell library as HSf 0o in the package spec, then
the various flavours of library that GHC actually uses will be called:

| i bHSf 00. @ The name of the library on Unix and Windows (mingw) systems.
Note that we don't support building dynamic libraries of Haskell
code on Unix systems.

HSf oo. dl | The name of the dynamic library on Windows systems
(optional).

HSf 0o. o, The object version of the library used by GHCi.

HSf 00. obj

(string list) A list of extra libraries for this package. The difference between hs-
libraries andextra-libraries isthat hs-1ibraries normaly have
severa versions, to support profiling, paralel and other build options. The various
versions are given different suffixes to distinguish them, for example the profiling
version of the standard prelude library is named | i bHSbase p. a, with the _p
indicating that this is a profiling version. The suffix is added automatically by
GHC for hs-li braries only, no suffix is added for libraries in extr a-
l'ibraries.

The libraries listed in extra-|i brari es may be any libraries supported by
your system's linker, including dynamic libraries (. so on Unix, . DLL on Win-
dows).

Also, extra-1ibraries are placed on the linker command line after the hs-

85

Using GHC

i nclude-dirs

i ncl udes

depends

hugs- opti ons

cc-options

| d-options

f r amewor k-
dirs

f ramewor ks

haddock-
i nterfaces

haddock- ht ni

I'i brari es for the same package. If your package has dependencies in the other
direction (i.e. extra-li braries dependson hs-1ibraries), and the lib-
raries are static, you might need to make two separate packages.

(string list) A list of directories containing C includes for this package.

(string list) A list of files to include for via-C compilations using this package.
Typically the include file(s) will contain function prototypes for any C functions
used in the package, in case they end up being called as a result of Haskell func-
tions from the package being inlined.

(package name list) Packages on which this package depends. This field contains
packages with explicit versions are required, except that when submitting a pack-
agetoghc- pkg regi ster,theversionswill befilled in if they are unambigu-
ous.

(string list) Options to pass to Hugs for this package.

(string list) Extra arguments to be added to the gcc command line when this pack-
ageisbeing used (only for via-C compilations).

(string list) Extra arguments to be added to the gcc command line (for linking)
when this package is being used.

(string list) On Darwin/MacOS X, a list of directories containing frameworks for
this package. This corresponds to the - f r anewor k- pat h option. It is ignored
on al other platforms.

(string list) On Darwin/MacOS X, alist of frameworksto link to. This corresponds
to the - f r anewor k option. Take a look at Apple's developer documentation to
find out what frameworks actually are. This entry isignored on all other platforms.

(string list) A list of filenames containing Haddock
[http://www.haskell.org/haddock/] interface files (. haddock files) for this pack-

age.

(optional string) The directory containing the Haddock-generated HTML for this
package.

5.9. Optimisation (code improvement)

The - O options specify convenient “packages’ of optimisation flags; the - f * options described later
on specify individual optimisations to be turned on/off; the - nt options specify machine-specific optim-
isations to be turned on/off.

5.9.1.

- O*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only have a gen-
eral goal, something like “Compile quickly” or “Make my program run like greased lightning.” The fol-
lowing “packages’ of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed, which can
have an impact on how much of your program needs to be recompiled when you change something. This
is one reason to stick to no-optimisation when devel oping code.

86

http://www.haskell.org/haddock/

Using GHC

5.9.2.

No - O -type option
specified:

- Q0:

-QOor-0QL:

-Ohile <file>:

This is taken to mean: “Please compile quickly; I'm not over-bothered about
compiled-code quality.” So, for example: ghc -¢ Foo.hs

Means “turn off all optimisation”, reverting to the same settings as if no - O
options had been specified. Saying - Q0 can be useful if eg. make hasinserted
a- Oon the command line already.

Means: “Generate good-quality code without taking too long about it.” Thus,
for example: ghc -c -O Main.lhs

Means: “Apply every non-dangerous optimisation, even if it means signific-
antly longer compile times.”

The avoided “dangerous’ optimisations are those that can make runtime or
space worse if you're unlucky. They are normally turned on or off individu-
aly.

At the moment, - 2 is unlikely to produce better code than - O.

(NOTE: not supported since GHC 4.x. Please ask if you're interested in this.)
For those who need absolute control over exactly what options are used (e.g.,
compiler writers, sometimes :-), alist of options can be put in afile and then
slurped inwith- Cf i | e.

In that file, comments are of the #-to-end-of-line variety; blank lines and most
whitespace isignored.

Please ask if you are baffled and would like an example of - Cf i | e!

We don't use a - O flag for day-to-day work. We use - Oto get respectable speed; e.g., when we want
to measure something. When we want to go for broke, we tend to use - @2 - f vi a- C (and we go for

lots of coffee breaks).

The easiest way to see what - O (etc.) “really mean” isto run with - v, then stand back in amazement.

- f *: platform-independent flags

These flags turn on and off individual optimisations. They are normally set via the - O options described
above, and as such, you shouldn't need to set any of them explicitly (indeed, doing so could lead to un-
expected results). However, there are one or two that may be of interest:

-fexcess- preci sion:

-fignore-asserts:

-fno-cse

When this option is given, intermediate floating point values can
have a greater precision/range than the final type. Generally this
is a good thing, but some programs may rely on the exact preci-
sion/range of Fl oat /Doubl e values and should not use this op-
tion for their compilation.

Causes GHC to ignore uses of the function Excep-
tion.assert in source code (in other words, rewriting Ex-
ception.assert p etoe (seeSection 8.11, “Assertions”).
Thisflag isturned on by - O

Turns off the common-sub-expression elimination optimisation.

87

Using GHC

-fno-strictness

-fno-full-1aziness

- f no- st at e- hack

- f no- st at e- hack

-fomt-interface-pragmas

fignore-inter-
face- pragmas

-funbox-strict-fields:

- funf ol d-
i ng- updat e-i n- pl ace=n

Can be useful if you have some unsaf ePer f or m O expres-
sions that you don't want commoned-up.

Turns off the strictness analyser; sometimes it eats too many
cycles.

Turns off the full laziness optimisation (also known as let-
floating). Full laziness increases sharing, which can lead to in-
creased memory residency.

NOTE: GHC doesn't implement complete full-laziness. When op-
timisation in on, and -fno-full -l aziness is not given,
some transformations that increase sharing are performed, such as
extracting repeated computations from aloop. These are the same
transformations that a fully lazy implementation would do, the
difference is that GHC doesn't consistently apply full-laziness, so
don't rely onit.

Turn off the "state hack" whereby any lambda with a St at e#
token as argument is considered to be single-entry, hence it is
considered OK to inline things inside it. This can improve per-
formance of 10 and ST monad code, but it runs the risk of redu-
cing sharing.

Turn off the "state hack" whereby any lambda with a St at e#
token as argument is considered to be single-entry, hence it is
considered OK to inline things inside it. This can improve per-
formance of 10 and ST monad code, but it runs the risk of redu-
cing sharing.

Tells GHC to omit al inessential information from the interface
file generated for the module being compiled (say M). This means
that a module importing M will see only the types of the functions
that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will beinlined in-
to an importing module. The benefit is that modules that import
M will need to be recompiled less often (only when M's exports
change their type, not when they change their implementation).

Tells GHC to ignore al inessential information when reading in-
terface files. That is, even if M hi contains unfolding or strict-
ness information for afunction, GHC will ignore that information.

This option causes al constructor fields which are marked strict
(i.e. “1") to be unboxed or unpacked if possible. It is equivalent to
adding an UNPACK pragma to every strict constructor field (see
Section 8.12.10, “UNPACK pragma’).

This option is a bit of a sledgehammer: it might sometimes make
things worse. Selectively unboxing fields by using UNPACK prag-
mas might be better.

Switches on an experimental "optimisation. Switching it on

makes the compiler a little keener to inline a function that returns
aconstructor, if the context isthat of a thunk.

x = plusint a b

88

Using GHC

If we inlined plusint we might get an opportunity to use update-
in-place for the thunk 'x'.

89

Using GHC

- funf ol d-

(Default: 45) Governs the maximum size that GHC will alow a
function unfolding to be. (An unfolding has a “size” that reflects
the cost in terms of “code bloat” of expanding that unfolding at at
acall site. A bigger function would be assigned a bigger cost.)

Consequences. (a) nothing larger than this will be inlined (unless
it has an INLINE pragma); (b) nothing larger than this will be
spewed into an interface file.

Increasing this figure is more likely to result in longer compile
times than faster code. The next option is more useful:

i ng- use-t hreshol d=n (Default: 8) This is the magic cut-off figure for unfolding: below

this size, afunction definition will be unfolded at the call-site, any
bigger and it won't. The size computed for a function depends on
two things: the actual size of the expression minus any discounts
that apply (see- f unf ol di ng- con- di scount).

5.10. Options related to a particular phase

5.10.1. Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation system, in
place of whatever the ghc has wired into it. For example, you might want to try a different assembler.
The following options allow you to change the external program used for a given compilation phase:

- pgnL cnd
- pgnP cnd
- pgnt cnd
- pgmmcnd
- pgns cnd
- pgma cnd
-pgm cnd
-pgmd! | cnd
- pgnF cnd

- pgmai ndr es
cnd

Use cnd asthe literate pre-processor.

Use cd asthe C pre-processor (with - cpp only).

Use cd asthe C compiler.

Use cd asthe mangler.

Use cnd as the splitter.

Use cnd as the assembler.

Use cnd asthelinker.

Usecnd asthe DLL generator.

Use cnd as the pre-processor (with - F only).

Use cnd as the program to use for embedding manifests on Windows. Normally this

is the program wi ndr es, which is supplied with a GHC installation. See -
f no- enbed- mani f est in Section 5.10.7, “ Options affecting linking” .

5.10.2. Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:

90

Using GHC

- opt L op- Pass opt i on to the literate pre-processor

tion

- opt P op- Pass opt i on to CPP (makes sense only if - cpp isalso on).

tion

- opt F op- Pass opt i on to the custom pre-processor (see Section 5.10.4, “Options affecting a
tion Haskell pre-processor”).

- opt c op- Pass opt i on to the C compiler.

tion

- opt mop- Passopt i on to the mangler.

tion

- opt a op- Pass opt i on to the assembler.

tion

-optl op- Pass opt i on tothelinker.

tion

-optdl | op- PassoptiontotheDLL generator.

tion

-optdep op- Passopti on tothe dependency generator.

tion

-optwi ndres Pass option to wi ndres when embedding manifests on Windows. See -
option f no- enbed- mani f est in Section 5.10.7, “ Options affecting linking” .

So, for example, to force an - Ewur bl e option to the assembler, you would tell the driver -
opt a- Ewur bl e (the dash before the E is required).

GHC isitself a Haskell program, so if you need to pass options directly to GHC's runtime system you
can enclosethemin +RTS ... - RTS (see Section 5.14, “Running a compiled program”).

5.10.3. Options affecting the C pre-processor

-cpp The C pre-processor cpp is run over your Haskell code only if the - cpp option is
given. Unless you are building a large system with significant doses of conditional
compilation, you really shouldn't need it.

91

Using GHC

- Usynbol
-ldir

Define macro synbol in the usual way. NB: does not affect - D macros passed to
the C compiler when compiling via C! For those, use the - opt ¢- Df 0o hack... (see
Section 5.10.2, “Forcing options to a particular phase”).

Undefine macro synbol in the usual way.

Specify adirectory in which to look for #i ncl ude files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (. hs or . | hs files).

The symbols defined by GHC are listed below. To check which symbols are defined by your local GHC
installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo. hs
$ cat foo. hspp

(you need afilef 0o. hs, but it isn't actually used).

__HASKELL98

_ HASKELL
=98
_ HASKELL1_

__GLASGOW H
ASKELL

__ CONCURREN
T HASKELL__

__PARALLEL_
HASKELL__
_HOST_Os=

osl

_HOST_A
ar chRCH=1

If defined, this means that GHC supports the language defined by the Haskell 98 re-
port.

In GHC 4.04 and later, the_ HASKELL __ macro is defined as having the value 98.

If defined to n, that means GHC supports the Haskell language defined in the Haskell
report version 1.n. Currently 5. This macro is deprecated, and will probably disappear
in future versions.

For version X. y. z of GHC, the value of _ GLASGOW HASKELL _ isthe integer
xyy (if y isasingle digit, then aleading zero is added, so for example in version 6.2
of GHC, _ GLASGOW HASKELL__==602). More information in Section 1.3,
“GHC version numbering policy”.

With any luck, GLASGOW HASKELL _ will be undefined in al other implement-
ations that support C-style pre-processing.

(For reference: the comparable symbols for other systemsare: ~ HUGS __ for Hugs,
__NHC__ fornhc98,and __ HBC _ for hbc.)

NB. This macro is set when pre-processing both Haskell source and C source, includ-
ing the C source generated from a Haskell module (i.e. . hs, .1 hs, .c and . hc
files).

This symbol is defined when pre-processing Haskell (input) and pre-processing C
(GHC output). Since GHC from version 4.00 now supports concurrent haskell by de-
fault, this symbol is always defined.

Only defined when -paral |l el is in use!l This symbol is defined when pre-
processing Haskell (input) and pre-processing C (GHC output).

This define allows conditional compilation based on the Operating System, whereos
is the name of the current Operating System (eg. | i nux, m ngw32 for Windows,
sol ari s, etc.).

This define allows conditional compilation based on the host architecture,
wherear ch is the name of the current architecture (eg. i 386, x86_64, power pc,
spar c, etc.).

92

Using GHC

5.10.3.1. CPP and string gaps

A small word of warning: - cpp is not friendly to “string gaps’ .. In other words, strings such as the fol-

lowing:

strnod

\
\

don't work with - cpp; / usr/ bi n/ cpp eides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp and pos-
sibly other cpps) leaves the backslash-space pairs alone and the string gap works as expected.

5.10.4. Options affecting a Haskell pre-processor

-F

A custom pre-processor is run over your Haskell source file only if the - F option is
given.

Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The - F option lets you run a pre-processor as part of the overall GHC compil-
ation pipeline, which has the advantage over running a Haskell pre-processor separ-
ately in that it works in interpreted mode and you can continue to take reap the bene-
fits of GHC's recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the
Haskell input, but after the literate markup has been stripped away and (possibly) the
C pre-processor has washed the Haskell input.

Use - pgnF cnd to select the program to use as the preprocessor. When invoked,
the cnd pre-processor is given at least three arguments on its command-line: the first
argument is the name of the origina source file, the second is the name of the file
holding the input, and the third is the name of the file where crd should write its out-
put to.

Additional arguments to the pre-processor can be passed in using the - opt F option.
These are fed to cnd on the command line after the three standard input and output
arguments.

An example of a pre-processor is to convert your source files to the input encoding
that GHC expects, i.e. create ascript convert . sh containing the lines:

#!'/ bi n/ sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f |1 -t utf-8 $2)

and pass- F - pgnF convert.shtoGHC. The-f | 1 optiontellsiconv to con-
vert your Latin-1 file, supplied in argument $2, while the "-t utf-8" options tell iconv
to return a UTF-8 encoded file. The result is redirected into argument $3. The echo
"{-# LINE 1 \"$2\" #-}" just makes sure that your error positions are repor-
ted asin the original sourcefile.

5.10.5. Options affecting the C compiler (if applicable)

If you are compiling with lots of foreign calls, you may need to tell the C compiler about some

93

> $3

Using GHC

#i ncl ude files. The Right Way to do thisis to add an | NCLUDE pragma to the top of your source file
(Section 8.12.3, “INCLUDE pragma’):

{-# INCLUDE <X/ Xl i b. h> #-}

Sometimes thisisn't convenient. In those cases there's an equivalent command-line option:

% ghc -c '-#include <X/ Xl'ib.h> Xstuff.|hs

5.10.6. Options affecting code generation

-fasm

-fvia-C

-fno-code

f obj ect -
code
-fbyte-code

-fPIC

-dynani c

Use GHC's native code generator rather than compiling via C. This will compile
faster (up to twice as fast), but may produce code that is slightly slower than compil-
ing viaC. - f asmisthe default.

Compile via C instead of using the native code generator. This s the default on archi-
tectures for which GHC doesn't have a native code generator.

Omit code generation (and all later phases) altogether. Might be of some use if you
just want to see dumps of the intermediate compilation phases.

Generate object code. This is the default outside of GHCIi, and can be used with
GHCi to cause object code to be generated in preference to bytecode.

Generate byte-code instead of object-code. This is the default in GHCi. Byte-code
can currently only be used in the interactive interpreter, not saved to disk. This option
isonly useful for reversing the effect of - f obj ect - code.

Generate position-independent code (code that can be put into shared libraries). This
currently works on Mac OS X; it works on PowerPC Linux when using the native
code generator (-fasm). It is not quite ready to be used yet for x86 Linux. On Win-
dows, position-independent code is never used, and on PowerPC64 Linux, position-
independent code is always used, so the flag is a no-op on those platforms.

When generating code, assume that entities imported from a different package will
reside in a different shared library or binary. This currently works on Mac OS X; it
works on PowerPC Linux when using the native code generator. As with - f PI C,
x86 Linux support is not quite ready yet. Windows is not supported, and it is a no-op
on PowerPC64 Linux.

Note that this option also causes GHC to use shared libraries when linking.

5.10.7. Options affecting linking

GHC hasto link your code with various libraries, possibly including: user-supplied, GHC-supplied, and
system-supplied (- | mmath library, for example).

-1lib

Link inthel i b library. On Unix systems, thiswill bein afilecalled | i bl i b. a or
I'i bl'i b. so which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter.
If library f 0o requires library bar, then in general -1 f oo should come before
- | bar on the command line.

94

Using GHC

- package
name

-framewor k
name

-Ldir

f r amewor k-
pat hdi r

-split-objs

-static

-dynam ¢

-main-is
t hi ng

There's one other gotcha to bear in mind when using external libraries: if the library
contains a mai n() function, then this will be linked in preference to GHC's own
mai n() function (eg. | i bf 2c and | i bl have their own nmai n()). This is be-
cause GHC's mai n() comes from the HSrt s library, which is normally included
after al the other libraries on the linker's command line. To force GHC'snai n() to
be used in preference to any other mai n() s from externa libraries, just add the op-
tion- 1 HSr t s before any other libraries on the command line.

Omits the link step. This option can be used with ——nake to avoid the automatic
linking that takes place if the program contains a Mai n module.

If you are using a Haskell “package” (see Section 5.8, “ Packages "), don't forget to
add the relevant - package option when linking the program too: it will cause the
appropriate libraries to be linked in with the program. Forgetting the - package op-
tion will likely result in several pages of link errors.

On Darwin/MacOS X only, link in the framework name. This option corresponds to
the - f r amewor k option for Apple's Linker. Please note that frameworks and pack-
ages are two different things - frameworks don't contain any haskell code. Rather,
they are Apple's way of packaging shared libraries. To link to Apple's “Carbon™ API,
for example, you'd use - f r amewor k Car bon.

Where to find user-supplied libraries... Prepend the directory di r to the library dir-
ectories path.

On Darwin/MacOS X only, prepend the directory di r to the framework directories
path. This option corresponds to the - F option for Apple's Linker (- F already means
something else for GHC).

Tell the linker to split the single object file that would normally be generated into
multiple object files, one per top-level Haskell function or type in the module. This
only makes sense for libraries, where it means that executables linked against the lib-
rary are smaller as they only link against the object files that they need. However, as-
sembling all the sections separately is expensive, so this is ower than compiling
normally. We use this feature for building GHC's libraries (warning: don't use it un-
less you know what you're doing!).

Tell the linker to avoid shared Haskell libraries, if possible. Thisisthe default.

Tell the linker to use shared Haskell libraries, if available (this option is only suppor-
ted on Mac OS X at the moment, and also note that your distribution of GHC may not
have been supplied with shared libraries).

Note that this option also has an effect on code generation (see above).

The normal rule in Haskell is that your program must supply a mai n function in
module Mai n. When testing, it is often convenient to change which function is the
"main" one, and the - mai n-i s flag allows you to do so. Thet hi ng can be one of:

¢ A lower-caseidentifier f 0o. GHC assumes that the main function is Mai n. f oo.
¢ An module name A. GHC assumes that the main function is A. nai n.

¢ Anqualified name A. f 00. GHC assumes that the main functionis A. f 0o.

Strictly speaking, - mai n-i s is not a link-phase flag at all; it has no effect on the
link step. The flag must be specified when compiling the module containing the spe-
cified main function (e.g. module A in the latter two items above). It has no effect for
other modules, and hence can safely be given to ghc - - nake. However, if al the

95

Using GHC

-no-hs-mai n

- debug

-t hreaded

f no-
gen-
mani f est

modules are otherwise up to date, you may need to force recompilation both of the
module where the new "main" is, and of the module where the "main" function used
to be; ghc is not clever enough to figure out that they both need recompiling. Y ou
can force recompilation by removing the object file, or by using the -
fforce-reconp flag.

In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of mai n() at link-time, you
will have to. To signal that to the compiler when linking, use - no- hs- mai n. See
also Section 9.2.1.1, “Using your own nai n() ”.

Notice that since the command-line passed to the linker is rather involved, you prob-
ably want to use ghc to do the final link of your “mixed-language’ application. Thisis
not a regquirement though, just try linking once with - v on to see what options the
driver passes through to the linker.

The - no- hs- mai n flag can aso be used to persuade the compiler to do the link
step in - - make mode when there is no Haskell Mai n module present (normally the
compiler will not attempt linking when there isno Mai n).

Link the program with a debugging version of the runtime system. The debugging
runtime turns on numerous assertions and sanity checks, and provides extra options
for producing debugging output at runtime (run the program with +RTS - ? to seea
list).

Link the program with the "threaded" version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to
the default runtime system which is purely single-threaded.

Note that you do not need -t hr eaded in order to use concurrency; the single-
threaded runtime supports concurrency between Haskell threads just fine.

The threaded runtime system provides the following benefits:

e Paralelism on a multiprocessor or multicore machine. See Section 5.12, “Using
SMP parallelism”.

The ability to make aforeign call that does not block all other Haskell threads.

The ability to invoke foreign exported Haskell functions from multiple OS
threads.

With - t hr eaded, callsto foreign functions are made using the same OS thread that
created the Haskell thread (if it was created by a cal to a foreign exported Haskell
function), or an arbitrary OS thread otherwise (if the Haskell thread was created by
forkl O.

More details on the use of "bound threads" in the threaded runtime can be found in
theCont r ol . Concur r ent [../libraries’/base/Control-Concurrent.html] module.

On Windows, GHC normally generates a manifestfile when linking a binary. The
manifest is placed in thefile pr og. exe. mani f est where pr 0g. exe isthe name
of the executable. The manifest file currently serves just one purpose: it disables the
"installer detection"in Windows Vista that attempts to elevate privileges for execut-
ables with certain names (e.g. names containing "install", "setup" or "patch").
Without the manifest file to turn off installer detection, attempting to run an execut-
able that Windows deems to be an installer will return a permission error code to the
invoker. Depending on the invoker, the result might be a dialog box asking the user
for elevated permissions, or it might simply be a permission denied error.

96

../libraries/base/Control-Concurrent.html

Using GHC

5.11.

5.12

Installer detection can be also turned off globally for the system using the security
control panel, but GHC by default generates binaries that don't depend on the user
having disabled installer detection.

The - f no- gen- mani f est disables generation of the manifest file. One reason to
do thiswould be if you had a manifest file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.

-fno- gen- mani f est alsoimplies- f no- enbed- mani f est , see below.

- The manifest file that GHC generates when linking a binary on Windows is also em-

fno-em bedded in the executable itself, by default. This means that the binary can be distrib-
bed- uted without having to supply the manifest file too. The embedding is done by run-
mani f est ning wi ndr es; to see exactly what GHC does to embed the manifest, use the - v

flag. A GHC installation comes with its own copy of wi ndr es for this reason.

See dso - pgmni ndr es (Section 5.10.1, “Replacing the program for one or more
phases’) and - optwi ndres (Section 5.10.2, “Forcing options to a particular
phase’).

Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries compiled in
a certain way. To get access to the support libraries for Concurrent Haskell, just import Con-
trol . Concurrent [./libraries/base/Control-Concurrent.ntml]. More information on Concurrent
Haskell is provided in the documentation for that module.

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:

- Cs Setsthe context switch interval to s seconds. A context switch will occur at the next heap block
alocation after the timer expires (a heap block allocation occurs every 4k of allocation). With -
CO or - C, context switches will occur as often as possible (at every heap block alocation). By
default, context switches occur every 20ms.

Using SMP parallelism

GHC supports running Haskell programsin parallel on an SMP (symmetric multiprocessor).

There's a fine distinction between concurrency and parallelism: parallelism is all about making your
program run faster by making use of multiple processors simultaneously. Concurrency, on the other
hand, is a means of abstraction: it is a convenient way to structure a program that must respond to mul-
tiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible to run con-
current threads in parallel, and this is exactly what GHC's SMP parallelism support does. But it is aso
possible to obtain performance improvements with parallelism on programs that do not use concurrency.
This section describes how to use GHC to compile and run paralel programs, in Section 8.17,
“Concurrent and Parallel Haskell” we describe the language features that affect parallelism.

5.12.1. Options to enable SMP parallelism

97

../libraries/base/Control-Concurrent.html
../libraries/base/Control-Concurrent.html

Using GHC

In order to make use of multiple CPUs, your program must be linked with the - t hr eaded option (see
Section 5.10.7, “Options affecting linking”). Then, to run a program on multiple CPUs, use the RTS - N
option:

-Nx Use x simultaneous threads when running the program. Normally x should be chosen to match
the number of CPU cores on the machine. There is no means (currently) by which this value may
vary after the program has started.

For example, on a dual-core machine we would probably use +RTS - N2 - RTS.

Whether hyperthreading cores should be counted or not is an open question; please feel free to
experiment and let us know what results you find.

5.12.2. Hints for using SMP parallelism

Add the - sst derr RTS option when running the program to see timing stats, which will help to tell
you whether your program got faster by using more CPUs or not. If the user time is greater than the
elapsed time, then the program used more than one CPU. Y ou should also run the program without - N
for comparison.

GHC's parallelism support is new and experimental. It may make your program go faster, or it might
slow it down - either way, we'd be interested to hear from you.

One significant limitation with the current implementation is that the garbage collector is still single-
threaded, and all execution must stop when GC takes place. This can be a significant bottleneck in a par-
allel program, especidly if your program does a lot of GC. If this happens to you, then try reducing the
cost of GC by tweaking the GC settings (Section 5.14.3, “RTS options to control the garbage
collector”): enlarging the heap or the allocation area size is agood start.

5.13. Platform-specific Flags

Some flags only make sense for particular target platforms.

98

Using GHC

(iX86 machines) GHC tries to “steal” four registers from GCC, for perform-
ance reasons; it almost aways works. However, when GCC is compiling
some modules with four stolen registers, it will crash, probably saying:

Foo. hc: 533: fixed or forbidden register was spill ed.
This may be due to a conpiler bug or to inpossible asm
statenments or cl auses.

Just give some registers back with - monl y- N-r egs. Try “3' first, then "2
If “2' doesn't work, please report the bug to us.

5.14. Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with a non-trivial
runtime system (RTS), which handles storage management, profiling, etc.

You have some control over the behaviour of the RTS, by giving special command-line arguments to
your program.

When your Haskell program starts up, its RTS extracts command-line arguments bracketed between
+RTS and - RTS asits own. For example:

% ./a.out -f +RTS -p -S -RTS -h foo bar

The RTS will snaffle - p - S for itself, and the remaining arguments-f -h foo bar will be handed
to your program if/when it calls Syst em get Ar gs.

No - RTS option is required if the runtime-system options extend to the end of the command line, asin
this example:

% hls -1tr /usr/etc +RTS - A5m

If you absolutely positively want al the rest of the optionsin a command line to go to the program (and
not the RTS), usea——RTS.

Asaways, for RTS options that take si zes: If the last character of si ze isaK or k, multiply by 1000;
if an M or m, by 1,000,000; if aG or G, by 1,000,000,000. (And any wraparound in the counters is your
fault!)

Giving a +RTS -f option will print out the RTS options actually available in your program (which
vary, depending on how you compiled).

NOTE: since GHC is itself compiled by GHC, you can change RTS options in the compiler using the

norma +RTS ... -RTS combination. eg. to increase the maximum heap size for a compilation to
128M, you would add +RTS - ML28m - RTS to the command line.

5.14.1. Setting global RTS options

RTS options are aso taken from the environment variable GHCRTS. For example, to set the maximum
heap sizeto 128M for all GHC-compiled programs (using an sh-like shell):

99

Using GHC

GHCRTS=' - ML28ni
export GHCRTS

RTS options taken from the GHCRTS environment variable can be overridden by options given on the

command line.

5.14.2. Miscellaneous RTS options

-Vsecs

-in-
ye
s|

Sets the interval that the RTS clock ticks at. The runtime uses a
single timer signal to count ticks; this timer signal is used to con-
trol the context switch timer (Section 5.11, “Using Concurrent
Haskell”) and the heap profiling timer Section 6.4.1, “RTS op-
tions for heap profiling”. Also, the time profiler uses the RTS
timer signal directly to record time profiling samples.

Normally, setting the - V option directly is not necessary: the res-
olution of the RTS timer is adjusted automatically if a short inter-
val isrequested with the- Cor - i options. However, setting - Vis
required in order to increase the resolution of the time profiler.

Using a value of zero disables the RTS clock completely, and has
the effect of disabling timers that depend on it: the context switch
timer and the heap profiling timer. Context switches will still hap-
pen, but deterministicaly and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it
eliminates a source of non-determinism at runtime.

If yes (the default), the RTS installs signal handlers to catch
things like ctrl-C. Thisoption is primarily useful for when you are
using the Haskell code asa DL L, and want to set your own signal
handlers.

stal | -si gnal - handl er s=no

5.14.3. RTS options to control the garbage collector

There are severa options to give you precise control over garbage collection. Hopefully, you won't need
any of these in normal operation, but there are several things that can be tweaked for maximum perform-

ance.

- Asi ze

[Default: 256k] Set the allocation area size used by the garbage collector. The aloca-
tion area (actually generation O step 0) is fixed and is never resized (unless you use -
H, below).

Increasing the allocation area size may or may not give better performance (a bigger
alocation area means worse cache behaviour but fewer garbage collections and less
promotion).

With only 1 generation (- Gl) the - A option specifies the minimum allocation area,
since the actual size of the allocation area will be resized according to the amount of
datain the heap (see - F, below).

Use a compacting algorithm for collecting the oldest generation. By default, the old-
est generation is collected using a copying algorithm; this option causes it to be com-
pacted in-place instead. The compaction algorithm is slower than the copying al-
gorithm, but the savings in memory use can be considerable.

100

Using GHC

-Ccn

- Ff act or

- Ggener a-
tions

- Hsi ze

-1 seconds

For a given heap size (using the - H option), compaction can in fact reduce the GC
cost by allowing fewer GCs to be performed. This is more likely when the ratio of
live data to heap size is high, say >30%.

NOTE: compaction doesn't currently work when a single generation is requested us-
ing the - GL option.

[Default: 30] Automatically enable compacting collection when the live data exceeds
n% of the maximum heap size (see the - Moption). Note that the maximum heap size
is unlimited by default, so this option has no effect unless the maximum heap size is
set with - Msi ze.

[Default: 2] This option controls the amount of memory reserved for the older gener-
ations (and in the case of a two space collector the size of the alocation area) as a
factor of the amount of live data. For example, if there was 2M of live data in the old-
est generation when we last collected it, then by default we'll wait until it grows to
4AM before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usualy bet-
ter touse - Hsi ze than to increase - Ff act or .

The - F setting will be automatically reduced by the garbage collector when the max-
imum heap size (the - Msi ze setting) is approaching.

[Default: 2] Set the number of generations used by the garbage collector. The default
of 2 seems to be good, but the garbage collector can support any number of genera-
tions. Anything larger than about 4 is probably not a good idea unless your program
runs for along time, because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS - Gl gives you a simple 2-space collector, as
you would expect. In a 2-space collector, the - A option (see above) specifies the min-
imum allocation area size, since the allocation area will grow with the amount of live
data in the heap. In a multi-generational collector the alocation area is a fixed size
(unless you use the - H option, see below).

[Default: O] This option provides a “suggested heap size” for the garbage collector.
The garbage collector will use about this much memory until the program residency
grows and the heap size needs to be expanded to retain reasonable performance.

By default, the heap will start small, and grow and shrink as necessary. This can be
bad for performance, so if you have plenty of memory it's worthwhile supplying a big
- Hsi ze. For improving GC performance, using - Hsi ze is usually a better bet than
- Asi ze.

(default: 0.3) In the threaded and SMP versions of the RTS (see - t hr eaded, Sec-
tion 5.10.7, “Options affecting linking™), a major GC is automatically performed if
the runtime has been idle (no Haskell computation has been running) for a period of
time. The amount of idle time which must pass before a GC is performed is set by the
- I seconds option. Specifying - | 0 disablestheidle GC.

For an interactive application, it is probably a good idea to use the idle GC, because
thiswill alow finalizers to run and deadlocked threads to be detected in the idle time
when no Haskell computation is happening. Also, it will mean that a GC isless likely
to happen when the application is busy, and so responsiveness may be improved.
However, if the amount of live data in the heap is particularly large, then the idle GC
can cause a significant delay, and too small an interval could adversely affect inter-
active responsiveness.

101

Using GHC

Thisis an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-ksi ze [Default: 1k] Set the initial stack size for new threads. Thread stacks (including the
main thread's stack) live on the heap, and grow as required. The default value is good
for concurrent applications with lots of small threads; if your program doesn't fit this
model then increasing this option may help performance.

The main thread is normally started with a dightly larger heap to cut down on unne-
cessary stack growth while the program is starting up.

-Ksi ze [Default: 8M] Set the maximum stack size for an individual thread to si ze bytes.
This option is there purely to stop the program eating up all the available memory in
the machineif it getsinto an infinite loop.

-m Minimum % n of heap which must be available for allocation. The default is 3%.

- Msi ze [Default: unlimited] Set the maximum heap size to si ze bytes. The heap normally
grows and shrinks according to the memory requirements of the program. The only
reason for having this option is to stop the heap growing without bound and filling up
al the available swap space, which at the least will result in the program being sum-
marily killed by the operating system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
- F parameter will be reduced in order to avoid exceeding the maximum heap size.

-sfile, Write modest (- s) or verbose (- S) garbage-collector statistics into filefil e. The
-Sfile default fil eisprogram stat. Thefil e stderr istreated specialy, with the
output really being sent to st derr .

This option is useful for watching how the storage manager adjusts the heap size
based on the current amount of live data.

-tfile Write a one-line GC stats summary after running the program. This output is in the
same format as that produced by the - Rghc-t i mi ng option.

As with - s, the default fi |l e isprogram stat. Thefil e stderr is treated
specially, with the output really being sent to st derr .
5.14.4. RTS options for profiling and parallelism

The RTS options related to profiling are described in Section 6.4.1, “RTS options for heap profiling”,
those for concurrency in Section 5.11, “Using Concurrent Haskell”, and those for parallelism in Sec-
tion 5.12.1, “Options to enable SMP parallelism”.

5.14.5. RTS options for hackers, debuggers, and over-
interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what's really happening”, or
(c) because you feel likeit. Not recommended for everyday use!

-B Sound the bell at the start of each (mgjor) garbage collection.

102

Using GHC

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of pur-
poses—honestly!—e.g., confirmation that the code/machine is doing something, in-
finite loop detection, gauging cost of recently added code. Certain people can even
tell what stage [the program] is in by the beep pattern. But the major useis for annoy-
ing othersin the same office...”

- Dnum An RTS debugging flag; varying quantities of output depending on which bits are set
innum Only works if the RTS was compiled with the DEBUG option.

-rfile Produce “ticky-ticky” statistics at the end of the program run. The fi | e business
worksjust like on the - S RTS option (above).

“Ticky-ticky” statistics are counts of various program actions (updates, enters, etc.)
The program must have been compiled using - ti cky (ak.a “ticky-ticky profil-
ing”), and, for it to be really useful, linked with suitable system libraries. Not atrivial
undertaking: consult the installation guide on how to set things up for easy
“ticky-ticky” profiling. For more information, see Section 6.7, “Using “ticky-ticky”
profiling (for implementors)”.

- XC (Only available when the program is compiled for profiling.) When an exception is
raised in the program, this option causes the current cost-centre-stack to be dumped
tostderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven't got a clue which bit of code is causing it, compiling
with - prof -auto-all andrunningwith +RTS - xc - RTS will tell you exactly
the call stack at the point the error was raised.

The output contains one line for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each line is of
the form:

each cc, is a cost centre in the program (see Section 6.1, “Cost centres and cost-
centre stacks‘) and the seguence represents the “call stack” at the point the exception
was raised. The leftmost item is the innermost function in the call stack, and the
rightmost item is the outermost function.

-Z Turn off “update-frame squeezing” at garbage-collection time. (There's no particu-

larly good reason to turn it off, except to ensure the accuracy of certain data collected
regarding thunk entry counts.)

5.14.6. “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over the RTS settings for any given program, by compiling
ina“hook” that is called by the run-time system. The RTS contains stub definitions for all these hooks,
but by writing your own version and linking it on the GHC command line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don't work under Windows when the program is
built dynamically.

The hook ghc_rts_opt slets you set RTS options permanently for a given program. A common use

103

Using GHC

for thisis to give your program a default heap and/or stack size that is greater than the default. For ex-
ample, to set - HL28m - K1m place the following definition in a C sourcefile:

char *ghc_rts_opts = "-H128m - Klnt;
Compile the C file, and include the object file on the command line when you link your Haskell pro-

gram.

These flags are interpreted first, before any RTS flags from the GHCRTS environment variable and any
flags on the command line.

Y ou can also change the messages printed when the runtime system “blows up,” e.g., on stack overflow.
The hooks for these are as follows:

voi d Qut OF - The heap-overflow message.

HeapHook

vahdi hedk- The stack-overflow message.

Qeag: un- . .

&b k- The message printed if mal | oc fails.

{ babyi | hopk

'gl ong int)

or examples of the use of these hooks, see GHC's own versions in the file ghc/com

pi | er/ parser/hschooks. c inaGHC sourcetree.

5.14.7. Getting information about the RTS

Itis possible to ask the RTS to give some information about itself. To do this, usethe- - i nf o flag, e.g.

$./a.out +RTS --info

("GHC RTS", "Yes")

("GHC versi on", "6.7")

("RTS way", "rts _p’

("Host platfornt, x86 64- unknown- | i nux")
("Build pl atform x86 64- unknown- | i nux")
("Target pl atforn1‘ " x86_64- unknown- | i nux")
(" Compi | er unregi steri sed", "NO")

("Tabl es next to code", "YES")

Theinformation is formatted such that it can beread asaof type[(Stri ng, String)].

5.15. Generating and compiling External Core
Files

GHC can dump its optimized intermediate code (said to be in “Core” format) to afile as a side-effect of
compilation. Core files, which are given the suffix . hcr, can be read and processed by non-GHC back-
end tools. The Core format is formally described in An External Representation for the GHC Core Lan-
guage [http://www.haskell.org/ghc/docs/papers/core.ps.gz], and sample tools (in Haskell) for manipul at-
ing Core files ae avaladble in the GHC source distribution directory /
f pt ool s/ ghc/ util s/ ext-core. Note that the format of . hcr files is different (though similar)
to the Core output format generated for debugging purposes (Section 5.16, “ Debugging the compiler”).

The Core format natively supports notes which you can add to your source code using the CORE pragma

104

http://www.haskell.org/ghc/docs/papers/core.ps.gz
http://www.haskell.org/ghc/docs/papers/core.ps.gz

Using GHC

(see Section 8.12, “Pragmas’).

-fext-core Generate . her files.

GHC can also read in External Core files as source; just give the . hcr file on the command line, in-
stead of the . hs or .1 hs Haskell source. A current infelicity is that you need to give the -
f gl asgow ext s flag too, because ordinary Haskell 98, when translated to External Core, uses things

like rank-2 types.

5.16. Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY . (Y ou were warned.)

5.16.1. Dumping out compiler intermediate structures

- ddunp- pass Make a debugging dump after pass <pass> (may be common enough to need a
short form...). You can get al of these at once (lots of output) by using - v5, or most
of them with - v4. Some of the most useful ones are:

;1durrp—
pddsag: rn:

-ddunp-tc:
ddunp-
splices:

ddunp-
types:

ddunp- de-
r ddunp- ds:

parser output
renamer output
typechecker output

Dump Template Haskell expressions that we splice in, and what
Haskell code the expression evaluates to.

Dump atype signature for each value defined at the top level of the
module. The list is sorted alphabetically. Using - dppr - debug
dumps a type signature for al the imported and system-defined
things as well; useful for debugging the compiler.

derived instances

desugarer output

105

Using GHC

ddunp-
rul es:

ddunp-sim
pl:

ddunp-

t nlini ngs:
ddunp-
epranal :
ddunp-
stranal :

output of specialisation pass

dumps al rewrite rules (including those generated by the specialisa-
tion pass)

simplifier output (Core-to-Core passes)
inlining info from the simplifier
CPR analyser output

strictness analyser output

106

Using GHC

CSE pass output
- worker/wrapper split output
ddunp-
wor kwr ap: “occurrence analysis output
ddunp- oc-
cur-anal :

107

Using GHC

output of core preparation pass

108

Using GHC

output of STG-to-STG passes

- flattened Abstract C
ddunp-
flatC

109

Using GHC

Print the C-- code out.

- Dump the results of C-- to C-- optimising passes.
ddunp-
opt -cnm

110

Using GHC

assembly language from the native-code generator

111

Using GHC

byte code compiler output

- dump foreign export stubs

ddunp-

- Showitlhgoutput of each iteration of the simplifier (each run of the simplifier has a
ddunp-si m maximum number of iterations, normally 4). Used when even - dver bose- si npl
pl - doesn't cut it.

iterations:

- Dump statistics about how many of each kind of transformation too place. If you add
ddunp-si m - dppr - debug you get more detailed information.

pl -stats

- Make the interface loader be *real* chatty about what it is upto.

ddunp-

tf-trace Make the type checker be *real* chatty about what it is upto.

ddunp-

tc-trace Make the renamer be *real* chatty about what it is upto.

ddunp-

fn-trace Print out summary of what kind of information the renamer had to bring in.

ddunp-

fn-stats Show the output of the intermediate Core-to-Core and STG-to-STG passes, respect-

dver bose- ively. (Lots of output!) So: when we're really desperate:

core2core,

;jver bose- % ghc -noC - O -ddunp-simpl -dverbose-sinpl -dcore-lint Foo.hs

stg2stg

- Print out each pass name as it happens.

dshow-

passes Show statistics for the usage of fast strings by the compiler.

df ast -

stippngdebug Debugging output is in one of several “styles.” Take the printing of types, for ex-

stats ample. In the “user” style (the default), the compiler's internal ideas about types are
presented in Haskell source-level syntax, insofar as possible. In the “debug” style
(which is the default for debugging output), the types are printed in with explicit for-
als, and variables have their unique-id attached (so you can check for things that
look the same but aren't). This flag makes debugging output appear in the more verb-
ose debug style.

- dp- In error messages, expressions are printed to a certain “depth”, with subexpressions

pr - beyond the depth replaced by ellipses. This flag sets the depth. Its default valueis 5.

user-length

- Have the renamer report what imports does not contribute.
dshow un-

used-i m

5.16.2rChecking for consistency

-dcore-lint Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It
checks GHC's sanity, not yours.)

-dstg-lint: Dittofor STG level. (NOTE: currently doesn't work).

-dcmm | int: Dittofor C-- level.

5.16.3. How to read Core syntax (from some -ddunp

112

Using GHC

flags)

Let's do this by commenting an example. It's from doing - ddunp- ds on this code:

skip2 m= m: skip2 (m2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are
identified by their “Uniques.” These are of the form “letter' plus “number' (both loosely interpreted). The
“letter' gives some idea of where the Unique came from; e.g., _ means “built-in type variable”; t means
“from the typechecker”; s means “from the simplifier”; and so on. The “number' is printed fairly com-
pactly in a base-62' format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usualy printed out when debugging, in some form or
another. So herewe go...

Desugar ed:
Mai n. ski p2{-ri1L6-} :: _forall_ a$_4 =>{{Num a$_4}} -> a%$_4 -> [a$_4]

--# "rlL6' is the Unique for Min.skip2;
--# 4" is the Unique for the type-variable (tenplate) "a
--# "{{Num a$_4}}"' is a dictionary argunent

NIE

--# _N_' neans "no (pragnmatic) information" yet; it will later
--# evolve into the GHC PRAGVA info that goes into interface files.

Mai n. ski p2{-r1L6-} =
I\ 4 ->\ d.Numt4&x ->

et
{- CoRec -}
+.td4Hy :: _4 -> _4 -> 4
NI
+.t4Hg = (+{-r3JH} _4) d.Numt4Q&
fromnt.t4GS :: Int{-2i-} -> _4
NI

fromnt.t4GS = (fromnt{-r3JX-} _4) d.Numt4G

The "+ class nethod (Unique: r3JH) selects the addition code

froma "Num dictionary (now an explicit |anbda'd argunent).

Because Core is 2nd-order | anbda-cal culus, type applications
--# and | anbdas (/\) are explicit. So "+ is first applied to a

type (_4'), then to a dictionary, yielding the actual addition

#

#

function that we will use subsequently...
--# W play the exact same gane with the (non-standard) class nethod
--# “fromnt'. Unsurprisingly, the type "Int' is wired into the
--# conpiler.
lit.t4Hb :: 4
N
[it.t4Hb =
| et
ds.d4Qz :: Int{-2i-}
NI

ds. d4Qz = |#! 2#
} in fromnt.t4GS ds. d4Qe

--# CI# 2# is just the literal Int "2'; it reflects the fact that
--# GHC defines "data Int = I# Int# , where Int# is the primtive

113

Using GHC

--# unboxed type. (see relevant info about unboxed types el sewhere...)

--# The *!' after “I# indicates that this is a *saturated*
--# application of the "I# data constructor (i.e., not partially
--# applied).
skip2.t3Ja :: _4 -> [_4]
NI
skip2.t3Ja =
\ mriH4 ->
let { ds.d4QQ :: [_4]
NI
ds. d4QQ =
let {
ds.d4qQy :: _4
NI

ds.d4QY = +.t4Hg mr1H4 lit.t4Ho
} in skip2.t3Ja ds.d4Qy
} in
;1 4 mrlH4 ds. d4QQ

{- end CoRec -}
} in skip2.t3Ja

(“It'sjust asimple functional language” is an unregisterised trademark of Peyton Jones Enterprises, plc.)

5.16.4. Unregisterised compilation

5.17.

The term "unregisterised” really means "compile via vanilla C", disabling some of the platform-specific
tricks that GHC normally uses to make programs go faster. When compiling unregisterised, GHC simply
generates a C file which is compiled viagcc.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the pre-
requisite tools to gec, as, and Id and nothing more, and furthermore the amount of platform-specific
code that needs to be written in order to get unregisterised compilation going is usualy fairly small.

-unreg: Compile via vanilla ANSI C only, turning off platform-specific optimisations.
NOTE: in order to use - unr eg, you need to have a set of libraries (including the
RTS) built for unregisterised compilation. This amounts to building GHC with way

"u" enabled.

Flag reference

This section is a quick-reference for GHC's command-line flags. For each flag, we also list its static/
dynamic status (see Section 5.2, “ Static, Dynamic, and Mode options’), and the flag's opposite (if avail-
able).

5.17.1. Help and verbosity options

Section 5.5, “Help and verbosity options’

Flag Description Static/Dynamic Reverse
-? help mode -
-hel p help mode -

114

Using GHC

Flag Description Static/Dynamic Reverse

-n doadry run dynamic -

-V verbose mode (equivalent |dynamic -
to-v3)

-vn set verbosity level dynamic -

-V display GHC version mode -

——support ed- | angua |display the supported lan- |mode -

ges guage extensions

—info display information about | mode -
the compiler

——version display GHC version mode -

—nuneri c-versi on |display GHC version mode -
(numeric only)

—print-libdir display GHC library direct- {mode -
ory

-ferror-spans output full spanin error static -
messages

- Hsi ze Set the minimum heap size |static -
tosi ze

-Rghc-timng Summarise timing statsfor |static -
GHC (sameas+RTS -
tstderr)

5.17.2. Which phases to run

Section 5.4.3, “Batch compiler mode’

Flag Description Static/Dynamic Reverse

-E Stop after preprocessing mode -
(. hspp file)

-C Stop after generating C mode -
(. hc file)

-S Stop after generating as- mode -
sembly (. s file)

-C Do not link dynamic -

-x suffix Override default behaviour |static -
for sourcefiles

5.17.3. Alternative modes of operation

Section 5.4, “Modes of operation”
Flag Description Static/Dynamic Reverse

--interactive

Interactive mode - normally
used by just running ghci;
see Chapter 3, Using GHCi
for details.

mode

115

Using GHC

Flag Description Static/Dynamic Reverse
- - make Build amulti-module mode -
Haskell program, automat-
ically figuring out depend-
encies. Likely to be much
easier, and faster, than us-
ing make; see Sec-
tion 5.4.1, “Using ghc
—make” for details..
-e expr Evaluateexpr ; seeSec- |mode -
tion 5.4.2, “Expression
evaluation mode” for de-
tails.
-M Generate dependency in- | mode -
formation suitable for use
inaMakefi | e; see Sec-
tion 5.6.11, “ Dependency
generation” for details.
5.17.4. Redirecting output
Section 5.6.4, “Redirecting the compilation output(s)”
Flag Description Static/Dynamic Reverse
- hcsuf suffix set the suffix to usefor in- |dynamic -
termediate C files
-hidirdir set directory for interface |dynamic -
files
- hi suf suffix set the suffix to usefor in- |dynamic -
terfacefiles
-ofilenane set output filename dynamic -
-odirdir set output directory dynamic -
-ohi fil enane set the filename in which to |dynamic
put the interface
-osuf suffix set the output file suffix dynamic -
-stubdir dir redirect FFi stub files dynamic -
5.17.5. Keeping intermediate files
Section 5.6.5, “Keeping Intermediate Files’
Flag Description Static/Dynamic Reverse

-keep-hc-fileor-
keep-hc-files

retain intermediate .. hc
files

dynamic

-keep-s-fileor- retain intermediate . s files |dynamic -
keep-s-files
-keep-raws-fil eor |retainintermediate dynamic -

-keep-raws-files

.raw_s files

116

Using GHC

Flag Description Static/Dynamic Reverse
-keep-tnmp-files retain al intermediate tem- |dynamic -
porary files
5.17.6. Temporary files
Section 5.6.6, “ Redirecting temporary files”
Flag Description Static/Dynamic Reverse
-tnpdir set the directory for tempor-|dynamic -
ary files
5.17.7. Finding imports
Section 5.6.3, “ The search path”
Flag Description Static/Dynamic Reverse
-idirldir2:. add di r,dir 2, etc. toim- |static/: set -
port path
- Empty the import directory |static/: set -
list
5.17.8. Interface file options
Section 5.6.7, “Other options related to interface files’
Flag Description Static/Dynamic Reverse
- ddunp- hi Dump the new interfaceto |dynamic -
stdout
-ddunp-hi-di ffs Show the differencesvs. dynamic -
the old interface
- Dump aminimal set of im- |dynamic -
ddunp-m ni m ports
al -inports
--showifacefile See Section 5.4, “Modes of
operation”.
5.17.9. Recompilation checking
Section 5.6.8, “The recompilation checker”
Flag Description Static/Dynamic Reverse

-fforce-reconp

Turn off recompilation
checking; implied by any -
ddunp- X option

dynamic

-fno-force-reconp

117

Using GHC

5.17.10. Interactive-mode options

Section 3.9, “The. ghci file”

Flag Description Static/Dynamic Reverse
-i gnor e-dot - ghci Disablereading of . ghci |static -
files
-read- dot - ghci Enablereading of . ghci |static -
files
- Break on any exception dynamic -
f br eak- thrown f no-
on-exception br eak- on- excepti on
- f break-on-error Break on uncaught excep- |dynamic -
tions and errors f no- br eak-on-error
Enable usage of Show in- |dynamic -

fprint-
evl d-wi t h- show

stancesin: pri nt

f no-
print -
evl d-wi t h- show

f no-
print-bind-result

Turn off printing of binding
resultsin GHCi

dynamic

f no-
print -
bi nd-content s

Turn off printing of binding
contentsin GHCi

dynamic

5.17.11. Packages

Section 5.8, “ Packages”

Flag Description Static/Dynamic Reverse

- package- nanme P Compileto be part of pack- |dynamic -
age P

- package P Expose package P static/: set -

- hi de- al | - packages |Hideall packages by de- static -
fault

- hi de- package nane |Hide package P static/: set -

-i gnor e- package Ignore package P static/: set -

name

- package- conf fil e |Load morepackagesfrom |static -
file

- Don't load the user's pack- |static -

no-
user - package- conf

age config file.

5.17.12. Language options

Section 8.1, “Language options”

118

Using GHC

Flag Description Static/Dynamic Reverse
-f gl asgow ext s Enable most language ex- |dynamic -fno- gl asgow ext s
tensions
- Enable overlapping in- dynamic -
XOver | appi ngl n- stances XNoOver | appi ngl n-
st ances st ances
- Enable incoherent dynamic -
Xl ncoherent | n- instances. Implies - XNol ncoher ent | n-
st ances XOver | appi ngl n- st ances
st ances
- Enable undecidable in- dynamic -
XUndeci dabl el n- stances XNoUndeci dabl el n-
st ances st ances
- f cont ext - st ack=Nn |set the limit for context re- |dynamic
duction. Default is 20.
- XAr r ows Enable arrow notation ex- |dynamic - XNoAr r ows
tension
- Enable record field disam- |dynamic -
f di sanbi guat e-re- biguation fno-di s-
cord-fields anbi guat e-r e-
cord-fields
- Enable foreign function in- |dynamic -
XFor ei gnFuncti on- |terface (implied by - XNoFor ei gnFunc-
Interface f gl asgow ext s) tionlnterface
- XCGenerics Enable generic classes dynamic - XNoGeneri cs
- Xl npl i ci t Par ans Enable Implicit Parameters. |dynamic - XNol mpl i ci t Par ans
Implied by -
f gl asgow ext s.
-fir- Make tuple pattern match- |dynamic -
ref utabl e-tupl es ing irrefutable fno-irre-
futabl e-tupl es
Don't implicitly i mport |dynamic - Xl nplicitPrel ude

XNol mpli ci t Prel ude

Pr el ude

XNoMononor phi s-
nmRestriction

Disable the monomorphism
restriction

dynamic

XMononor phi smR-
restriction

- XNoMbnoPat Bi nds Make pattern bindings dynamic - XMonoPat Bi nds
polymorphic

- XRel axedPol yRec Relaxed checking for mutu- |dynamic - XNoRel axedPol yRec
ally-recursive polymorphic
functions

- Use GHCi'sextended de- |dynamic -

XExt endedDe- fault rulesin anormal mod- XNoExt endedDe-

faul t Rul es ule faul tRul es

- Enable overloaded string |dynamic -

XOver | oadedSt ri ngs |literals. XNoOver | oaded-

Strings

- XGADTs Enable generalised algebra- |dynamic - XNoGADTs
ic data types.

- XTypeFani | i es Enable type families. dynamic - XNoTypeFamni | i es

119

Using GHC

Flag Description Static/Dynamic Reverse
- Enable lexically-scoped dynamic -
XScopedTypeVari - type variables. Implied by XNoScopedTypeVari -
abl es -f gl asgow ext s. abl es
- XTenpl at eHaskel | Enable Template Haskell. |dynamic -
No longer implied by - XNoTenpl at eHaskel |
f gl asgow ext s.
- XBangPat t er ns Enable bang patterns. dynamic - XNoBangPat t er ns
- XCPP Enable the C preprocessor. |dynamic - XNoCPP
- XPat t er nGuar ds Enable pattern guards. dynamic - XNoPat t er nGuar ds
- XUni codeSynt ax Enable unicode syntax. dynamic - XNoUni codeSynt ax
- XMagi cHash Enable the “magic hash”. |dynamic - XNoMagi cHash
- Enable polymorphic com- |dynamic -
XPol ynor phi cCom ponents for data construct- XNoPol ynor phi cCom
ponent s ors. ponent s
- XRank2Types Enable rank-2 types. dynamic - XNoRank2Types
- XRankNTypes Enable rank-N types. dynamic - XNoRankNTypes
- Enable existential quanti- |dynamic -
XExi st enti al Quan- |fication. XNoEXxi st en-
tification tial Quantification
- XKi ndSi gnat ures Enable kind signatures. dynamic - XNoKi ndSi gnat ur es
- Enable pattern type signa- | dynamic -
XPat t er nSi gnat ur es |tures. XNoPat t er nSi gna-
tures
- XEnpt yDat aDecl s Enable empty data declara- |dynamic - XNoEnpt yDat aDecl s
tions.
- XPar al | el Li st Conp |Enable paralel list compre- [dynamic -
hensions. XNoPar al | el Li st -
Conp
-XUnl i ft edFFI Types |Enableunlifted FFl types. |dynamic -
XNoUnl i ft edFFI -
Types
- Enable liberalised type syn- |dynamic -
XLi ber al TypeSyn- onyms. XNoLi ber al TypeSyn-
onyns onymns
- XTypeQper at or s Enable type operators. dynamic - XNoTypeQper at or s
- XRecur si veDo Enable recursive do (mdo) |dynamic - XNoRecur si veDo
notation.
- XPAr r Enable paralld arrays. dynamic - XNoPAr r
- XRecor dW | dCards |Enablerecord wildcards. |dynamic -
XNoRecor dW | dCar ds
- XRecor dPuns Enable record puns. dynamic - XNoRecor dPuns
- Enable record field disam- |dynamic -
XDi sanmbi guat eR- biguation. XNoDi sambi guat eR-
ecordFi el ds ecor dFi el ds
- XUnboxedTupl es Enable unboxed tuples. dynamic - XNoUnboxedTupl es
Enable standalone deriving. |dynamic

XSt andal oneDer i v-

XNoSt andal oneDe-

120

Using GHC

Flag Description Static/Dynamic Reverse
i ng riving
- Enable deriving for the dynamic -
XDer i veDat aType- Data and Typeable classes. XNoDer i veDat aType-
abl e abl e
- Enable newtype deriving. |dynamic -
XCener al i zedNewt y- XNoGener al i zedNew
peDeri vi ng typeDeri vi ng
- Enable type synonyms. dynamic -
XTypeSynonym n- XNoTypeSynonym n-
stances st ances
- XFl exi bl eCont ext's |Enable flexible contexts. dynamic -
XNoFl exi bl eCon-
texts
- Enable flexible instances. |dynamic -
XFl exi bl el nst ances XNoFl exi bl el n-
st ances
- Enable constrained class |dynamic -
XConst rai nedCl ass- |methods. XNoConst r ai ned-
Met hods Cl assMet hods
- Enable multi parameter dynamic -
XMul ti Par anType- type classes. XNoMul ti Par aniType-
Cl asses Cl asses
- Enable functional depend- |dynamic -
XFunct i onal Depend- |encies. XNoFunct i onal De-
enci es pendenci es
5.17.13. Warnings
Section 5.7, “Warnings and sanity-checking”
Flag Description Static/Dynamic Reverse
-W enable normal warnings dynamic -w
-w disable all warnings dynamic -
-\l | enable amost all warnings |dynamic - W
(detailsin Section 5.7,
“Warnings and sanity-
checking™)
-\Wérror make warnings fatal dynamic -Wwarn
- Whar n make warnings non-fatal dynamic -Werror
- warn about uses of func- dynamic -
fwar n- deprecati ons [tions& typesthat are de- f no-
precated war n- depr ecati ons
warn when an entity isex- |dynamic -

fwar n-dupl i c-
ate-exports

ported multiple times

f no-
war n- dupl i c-
at e-exports

fwar n- hi - shadowi ng

warnwhen a. hi fileinthe
current directory shadows a

dynamic

f no-

121

Using GHC

Flag Description Static/Dynamic Reverse
library war n- hi - shadowi ng
- warn when the Preludeis |dynamic -
fwarn-inpli- implicitly imported f no-
cit-prelude war n-i nmpli -
cit-prelude
- warn when a pattern match |dynamic -
fwarn-incom could fall f no-
pl ete-patterns war n-i ncom
pl et e-patterns
- warn when arecord update |dynamic -
fwarn-incom could fail f no-
pl ete-re- war n-i ncom
cor d- updat es pl ete-re-
cor d- updat es
- warn when fieldsof are- |dynamic -
fwarn-m ss- cord are uninitialised f no-
i ng-fields war n-m ss-
i ng-fields
- warn when class methods |dynamic -
fwarn-m ss- are undefined f no-
i ng- net hods war n-m ss-
i ng- met hods
- warn about top-level func- |dynamic -
fwarn-nm ss- tions without signatures f no-
i ng-si gnat ures war n-m ss-
i ng-si gnatures
- warn when names are shad- |dynamic -
f war n- owed f no-
nane- shadow ng war n-
nane- shadow ng
- f war n- or phans warn when the module con- |[dynamic - f no- war n- or phans
tains orphan instance de-
clarations or rewrite rules
- warn about overlapping dynamic -

f war n- over -
| appi ng- patterns

patterns

f no-
war n- over -
| appi ng- patterns

f war n-
si mpl e- patterns

warn about lambda-patterns
that can fail

dynamic

f no-
war n-
si mpl e-patterns

-fwarn-tabs warn if there are tabs in the |dynamic -fno-warn-tabs
source file

- warn when defaulting hap- |dynamic -

f war n- pens f no-

type-defaults war n-type-defaults

- warn when the Mono- dynamic -

f war n- nono-
nor phi smr e-
striction

morphism Restriction is ap-
plied

f no-
war n- nono-
nor phi smre-
striction

122

Using GHC

Flag Description Static/Dynamic Reverse

- warn about bindingsthat [dynamic -

f war n- unused- bi nds |are unused f no-
war n- unused- bi nds

- warn about unnecessary im- |dynamic -

fwar n- un- ports f no-

used-i nports war n- un-
used-inmports

- warn about variables in pat- [dynamic -

f war n- un-
used- mat ches

terns that aren't used

f no-
war n- un-
used- mat ches

5.17.14. Optimisation levels

Section 5.9, “Optimisation (code improvement)”

Flag Description Static/Dynamic Reverse
-0 Enable default optimisation |dynamic -0
(level 1)
-On Set optimisation level n dynamic -Q0
5.17.15. Individual optimisations
Section 5.9.2, “- f *: platform-independent flags’
Flag Description Static/Dynamic Reverse
-fcase-nerge Enable case-merging. Im- |{dynamic -fno-case- nerge
plied by - O.
-fdicts-strict Make dictionaries strict static -fno-dicts-strict
-fdo-eta-reducti on |Enableetareduction. Im- |dynamic -
plied by - O. f no-
do- et a-reducti on
- Enable lambda eta- dynamic -
f do- reduction f no-
| anmbda- do-
et a- expansi on | anbda-
et a- expansi on
-fexcess- preci si on |Enable excessintermediate |dynamic -
precision f no- ex-
cess-precision
-fignore-asserts Ignore assertionsin the dynamic -

source

fno-ignore-asserts

fignore-inter-
face- pragnas

Ignore pragmas in interface
files

dynamic

fno-ig-
nore-inter-
face- pragmas

fomt-inter-

Don't generate interface
pragmas

dynamic

f no-

123

Using GHC

Flag

Description

Static/Dynamic

Reverse

face- pragnas

omt-inter-
f ace- pragmas

- f max- wor ker-args |If aworker hasthat many |static -
arguments, none will be un-
packed anymore (defaullt:
10)
- Set the max iterationsfor |dynamic -
fmax-sinpli- the simplifier
fier-iterations
-fno- st at e- hack Turn off the "state hack" static -

whereby any lambda with a
real-world state token as ar-
gument is considered to be
single-entry. Hence OK to
inline things inside it.

-fcse

Turn on common sub-
expression elimination. Im-
plied by - O.

dynamic

-fno-cse

-ffull-1azi ness

Turn on full laziness
(floating bindings out-
wards). Implied by - O,

dynamic

-fno-full-laziness

-frewite-rules

Switch on all rewriterules
(including rules generated
by automatic specialisation
of overloaded functions).
Implied by - O.

dynamic

-fno-rewite-rul es

-fstrictness

Turn on strictness analysis.
Implied by - O,

dynamic

-fno-strictness

-fspec-constr

Turn on the SpecConstr
transformation. Implied by
- 2.

dynamic

-fno-spec-constr

-fliberate-case

Turn on the liberate-case
transformation. Implied by
- 2.

dynamic

-fno-liberate-case

-fspec-threshol d=n

Set the size threshold for
function specialisation to n,
for both the liberate-case
and SpecConstr transforma-
tions (default: 200)

static

-fun- Flatten strict constructor dynamic -

box-strict-fields |[fidds f no- un-
box-strict-fields

-fun- Twesk unfolding settings |static -

fol di ng-cre- f no- unf ol d-

ation-threshol d i ng-cre-
ation-threshol d

-fun- Twesak unfolding settings |static -

f ol di ng- f no-unf ol d-

fun-di scount i ng-fun-di scount

-fun- Twesak unfolding settings |static -

f ol di ng- kee- f no-unf ol d-

124

Using GHC

Flag Description Static/Dynamic Reverse
ness-factor i ng- keeness-fact or
-fun- Twesak unfolding settings |static -
f ol di ng- up- f no-unf ol d-
dat e-i n-pl ace i ng- up-

dat e-i n-pl ace
-fun- Twesak unfolding settings |static -
f ol di ng- f no-unf ol d-
use-t hreshol d i ng-use-threshold
-fno-pre-inlining |Turnoff pre-inlining static -

5.17.16. Profiling options

Chapter 6, Profiling

Flag Description Static/Dynamic Reverse

-auto Auto-add _scc_sto all ex- [static -no-auto
ported functions

-auto-all Auto-add _scc_stoall static -no-aut o-al |
top-level functions

-caf-all Auto-add _scc_stoal static -no-caf-all
CAFs

- pr of Turn on profiling static -

-ticky Turn on ticky-ticky profil- |static -
ing

5.17.17. Program coverage options

Section 6.6, “Observing Code Coverage”

Flag Description Static/Dynamic Reverse

-fhpc Turn on Haskell program |static -
coverage instrumentation

-hpedir dir Directory to deposit .mix |dynamic -
files during compilation
(default is .hpc)

5.17.18. Haskell pre-processor options

Section 5.10.4, “ Options affecting a Haskell pre-processor”
Flag Description Static/Dynamic Reverse
-F Enable the use of apre- dynamic -

processor (set with - pgnt)

125

Using GHC

5.17.19. C pre-processor options

Section 5.10.3, “ Options affecting the C pre-processor”

Flag Description Static/Dynamic Reverse
-cpp Run the C pre-processor on |dynamic -
Haskell sourcefiles
- Dsynbol [=val ue] Defineasymbol intheC |dynamic - Usynbol
pre-processor
- Usynbol Undefine a symbol in the C |dynamic -
pre-processor
-ldir Add di r tothedirectory |dynamic -
search list for #i ncl ude
files
5.17.20. C compiler options
Section 5.10.5, “ Options affecting the C compiler (if applicable)”
Flag Description Static/Dynamic Reverse
-#includefile Includefi | e whencom- |dynamic -
piling the. hc file
5.17.21. Code generation options
Section 5.10.6, “ Options affecting code generation”
Flag Description Static/Dynamic Reverse
-fasm Use the native code gener- |dynamic -fviaC
ator
-fvia-C CompileviaC dynamic -fasm
-fno-code Omit code generation dynamic -
-f byt e- code Generate byte-code dynamic -
- fobj ect - code Generate object code dynamic -
5.17.22. Linking options
Section 5.10.7, “ Options affecting linking”
Flag Description Static/Dynamic Reverse
-fPIC Generate position-inde- static -
pendent code (where avail-
able)
-dynani c Use dynamic Haskell lib- |static -
raries (if available)
- f ranewor k nane On Darwin/MacOS X only, |dynamic -

link in the framework

126

Using GHC

Flag Description Static/Dynamic Reverse
nane. This option corres-
pondsto the - f r amewor k
option for Apple's Linker.
- franmewor k- pat h On Darwin/MacOS X only, |dynamic -
name add di r tothelist of dir-
ectories searched for frame-
works. This option corres-
pondsto the - F option for
Apple's Linker.
-llib Linkinlibrary i b dynamic -
-Ldir Adddi r tothelist of dir- |dynamic -
ectories searched for librar-
ies
-main-is Set main module and func- |dynamic -
tion
--nk-dl | DL L-creation mode dynamic -
(Windows only)
-no- hs-main Don't assume this program |dynamic -
contains mai n
-no-1ink Omit linking dynamic -
-split-objs Split objects (for libraries) |dynamic -
-static Use static Haskell libraries |static -
-t hreaded Use the threaded runtime | static -
- debug Use the debugging runtime |static -
- f no- gen- mani f est Do not generate a manifest |dynamic -
file (Windows only)
- Do not embed the manifest |dynamic -
f no- enbed- mani f est |in the executable (Windows
only)
5.17.23. Replacing phases
Section 5.10.1, “Replacing the program for one or more phases’
Flag Description Static/Dynamic Reverse
- pgnL cd Use cird asthe literate pre- |dynamic -
processor
- pgnP cnd Usecnd asthe C pre- dynamic -
processor (with - cpp only)
- pgnt cnd Use cd asthe C compiler |dynamic -
- pgmmcnd Use cd asthe mangler dynamic -
- pgns cnd Use cd asthe splitter dynamic -
- pgna cnd Use cd asthe assembler |dynamic -
- pgm cmd Use cd asthe linker dynamic -
-pgmd! | cnd Usecnd asthe DLL gener- |dynamic -

ator

127

Using GHC

Flag

Description

Static/Dynamic

Reverse

- pgnF cnd

Usecnd asthe pre-
processor (with - F only)

dynamic

- pgma ndr es cnd

Use cd as the program for
embedding manifests on
Windows.

dynamic

5.17.24. Forcing options to particular phases

Section 5.10.2, “Forcing options to a particular phase”

Flag Description Static/Dynamic Reverse

-optLoption passopt i on to theliterate |dynamic -
pre-processor

-opt Poption passopt i on to cpp (with [dynamic -
- cpp only)

-opt Foption passopt i on to the custom|dynamic -
pre-processor

-optcoption passopti ontotheC dynamic -
compiler

- opt mopti on passopt i ontotheman- |dynamic -
gler

-optaoption passopt i on to the assem- |dynamic -
bler

-opt!l option passopt i on tothelinker |dynamic -

-optdl |l option passopti ontotheDLL |dynamic -
generator

-opt dep opti on passopt i on tothe de- dynamic -
pendency generator

-optwi ndres option |passoptionto dynamic -
Wi ndr es.

5.17.25. Platform-specific options

Section 5.13, “Platform-specific Flags’
Flag Description Static/Dynamic Reverse

-nmonl y-[432] -regs

(x86 only) give somere-
gisters back to the C com-
piler

dynamic

5.17.26. External core file options

Section 5.15, “ Generating and compiling External Core Files”

128

Using GHC

Flag Description Static/Dynamic Reverse

-fext-core Generate. hcr externa static -
Corefiles

5.17.27. Compiler debugging options

Section 5.16, “ Debugging the compiler”

Flag Description Static/Dynamic Reverse

-dcore-lint Turn on internal sanity dynamic -
checking

- ddunp- asm Dump assembly dynamic -

- ddunp- bcos Dump interpreter byte code |dynamic -

- ddunp- cnmm Dump C-- output dynamic -

- ddunp- cpr anal Dump output from CPR dynamic -
analysis

- ddunp-cse Dump CSE output dynamic -

- ddunp-deriv Dump deriving output dynamic -

- ddunp- ds Dump desugarer output dynamic -

-ddunp-flatC Dump “flat” C dynamic -

- ddunp-foreign Dumpf orei gn export |dynamic -

stubs

- ddunp- hpc

Dump after instrumentation
for program coverage

dynamic

-ddunp-inli ni ngs Dump inlining info dynamic -

- ddunp- occur - anal Dump occurrence analysis |dynamic -
output

- ddunp- opt - cnm Dump theresults of C--to |dynamic -
C-- optimising passes

- ddunp- par sed Dump parse tree dynamic -

- ddunp- prep Dump prepared core dynamic -

-ddunp-rn Dump renamer output dynamic -

-ddunp-rul es Dump rules dynamic -

- ddunp- si npl Dump final simplifier out- |dynamic -
put

- Dump output from each dynamic -

ddunp-si m simplifier iteration

pl -iterations

- ddunp- spec Dump specialiser output dynamic -

-ddunp-splices Dump TH spliced expres- |dynamic -
sions, and what they evalu-
ateto

-ddunp-stg Dump final STG dynamic -

- ddunp- stranal Dump strictness analyser | dynamic -
output

-ddunp-tc Dump typechecker output |dynamic -

129

Using GHC

Flag Description Static/Dynamic Reverse

- ddunp-types Dump type signatures dynamic -

- Dump worker-wrapper out- |dynamic -

ddunp- wor k- put

er - wr apper

-ddunp-if-trace Trace interface files dynamic -

-ddunp-tc-trace Trace typechecker dynamic -

-ddunp-rn-trace Trace renamer dynamic -

-ddunp-rn-stats Renamer stats dynamic -

- ddunp- si npl -stats |Dump simplifier stats dynamic -

- dppr - debug Turn on debug printing static -
(more verbose)

- dppr - nopr ags Don't output pragmainfo in |static -
dumps

-dppr-user-1length |Setthedepthforprinting |static -
EXpressions in error msgs

-dsource-stats Dump haskell source stats | dynamic -

-dcmm i nt C-- pass sanity checking dynamic -

-dstg-lint STG pass sanity checking |dynamic -

-dstg-stats Dump STG stats dynamic -

-dver b- Show output from each dynamic -

ose-core2core core-to-core pass

-dver bose-stg2stg |Show output from each dynamic -
STG-to-STG pass

- dshow passes Print out each pass hame as |dynamic -
it happens

-df aststring-stats |Show statisticsfor fast dynamic -
string usage when finished

-unreg Enable unregisterised com- |static -
pilation

5.17.28. Misc compiler options

Flag Description Static/Dynamic Reverse

- Don't complain about . hi |static -

f no- file mismatches

hi - ver si on- check

- dno- bl ack- hol i ng |Turn off black holing static -
(probably doesn't work)

- Don't share specialisations |static -

f no- met hod- shari ng |of overloaded functions

-fhistory-size Set simplification history |static -
size

-funregisterised Unregisterised compilation |static -
(use - unr eg instead)

-fno-asm nmangl i ng |Turn off assembly dynamic -

130

Using GHC

Flag

Description

Static/Dynamic

Reverse

mangling (use - unr eg in-
stead)

131

Chapter 6. Profiling

Glasgow Haskell comes with a time and space profiling system. Its purpose is to help you improve your
understanding of your program's execution behaviour, so you can improveit.

Any comments, suggestions and/or improvements you have are welcome. Recommended “profiling
tricks” would be especially cool!

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the - pr of option, and probably one of the - aut o or
- aut o- al | options. These options are described in more detail in Section 6.2, “ Compiler options
for profiling”

2. Runyour program with one of the profiling options, eg. +RTS - p - RTS. This generates afile of
profiling information.

3. Examine the generated profiling information, using one of GHC's profiling tools. The tool to use
will depend on the kind of profiling information generated.

6.1. Cost centres and cost-centre stacks

GHC's profiling system assigns costs to cost centres. A cost is simply the time or space required to eval-
uate an expression. Cost centres are program annotations around expressions; al costs incurred by the
annotated expression are assigned to the enclosing cost centre. Furthermore, GHC will remember the
stack of enclosing cost centres for any given expression at run-time and generate a call-graph of cost at-
tributions.

Let'stake alook at an example:

nmai

n print (nfib 25)
nfibn=if

n<2then 1 else nfib (n-1) + nfib (n-2)

S

Compile and run this program as follows:

$ ghc -prof -auto-all -o Main Min. hs
$./Main +RTS -p

121393

$

When a GHC-compiled program is run with the -p RTS option, it generates a file called
<pr og>. pr of . In this case, the file will contain something like this:
Fri May 12 14:06 2000 Tinme and Allocation Profiling Report (Final)
Main +RTS -p -RTS

total tine
total alloc

0. 14 secs (7 ticks @20 ms)
8,741, 204 bytes (excludes profiling overheads)

COST CENTRE MCDULE %inme %lloc

132

Profiling

nfib Mai n 100.0 100.0
i ndi vi dual i nherited

COST CENTRE MODULE entries %ine %alloc % inme %alloc
MAI N MAI N 0 0.0 0.0 100.0 100.0
mai n Mai n 0 0.0 0.0 0.0 0.0
CAF Pr el Handl e 3 0.0 0.0 0.0 0.0
CAF Pr el Addr 1 0.0 0.0 0.0 0.0
CAF Mai n 6 0.0 0.0 100.0 100.0
mai n Mai n 1 0.0 0.0 100.0 100.0
nfib Mai n 242785 100.0 100.0 100.0 100.0

Thefirst part of the file gives the program name and options, and the total time and total memory alloca-
tion measured during the run of the program (note that the total memory allocation figure isn't the same
as the amount of live memory needed by the program at any one time; the latter can be determined using
heap profiling, which we will describe shortly).

The second part of the fileis a break-down by cost centre of the most costly functions in the program. In
this case, there was only one significant function in the program, namely nf i b, and it was responsible
for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. Thisis roughly a
call-graph profile of the program. In the example above, it is clear that the costly call to nfi b came
from nai n.

The time and allocation incurred by a given part of the program is displayed in two ways:. “individual”,
which are the costs incurred by the code covered by this cost centre stack alone, and “inherited”, which
includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacksis better demonstrated by modifying the example slightly:

main = print (f 25 + g 25)
f n =nfibn
n =nfib (n "div: 2)
nfibn=if n<2then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as before, and take alook at the new profiling results:

COST CENTRE MODULE scc %inme %lloc %inme %lloc
MAI N MAI N 0 0.0 0.0 100.0 100.0
mai n Mai n 0 0.0 0.0 0.0 0.0
CAF Pr el Handl e 3 0.0 0.0 0.0 0.0
CAF Pr el Addr 1 0.0 0.0 0.0 0.0
CAF Mai n 9 0.0 0.0 100.0 100.0
mai n Mai n 1 0.0 0.0 100.0 100.0
g Mai n 1 0.0 0.0 0.0 0.2
nfib Mai n 465 0.0 0.2 0.0 0.2
f Mai n 1 0.0 0.0 100.0 99.8
nfib Mai n 242785 100.0 99.8 100.0 99.8

Now athough we had two callsto nf i b in the program, it isimmediately clear that it was the call from
f which took all thetime.

133

Profiling

6.1.1.

6.1.2.

The actual meaning of the various columnsin the output is:

entries The number of times this particular point in the call graph was entered.

individual %time The percentage of the total run time of the program spent at this point in the
call graph.

individual %alloc The percentage of the total memory alocations (excluding profiling over-
heads) of the program made by this call.

inherited %time The percentage of the total run time of the program spent below this point in
the call graph.

inherited %alloc The percentage of the total memory allocations (excluding profiling over-

heads) of the program made by this call and all of its sub-calls.
In addition you can use the - P RTS option to get the following additional information:
ti cks Theraw number of time “ticks’ which were attributed to this cost-centre; from this, we get the
% i me figure mentioned above.
byt es Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number

from which we get the %al | oc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs attrib-
uted? Well, although GHC does keep information about which groups of functions called each other re-
cursively, this information isn't displayed in the basic time and allocation profile, instead the call-graph
isflattened into atree.

Inserting cost centres by hand

Cost centres are just program annotations. When you say - aut o- al | to the compiler, it automatically
inserts a cost centre annotation around every top-level function in your program, but you are entirely
free to add the cost centre annotations yourself.

The syntax of acost centre annotation is
{-# SCC "nane" #-} <expression>

where " nanme" is an arbitrary string, that will become the name of your cost centre as it appears in the
profiling output, and <expr essi on> is any Haskell expression. An SCC annotation extends as far to
the right as possible when parsing. (SCC stands for "Set Cost Centre").

Rules for attributing costs

The cost of evaluating any expression in your program is attributed to a cost-centre stack using the fol-
lowing rules:

» If the expression is part of the one-off costs of evaluating the enclosing top-level definition, then
costs are attributed to the stack of lexically enclosing SCC annotations on top of the special CAF
cost-centre.

134

Profiling

» Otherwise, costs are attributed to the stack of lexically-enclosing SCC annotations, appended to the
cost-centre stack in effect at the call site of the current top-level definition. Notice that thisis are-
cursive definition.

» Time spent in foreign code (see Chapter 9, Foreign function interface (FFI)) is aways attributed to
the cost centre in force at the Haskell call-site of the foreign function.

What do we mean by one-off costs? Well, Haskell is alazy language, and certain expressions are only
ever evaluated once. For example, if we write:

x = nfib 25

then x will only be evaluated once (if at al), and subsequent demands for x will immediately get to see
the cached result. The definition x is called a CAF (Constant Applicative Form), because it has no argu-
ments.

For the purposes of profiling, we say that the expression nf i b 25 belongs to the one-off costs of eval-
uating x.

Since one-off costs aren't strictly speaking part of the call-graph of the program, they are attributed to a
special top-level cost centre, CAF. There may be one CAF cost centre for each module (the default), or
one for each top-level definition with any one-off costs (this behaviour can be selected by giving GHC
the-caf - al | flag).

If you think you have a weird profile, or the call-graph doesn't look like you expect it to, feel free to
send it (and your program) to us at <gl asgow haskel | - bugs@askel | . or g>.

6.2. Compiler options for profiling

- prof: To make use of the profiling system all modules must be compiled and linked with
the - pr of option. Any SCC annotations you've put in your source will spring to life.

Without a - pr of option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

There are a few other profiling-related compilation options. Use them in addition to - pr of . These do
not have to be used consistently for all modulesin a program.

-aut o: GHC will automatically add _scc__ constructs for all top-level, exported functions.

-auto-all: All top-level functions, exported or not, will be automatically _scc_'d.

-caf-all: The costs of all CAFs in a module are usually attributed to one “big” CAF cost-
centre. With this option, all CAFs get their own cost-centre. An “if all else fails’ op-
tion...

The call-siteisjust the place in the source code which mentions the particular function or variable.

135

Profiling

6.3.

6.4.

6.4.1.

Ignore any _scc_ constructs, so a module which already has _scc_s can be com-
piled for profiling with the annotations ignored.

Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled pro-
gram when you run it (RTS options should be enclosed between +RTS. . . - RTS as usual):

-por-FP: The - p option produces a standard time profile report. It is written into the file pr o-
gram prof .

The - P option produces a more detailed report containing the actual time and alloca
tion data as well. (Not used much.)

- XC This option makes use of the extra information maintained by the cost-centre-stack

profiler to provide useful information about the location of runtime errors. See Sec-
tion 5.14.5, “RTS options for hackers, debuggers, and over-interested souls”.

Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also generate a graph
of its memory usage over time. This is useful for detecting the causes of space leaks, when your pro-
gram holds on to more memory at run-time that it needs to. Space leaks lead to longer run-times due to
heavy garbage collector activity, and may even cause the program to run out of memory altogether.

To generate a heap profile from your program:

1. Compilethe program for profiling (Section 6.2, “Compiler options for profiling”).

2. Run it with one of the heap profiling options described below (eg. - hc for a basic producer pro-
file). This generatesthe file pr og. hp.

3. Run hp2psto produce a Postscript file, pr og. ps. The hp2ps utility is described in detail in Sec-
tion 6.5, “hp2ps—heap profile to PostScript”.

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a Postscript-
capable printer.

RTS options for heap profiling

There are severa different kinds of heap profile that can be generated. All the different profile types
yield a graph of live heap against time, but they differ in how the live heap is broken down into bands.
The following RTS options select which break-down to use:

-hc Breaks down the graph by the cost-centre stack which produced the data.

-hm Break down the live heap by the module containing the code which produced the
data.

-hd Breaks down the graph by closure description. For actua data, the description is

136

Profiling

_hy

-hr

- hb

just the constructor name, for other closures it is a compiler-generated string
identifying the closure.

Breaks down the graph by type. For closures which have function type or un-
known/polymorphic type, the string will represent an approximation to the actual

type.

Break down the graph by retainer set. Retainer profiling is described in more de-
tail below (Section 6.4.2, “Retainer Profiling”).

Break down the graph by biography. Biographical profiling is described in more
detail below (Section 6.4.3, “Biographical Profiling”).

In addition, the profile can be restricted to heap data which satisfies certain criteria - for example, you
might want to display a profile by type but only for data produced by a certain module, or a profile by
retainer for a certain type of data. Restrictions are specified as follows:

- hcnane,...

- hCnane,...

- hnmodul e,...

- hddesc,...

- hytype,...

-hrcc,...

- hbbi o,...

Restrict the profile to closures produced by cost-centre stacks with one of the spe-
cified cost centres at the top.

Restrict the profile to closures produced by cost-centre stacks with one of the spe-
cified cost centres anywhere in the stack.

Restrict the profile to closures produced by the specified modules.
Restrict the profile to closures with the specified description strings.
Restrict the profile to closures with the specified types.

Restrict the profile to closures with retainer sets containing cost-centre stacks with
one of the specified cost centres at the top.

Restrict the profile to closures with one of the specified biographies, where bi o is
oneof | ag, drag, voi d, or use.

For example, the following options will generate aretainer profile restricted to Br anch and Leaf con-

Structors:

prog +RTS -hr -hdBranch, Leaf

There can only be one "break-down" option (eg. - hr in the example above), but there is no limit on the
number of further restrictions that may be applied. All the options may be combined, with one excep-
tion: GHC doesn't currently support mixing the - hr and - hb options.

There are three more options which relate to heap profiling:

-i secs:

- Xt

Set the profiling (sampling) interval to secs seconds (the default is 0.1 second).
Fractions are alowed: for example -i 0. 2 will get 5 samples per second. This
only affects heap profiling; time profiles are always sampled on a 1/50 second fre-
quency.

Include the memory occupied by threads in a heap profile. Each thread takes up a
small areafor its thread state in addition to the space allocated for its stack (stacks
normally start small and then grow as necessary).

137

Profiling

This includes the main thread, so using - xt is a good way to see how much stack
space the program is using.

Memory occupied by threads and their stacks is labelled as “TSO"” when display-
ing the profile by closure description or type description.

-Lnum Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to
25.

6.4.2. Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?’. We start
by defining what we mean by aretainer:

A retainer is either the system stack, or an unevaluated closure (thunk).

In particular, constructors are not retainers.

An object B retains object A if (i) B is aretainer object and (ii) object A can be reached by recursively
following pointers starting from object B, but not meeting any other retainer objects on the way. Each
live object is retained by one or more retainer objects, collectively called its retainer set, or its retainer
Set, or itsretainers.

When retainer profiling is requested by giving the program the - hr option, a graph is generated which
is broken down by retainer set. A retainer set is displayed as a set of cost-centre stacks; because this is
usually too large to fit on the profile graph, each retainer set is numbered and shown abbreviated on the
graph along with its number, and the full list of retainer setsis dumped into thefile pr og. pr of .

Retainer profiling requires multiple passes over the live heap in order to discover the full retainer set for
each object, which can be quite slow. So we set a limit on the maximum size of aretainer set, where all
retainer sets larger than the maximum retainer set size are replaced by the special set MANY. The maxim-
um set size defaults to 8 and can be atered with the - RRTS option:

138

Profiling

si Redtrict the number of elementsin aretainer set to si ze (default 8).
ze

6.4.2.1. Hints for using retainer profiling

6.4.3.

The definition of retainers is designed to reflect a common cause of space leaks: a large structure is re-
tained by an unevaluated computation, and will be released once the computation is forced. A good ex-
ample islooking up avalue in afinite map, where unless the lookup is forced in atimely manner the un-
evaluated lookup will cause the whole mapping to be retained. These kind of space leaks can often be
eliminated by forcing the relevant computations to be performed eagerly, using seq or strictness an-
notations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only the nearest of
which will be reported by retainer profiling - for example A retains B, B retains C, and C retains alarge
structure. There might be a large number of Bs but only a single A, so A isreally the one we're inter-
ested in eliminating. However, retainer profiling will in this case report B as the retainer of the large

structure. To move further up the chain of retainers, we can ask for another retainer profile but this time
restrict the profile to B objects, so we get a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn't foolproof, because there might be other B closures in the heap which aren't the retainers
we areinterested in, but we've found this to be a useful technique in most cases.

Biographical Profiling

A typical heap object may bein one of the following four states at each point inits lifetime:

» Thelag stage, which is the time between creation and the first use of the object,

» theuse stage, which lasts from the first use until the last use of the object, and

e Thedrag stage, which lasts from the final use until the last reference to the object is dropped.

* Anobject which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states listed above.
Usually the most interesting states are the void and drag states: live heap in these states is more likely to
be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria, by re-

stricting a profile by biography. For example, to show the portion of the heap in the drag or void state by
producer:

prog +RTS -hc -hbdrag, voi d

Once you know the producer or the type of the heap in the drag or void states, the next step is usually to
find the retainer(s):

prog +RTS -hr -hccec. ..

139

Profiling

NOTE: this two stage process is required because GHC cannot currently profile using both biographical
and retainer information simultaneously.

6.4.4. Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory residency of your
program when you run it? You might see a large discrepancy between the residency reported by the
heap profiler, and the residency reported by tools on your system (eg. ps or t op on Unix, or the Task
Manager on Windows). There are several reasons for this:

» Thereis an overhead of profiling itself, which is subtracted from the residency figures by the pro-
filer. This overhead goes away when compiling without profiling support, of course. The space over-
head is currently 2 extrawords per heap object, which probably results in about a 30% overhead.

» Garbage collection requires more memory than the actual residency. The factor depends on the kind
of garbage collection agorithm in use: a major GC in the standard generation copying collector will
usually require 3L bytes of memory, where L is the amount of live data. This is because by default
(seethe +RTS - F option) we allow the old generation to grow to twice its size (2L) before collect-
ing it, and we require additionally L bytesto copy the live data into. When using compacting collec-
tion (seethe +RTS - ¢ option), thisisreduced to 2L, and can further be reduced by tweaking the - F
option. Also add the size of the allocation area (currently a fixed 512Kb).

e The stack isn't counted in the heap profile by default. Seethe +RTS - xt option.

» The program text itself, the C stack, any non-heap data (eg. data alocated by foreign libraries, and
data allocated by the RTS), and mmap() 'd memory are not counted in the heap profile.

6.5. hp2ps—heap profile to PostScript
Usage:
hp2ps [flags] [<file>[.hp]]

The program hp2ps converts a heap profile as produced by the - h<br eak- down> runtime option into
a PostScript graph of the heap profile. By convention, the file to be processed by hp2pshasa. hp ex-
tension. The PostScript output iswrittento <f i | e>@ ps. If <fi | e> is omitted entirely, then the pro-
gram behaves as afilter.

hp2psisdistributed in ghc/ uti | s/ hp2ps in a GHC source distribution. It was originally developed
by Dave Wakeling as part of the HBC/LML heap profiler.

Theflags are:

-d In order to make graphs more readable, hp2ps sorts the shaded bands for
each identifier. The default sort ordering is for the bands with the largest
area to be stacked on top of the smaller ones. The - d option causes
rougher bands (those representing series of values with the largest stand-
ard deviations) to be stacked on top of smoother ones.

-b Normally, hp2ps puts the title of the graph in a small box at the top of the

page. However, if the JOB string is too long to fit in a small box (more
than 35 characters), then hp2ps will choose to use a big box instead. The

140

Profiling

- b option forces hp2ps to use a big box.

-e<float>[in| mm pt] Generate encapsulated PostScript suitable for inclusion in LaTeX docu-
ments. Usually, the PostScript graph is drawn in landscape mode in an
area 9 inches wide by 6 inches high, and hp2ps arranges for this area to
be approximately centred on a sheet of a4 paper. This format is conveni-
ent of studying the graph in detail, but it is unsuitable for inclusion in
LaTeX documents. The - e option causes the graph to be drawn in por-
trait mode, with float specifying the width in inches, millimetres or points
(the default). The resulting PostScript file conforms to the Encapsulated
PostScript (EPS) convention, and it can be included in a LaTeX docu-
ment using Rokicki's dvi-to-PostScript converter dvips.

-g Create output suitable for the gs PostScript previewer (or similar). In this
case the graph is printed in portrait mode without scaling. The output is
unsuitable for alaser printer.

-1 Normally a profile is limited to 20 bands with additional identifiers being
grouped into an OTHER band. The - | flag removes this 20 band and lim-
it, producing as many bands as necessary. No key is produced as it won't
fit!. It isuseful for creation time profiles with many bands.

- nxi nt > Normally a profile is limited to 20 bands with additional identifiers being
grouped into an OTHER band. The - mflag specifies an alternative band
limit (the maximum is 20).

- n0 requests the band limit to be removed. As many bands as necessary
are produced. However no key is produced as it won't fit! It is useful for
displaying creation time profiles with many bands.

-p Use previous parameters. By default, the PostScript graph is automatic-
ally scaled both horizontally and vertically so that it fills the page.
However, when preparing a series of graphs for use in a presentation, it is
often useful to draw a new graph using the same scale, shading and or-
dering as a previous one. The - p flag causes the graph to be drawn using
the parameters determined by a previous run of hp2pson fil e. These
are extracted fromf i | e@ aux.

-S Use asmall box for thetitle.

-t<fl oat> Normally trace elements which sum to atotal of less than 1% of the pro-
file are removed from the profile. The -t option allows this percentage
to be modified (maximum 5%).

- 1 0 requests no trace elements to be removed from the profile, ensuring
that all the datawill be displayed.

-C Generate colour output.
-y Ignore marks.
-? Print out usage information.

6.5.1. Manipulating the hp file

(Notes kindly offered by Jan-Willhem Maessen.)

141

Profiling

6.5.2.

6.5.3.

6.5.4.

The FQO. hp file produced when you ask for the heap profile of a program FOOis atext file with a par-
ticularly simple structure. Here's a representative example, with much of the actual data omitted:

JOB "FQOO - hC'
DATE "Thu Dec 26 18:17 2002"
SAMPLE UNI T "seconds”
VALUE_UNI T "byt es"
BEG N_SAMPLE 0. 00
END_SAMPLE 0. 00
BEG N_SAMPLE 15. 07

... sanple data ...
END_SAMPLE 15. 07
BEG N_SAMPLE 30. 23

... sanple data ...
END_SAMPLE 30. 23
... etc.
BEG N_SAMPLE 11695. 47
END_SAMPLE 11695. 47

The first four lines (JOB, DATE, SAMPLE_UNI T, VALUE_UNI T) form a header. Each block of lines
starting with BEG N_SAMPLE and ending with END_SAMPLE forms a single sample (you can think of
this as a vertical slice of your heap profile). The hp2ps utility should accept any input with a properly-
formatted header followed by a series of * complete* samples.

Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the . hp file into a text
editor and deleting the unwanted samples. The resulting . hp file can be run through hp2ps and viewed
or printed.

Viewing the heap profile of a running program

The . hp file is generated incrementally as your program runs. In principle, running hp2ps on the in-
complete file should produce a snapshot of your program's heap usage. However, the last sample in the
file may be incomplete, causing hp2ps to fail. If you are using a machine with UNIX utilities installed,
it's not too hard to work around this problem (though the resulting command line looks rather Byz-
antine):

head - fgrep -n END_ SAMPLE FOO hp | tail -1 | cut -d : -f 1° FOO hp \
| hp2ps > FQO. ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in FOO. hp,
and labels each sample with its ending line number. We then select the line number of the last complete
sample using tail and cut. Thisis used as a parameter to head; the result is as if we deleted the final in-
complete sample from FOO. hp. This results in a properly-formatted .hp file which we feed directly to
hp2ps.

Viewing a heap profile in real time

The gv and ghostview programs have a "watch file" option can be used to view an up-to-date heap pro-
file of your program as it runs. Simply generate an incremental heap profile as described in the previous
section. Run gv on your profile:

gv -watch -seascape FQO. ps

142

Profiling

If you forget the - wat ch flag you can still select "Watch file" from the "State" menu. Now each time
you generate anew profile FOO. ps the view will update automatically.

This can all be encapsulated in alittle script:

#! / bi n/ sh
head - fgrep -n END_ SAMPLE FOO hp | tail -1 | cut -d : -f 1° FOO hp \
| hp2ps > FQOO. ps
gv -watch -seascape FQO ps &
while [1] ; do
sleep 10 # W generate a new profile every 10 seconds.
head - fgrep -n END_ SAMPLE FOO hp | tail -1 | cut -d : -f 1° FOO hp \
| hp2ps > FQO. ps
done

Occasionaly gv will choke asit tries to read an incomplete copy of FOO. ps (because hp2psis still run-
ning as an update occurs). A sightly more complicated script works around this problem, by using the
fact that sending a SIGHUP to gv will causeit to re-read itsinput file:

#!/ bi n/ sh
head - fgrep -n END_ SAMPLE FOO. hp | tail -1] cut -d: -f 1° FOO hp \
| hp2ps > FQQO. ps
gv FQO ps &
gvpsnune$!
while [1] ; do
sl eep 10
head - "fgrep -n END SAMPLE FOO hp | tail -1 | cut -d: -f 1° FOO hp \
hp2ps > FQO. ps
kill -HUP $gvpsnum
done

6.6. Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been actualy ex-
ecuted, and which parts have never actually been invoked. GHC has an option for generating instru-
mented code that records code coverage as pat of the Haskell Program Coverage
[http://www.haskell.org/hpc] (HPC) toolkit, which is included with GHC. HPC tools can be used to
render the generated code coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage and boolean-
control coverage. Source coverage is the extent to which every part of the program was used, measured
at three different levels: declarations (both top-level and local), alternatives (among several equations or
case branches) and expressions (at every level). Boolean coverage is the extent to which each of the val-
ues True and Falseis obtained in every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways. textual reports with summary statistics
(hpc report) and sources with color mark-up (hpc markup). For boolean coverage, there are four possible
outcomes for each guard, condition or qualifier: both True and False values occur; only True; only
False; never evaluated. In hpc-markup output, highlighting with a yellow background indicates a part of
the program that was never evaluated; a green background indicates an always-True expression and a
red background indicates an always-False one.

6.6.1. A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal representations of
reciprocals, with recurring parts indicated in brackets.

143

http://www.haskell.org/hpc

Profiling

reciprocal :: Int -> (String, Int)
reciprocal n| n>1= ("0 : '." : digits, recur)
ot herwi se = error
"attenpting to conpute reciprocal of nunber <= 1"

wher e
(digits, recur) = divide n 1 []
divide :: Int ->1Int -> [Int (String, Int)

divide nccs | ¢ “elem cs
|r::
| r /=0

->
([], position c cs)
(show g, 0)

(show g ++ digits, recur)

mimnn=—

wher e
(q, r) = (c*10) " quotRem
(digits, recur) = divide nr (c:cs)

>

position :: Int -> [Int] -> Int
position n (Xx:xs) | n==x =1
| otherwise = 1 + position n xs
showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " =" ++

if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
wher e

p=1lengthd-r

(d, r) = reciprocal n

main = do
nunber <- readLn
put StrLn (showReci p nunber)
nai n

The HPC instrumentation is enabled using the -fhpc flag.

$ ghc -fhpc Recip.hs --make

HPC index (.mix) files are placed placed in .hpc subdirectory. These can be considered like the .hi files
for HPC.

$./Recip
1/3
= 0.(3)

We can generate a textual summary of coverage:

$ hpc report Recip
80% expressi ons used (81/101)
12% bool ean coverage (1/8)
14% guards (1/7), 3 always True,
1 al ways Fal se,
2 uneval uat ed
0%'if' conditions (0/1), 1 always Fal se
100% qual i fiers (0/0)
55% al ternatives used (5/9)
100% | ocal decl arations used (9/9)
100% t op- 1 evel declarations used (5/5)

144

Profiling

We can also generate a marked-up version of the source.

$ hpc markup Recip
witing Recip.hs.htnl

This generates one file per Haskell module, and 4 index files, hpc_index.html, hpc index_alt.html,
hpc_index_exp.html, hpc_index_fun.html.

6.6.2. Options for instrumenting code for coverage
Turning on code coverage is easy, use the -fhpc flag. Instrumented and non-instrumented can be freely

mixed. When compiling the Main module GHC automatically detects when there is an hpc compiled
file, and adds the correct initialization code.

6.6.3. The hpc toolkit

The hpc toolkit uses a cvs/svn/darcs-like interface, where a single binary contains many function units.

$ hpc
Usage: hpc COMVAND ...
Conmands:
hel p Di splay help for hpc or a single comuand
Reporting Cover age:
report Qut put textual report about program coverage
mar kup Mar kup Haskel | source with program coverage
Processi ng Coverage files:
sum Summultiple .tix files in a single .tix file
conbi ne Conbine two .tix files in a single .tix file
nap Map a function over a single .tix file
Coverage Overl ays:
over | ay Cenerate a .tix file froman overlay file
draft Generate draft overlay that provides 100% cover age
O hers:
show Show .tix file in readable, verbose format
version Di spl ay version for hpc

In general, these options act on .tix file after an instrumented binary has generated it, which hpc acting
as aconduit between the raw .tix file, and the more detailed reports produced.

The hpc tool assumes you are in the top-level directory of the location where you built your application,
and the .tix fileisin the same top-level directory. Y ou can use the flag --srcdir to use hpc for any other
directory, and use --srcdir multiple times to analyse programs compiled from difference locations, as is
typical for packages.

We now explain in more details the major modes of hpc.

6.6.3.1. hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are considered in
generating report, unless include or exclude are used. The report is a summary unless the --per-module
flag is used. The --xml-output option allows for tools to use hpc to glean coverage.

$ hpc hel p report

145

Profiling

Usage: hpc report [OPTION] .. <TIX FILE> [<MODULE> [<MODULE> . .]]

Options:

- - per-nodul e show nodul e | evel detail

--decl -1list show unused decl s

--excl ude=[PACKAGE:] [MODULE] excl ude MODULE and/ or PACKAGE

--incl ude=[PACKAGE: | [MODULE] include MODULE and/ or PACKAGE

--srcdir=DIR path to source directory of .hs files
mul ti-use of srcdir possible

--hpcdi r=DI R sub-directory that contains .mx files
default .hpc [rarely used]

- -xm - out put show out put in XM

6.6.3.2. hpc markup

hpc markup marks up source files into colored html.
$ hpc hel p markup
Usage: hpc markup [OPTION] .. <TIX FILE> [<MODULE> [<MODULE> . .]]

Options:

--excl ude=[PACKAGE: | [MODULE] excl ude MODULE and/ or PACKAGE
--incl ude=[PACKAGE: | [MODULE] include MODULE and/ or PACKAGE

--srcdir=DIR path to source directory of .hs files
mul ti-use of srcdir possible
--hpcdi r=DI R sub-directory that contains .mx files
default .hpc [rarely used]
--fun-entry-count show top-1level function entry counts
- - hi ghli ght-covered hi ghli ght covered code, rather that code gaps
--destdir=DIR path to wite output to

6.6.3.3. hpc sum

hpc sum adds together any number of .tix filesinto asingle .tix file. hpc sum does not change the origin-
al .tix file; it generates anew .tix file.

$ hpc hel p sum

Usage: hpc sum [OPTION] .. <TIX FILE> [<TI X FILE> [<TI X _FILE> ..]]
Sumnmultiple .tix files in a single .tix file
Opt i ons:
- -excl ude=[PACKAGE:] [MODULE] excl ude MODULE and/ or PACKAGE
--incl ude=[PACKAGE: | [MODULE] include MODULE and/ or PACKAGE
- -out put =FI LE out put FILE
- - uni on use the union of the nodul e nanmespace (default i

6.6.3.4. hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between .tix files, to
subtract one .tix file from ancther, or to add two .tix files. hpc combine does not change the origina .tix
file; it generates anew .tix file.

146

Profiling

$ hpc hel p conbi ne
Usage: hpc conmbine [OPTION] .. <TIX FILE> <TI X FILE>
Conbine two .tix files in a single .tix file

Options:

--excl ude=[PACKAGE:] [MODULE] excl ude MODULE and/ or PACKAGE
--incl ude=[PACKAGE: | [MODULE] include MODULE and/ or PACKAGE

--out put =FI LE out put FILE

--functi on=FUNCTI ON combine .tix files with join function, default =
FUNCTION = ADD | DI FF | SuB

--uni on use the union of the npdul e namespace (default

6.6.3.5. hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it generates a new .tix
file.

$ hpc hel p map
Usage: hpc map [OPTION] .. <TIX FILE>
Map a function over a single .tix file

Options:

--excl ude=[PACKAGE:] [MODULE] excl ude MODULE and/ or PACKAGE
--incl ude=[PACKAGE: | [MODULE] include MODULE and/ or PACKAGE

--out put =FI LE out put FILE

--functi on=FUNCTI ON apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO

--uni on use the union of the nodul e namespace (default

6.6.3.6. hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is used to gen-
erate adraft overlay from a .tix file, and hpc overlay generates a .tix files from an overlay.

% hpc hel p overl ay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
nmul ti-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mx files
default .hpc [rarely used]
--out put=FI LE output FILE
% hpc hel p draft
Usage: hpc draft [OPTION] .. <TIX FILE>

Opt i ons:

- -excl ude=[PACKAGE:] [MODULE] excl ude MODULE and/ or PACKAGE
- -incl ude=[PACKAGE:] [MODULE] i ncl ude MODULE and/ or PACKAGE

--srcdir=DIR path to source directory of .hs files
nmul ti-use of srcdir possible

--hpcdir=DI R sub-directory that contains .mx files
default .hpc [rarely used]

--out put =FI LE out put FILE

147

Profiling

6.6.4. Caveats and Shortcomings of Haskell Program
Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the same direct-
ory will exhibit a race condition. There is no way to change the name of the .tix file generated, apart
from renaming the binary. HPC does not work with GHCi.

6.7. Using “ticky-ticky” profiling (for imple-
mentors)

(ToDo: document properly.)

It is possible to compile Glasgow Haskell programs so that they will count lots and lots of interesting
things, e.g., number of updates, number of data constructors entered, etc., etc. We call this “ticky-ticky”
profiling, because that's the sound a Sun4 makes when it is running up all those counters (slowly).

Ticky-ticky profiling is mainly intended for implementors; it is quite separate from the main
“cost-centre” profiling system, intended for all users everywhere.

To be able to use ticky-ticky profiling, you will need to have built the ticky RTS. (This should be de-
scribed in the building guide, but amounts to building the RTS with way "t" enabled.)

To get your compiled program to spit out the ticky-ticky numbers, use a -r RTS option. See Sec-
tion 5.14, “Running a compiled program”.

Compiling your program with the - t i cky switch yields an executable that performs these counts. Here
isasampleticky-ticky statistics file, generated by the invocation foo +RTS -rfoo.ticky.

foo +RTS -rfoo.ticky

ALLOCATI ONS: 3964631 (11330900 words total : 3999476 adm n, 6098829 goods, 1232595
total words: 2 3 4 5 6+
69647 (1.8% function val ues 50.0 50.0 0.0 0.0 O0.0
2382937 (60.1% thunks 0.0 83.9 16.1 0.0 0.0
1477218 (37.3% data val ues 66.8 33.2 0.0 0.0 O0.0
O (0.0% big tuples
2 (0.09% black holes 0.0 100.0 0.0 0.0 O0.0
0 (0.09 primthings
34825 (0.9% partial applications 0.0 0.0 0.0 100.0 0.0
2 (0.09% thread state objects 0.0 0.0 0.0 0.0 100.0

Total storage-nanager allocations: 3647137 (11882004 words)
[5651104 words | ost to specul ative heap-checks]

STACK USACE:

ENTERS: 9400092 of which 2005772 (21.3% direct to the entry code
[the rest indirected via Node's info ptr]

1860318 (19.8% thunks
3733184 (39.7% data val ues
3149544 (33.5% function val ues
[of which 1999880 (63.5% bypassed arg-satisfaction chk]
348140 (3.79% partial applications

148

Profiling

308906 (3.3% nornal indirections
0 (0.0% permanent indirections
RETURNS: 5870443
2137257 (36.4% fromentering a new constructor
[the rest fromentering an existing
2349219 (40.0% vectored [the rest unvectored]
RET_NEW 2137257: 32.5% 46.2% 21.3% 0.0%
RET_OLD: 3733184: 2.8%67.9%29.3% 0.0%
RET_UNBOXED_TUP: 2: 0.0% 0.09400.0% 0.0%
RET_VEC RETURN : 2349219: 0.0% 0.0900.0% 0.0%

UPDATE FRAMES: 2241725 (0 omitted from thunks)

SEQ FRAMES: 1
CATCH FRAMES: 1

UPDATES:
0
34827

2206898
UPD_CON

UPD_PAP_

NEW GEN
OLD GEN

2241725
0.0% data val ues
1.69% partial applications

—~

o OO0O0o

constructor]

. 0%
. 0%
. 0%

. 0%

[2 in place, 34825 allocated new space]
(98.49% updates to existing heap objects (46 by squeezi ng)
0 0 0 0

I N_NEW 0: 0
I N_NEW 34825: 0 0

UPDATES: 2274700 (99.9%
UPDATES: 1852 (0.1%

Total bytes copied during GC. 190096

0 34825

EE R I R I I S I I R I S R I R R I I O

3647137

ALLOC_HEAP_ctr

11882004 ALLOC_HEAP t ot

69647
69647
69644
34819
34831
34816

0

0

0
2382937
0
308906
0

[... lot
0

0

0

0

47524

ALLOC_FUN ctr
ALLOC_FUN_adm
ALLOC_FUN_gds
ALLOC_FUN sl p
ALLOC_FUN hst 0
ALLOC_FUN hst _1
ALLOC_FUN_hst _2
ALLOC_FUN_hst _3
ALLOC_FUN_hst _4
ALLOC_UP_THK_Ctr

ALLOC SE THK ctr

ENT_IND ctr

E! NT_PERM I ND ctr requires +RTS -Z
s nore info omtted ...]
GC_SEL_ABANDONED ct r

GC_SEL_M NOR ctr

GC_SEL_MAJOR ctr

GC_FAI LED_PROMOTI ON_ctr

GC_WORDS _COPI ED ctr

0. 0%
0. 0%
0. 0%

0. 0%

0

0. 0%
0. 0%
0. 0%

0. 0%

0

0. 0%
0. 0%
0. 0%

0. 0%

The formatting of the information above the row of asterisksis subject to change, but hopefully provides

a useful human-readable summary. Below the asterisks all counters maintained by the ticky-ticky sys-
tem are dumped, in a format intended to be machine-readable: zero or more spaces, an integer, a space,

the counter name, and a newline.

In fact, not all counters are necessarily dumped; compile- or run-time flags can render certain counters

invalid. In this case, either the counter will simply not appear, or it will appear with a modified counter
name, possibly along with an explanation for the omission (notice ENT_PERM | ND_ct r appears with

149

0. 0%
0. 0%
0. 0%

0. 0%

Profiling

an inserted ! above). Software analysing this output should always check that it has the counters it ex-
pects. Also, beware: some of the counters can have large values!

150

Chapter 7. Advice on: sooner, faster,

smaller, thriftier

Please advise us of other “helpful hints’ that should go herel

7.1. Sooner: producing a program more quickly

Don't use- Oor (especidly) - O2:

Use more memory:

Don't use too much memory!

Try to use local disks when linking:

Don't derive/use Read unnecessar-
ily:

GHC compiles some program con-
structs slowly:

By using them, you are telling GHC that you are willing to suffer
longer compilation times for better-quality code.

GHC issurprisingly zippy for normal compilations without - O

Within reason, more memory for heap space means less garbage
collection for GHC, which means less compilation time. If you
usethe- Rghc-t i m ng option, you'll get a garbage-collector re-
port. (Again, you can use the cheap-and-nasty +RTS - Sst derr
- RTS option to send the GC stats straight to standard error.)

If it says you're using more than 20% of total time in garbage col-
lecting, then more memory might help: use the - H<si ze> op-
tion. Increasing the default allocation area size used by the com-
piler's RTS might aso help: use the +RTS - A<si ze> -RTS
option.

If GHC persists in being a bad memory citizen, please report it as
abug.

As soon as GHC plus its “fellow citizens’ (other processes on
your machine) start using more than the real memory on your ma-
chine, and the machine starts “thrashing,” the party is over. Com-
pile times will be worse than terrible! Use something like the csh-
builtin time command to get a report on how many page faults
you're getting.

If you don't know what virtual memory, thrashing, and page faults
are, or you don't know the memory configuration of your ma
chine, don't try to be clever about memory use: you'll just make
your lifeamisery (and for other people, too, probably).

Because Haskell objects and libraries tend to be large, it can take
many real seconds to slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using re-
motely-mounted disks; then link on a slow machine that had your
disks directly mounted.

It'sugly and slow.

Wed rather you reported such behaviour as a bug, so that we can
try to correct it.

To figure out which part of the compiler is badly behaved, the -
v2 option isyour friend.

151

Advice on: sooner, faster, smaller,
thriftier

7.2. Faster: producing a program that runs
quicker

The key tool to use in making your Haskell program run faster are GHC's profiling facilities, described
separately in Chapter 6, Profiling. There is no substitute for finding where your program'’s time/space is
really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program's performance dramatically is
to use better algorithms. Once profiling has thrown the spotlight on the guilty time-consumer(s), it may
be better to re-think your program than to try all the tweaks listed below.

Another extremely efficient way to make your program snappy isto use library code that has been Seri-
ousy Tuned By Someone Else. You might be able to write a better quicksort than the one in
Dat a. Li st , but it will take you much longer than typingi nport Dat a. Li st .

Please report any overly-slow GHC-compiled programs. Since GHC doesn't have any credible competi-
tion in the performance department these days it's hard to say what overly-slow means, so just use your
judgement! Of course, if a GHC compiled program runs slower than the same program compiled with
NHC or Hugs, then it's definitely a bug.

Optimise, using - Oor - O2: This is the most basic way to make your program go faster. Com-
pilation time will be slower, especially with - Q2.

At present, - O2 is nearly indistinguishable from - O

CompileviaC and crank up GCC: The native code-generator is designed to be quick, not mind-
bogglingly clever. Better to let GCC have a go, as it tries much
harder on register allocation, etc.

So, when we want very fast code, weuse: - O -fvi a- C.

Overloaded functionsare not your ~ Haskell's overloading (using type classes) is elegant, neat, etc.,
friend: etc., but it is death to performance if left to linger in an inner loop.
How can you sguash it?

Give explicit type signatures: Signatures are the basic
trick; putting them on ex-
ported, top-level functions
is good software-engin-
eering practice, anyway.
(Tip: using -
fwarn-m ss-

i ng-signatures can
help enforce good signa
ture-practice).

The automatic speciaisa
tion of overloaded func-
tions (with - O) should take
care of overloaded loca
and/or unexported func-
tions.

Use SPECI ALI ZE pragmas:
Specialize the overloading
on key functions in your

152

Advice on: sooner, faster, smaller,

Strict functions are your dear
friends:

GHC loves single-constructor data-

types:

Newtypes are better than datatypes:

thriftier
program. See Sec-
tion 8.12.8, “SPECIALIZE
pragma’ and Sec-
tion 8.12.9, “SPECIALIZE
instance pragma”.
“But how do | know where over- A low-tech way: grep

loading is creeping in?’: (search) your interface files
for overloaded type signa-
tures. You can view inter-
face files using the -
-showi face option
(see Section 5.6.7, “Other
options related to interface

files").
% ghc --showiface Foo. hi

and, among other things, lazy pattern-matching is your enemy.

(If you don't know what a “strict function” is, please consult a
functional-programming textbook. A sentence or two of explana
tion here probably would not do much good.)

Consider these two code fragments:

f (Wbble x y) = # strict

f arg =let { (Wbble xy) =arg} in ... # lazy
The former will result in far better code.

A less contrived example shows the use of cases instead of

| et s to get stricter code (a good thing):

f (Wbble x y) # beautiful but slow
= let

(al, b1, cl) = unpackFoo x
_ (a2, b2, c2) = unpackFoo y
in ...
f (Wbble x y) # ugly, and proud of it

= case (unpackFoo x) of { (al, b1, cl) ->
case (unpackFoo y) of { (a2, b2, c2) ->

33

It's al the better if afunction is strict in a single-constructor type
(a type with only one data-constructor; for example, tuples are
single-constructor types).

If your datatype has a single constructor with a single field, use a
newt ype declaration instead of a dat a declaration. The new
t ype will be optimised away in most cases.

153

egr

Advice on: sooner, faster, smaller,

thriftier

“How do | find out a function's
strictness?”

Force key functions to be
I NLI NEd (esp. monads):

Explicit export list:

Look at the Core syntax!

Use strictness annotations:

Don't guess—Ilook it up.

Look for your function in the interface file, then for the third field
in the pragma; it should say S <string>. The<string>
gives the strictness of the function's arguments. L is lazy (bad), S
and E are strict (good), P is “primitive” (good), U(. . .) isstrict
and “unpackable” (very good), and A is absent (very good).

For an “unpackable” U(. ..) argument, the info inside tells the
strictness of its components. So, if the argument is a pair, and it
says U AY(LSS)) , that means “the first component of the pair
isn't used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”

If the function isn't exported, just compile with the extra flag -
ddunp- si npl ; next to the signature for any binder, it will print
the self-same pragmatic information as would be put in an inter-
facefile. (Besides, Core syntax isfunto look at!)

Placing | NLI NE pragmas on certain functions that are used a lot
can have a dramatic effect. See Section 8.12.5.1, “INLINE

pragma’.

If you do not have an explicit export list in a module, GHC must
assume that everything in that module will be exported. This has
various pessimising effects. For example, if a bit of code is actu-
aly unused (perhaps because of unfolding effects), GHC will not
be able to throw it away, because it is exported and some other
module may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it
knows they are not exported.

(The form in which GHC manipulates your code.) Just run your
compilation with - ddunp- si npl (don't forget the - O).

If profiling has pointed the finger at particular functions, look at
their Core code. | et s are bad, cases are good, dictionaries
(d. <d ass>. <Uni que>) [or anything overloading-ish] are
bad, nested lambdas are bad, explicit data constructors are good,
primitive operations (e.g., eql nt #) are good,...

Putting a strictness annotation (') on a constructor field helpsin
two ways: it adds strictness to the program, which gives the strict-
ness analyser more to work with, and it might help to reduce
space leaks.

It can also help in a third way: when used with -fun-
box-strict-fields (see Section 5.9.2, “-f*: platform-
independent flags'), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be re-
moved. Unpacking only happens for single-constructor datatypes
(I nt isagood candidate, for example).

Using - f unbox-strict-fi el ds isonly really agoodideain
conjunction with - O, because otherwise the extra packing and un-
packing won't be optimised away. In fact, it is possible that -
funbox-strict-fiel ds may worsen performance even with

154

Advice on: sooner, faster, smaller,

thriftier

Use unboxed types (a GHC exten-
sion):

Useforeign inport (aGHC
extension) to plug into fast librar-
ies:

Don't use Fl oat s:

Use unboxed arrays (UAr r ay)

Use a bigger heap!

- O, but thisis unlikely (let us know if it happens to you).

When you are really desperate for speed, and you want to get
right down to the “raw bits.” Please see Section 8.2.1, “Unboxed
types” for some information about using unboxed types.

Before resorting to explicit unboxed types, try using strict con-
structor fields and -funbox-strict-fields first (see
above). That way, your code stays portable.

This may take real work, but... There exist piles of massively-
tuned library code, and the best thing is not to compete with it, but
link with it.

Chapter 9, Foreign function interface (FFI) describes the foreign
function interface.

If you're using Conpl ex, definitely use Conpl ex Doubl e
rather than Conpl ex Fl oat (the former is specialised heavily,
but the latter isn't).

Fl oat s (probably 32-bits) are almost always a bad idea, any-
way, unless you Redly Know What You Are Doing. Use
Doubl es. There's rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With
Doubl es, you are much less likely to hang yourself with numer-
ical errors.

One time when Fl oat might be agood ideais if you have a lot
of them, say agiant array of Fl oat s. They take up half the space
in the heap compared to Doubl es. However, thisisn't true on a
64-bit machine.

GHC supports arrays of unboxed elements, for several basic arith-
metic element types including I nt and Char: see the
Dat a. Array. Unboxed library for details. These arrays are
likely to be much faster than using standard Haskell 98 arrays
fromthe Dat a. Ar r ay library.

If your program's GC stats (- S RTS option) indicate that it's do-
ing lots of garbage-collection (say, more than 20% of execution
time), more memory might help—with the - Mksi ze> or -
A<si ze> RTS options (see Section 5.14.3, “RTS options to con-
trol the garbage collector”).

7.3. Smaller: producing a program that is smal-

ler

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -fun-
f ol di ng-use-threshol dO option for the extreme case. (“Only unfoldings with zero cost should
proceed.”) Warning: except in certain specialised cases (like Happy parsers) thisis likely to actually in-
crease the size of your program, because unfolding generally enables extra simplifying optimisations to

be performed.

155

Advice on: sooner, faster, smaller,
thriftier

Avoid Read.

Usestri p onyour executables.

7.4. Thriftier: producing a program that
gobbles less heap space

“1 think | have a space leak...” Re-run your program with +RTS - Sst der r, and remove all doubt!

(You'll see the heap usage get bigger and bigger...) [Hmmm...this might be even easier with the - G1
RTSoption; so... .Ja.out +RTS-Sstderr -G1...]

Once again, the profiling facilities (Chapter 6, Profiling) are the basic tool for demystifying the space
behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous section. Strict
functions get right down to business, rather than filling up the heap with closures (the system's notes to
itself about how to evaluate something, should it eventually be required).

156

Chapter 8. GHC Language Features

Aswith all known Haskell systems, GHC implements some extensions to the language. They are al en-
abled by options; by default GHC understands only plain Haskell 98.

Some of the Glasgow extensions serve to give you access to the underlying facilities with which we im-
plement Haskell. Thus, you can get at the Raw Iron, if you are willing to write some non-portable code
at amore primitive level. You need not be “stuck” on performance because of the implementation costs
of Haskell's “high-level” features—you can always code “under” them. In an extreme case, you can
write all your time-critical code in C, and then just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., loshing Mut abl eByt eAr r ay#s
around your program), you may wish to check if there are libraries that provide a “Haskellised veneer”
over the features you want. The separate libraries documentation [../libraries/index.html] describes all
the libraries that come with GHC.

8.1. Language options

The language option flag control what variation of the language are permitted. Leaving out all of them
gives you standard Haskell 98.

Generally speaking, all the language options are introduced by "- X", e.q. - XTenpl at eHaskel I .
All the language options can be turned off by using the prefix "No"; e.g. "- XNoTenpl at eHaskel | ".

Language options recognised by Cabal can also be enabled using the LANGUAGE pragma, thus { - #
LANGUAGE Tenpl at eHaskel | #-} (see Section 8.12.1, “LANGUAGE pragma’>).

Turning on an option that enables special syntax might cause working Haskell 98 code to fail to compile,
perhaps because it uses a variable name which has become a reserved word. So, together with each op-
tion below, we list the special syntax which is enabled by this option. We use notation and nonterminal
names from the Haskell 98 lexical syntax (see the Haskell 98 Report). There are two classes of specia
syntax:

» New reserved words and symbols: character sequences which are no longer available for use asiden-
tifiersin the program.

» Other special syntax: sequences of characters that have a different meaning when this particular op-
tion isturned on.

We are only listing syntax changes here that might affect existing working programs (i.e. "stolen" syn-
tax). Many of these extensions will also enable new context-free syntax, but in al cases programs writ-
ten to use the new syntax would not be compilable without the option enabled.

-f gl asgow ext s: This simultaneously enables all of the extensions to Haskell 98 de-
scribed in Chapter 8, GHC Language Features, except where other-
wise noted. We are trying to move away from this portmanteau flag,
and towards enabling features individaully.

New reserved words: f or al | (only intypes), ndo.

Other syntax stolen: vari d{#}, char#, string#, i nt eger#,
float#, float##, (#,#),]).{l.

157

../libraries/index.html

GHC Language Features

Implies these specific language options: -
XFor ei gnFunctionlnterface, -XInplicitParans,
XScopedTypeVari abl es, - XGADTs, - XTypeFami | i es.

- This option enables the language extension defined in the Haskell 98
XFor ei gnFunct i onl n- Foreign Function Interface Addendum.

terface:
New reserved words: f or ei gn.

- These two flags control how generalisation is done. See Section 8.16,
XMononor phi smRestric- “Control over monomorphism”.
ti on,- XMonoPat Bi nds:

158

GHC Language Features

XOver | appi ngl nst ances
Xthdktheaphasast ances

'XI ncoher ent | nst ances ,
= KAbhPV&t - st ack=N

- XGeneri cs

- XNol mpl i ci t Prel ude

- Xl nmpl i citParans

- XOver | oadedStri ngs
- XScopedTypeVari abl es

- XTenpl at eHaskel |

Use GHCi's extended default rules in a regular module (Section 3.4.5,
“Type defaulting in GHCi”). Independent of the - f gl asgow ext s

flag.

See Section 8.6.3, “Instance declarations’. Only relevant if you also
use-f gl asgow ext s.

See Section 8.13, “Rewrite rules ”. Only relevant if you also use -
f gl asgow ext s.

See Section 8.9, “Arrow notation ”. Independent of -
f gl asgow ext s.

New reserved words/symbols. r ec, pr oc, - <, >- , - <<, >>-,
Other syntax stolen: (|,) .

See Section 8.15, “Generic classes’. Independent of -
f gl asgow ext s.

GHC normally imports Pr el ude. hi files for you. If you'd rather it
didn't, then give it a - XNol npl i ci t Pr el ude option. The idea is
that you can then import a Prelude of your own. (But don't cal it
Pr el ude; the Haskell module namespace is flat, and you must not
conflict with any Prelude module.)

Even though you have not imported the Prelude, most of the built-in
syntax still refers to the built-in Haskell Prelude types and values, as
specified by the Haskell Report. For example, the type [I nt] till
means Prel ude. [] | nt; tuples continue to refer to the standard
Prelude tuples; the translation for list comprehensions continues to use
Pr el ude. map etc.

However, - XNol npl i ci t Prel ude does change the handling of
certain built-in syntax: see Section 8.3.5, “Rebindable syntax”.

Enables implicit parameters (see Section 8.7.2, “Implicit parameters”).
Currently also implied by - f gl asgow ext s.

Syntax stolen: ?vari d, %vari d.

Enables overloaded string literals (see Section 8.6.4, “Overloaded
string literals ™).

Enables lexically-scoped type variables (see Section 8.7.6, “Lexically
scoped type variables”). Implied by - f gl asgow ext s.

Enables Template Haskell (see Section 8.8, “ Template Haskell”). This

flag must be given explicitly; it is no longer implied by -
f gl asgow ext s.

Syntax stolen: [| ,[e|,[p|,[d].[t],$(,Svarid.

8.2. Unboxed types and primitive operations

GHC isbuilt on araft of primitive data types and operations. While you really can use this stuff to write
fast code, we generally find it alot less painful, and more satisfying in the long run, to use higher-level

159

GHC Language Features

8.2.1.

language features and libraries. With any luck, the code you write will be optimised to the efficient un-
boxed version in any case. And if it isn't, we'd like to know about it.

We do not currently have good, up-to-date documentation about the primitives, perhaps because they are
mainly intended for internal use. There used to be along section about them here in the User Guide, but
it became out of date, and wrong information is worse than none.

The Real Truth about what primitive types there are, and what operations work over those types, is held
in the file f pt ool s/ ghc/ conpi | er/ pr el ude/ pri nops. t xt. pp. Thisfile is used directly to
generate GHC's primitive-operation definitions, so it is always correct! It is also intended for processing
into text.

Indeed, the result of such processing is part of the description of the External Core language
[http://Iwww.haskell.org/ghc/docs/papers/core.ps.gz]. So that document is a good place to look for a
type-set version. We would be very happy if someone wanted to volunteer to produce an SGML back
end to the program that processes pr i nops. t xt so that we could include the results here in the User
Guide.

What follows here is a brief summary of some main points.

Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a pointer to a
heap object. The representation of a Haskell | nt , for example, is a two-word heap object. An unboxed
type, however, is represented by the value itself, no pointers or heap allocation are involved.

Unboxed types correspond to the “raw maching”’ types you would use in C: | nt # (long int), Doubl e#
(double), Addr # (void *), etc. The primitive operations (PrimOps) on these types are what you might
expect; eg., (+#) is addition on | nt#s, and is the machine-addition that we all know and
love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and
compiler. Primitive types are always unlifted; that is, a value of a primitive type cannot be bottom. We
use the convention that primitive types, values, and operations have a# suffix.

Primitive values are often represented by a simple bit-pattern, such as | nt #, Fl oat #, Doubl e#. But
this is not necessarily the case: a primitive value might be represented by a pointer to a heap-allocated
object. Examples include Ar r ay#, the type of primitive arrays. A primitive array is heap-allocated be-
cause it istoo big avalue to fit in aregister, and would be too expensive to copy around; in asense, it is
accidental that it is represented by a pointer. If a pointer represents a primitive value, then it realy does
point to that value: no unevaluated thunks, no indirections...nothing can be at the other end of the point-
er than the primitive value. A numerically-intensive program using unboxed types can go a lot faster
than its “standard” counterpart—we saw a threefold speedup on one example.

There are some restrictions on the use of primitive types:

» Themain restriction is that you can't pass a primitive value to a polymorphic function or store onein
a polymorphic data type. This rules out things like [| nt #] (i.e. lists of primitive integers). The
reason for this restriction is that polymorphic arguments and constructor fields are assumed to be
pointers: if an unboxed integer is stored in one of these, the garbage collector would attempt to fol-
low it, leading to unpredictable space leaks. Or aseq operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results. Even worse, the unboxed value might be
larger than a pointer (Doubl e# for instance).

* You cannot define a newtype whose representation type (the argument type of the data constructor)
isan unboxed type. Thus, thisisillegal:

160

http://www.haskell.org/ghc/docs/papers/core.ps.gz

GHC Language Features

newtype A = MKA Int#

* You cannot bind a variable with an unboxed type in atop-level binding.
* You cannot bind a variable with an unboxed type in arecursive binding.
* You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding, but any such
variable causes the entire pattern-match to become strict. For example:
data Foo = Foo Int Int#
f x =let (Fooab, w =..rhs.. in ..body..
Since b has type | nt #, the entire pattern match is strict, and the program behaves as if you had
written
data Foo = Foo Int Int#

f x =case ..rhs.. of { (Foo a b, w) -> ..body.. }

8.2.2. Unboxed Tuples

Unboxed tuples aren't really exported by GHC. Exts, they're available by default with -
f gl asgow ext s. An unboxed tuple looks like this:

(# e 1, ..., e.n#

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an unboxed
tuple looks the same.

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap alloca-
tion normally associated with using fully-fledged tuples. When an unboxed tuple is returned, the com-
ponents are put directly into registers or on the stack; the unboxed tuple itself does not have a composite
representation. Many of the primitive operations listed in pr i nops. t xt . pp return unboxed tuples. In
particular, the | Oand ST monads use unboxed tuples to avoid unnecessary alocation during sequences
of operations.

There are some pretty stringent restrictions on the use of unboxed tuples:
» Vaues of unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they
may not be stored in polymorphic data structures or passed to polymorphic functions.

» No variable can have an unboxed tuple type, nor may a constructor or function argument have an un-
boxed tuple type. The following are all illegal:

data Foo = Foo (# Int, Int #)
f o (#1Int, Int #) ->(# Int, Int #)

161

GHC Language Features

g:: (#1Int, Int #) ->Int
g (# a,b# =a

hx =1lety=(#Xx,Xx#%#) in...

The typical use of unboxed tuplesis simply to return multiple values, binding those multiple results with
acase expression, thus:

(# x+1, y-1 #)

Xy =
=casef x xof { (#a, b#) ->a+ b}

f
g X

Y ou can have an unboxed tuple in a pattern binding, thus

f x =1let (# p,g#) =h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell pattern bind-
ing. The above example desugars like this:

f x =lett =case hxof{ (# p,q#) ->(p,q)
p=fst t
g =sndt
in ..body..

Indeed, the bindings can even be recursive.

8.3. Syntactic extensions

8.3.1. Hierarchical Modules

GHC supports a small extension to the syntax of module names. a module name is alowed to contain a
dot ‘.’ . Thisis also known as the “hierarchical module namespace” extension, because it extends the
normally flat Haskell module namespace into a more flexible hierarchy of modules.

This extension has very little impact on the language itself; modules names are always fully qualified, so
you can just think of the fully qualified module name as “the module name”. In particular, this means
that the full module name must be given after the nodul e keyword at the beginning of the module; for
example, the module A. B. C must begin

nodul e A.B.C

It is a common strategy to use the as keyword to save some typing when using qualified names with
hierarchical modules. For example:

i mport qualified Control.Mnad. ST. Strict as ST

For details on how GHC searches for source and interface files in the presence of hierarchical modules,
see Section 5.6.3, “ The search path”.

162

GHC Language Features

8.3.2.

GHC comes with a large collection of libraries arranged hierarchically; see the accompanying library
documentation [../librariesindex.html]. More libraries to install are available from HackageDB
[http://hackage.haskell.org/packages/hackage.html].

Pattern guards

The discussion that follows is an abbreviated version of Simon Peyton Jones's original proposal
[http://research.microsoft.com/~simonpj/Haskell/guards.html]. (Note that the proposal was written be-
fore pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with alookup operation:
| ookup :: FiniteMap -> Int -> Maybe Int
The lookup returns Not hi ng if the supplied key is not in the domain of the mapping, and (Just v)

otherwise, where v is the value that the key maps to. Now consider the following definition:

clunky env varl var2 | okl &% ok2 = vall + val 2

| otherwise = varl + var?2
wher e
mL = | ookup env varl
n2 = | ookup env var2
okl = maybeToBool ml
ok2 = maybeToBool nR
val 1 expect Just ml

val 2 = expectJust nR
The auxiliary functions are

maybeToBool :: Maybe a -> Bool
maybeToBool (Just Xx) = True

maybeToBool Not hi ng Fal se
expectJust :: Maybe a -> a
expect Just (Just x) = x

expect Just Not hi ng error "Unexpected Not hi ng"

What iscl unky doing? The guard ok1 && ok2 checksthat both lookups succeed, using maybeTo-

Bool to convert the Maybe types to booleans. The (lazily evaluated) expect Just calls extract the
values from the results of the lookups, and binds the returned values to val 1 and val 2 respectively. If
either lookup fails, then clunky takes the ot her wi se case and returns the sum of its arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the de-
sired effect. Arguably, a more direct way to write clunky would be to use case expressions:

clunky env varl var2 = case | ookup env varl of
Not hi ng -> f ai
Just vall -> case | ookup env var2 of
Not hi ng -> f ai
Just val2 -> vall + val 2
wher e
fail = varl + var2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded

163

../libraries/index.html
../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://research.microsoft.com/~simonpj/Haskell/guards.html

GHC Language Features

8.3.3.

equations as case expressions; that is precisely what the compiler does when compiling eguations! The
reason that Haskell provides guarded equations is because they allow us to write down the cases we
want to consider, one at a time, independently of each other. This structure is hidden in the case version.
Two of the right-hand sides are really the same (f ai |), and the whole expression tends to become more
and more indented.

Hereis how | would write clunky:

cl unky env varl var?2
| Just vall <- |ookup env varl
, Just val 2 <- | ookup env var?2
=vall + val2

...other equations for clunky...

The semantics should be clear enough. The qualifiers are matched in order. For a <- qualifier, which |
call a pattern guard, the right hand side is evaluated and matched against the pattern on the left. If the
match fails then the whole guard fails and the next equation is tried. If it succeeds, then the appropriate
binding takes place, and the next qualifier is matched, in the augmented environment. Unlike list com-
prehensions, however, the type of the expression to the right of the <- is the same as the type of the pat-
tern to its left. The bindings introduced by pattern guards scope over all the remaining guard qualifiers,
and over the right hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern
guards. For example:

fox | [yl < x
1y>3
, Just z <- hy

Haskell's current guards therefore emerge as a specia case, in which the qualifier list has just one ele-
ment, a boolean expression.

The recursive do-notation

The recursive do-notation (also known as mdo-notation) is implemented as described in A recursive do
for Haskell [http://citeseer.ist.psu.edu/erk02recursive.html], by Levent Erkok, John Launchbury, Haskell
Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. This paper is essential reading for anyone mak-
ing non-trivial use of mdo-notation, and we do not repeat it here.

The do-notation of Haskell does not allow recursive bindings, that is, the variables bound in a do-
expression are visible only in the textually following code block. Compare this to a let-expression,
where bound variables are visible in the entire binding group. It turns out that several applications can
benefit from recursive bindings in the do-notation, and this extension provides the necessary syntactic
support.

Hereisasimple (yet contrived) example:
i mport Control. Mnad. Fi x
justOnes = ndo xs <- Just (1:xs)

return xs

Asyou can guessj ust Ones will evaluatetoJust [1,1,1,....

164

http://citeseer.ist.psu.edu/erk02recursive.html
http://citeseer.ist.psu.edu/erk02recursive.html

GHC Language Features

8.3.4.

The Control.Monad.Fix library introduces the MonadFi x class. It's definition is:

cl ass Monad m => MonadFi x m where
nfix :: (a->ma) ->ma

The function nf i x dictates how the required recursion operation should be performed. For example,
j ust Ones desugars asfollows:

justOnes = nfix (\xs' -> do { xs <- Just (1l:xs'); return xs }

For full details of the way in which mdo is typechecked and desugared, see the paper A recursive do for
Haskell [http://citeseer.ist.psu.edu/erkO2recursive.html]. In particular, GHC implements the segmenta-
tion technique described in Section 3.2 of the paper.

If recursive bindings are required for a monad, then that monad must be declared an instance of the
MonadFi x class. The following instances of MonadFi x are automatically provided: List, Maybe, 10.
Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the
MonadFix class for Haskell's internal state monad (strict and lazy, respectively).

Here are some important points in using the recursive-do notation:

» Therecursive version of the do-notation uses the keyword ndo (rather than do).
» Itisenabled with theflag - XRecur si veDo, whichisinturnimplied by - f gl asgow ext s.

» Unlike ordinary do-notation, but like | et and wher e bindings, name shadowing is not allowed;
that is, all the names bound in asingle ndo must be distinct (Section 3.3 of the paper).

» Variablesbound by al et statement in an ndo are monomorphic in the ndo (Section 3.1 of the pa-

per). However GHC breaks the ndo into segments to enhance polymorphism, and improve termina-
tion (Section 3.2 of the paper).

The web page: http://www.cse.ogi.edu/PacSoft/projects/rmb/ contains up to date information on recurs-
ive monadic bindings.

Historical note: The old implementation of the mdo-notation (and most of the existing documents) used
the name MonadRec for the class and the corresponding library. This name is not supported by GHC.

Parallel List Comprehensions

Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can be
thought of as a nice syntax for writing maps and filters. Parallel comprehensions extend this to include
the zipWith family.

A paralél list comprehension has multiple independent branches of qualifier lists, each separated by a [
symbol. For example, the following zips together two lists:

[(X, y) | x < xs | y<-ys]

The behavior of paralel list comprehensions follows that of zip, in that the resulting list will have the
same length as the shortest branch.

165

http://citeseer.ist.psu.edu/erk02recursive.html
http://citeseer.ist.psu.edu/erk02recursive.html
http://www.cse.ogi.edu/PacSoft/projects/rmb/

GHC Language Features

We can define paralel list comprehensions by trandlation to regular comprehensions. Here's the basic
idea

Given aparallel comprehension of the form:

[e| pl < ell, p2 <- el2,
| g1 <- e21, g2 <- e22,

Thiswill be trandated to:

[el ((pl,p2), (9l1,92), ...) <- zipN[(pl,p2) | pl <- ell, p2 <- el2,
[(g1,92) | ql < e21, g2 <- e22,

where “zipN' is the appropriate zip for the given number of branches.

8.3.5. Rebindable syntax

GHC alows most kinds of built-in syntax to be rebound by the user, to facilitate replacing the Pr e-
| ude with a home-grown version, for example.

Y ou may want to define your own numeric class hierarchy. It completely defeats that purpose if the lit-
era "1" means "Pr el ude. from nt eger 1", which is what the Haskell Report specifies. So the -
XNol npl i ci t Prel ude flag causes the following pieces of built-in syntax to refer to whatever isin
scope, not the Prelude versions:

 An integer literal 368 means "from nteger (368::Integer)"”, rather than "Pre-
| ude. from nteger (368::1nteger)".

e Fractional literals are handed in just the same way, except that the trandation is f r onRat i onal
(3.68:: Rational).

» Theequality test in an overloaded numeric pattern uses whatever (==) isin scope.

» The subtraction operation, and the greater-than-or-equal test, in n+k patterns use whatever (-) and
(>=) areinscope.

* Negation(eg."- (f x)")means"negate (f x)",bothinnumeric patterns, and expressions.

* "Do0" notation is trandated using whatever functions (>>=) , (>>) ,and f ai | , arein scope (not the
Prelude versions). List comprehensions, mdo (Section 8.3.3, “The recursive do-notation), and par-
alel array comprehensions, are unaffected.

e Arrow notation (see Section 8.9, “Arrow notation ") uses whatever arr, (>>>), first, app,
(111) and | oop functions are in scope. But unlike the other constructs, the types of these func-
tions must match the Prelude types very closely. Details are in flux; if you want to use this, ask!

In al cases (apart from arrow notation), the static semantics should be that of the desugared form, even
if that is alittle unexpected. For emample, the static semantics of the literal 368 is exactly that of f r o-
m nteger (368::1nteger);it'sfineforfrom nteger tohaveany of the types:

166

GHC Language Features

8.3.6.

8.3.7.

from nteger :: Integer -> Integer

from nteger :: forall a. Foo a => Integer -> a
from nteger :: Numa => a -> |Integer

from nteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use - dcore-1int to
typecheck the desugared program. If Core Lint is happy you should be all right.

Postfix operators

GHC alows a small extension to the syntax of left operator sections, which allows you to define postfix
operators. The extension is this: the left section

(e !)

is equivalent (from the point of view of both type checking and execution) to the expression

((1) e)
(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section is equi-
valent to

(\y -> (') ey)

That is, the operator must be a function of two arguments. GHC allowsi it to take only one argument, and
that in turn alows you to write the function postfix.

Since this extension goes beyond Haskell 98, it should really be enabled by a flag; but in fact it is en-
abled al the time. (No Haskell 98 programs change their behaviour, of course.)

The extension does not extend to the |eft-hand side of function definitions; you must define such a func-
tion in prefix form.

Record field disambiguation

In record construction and record pattern matching it is entirely unambiguous which field is referred to,
even if there are two different data types in scope with acommon field name. For example:

nodul e M wher e

data S = MW.S { x :: Int, y :: Bool }
nodul e Foo where

i mport M

data T = MKT { x :: Int }

okl (MKS{ x = n}) = n+l - - Unanbi guous

ok2 n = KT { x = n+l } - - Unanbi guous

badl k = k { x =3} -- Anbiguous

bad2 k = x k -- Anbi guous

Even though there are two Xx's in scope, it is clear that the x in the pattern in the definition of ok1 can

167

GHC Language Features

8.4.

only mean the field x from type S. Similarly for the function ok2. However, in the record update in
bad1l and the record selection in bad2 it is not clear which of the two typesisintended.

Haskell 98 regards all four as ambiguous, but with the - f di sanbi guat e-record-fi el ds flag,
GHC will accept the former two. The rules are precisely the same as those for instance declarations in
Haskell 98, where the method names on the | eft-hand side of the method bindings in an instance declara-
tion refer unambiguously to the method of that class (provided they are in scope at al), even if there are
other variables in scope with the same name. This reduces the clutter of qualified names when you im-
port two records from different modules that use the same field name.

Extensions to data types and type syn-

onyms

8.4.1.

8.4.2.

Data types with no constructors

Withthe - f gl asgow ext s flag, GHC lets you declare a data type with no constructors. For example:

data S -- S %
data T a - T iro* -> %

Syntacticaly, the declaration lacks the "= constrs" part. The type can be parameterised over types of any
kind, but if the kind is not * then an explicit kind annotation must be used (see Section 8.7.3,
“Explicitly-kinded quantification”).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when defining
"phantom types".

Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written infix, very
much like expressions. More specifically:

» A type constructor or class can be an operator, beginning with a colon; e.g. : *: . The lexica syntax
isthe same as that for data constructors.

» Datatype and type-synonym declarations can be written infix, parenthesised if you want further ar-
guments. E.g.

data a :*: b =Foo ab
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) X
type (a :++: b) y

Baz a b x
Either (a,b) y

» Types, and class constraints, can be written infix. For example

Int :*: Bool
(a:=: b)) =>a->b

-+ X

168

GHC Language Features

» A type variable can be an (unqualified) operator e.g. +. The lexical syntax is the same as that for
variable operators, excluding "(.)", "(")", and "(*)". In abinding position, the operator must be paren-
thesised. For example:

type T (+) =1Int + Int
f :: T Either
f = Left 3
[iftA2 :: Arrow (~>)
= (a->b->¢) ->(e ~>a) ->(e ~>b) -> (e ~>¢)
liftA2 = ...

» Back-quotes work as for expressions, both for type constructors and type variables; e.g. | nt
"Either” Bool,orlnt “a Bool.Similarly, parentheses work the same; e.g. (: *:) Int
Bool .

» Fixities may be declared for type constructors, or classes, just as for data constructors. However, one

cannot distinguish between the two in a fixity declaration; a fixity declaration sets the fixity for a
data constructor and the corresponding type constructor. For example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for : *: . I nt ~a’
Bool .

* Functionarrow isi nf i xr with fixity 0. (This might change; I'm not sure what it should be.)

8.4.3. Liberalised type synonyms

Type synonyms are like macros at the type level, and GHC does validity checking on types only after
expanding type synonyms. That means that GHC can be very much more liberal about type synonyms
than Haskell 98:

* Youcanwriteaf oral | (including overloading) in atype synonym, thus:

type Discard a = forall b. Showb =>a ->b -> (a, String)

f :: Discard a
f xy =(x, showy)

g :: Discard Int -> (Int,String) -- Arank-2 type
gf =f 3 True
* You can write an unboxed tuplein a type synonym:
type Pr = (# Int, Int #)
h:: Int ->Pr
h x = (# x, x #)

* You can apply atype synonym to aforal type:

169

GHC Language Features

8.4.4.

type Foo a = a -> a -> Bool
f :: Foo (forall b. b->b)

After expanding the synonym, f hasthe legal (in GHC) type:
f :: (forall b. b->b) -> (forall b. b->b) -> Bool
* You can apply atype synonym to a partially applied type synonym:
type CGeneric i o = forall x. i x -> 0 X
type Id x = x

foo :: Generic Id []

After expanding the synonym, f oo hasthelegal (in GHC) type:

foo :: forall x. x -> [X]

GHC currently does kind checking before expanding synonyms (though even that could be changed.)
After expanding type synonyms, GHC does validity checking on types, looking for the following mal-
formedness which isn't detected simply by kind checking:

» Type constructor applied to atype involving for-als.

» Unboxed tuple on left of an arrow.

e Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = (# Int, Int #)

h:: Pr ->1Int
h x=...

because GHC does not alow unboxed tuples on the left of afunction arrow.

Existentially quantified data constructors

The idea of using existential quantification in data type declarations was suggested by Perry, and imple-
mented in Hope+ (Nigel Perry, The Implementation of Practical Functional Programming Languages,
PhD Thesis, University of London, 1991). It was later formalised by Laufer and Odersky (Polymorphic
type inference and abstract data types, TOPLAS, 16(5), pp1411-1430, 1994). It's been in Lennart Au-
gustsson's hbc Haskell compiler for severa years, and proved very useful. Here's the idea. Consider the
declaration:

data Foo = forall a. MFoo a (a -> Bool)

170

GHC Language Features

| Nil

The datatype Foo has two constructors with types:

McFoo :: forall a. a -> (a -> Bool) -> Foo
Ni | . Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself, which is
plain Foo. For example, the following expression isfine:

[MkFoo 3 even, MFoo 'c¢' isUpper] :: [Foo]

Here, (MKFoo 3 even) packages an integer with afunction even that maps an integer to Bool ; and
MkFoo 'c¢' isUpper packages acharacter with a compatible function. These two things are each of
type Foo and can be putin alist.

What can we do with a value of type Foo?. In particular, what happens when we pattern-match on M-
Foo?

f (MkFoo val fn) = ???

Since all we know about val and f n isthat they are compatible, the only (useful) thing we can do with
themisto apply f ntoval to get aboolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogenous values together with a bunch of functions that ma-
nipulate them, and then treat that collection of packages in a uniform manner. You can express quite a
bit of object-oriented-like programming this way.

8.4.4.1. Why existential?

What has this to do with existential quantification? Simply that Mk Foo has the (nearly) isomorphic type

McFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given above,
thereby avoiding adding a new existential quantification construct.

8.4.4.2. Existentials and type classes

An easy extension isto allow arbitrary contexts before the constructor. For example:

171

GHC Language Features

data Baz = forall a. EqQq a => Bazl a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you'd expect:

Bazl :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Showb == b -> (b -> b) -> Baz

But when pattern matching on Baz 1 the matched values can be compared for equality, and when pattern
matching on Baz2 the first matched value can be converted to a string (as well as applying the function
toit). So thisprogramislegal:

f :: Baz -> String
f (Bazl pq) | p==q
ot herw se

"Yes"
n mll
show (fn v)

f (Baz2 v fn)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must store the
dictionaries for Eq and Show respectively, and extract it on pattern matching.

8.4.4.3. Record Constructors

GHC alows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter

{ _this .. self
, _inc :. self -> self
, _display :: self -> 10 ()
, tag iooa
}
Here t ag is a public field, with a well-typed selector functiontag :: Counter a -> a. The

sel f typeishidden from the outside; any attempt to apply _t hi s, i nc or _di spl ay as functions
will raise a compile-time error. In other words, GHC defines a record selector function only for fields
whose type does not mention the existentially-quantified variables. (This example used an underscore in
the fields for which record selectors will not be defined, but that is only programming style; GHC ig-
nores them.)

To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter
{ this =i x, _inc =i, _display =d, tag =1t }

display :: Counter a -> 10 ()
di spl ay NewCounter{ _this = x, _display =d} =d x

Now we can define counters with different underlying implementations:

172

GHC Language Features

counterA :: Counter String
counter A = NewCount er
{ this =0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counter B = NewCount er

{ this ="", inc = ("#:), _display = putStrLn, tag = "B" }
main = do

di splay (inc counterA) -- prints "1"

di splay (inc (inc counterB)) -- prints "##"

At the moment, record update syntax is only supported for Haskell 98 data types, so the following func-
tion does not work:

-- This is invalid; use explicit NewCounter instead for now
setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag =t }

8.4.4.4. Restrictions

There are severa restrictions on the ways in which existentially-quantified constructors can be use.

* When pattern matching, each pattern match introduces a new, distinct, type for each existentia type
variable. These types cannot be unified with any other type, nor can they escape from the scope of
the pattern match. For example, these fragments are incorrect:

f1 (MFoo a f) = a

Here, the type bound by MkFoo "escapes’, because a isthe result of f 1. One way to see why thisis
wrong isto ask what typef 1 has:

fl:: Foo -> a -- Weird!

What isthis"a" in the result type? Clearly we don't mean this:

f1:: forall a. Foo ->a -- Wong!

The original program isjust plain wrong. Here's another sort of error

f2 (Bazl a b) (Bazl p q) = a==q

It's ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types arising
from the two Baz 1 constructors.

* You can't pattern-match on an existentially quantified constructor in al et or wher e group of bind-
ings. So thisisillegal:
f3 x = a==b where { Bazl a b = x }

Instead, use acase expression:

173

GHC Language Features

f3 x = case x of Bazl a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in acase expres-
sion or in the patterns of afunction definition. The reason for this restriction isreally an implementa
tion one. Type-checking binding groups is aready a nightmare without existentials complicating the
picture. Also an existential pattern binding at the top level of a module doesn't make sense, because
it's not clear how to prevent the existentially-quantified type "escaping". So for now, there's a
simple-to-state restriction. We'll see how annoying it is.

* You can't use existential quantification for newt ype declarations. So thisisillegal:

newype T = forall a. Ord a => WKT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and a value of
typet . That contradicts the idea that newt ype should have no concrete representation. Y ou can get
just the same efficiency and effect by using dat a instead of newt ype. If there is no overloading
involved, then there is more of a case for allowing an existentially-quantified newt y pe, because the
dat a version does carry an implementation cost, but single-field existentially quantified construct-
ors aren't much use. So the simple restriction (no existential stuff on newt ype) stands, unless there
are convincing reasons to change it.

* You can't use deri vi ng to define instances of a data type with existentially quantified data con-
structors. Reason: in most cases it would not make sense. For example:;

data T = forall a. MKT [a] deriving(Eq)

To derive Eq in the standard way we would need to have equality between the single component of
two MKT constructors:

instance Eq T where
(MT a) == (KT b) = ?2?27?

But a and b have distinct types, and so can't be compared. It's just about possible to imagine ex-
amples in which the derived instance would make sense, but it seems altogether simpler simply to
prohibit such declarations. Define your own instances!

8.4.5. Declaring data types with explicit constructor sig-
natures

GHC dlows you to declare an algebraic data type by giving the type signatures of constructors expli-
citly. For example:

data Maybe a where
Not hing :: Maybe a
Just ;. a -> Maybe a

Theformiscaled a"GADT-style declaration" because Generalised Algebraic Data Types, described in
Section 8.4.6, “Generalised Algebraic Data Types (GADTS)”, can only be declared using this form.

Notice that GADT-style syntax generalises existential types (Section 8.4.4, “Existentially quantified data
constructors ™). For example, these two declarations are equivalent:

174

GHC Language Features

data Foo = forall a. MFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }

Any data type that can be declared in standard Haskell-98 syntax can also be declared using GADT-style
syntax. The choiceislargely stylistic, but GADT-style declarations differ in one important respect: they
treat class constraints on the data constructors differently. Specifically, if the constructor is given atype-
class context, that context is made available by pattern matching. For example:

data Set a where
MkSet :: EqQ a => [a] -> Set a

nmakeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)
insert :: a -> Set a -> Set a
insert a (MkSet as) | a elem as = MSet as
| otherwi se = MSet (a:as)

A use of MkSet asaconstructor (e.g. in the definition of makeSet) givesrisetoa(Eq a) constraint,
as you would expect. The new feature is that pattern-matching on MkSet (as in the definition of i n-
sert) makesavailablean (Eq a) context. In implementation terms, the MkSet constructor has a hid-
den field that storesthe (Eq a) dictionary that is passed to Mk Set ; so when pattern-matching that dic-
tionary becomes available for the right-hand side of the match. In the example, the equality dictionary is
used to satisfy the equality constraint generated by the call to el em so that the type of i nsert itself
has no Eq constraint.

For example, one possible application isto reify dictionaries:

data Numl nst a where

MKNum nst :: Numa => Nunlnst a
intlnst :: Nunlnst Int
intlnst = MKNum nst
plus :: Nunminst a ->a ->a->a

plus MKkNumnst p g =p + q
Here, avalue of type Num nst a isequivalent to an explicit (Num a) dictionary.

All this applies to constructors declared using the syntax of Section 8.4.4.2, “Existentials and type
classes’. For example, the Num nst data type above could equivaently be declared like this:

data Numl nst a
= Num a => MKNum nst (Num nst a)

Notice that, unlike the situation when declaring an existental, thereisnof or al | , because the Numcon-
strains the data type's univerally quantified type variable a. A constructor may have both universal and
existential type variables. for example, the following two declarations are equivalent:

data T1 a

= forall b. (Numa, Eq b) => MT1 a b
data T2 a where

MKT2 :: (Numa, Eq b) =>a ->b ->T2 a

All this behaviour contrasts with Haskell 98's peculiar treatment of contexts on a data type declaration

175

GHC Language Features

(Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set' a = MSet' [a]

gives MkSet ' the same type as MkSet above. But instead of making available an (Eq a) constraint,

pattern-matching on MkSet ' requires an (Eq a) constraint! GHC faithfully implements this beha-

viour, odd though it is. But for GADT-style declarations, GHC's behaviour is much more useful, as well

as much more intuitive.

Therest of this section gives further details about GADT-style data type declarations.

» The result type of each data constructor must begin with the type constructor being defined. If the
result type of al constructors hastheform T al ... an,whereal ... an aredistinct type

variables, then the data type is ordinary; otherwise is a generalised data type (Section 8.4.6,
“Generalised Algebraic Data Types (GADTS)").

» Thetype signature of each constructor isindependent, and is implicitly universally quantified as usu-

al. Different constructors may have different universally-quantified type variables and different type-
class constraints. For example, thisisfine:

data T a where
T1 :: Eg b=>Db ->Tb
T2 :: (Showec, Ixc) =>c¢c ->[c] ->Tc

e Unlike a Haskell-98-style data type declaration, the type variable(s) inthe "dat a Set a where”
header have no scope. Indeed, one can write akind signature instead:

data Set :: * -> * where ...

or even amixture of the two:

data Foo a :: (* -> *) -> * where ...
The type variables (if given) may be explicitly kinded, so we could also write the header for Foo
likethis:

data Foo a (b :: * -> *) where ...

* You can use strictness annotations, in the obvious places in the constructor type:

data Term a where

Lit o nt -> Term I nt
| f :: TermBool ->!(Terma) ->!(Terma) -> Terma
Pai r :: Terma -> Termb -> Term (a, b)

* Youcan use aderi vi ng clause on a GADT-style data type declaration. For example, these two
declarations are equivalent

data Maybel a where {
Not hingl :: Maybel a ;

176

GHC Language Features

Just 1 ;. a -> Maybel a
} deriving(Eq, Od)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eq, Od)

e You can use record syntax on a GADT-style data type declaration:

data Person where
Adult { name :: String, children :: [Person] } :: Person
Child { name :: String } :: Person

Asusual, for every constructor that has afield f , the type of field f must be the same (modulo apha
conversion).

At the moment, record updates are not yet possible with GADT-style declarations, so support is lim-
ited to record construction, selection and pattern matching. For example

aPerson = Adult { name = "Fred", children =[] }

short Name :: Person -> Bool
hasChildren (Adult { children = kids })
hasChildren (Child {})

not (null kids)
Fal se

e Asin the case of existentials declared using the Haskell-98-like record syntax (Section 8.4.4.3,
“Record Constructors”), record-selector functions are generated only for those fields that have well-
typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where

NewCounter { _this :: self
, _inc i self -> self
, _display :: self ->10 ()
, tag ioa
Counter a

As before, only one selector function is generated here, that for t ag. Nevertheless, you can still use
all the field names in pattern matching and record construction.

8.4.6. Generalised Algebraic Data Types (GADTS)

Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing constructors to
have richer return types. Here is an example:

data Term a where

Lit o Int -> Term Int

Succ o TermiInt -> Term Int

IsZero :: TermlInt -> Ter m Bool

| f :: TermBool -> Terma -> Terma -> Term a
Pai r :: Terma -> Termb -> Term (a, b)

Notice that the return type of the constructors is not aways Ter m a, as is the case with ordinary data
types. This generality allows usto write awell-typed eval function for these Ter ns:

177

GHC Language Features

eval :: Terma -> a

eval (Lit i) =

eval (Succ t =1 + eval t

eval (lsZero t) = eval t ==

eval (If b el e2) =if eval b then eval el else eval e2
eval (Pair el e2) = (eval el, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in the right
hand side of the equation

eval :: Terma -> a
eval (Lit i) =

the type a isrefined to | nt . That's the whole point! A precise specification of the type rules is beyond
what this user manual aspires to, but the design closely follows that described in the paper Simple uni-
fication-based type inference for GADTs [http://research.microsoft.com/%7Es monpj/papers/gadt/],
(ICFP 2006). The general principle is this: type refinement is only carried out based on user-supplied
type annotations. So if no type signature is supplied for eval , no type refinement happens, and lots of
obscure error messages will occur. However, the refinement is quite general. For example, if we had:

eval :: Terma -> a -> a
eval (Lit i) j = i+

the pattern match causes the type a to be refined to | nt (because of the type of the constructor Li t),
and that refinement also applies to the type of j , and the result type of the case expression. Hence the
additioni +j islegal.

These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is alonger
introduction on the wiki [http://www.haskell.org/haskellwiki/GADT], and Raf Hinze's Fun with
phantom types [http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf] also has a number of
examples. Note that papers may use different notation to that implemented in GHC.

The rest of this section outlines the extensions to GHC that support GADTSs. The extension is enabled
with - XGADTSs.

e A GADT can only be declared using GADT-style syntax (Section 8.4.5, “Declaring data types with
explicit constructor signatures’); the old Haskell-98 syntax for data declarations always declares an
ordinary data type. The result type of each constructor must begin with the type constructor being
defined, but for a GADT the arguments to the type constructor can be arbitrary monotypes. For ex-
ample, in the Ter mdata type above, the type of each constructor must end with Ter m ty, but the
t y may not be atype variable (e.g. the Li t constructor).

* Youcannot useader i vi ng clausefor aGADT; only for an ordinary data type.

e As mentioned in Section 8.4.5, “Declaring data types with explicit constructor signatures’, record
syntax is supported. For example:

data Term a where

Lit { val :: Int } i1 TermInt
Succ { num :: TermlInt } :: TermInt
Pred { num :: TermlInt } :: TermInt
IsZero { arg :: TermlInt } :: Term Bool
Pai r { argl :: Terma

, arg2 :: Termb

} Term (a, b)
| f { cnd :: Term Bool

178

http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://www.haskell.org/haskellwiki/GADT

GHC Language Features

u Term a
s :: Terma
} :: Terma

However, for GADTsthereisthe following additional constraint: every constructor that has afield f
must have the same result type (modulo alpha conversion) Hence, in the above example, we cannot
merge the numand ar g fields above into a single name. Although their field types are both Ter m
I nt, their selector functions actually have different types:

num:: TermlInt -> TermInt
arg :: TermBool -> TermInt

8.5. Extensions to the "deriving" mechanism

8.5.1.

8.5.2.

Inferred context for deriving clauses

The Haskell Report is vague about exactly when ader i vi ng clauseislegal. For example:

data TO f a = MKTO a deriving(Eq)
data T1 f a = MKT1 (f a) deriving(Eq)
data T2 f a = MT2 (f (f a)) deriving(Eq)

The natural generated Eq code would result in these instance declarations:

i nstance Eq a => Eq (TO f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is till fine, although less obviously. The third is not
Haskell 98, and risks losing termination of instances.

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this: each con-
straint in the inferred instance context must consist only of type variables, with no repetitions.

Thisruleis applied regardless of flags. If you want a more exotic context, you can write it yourself, us-
ing the standal one deriving mechanism.

Stand-alone deriving declarations

GHC now allows stand-alone der i vi ng declarations, enabled by - XSt andal oneDer i vi ng:

data Foo a = Bar a | Baz String
deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword der i v-
i ng, and (b) the absence of the wher e part. You must supply a context (in the example the context is
(Eq a)), exactly as you would in an ordinary instance declaration. (In contrast the context is inferred
inaderi vi ng clause attached to a data type declaration.) These der i vi ng i nst ance rules obey
the same rules concerning form and termination as ordinary instance declarations, controlled by the
same flags; see ?7?2?.

179

GHC Language Features

8.5.3.

8.5.4.

The stand-alone syntax is generalised for newtypes in exactly the same way that ordinary deri vi ng
clauses are generalised (Section 8.5.4, “ Generalised derived instances for newtypes'). For example:

newt ype Foo a = MKFoo (State Int a)
deriving instance MonadState Int Foo

GHC aways treats the last parameter of the instance (Foo in this example) as the type whose instance is
being derived.

Deriving clause for classes Typeabl e and Dat a

Haskell 98 allows the programmer to add "deri ving(Eq, Ord)" to adatatype declaration, to
generate a standard instance declaration for classes specified in the deri vi ng clause. In Haskell 98,
the only classes that may appear in the der i vi ng clause are the standard classes Eq, Or d, Enum | X,
Bounded, Read, and Show.

GHC extends this list with two more classes that may be automatically derived (provided the -
XDer i veDat aTypeabl e flag is specified): Typeabl e, and Dat a. These classes are defined in the
library modules Dat a. Typeabl e and Dat a. Gener i cs respectively, and the appropriate class must
be in scope before it can be mentioned intheder i vi ng clause.

An instance of Typeabl e can only be derived if the data type has seven or fewer type parameters, all
of kind *. The reason for this is that the Typeabl e class is derived using the scheme described in
Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
[http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps]. (Section 7.4 of the paper describes
the multiple Typeabl e classes that are used, and only Typeabl el up to Typeabl e7 are provided
in thelibrary.) In other cases, there is nothing to stop the programmer writing a Ty pabl eX class, whose
kind suits that of the data type constructor, and then writing the data type instance by hand.

Generalised derived instances for newtypes

When you define an abstract type using newt y pe, you may want the new type to inherit some instances
from its representation. In Haskell 98, you can inherit instances of Eq, Or d, Enumand Bounded by
deriving them, but for any other classes you have to write an explicit instance declaration. For example,
if you define

newt ype Dol lars = Dol lars Int
and you want to use arithmetic on Dol | ar s, you have to explicitly define an instance of Num

i nstance Num Dol | ars where
Dollars a + Dollars b = Dollars (a+b)

All the instance does is apply and remove the newt ype constructor. It is particularly galling that, since
the constructor doesn't appear at run-time, this instance declaration defines a dictionary which is wholly
equivalent to thel nt dictionary, only slower!

8.5.4.1. Generalising the deriving clause

GHC now permits such instances to be derived instead, using the flag -
XCGener al i zedNewt ypeDer i vi ng, so one can write

180

http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps

GHC Language Features

newt ype Dol lars = Dollars Int deriving (Eq, Show, Num
and the implementation uses the same Numdictionary for Dol | ar s as for | nt . Notionally, the com-
piler derives an instance declaration of the form

i nstance Num Int => Num Dol | ars
which just adds or removes the newt ype constructor according to the type.
We can also derive instances of constructor classes in asimilar way. For example, suppose we have im-
plemented state and failure monad transformers, such that

i nstance Monad m => Monad (State s m

i nstance Monad m => Monad (Failure m

In Haskell 98, we can define a parsing monad by

type Parser tok ma = State [tok] (Failure m a
which is automatically a monad thanks to the instance declarations above. With the extension, we can
make the parser type abstract, without needing to write an instance of class Mbnad, via
newt ype Parser tok ma = Parser (State [tok] (Failure m) a)
derivi ng Monad

In this case the derived instance declaration is of the form

i nstance Monad (State [tok] (Failure m) => Mnad (Parser tok n

Notice that, since Monad is a constructor class, the instance is a partial application of the new type, not
the entire left hand side. We can imagine that the type declaration is "eta-converted" to generate the con-
text of the instance declaration.

We can even derive instances of multi-parameter classes, provided the newtype is the last class paramet-
er. Inthis case, a “partial application” of the class appearsintheder i vi ng clause. For example, given
the class

class StateMonad s m| m-> s where ...
i nstance Monad m => StateMbnad s (State s n) where ...
then we can derive an instance of St at eMbnad for Par ser shy
newt ype Parser tok ma = Parser (State [tok] (Failure m) a)
deriving (Mnad, StatelMnad [tok])
The derived instance is obtained by completing the application of the class to the new type:

i nstance StateMonad [tok] (State [tok] (Failure n)) =>
St at eMonad [tok] (Parser tok m

As aresult of this extension, al derived instances in newtype declarations are treated uniformly (and im-
plemented just by reusing the dictionary for the representation type), except Show and Read, which
really behave differently for the newtype and its representation.

181

GHC Language Features

8.5.4.2. A more precise specification
Derived instance declarations are constructed as follows. Consider the declaration (after expansion of

any type synonyms)

newwype T vl...vn = T (t vk+1l...vn) deriving (cl...cm

where

« Theci arepartia applications of classes of theform C t1'...t]j
actly j +1. That is, Clacks exactly one type argument.

, Where the arity of Cis ex-

 Thekischosensothatci (T v1...vk) iswell-kinded.

e Thetypet isan arhitrary type.

* Thetypevariablesvk+1. .. vn donotoccurint, norintheci , and

* Noneof theci isRead, Show, Typeabl e, or Dat a. These classes should not "look through” the
type or its constructor. You can still derive these classes for a newtype, but it happens in the usual

way, not viathis new mechanism.

Then, for each ci , the derived instance declaration is:

instance ci t => ci (T vl...vk)

As an example which does not work, consider

newt ype NonMonad ms = NonMonad (State s ms) deriving Mnad

Here we cannot derive the instance

i nstance Monad (State s m => Monad (NonMnad n

because the type variable s occursin St at e s m and so cannot be "eta-converted" away. It isagood
thing that thisder i vi ng clause is rejected, because NonMonad mis not, in fact, a monad --- for the
same reason. Try defining >>= with the correct type: you won't be able to.

Notice also that the order of class parameters becomes important, since we can only derive instances for
thelast one. If the St at eMonad class above were instead defined as
class StateMonad ms | m-> s where ...

then we would not have been able to derive an instance for the Par ser type above. We hypothesise
that multi-parameter classes usually have one "main" parameter for which deriving new instances is
most interesting.

Lastly, all of this applies only for classes other than Read, Show, Typeabl e, and Dat a, for which the

built-in derivation applies (section 4.3.3. of the Haskell Report). (For the standard classes Eq, Or d, | x,
and Bounded it isimmaterial whether the standard method is used or the one described here.)

8.6. Class and instances declarations

182

GHC Language Features

8.6.1. Class declarations

This section, and the next one, documents GHC's type-class extensions. There's lots of background in
the paper Type classes: exploring the design space
[http://research.microsoft.com/~simonpj/Paperstype-class-design-space/] (Simon Peyton Jones, Mark
Jones, Erik Meijer).

All the extensions are enabled by the - f gl asgow- ext s flag.
8.6.1.1. Multi-parameter type classes

Multi-parameter type classes are permitted. For example:

class Collection c a where
union :: ca->ca->c¢ a
...etc.

8.6.1.2. The superclasses of a class declaration

There are no restrictions on the context in a class declaration (which introduces superclasses), except
that the class hierarchy must be acyclic. So these class declarations are OK:

class Functor (mKk) => FiniteMap m k where

class (Monad m Monad (t n)) => Transformt m where
lift :: ma->(t m a

As in Haskell 98, The class hierarchy must be acyclic. However, the definition of "acyclic" involves
only the superclass relationships. For example, thisis OK:

class C a where {
op :: Db=>a->b->b
class Ca => D a where { ... }

Here, Cisasuperclass of D, but it's OK for a class operation op of Cto mention D. (It would not be OK
for Dto be asuperclass of C.)

8.6.1.3. Class method types
Haskell 98 prohibits class method types to mention constraints on the class type variable, thus:
class Seq s a where
fromList :: [a] -> s a
el em . EQq a = a->s a -> Bool

The type of el emisillegal in Haskell 98, because it contains the constraint Eq a, constrains only the
classtype variable (in this case a). GHC liftsthisrestriction (flag - XConst r ai nedCl assMet hods).

8.6.2. Functional dependencies

183

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/

GHC Language Features

Functional dependencies are implemented as described by Mark Jones in “Type Classes with Functional
Dependencies [http://citeseer.ist.psu.edu/jonesO0type.html]”, Mark P. Jones, In Proceedings of the 9th
European Symposium on Programming, ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag
LNCS 1782, .

Functional dependencies are introduced by avertical bar in the syntax of a class declaration; e.g.

class (Monad m => MonadState s m| m-> s where ...
class Foo a b c | ab ->c where ...

There should be more documentation, but there isn't (yet). Yell if you need it.

8.6.2.1. Rules for functional dependencies

In a class declaration, al of the class type variables must be reachable (in the sense mentioned in Sec-
tion 8.7.1, “Type signatures’) from the free variables of each method type. For example:

class Coll s a where
enpty :: s
insert :: s ->a->s
is not OK, because the type of enpt y doesn't mention a. Functional dependencies can make the type
variable reachable:

class Coll s a| s -> a where
enmpty :: s
insert :: s ->a->s

Alternatively Col | might be rewritten

class Coll s a where
enpty :: s a
s a

i nsert ->a->s a

which makes the connection between the type of a collection of a's (namely (s a)) and the element
type a. Occasionally this really doesn't work, in which case you can split the class like this:

class Coll E s where

enpty :: s
class CollE s => Coll s a where
insert :: s ->a ->s

8.6.2.2. Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from the Hugs
user manual, reproduced here (with minor changes) by kind permission of Mark Jones.

Consider the following class, intended as part of alibrary for collection types:
class Collects e ce where

enpty :: ce
insert :: e ->ce -> ce

184

http://citeseer.ist.psu.edu/jones00type.html
http://citeseer.ist.psu.edu/jones00type.html

GHC Language Features

menber :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of the container itself.
Within this framework, we might want to define instances of this class for lists or characteristic func-
tions (both of which can be used to represent collections of any equality type), bit sets (which can be
used to represent collections of characters), or hash tables (which can be used to represent any collection
whose elements have a hash function). Omitting standard implementation details, this would lead to the
following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
i nstance Col l ects Char BitSet where ...
i nstance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting implementations. Unfortu-
nately, there are some serious problems with the class declaration. First, the empty function has an am-
biguous type:

enpty :: Collects e ce => ce

By "ambiguous' we mean that there is a type variable e that appears on the left of the => symbol, but
not on the right. The problem with this is that, according to the theoretical foundations of Haskell over-
loading, we cannot guarantee a well-defined semantics for any term with an ambiguous type.

We can sidestep this specific problem by removing the empty member from the class declaration.
However, although the remaining members, insert and member, do not have ambiguous types, we till
run into problems when we try to use them. For example, consider the following two functions:

f xvy
g

for which GHC infers the following types:

insert x . insert vy
f True 'a'

f :: (Collects ac, Collects bc) =>a->b->c¢c ->c
g :: (Collects Bool c, Collects Char ¢c) => ¢ -> ¢

Notice that the type for f allows the two parameters x and y to be assigned different types, even though it
attempts to insert each of the two values, one after the other, into the same collection. If we're trying to
model collections that contain only one type of value, then thisis clearly an inaccurate type. Worse still,
the definition for g is accepted, without causing atype error. As aresult, the error in this code will not be
flagged at the point where it appears. Instead, it will show up only when we try to use g, which might
even be in adifferent module.

8.6.2.2.1. An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to use
something like the following version of the class declaration:

class Collects e ¢ where

enpty :: c e
insert :: e->ce->c e
nmenber :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor ¢ that is used to form the collection
type c e, and not over that collection type itself, represented by ce in the origina class declaration. This

185

GHC Language Features

avoids the immediate problems that we mentioned above: empty hastype Col | ects e ¢ => ¢ e,
which is not ambiguous.

The function f from the previous section has a more accurate type:

f :: (Collects ec) =>e ->e->ce->c e

The function g from the previous section is now rejected with atype error as we would hope because the
type of f does not allow the two arguments to have different types. This, then, is an example of a mul-
tiple parameter class that does actually work quite well in practice, without ambiguity problems. There
is, however, a catch. This version of the Collects class is nowhere near as general as the original class
seemed to be: only one of the four instances for Col | ect s given above can be used with this version
of Collects because only one of them---the instance for lists---has a collection type that can be written in
the form c e, for some type constructor ¢, and element type e.

8.6.2.2.2. Adding functional dependencies

To get amore useful version of the Collects class, Hugs provides a mechanism that allows programmers
to specify dependencies between the parameters of a multiple parameter class (For readers with an in-
terest in theoretical foundations and previous work: The use of dependency information can be seen both
as a generalization of the proposal for “parametric type classes' that was put forward by Chen, Hudak,
and Odersky, or as a special case of Mark Jones's later framework for "improvement” of qualified types.
The underlying ideas are aso discussed in a more theoretical and abstract setting in a manuscript
[implparam], where they are identified as one point in a general design space for systems of implicit
parameterization.). To start with an abstract example, consider a declaration such as:

class Ca b where ...

which tells us smply that C can be thought of as a binary relation on types (or type constructors, de-
pending on the kinds of a and b). Extra clauses can be included in the definition of classes to add in-
formation about dependencies between parameters, as in the following examples:

class Dab | a->b were ...
class Eab | a->b, b->awere...

The notation a - > b used here between the | and where symbols --- not to be confused with a function
type --- indicates that the a parameter uniquely determines the b parameter, and might be read as "a de-
termines b." Thus D is not just a relation, but actually a (partial) function. Similarly, from the two de-
pendencies that are included in the definition of E, we can see that E represents a (partial) one-one map-
ping between types.

More generally, dependencies taketheformx1 ... xn -> y1 ... ymwherex1, ..., xn, and y1,
..., yn are type variables with n>0 and m>=0, meaning that the y parameters are uniquely determined by
the x parameters. Spaces can be used as separators if more than one variable appears on any single side
of adependency, asint -> a b. Notethat a class may be annotated with multiple dependencies us-
ing commas as separators, as in the definition of E above. Some dependencies that we can write in this
notation are redundant, and will be rejected because they don't serve any useful purpose, and may in-
stead indicate an error in the program. Examples of dependencies likethisincludea -> a ,a -> a
a ,a -> ,etc. There can aso be some redundancy if multiple dependencies are given, asin a- >b, b-
>Cc ,a->c ,andinwhich some subset implies the remaining dependencies. Examples like this are not
treated as errors. Note that dependencies appear only in class declarations, and not in any other part of
the language. In particular, the syntax for instance declarations, class constraints, and types is com-
pletely unchanged.

By including dependencies in a class declaration, we provide a mechanism for the programmer to spe-
cify each multiple parameter class more precisely. The compiler, on the other hand, is responsible for
ensuring that the set of instances that are in scope at any given point in the program is consistent with

186

GHC Language Features

any declared dependencies. For example, the following pair of instance declarations cannot appear to-
gether in the same scope because they violate the dependency for D, even though either one on its own
would be acceptable:

i nstance D Bool Int where ...
i nstance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to be associated with
more than one choice for b, which contradicts the dependency specified in the definition of D. More
generaly, this means that, in any instance of the form:

instance Dt s where ...

for some particular typest and s, the only variables that can appear in s are the ones that appear in t, and
hence, if thetypet is known, then swill be uniquely determined.

The benefit of including dependency information is that it allows us to define more general multiple
parameter classes, without ambiguity problems, and with the benefit of more accurate types. To illus-
trate this, we return to the collection class example, and annotate the original definition of Col | ect s
with a simple dependency:

class Collects e ce | ce -> e where

enpty :: ce
insert :: e -> ce -> ce
nmenber :: e -> ce -> Bool

The dependency ce - > e here specifies that the type e of elementsis uniquely determined by the type
of the collection ce. Note that both parameters of Collects are of kind *; there are no constructor classes
here. Note too that al of the instances of Collects that we gave earlier can be used together with this new
definition.

What about the ambiguity problems that we encountered with the original definition? The empty func-
tion still has type Collects e ce => ce, but it is no longer necessary to regard that as an ambiguous type:
Although the variable e does not appear on the right of the => symbol, the dependency for class Collects
tellsus that it is uniquely determined by ce, which does appear on the right of the => symbol. Hence the
context in which empty is used can still give enough information to determine types for both ce and e,
without ambiguity. More generally, we need only regard a type as ambiguous if it contains a variable on
the left of the => that is not uniquely determined (either directly or indirectly) by the variables on the
right.

Dependencies also help to produce more accurate types for user defined functions, and hence to provide
earlier detection of errors, and less cluttered types for programmers to work with. Recall the previous
definition for afunction f:

f Xy =insert xy =insert x . insert vy

for which we originally obtained atype:

f :: (Collects ac, Collects bc) =>a->b->c ->c

187

GHC Language Features

Given the dependency information that we have for Collects, however, we can deduce that a and b must
be equal because they both appear as the second parameter in a Collects constraint with the same first
parameter c. Hence we can infer a shorter and more accurate type for f:

f :: (Collects ac) =>a->a->c ->¢cC
Inasimilar way, the earlier definition of g will now be flagged as atype error.
Although we have given only afew examples here, it should be clear that the addition of dependency in-

formation can help to make multiple parameter classes more useful in practice, avoiding ambiguity
problems, and allowing more general sets of instance declarations.

8.6.3. Instance declarations

8.6.3.1. Relaxed rules for instance declarations

An instance declaration has the form

instance (assertion, ..., assertion) => class type, ... type_where ...

The part before the "=>" is the context, while the part after the "=>" is the head of the instance declara-
tion.

In Haskell 98 the head of an instance declaration must be of theformC (T al ... an),whereCis
the class, T is atype constructor, and theal ... an aredistinct type variables. Furthermore, the as-
sertions in the context of the instance declaration must be of the form C a where a is a type variable
that occursin the head.

The - XFI exi bl el nst ances flag loosens these restrictions considerably. Firstly, multi-parameter
type classes are permitted. Secondly, the context and head of the instance declaration can each consist of
arbitrary (well-kinded) assertions(C t 1 ... tn) subjectonly tothefollowing rules:

1. The Paterson Conditions; for each assertion in the context
a. No type variable has more occurrences in the assertion than in the head

b. The assertion has fewer constructors and variables (taken together and counting repetitions)
than the head

2. The Coverage Condition. For each functional dependency, t vs ar - > LVs of the class, every
type variable in S(t Vs . ht) must appear in S(t vslef), where é is the subsﬁrfution mapping each
type variable in the classdeclaration to the correspondtl ng type in the instance declaration.

These restrictions ensure that context reduction terminates: each reduction step makes the problem smal-
ler by at least one constructor. Both the Paterson Conditions and the Coverage Condition are lifted if you
give the - fal | ow undeci dabl e-i nstances flag (Section 8.6.3.2, “Undecidable instances’).
You can find lots of background material about the reason for these restrictions in the paper Understand-
ing functional dependencies via Constraint Handling Rules
[http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/].

For example, these are OK:

instance C Int [a] -- Miltiple paraneters
instance Eq (S [a]) -- Structured type in head

-- Repeated type variable in head

188

http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/
http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/

GHC Language Features

nstance C4 a a => C4 [a] [a]
nstance Stateful (ST s) (MitVar s)

-- Head can consist of type variables only
nstance C a
nstance (Eq a, Show b) => C2 a b

-- Non-type variabl es in context
nst ance Show (s a) => Show (Sized s a)
nstance C2 Int a => C3 Bool [a]
nstance C2 Int a => C3 [a] b

But these are not:

-- Context assertion no snaller than head
instance C a => C a where ...

-- (C b b) has nore nore occurrences of b than the head
instance Cb b => Foo [b] where ...

The same restrictions apply to instances generated by der i vi ng clauses. Thus the following is accep-
ted:

data M nHeap h a = Ha (h a)
deriving (Show)

because the derived instance

i nstance (Show a, Show (h a)) => Show (M nHeap h a)
conforms to the above rules.
A useful idiom permitted by the above rules is as follows. If one allows overlapping instance declara-

tions then it's quite convenient to have a "default instance” declaration that applies if something more
specific does not:

i nstance C a where
op = ... -- Default
8.6.3.2. Undecidable instances

Sometimes even the rules of Section 8.6.3.1, “Relaxed rules for instance declarations’ are too onerous.
For example, sometimes you might want to use the following to get the effect of a"class synonym":
class (Cl a, C a, C3 a) => C a where { }
instance (Cl a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f:: Ca= ...
instead of

189

GHC Language Features

f:: (Cla Ca C3a =>...

The restrictions on functional dependencies (Section 8.6.2, “Functional dependencies”) are particularly
troublesome. It is tempting to introduce type variables in the context that do not appear in the head,
something that is excluded by the normal rules. For example:

cl ass HasConverter a b | a -> b where
convert :: a->b

data Foo a = MkFoo a

i nstance (HasConverter a b, Show b) => Show (Foo a) where
show (MkFoo val ue) = show (convert val ue)

This is dangerous territory, however. Here, for example, is a program that would make the typechecker
loop:

class D a

class Fab | a->b

instance F [a] [[a]]

instance (Dc, Fac) =>DJa] -- 'c' is not nentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul abc | ab->c where
(.*.) :: a->b->¢

instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromntegral x * vy
instance Mul a b c => Mil a[b] [c] where x .*. v = map (X.*.) Vv

The third instance declaration does not obey the coverage condition; and indeed the (somewhat strange)
definition:

f =\ bxy->if bthenx .*. [y] elsey
makes instance inference go into aloop, because it requires the constraint (Mul a [b] b).

Nevertheless, GHC allows you to experiment with more liberal rules. If you use the experimental flag -
XUndeci dabl el nst ances , both the Paterson Conditions and the Coverage Condition (described in
Section 8.6.3.1, “Relaxed rules for instance declarations’) are lifted. Termination is ensured by having a
fixed-depth recursion stack. If you exceed the stack depth you get a sort of backtrace, and the opportun-
ity to increase the stack depth with - f cont ext - st ack=N.

8.6.3.3. Overlapping instances

In general, GHC requires that that it be unambiguous which instance declaration should be used to re-
solve a typeclass constraint. This behaviour can be modified by two flags: -
XOver | appi ngl nst ances and - Xl ncoher ent | nst ances , as this section discusses. Both
these flags are dynamic flags, and can be set on a per-module basis, using an OPTI ONS_GHC pragma if
desired (Section 5.1.2, “Command line optionsin source files’).

When GHC tries to resolve, say, the constraint C | nt Bool , it tries to match every instance declara
tion against the constraint, by instantiating the head of the instance declaration. For example, consider
these declarations:

190

GHC Language Features

i nstance contextl => CInt a where ... -- (A
i nstance context2 => C a Bool where ... -- (B)
i nstance context3 => C Int [a] where ... -- (Q
i nstance context4 => ClInt [Int] where ... -- (D)

The instances (A) and (B) match the constraint C | nt Bool , but (C) and (D) do not. When matching,
GHC takes no account of the context of the instance declaration (cont ext 1 etc). GHC's default beha-
viour isthat exactly one instance must match the constraint it istrying to resolve. It isfine for there to be
apotential of overlap (by including both declarations (A) and (B), say); an error is only reported if a par-
ticular constraint matches more than one.

The - XOver | appi ngl nst ances flag instructs GHC to allow more than one instance to match,
provided there is a most specific one. For example, the constraint C I nt [1 nt] matches instances
(A), (C) and (D), but the last is more specific, and hence is chosen. If there is no most-specific match,
the program is rejected.

However, GHC is conservative about committing to an overlapping instance. For example:

f oo [b] ->[b]
f x=...

Suppose that from the RHS of f we get the constraint C |1 nt [b] . But GHC does not commit to in-
stance (C), because in a particular call of f, b might be instantiate to | nt , in which case instance (D)
would be more specific dill. So GHC rejects the program. (If you add the flag -
Xl ncoher ent | nst ances, GHC will instead pick (C), without complaining about the problem of
subsequent instantiations.)

Notice that we gave atype signature to f , so GHC had to check that f has the specified type. Suppose
instead we do not give a type signature, asking GHC to infer it instead. In this case, GHC will refrain
from simplifying the constraint C I nt [1 nt] (for the same reason as before) but, rather than reject-
ing the program, it will infer the type

f :: Clnt b =>1[b] ->1b]

That postpones the question of which instance to pick to the call site for f by which time more is known
about the typeb.

The willingness to be overlapped or incoherent is a property of the instance declaration itself, controlled
by the presence or otherwise of the - XOver | appi ngl nst ances and - XI ncoher ent | nst ances
flags when that module is being defined. Neither flag is required in a module that imports and uses the
instance declaration. Specifically, during the lookup process:

* Aninstance declaration is ignored during the lookup process if () a more specific match is found,
and (b) the instance declaration was compiled with - XOver | appi ngl nst ances. The flag set-
ting for the more-specific instance does not matter.

» Suppose an instance declaration does not match the constraint being looked up, but does unify with
it, so that it might match when the constraint is further instantiated. Usually GHC will regard this as
a reason for not committing to some other constraint. But if the instance declaration was compiled
with - Xl ncoher ent | nst ances, GHC will skip the "does-it-unify?* check for that declaration.

These rules make it possible for a library author to design a library that relies on overlapping instances
without the library client having to know.

If an instance declaration is compiled without - XOver | appi ngl nst ances, then that instance can
never be overlapped. This could perhaps be inconvenient. Perhaps the rule should instead say that the
overlapping instance declaration should be compiled in this way, rather than the overlapped one. Per-

191

GHC Language Features

haps overlap at a usage site should be permitted regardless of how the instance declarations are com-
piled, if the - XOver | appi ngl nst ances flag is used at the usage site. (Mind you, the exact usage
site can occasionally be hard to pin down.) We are interested to receive feedback on these points.

The - XI ncoher ent | nst ances flag implies the - XOver | appi ngl nst ances flag, but not vice
versa

8.6.3.4. Type synonyms in the instance head

8.6.4.

Unlike Haskell 98, instance heads may use type synonyms. (The instance "head" is the bit after the "=>"
in an instance decl.) As always, using a type synonym is just shorthand for writing the RHS of the type
synonym definition. For example:

type Point = (Int,Int)
i nstance C Poi nt where ...
i nstance C [Point] where ...

islegal. However, if you added

instance C (Int,Int) where ...

as well, then the compiler will complain about the overlapping (actually, identical) instance declarations.
As always, type synonyms must be fully applied. Y ou cannot, for example, write:

type P a = [[a]]
i nstance Monad P where ...

This design decision isindependent of all the others, and easily reversed, but it makes sense to me.

Overloaded string literals

GHC supports overloaded string literals. Normally a string literal has type St ri ng, but with over-
loaded string literals enabled (with - XOver | oadedSt ri ngs) a string literal has type (1 sStri ng
a) => a.

This means that the usual string syntax can be used, e.g., for packed strings and other variations of string
like types. String literals behave very much like integer literals, i.e., they can be used in both expressions

and patterns. If used in a pattern the literal with be replaced by an equality test, in the same way as an in-
teger literal is.

Theclass| sStri ng isdefined as:
class IsString a where
fronString :: String -> a
The only predefined instance is the obvious one to make strings work as usual:
instance IsString [Char] where
fronString cs = cs

Theclass | sStri ng is not in scope by default. If you want to mention it explicitly (for example, to
give an instance declaration for it), you can import it from module GHC. Ext s.

Haskell's defaulting mechanism is extended to cover string literals, when - XOver | oadedSt ri ngs is
specified. Specifically:

192

GHC Language Features

» Each typein adefault declaration must be an instance of Numor of | sSt ri ng.

e The standard defaulting rule (Haskell Report, Section 434
[http:/iwww.haskell.org/onlinereport/decls.html#sect4.3.4]) is extended thus: defaulting applies
when all the unresolved constraints involve standard classesor | sSt ri ng; and at least oneis anu-
meric classor | sSt ri ng.

A small example:

nodul e Mai n where
i mport GHC. Exts(IsString(..))
new ype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where
fromString = MyString
greet :: MyString -> MyString
greet "hello" = "world"
greet other = other
main = do

print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets transdated into an equal-
ity comparison.

8.7. Other type system extensions

8.7.1. Type signatures
8.7.1.1. The context of atype signature

Unlike Haskell 98, constraints in types do not have to be of the form (class type-variable) or (class
(type-variable type-variable ...)). Thus, these type signatures are perfectly OK

Eq [a] => ...
Od (Taf()) = ...

GHC imposes the following restrictions on the constraints in a type signature. Consider the type:

forall tvl..tvn (cl1, ...,cn) => type

(Here, we write the "foralls" explicitly, although the Haskell source language omits them; in Haskell 98,
all the free type variables of an explicit source-language type signature are universally quantified, except
for the class type variables in a class declaration. However, in GHC, you can give the forals if you
want. See Section 8.7.4, “ Arbitrary-rank polymorphism).

1. Each universally quantified type variable t vi must be reachable fromt ype. A type variable a is
"reachable” if it it appears in the same constraint as either atype variable freeinint ype, or anoth-

193

http://www.haskell.org/onlinereport/decls.html#sect4.3.4

GHC Language Features

er reachable type variable. A value with atype that does not obey this reachability restriction can-
not be used without introducing ambiguity; that is why the type is rejected. Here, for example, is an

illega type:

forall a. Eq a => Int

When a value with this type was used, the constraint Eq t v would be introduced wheret v is a
fresh type variable, and (in the dictionary-transl ation implementation) the value would be applied to
adictionary for Eq t v. The difficulty is that we can never know which instance of Eq to use be-
cause we never get any more information about t v.

Note that the reachability condition is weaker than saying that a is functionally dependent on atype
variable freein t ype (see Section 8.6.2, “Functiona dependencies ”). The reason for this is there
might be a "hidden" dependency, in a superclass perhaps. So "reachable” is a conservative approx-
imation to "functionally dependent"”. For example, consider:

class Cab | a->b where ...
class Ca b == D a b where ...
f :: forall ab. Dab=>a->a

This is fine, because in fact a does functionally determine b but that is not immediately apparent
fromf 'stype.

2. Everyconstraint ci must mention at least one of the universally quantified type variablest vi . For
example, thistypeis OK because C a b mentionsthe universally quantified type variable b:

forall a. Ca b => burble

The next typeisillegal because the constraint Eq b does not mention a:

forall a. EqQ b => burble

The reason for this restriction is milder than the other one. The excluded types are never useful or
necessary (because the offending context doesn't need to be witnessed at this point; it can be floated
out). Furthermore, floating them out increases sharing. Lastly, excluding them is a conservative
choice; it leaves a patch of territory freein case we need it later.

8.7.2. Implicit parameters

Implicit parameters are implemented as described in "Implicit parameters. dynamic scoping with static
types', JLewis, MB Shields, E Meijer, J Launchbury, 27th ACM Symposium on Principles of Program-
ming Languages (POPL'00), Boston, Jan 2000.

(Most of the following, still rather incomplete, documentation is due to Jeff Lewis.)
Implicit parameter support is enabled with the option - XI npl i ci t Par amns.

A variable is called dynamically bound when it is bound by the calling context of a function and static-
ally bound when bound by the callee's context. In Haskell, al variables are statically bound. Dynamic
binding of variablesis a notion that goes back to Lisp, but was later discarded in more modern incarna-
tions, such as Scheme. Dynamic binding can be very confusing in an untyped language, and unfortu-
nately, typed languages, in particular Hindley-Milner typed languages like Haskell, only support static
scoping of variables.

194

GHC Language Features

However, by a simple extension to the type class system of Haskell, we can support dynamic binding.
Basically, we express the use of a dynamically bound variable as a constraint on the type. These con-
straints lead to types of the form (?x::t') => t, which says "this function uses a dynamically-
bound variable ?x of typet ' ". For example, the following expresses the type of a sort function, impli-
citly parameterized by a comparison function named cnp.

sort :: (?cnp :: a->a->Bool) =>1]a] ->[a]
The dynamic binding constraints are just a new form of predicate in the type class system.
An implicit parameter occurs in an expression using the special form ?x, where x is any valid identifier
(e.g.ord ?x isavalid expression). Use of this construct also introduces a new dynamic-binding con-

straint in the type of the expression. For example, the following definition shows how we can define an
implicitly parameterized sort function in terms of an explicitly parameterized sor t By function:

sortBy :: (a->a ->Bool) ->[a] -> [a]
sort :: (?cnp :: a->a ->Bool) =>[a] -> [a]
sort = sortBy ?cnp

8.7.2.1. Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are automatically
propagated. Thus, when a function is used, its implicit parameters are inherited by the function that
called it. For example, our sor t function might be used to pick out the least value in alist:

| east 0 (?cmp :: a->a->Bool) =>[a] -> a
| east xs = head (sort xs)

Without lifting a finger, the ?cnp parameter is propagated to become a parameter of | east as well.
With explicit parameters, the default is that parameters must always be explicit propagated. With impli-
cit parameters, the default is to always propagate them.

An implicit-parameter type constraint differs from other type class constraints in the following way: All
uses of a particular implicit parameter must have the same type. This means that the type of (?x, ?X)
is(?x::a) => (a,a),andnot (?x::a, ?x::b) => (a, b),aswould be the case for type
class constraints.

You can't have an implicit parameter in the context of a class or instance declaration. For example, both
these declarations areillegal:

class (?x::Int) => C a where ...

instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a function.
But the “invocation" of instance declarations is done behind the scenes by the compiler, so it's hard to
figure out exactly where it is done. Easiest thing is to outlaw the offending types.

Implicit-parameter constraints do not cause ambiguity. For example, consider:
f (?x :: [a]) =>1Int -> Int
f n=n+length ?x

g :: (Read a, Show a) => String -> String

195

GHC Language Features

g s = show (read s)

Here, g has an ambiguous type, and is rejected, but f isfine. The binding for ?x at f 's call siteis quite
unambiguous, and fixesthe type a.

8.7.2.2. Implicit-parameter bindings

An implicit parameter is bound using the standard | et or wher e binding forms. For example, we
define the m n function by binding cnp.

mn:: [a] -> a
mn =let ?2cnp = (<=) in |east

A group of implicit-parameter bindings may occur anywhere anormal group of Haskell bindings can oc-
cur, except at top level. That is, they can occur in al et (including in a list comprehension, or do-
notation, or pattern guards), or awher e clause. Note the following points:

* An implicit-parameter binding group must be a collection of simple bindings to implicit-style vari-
ables (no function-style bindings, and no type signatures); these bindings are neither polymorphic or
recursive.

* You may not mix implicit-parameter bindings with ordinary bindings in a single | et expression;
use two nested | et s instead. (In the case of wher e you are stuck, since you can't nest wher e
clauses.)

e You may put multiple implicit-parameter bindings in a single binding group; but they are not treated
as a mutually recursive group (as ordinary | et hindings are). Instead they are treated as a non-
recursive group, simultaneously binding all the implicit parameter. The bindings are not nested, and
may be re-ordered without changing the meaning of the program. For example, consider:

ft=1let { ?2x =1t; 2?2y = 2x+(L::Int) } in ?x + ?y

The use of ?x inthe binding for ?y does not "see" the binding for ?x, so thetypeof f is

f:: (?x::Int) = 1Int -> Int

8.7.2.3. Implicit parameters and polymorphic recursion

Consider these two definitions:

lenl :: [a] -> Int

lenl xs = let ?2acc = 0 in len_accl xs

I en_accl [] = ?acc

len_accl (x:xs) = let ?acc = ?acc + (1l::Int) in len_accl xs
len2 :: [a] -> Int

len2 xs = let ?acc = 0 in len_acc2 xs

len_acc2 :: (?acc :: Int) =>[a] -> Int

196

GHC Language Features

I en_acc2 [] = ?acc _
len_acc2 (x:xs) = let ?acc = ?acc + (1l::Int) in len_acc2 xs

The only difference between the two groups is that in the second group | en_acc is given atype sigha
ture. In the former case, | en_acc1 ismonomorphic in its own right-hand side, so the implicit paramet-
er ?acc isnot passed to the recursive call. In the latter case, because | en_acc?2 has atype signature,
the recursive call is made to the polymorphic version, which takes ?acc as an implicit parameter. So we
get the following resultsin GHCi:

Prog> Il enl "hell 0"
0
Prog> |l en2 "hell 0"
5

Adding atype signature dramatically changes the result! Thisis a rather counter-intuitive phenomenon,
worth watching out for.

8.7.2.4. Implicit parameters and monomorphism

8.7.3.

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to implicit
parameters. For example, consider:

f:: Int ->1Int
f v=1let ?2x =0 i
let y = ?2x + v i
let ?x = 5 i

y

53535

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the type of y
issmply I nt,not (?x::1nt) => Int.Hence (f 9) returnsresult 9. If you add a type signature
fory, theny will get type (?x::1nt) => Int, sotheoccurrence of y in the body of the |l et will
seetheinner binding of ?x, so (f 9) will return 14.

Explicitly-kinded quantification
Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind explicitly
as (machine-checked) documentation, just as it is nice to give a type signature for a function. On some

occasions, it is essentia to do so. For example, in his paper "Restricted Data Types in Haskell" (Haskell
Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for the Unused constructor was to force the correct kind for the type variable cxt .

GHC now instead allows you to specify the kind of atype variable directly, wherever a type variable is
explicitly bound, with the flag - XKi ndSi gnat ur es.

This flag enables kind signatures in the following places:

» dat a declarations:

data Set (cxt :: * -> *) a = Set [a]

197

GHC Language Features

8.7.4.

* type declarations:

type T (f :: * ->*) =f Int

* cl ass declarations;

class (Eq a) => C (f :: * -> *) a where ...

» forall 'sintypesignatures:

f :: forall (cxt :: * -> *). Set cxt Int

The parentheses are required. Some of the spaces are required too, to separate the lexemes. If you write
(f::*->*) youwill get aparseerror, because": : *- >*" isasingle lexemein Haskell.

As part of the same extension, you can put kind annotations in types as well. Thus:

f o (Int :: *) ->1Int

g:: forall a. a -> (a :: *)
The syntax is

atype ::= "'(' ctype '::" kind ")

The parentheses are required.

Arbitrary-rank polymorphism

Haskell type signatures are implicitly quantified. The new keyword f or al | allows us to say exactly
what this means. For example:

g:: b->b

means this:

g :: forall b. (b -> D)
The two are treated identically.

However, GHC's type system supports arbitrary-rank explicit universal quantification in types. For ex-
ample, al the following types are legal:

f1:: forall ab. a->b->a

gl :: forall ab. (Oda, EQ b) =>a ->b ->a

f2 :: (forall a. a->a) -> Int -> Int

g2 :: (forall a. EQ a =>[a] -> a -> Bool) ->1Int -> Int

198

GHC Language Features

f3:: ((forall a. a->a) -> Int) -> Bool -> Bool
f4 :: Int -> (forall a. a -> a)

Here, f 1 and g1 are rank-1 types, and can be written in standard Haskell (e.g.f1 :: a->b->a). The
foral | makesexplicit the universal quantification that isimplicitly added by Haskell.

The functions f 2 and g2 have rank-2 types; the f or al | is on the left of a function arrow. As g2
shows, the polymorphic type on the left of the function arrow can be overloaded.

Thefunction f 3 has arank-3 type; it has rank-2 types on the left of afunction arrow.

GHC has three flags to control higher-rank types:

e - XPol ynor phi cConponent s: data constructors (only) can have polymorphic argment types.

* - XRank2Types: any function (including data constructors) can have a rank-2 type.

* - XRankNTypes: any function (including data constructors) can have an arbitrary-rank type. That
is, you can nest f or al | sarbitrarily deep in function arrows. In particular, a forall-type (also called
a"type scheme"), including an operational type class context, islegal:

« Ontheleft or right (seef 4, for example) of afunction arrow

« Asthe argument of a constructor, or type of afield, in a data type declaration. For example, any
of thef 1, f 2, f 3, g1, g2 above would be valid field type signatures.

e Asthetype of animplicit parameter
* Inapattern type signature (see Section 8.7.6, “Lexically scoped type variables™)

Of coursef or al | becomes akeyword; you can't usef or al | asatype variable any more!

8.7.4.1. Examples

In adat a or newt ype declaration one can quantify the types of the constructor arguments. Here are
several examples:

data T a = T1 (forall b. b ->b ->Db) a
data MonadT m = MMonad { return :: forall a. a -> ma,
bi nd :: forall ab. ma->(a->mb) ->mb

}
newt ype Swizzle = MkSwi zzle (Od a => [a] -> [a])

The constructors have rank-2 types:

T1 :: forall a. (forall b. b->b->b) ->a->Ta

MkMonad :: forall m (forall a. a -> ma)
-> (forall ab. ma->(a->mb) -> mb)
-> MonadT m

MkSwi zzle :: (Oda=>[a] ->[a]) -> Swizzle

199

GHC Language Features

Notice that you don't need to use af or al | if there's an explicit context. For example in the first argu-
ment of the constructor MkSwi zzl e, animplicit "foral | a. " is prefixed to the argument type. The
implicit f or al | quantifies all type variables that are not already in scope, and are mentioned in the
type quantified over.

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write
this:
data T a = MKT (Either a b) (b -> b)

it'sjust asif you had written this:

data T a = WT (forall b. Either a b) (forall b. b ->h)

That is, since the type variable b isn't in scope, it'simplicitly universally quantified. (Arguably, it would
be better to require explicit quantification on constructor arguments where that is what is wanted. Feed-
back welcomed.)

You construct values of types T1, MonadT, Swi zzl e by applying the constructor to suitable val-
ues, just as usual. For example,

al :: T Int
al = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 McSwi zzl e sort
a3 McSwi zzl e reverse

a4 :: MonadT Maybe
a4 let r x = Just X
b mk = case m of
Just y -> k vy
Not hi ng -> Not hi ng

in
McMonad r b
nkTs :: (forall b. b ->b ->Db) ->a->[T a]
nkTs f xy =[T1 f x, Tl f y]
The type of the argument can, as usual, be more general than the type required, as (MkSwi zzl e re-

ver se) shows. (r ever se does not need the Or d constraint.)

When you use pattern matching, the bound variables may now have polymorphic types. For example:

f :: Ta->a->/(a, Char)
f (T wk) x = (wk x, w'c'" "d")
g:: (Oda, Odb) =>Swizzle ->[a] -> (a->Db) ->[b]
g (MSwi zzle s) xs f =s (map f (s xs))
h MonadT m-> [ma] -> m|[a]
h m[] =return m[]
h m(x:xs) = bind mx $\y ->
bind m (h m xs) $\ys ->

return m(y:ys)

200

GHC Language Features

In the function h we use the record selectorsr et ur n and bi nd to extract the polymorphic bind and re-
turn functions from the MonadT data structure, rather than using pattern matching.

8.7.4.2. Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm proposed by
Odersky and Laufer ("Putting type annotations to work™, POPL'96) to get a decidable algorithm by re-
quiring some help from the programmer. We do not yet have a formal specification of "some help" but
theruleisthis:

For a lambda-bound or case-bound variable, x, either the programmer provides an explicit polymorphic
type for x, or GHC's type inference will assume that X'stype has no forallsin it.

What does it mean to "provide" an explicit type for x? Y ou can do that by giving a type signature for x
directly, using a pattern type signature (Section 8.7.6, “Lexically scoped type variables”), thus:
\' f :: (forall a. a->a) -> (f True, f 'c')
Alternatively, you can give a type signature to the enclosing context, which GHC can "push down" to
find the type for the variable:
(\ f ->(f True, f 'c")) :: (forall a. a->a) -> (Bool, Char)
Here the type signature on the expression can be pushed inwards to give atype signature for f. Similarly,
and more commonly, one can give atype signature for the function itself:
h :: (forall a. a->a) -> (Bool, Char)
hf = (f True, f 'c")
You don't need to give atype signature if the lambda bound variable is a constructor argument. Here is
an example we saw earlier:
f :: Ta->a->/(a, Char)
f (T wk) x = (wk x, w'c' 'd")

Here we do not need to give a type signature to w, because it is an argument of constructor T1 and that
tellsGHC all it needsto know.

8.7.4.3. Implicit quantification

GHC performs implicit quantification as follows. At the top level (only) of user-written types, if and only
if there is no explicit f oral I , GHC finds all the type variables mentioned in the type that are not
already in scope, and universally quantifies them. For example, the following pairs are equivalent:

f:: a->a
f :: forall a. a -> a
g (x::a) =let
h:: a->b->b
hxy=y
in ...
g (x::a) = let

h:: forall b. a->b->Db

201

GHC Language Features

8.7.5.

8.7.6.

hxy=y
in ...

Notice that GHC does not find the innermost possible quantification point. For example:

f :: (a->a) ->1Int
VEANS

f :: forall a. (a ->a) -> Int
NOT

f :: (forall a. a ->a) -> Int

g:: (Gda=>a->a) ->Int
-- MEANS the illegal type
g :: forall a. (Oda=>a->a) ->Int

NOT
g :: (forall a. Od a=>a->a) ->Int

The latter produces an illegal type, which you might think is silly, but at least the rule is simple. If you
want the latter type, you can write your for-alls explicitly. Indeed, doing so is strongly advised for rank-
2 types.

Impredicative polymorphism

GHC supports impredicative polymorphism. This means that you can call a polymorphic function at a
polymorphic type, and parameterise data structures over polymorphic types. For example:

f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing

Notice here that the Maybe type is parameterised by the polymorphic type (forall a. [a] ->
[a]).
The technical details of this extension are described in the paper Boxy types: type inference for higher-

rank types and impredicativity [http://research.microsoft.com/%7Esimonpj/papers/boxy/], which ap-
peared at |CFP 2006.

Lexically scoped type variables

GHC supports lexically scoped type variables, without which some type signatures are simply im-
possible to write. For example:

f :: forall a. [a] -> [a]
f Xs = ys ++ ys
wher e
ys :: [4]

yS = reverse xs

The type signature for f brings the type variable a into scope; it scopes over the entire definition of f . In
particular, it isin scope at the type signature for ys. In Haskell 98 it is not possible to declare a type for
ys; amajor benefit of scoped type variablesisthat it becomes possible to do so.

L exically-scoped type variables are enabled by - f gl asgow- ext s.

Note: GHC 6.6 contains substantial changes to the way that scoped type variables work, compared to

202

http://research.microsoft.com/%7Esimonpj/papers/boxy/
http://research.microsoft.com/%7Esimonpj/papers/boxy/

GHC Language Features

earlier releases. Read this section carefully!

8.7.6.1. Overview

The design follows the following principles

» A scoped type variable stands for a type variable, and not for atype. (This is a change from GHC's
earlier design.)

» Furthermore, distinct lexical type variables stand for distinct type variables. This means that every
programmer-written type signature (including one that contains free scoped type variables) denotes a
rigid type; that is, the typeis fully known to the type checker, and no inferenceis involved.

e Lexica type variables may be alpha-renamed freely, without changing the program.
A lexically scoped type variable can be bound by:

* A declaration type signature (Section 8.7.6.2, “ Declaration type signatures’)

» Anexpression type signature (Section 8.7.6.3, “Expression type signatures’)

* A pattern type signature (Section 8.7.6.4, “ Pattern type signatures’)

» Classand instance declarations (Section 8.7.6.5, “Class and instance declarations”)

In Haskell, a programmer-written type signature is implicitly quantified over its free type variables (Sec-
tion 4.1.2 [http://www.haskell.org/onlinereport/decls.ntml#sect4.1.2] of the Haskel Report). Lexically

scoped type variables affect this implicit quantification rules as follows: any type variable that is in
scopeis not universally quantified. For example, if type variable a isin scope, then

(e :: a->a) neans (e :: a->a)
(e :: b ->Dh) neans (e :: forall b. b->h)
(e :: a->bh) neans (e :: forall b. a->hb)

8.7.6.2. Declaration type signatures

A declaration type signature that has explicit quantification (using f or al |) brings into scope the expli-
citly-quantified type variables, in the definition of the named function(s). For example:

f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [x :: a]
The"foral | a"brings"a" into scope in the definition of "f ".
Thisonly happensif the quantification in f 'stype signature is explicit. For example:
g:: [a] ->[4]
g (x:xs) = xs ++ [x :: a]

This program will be rejected, because "a" does not scope over the definition of "f *, so "x: : a" means
"x::forall a. a"byHaskell'susual implicit quantification rules.

203

http://www.haskell.org/onlinereport/decls.html#sect4.1.2
http://www.haskell.org/onlinereport/decls.html#sect4.1.2

GHC Language Features

8.7.6.3. Expression type signatures

An expression type signature that has explicit quantification (using f or al |) brings into scope the ex-
plicitly-quantified type variables, in the annotated expression. For example:

f = runST ((op >>=\(x :: STRef s Int) -> g x) :: forall s. ST s Bool)

Here, thetypesignaturef oral | a. ST s Bool bringsthe type variable s into scope, in the annot-
ated expression(op >>= \(x :: STRef s Int) -> g x).

8.7.6.4. Pattern type signatures

A type signature may occur in any pattern; thisis a pattern type signature. For example:

- f and g assune that 'a' is already in scope
\(x::Int, y::a) -> X

cra) = X

X,¥) :: (Int,Bool)) = (y,X)

In the case where al the type variables in the pattern type signature are already in scope (i.e. bound by
the enclosing context), matters are simple: the signature simply constrains the type of the pattern in the
obvious way.

Unlike expression and declaration type signatures, pattern type signatures are not implictly generalised.
The pattern in a patterm binding may only mention type variables that are already in scope. For ex-

ample:
f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
wher e

(ys::[a], n) = (reverse xs, length xs) -- XK
zs::[a] = xs ++ ys -- XK

Just (v::b) = ... -- Not OK b is not in scope
Here, the pattern signaturesfor ys and zs are fine, but the one for v is not because b is not in scope.

However, in al patterns other than pattern bindings, a pattern type signature may mention a type vari-
able that is not in scope; in this case, the signature brings that type variable into scope. This is particu-
larly important for existential data constructors. For example:

data T = forall a. MT [a]

k :: T->T
k (MKT [t::a]) = MKT t3
wher e
t3::[a] =[t,t,t]

Here, the pattern type signature (t : : @) mentions a lexical type variable that is not already in scope.
Indeed, it cannot already be in scope, because it is bound by the pattern match. GHC's rule isthat in this
situation (and only then), a pattern type signature can mention a type variable that is not aready in
scope; the effect isto bring it into scope, standing for the existentially-bound type variable.

When a pattern type signature binds a type variable in this way, GHC insists that the type variable is
bound to arigid, or fully-known, type variable. This means that any user-written type signature always
stands for a completely known type.

204

GHC Language Features

If al this seems a little odd, we think so too. But we must have some way to bring such type variables
into scope, else we could not name existentially-bound type variables in subsequent type signatures.

Thisis (now) the only situation in which a pattern type signature is allowed to mention alexical variable
that is not already in scope. For example, both f and g would beillegal if a was not aready in scope.

8.7.6.5. Class and instance declarations

Thetype variablesin the head of acl ass ori nst ance declaration scope over the methods defined in
thewher e part. For example:

class C a where

op :: [a] -> a

op Xxs = let ys::[a]
. yS = reverse Xs
in
head ys

8.7.7. Generalised typing of mutually recursive bindings

The Haskell Report specifies that a group of bindings (at top level, or in al et or wher e) should be
sorted into strongly-connected components, and then type-checked in dependency order (Haskell Re-
port, Section 4.5.1 [http://www.haskell.org/onlinereport/decls.html#sect4.5.1]). As each group is type-
checked, any bhinders of the group that have an explicit type signature are put in the type environment
with the specified polymorphic type, and all others are monomorphic until the group is generalised
(Haskell Report, Section 4.5.2 [http://www.haskell.org/onlinereport/decl s.html#sect4.5.2]).

Following a suggestion of Mark Jones, in his paper Typing Haskell in Haskel
[http://citeseer.ist.psu.edu/424440.html], GHC implements a more genera scheme. If -
XRel axedPol yRec is specified: the dependency analysis ignores references to variables that have an
explicit type signature. As aresult of this refined dependency analysis, the dependency groups are smal-
ler, and more bindings will typecheck. For example, consider:

f :: EQ a => a -> Bool
f x =(x=x) || g True || g "Yes"

gy =(y <=y) || f True

Thisis rejected by Haskell 98, but under Jones's scheme the definition for g is typechecked first, separ-
ately from that for f , because the referenceto f in g'sright hand side is ignored by the dependency ana-
lysis. Then g'stype is generalised, to get

g:: Oda => a -> Bool
Now, the definition for f is typechecked, with thistype for g in the type environment.
The same refined dependency analysis also allows the type signatures of mutually-recursive functions to
have different contexts, something that is illegal in Haskell 98 (Section 4.5.2, last sentence). With -
XRel axedPol yRec GHC only insists that the type signatures of a refined group have identical type

signatures; in practice this means that only variables bound by the same pattern binding must have the
same context. For example, thisisfine:

f :: EQ a => a -> Bool

205

http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://citeseer.ist.psu.edu/424440.html

GHC Language Features

8.7.8.

f x = (x =x) || g True

g:: Oda =>a -> Bool
gy =(y <=y) || f True

Type families

GHC supports the definition of type families indexed by types. They may be seen as an extension of
Haskell 98's class-based overloading of values to types. When type families are declared in classes, they
are also known as associated types.

There are two forms of type families. data families and type synonym families. Currently, only the
former are fully implemented, while we are still working on the latter. As a result, the specification of
the language extension is also still to some degree in flux. Hence, a more detailed description of the lan-
guage extension and its use is currently available from the Haskell wiki page on type families
[http://www.haskell .org/haskel lwiki/GHC/Indexed_types]. The material will be moved to this user's
guide when it has stabilised.

Type families are enabled by the flag - XTypeFami | i es.

8.8. Template Haskell

8.8.1.

Template Haskell allows you to do compile-time meta-programming in Haskell. The background to the
main technica innovations is discussed in " Template Metaprogramming for Haskell
[http://research.microsoft.com/~simonpj/papers/meta-haskell/]" (Proc Haskell Workshop 2002).

There is a Wiki page about Template Haskell at http://www.haskell.org/th/
[http://www.haskell.org/haskel lwiki/Template Haskell], and that is the best place to ook for further de-
tals. You may aso consult the online Haskell library reference material
[http://Iwww.haskell.org/ghc/docs/latest/html/librariesindex.html] (search for the type ExpQ).
[Temporary: many changes to the origina design are described in "ht-
tp://research.microsoft.com/~simonpj/tmp/notes2.ps”
[http://research.microsoft.com/~simonpj/tmp/notes2.ps]. Not all of these changes arein GHC 6.6.]

Thefirst example from that paper is set out below as aworked example to help get you started.

The documentation here describes the realisation in GHC. (It's rather sketchy just now; Tim Sheard is
going to expand it.)

Syntax

Template Haskell has the following new syntactic constructions. You need to use the flag -
XTenpl at eHaskel | to switch these syntactic extensions on (- XTenpl at eHaskel | is no longer
implied by - f gl asgow ext s).

* A gplice is written $x, where x is an identifier, or $(. . .), wherethe "..." is an arbitrary expres-
sion. There must be no space between the "$" and the identifier or parenthesis. This use of "$" over-
rides its meaning as an infix operator, just as"M.x" overrides the meaning of "." as an infix operator.
If you want the infix operator, put spaces around it.

A splice can occur in place of
e an expression; the spliced expression must havetype Q Exp

« alist of top-level declarations; ; the spliced expression must have type Q [Dec]

206

http://www.haskell.org/haskellwiki/GHC/Indexed_types
http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://research.microsoft.com/~simonpj/tmp/notes2.ps
http://research.microsoft.com/~simonpj/tmp/notes2.ps

GHC Language Features

« [Planned, but not implemented yet.] atype; the spliced expression must havetype Q Typ.
(Note that the syntax for a declaration splice uses "$" not "spl i ce" asin the paper. Also the type
of the enclosed expression must be Q [Dec], not[Q Dec] asinthe paper.)

A expression quotation is written in Oxford brackets, thus:

e [] ... |],wherethe"..." isan expression; the quotation has type Expr .

e [d] ... |],wherethe ".." is alist of top-level declarations; the quotation has type Q
[Dec] .

« [t] ... |],wherethe"..." isatype; the quotation hastype Type.

Reification is written thus:

« reifyDecl T,whereT isatype constructor; thisexpression hastype Dec.
 reifyDecl C, whereCisaclass; hastypeDec.

« reifyType f,wheref isanidentifier; hastype Typ.

* Still to come: fixities

8.8.2. Using Template Haskell

8.8.3.

The data types and monadic constructor functions for Template Haskell are in the library Lan-
guage. Haskel | . THSynt ax.

You can only run afunction at compile time if it isimported from another module. That is, you can't
define a function in a module, and call it from within a splice in the same module. (It would make
sense to do so, but it's hard to implement.)

Furthermore, you can only run afunction at compile timeif it isimported from another module that
is not part of a mutually-recursive group of modules that includes the module currently being com-
piled. For example, when compiling module A, you can only run Template Haskell functions impor-
ted from B if B does not import A (directly or indirectly). The reason should be clear: to run B we
must compile and run A, but we are currently type-checking A.

Theflag - ddunp- spl i ces shows the expansion of all top-level splices as they happen.

If you are building GHC from source, you need at least a stage-2 bootstrap compiler to run Template
Haskell. A stage-1 compiler will reject the TH constructs. Reason: TH compiles and runs a program,
and then looks at the result. So it's important that the program it compiles produces results whose
representations are identical to those of the compiler itself.

Template Haskell worksin any mode (- - make, - -i nt er acti ve, or file-at-atime). There used to be
arestriction to the former two, but that restriction has been lifted.

A Template Haskell Worked Example

To help you get over the confidence barrier, try out this skeletal worked example. First cut and paste the
two modules below into "Main.hs" and "Printf.hs":

207

GHC Language Features

{- Main.hs -}
nodul e Mai n where

-- Inport our tenplate "pr"
import Printf (pr)

-- The splice operator $ takes the Haskell source code
-- generated at conmpile time by "pr" and splices it into
-- the argunment of "putStrLn".

main = putStrbn ($(pr "Hello"))

{- Printf.hs -}
nmodul e Printf where

-- Skeletal printf fromthe paper.
-- It needs to be in a separate nmodule to the one where
-- you intend to use it.

-- Inport sone Tenpl ate Haskell syntax
i mport Language. Haskel |l . TH

-- Describe a format string
data Format = D| S| L String

-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Tenpl ate Haskel|l programand not in building printf.
parse :: String -> [Fornat]

parse s =[L s]

-- Cenerate Haskell source code froma parsed representation
-- of the format string. This code will be spliced into

-- the nodule which calls "pr", at conpile tine.

gen :: [Format] -> ExpQ

gen [D] =[] \n ->shown |]
gen [S] =[] \s ->s []
gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- froman input fornmat string.

pr :: String -> ExpQ

pr s = gen (parse s)

Now run the compiler (here we are a Cygwin prompt on Windows):
$ ghc --make - XTenpl at eHaskel | main. hs -0 nmain. exe
Run "main.exe" and here is your output:

$./main
Hel | o

8.8.4. Using Template Haskell with Profiling

Template Haskell relies on GHC's built-in bytecode compiler and interpreter to run the splice expres-

208

GHC Language Features

sions. The bytecode interpreter runs the compiled expression on top of the same runtime on which GHC
itself is running; this means that the compiled code referred to by the interpreted expression must be
compatible with this runtime, and in particular this means that object code that is compiled for profiling
cannot be loaded and used by a splice expression, because profiled object code is only compatible with
the profiling version of the runtime.

This causes difficulties if you have a multi-module program containing Template Haskell code and you
need to compile it for profiling, because GHC cannot load the profiled object code and use it when ex-
ecuting the splices. Fortunately GHC provides a workaround. The basic idea is to compile the program
twice:

1. Compilethe program or library first the normal way, without - pr of .

2. Then compile it again with - pr of , and additionally use - osuf p_o0 to name the object files dif-
ferently (you can choose any suffix that isn't the normal object suffix here). GHC will automatic-
ally load the object files built in the first step when executing splice expressions. If you omit the -
osuf flag when building with - pr of and Template Haskell is used, GHC will emit an error mes-

sage.

8.9. Arrow notation

Arrows are a generalization of monads introduced by John Hughes. For more details, see

* “Generalising Monads to Arrows’, John Hughes, in Science of Computer Programming 37,
pp67-111, May 2000.

* “A New Notation for Arrows [http://www.soi.city.ac.uk/~ross/papers/notation.html]”, Ross Pater-
son, in ICFP, Sep 2001.

» “Arrows and Computation [http://www.soi.city.ac.uk/~ross/papers/fop.html]”, Ross Paterson, in The
Fun of Programming, Palgrave, 2003.

and the arrows web page at htt p: // www. haskel | . or g/ arrows/ . With the - XAr r ows flag,
GHC supports the arrow notation described in the second of these papers. What follows is a brief intro-
duction to the notation; it won't make much sense unless you've read Hughes's paper. This notation is
trandated to ordinary Haskell, using combinators from the Control.Arrow
[../libraries/base/Control-Arrow.html] module.

The extension adds a new kind of expression for defining arrows:

expll :: =

| 'p'rloc apat -> cmd

where pr oc is a new keyword. The variables of the pattern are bound in the body of the proc-
expression, which is anew sort of thing called a command. The syntax of commandsis as follows:

cnd = expig -< exp
| exp.” - << exp
| cnd

with cmd® up to cmd® defined usi ng infix operators as for expressions, and

cmd®® ;=\ apat ... apat -> cnd

209

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html
http://www.haskell.org/arrows/
../libraries/base/Control-Arrow.html

GHC Language Features

8.9.1.

let decls in cnd
if exp then cnd el se cnd
case exp of { calts }
do { cstmt ; ... cstnt ; cnd }
fcnd
fcmd ::= fcnd aexp
(cmd)
(] aexp cmd ... cmd |)
cstm ::=let decls
pat <- cnd
rec { estm ; ... cstnt [;] }
cd

wherecal t s arelikeal t s except that the bodies are commands instead of expressions.

Commands produce values, but (like monadic computations) may yield more than one value, or none,
and may do other things as well. For the most part, familiarity with monadic notation is a good guide to
using commands. However the values of expressions, even monadic ones, are determined by the values
of the variables they contain; this is not necessarily the case for commands.

A simple example of the new notation is the expression

proc x ->f -< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable x is a new
variable bound within the pr oc-expression. It refers to the input to the arrow. In the above example, - <
is not an identifier but an new reserved symbol used for building commands from an expression of ar-
row type and an expression to be fed as input to that arrow. (The weird look will make more sense later.)
It may be read as analogue of application for arrows. The above example is equivalent to the Haskell ex-
pression

arr (\ x -> x+1) >>> f

That would make no sense if the expression to the left of - < involves the bound variable x. More gener-
ally, the expression to the left of - < may not involve any local variable, i.e. avariable bound in the cur-
rent arrow abstraction. For such a situation thereisavariant - <<, asin

proc x ->f x -<< x+1

which isequivalent to

arr (\ x -> (f x, x+1)) >>> app

s0 in this case the arrow must belong to the Ar r owAppl y class. Such an arrow is equivalent to a mon-
ad, so if you're using this form you may find a monadic formulation more convenient.

do-notation for commands

Another form of command is aform of do-notation. For example, you can write

proc x -> do
y <- f -< x+1
g -< 2%y
et z = x+y
t <- h-<x*z

210

GHC Language Features

8.9.2.

returnA -< t+z

Y ou can read this much like ordinary do-notation, but with commands in place of monadic expressions.
The first line sends the value of x+1 as an input to the arrow f , and matches its output against y . In the
next line, the output is discarded. The arrow returnA is defined in the Control . Arrow
[../libraries/base/Control-Arrow.html] module asar r i d. The above example is treated as an abbrevi-

ation for
arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y,) -> (y, (X, y))) >>>
first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) ->let z = x+y in ((x, 2z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA

Note that variables not used later in the composition are projected out. After simplification using rewrite

rules (see Section 813, “Rewrite rules ") defined in the Control.Arrow
[../libraries/base/Control-Arrow.html] module, this reducesto
arr (\ x -> (x+1, x)) >>>

first f >>>

arr (A (y, x) -> (2%, (x, y))) >>>

first g >>>

arr (\ (., (x, y)) ->let z = x+y in (x*z, z)) >>>

first h >>>

arr (\ (t, z) -> t+z)

which iswhat you might have written by hand. With arrow notation, GHC keeps track of all those tuples
of variables for you.

Note that although the above trandation suggests that | et -bound variables like z must be monomorph-
ic, the actual trandlation produces Core, so polymorphic variables are allowed.

It's also possible to have mutually recursive bindings, using the new r ec keyword, as in the following
example:

count er ArrowCircuit a => a Bool Int
counter = proc reset -> do
rec output <- returnA -< if reset then 0 el se next
next <- delay 0 -< output+1

returnA -< out put

The trandation of such forms uses the | oop combinator, so the arrow concerned must belong to the
Arr owLoop class.

Conditional commands

In the previous example, we used a conditional expression to construct the input for an arrow. Some-
times we want to conditionally execute different commands, asin

proc (x,y) ->
if fxy
then g -< x+1
else h -< y+2

211

../libraries/base/Control-Arrow.html
../libraries/base/Control-Arrow.html

GHC Language Features

8.9.3.

which istrandated to

arr (\ (x,y) ->if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> f) [[| (arr (\y -> y+2) >>> g)

Sincethetrandation uses| | | , the arrow concerned must belong to the Ar r owChoi ce class.

There are d'so case commands, like

case i nput of
[]1 ->f -<()
[X] -> g -< x+1
x1:x2:xs -> do
y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys

The syntax isthe same asfor case expressions, except that the bodies of the alternatives are commands
rather than expressions. The trandlation issimilar to that of i f commands.

Defining your own control structures

As we're seen, arrow notation provides constructs, modelled on those for expressions, for sequencing,
value recursion and conditionals. But suitable combinators, which you can define in ordinary Haskell,
may also be used to build new commands out of existing ones. The basic idea is that a command defines
an arrow from environments to values. These environments assign values to the free local variables of
the command. Thus combinators that produce arrows from arrows may also be used to build commands
from commands. For example, the Ar r owChoi ce classincludes a combinator

ArrowChoice a => (<+>) :: aec->aec->aec

S0 we can use it to build commands:

expr' = proc x -> do
returnA -< x
<+> do
synmbol Plus -< ()
y <- term-< ()
expr' -< x +y
<+> do
synmbol M nus -< ()
y <- term-< ()
expr' -< x -y
(Thedo on thefirst lineis needed to prevent the first <+> ... from being interpreted as part of the ex-

pression on the previousline.) Thisis equivalent to

expr' = (proc x -> returnA -< x)
<+> (proc x -> do
synbol Plus -< ()
y <- term-< ()
expr' -< x +vy)
<+> (proc x -> do
symbol M nus -< ()
y <- term-< ()

212

GHC Language Features

8.9.4.

expr' -< x -vy)

It is essential that this operator be polymorphic in e (representing the environment input to the command
and thence to its subcommands) and satisfy the corresponding naturality property

arr k >>> (f <+>g) = (arr k >>> f) <+> (arr k >>> @)

at least for strict k. (This should be automatic if you're not using seq.) This ensures that environments
seen by the subcommands are environments of the whole command, and also allows the tranglation to
safely trim these environments. The operator must also not use any variable defined within the current
arrow abstraction.

We could define our own operator

until A :: ArrowChoice a =>a e () ->a e Bool -> a e ()
until A body cond = proc x ->
if cond x then returnA -< ()
el se do
body -< x
until A body cond -< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators; there is
also amore general syntax involving special brackets:

proc x -> do
y <- f -< x+1
(Juntil A (increnent -< x+y) (wWithin 0.5 -< x)|)

Primitive constructs

Some operators will need to pass additional inputs to their subcommands. For example, in an arrow type
supporting exceptions, the operator that attaches an exception handler will wish to pass the exception
that occurred to the handler. Such an operator might have atype

handleA :: ... =>aec ->a (e,Ex) c ->aec

where Ex is the type of exceptions handled. You could then use this with arrow notation by writing a
command

body “handleA” \ ex -> handler

so that if an exception is raised in the command body, the variable ex is bound to the value of the ex-
ception and the command handl er, which typicaly refers to ex, is entered. Though the syntax here
looks like a functional lambda, we are talking about commands, and something different is going on.
The input to the arrow represented by a command consists of values for the free local variables in the
command, plus a stack of anonymous values. In all the prior examples, this stack was empty. In the
second argument to handl eA, this stack consists of one value, the value of the exception. The com-
mand form of lambda merely gives this value a name.

More concretely, the values on the stack are paired to the right of the environment. So operators like
handl eA that pass extra inputs to their subcommands can be designed for use with the notation by
pairing the values with the environment in this way. More precisely, the type of each argument of the
operator (and its result) should have the form

213

GHC Language Features

8.9.5.

8.9.6.

a(...(e,t1), ... tn) t

where e is a polymorphic variable (representing the environment) and t i are the types of the values on
the stack, with t 1 being the “top”. The polymorphic variable e must not occur ina, ti ort. However
the arrows involved need not be the same. Here are some more examples of suitable operators:

bracketA :: ... =>a e b ->a (e,b) c ->a (e,c) d->aed
runReader :: ... =>aec ->a (e State) c
runState :: ... =>aec ->a (e, State) (c,State)

We can supply the extra input required by commands built with the last two by applying them to ordin-
ary expressions, asin

proc x -> do
s <- ...
(| runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using r unReader .
The command versions of lambda abstraction and application are analogous to the expression versions.
In particular, the beta and eta rules describe equivalences of commands. These three features (operators,

lambda abstraction and application) are the core of the notation; everything else can be built using them,
though the results would be somewhat clumsy. For example, we could simulate do-notation by defining

bind :: A°kcrowa =>a e b ->a (e,b) c ->aec
u “bind® f = returnA & & u >>> f

bind :: AArowa =>aeb->aec->aec
u "bind_" f =u “bind (arr fst >>> f)

We could simulatei f by defining

cond :: ArrowChoice a=>aeb->aeb->a(eBool) b
cond f g =arr (\ (e,b) ->if b then Left e else Right e) >>>1f ||| ¢

Differences with the paper

» Instead of a single form of arrow application (arrow tail) with two trandlations, the implementation
providestwo forms*“- <” (first-order) and “- <<” (higher-order).

» User-defined operators are flagged with banana brackets instead of a new f or mkeyword.

Portability

Although only GHC implements arrow notation directly, there is also a preprocessor (available from the
arrows web page [http://www.haskell.org/arrows/]) that translates arrow notation into Haskell 98 for use
with other Haskell systems. Y ou would still want to check arrow programs with GHC; tracing type er-
rors in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor must
observe some additional restrictions:

* Themodule must import Cont r ol . Ar r ow[../libraries/base/Control-Arrow.html].

214

http://www.haskell.org/arrows/
../libraries/base/Control-Arrow.html

GHC Language Features

» The preprocessor cannot cope with other Haskell extensions. These would have to go in separate
modules.

» Because the preprocessor targets Haskell (rather than Core), | et -bound variables are monomorphic.

8.10. Bang patterns

GHC supports an extension of pattern matching called bang patterns. Bang patterns are under considera-
tion for Haskell Prime. The Haskell prime feature description
[http://hackage.haskell .org/trac/haskell-prime/wiki/BangPetterns] contains more discussion and ex-
ampl es than the materia below.

Bang patterns are enabled by the flag - XBangPat t er ns.

8.10.1. Informal description of bang patterns

Themainideaisto add a single new production to the syntax of patterns:

pat ::= !pat
Matching an expression e against a pattern ! p is done by first evaluating e (to WHNF) and then match-
ing the result against p. Example:
fl1!Ix = True

This definition makes f 1 is strict in X, whereas without the bang it would be lazy. Bang patterns can be
nested of course:

f2 ('x, y) =1[x,y]

Here, f 2 isstrictin X but not iny. A bang only really has an effect if it precedes a variable or wild-card
pattern:

[X, Y]
[x,y]

~—<
~
1

Bang patternswork in case expressions too, of course:

g5 x =let y =f x in body
g6 x = case f x of { y -> body }
g7 x =case f x of { 'y -> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (f X), bindsy to the result,
and then evaluates body.

Bang patternswork in| et and wher e definitions too. For example:

let '[x,y] =einb

215

http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns

GHC Language Features

isastrict pattern: operationaly, it evaluates e, matches it against the pattern [x, y] , and then evaluates
b The"! " should not be regarded as part of the pattern; after all, in afunction argument ! [X, y] means
thesameas| x, y] . Rather, the"! " is part of the syntax of | et bindings.

8.10.2. Syntax and semantics

We add a single new production to the syntax of patterns:

pat ::= !pat

Thereis one problem with syntactic ambiguity. Consider:

f Ix =3
Isthis adefinition of the infix function (!) ", or of the "f " with a bang pattern? GHC resolves this am-
biguity in favour of the latter. If you want to define (!) with bang-patterns enabled, you have to do so
using prefix notation:
(") f x=3
The semantics of Haskell pattern matching is described in Section 3.17.2
[http://www.haskell.org/onlinereport/exps.html#sect3.17.2] of the Haskell Report. To this description
add one extraitem 10, saying:
» Matching the pattern ! pat against avaluev behaves asfollows:

e if v ishottom, the match diverges

» otherwise, pat ismatched against v

Similarly, in Figure 4 of Section 3.17.3 [http://www.haskell.org/onlinereport/exps.html#sect3.17.3], add

anew case (t):
case v of { !pat ->e;, _ ->¢e }
=v "seq case v of { pat ->e; _ ->¢e" }

That leaves let expressions, whose trandation is given in Section 3.12
[http://www.haskell.org/onlinereport/exps.html#sect3.12] of the Haskell Report. In the transation box,
first apply the following transformation: for each pattern pi that isof form! qi = ei , transform it to
(xi,'qgi) = ((),ei),andandreplace e0 by (xi “seq e0). Then, when none of the left-
hand-side patterns have a bang at the top, apply the rules in the existing box.

The effect of the let ruleis to force complete matching of the pattern i before evaluation of the body is
begun. The bang isretained in the trandlated form in case gi isavariable, thus:

let 'y =f xinb

The let-binding can be recursive. However, it is much more common for the let-binding to be non-
recursive, in which case the following law holds: (1 et !'p = rhs in body) isequivaent to
(case rhs of !p -> body)

A pattern with a bang at the outermost level is not allowed at the top level of amodule.

216

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12

GHC Language Features

8.11. Assertions

8.12

If you want to make use of assertions in your standard Haskell code, you could define a function like the
following:

assert :: Bool ->a -> a . .
assert False x = error "assertion failed!"
assert _ X = X

which works, but gives you back a less than useful error message -- an assertion failed, but which and
where?

One way out is to define an extended assert function which also takes a descriptive string to include
in the error message and perhaps combine this with the use of a pre-processor which inserts the source
location whereasser t was used.

Ghc offers a helping hand here, doing all of thisfor you. For every use of assert inthe user's source:

kel vi nToC :: Doubl e -> Doubl e
kel vinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source |ocation where the assertion was made,

assert pred val ==> assertError "Main. hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Con-
trol . Excepti on. assert, so you can still define and use your own versions of assert, should
you so wish. If not, import Cont r ol . Except i on to makeuseassert inyour code.

GHC ignores assertions when optimisation is turned on with the - O flag. That is, expressions of the
form assert pred e will be rewritten to e. You can aso disable assertions using the -
fignore-asserts option.

Assertion failures can be caught, see the documentation for the Cont r ol . Except i on library for the
details.

Pragmas

GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas don't
normally affect the meaning of the program, but they might affect the efficiency of the generated code.

Pragmas all taketheform {-# word ... #-} wherewor d indicates the type of pragma, and isfol-
lowed optionally by information specific to that type of pragma. Case isignored in wor d. The various
values for wor d that GHC understands are described in the following sections; any pragma encountered
with an unrecognised wor d is (silently) ignored.

Certain pragmas are file-header pragmas. A file-header pragma must precede the nodul e keyword in
the file. There can be as many file-header pragmas as you please, and they can be preceded or followed
by comments.

217

GHC Language Features

8.12.1. LANGUAGE pragma

The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the intention
that all Haskell compilers support the LANGUAGE pragma with the same syntax, although not all exten-
sions are supported by all compilers, of course. The LANGUAGE pragma should be used instead of OP-
TI ONS_GHC, if possible.

For example, to enable the FFI and preprocessing with CPP:

{-# LANGUACGE Forei gnFunctionl nterface, CPP #-}

LANGUACE is afile-header pragma (see Section 8.12, “Pragmas”).

Every language extension can also be turned into a command-line flag by prefixing it with "- X"; for ex-
ample - XFor ei gnFuncti onl nterface. (Smilarly, al "- X" flags can be written as LANGUAGE
pragmas.

A list of all supported language extensions can be obtained by invoking ghc -
- support ed- | anguages (see Section 5.4, “Modes of operation”).

Any extension from the Extension type defined in Language. Haskel | . Ext ensi on

[../libraries/Cabal /L anguage-Haskell-Extension.html] may be used. GHC will report an error if any of
the requested extensions are not supported.

8.12.2. OPTIONS GHC pragma

The OPTI ONS_GHC pragma is used to specify additiona options that are given to the compiler when
compiling this source file. See Section 5.1.2, “Command line options in source files” for details.

Previous versions of GHC accepted OPTI ONS rather than OPTI ONS_ GHC, but that is now deprecated.

OPTI ONS_CGHCis afile-header pragma (see Section 8.12, “Pragmas”).

8.12.3. INCLUDE pragma

The | NCLUDE pragma is for specifying the names of C header files that should be #i ncl ude'd into
the C source code generated by the compiler for the current module (if compiling via C). For example:

{-# INCLUDE "foo.h" #-}
{-# | NCLUDE <stdio. h> #-}

I NCLUDE is afile-header pragma (see Section 8.12, “Pragmas’).
An | NCLUDE pragma is the preferred aternative to the - #i ncl ude option (Section 5.10.5, “Options
affecting the C compiler (if applicable)”), because the | NCLUDE pragma is understood by other com-

pilers. Y et another aternative isto add the include file to each f or ei gn i nmport declaration in your
code, but we don't recommend using this approach with GHC.

8.12.4. DEPRECATED pragma

The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.
There are two forms.

* You can deprecate an entire module thus:

218

../libraries/Cabal/Language-Haskell-Extension.html

GHC Language Features

modul e W bbl e {-# DEPRECATED "Use Wbbbl e i nstead" #-} where

When you compile any module that import W bbl e, GHC will print the specified message.

* You can deprecate a function, class, type, or data constructor, with the following top-level declara-
tion:

{-# DEPRECATED f, C, T "Don't use these" #-}

When you compile any module that imports and uses any of the specified entities, GHC will print
the specified message.

Y ou can only deprecate entities declared at top level in the module being compiled, and you can only
use unqualified namesin the list of entities being deprecated. A capitalised name, such as T refersto
either the type constructor T or the data constructor T, or both if both are in scope. If both are in
scope, there is currently no way to deprecate one without the other (c.f. fixities Section 8.4.2, “Infix
type constructors, classes, and type variables’).

Any use of the deprecated item, or of anything from a deprecated module, will be flagged with an appro-
priate message. However, deprecations are not reported for (a) uses of a deprecated function within its
defining module, and (b) uses of a deprecated function in an export list. The latter reduces spurious com-
plaints within a library in which one module gathers together and re-exports the exports of severa oth-
ers.

Y ou can suppress the warnings with the flag - f no- war n- depr ecat i ons.

8.12.5. INLINE and NOINLINE pragmas

These pragmas control the inlining of function definitions.

8.12.5.1. INLINE pragma

GHC (with - O, as aways) tries to inline (or “unfold”) functions/values that are “small enough,” thus
avoiding the call overhead and possibly exposing other more-wonderful optimisations. Normally, if
GHC decides a function is “too expensive’ to inline, it will not do so, nor will it export that unfolding
for other modules to use.

The sledgehammer you can bring to bear isthe | NLI NE pragma, used thusly:

key function :: Int -> String -> (Bool, Double)

#i fdef _ GLASGOW HASKELL_
{-# INLI NE key_function #-}
#endi f

(You don't need to do the C pre-processor carry-on unless you're going to stick the code through
HBC—it doesn't like | NLI NE pragmas.)

The major effect of an | NLI NE pragma is to declare a function's “cost” to be very low. The normal un-
folding machinery will then be very keentoinlineit.

219

GHC Language Features

Syntactically, an | NLI NE pragmafor a function can be put anywhere its type signature could be put.

I NLI NE pragmas are a particularly good idea for the t hen/r et ur n (or bi nd/uni t) functionsin a
monad. For example, in GHC's own Uni queSuppl y monad code, we have:

#i fdef _ GLASGOW HASKELL_
{-# INLINE t henUs #-}

{-# INLINE returnUs #-}
#endi f

See also the NO NLI NE pragma (Section 8.12.5.2, “NOINLINE pragma”).

8.12.5.2. NOINLINE pragma

The NO NLI NE pragma does exactly what you'd expect: it stops the named function from being inlined
by the compiler. Y ou shouldn't ever need to do this, unless you're very cautious about code size.

NOTI NLI NE is a synonym for NOI NLI NE (NOI NLI NE is specified by Haskell 98 as the standard way
to disable inlining, so it should be used if you want your code to be portable).

8.12.5.3. Phase control

Sometimes you want to control exactly when in GHC's pipeline the INLINE pragma is switched on. In-
lining happens only during runs of the simplifier. Each run of the simplifier has a different phase
number; the phase number decreases towards zero. If you use - dver bose- cor e2cor e you'll seethe
seguence of phase numbers for successive runs of the simplifier. In an INLINE pragma you can option-
ally specify a phase number, thus:

"I NLI NE[k] f" means: do not inlinef until phase k, but from phase k onwards be very keen to
inlineit.

o "I NLI NE[~k] f" means: be very keento inlinef until phase k, but from phase k onwards do not
inlineit.

e "NO NLI NE[k] f" means. do not inlinef until phase k, but from phase k onwards be willing to
inlineit (asif there was no pragma).

"I NLI NE[~k] f" means: bewillingtoinlinef until phase k, but from phase k onwards do not in-
lineit.

The same information is summarised here:

-- Before phase 2 Phase 2 and | ater
{-# INLINE [2] f #} -- No Yes
{-# INLINE [~2] f #} -- Yes No
{-# NONLINE [2] f #} -- No Maybe
{-# NONLINE [~2] f #} -- Maybe No
{-# INLINE f #-} -- Yes Yes
{-# NO NLINE f #-} -- No No

By "Maybe" we mean that the usua heuristic inlining rules apply (if the function body is small, or it is
applied to interesting-looking arguments etc). Another way to understand the semanticsisthis:

» For both INLINE and NOINLINE, the phase number says when inlining is allowed at al.

220

GHC Language Features

* The INLINE pragma has the additional effect of making the function body look small, so that when
inlining isallowed it is very likely to happen.

The same phase-numbering control is available for RULES (Section 8.13, “Rewriterules ™).

8.12.6. LINE pragma

This pragmais similar to C's#l i ne pragma, and is mainly for use in automatically generated Haskell
code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you'd generated the current file from something called Foo. vhs and this line corresponds to line 42
inthe original. GHC will adjust its error messages to refer to the line/file named in the LI NE pragma.

8.12.7. RULES pragma

The RULES pragma lets you specify rewriterules. It is described in Section 8.13, “Rewriterules”.

8.12.8. SPECIALIZE pragma

(UK spelling aso accepted.) For key overloaded functions, you can create extra versions (NB: more
code space) specialised to particular types. Thus, if you have an overloaded function:

hamrer edLookup :: Od key => [(key, value)] -> key -> val ue
If it is heavily used on listswith W dget keys, you could speciadiseit asfollows:
{-# SPECI ALI ZE hanmer edLookup :: [(Wdget, value)] -> Wdget -> value #-}

A SPECI ALI ZE pragmafor afunction can be put anywhere its type signature could be put.
A SPECI ALI ZE has the effect of generating (a) a specialised version of the function and (b) a rewrite
rule (see Section 8.13, “Rewrite rules ") that rewrites a call to the un-specialised function into a call to
the specialised one.
Thetypein a SPECIALIZE pragma can be any type that is less polymorphic than the type of the original
function. In concrete terms, if the original functionisf then the pragma

{-# SPECI ALI ZE f :: <type> #-}
isvalid if and only if the definition

f _spec :: <type>

f spec = f

isvalid. Here are some examples (where we only give the type signature for the original function, not its
code):

221

GHC Language Features

.. Eqa=>a->b->b
-# SPECIALISEf :: Int -> b -> Db #-}

f

{

g:: (Ega Ixb) =a->b->bD

{-# SPECIALISE g :: (Eq a) =>a ->Int -> Int #-}

h:: Ega=>a->a->a
{-# SPECIALISE h :: (Eq a) =>[a] ->[a] -> [a] #-}

The last of these examples will generate a RULE with a somewhat-complex |eft-hand side (try it your-
self), so it might not fire very well. If you use thiskind of specialisation, let us know how well it works.

A SPECI ALI ZE pragma can optionally be followed with al NLI NE or NO NLI NE pragma, optionally
followed by a phase, as described in Section 8.12.5, “INLINE and NOINLINE pragmas’. The | NLI NE
pragma affects the specialised version of the function (only), and applies even if the function is recurs-
ive. The motivating exampleisthis:

-- A GADT for arrays with type-indexed representation
data Arr e where

Arrint :: !lnt -> ByteArray# -> Arr Int

ArrPair :: !lnt -> Arr el -> Arr e2 -> Arr (el, e2)

(':) :: Arr e ->1Int ->
{-# SPECI ALI SE | NLI NE (!
{-# SPECI ALI SE | NLI NE (!
(Arrint _ ba) e (1 #
(ArrPair _ al a2) !: i

e

2) o Arr Int ->Int -> Int #-}

2) o Ar (a, b) ->1Int -> (a, b) #}
i) I # (indexlntArray# ba i)

(al !': i, a2 ': 1)

Here, (! ;) isarecursive function that indexes arrays of type Arr e. Consider acal to (!:) at type
(I'nt, I nt). The second specialisation will fire, and the specialised function will be inlined. It has two
calsto(!:), both at type | nt . Both these calls fire the first specialisation, whose body is aso inlined.
Theresult is atype-based unrolling of the indexing function.

Warning: you can make GHC diverge by using SPECI ALI SE | NLI NE on an ordinarily-recursive
function.

Note: In earlier versions of GHC, it was possible to provide your own specialised function for a given
type:
{-# SPECI ALI ZE hanmer edLookup :: [(Int, value)] -> Int -> value = intLookup #-}

This feature has been removed, as it is now subsumed by the RULES pragma (see Section 8.13.4,
“Specialisation).

8.12.9. SPECIALIZE instance pragma

Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECI ALI ZE i nstance Eq (Foo [(Int, Bar)]) #-}
usual stuff

}

The pragma must occur inside the wher e part of the instance declaration.

Compatible with HBC, by the way, except perhaps in the placement of the pragma.

222

GHC Language Features

8.12.10. UNPACK pragma

8.13

The UNPACK indicates to the compiler that it should unpack the contents of a constructor field into the
constructor itself, removing alevel of indirection. For example:

data T = T {-# UNPACK #-} !Fl oat
{-# UNPACK #-} !Fl oat

will create a constructor T containing two unboxed floats. This may not always be an optimisation: if the
T constructor is scrutinised and the floats passed to a non-strict function for example, they will have to
be reboxed (this is done automatically by the compiler).

Unpacking constructor fields should only be used in conjunction with - O, in order to expose unfoldings
to the compiler so the reboxing can be removed as often as possible. For example:

f :: T -> Float
f (Tf1f2) =f1 +f2

The compiler will avoid reboxing f 1 and f 2 by inlining + on floats, but only when - Oison.

Any single-constructor datais eligible for unpacking; for example
data T = T {-# UNPACK #-} !(Int,Int)

will storethetwo I nt sdirectly inthe T constructor, by flattening the pair. Multi-level unpacking is aso
supported:

data T
data S

{-# UNPACK #-} !S
{-# UNPACK #-} !lInt {-# UNPACK #-} !Int

T
S
will store two unboxed | nt #s directly in the T constructor. The unpacker can see through newtypes,

too.

If afield cannot be unpacked, you will not get a warning, so it might be an idea to check the generated
code with - ddunp- si npl .

See dso the -funbox-strict-fields flag, which essentialy has the effect of adding
{-# UNPACK #-} toevery strict constructor field.

Rewrite rules

The programmer can specify rewrite rules as part of the source program (in a pragma). GHC applies
these rewrite rules wherever it can, provided (a) the - Oflag (Section 5.9, “Optimisation (code improve-
ment)”) ison, and (b) the-f rul es- of f flag (Section 5.9.2, - f * : platform-independent flags”) is not
specified, and (c) the - f gl asgow ext s (Section 8.1, “Language options”) flag is active.

Hereisan example:

{-# RULES
"map/ map" forall f g xs. map f (map g xs) = map (f.g) xs
#-}

223

GHC Language Features

8.13.1. Syntax

From a syntactic point of view:

e There may be zero or more rulesin a RULES pragma.

» Each rule has a name, enclosed in double quotes. The name itself has no significance at al. It isonly
used when reporting how many times the rule fired.

* A rule may optionally have a phase-control number (see Section 8.12.5.3, “Phase control”), immedi-
ately after the name of the rule. Thus:

{-# RULES
"map/ map" [2] forall f g xs. map f (map g xs) = map (f.g) xs
#-}

The"[2]" means that the rule is active in Phase 2 and subsequent phases. The inverse notation "[~2]"
is also accepted, meaning that the rule is active up to, but not including, Phase 2.

» Layout applies in a RULES pragma. Currently no new indentation level is set, so you must lay out
your rules starting in the same column as the enclosing definitions.

» Each variable mentioned in arule must either be in scope (e.g. map), or bound by thef oral | (eg.
f, g, xs). The variables bound by the f or al | are called the pattern variables. They are separated
by spaces, just likein atypef oral | .

» A pattern variable may optionally have a type signature. If the type of the pattern variable is poly-
morphic, it must have atype signature. For example, hereisthef ol dr/ bui | d rule:
"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b)

foldr k z (build g) =g k z
Since g has a polymorphic type, it must have atype signature.
» The left hand side of arule must consist of atop-level variable applied to arbitrary expressions. For

example, thisis not OK:

"wrongl" forall el e2. case True of { True -> el; False ->e2 } = el
"wr ong2" forall f. f True = True

In"wrongl", the LHSis not an application; in " wr ong2" , the LHS has a pattern variable in the
head.

» A rule does not need to be in the same module as (any of) the variables it mentions, though of course
they need to be in scope.

* Rules are automatically exported from amodule, just asinstance declarations are.

8.13.2. Semantics

From a semantic point of view:

224

GHC Language Features

Rules are only applied if you use the - Oflag.

Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a substitution
instance of the LHS of arule, it replaces the expression by the (appropriately-substituted) RHS. By
"a substitution instance" we mean that the LHS can be made equal to the expression by substituting
for the pattern variables.

The LHS and RHS of arule are typechecked, and must have the same type.

GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the same meaning.
That is undecidable in general, and infeasible in most interesting cases. The responsibility is entirely
the programmer's!

GHC makes no attempt to make sure that the rules are confluent or terminating. For example:

"l oop" forall x,y. f xy=fyx
This rule will cause the compiler to go into an infinite loop.
If more than one rule matches acall, GHC will choose one arbitrarily to apply.

GHC currently uses a very simple, syntactic, matching algorithm for matching a rule LHS with an
expression. It seeks a substitution which makes the LHS and expression syntactically equal modulo
apha conversion. The pattern (rule), but not the expression, is eta-expanded if necessary.
(Eta-expanding the expression can lead to laziness bugs.) But not beta conversion (that's called high-
er-order matching).

Matching is carried out on GHC's intermediate language, which includes type abstractions and ap-
plications. So a rule only matches if the types match too. See Section 8.13.4, “Specidisation " be-
low.

GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s
t

map f
map g

in
s (t xs)
Theexpressions (t xs) doesnot match therule" map/ map", but GHC will substitute for s and

t, giving an expression which does match. If s ort was (a) used more than once, and (b) large or a
redex, then it would not be substituted, and the rule would not fire.

In the earlier phases of compilation, GHC inlines nothing that appears on the LHS of a rule, because
once you have substituted for something you can't match against it (given the simple minded match-
ing). So if you write the rule

"map/ map" forall f,g. mp f . mp g = map (f.Q)

this won't match the expressionmap f (nmap g xs). It will only match something written with

explicit use of ".". Well, not quite. It will match the expression

wi bble f g xs
wherewi bbl e isdefined:

225

GHC Language Features

wibble f g=map f . map g

because wi bbl e will be inlined (it's small). Later on in compilation, GHC starts inlining even
things on the LHS of rules, but still leaves the rules enabled. Thisinlining policy is controlled by the
per-simplification-passflag - f i nl i ne- phasen.

* All rules are implicitly exported from the module, and are therefore in force in any module that im-
ports the module that defined the rule, directly or indirectly. (That is, if A imports B, which imports
C, then C'srules arein force when compiling A.) The situation is very similar to that for instance de-
clarations.

8.13.3. List fusion

The RULES mechanism is used to implement fusion (deforestation) of common list functions. If a
"good consumer” consumes an intermediate list constructed by a "good producer”, the intermediate list
should be eliminated entirely.

The following are good producers:

List comprehensions

» Enumerationsof | nt and Char (eg.['a" .."2"']).
e Explicitlists(e.g.[True, Fal se])

» Theconsconstructor (eg3: 4:[])

o 4+

. map

+ take,filter

* iterate,repeat

e Zip,zipWth

The following are good consumers:

» List comprehensions

e array (onitssecond argument)
e ++ (onitsfirst argument)

o foldr

« map

o take,filter

e concat

e unzi p,unzi p2,unzi p3,unzi p4

226

GHC Language Features

* Zip,zi pWth (but on one argument only; if both are good producers, zi p will fuse with one but
not the other)

e partition

* head

e and,or,any,all
* sequence_

* nmsuUM

* sortBy

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are not in-

cluded, please tell us.

If you want to write your own good consumers or producers, look at the Prelude definitions of the above
functions to see how to do so.

8.13.4. Specialisation

Rewrite rules can be used to get the same effect as a feature present in earlier versions of GHC. For ex-
ample, suppose that:

genericLookup :: Od a => Table a
I

b ->a ->b
i nt Lookup s Tabl e t

nt b->1Int ->05>

where i nt Lookup is an implementation of gener i cLookup that works very fast for keys of type
I nt. You might wish to tell GHC to usei nt Lookup instead of gener i cLookup whenever the lat-
ter was called withtypeTabl e Int b -> Int -> b.Itusedtobe possibletowrite

{-# SPECI ALl ZE genericLookup :: Table Int b -> Int -> b = intLookup #-}

Thisfeature isno longer in GHC, but rewrite rules let you do the same thing:

{-# RULES "genericLookup/Int" genericLookup = intLookup #-}

This dightly odd-looking rule instructs GHC to replace gener i cLookup by i nt Lookup whenever
the types match. What is more, this rule does not need to be in the same file as gener i cLookup, un-
like the SPECI ALI ZE pragmas which currently do (so that they have an original definition available to
specialise).

It is Your Responsibility to make sure that i nt Lookup really behaves as a specialised version of gen-
eri cLookup!!!

An example in which using RULES for specialisation will Win Big:

227

GHC Language Features

toDouble :: Real a => a -> Double
toDoubl e = fronRational . toRational

{-# RULES "toDouble/lInt" toDouble = i2d #-}
i2d (1# i) = D# (int2Double# i) -- uses dasgow primop directly

Thei 2d function is virtually one machine instruction; the default conversion—via an intermediate Ra-
t i onal —is obscenely expensive by comparison.

8.13.5. Controlling what's going on

e Use-ddunp-rul es to see what transformation rules GHC is using.

* Use-ddunp-si npl - st at s to see what rules are being fired. If you add - dppr - debug you get
amore detailed listing.

e Thedefinition of (say) bui | d in GHC/ Base. | hs lookslike this:

build :: forall a. (forall b. (a->b->Db) ->b->Db) ->[a]
{-# INLINE build #-}
build g =g (:) []

Noticethe | NLI NE! That prevents (:) from being inlined when compiling Pr el Base, so that an
importing module will “see” the (:) , and can match it on the LHS of arule. | NLI NE prevents any
inlining happening in the RHS of the | NLI NE thing. | regret the delicacy of this.

* Inlibraries/base/ GHC/ Base. | hs look at the rules for map to see how to write rules that
will do fusion and yet give an efficient program even if fusion doesn't happen. More rules in GHC/
Li st. | hs.

8.13.6. CORE pragma

The external core format supports “Note” annotations; the CORE pragma gives a way to specify what
these should be in your Haskell source code. Syntactically, core annotations are attached to expressions
and take a Haskell string literal as an argument. The following function definition shows an example:

f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #} x)

Semantically, thisis equivalent to:
g X = show x

However, when external for is generated (via - f ext - cor e), there will be Notes attached to the ex-
pressions show and x. The core function declaration for f is:

f :: %orall a . GHCzi Show. ZCTShow a - >
a -> GHCzi Base. ZMZN GHCzi Base. Char =
\ @a (zddShow: : GHCzi Show. ZCTShow a) (eta::a) ->
(%mote "foo"
%ase zddShow %of (tpl::GHCzi Show. ZCTShow a)
{ GHCzi Show. ZCDShow
(tpl1l::GHCzi Base.Int ->

228

GHC Language Features

8.14.

8.15.

a ->
GHCzi Base. ZMZN GHCzi Base. Char -> GHCzi Base. ZMZN GHCzi Base. Cha
r)
(tpl 2::a -> GHCzi Base. ZMZN GHCzi Base. Char)
(tpl3::GHCzi Base. ZMZN a ->
GHCzi Base. ZMZN GHCzi Base. Char -> GHCzi Base. ZMZN GHCzi Base. Cha
ry -»
tpl 2})
(% ote "bar"
eta);

Here, we can see that the function show (which has been expanded out to a case expression over the
Show dictionary) has a%not e attached to it, as does the expression et a (which used to be called x).

Special built-in functions

GHC has a few built-in functions with special behaviour. These are now described in the module
GHC. Pri m[../libraries/base/ GHC-Prim.html] in the library documentation.

Generic classes

The ideas behind this extension are described in detail in "Derivable type classes’, Ralf Hinze and Si-
mon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. An example will give the idea:

i mport Cenerics

class Bin a where

t oBi n roa -> [Int]

fromBin :: [Int] -> (a, [Int])

toBin {|] Unit |} Un|t =1

toBin {| a:+: b |} (Inl Xx) =0 : toBin x

toBin{|a:+:b|}(Inr y) =1: toBiny

toBin {| a:*: b |} (x :*: y) =toBin x ++ toBiny

fronBin {|] Unit |} bs = (Unit, bs)

fromBin {| a :+: b |} (0:bs) = (Inl x, bs') where (x,bs') = fronBin bs
fromBin {| a:+: b |} (1:bs) = (Inr vy, bs where (v, bs) = fronBin bs
fromBin {| a:*: b |} bs = (x :*: vy, bs'") where (x,bs") fromBi n bs

(y, bs') fromBi n bs'

This class declaration explains how t oBi n and f r onBi n work for arbitrary data types. They do so by
giving cases for unit, product, and sum, which are defined thusin the library module Generi cs:

data Unit = Unit
data a :+: b =1Inl a| Inr b
data a :*: b=a:*:. b

Now you can make a data type into an instance of Bin like this:

instance (Bin a, Bin b) => Bin (a,b)
instance Bin a => Bin [a]

That is, just leave off the "where" clause. Of course, you can put in the where clause and over-ride

229

../libraries/base/GHC-Prim.html

GHC Language Features

whichever methods you please.

8.15.1. Using generics

To use generics you need to

» Use the flags - f gl asgow ext s (to enable the extra syntax), - XGener i cs (to generate extra
per-data-type code), and - package | ang (to makethe Gener i cs library available.

» Import the module Gener i cs from thel ang package. Thisimport brings into scope the data types
Unit,:*:,and: +:.(Youdon'tneed thisimport if you don't mention these types explicitly; for ex-
ample, if you are simply giving instance declarations.)

8.15.2. Changes wrt the paper

Note that the type constructors: +: and: *: can be written infix (indeed, you can now use any operator
starting in a colon as an infix type constructor). Also note that the type constructors are not exactly asin
the paper (Unit instead of 1, etc). Finally, note that the syntax of the type patterns in the class declaration
uses"{| "and"| } " brackets, curly braces alone would ambiguous when they appear on right hand sides
(an extension we anticipate wanting).

8.15.3. Terminology and restrictions

Terminology. A "generic default method" in a class declaration is one that is defined using type patterns
as above. A "polymorphic default method" is a default method defined asin Haskell 98. A "generic class
declaration” is a class declaration with at |east one generic default method.

Restrictions:

e Alas, we do not yet implement the stuff about constructor names and field labels.
* A generic class can have only one parameter; you can't have a generic multi-parameter class.

» A default method must be defined entirely using type patterns, or entirely without. So thisisillegal:

cl ass Foo a where
op :: a->(a, Bool)
op {|] Unit |} Unit
op X

= (Unit, True)

= (x, Fal se)

However it is perfectly OK for some methods of a generic class to have generic default methods and
others to have polymorphic default methods.

» The type variable(s) in the type pattern for a generic method declaration scope over the right hand
side. So thisislegal (note the use of the type variable “p" in atype signature on the right hand side:

cl ass Foo a where
op :: a -> Bool
op {[] p:*: g} (x:*1y) =op (x:: p)

» Thetype patternsin a generic default method must take one of the forms:;

230

GHC Language Features

a:+:. b
a:*: b
Uni t

where "d" and "b" are type variables. Furthermore, al the type patterns for a single type constructor
(: *:, say) must beidentical; they must use the same type variables. So thisisillegal:

cl ass Foo a where
op :: a -> Bool
op {|] a:+ b |} (Inl x)
op {| p:+ g} (Inry)

The type patterns must be identical, even in equations for different methods of the class. So this too
isillegal:

True
Fal se

cl ass Foo a where

opl :: a -> Bool
opl {|] a:*: b |} (x :*: y) = True
op2 :: a -> Bool
op2 {| p :*: q |} (x :*: y) = Fal se

(The reason for this restriction is that we gather all the equations for a particular type constructor in-
to asingle generic instance declaration.)

A generic method declaration must give a case for each of the three type constructors.
The type for a generic method can be built only from:

* Function arrows

* Typevariables

e Tuples

* Arbitrary types not involving type variables
Here are some exampl e type signatures for generic methods:

opl :: a -> Bool
op2 :: Bool -> (a, Bool)
op3 :: [Int] ->a -> a

op4 :: [a] -> Bool
Here, opl, op2, op3 are OK, but op4 isrejected, because it has atype variable inside alist.
This restriction is an implementation restriction; we just haven't got around to implementing the ne-
cessary bidirectional maps over arbitrary type constructors. It would be relatively easy to add specif-
ic type constructors, such as Maybe and lit, to the ones that are allowed.

In an instance declaration for a generic class, the idea is that the compiler will fill in the methods for
you, based on the generic templates. However it can only do so if

« Theinstance typeissimple (atype constructor applied to type variables, asin Haskell 98).

* No constructor of the instance type has unboxed fields.
(Of course, these things can only arise if you are aready using GHC extensions.) However, you can

231

GHC Language Features

till give an instance declarations for types which break these rules, provided you give explicit code
to override any generic default methods.

The option - ddunp- der i v dumps incomprehensible stuff giving details of what the compiler does
with generic declarations.

8.15.4. Another example

Just to finish with, here's another example | rather like:

cl ass Tag a where
nCons :: a -> Int
nCons {| Unit |}
nCons {| a :*: b
nCons {| a :+: b

1
1
nCons (bot::a) + nCons (bot::Db)

| }
|}
t

-> |
nit |

~ ~ ~ ~ ~—
DY OYYY
Q@
A A A
DY Cw
TV
ocoToY“"S

1
1
t

n

ag X
Cons

(In
(

|
| X)
| nry)

(ST)

(bot::a) +tag y

8.16. Control over monomorphism

GHC supports two flags that control the way in which generalisation is carried out at let and where bind-
ings.

8.16.1. Switching off the dreaded Monomorphism Re-
striction

Haskell's monomorphism restriction (see Section 455
[http://www.haskell.org/onlinereport/decls.html#sect4.5.5] of the Haskell Report) can be completely
switched off by - XNoMononor phi snRestri cti on.

8.16.2. Monomorphic pattern bindings

As an experimental change, we are exploring the possibility of making pattern bindings monomorphic;
that is, not generalised at all. A pattern binding is a binding whose LHS has no function arguments, and
isnot asimple variable. For example:

f x =x -- Not a pattern binding
f =\x ->x -- Not a pattern binding
f o Int ->1Int =\x ->x -- Not a pattern binding
(g,h) = e -- A pattern binding
(f) = e -- A pattern binding
[x] = e -- A pattern binding

Experimentally, GHC now makes pattern bindings monomorphic by default. Use -
XNoMbnoPat Bi nds to recover the standard behaviour.

232

http://www.haskell.org/onlinereport/decls.html#sect4.5.5

GHC Language Features

8.17. Concurrent and Parallel Haskell

GHC implements some major extensions to Haskell to support concurrent and parallel programming.
Let usfirst establish terminology:

e Parallelism means running a Haskell program on multiple processors, with the goal of improving
performance. Ideally, this should be done invisibly, and with no semantic changes.

» Concurrency means implementing a program by using multiple 1/0O-performing threads. While a
concurrent Haskell program can run on a parallel machine, the primary goal of using concurrency is
not to gain performance, but rather because that is the simplest and most direct way to write the pro-
gram. Since the threads perform 1/O, the semantics of the program is necessarily non-deterministic.

GHC supports both concurrency and parallelism.

8.17.1. Concurrent Haskell

Concurrent Haskell is the name given to GHC's concurrency extension. It is enabled by default, so no

special flags are required. The Concurrent Haskell paper
[http://research.microsoft.com/copyright/accept.asp?path=/users/simonpj/papers/concurrent-haskell.ps.g
Z] is sill an excellent resource, as is Tackling the awkward squad

[http://research.microsoft.com/%7Esi monpj/papers/marktoberdorf/].
To the programmer, Concurrent Haskell introduces no new language constructs; rather, it appears

simply as alibrary, Control.Concurrent [../libraries/base/Control-Concurrent.html]. The functions expor-
ted by thislibrary include:

e Forking and killing threads.
* Sleeping.
e Synchronised mutable variables, called Mar s

e Support for bound threads, see the paper Extending the FFI with concurrency
[http://research.microsoft.com/%7Esimonpj/Papers/conc-ffi/index.htm].

8.17.2. Software Transactional Memory

GHC now supports a new way to coordinate the activities of Concurrent Haskell threads, called Soft-
ware Transactional Memory (STM). The ST™M papers
[http://research.microsoft.com/%7Esi monpj/papers/stm/index.htm] are an excellent introduction to what
STM is, and how to useit.

The main library you need to use STM is Control.Concurrent.STM
[../libraries/stm/Control-Concurrent-STM.html]. The main features supported are these:

» Atomic blocks.

e Transactional variables.

» Operations for composing transactions: r et r y, and or El se.

» Datainvariants.

233

http://research.microsoft.com/copyright/accept.asp?path=/users/simonpj/papers/concurrent-haskell.ps.gz
http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/
../libraries/base/Control-Concurrent.html
http://research.microsoft.com/%7Esimonpj/Papers/conc-ffi/index.htm
http://research.microsoft.com/%7Esimonpj/papers/stm/index.htm
../libraries/stm/Control-Concurrent-STM.html

GHC Language Features

All these features are described in the papers mentioned earlier.

8.17.3. Parallel Haskell

GHC includes support for running Haskell programs in paralel on symmetric, shared-memory multi-
processor (SMP). By default GHC runs your program on one processor; if you want it to run in paralléel
you must link your program with the - t hr eaded, and run it with the RTS - N option; see Section 5.12,
“Using SMP parallelism™). The runtime will schedule the running Haskell threads among the available
OS threads, running as many in parallel as you specified with the - NRTS option.

GHC only supports parallelism on a shared-memory multiprocessor. Glasgow Parallel Haskell (GPH)
supports running Parallel Haskell programs on both clusters of machines, and single multiprocessors.
GPH is developed and distributed separately from GHC (see The GPH Page
[http://mwww.cee.hw.ac.uk/~dsg/gph/]). However, the current version of GPH is based on a much older
version of GHC (4.06).

8.17.4. Annotating pure code for parallelism

Ordinary single-threaded Haskell programs will not benefit from enabling SMP parallelism alone: you
must expose parallelism to the compiler. One way to do so is forking threads using Concurrent Haskell
(Section 8.17.1, “Concurrent Haskell”), but the simplest mechanism for extracting parallelism from pure
code is to use the par combinator, which is closely related to (and often used with) seq. Both of these
areavailablefrom Cont r ol . Par al | el [../libraries/parallel/Control-Parallel.html]:

infixr 0 " par’
infixr 1 “seq
par :: a->b ->b
seq :: a->b->b

The expression (x ~par ™ y) sparks the evaluation of x (to weak head normal form) and returnsy.
Sparks are queued for execution in FIFO order, but are not executed immediately. If the runtime detects
that there is an idle CPU, then it may convert a spark into areal thread, and run the new thread on the
idle CPU. In this way the available parallelism is spread amongst the real CPUs.

For example, consider the following parallel version of our old nemesis, nf i b:

i mport Control.Parallel

nfib :: Int -> Int
nfibn| n<=1=1
| otherwise = par nl (seq n2 (nl + n2 + 1))
where nl = nfib (n-1)
n2 = nfib (n-2)

For values of n greater than 1, we use par to spark athread to evaluatenfi b (n-1), and then we use
seq to force the parent thread to evaluate nfi b (n-2) before going on to add together these two
subexpressions. In this divide-and-conquer approach, we only spark a new thread for one branch of the
computation (leaving the parent to evaluate the other branch). Also, we must use seq to ensure that the
parent will evaluate n2 beforenl intheexpression (n1 + n2 + 1).Itisnot sufficient to reorder the
expressonas(n2 + nl + 1), becausethe compiler may not generate code to evaluate the addends
from left toright.

When using par , the general rule of thumb is that the sparked computation should be required at a later
time, but not too soon. Also, the sparked computation should not be too small, otherwise the cost of

234

http://www.cee.hw.ac.uk/~dsg/gph/
../libraries/parallel/Control-Parallel.html

GHC Language Features

forking it in parallel will be too large relative to the amount of parallelism gained. Getting these factors
right istricky in practice.

More sophisticated combinators for expressing paralelism are available from the Con-
trol . Parallel.Strategies [./libraries/parallel/Control-Parallel-Strategies.html] module. This

module builds functionality around par , expressing more elaborate patterns of parallel computation,
such as parallel map.

235

../libraries/parallel/Control-Parallel-Strategies.html
../libraries/parallel/Control-Parallel-Strategies.html

Chapter 9. Foreign function interface
(FFI)

GHC (mostly) conforms to the Haskell 98 Foreign Function Interface Addendum 1.0, whose definition
isavailablefromht t p: / / www. haskel | . org/.

To enable FFI support in GHC, givethe - f f fi flag, or the - f gl asgow- ext s flag which implies -
fffi .

GHC implements a number of GHC-specific extensions to the FFl Addendum. These extensions are de-
scribed in Section 9.1, “GHC extensions to the FFI Addendum”, but please note that programs using
these features are not portable. Hence, these features should be avoided where possible.

The FFI libraries are documented in the accompanying library documentation; see for example the
For ei gn [../libraries/base/Control-Concurrent.html] module.

9.1. GHC extensions to the FFI Addendum

The FFI features that are described in this section are specific to GHC. Y our code will not be portable to
other compilersif you use them.

9.1.1. Unboxed types

The following unboxed types may be used as basic foreign types (see FFI Addendum, Section 3.2):
I nt #, Wor d#, Char #, Fl oat #, Doubl e#, Addr #, St abl ePtr# a, Mut abl eByt eAr r ay#,
For ei gnObj #, and Byt eAr r ay#.

9.1.2. Newtype wrapping of the IO monad

The FFI spec requires the IO monad to appear in various places, but it can sometimes be convenient to
wrap the |O monad in anewt ype, thus:

newtype WWiOa = MO (10 a)

(A reason for doing so might be to prevent the programmer from calling arbitrary 10 proceduresin some
part of the program.)

The Haskell FFI already specifies that arguments and results of foreign imports and exports will be auto-
matically unwrapped if they are newtypes (Section 3.2 of the FFI addendum). GHC extends the FFI by
automatically unwrapping any newtypes that wrap the 10 monad itself. More precisely, wherever the
FFI specification requires an 10 type, GHC will accept any newtype-wrapping of an 10 type. For ex-
ample, these declarations are OK:

foreign inport foo :: Int -> Myl O Int
foreign inport "dynamic" baz :: (Int -> WlOInt) -> Cint -> Myl O Int

9.2. Using the FFI with GHC

The following sections also give some hints and tips on the use of the foreign function interface in GHC.

236

http://www.haskell.org/
../libraries/base/Control-Concurrent.html

Foreign function interface (FFI)

9.2.1. Using foreign export and foreign inport
ccall "wrapper" with GHC

When GHC compiles a module (say M hs) which uses f or ei gn export or forei gn inport
"wrapper", it generates two additional files, M st ub. ¢ and M_st ub. h. GHC will automatically
compile M st ub. c to generate M st ub. o at the sametime.

For aplain f orei gn export, the file M st ub. h contains a C prototype for the foreign exported
function, and M_st ub. c containsits definition. For example, if we compile the following module:

nodul e Foo where

foreign export ccall foo :: Int -> 10 Int
foo :: Int -> 10 Int

foo n =return (length (f n))

f o Int ->[Int]

f 0=1]

f n=n:(f (n-1))

Then Foo_st ub. h will contain something like this:

#i ncl ude "HsFFI . h"
extern HsInt foo(Hslnt a0);

and Foo_st ub. ¢ contains the compiler-generated definition of f oo() . To invoke f oo() from C,
just#i ncl ude "Foo_stub. h" andcall f oo().

The f oo_st ub. ¢ and f oo_st ub. h files can be redirected using the - st ubdi r option; see Sec-
tion 5.6.4, “Redirecting the compilation output(s)”.

When linking the program, remember to include M st ub. o in the final link command line, or you'll
get link errors for the missing function(s) (this isn't necessary when building your program with ghc
——make, as GHC will automatically link in the correct bits).

9.2.1.1. Using your own mai n()

Normally, GHC's runtime system provides a mai n() , which arranges to invoke Mai n. mai n in the
Haskell program. However, you might want to link some Haskell code into a program which has a main
function written in another language, say C. In order to do this, you have to initiaize the Haskell
runtime system explicitly.

Let's take the example from above, and invoke it from a standalone C program. Here's the C code:

#i ncl ude <stdi o. h>
#i ncl ude "HsFFI . h"

#i fdef _ GLASGOW HASKELL
#i ncl ude "foo_stub. h"
#endi f

#i fdef __ GLASGOW HASKELL_
extern void __stginit_Foo (void);
#endi f

237

Foreign function interface (FFI)

int main(int argc, char *argv[])
int i;
hs init(&rgc, &argv);

#i f def GLASGOW HASKELL

hs_add_root (__stginit_Foo);
#endi f

for (i =0; i <5; i++)
printf("%l\n", foo(2500));

hs_exit();
return O;

We've surrounded the GHC-specific bits with #i f def _ G.ASGOW HASKELL __; the rest of the
code should be portable across Haskell implementations that support the FFI standard.

Thecal tohs_i ni t () initializes GHC's runtime system. Do NOT try to invoke any Haskell functions
before calling hs_i ni t () : bad things will undoubtedly happen.

We pass referencesto ar gc and ar gv tohs_i ni t () sothat it can separate out any arguments for the
RTS (i.e. those arguments between +RTS. . . - RTS).

Next, we call hs_add_r oot , a GHC-specific interface which is required to initialise the Haskell mod-
ules in the program. The argument to hs_add_r oot should be the name of the initialization function
for the "root" module in your program - in other words, the module which directly or indirectly imports
all the other Haskell modules in the program. In a standalone Haskell program the root module is nor-
mally Mai n, but when you are using Haskell code from a library it may not be. If your program has
multiple root modules, then you can call hs_add_r oot multiple times, one for each root. The name of
the initialization function for module Mis __st gi ni t _M and it may be declared as an externa func-
tion symbol as in the code above. Note that the symbol name should be transformed according to the Z-
encoding:

Character Replacement
zd

_ zu
Zq

z zZ

z zz

After we've finished invoking our Haskell functions, we can call hs_exi t (), which terminates the
RTS.

There can be multiple callsto hs_i ni t (), but each one should be matched by one (and only one) call
tohs_exit()™

NOTE: when linking the final program, it is normally easiest to do the link using GHC, although this
isn't essential. If you do use GHC, then don't forget the flag - no- hs- mai n, otherwise GHC will try to
link to the Mai n Haskell module.

The outermost hs_exi t () will actually de-initialise the system. NOTE that currently GHC's runtime cannot reliably re-initialise after this has

happened.

238

Foreign function interface (FFI)

9.2.1.2. Making a Haskell library that can be called from foreign code

The scenario here is much like in Section 9.2.1.1, “Using your own rai n() ", except that the aim is not
to link a complete program, but to make a library from Haskell code that can be deployed in the same
way that you would deploy alibrary of C code.

The main requirement here is that the runtime needs to be initialized before any Haskell code can be
called, so your library should provide initialisation and deinitialisation entry points, implemented in C or
C++. For example:

HsBool nylib_init(void){
int argc = ...
char *argv[] = ...

/

/ Initialize Haskell runtinme
hs i

nit(&argc, &argv);

/1 Tell Haskell about all root nbdul es
hs_add_root (__stginit_Foo);

/1 do any other initialization here and
/1 return false if there was a problem
return HS BOOL_TRUE;

}

void nylib_end(void){
hs_exit();

The initidlisation routing, myl i b_init, calshs_init() and hs_add_r oot () asnormal to ini-
tidise the Haskell runtime, and the corresponding deinitialisation function nyl i b_end() cals
hs_exi t () toshut down the runtime.

9.2.1.3. On theuse of hs_exi t ()

hs_exi t () normally causes the termination of any running Haskell threads in the system, and when
hs_exi t () returns, there will be no more Haskell threads running. The runtime will then shut down
the system in an orderly way, generating profiling output and statistics if necessary, and freeing all the
memory it owns.

It isn't always possible to terminate a Haskell thread forcibly: for example, the thread might be currently
executing a foreign call, and we have no way to force the foreign call to complete. What's more, the
runtime must assume that in the worst case the Haskell code and runtime are about to be removed from
memory (e.g. if thisisaWindowsDLL, hs_exi t () isnormally called before unloading the DLL). So
hs_exi t () must wait until al outstanding foreign calls return before it can return itself.

The upshot of thisisthat if you have Haskell threads that are blocked in foreign calls, thenhs_exi t ()
may hang (or possibly busy-wait) until the calls return. Therefore it's a good idea to make sure you don't
have any such threads in the system when calling hs_exi t () . Thisincludes any threads doing /O, be-
cause |/0 may (or may not, depending on the type of 1/0 and the platform) be implemented using block-
ing foreign calls.

The GHC runtime treats program exit as a special case, to avoid the need to wait for blocked threads
when a standalone executable exits. Since the program and all its threads are about to terminate at the
same time that the code is removed from memory, it isn't necessary to ensure that the threads have ex-
ited first. (Unofficialy, if you want to use this fast and loose version of hs_exi t (), then cal shut -

downHaskel | AndExi t () instead).

239

Foreign function interface (FFI)

9.2.2. Using function headers

When generating C (using the - f vi a- Cflag), one can assist the C compiler in detecting type errors by
using the - #i ncl ude directive (Section 5.10.5, “ Options affecting the C compiler (if applicable)”) to
provide . h files containing function headers.

For example,

#i ncl ude "HsFFI . h"

voi d initialiseEFS (Hslnt size);

Hsl nt term nat eEFS (void);

HsFor ei gnCbj enpt yEFS(voi d);

HsFor ei gnOb] updat eEFS (HsForei gnGbj a, Hslnt

i, Hslnt x);
Hsl nt | ookupEFS (HsForei gnGbj a, Hslnt i);

ThetypesHsl nt , HsFor ei gnCbj etc. are described in the H98 FFI Addendum.

Note that this approach is only essential for returning floats (or if sizeof(int) !=
si zeof (i nt *) onyour architecture) but is a Good Thing for anyone who cares about writing solid
code. You're crazy not to do it.

What if you are importing a module from another package, and a cross-module inlining exposes a for-
eign call that needs a supporting - #i ncl ude? If the imported module is from the same package as the
module being compiled, you should supply all the - #i ncl ude that you supplied when compiling the
imported module. If the imported module comes from another package, you won't necessarily know
what the appropriate - #i ncl ude options are; but they should be in the package configuration, which
GHC knows about. So if you are building a package using Cabal, remember to put al those include files
in the package description (seethei ncl udes field in the Cabal documentation).

It is also possible, according the FFI specification, to put the - #i ncl ude option in the foreign import
declaration itself:

foreign inport "foo.h f" f :: Int -> 10 Int

When compiling this module, GHC will generate a C file that includes the specified - #i ncl ude.
However, GHC disables cross-module inlining for such foreign calls, because it doesn't transport the -
#i ncl ude information across module boundaries. (There is no fundamental reason for this; it was just
tiresome to implement. The wrapper, which unboxes the arguments etc, is still inlined across modules.)
So if you want the foreign call itself to be inlined across modules, use the command-line and package-
configuration - #i ncl ude mechanism.

9.2.2.1. Finding Header files

9.2.3.

Header files named by the - #i ncl ude option orinaf orei gn i nmport declaration are searched for
using the C compiler's usual search path. You can add directories to this search path using the - | option
(see Section 5.10.3, “Options affecting the C pre-processor”).

Note: header files are ignored unless compiling via C. If you had been compiling your code using the
native code generator (the default) and suddenly switch to compiling via C, then you can get unexpected

errors about missing include files. Compiling via C is enabled automatically when certain options are
given (eg. - Oand - pr of both enable- f vi a- C).

Memory Allocation

The FFI libraries provide several ways to alocate memory for use with the FFI, and it isn't always clear

240

Foreign function interface (FFI)

which way is the best. This decision may be affected by how efficient a particular kind of allocation is
on a given compiler/platform, so this section aims to shed some light on how the different kinds of alloc-
ation perform with GHC.

al | oca and friends Useful for short-term allocation when the allocation is intended to scope
over agiven | Ocomputation. This kind of allocation is commonly used
when marshalling data to and from FFI functions.

In GHC, al | oca is implemented using Mut abl eByt eAr r ay#, so
dlocation and deallocation are fast: much faster than C's mal | oc/
free, but not quite as fast as stack allocation in C. Use al | oca
whenever you can.

mal | ocFor ei gnPtr Useful for longer-term alocation which requires garbage collection. If
you intend to store the pointer to the memory in aforeign data structure,
thenmal | ocFor ei gnPt r isnot agood choice, however.

In GHC, mal | ocForei gnPtr is also implemented using Mut -
abl eByt eArr ay#. Although the memory is pointed to by a For -
ei gnPt r, there are no actual finalizers involved (unless you add one
with addFor ei gnPt r Fi nal i zer), and the deallocation is done us-
ing GC, so mal | ocFor ei gnPt r isnormally very cheap.

mal | oc/free If al else fails, then you need to resort to Forei gn. nal | oc and
For ei gn. f ree. These are just wrappers around the C functions of
the same name, and their efficiency will depend ultimately on the im-
plementations of these functions in your platform's C library. We usu-
dly find mal | oc and f r ee to be significantly slower than the other
forms of alocation above.

For ei gn. Mar shal . Pool Pools are currently implemented using mal | oc/ f r ee, so while they
might be a more convenient way to structure your memory allocation
than using one of the other forms of allocation, they won't be any more
efficient. We do plan to provide an improved-performance implementa-
tion of Poolsin the future, however.

241

Chapter 10.

What to do when

something goes wrong

If you still have a problem after consulting this section, then you may have found a bug—pl ease report
itl See Section 1.2, “Reporting bugs in GHC” for details on how to report a bug and a list of things we'd
like to know about your bug. If in doubt, send a report—we love mail from irate users :-!

(Section 13.1, “Haskell 98 vs. Glasgow Haskell: language non-compliance ”, which describes Glasgow
Haskell's shortcomings vs. the Haskell language definition, may also be of interest.)

10.1. When the compiler “does the wrong

H 7
thing
“Help! The compiler crashed (or
“panic'd)!”
“Thisisaterrible error message.”
“What about this warning from the
C compiler?’

Sensitivity to . hi interfacefiles:
“| think GHC is producing incor-
rect code’:

“Why did | get alink error?’

“Isthisline number right?’

These events are always bugs in the GHC system—please report
them.

If you think that GHC could have produced a better error mes-
sage, please report it as a bug.

For example: “...warning: "Foo' declared “static' but never
defined.” Unsightly, but shouldn't be a problem.

GHC is very senditive about interface files. For example, if it
picks up a non-standard Pr el ude. hi file, pretty terrible things
will happen. If you turn on - fno-i nplicit-prel ude, the
compiler will almost surely die, unless you know what you are
doing.

Furthermore, as sketched below, you may have big problems run-
ning programs compiled using unstable interfaces.

Unlikely :-) A useful be-more-paranoid option to give to GHC is
-dcore-lint; this causes a “lint” pass to check for errors
(notably type errors) after each Core-to-Core transformation pass.
We run with - dcor e- 1 i nt on all the time; it costs about 5% in
compile time.

If the linker complains about not finding
_<sonet hi ng>_f ast, then something is inconsistent: you
probably didn't compile modulesin the proper dependency order.

On this score, GHC usually does pretty well, especiadly if you
“alow” it to be off by one or two. In the case of an instance or
class declaration, the line number may only point you to the de-
claration, not to a specific method.

Please report line-number errors that you find particularly unhelp-
ful.

10.2. When your program “does the wrong

242

What to do when something goes
wrong

thing”

(For advice about overly slow or memory-hungry Haskell programs, please see Chapter 7, Advice on:
sooner, faster, smaller, thriftier).

“Help! My program crashed!” (e.g., a segmentation fault' or “core dumped’)

If your program has no foreign calls in it, and no calls to known-
unsafe functions (such as unsaf ePer f or m O) then a crash is
aways a BUG in the GHC system, except in one case: If your
program is made of several modules, each module must have been
compiled after any modules on which it depends (unless you use
. hi - boot files, in which case these must be correct with respect
to the module source).

For example, if an interface is lying about the type of an imported
value then GHC may well generate duff code for the importing
module. This applies to pragmas inside interfaces too! If the
pragmaislying (e.g., about the “arity” of a value), then duff code
may result. Furthermore, arities may change even if types do not.

In short, if you compile a module and its interface changes, then
all the modules that import that interface must be re-compiled.

A useful option to alert you when interfaces change is -
hi - di f fs. It will run diff on the changed interface file, before
and after, when applicable.

If you are using make, GHC can automatically generate the de-
pendencies required in order to make sure that every module is
up-to-date with respect to its imported interfaces. Please see Sec-
tion 5.6.11, “Dependency generation”.

If you are down to your last-compile-before-a-bug-report, we
would recommend that you add a- dcor e- | i nt option (for ex-
tra checking) to your compilation options.

So, before you report a bug because of a core dump, you should

probably:

%rm*.o # scrub your object files

% make my_prog # re-make your program use -hi-diffs to
as nentioned above, use -dcore-lint to

% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets
are off, because you can trash the heap, the stack, or whatever.

“My program entered an “absent' This is definitely caused by a bug in GHC. Please report it (see

argument.” Section 1.2, “Reporting bugsin GHC").
“What's with this “arithmetic (or I nt, Fl oat, and Doubl e arithmetic is unchecked. Overflows,
“floating') exception' " ? underflows and loss of precision are either silent or reported as an

exception by the operating system (depending on the platform).
Divide-by-zero may cause an untrapped exception (please report
itif it does).

243

Chapter 11. Other Haskell utility
programs

This section describes other program(s) which we distribute, that help with the Great Haskell Program-
ming Task.

11.1. Ctags and Etags for Haskell: hasktags

hasktags is a very simple Haskell program that produces ctags "tags' and etags "TAGS" files for
Haskell programs.

When loaded into an editor such an NEdit, Vim, or Emacs, this allows one to easily navigate around a
multi-file program, finding definitions of functions, types, and constructors.

Invocation Syntax:
hasktags files
This will read all the fileslisted inf i | es and produce a ctags "tags’ file and an etags "TAGS' filein

the current directory.

Example usage
find -name *.*hs | xargs hasktags

This will find all haskell source files in the current directory and below, and create tags files indexing
them in the current directory.

hasktags is a simple program that uses simple parsing rules to find definitions of functions, construct-
ors, and types. It isn't guaranteed to find everything, and will sometimes create false index entries, but it
usually gets the job done fairly well. In particular, at present, functions are only indexed if atype signa-
tureis given for them.

Before hasktags, there used to be fptags and hstags, which did essentially the same job, however neither
of these seem to be maintained any more.

11.1.1. Using tags with your editor

With NEdit, load the "tags' file using "File/Load Tags File". Use "Ctrl-D" to search for atag.

With XEmacs, load the "TAGS" file using "visit-tags-table". Use "M-." to search for atag.

11.2. “Yacc for Haskell”: happy

Andy Gill and Simon Marlow have written a parser-generator for Haskell, called happy. Happy is to
Haskell what Yaccisto C.

Y ou can get happy from the Happy Homepage [http://www.haskell.org/happy/].
Happy is at its shining best when compiled by GHC.

244

http://www.haskell.org/happy/

Other Haskell utility programs

11.3. Writing Haskell interfaces to C code:
hsc2hs

The hsc2hs command can be used to automate some parts of the process of writing Haskell bindings to
C code. It reads an almost-Haskell source with embedded specia constructs, and outputs a real Haskell
file with these constructs processed, based on information taken from some C headers. The extra con-
structs deal with accessing C data from Haskell.

It may also output a C file which contains additional C functions to be linked into the program, together
with a C header that gets included into the C code to which the Haskell module will be compiled (when
compiled via C) and into the C file. These two files are created when the #def construct is used (see be-
low).

Actually hsc2hs does not output the Haskell file directly. It creates a C program that includes the head-
ers, gets automatically compiled and run. That program outputs the Haskell code.

In the following, “Haskell file” is the main output (usually a. hs file), “compiled Haskell file" is the
Haskell file after ghc has compiled it to C (i.e. a. hc file), “C program” is the program that outputs the
Haskell file, “C file” isthe optionally generated C file, and “C header” isits header file.

11.3.1. command line syntax

hsc2hs takes input files as arguments, and flags that modify its behavior:

-0 FILEor Name of the Haskell file.

——out put =FI LE

-t FILEoOr The template file (see below).

—t enpl at e=FI LE

-¢c PROGor The C compiler to use (default: ghc)
——Ccc=PROG

-1 PROGor The linker to use (default: gcc).

——| d=PROG

-C FLAGor An extraflag to pass to the C compiler.
—cf | ag=FLAG

-1 DR Passed to the C compiler.

-L FLAGor An extraflag to pass to the linker.

—I f 1 ag=FLAG

-i FILEoOr Asif the appropriate #i ncl ude directive was placed in the source.
—i ncl ude=FI LE

- D NAME[=VALUE] Asif the appropriate #def i ne directive was placed in the source.

or

==tef CAGPNARE[= Stop after writing out the intermediate C program to disk. The file name for the

VAL UE] intermediate C program is the input file name with . hsc replaced with
_hsc_nuke. c.

-?or—hel p Display asummary of the available flags and exit successfully.
-Vor——version Output version information and exit successfully.

Theinput file should end with .hsc (it should be plain Haskell source only; literate Haskell is not suppor-
ted at the moment). Output files by default get names with the . hsc suffix replaced:

. hs

Haskell file

_hsc.h

C header

245

Other Haskell utility programs

_hsc.c Cfile

The C program is compiled using the Haskell compiler. This provides the include path to HsFFI . h
which is automatically included into the C program.

11.3.2. Input syntax

All special processing is triggered by the # operator. To output a literal #, write it twice: ##. Inside
string literals and comments # characters are not processed.

A # is followed by optional spaces and tabs, an aphanumeric keyword that describes the kind of pro-
cessing, and its arguments. Arguments look like C expressions separated by commas (they are not writ-
ten inside parens). They extend up to the nearest unmatched) ,] or }, or to the end of lineif it occurs
outsideany () [] {} '" "" [/**/ andisnot preceded by a backslash. Backslash-newline pairs
are stripped.

In addition #{ st uf f} isequivalent to #st uf f except that it's self-delimited and thus needs not to be
placed at the end of line or in some brackets.

Meanings of specific keywords:

#i nclude <file.h>, The specified file gets included into the C program, the compiled

#i nclude "file.h" Haskell file, and the C header. <HsFFI . h> isincluded automat-
icaly.

#def i ne nane, #def i ne Similar to #i ncl ude. Note that #i ncl udes and #defi nes

nane val ue,#undef nane may be put in the same file twice so they should not assume oth-
erwise.

#l et name paraneters = Defines a macro to be applied to the Haskell source. Parameter

"definition" names are comma-separated, not inside parens. Such macro isin-

voked as other #-constructs, starting with #narre. The definition
will be put in the C program inside parens as arguments of
pri ntf. To refer to a parameter, close the quote, put a parameter
name and open the quote again, to let C string literals concatenate.
Or use pri nt f 'sformat directives. Values of arguments must be
given as strings, unless the macro stringifies them itself using the
C preprocessor's #par amet er syntax.

#def C definition The definition (of afunction, variable, struct or typedef) iswritten
to the Cfile, and its prototype or extern declaration to the C head-
er. Inline functions are handled correctly. struct definitions and ty-
pedefs are written to the C program too. Thei nl i ne, struct
ortypedef keyword must come just after def .

Note

A foreign inport of aC function may be inlined across a
module boundary, in which case you must arrange for the import-
ing module to #i ncl ude the C header file generated by hsc2hs
(see Section 9.2.2, “Using function headers’). For this reason we
avoid using #def inthelibraries.

246

Other Haskell utility programs

#error message,#warni ng Conditional compilation directives are passed unmodified to the C
nessage program, C file, and C header. Putting them in the C program
means that appropriate parts of the Haskell file will be skipped.

#const C _expression The expression must be convertible to | ong or unsi gned
| ong. Itsvalue (literal or negated literal) will be output.

#const _str C_expression Theexpression must be convertible to const char pointer. Its value
(string literal) will be output.

#type C_type A Haskell equivalent of the C numeric type will be output. It will
be one of {Int,Wrd}{8, 16, 32, 64}, Fl oat, Doubl e,
LDoubl e.

#ipeek struct _type, field A function that peeks afield of a C struct will be output. It will
havethetypeStorable b => Ptr a -> 10O b. Theinten-
tion is that #peek and #poke can be used for implementing the
operations of class St or abl e for agiven C struct (see the For -
ei gn. St or abl e modulein the library documentation).

#poke struct_type, field Similarly for poke. It will havethetypeStorable b => Ptr
a->b->10().

#iptr struct _type, field Makesapointertoafield struct. It will havethetypePtr a ->

Ptr b.
#of fset struct_type, Compuites the offset, in bytes, of fi el d in struct_type. It
field will havetypel nt .
#size struct _type Computes the size, in bytes, of st ruct _t ype. It will have type
I nt.

#enum type, constructor, A shortcut for multiple definitions which use #const. Each

val ue, value, ... val ue isaname of a C integer constant, e.g. enumeration value.
The name will be trandated to Haskell by making each letter fol-
lowing an underscore uppercase, making all the rest lowercase,
and removing underscores. Y ou can supply a different trandation
by writing hs_nane = c_val ue instead of a val ue, in
which case ¢_val ue may be an arbitrary expression. The
hs_nane will be defined as having the specified t ype. Its
definition is the specified const ruct or (which in fact may be
an expression or be empty) applied to the appropriate integer
value. You can have multiple #enum definitions with the same
t ype; this construct does not emit the type definition itself.

11.3.3. Custom constructs

#const , #t ype, #peek, #poke and #pt r are not hardwired into the hsc2hs, but are defined ina C
template that is included in the C program: t enpl at e- hsc. h. Custom constructs and templates can
be used too. Any #-construct with unknown key is expected to be handled by a C template.

A C template should define a macro or function with name prefixed by hsc_ that handles the construct
by emitting the expansion to stdout. Seet enpl at e- hsc. h for examples.

Such macros can aso be defined directly in the source. They are useful for making a#l et -like macro
whose expansion uses other #| et macros. Plain #| et prepends hsc_ to the macro name and wraps
the definitioninapri nt f call.

247

Chapter 12. Running GHC on Win32
systems

12.1.

12.2.

12.3.

Starting GHC on Windows platforms

The installer that installs GHC on Win32 also sets up the file-suffix associations for ".hs' and ".Ihs" files
so that double-clicking them starts ghci.

Be aware of that ghc and ghci do require filenames containing spaces to be escaped using quotes:

c:\ghc\bin\ghci "c:\\Program Fi |l es\\ Haskel I \\ Proj ect. hs"

If the quotes are left off in the above command, ghci will interpret the filename as two, "c:\\Program"
and "Files\\HaskelI\\Project.hs".

Running GHCi on Windows

We recommend running GHCi in a standard Windows console: select the GHC option from the start
menu item added by the GHC installer, or use St art - >Run- >cnt to get a Windows console and in-
vokeghci fromthere (aslong asit'sin your PATH).

If you run GHCi in a Cygwin or MSY S shell, then the Control-C behaviour is adversely affected. In one
of these environments you should use the ghci i . sh script to start GHCi, otherwise when you hit Con-
trol-C you'll be returned to the shell prompt but the GHCi process will still be running. However, even
using the ghci i . sh script, if you hit Control-C then the GHCi process will be killed immediately,
rather than letting you interrupt a running program inside GHCi as it should. This problem is caused by
the fact that the Cygwin and MSY S shell environments don't pass Control-C events to non-Cygwin child
processes, because in order to do that there needs to be a Windows console.

There's an exception: you can use a Cygwin shell if the CYGW N environment variable does not contain
tty. In this mode, the Cygwin shell behaves like a Windows console shell and console events are
propagated to child processes. Note that the CYGA N environment variable must be set before starting
the Cygwin shell; changing it afterwards has no effect on the shell.

This problem doesn't just affect GHCI, it affects any GHC-compiled program that wants to catch con-
sole events. See the GHC.ConsoleHandler [../libraries/base/ GHC-ConsoleHandler.html] module.

Interacting with the terminal

By default GHC builds applications that open a console window when they start. If you want to build a
GUI-only application, with no console window, use the flag - opt | - mmi ndows in the link step.

Warning: Windows GUI-only programs have no stdin, stdout or stderr so using the ordinary Haskell in-
put/output functions will cause your program to fail with an 10 exception, such as:
Fail: <stdout>: hPutChar: failed (Bad file descriptor)

However using Debug.Trace.trace is aright because it uses Windows debugging output support rather
than stderr.

For some reason, Mingw ships with the r eadl! i ne library, but not with ther eadl i ne headers. Asa

248

../libraries/base/GHC-ConsoleHandler.html

Running GHC on Win32 systems

12.4.

12.5.

result, GHC (like Hugs) does not user eadl i ne for interactive input on Windows. Y ou can get aclose
simulation by using an emacs shell buffer!

Differences in library behaviour

Some of the standard Haskell libraries behave slightly differently on Windows.

* On Windows, the '"*Z' character is interpreted as an end-of-file character, so if you read a file con-
taining this character the file will appear to end just before it. To avoid this, use |1 O
Ext s. openFi | eEx to open afilein binary (untranslated) mode or change an already opened file
handle into binary mode using | OExt s. hSet Bi nar yMode. The | OExt s module is part of the
| ang package.

Using GHC (and other GHC-compiled ex-

ecutables) with cygwin
12.5.1. Background

The cygwin tools aim to provide a unix-style APl on top of the windows libraries, to facilitate ports of
unix software to windows. To this end, they introduce a unix-style directory hierarchy under some root
directory (typically / isC: \ cygw n\). Moreover, everything built against the cygwin API (including
the cygwin tools and programs compiled with cygwin's ghc) will see / as the root of their file system,
happily pretending to work in a typical unix environment, and finding things like / bi n and /
usr/incl ude without ever explicitly bothering with their actual location on the windows system
(probably C: \ cygwi n\ bi nand C: \ cygwi n\ usr\i ncl ude).

12.5.2. The problem

GHC, by default, no longer depends on cygwin, but is a native windows program. It is built using
mingw, and it uses mingw's ghc while compiling your Haskell sources (even if you call it from cygwin's
bash), but what matters here is that - just like any other normal windows program - neither GHC nor the
executables it produces are aware of cygwin's pretended unix hierarchy. GHC will happily accept either
"' or '\' as path separators, but it won't know where to find / home/ j oe/ Mai n. hs or / bi n/ bash or
the like. This causes all kinds of fun when GHC is used from within cygwin's bash, or in make-sessions
running under cygwin.

12.5.3. Things to do

» Don't use absolute pathsin make, configure & co if there is any chance that those might be passed to
GHC (or to GHC-compiled programs). Relative paths are fine because cygwin tools are happy with
them and GHC accepts /' as path-separator. And relative paths don't depend on where cygwin's root
directory is located, or on which partition or network drive your source tree happens to reside, as
long asyou 'cd' therefirst.

» If you have to use absolute paths (beware of the innocent-looking ROOT="pwd" in makefile hier-
archies or configure scripts), cygwin provides atool called cygpath that can convert cygwin's unix-
style paths to their actual windows-style counterparts. Many cygwin tools actually accept absolute
windows-style paths (remember, though, that you either need to escape '\' or convert \' to /'), so you
should be fine just using those everywhere. If you need to use tools that do some kind of path-
mangling that depends on unix-style paths (one fun example is trying to interpret ":' as a separator in
path lists..), you can still try to convert paths using cygpath just before they are passed to GHC and

249

Running GHC on Win32 systems

friends.

If you don't have cygpath, you probably don't have cygwin and hence no problems with it... unless
you want to write one build process for several platforms. Again, relative paths are your friend, but if
you have to use absolute paths, and don't want to use different tools on different platforms, you can
simply write a short Haskell program to print the current directory (thanks to George Russell for this
idea): compiled with GHC, this will give you the view of the file system that GHC depends on
(which will differ depending on whether GHC is compiled with cygwin's gcc or mingw's gcc or on a
real unix system..) - that little program can also deal with escaping '\' in paths. Apart from the banner
and the startup time, something like this would also do:

$ echo "Directory.getCurrentDirectory >>= putStrLn . init . tail

12.6. Building and using Win32 DLLs

Making Haskell libraries into DLLs doesn't work on Windows at the moment; we hope to re-instate this
facility in the future. Note that building an entire Haskell application as a single DLL is still supported:
it's just multi-DLL Haskell programs that don't work. The Windows distribution of GHC contains static
libraries only.

12.6.1. Creating a DLL

Sealing up your Haskell library inside a DLL is straightforward; compile up the object files that make up
the library, and then build the DLL by issuing acommand of the form:

ghc —shared -o foo.dll bar.o baz.o wi bble.a -1fooble

By feeding the ghc compiler driver the option —shar ed, it will build a DLL rather than produce an ex-
ecutable. The DLL will consist of all the object files and archives given on the command line.

A couple of things to notice:

By default, the entry points of all the object files will be exported from the DLL when using
—shar ed. Should you want to constrain this, you can specify the module definition file to use on
the command line as follows:

ghc —shared -0 MDef. def

See Microsoft documentation for details, but a module definition file ssimply lists what entry points
you want to export. Here's one that's suitable when building a Haskell COM server DLL:

EXPORTS
Dl | CanUnl oadNow
D | Get A assOhj ect
D | Regi st er Ser ver
D | Unr egi st er Server

Dl | CanUnl oadNow@

D | Get Gl assCbj ect @2
DI Re
D |

gi ster Server @
Unr egi st er Server @

In addition to creating a DLL, the —shar ed option aso creates an import library. The import lib-

250

show "

gt

Running GHC on Win32 systems

rary nameis derived from the name of the DLL, asfollows:

DLL: HScool.dll ==> inport lib: libHScool.dll.a

The naming scheme may look a bit weird, but it has the purpose of alowing the co-existence of im-
port libraries with ordinary static libraries (e.g., | i bHSf 00. a and | i bHSf 0o. dI | . a. Addition-
aly, when the compiler driver is linking in non-static mode, it will rewrite occurrence of - | HSf oo
on the command line to - | HSf 0o. dI | . By doing this for you, switching from non-static to static
linking is simply a question of adding - st at i ¢ to your command line.

12.6.2. Making DLLs to be called from other languages

If you want to package up Haskell code to be called from other languages, such as Visual Basic or C++,
there are some extra things it is useful to know. This is a specia case of Section 9.2.1.2, “Making a
Haskell library that can be called from foreign code’; we'll deal with the DLL-specific issues that arise
below. Here's an example:

« Useforei gn export declarationsto export the Haskell functions you want to call from the out-
side. For example,
nodul e Adder where

adder :: Int ->1Int ->101Int —— gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int ->1Int -> 10 Int
e Compileit up:

ghc -c adder. hs -fgl asgow exts
Thiswill produce two files, adder.o and adder_stub.o

e compileupaDl | Mai n() that starts up the Haskell RTS—a possible implementation is:

#i ncl ude <w ndows. h>
#i ncl ude <Rts. h>

extern void __stginit_Adder(void);

static char* args[] = { "ghcDI", NULL };
/* N B. argv arrays nmust end with NULL */
BOCL
STDCALL
Dl | Mai n

(HANDLE hModul e
, DWORD reason
, void* reserved

)

if (reason == DLL_PROCESS ATTACH)
/* By now, the RTS DLL should have been hoisted in, but we need to start i
startupHaskel | (1, args, __stginit_Adder);
return TRUE;

251

Running GHC on Win32 systems

}
return TRUE;
}

Here, Adder isthe name of the root module in the module tree (as mentioned above, there must be
asingle root module, and hence a single module tree in the DLL). Compile this up:

ghc -c dl |l Main.c
* Construct the DLL:

ghc —shared -0 adder.dl| adder.o adder_stub.o dll Min.o
e Startusing adder from VBA-—here's how | would Decl ar e it:

Private Declare Function adder Lib "adder.dll" Alias "adder @"
(Byval x As Long, ByVal y As Long) As Long

Since this Haskell DLL depends on a couple of the DLLs that come with GHC, make sure that they
arein scopelvisible.

Building statically linked DLL s is the same asin the previous section: it sufficesto add - st at i ¢ to
the commands used to compile up the Haskell source and build the DLL.

12.6.3. Beware of DIIMain()!

The body of a DI | Mai n() function is an extremely dangerous place! This is because the order in
which DLLs are unloaded when a process is terminating is unspecified. This means that the D | -
Mai n() for your DLL may be called when other DLLs containing functions that you call when de-
initializing your DLL have already been unloaded. In other words, you can't put shutdown code inside
Dl | Mai n(), unless your shutdown code only requires use of certain functions which are guaranteed to
be available (see the Platform SDK docs for more info).

In particular, if you are writing a DLL that's statically linked with Haskell, it is not safe to call
hs_exit() from D | Mai n(), since hs_exi t() may make use of other DLLs (see aso Sec-
tion 9.2.1.3, “Ontheuse of hs_exi t () "). What's more, if you wait until program shutdown to execute
your deinitialisation code, Windows will have terminated all the threads in your program except the one
caling DI | Mai n() , which can cause even more problems.

A solution is to always export Begi n() and End() functions from your DLL, and call these from the
application that uses the DLL, so that you can be sure that al DLLs needed by any shutdown code in
your End() function are available when it is called.

The following example is untested but illustrates the idea (please let us know if you find problems with
this example or have a better one). Suppose we have a DLL called Lewis which makes use of 2 Haskell
modules Bar and Zap, where Bar imports Zap and is therefore the root module in the sense of Sec-
tion 9.2.1.1, “Using your own mai n() ”. Then the main C++ unit for the DLL would look something
like:

/1 Lewi s.cpp -- conpiled using GCC
#i ncl ude <W ndows. h>
#i ncl ude "HsFFI . h"

252

Running GHC on Win32 systems

#define __ LEWS DLL_EXPORT

#i ncl ude "Lew s. h"

#i nclude "Bar_stub.h" // generated by GHC
#i ncl ude "Zap_stub. h"

BOCOL API ENTRY DI | Mai n(HANDLE hMbdul e,
DWORD ul reason _for_call,
LPVO D | pReserved

) {
return TRUE;
}

extern "C'{

LEW S_API HsBool |ew s_Begin(){

int argc = ...

char *argv[] = ...

/1 Initialize Haskell runtinme
hs_init(&argc, &argv);

/1 Tell Haskell about all root nodul es
hs_add_root (__stginit_Bar);

/1 do any other initialization here and
/1 return false if there was a problem
return HS BOOL_TRUE;

}

LEWS_API void lew s_End(){
hs_exit();

LEWS APl Hslnt lew s_Test(Hslnt x)({
/1 use Haskell functions exported by
/1 nodul es Bar and/or Zap

return ...

}
} // extern "C

and sone application which used the functions in the DLL woul d have a main() funct

/'l MyApp. cpp
#i ncl ude "stdaf x. h"

#i ncl ude "Lew s. h"

int main(int argc, char *argv[]){
if (lews_Begin()){
/1 can now safely call other functions
/1 exported by Lewis DLL

}
lewi s _End();
return O;

}

Lew s. h would have to have some appropriate #i f ndef to ensure that the Haskell FFI types were
defined for external users of the DLL (who wouldn't necessarily have GHC installed and therefore
wouldn't have the include files like HSFFI . h etc).

253

Chapter 13. Known Dbugs and
Infelicities

13.1. Haskell 98 vs. Glasgow Haskell: language
non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98. See also the “when
things go wrong” section (Chapter 10, What to do when something goes wrong) for information about
crashes, space leaks, and other undesirable phenomena.

The limitations here are listed in Haskell Report order (roughly).
13.1.1. Divergence from Haskell 98
13.1.1.1. Lexical syntax

e Certain lexical rules regarding qualified identifiers are dightly different in GHC compared to the
Haskell report. When you have nodul e. reser vedop, such as M \ , GHC will interpret it as a
single qualified operator rather than the two lexemes Mand . \ .

13.1.1.2. Context-free syntax

* GHCisalittleless strict about the layout rule when used in do expressions. Specificaly, the restric-
tion that "a nested context must be indented further to the right than the enclosing context" is relaxed
to allow the nested context to be at the same level as the enclosing context, if the enclosing context is
ado expression.

For example, the following code is accepted by GHC:
main = do args <- getArgs
if null args then return [] else do

ps <- nmapM process args
mapM print ps

* GHC doesn't do fixity resolution in expressions during parsing. For example, according to the
Haskell report, the following expression islegal Haskell:
let x =42 in x == 42 == True

and parses as.

(let x =42 in x == 42) == True

because according to the report, the |l et expression “extends as far to the right as possible”. Since it
can't extend past the second equals sign without causing a parse error (== is non-fix), the | et -
expression must terminate there. GHC simply gobbles up the whole expression, parsing like this:

254

Known bugs and infelicities

(let x =42 in x == 42 == True)

The Haskell report is arguably wrong here, but nevertheless it's a difference between GHC &
Haskell 98.

13.1.1.3. Expressions and patterns

None known.

13.1.1.4. Declarations and bindings

GHC's typechecker makes all pattern bindings monomorphic by default; this behaviour can be disabled
with - f no- nono- pat - bi nds. See Section 8.1, “Language options’.

13.1.1.5. Module system and interface files

None known.

13.1.1.6. Numbers, basic types, and built-in classes

Multiply-defined array ele- This code fragment should €elicit afatal error, but it does not:
ments—not checked:

main = print (array (1,1) [(1,2), (1,3)])

GHC's implementation of ar r ay takes the value of an array slot
from the last (index,value) pair in the list, and does no checking
for duplicates. The reason for thisis efficiency, pure and smple.

13.1.1.7. In Pr el ude support

Arbitrary-sized tuples Tuples are currently limited to size 100. HOWEVER: standard in-
stances for tuples (Eq, Or d, Bounded, | x Read, and Show) are
available only up to 16-tuples.

This limitation is easily subvertible, so please ask if you get stuck
onit.

Reading integers GHC's implementation of the Read class for integral types ac-
cepts hexadecimal and octal literals (the code in the Haskell 98 re-
port doesn't). So, for example,

read "Oxf00" :: Int

worksin GHC.

A possible reason for thisisthat r eadLi t Char accepts hex and
octal escapes, so it seems inconsistent not to do so for integers

too.

i sAl pha The Haskell 98 definition of i SAl phais:

255

Known bugs and infelicities

i sAlpha ¢ = isUpper c || isLower c

GHC's implementation diverges from the Haskell 98 definition in
the sense that Unicode al phabetic characters which are neither up-
per nor lower case will till be identified as alphabetic by i SAl -
pha.

Strings treated as | SO-8859-1 Various library functions, such as put St r Ln, treat Strings as if
they were 1SO-8859-1 rather than UTF-8.

13.1.2. GHC's interpretation of undefined behaviour in
Haskell 98

This section documents GHC's take on various issues that are left undefined or implementation specific
in Haskell 98.

The Char type Following the 1SO-10646 standard, naxBound :: Char in
GHC isOx10FFFF.

Sized integral types In GHC the | nt type follows the size of an address on the host
architecture; in other words it holds 32 bits on a 32-bit machine,
and 64-bits on a 64-bit machine.

Arithmetic on | nt is unchecked for overflow, so al operations
on | nt happen modulo 2n where n is the size in bits of the | nt

type.

The f r o nt eger function (and hence also from nt egr al)
is a special case when convertingto | nt . Thevalue of f r om n-
tegral x :: |Int isgiven by taking the lower n bits of
(abs x), multiplied by the sign of x (in 2's complement n-bit
arithmetic). This behaviour was chosen so that for example writ-
ingOxffffffff :: |nt preservesthe bit-pattern in the res-
ulting I nt .

Negative literas, such as - 3, are specified by (a careful reading
of) the Haskell Report as meaning Prel ude. negate
(Prelude.from nteger 3). So -2147483648 means
negate (from nteger 2147483648). Since from n-
t eger takes the lower 32 bits of the representation, f r onl n-
teger (2147483648::1nteger), computed at typel nt is
-2147483648: : | nt. The negat e operation then overflows,
but it is unchecked, so negate (-2147483648::1nt) is
just - 2147483648. In short, one can write nm nBound: : | nt
as a literal with the expected meaning (but that is not in general
guaranteed.

The f rom nt egral function also preserves hit-patterns when
converting between the sized integral types (I nt8, I nt 16,
I nt 32, I nt 64 and the unsigned Wbr d variants), see the mod-
ulesDat a. | nt and Dat a. Wor d in the library documentation.

Unchecked float arithmetic Operations on Fl oat and Doubl e numbers are unchecked for

256

Known bugs and infelicities

overflow, underflow, and other sad occurrences. (note, however
that some architectures trap floating-point overflow and loss-
of-precision and report a floating-point exception, probably ter-
minating the program).

13.2. Known bugs or infelicities

The bug tracker lists bugs that have been reported in GHC but not yet fixed: see the SourceForge GHC
page [http://sourceforge.net/projects/ghc/]. In addition to those, GHC also has the following known bugs
or infelicities. These bugs are more permanent; it is unlikely that any of them will be fixed in the short
term.

13.2.1. Bugs in GHC

GHC can warn about non-exhaustive or overlapping patterns (see Section 5.7, “Warnings and sanity-
checking”), and usually does so correctly. But not always. It gets confused by string patterns, and by
guards, and can then emit bogus warnings. The entire overlap-check code needs an overhaul redly.

GHC does not allow you to have a data type with a context that mentions type variables that are not
data type parameters. For example:

data Ca b =>T a = &T a
so that Mk T'stypeis

MKT :: forall ab. Cab=>a->Ta

In principle, with a suitable class declaration with a functional dependency, it's possible that this type
is not ambiguous; but GHC nevertheless rejects it. The type variables mentioned in the context of the
data type declaration must be among the type parameters of the data type.

GHC'sinliner can be persuaded into non-termination using the standard way to encode recursion via
adatatype:

data U = MU (U -> Bool)

russel :: U -> Bool
russel u@MU p) = not $ pu

X :: Bool
X = russel (MU russel)

We have never found another class of programs, other than this contrived one, that makes GHC di-
verge, and fixing the problem would impose an extra overhead on every compilation. So the bug re-
mains un-fixed. There is more background in Secrets of the GHC inliner
[http://research.microsoft.com/~simonpj/Papers/inlining/] .

GHC does not keep careful track of what instance declarations are 'in scope' if they come from other
packages. Instead, al instance declarations that GHC has seen in other packages are al in scope
everywhere, whether or not the module from that package is used by the command-line expression.
This bug affects only the - - nake mode and GHCi.

257

http://sourceforge.net/projects/ghc/
http://sourceforge.net/projects/ghc/
http://research.microsoft.com/~simonpj/Papers/inlining/

Known bugs and infelicities

13.2.2. Bugs in GHCi (the interactive GHC)

GHCi does not respect the def aul t declaration in the module whose scope you are in. Instead, for
expressions typed at the command line, you aways get the default default-type behaviour; that is,
defaul t (I nt, Doubl e).

It would be better for GHCi to record what the default settings in each module are, and use those of
the 'current’ module (whatever that is).

On Windows, there's a GNU Id/BFD bug whereby it emits bogus PE object files that have more than
Oxffff relocations. When GHCi tries to load a package affected by this bug, you get an error message
of theform

Loadi ng package javavm ... linking ... WARNING Overflown relocation field (# re

The last time we looked, this bug still wasn't fixed in the BFD codebase, and there wasn't any notice-
able interest in fixing it when we reported the bug back in 2001 or so.

The workaround is to split up the .o files that make up your package into two or more .0's, along the
lines of how the "base" package doesiit.

258

Index

Symbols
+r, 49
+RTS, 99
+s, 49
+t, 30, 49
-#include, 94
--install-signal-handlers

RTS option, 100
--RTS, 99
--show-iface, 63
-7, 83
-A

RTS option, 100
-A<size> RTS option, 151, 155
-auto, 132, 135
-auto-all, 132, 135
-B

RTS option, 102
-C, 55, 57
-c, 55, 57, 95

RTS option, 100
-caf-all, 135, 135
-cpp, 57, 91
-Ccpp option, 91
-Cpp Vs string gaps, 93
-Cs

RTS option, 97
-D, 92

RTS option, 103
-demm-lint, 112
-dcore-lint, 77, 112
-dcore-lint option, 242
-ddump options, 105
-ddump-asm, 111
-ddump-bcos, 112
-ddump-cmm, 110
-ddump-cpranal, 106
-ddump-cse, 107
-ddump-deriv, 105
-ddump-ds, 105
-ddump-flatC, 109
-ddump-foreign, 112
-ddump-hi, 63
-ddump-hi-diffs, 63
-ddump-if-trace, 112
-ddump-inlinings, 106
-ddump-minimal-imports, 63
-ddump-occur-anal, 107
-ddump-opt-cmm, 110
-ddump-parsed, 105
-ddump-prep, 108
-ddump-rn, 105
-ddump-rn-trace, 112

-ddump-rules, 106
-ddump-simpl, 106
-ddump-simpl-iterations, 112
-ddump-simpl-stats option, 112
-ddump-spec, 106
-ddump-splices, 105
-ddump-stg, 109
-ddump-stranal, 106
-ddump-tc, 105
-ddump-tc-trace, 112
-ddump-types, 105
-ddump-workwrap, 107
-debug, 96
-dfaststring-stats, 112
-dppr-debug, 112
-dppr-user-length, 112
-dshow-passes, 112
-dshow-rn-stats, 112
-dshow-unused-imports, 112
-dstg-lint, 112
-dverbose-core2core, 112
-dverbose-stg2stg, 112
-dynamic, 95
-E, 55, 57
-E option, 57
-f, 82

RTS option, 99
-F, 93,93

RTS option, 101
-f* options (GHC), 87
-fasm, 94
-fbyte-code, 94
-fcontext-stack, 159
-ferror-spans, 58
-fexcess-precision, 87
-fext-core, 105
-fffi, 236
-fforce-recomp, 64
-fglasgow-exts, 157, 236
-fignore-asserts, 87, 217
-fignore-interface-pragmas, 88
-finline-phase, 159
-fno-* options (GHC), 87
-fno-code, 94
-fno-cse, 87
-fno-embed-manifest, 97
-fno-force-recomp, 64
-fno-full-laziness, 88
-fno-gen-manifest, 96
-fno-implicit-prelude option, 242
-fno-print-bind-result, 28
-fno-state-hack, 88, 88
-fno-strictness, 88
-fobject-code, 94
-fomit-interface-pragmas, 88
-fPIC, 94
-fprint-bind-result, 28
-framework, 95

259

Index

-framework-path, 95
-funbox-strict-fields, 88
-funfolding-creation-threshold, 90
-funfolding-update-in-place, 88
-funfolding-use-threshold, 90

-funfolding-use-thresholdO option, 155

-fvia-C, 94
-fwarn-deprecations, 72
-fwarn-dodgy-imports, 72
-fwarn-duplicate-exports, 73
-fwarn-hi-shadowing, 73
-fwarn-implicit-prelude, 73
-fwarn-incomplete-patterns, 73
-fwarn-incomplete-record-updates, 73
-fwarn-missing-fields, 74
-fwarn-missing-methods, 74
-fwarn-missing-signatures, 75
-fwarn-missing-signatures option, 152
-fwarn-monomorphism-restriction, 76
-fwarn-name-shadowing, 75
-fwarn-orphans, 75
-fwarn-overlapping-patterns, 75
-fwarn-simple-patterns, 75
-fwarn-tabs, 76
-fwarn-type-defaults, 76
-fwarn-unused-binds, 76
-fwarn-unused-imports, 76
-fwarn-unused-matches, 76
-G

RTS option, 101
-G RTS option, 156
-H, 58, 151

RTS option, 101
-h<break-down>, 140
-hb

RTS option, 137, 137
-hc

RTS option, 136, 137
-hC

RTS option, 137
-hesuf, 62
-hd

RTS option, 136, 137
-hi-diffs option, 243
-hide-package, 78, 78
-hidir, 61
-hisuf, 62
-hm

RTS option, 136, 137
-hr

RTS option, 137, 137
-hy

RTS option, 137, 137
-1, 92

RTS option, 101
-i, 137
-idirs, 60
-ignore-dot-ghci, 50

-ignore-package, 78
-ignore-scc, 136
-k

RTS option, 102
-K

RTS option, 102
-keep-hc-file, 63
-keep-hc-files, 63
-keep-raw-s-file, 63
-keep-raw-siles, 63
-keep-s-file, 63
-keep-s-files, 63
-keep-tmp-files, 63
-, 94
-L,95

RTS option, 138
-m

RTS option, 102
-M

RTS option, 102
-m* options, 98
-M<size> RTS option, 155
-main-is, 95
-monly-N-regs option (iX86 only), 99
-n, 57
-no-hs-main, 96, 238
-no-user-package-conf, 80
-Nx

RTS option, 98
-0, 51, 217
-0, 60
-O option, 87
-O* not specified, 87
-00, 87
-O1 option, 87
-O2 option, 87
-odir, 61
-Ofile <file> option, 87
-ohi, 61
-opta, 91
-optc, 91
-optdep, 91
-optdll, 91
-optF, 91
-optL, 91
-optl, 91
-optm, 91
-optP, 91
-optwindres, 91
-osuf, 62, 209
-p, 136

RTS option, 132
-P, 134, 136
-package, 78, 95
-package-conf, 80, 83
-package-name, 78
-pgma, 90, 128
-pgmc, 90, 128

260

Index

-pgmdll, 90, 128
-pgmF, 90, 128
-pgmL, 90, 128
-pgml, 90, 128
-pgmm, 90
-pgmP, 90, 128
-pgms, 90
-pgmwindres, 90
-prof, 132, 135, 209
-r
RTS option, 103
-r RTS option, 148
-read-dot-ghci, 50
-Rghc-timing, 58
-RTS, 99
-S, 55, 57
RTS option, 102
-S
RTS option, 102
-SRTS option, 155
-split-objs, 95
-Sstderr RTS option, 156
-static, 95
-stubdir, 61
-t
RTS option, 102
-threaded, 96
-ticky, 103
-tmpdir, 63
-tmpdir <dir> option, 63
-U, 92
-unreg, 114
-V, 55, 83
RTS option, 100
-v, 57,57, 151
-w, 71
-W option, 70
-wall, 71
-Werror, 72
-Wwarn, 72
-X, 57
-XArrows, 159
-XC
RTSoption, 103, 136
-X ExtendedDefaultRules, 159
-X ForeignFunctionlnterface, 158
-XGenerics, 159
-XIncoherentlnstances, 159, 190
-XMonoPatBinds, 232
-XNolmplicitPrelude option, 159
-XNoMonomorphismRestriction, 232
-XNoMonoPatBinds, 232
-XOverlappinglnstances, 159, 190
-xt
RTS option, 137
-XTemplateHaskell, 206
-XUndecidablel nstances, 159, 190
-Z

RTS option, 103
.ghci
file, 50
.hc files, saving, 62
.hi files, 59
.o files, 59
sfiles, saving, 62
;, 46
1,49
:?, 46
:abandon, 44
:add, 44
:back, 44
:break,
:browse, 44
.cd, 45
:cmd, 45
:continue, 45
.def, 45
.delete, 46
:edit, 46
-etags, 45, 45
:force, 46
:forward, 46
:help, 46
:history, 46
;info, 46
:kind, 47
:load, 25, 47
:main, 47
:module, 47
.print, 47
:quit, 47
:reload, 26, 47
:Set, 48, 49
‘set args, 48
:set prog, 48
:show, 48
:show bindings, 48
:show breaks, 48
:show context, 48
:show languages, 48
:show modules, 48
:show packages, 48
:sprint, 48
‘step, 48
‘trace, 48
‘type, 49
:undef, 49
:unset, 49
__ CONCURRENT_HASKELL__, 92

GLASGOW_HASKELL_, 3,3, 3,92

_ HASKELL1 ,92

__ HASKELL98 ,92

_ HASKELL__ =98, 92

_ PARALLEL_HASKELL ,92
—shared, 250

—-show-iface, 55

261

Index

—auto-ghci-libs, 82
—force, 83

—qglobal, 83

—help, 55, 83

—info, 55
—interactive, 43
—make, 54, 55
—numeric-version, 55
—print-libdir, 55
—supported-languages, 55
—Uuser, 83

—version, 55, 83

A

dlocation area, size, 100
arguments

command-line, 53
ASCII, 59
Assertions, 217
author

package specification, 85
auto

package specification, 84

B

Bang patterns, 215
binary installations, 18
binds, unused, 76
bugs
reporting, 2
bundles of binary stuff, 18

C

C cdlls, function headers, 240
C compiler options, 93
C pre-processor options, 91
CAFs

in GHCi, 49
category

package specification, 85
cc-options

package specification, 86
Char

size of, 256
code coverage, 143
command-line

arguments, 53
compacting garbage collection, 100
compiled code

in GHCi, 26
compiler problems, 242
compiling faster, 151
Concurrent Haskell

using, 97
configure, 18
consistency checks, 112
Constant Applicative Form (see CAFs)

constructor fields, strict, 88
copyright

package specification, 84
CORE pragma, 228
Core syntax, how to read, 113
core, annotation, 228
cost centres

automatically inserting, 135
cost-centre profiling, 132
Cpp, pre-processing with, 91
Creating aWin32 DLL, 250
CTAGS for Haskell, 244

D

debugger

in GHCi, 33
debugging options (for GHC), 105
defaulting mechanism, warning, 76
dependenciesin Makefiles, 67
dependency-generation mode, 55
depends

package specification, 86
DEPRECATED, 218
deprecations, 72
description

package specification, 84
DLL-creation mode, 55
do-notation

in GHCi, 28
dumping GHC intermediates, 105
duplicate exports, warning, 73
dynamic

options, 49, 54

E

encoding, 59
Environment variable

GHC_PACKAGE_PATH, 80
environment variable

for setting RTS options, 99
eval mode, 55
export lists, duplicates, 73
exposed

package specification, 85
exposed-modules

package specification, 85
extensions

options controlling, 157
extensions, GHC, 157
extralibraries

package specification, 85

F

faster compiling, 151
faster programs, how to produce, 152
FFI

GHCi support, 24

262

Index

fields, missing, 74
file suffixesfor GHC, 54
filenames, 59

of modules, 25
finding interface files, 60
floating-point exceptions, 257
forcing GHC-phase options, 90
foreign export

with GHC, 237
Foreign Function Interface

GHCi support, 24
framework-dirs

package specification, 86
frameworks

package specification, 86
frominteger, 256
fromintegral, 256

G

garbage collection

compacting, 100
garbage collector

options, 100
GCC options, 93
generations, number of, 101
getArgs, 48
getProgName, 48
GHC vsthe Haskell 98 language, 254
GHC, using, 53
GHCi, 24
ghci, 54
GHCRTS, 99
GHC_PACKAGE_PATH, 80
ghc_rts opts, 103
Glasgow Haskell mailing lists, 1
Glasgow Parallel Haskell, 234

H
haddock-html

package specification, 86
haddock-interfaces

package specification, 86
Happy, 244
happy parser generator, 244
Haskell 98 language vs GHC, 254
Haskell Program Coverage, 143
hasktags, 244
heap profiles, 140
heap size, factor, 101
heap size, maximum, 102
heap size, suggested, 101
heap space, using less, 156
heap, minimum free, 102
help options, 57
hidden-modules

package specification, 85
homepage

package specification, 84

hooks
RTS, 103
hp2ps, 140
hp2ps program, 140
hpc, 143
hs-boot files, 64
hs-libraries
package specification, 85
hsc2hs, 245
hs add root, 238
Hugs, 24
hugs-options
package specification, 86

ideGC, 101
implicit prelude, warning, 73
import-dirs

package specification, 85
importing, hi-boot files, 64
imports, unused, 76
improvement, code, 86
include-dirs

package specification, 86
include-file options, 93
includes

package specification, 86
incomplete patterns, warning, 73

incomplete record updates, warning, 73

INLINE, 219
INLINE pragma, 219
inlining, controlling, 90, 90
installation, of binaries, 18
installer detection, 96
Int

size of, 256
interactive (see GHCi)
interactive mode, 54
interface files, 59
interface files, finding them, 60
interface files, options, 63
intermediate code generation, 104
intermediate files, saving, 62
intermediate passes, output, 105
interpreter (see GHCI)
invoking

GHCi, 43
it, 31

L
language
option, 157
LANGUAGE
pragma, 218
language, GHC, 157
Latin-1, 59
Id options, 94
Id-options

263

Index

package specification, 86
Ihs suffix, 54
libdir, 55
libraries

with GHCi, 43
library-dirs

package specification, 85
license-file

package specification, 84
LINE

pragma, 221
link, installed as ghc, 19
linker options, 94
linking Haskell libraries with foreign code, 96
lint, 112
list comprehensions

parallel, 165

M

machine-specific options, 98
mailing lists, Glasgow Haskell, 1
maintainer

package specification, 84
make, 66
make and recompilation, 58
make mode, 54
Makefile dependencies, 67
Makefiles

avoiding, 55
MallocFailHook, 104
manifest, 96
matches, unused, 76
memory, using less heap, 156
methods, missing, 74
missing fields, warning, 74
missing methods, warning, 74
mode

options, 54
module system, recursion, 64
modules

and filenames, 25
monomorphism restriction, warning, 76
multicore, 96
multiprocessor, 96

N

name
package specification, 84
native-code generator, 57
NOINLINE, 220
NOTINLINE, 220

O

object files, 59

optimisation, 86

optimise
aggressively, 87

normally, 87
optimising, customised, 87
options

for profiling, 135

GHCi, 49

language, 157
OPTIONS_GHC, 218
OPTIONS_GHC pragma, 53
orphan instance, 70
orphan instances, warning, 75
orphan module, 70
orphan rule, 70
orphan rules, warning, 75
OutOfHeapHook, 104
output-directing options, 60
overflow

Int, 256
overlapping patterns, warning, 75
overloading, death to, 152, 221, 222

P

package-url

package specification, 84
packages, 77

building, 80

management, 81

using, 77

with GHCi, 43
paralel list comprehensions, 165
parallelism, 96, 97, 233
parser generator for Haskell, 244
Pattern guards (Glasgow extension), 163
patterns, incomplete, 73
patterns, overlapping, 75
phases, changing, 90
platform-specific options, 98
postscript, from heap profiles, 140
pragma, 217

LANGUAGE, 218

LINE, 221

OPTIONS_GHC, 218
pragma, CORE, 228
pragma, RULES, 223
pragma, SPECIALIZE, 221
pre-processing: cpp, 91
pre-processing: custom, 93
Pre-processor options, 93
problems, 242
problems running your program, 243
problems with the compiler, 242
profiling, 132

options, 135

ticky ticky, 103

with Template Haskell, 208
profiling, ticky-ticky, 148
prompt

GHCi, 24

264

Index

R

reading Core syntax, 113
recompilation checker, 58, 63
record updates, incomplete, 73
recursion, between modules, 64
redirecting compilation output, 60
reporting bugs, 2
rewrite rules, 223
RTS, 104
RTS behaviour, changing, 103
RTS hooks, 103
RTS options, 99

from the environment, 99

garbage collection, 100
RTS options, concurrent, 97
RTS options, hacking/debugging, 102
RULES pragma, 223
runghc, 52
running, compiled program, 99
runtime control of Haskell programs, 99

S
sanity-checking options, 70
search path, 60
segmentation fault, 243
separate compilation, 55, 58
shadowing

interface files, 73
shadowing, warning, 75
shell commands

in GHCi, 49
Show class, 32
smaller programs, how to produce, 155
SMP, 96, 97, 234
source-file options, 53
space-leaks, avoiding, 156
SPECIALIZE pragma, 152, 221, 222
specifying your own main function, 95
stability

package specification, 84
stack, maximum size, 102
stack, minimum size, 102
StackOverflowHook, 104
startup

files, GHCi, 50
statements

in GHCi, 28
static

options, 50, 54
strict constructor fields, 88
string gaps vs -cpp, 93
structure, command-line, 53
suffixes, file, 54

T

tabs, warning, 76

temporary files

keeping, 63

redirecting, 63
testing anew GHC, 19
ticky ticky profiling, 103
ticky-ticky profiling, 148, 148
time profile, 136
TMPDIR environment variable, 63
Type default, 32
type signatures, missing, 75

U

Unboxed types (Glasgow extension), 160
unfolding, controlling, 90, 90
unicode, 59

UNPACK, 223

unregisterised compilation, 114
unused binds, warning, 76
unused imports, warning, 76
unused matches, warning, 76
using GHC, 53

UTF-8, 59

utilities, Haskell, 244

\
verbosity options, 57
version

package specification, 84
version, of ghc, 2

W

warnings, 70
windres, 97

Y
Y acc for Haskell, 244

265

