----------------------------------------------------------------------------- -- -- Stg to C-- code generation: -- -- The types LambdaFormInfo -- ClosureInfo -- -- Nothing monadic in here! -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module StgCmmClosure ( SMRep, DynTag, tagForCon, isSmallFamily, ConTagZ, dataConTagZ, ArgDescr(..), Liveness(..), C_SRT(..), needsSRT, isVoidRep, isGcPtrRep, addIdReps, addArgReps, argPrimRep, LambdaFormInfo, -- Abstract StandardFormInfo, -- ...ditto... mkLFThunk, mkLFReEntrant, mkConLFInfo, mkSelectorLFInfo, mkApLFInfo, mkLFImported, mkLFArgument, mkLFLetNoEscape, lfDynTag, ClosureInfo, mkClosureInfo, mkConInfo, maybeIsLFCon, closureSize, closureNonHdrSize, closureGoodStuffSize, closurePtrsSize, slopSize, closureName, infoTableLabelFromCI, entryLabelFromCI, closureLabelFromCI, closureTypeInfo, closureLFInfo, isLFThunk,closureSMRep, closureUpdReqd, closureNeedsUpdSpace, closureIsThunk, closureSingleEntry, closureReEntrant, isConstrClosure_maybe, closureFunInfo, isStandardFormThunk, isKnownFun, funTag, tagForArity, enterIdLabel, enterLocalIdLabel, nodeMustPointToIt, CallMethod(..), getCallMethod, blackHoleOnEntry, getClosureType, isToplevClosure, closureValDescr, closureTypeDescr, -- profiling isStaticClosure, cafBlackHoleClosureInfo, staticClosureNeedsLink, clHasCafRefs ) where #include "../includes/MachDeps.h" #define FAST_STRING_NOT_NEEDED #include "HsVersions.h" import ClosureInfo (ArgDescr(..), C_SRT(..), Liveness(..)) -- XXX temporary becuase FunInfo needs this one import StgSyn import SMRep import CmmDecl ( ClosureTypeInfo(..), ConstrDescription ) import CmmExpr import CLabel import StaticFlags import Id import IdInfo import DataCon import Name import Type import TypeRep import TcType import TyCon import BasicTypes import Outputable import Constants import DynFlags ----------------------------------------------------------------------------- -- Representations ----------------------------------------------------------------------------- addIdReps :: [Id] -> [(PrimRep, Id)] addIdReps ids = [(idPrimRep id, id) | id <- ids] addArgReps :: [StgArg] -> [(PrimRep, StgArg)] addArgReps args = [(argPrimRep arg, arg) | arg <- args] argPrimRep :: StgArg -> PrimRep argPrimRep arg = typePrimRep (stgArgType arg) isVoidRep :: PrimRep -> Bool isVoidRep VoidRep = True isVoidRep _other = False isGcPtrRep :: PrimRep -> Bool isGcPtrRep PtrRep = True isGcPtrRep _ = False ----------------------------------------------------------------------------- -- LambdaFormInfo ----------------------------------------------------------------------------- -- Information about an identifier, from the code generator's point of -- view. Every identifier is bound to a LambdaFormInfo in the -- environment, which gives the code generator enough info to be able to -- tail call or return that identifier. data LambdaFormInfo = LFReEntrant -- Reentrant closure (a function) TopLevelFlag -- True if top level !Int -- Arity. Invariant: always > 0 !Bool -- True <=> no fvs ArgDescr -- Argument descriptor (should really be in ClosureInfo) | LFThunk -- Thunk (zero arity) TopLevelFlag !Bool -- True <=> no free vars !Bool -- True <=> updatable (i.e., *not* single-entry) StandardFormInfo !Bool -- True <=> *might* be a function type | LFCon -- A saturated constructor application DataCon -- The constructor | LFUnknown -- Used for function arguments and imported things. -- We know nothing about this closure. -- Treat like updatable "LFThunk"... -- Imported things which we *do* know something about use -- one of the other LF constructors (eg LFReEntrant for -- known functions) !Bool -- True <=> *might* be a function type -- The False case is good when we want to enter it, -- because then we know the entry code will do -- For a function, the entry code is the fast entry point | LFUnLifted -- A value of unboxed type; -- always a value, neeeds evaluation | LFLetNoEscape -- See LetNoEscape module for precise description | LFBlackHole -- Used for the closures allocated to hold the result -- of a CAF. We want the target of the update frame to -- be in the heap, so we make a black hole to hold it. ------------------------- -- An ArgDsecr describes the argument pattern of a function {- XXX -- imported from old ClosureInfo for now data ArgDescr = ArgSpec -- Fits one of the standard patterns !StgHalfWord -- RTS type identifier ARG_P, ARG_N, ... | ArgGen -- General case Liveness -- Details about the arguments -} {- XXX -- imported from old ClosureInfo for now ------------------------- -- We represent liveness bitmaps as a Bitmap (whose internal -- representation really is a bitmap). These are pinned onto case return -- vectors to indicate the state of the stack for the garbage collector. -- -- In the compiled program, liveness bitmaps that fit inside a single -- word (StgWord) are stored as a single word, while larger bitmaps are -- stored as a pointer to an array of words. data Liveness = SmallLiveness -- Liveness info that fits in one word StgWord -- Here's the bitmap | BigLiveness -- Liveness info witha a multi-word bitmap CLabel -- Label for the bitmap -} ------------------------- -- StandardFormInfo tells whether this thunk has one of -- a small number of standard forms data StandardFormInfo = NonStandardThunk -- Not of of the standard forms | SelectorThunk -- A SelectorThunk is of form -- case x of -- con a1,..,an -> ak -- and the constructor is from a single-constr type. WordOff -- 0-origin offset of ak within the "goods" of -- constructor (Recall that the a1,...,an may be laid -- out in the heap in a non-obvious order.) | ApThunk -- An ApThunk is of form -- x1 ... xn -- The code for the thunk just pushes x2..xn on the stack and enters x1. -- There are a few of these (for 1 <= n <= MAX_SPEC_AP_SIZE) pre-compiled -- in the RTS to save space. Int -- Arity, n ------------------------------------------------------ -- Building LambdaFormInfo ------------------------------------------------------ mkLFArgument :: Id -> LambdaFormInfo mkLFArgument id | isUnLiftedType ty = LFUnLifted | might_be_a_function ty = LFUnknown True | otherwise = LFUnknown False where ty = idType id ------------- mkLFLetNoEscape :: LambdaFormInfo mkLFLetNoEscape = LFLetNoEscape ------------- mkLFReEntrant :: TopLevelFlag -- True of top level -> [Id] -- Free vars -> [Id] -- Args -> ArgDescr -- Argument descriptor -> LambdaFormInfo mkLFReEntrant top fvs args arg_descr = LFReEntrant top (length args) (null fvs) arg_descr ------------- mkLFThunk :: Type -> TopLevelFlag -> [Id] -> UpdateFlag -> LambdaFormInfo mkLFThunk thunk_ty top fvs upd_flag = ASSERT( not (isUpdatable upd_flag) || not (isUnLiftedType thunk_ty) ) LFThunk top (null fvs) (isUpdatable upd_flag) NonStandardThunk (might_be_a_function thunk_ty) -------------- might_be_a_function :: Type -> Bool -- Return False only if we are *sure* it's a data type -- Look through newtypes etc as much as poss might_be_a_function ty = case splitTyConApp_maybe (repType ty) of Just (tc, _) -> not (isDataTyCon tc) Nothing -> True ------------- mkConLFInfo :: DataCon -> LambdaFormInfo mkConLFInfo con = LFCon con ------------- mkSelectorLFInfo :: Id -> Int -> Bool -> LambdaFormInfo mkSelectorLFInfo id offset updatable = LFThunk NotTopLevel False updatable (SelectorThunk offset) (might_be_a_function (idType id)) ------------- mkApLFInfo :: Id -> UpdateFlag -> Arity -> LambdaFormInfo mkApLFInfo id upd_flag arity = LFThunk NotTopLevel (arity == 0) (isUpdatable upd_flag) (ApThunk arity) (might_be_a_function (idType id)) ------------- mkLFImported :: Id -> LambdaFormInfo mkLFImported id | Just con <- isDataConWorkId_maybe id , isNullaryRepDataCon con = LFCon con -- An imported nullary constructor -- We assume that the constructor is evaluated so that -- the id really does point directly to the constructor | arity > 0 = LFReEntrant TopLevel arity True (panic "arg_descr") | otherwise = mkLFArgument id -- Not sure of exact arity where arity = idArity id ----------------------------------------------------- -- Dynamic pointer tagging ----------------------------------------------------- type ConTagZ = Int -- A *zero-indexed* contructor tag type DynTag = Int -- The tag on a *pointer* -- (from the dynamic-tagging paper) {- Note [Data constructor dynamic tags] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The family size of a data type (the number of constructors or the arity of a function) can be either: * small, if the family size < 2**tag_bits * big, otherwise. Small families can have the constructor tag in the tag bits. Big families only use the tag value 1 to represent evaluatedness. We don't have very many tag bits: for example, we have 2 bits on x86-32 and 3 bits on x86-64. -} isSmallFamily :: Int -> Bool isSmallFamily fam_size = fam_size <= mAX_PTR_TAG -- We keep the *zero-indexed* tag in the srt_len field of the info -- table of a data constructor. dataConTagZ :: DataCon -> ConTagZ dataConTagZ con = dataConTag con - fIRST_TAG tagForCon :: DataCon -> DynTag tagForCon con | isSmallFamily fam_size = con_tag + 1 | otherwise = 1 where con_tag = dataConTagZ con fam_size = tyConFamilySize (dataConTyCon con) tagForArity :: Int -> DynTag tagForArity arity | isSmallFamily arity = arity | otherwise = 0 lfDynTag :: LambdaFormInfo -> DynTag -- Return the tag in the low order bits of a variable bound -- to this LambdaForm lfDynTag (LFCon con) = tagForCon con lfDynTag (LFReEntrant _ arity _ _) = tagForArity arity lfDynTag _other = 0 ----------------------------------------------------------------------------- -- Observing LambdaFormInfo ----------------------------------------------------------------------------- ------------- maybeIsLFCon :: LambdaFormInfo -> Maybe DataCon maybeIsLFCon (LFCon con) = Just con maybeIsLFCon _ = Nothing ------------ isLFThunk :: LambdaFormInfo -> Bool isLFThunk (LFThunk _ _ _ _ _) = True isLFThunk LFBlackHole = True -- return True for a blackhole: this function is used to determine -- whether to use the thunk header in SMP mode, and a blackhole -- must have one. isLFThunk _ = False ----------------------------------------------------------------------------- -- Choosing SM reps ----------------------------------------------------------------------------- chooseSMRep :: Bool -- True <=> static closure -> LambdaFormInfo -> WordOff -> WordOff -- Tot wds, ptr wds -> SMRep chooseSMRep is_static lf_info tot_wds ptr_wds = let nonptr_wds = tot_wds - ptr_wds closure_type = getClosureType is_static ptr_wds lf_info in GenericRep is_static ptr_wds nonptr_wds closure_type -- We *do* get non-updatable top-level thunks sometimes. eg. f = g -- gets compiled to a jump to g (if g has non-zero arity), instead of -- messing around with update frames and PAPs. We set the closure type -- to FUN_STATIC in this case. getClosureType :: Bool -> WordOff -> LambdaFormInfo -> ClosureType getClosureType is_static ptr_wds lf_info = case lf_info of LFCon {} | is_static && ptr_wds == 0 -> ConstrNoCaf | otherwise -> Constr LFReEntrant {} -> Fun LFThunk _ _ _ (SelectorThunk {}) _ -> ThunkSelector LFThunk {} -> Thunk _ -> panic "getClosureType" ----------------------------------------------------------------------------- -- nodeMustPointToIt ----------------------------------------------------------------------------- -- Be sure to see the stg-details notes about these... nodeMustPointToIt :: LambdaFormInfo -> Bool nodeMustPointToIt (LFReEntrant top _ no_fvs _) = not no_fvs || -- Certainly if it has fvs we need to point to it isNotTopLevel top -- If it is not top level we will point to it -- We can have a \r closure with no_fvs which -- is not top level as special case cgRhsClosure -- has been dissabled in favour of let floating -- For lex_profiling we also access the cost centre for a -- non-inherited function i.e. not top level -- the not top case above ensures this is ok. nodeMustPointToIt (LFCon _) = True -- Strictly speaking, the above two don't need Node to point -- to it if the arity = 0. But this is a *really* unlikely -- situation. If we know it's nil (say) and we are entering -- it. Eg: let x = [] in x then we will certainly have inlined -- x, since nil is a simple atom. So we gain little by not -- having Node point to known zero-arity things. On the other -- hand, we do lose something; Patrick's code for figuring out -- when something has been updated but not entered relies on -- having Node point to the result of an update. SLPJ -- 27/11/92. nodeMustPointToIt (LFThunk _ no_fvs updatable NonStandardThunk _) = updatable || not no_fvs || opt_SccProfilingOn -- For the non-updatable (single-entry case): -- -- True if has fvs (in which case we need access to them, and we -- should black-hole it) -- or profiling (in which case we need to recover the cost centre -- from inside it) nodeMustPointToIt (LFThunk {}) -- Node must point to a standard-form thunk = True nodeMustPointToIt (LFUnknown _) = True nodeMustPointToIt LFUnLifted = False nodeMustPointToIt LFBlackHole = True -- BH entry may require Node to point nodeMustPointToIt LFLetNoEscape = False ----------------------------------------------------------------------------- -- getCallMethod ----------------------------------------------------------------------------- {- The entry conventions depend on the type of closure being entered, whether or not it has free variables, and whether we're running sequentially or in parallel. Closure Node Argument Enter Characteristics Par Req'd Passing Via ------------------------------------------------------------------------------- Unknown & no & yes & stack & node Known fun (>1 arg), no fvs & no & no & registers & fast entry (enough args) & slow entry (otherwise) Known fun (>1 arg), fvs & no & yes & registers & fast entry (enough args) 0 arg, no fvs \r,\s & no & no & n/a & direct entry 0 arg, no fvs \u & no & yes & n/a & node 0 arg, fvs \r,\s & no & yes & n/a & direct entry 0 arg, fvs \u & no & yes & n/a & node Unknown & yes & yes & stack & node Known fun (>1 arg), no fvs & yes & no & registers & fast entry (enough args) & slow entry (otherwise) Known fun (>1 arg), fvs & yes & yes & registers & node 0 arg, no fvs \r,\s & yes & no & n/a & direct entry 0 arg, no fvs \u & yes & yes & n/a & node 0 arg, fvs \r,\s & yes & yes & n/a & node 0 arg, fvs \u & yes & yes & n/a & node \end{tabular} When black-holing, single-entry closures could also be entered via node (rather than directly) to catch double-entry. -} data CallMethod = EnterIt -- No args, not a function | JumpToIt -- A join point | ReturnIt -- It's a value (function, unboxed value, -- or constructor), so just return it. | SlowCall -- Unknown fun, or known fun with -- too few args. | DirectEntry -- Jump directly, with args in regs CLabel -- The code label Int -- Its arity getCallMethod :: DynFlags -> Name -- Function being applied -> CafInfo -- Can it refer to CAF's? -> LambdaFormInfo -- Its info -> Int -- Number of available arguments -> CallMethod getCallMethod _ _name _ lf_info _n_args | nodeMustPointToIt lf_info && opt_Parallel = -- If we're parallel, then we must always enter via node. -- The reason is that the closure may have been -- fetched since we allocated it. EnterIt getCallMethod _ name caf (LFReEntrant _ arity _ _) n_args | n_args == 0 = ASSERT( arity /= 0 ) ReturnIt -- No args at all | n_args < arity = SlowCall -- Not enough args | otherwise = DirectEntry (enterIdLabel name caf) arity getCallMethod _ _name _ LFUnLifted n_args = ASSERT( n_args == 0 ) ReturnIt getCallMethod _ _name _ (LFCon _) n_args = ASSERT( n_args == 0 ) ReturnIt getCallMethod dflags name caf (LFThunk _ _ updatable std_form_info is_fun) n_args | is_fun -- it *might* be a function, so we must "call" it (which is always safe) = SlowCall -- We cannot just enter it [in eval/apply, the entry code -- is the fast-entry code] -- Since is_fun is False, we are *definitely* looking at a data value | updatable || doingTickyProfiling dflags -- to catch double entry {- OLD: || opt_SMP I decided to remove this, because in SMP mode it doesn't matter if we enter the same thunk multiple times, so the optimisation of jumping directly to the entry code is still valid. --SDM -} = EnterIt -- We used to have ASSERT( n_args == 0 ), but actually it is -- possible for the optimiser to generate -- let bot :: Int = error Int "urk" -- in (bot `cast` unsafeCoerce Int (Int -> Int)) 3 -- This happens as a result of the case-of-error transformation -- So the right thing to do is just to enter the thing | otherwise -- Jump direct to code for single-entry thunks = ASSERT( n_args == 0 ) DirectEntry (thunkEntryLabel name caf std_form_info updatable) 0 getCallMethod _ _name _ (LFUnknown True) _n_args = SlowCall -- might be a function getCallMethod _ name _ (LFUnknown False) n_args = ASSERT2 ( n_args == 0, ppr name <+> ppr n_args ) EnterIt -- Not a function getCallMethod _ _name _ LFBlackHole _n_args = SlowCall -- Presumably the black hole has by now -- been updated, but we don't know with -- what, so we slow call it getCallMethod _ _name _ LFLetNoEscape _n_args = JumpToIt isStandardFormThunk :: LambdaFormInfo -> Bool isStandardFormThunk (LFThunk _ _ _ (SelectorThunk _) _) = True isStandardFormThunk (LFThunk _ _ _ (ApThunk _) _) = True isStandardFormThunk _other_lf_info = False isKnownFun :: LambdaFormInfo -> Bool isKnownFun (LFReEntrant _ _ _ _) = True isKnownFun LFLetNoEscape = True isKnownFun _ = False ----------------------------------------------------------------------------- -- staticClosureRequired ----------------------------------------------------------------------------- {- staticClosureRequired is never called (hence commented out) SimonMar writes (Sept 07) It's an optimisation we used to apply at one time, I believe, but it got lost probably in the rewrite of the RTS/code generator. I left that code there to remind me to look into whether it was worth doing sometime {- Avoiding generating entries and info tables ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At present, for every function we generate all of the following, just in case. But they aren't always all needed, as noted below: [NB1: all of this applies only to *functions*. Thunks always have closure, info table, and entry code.] [NB2: All are needed if the function is *exported*, just to play safe.] * Fast-entry code ALWAYS NEEDED * Slow-entry code Needed iff (a) we have any un-saturated calls to the function OR (b) the function is passed as an arg OR (c) we're in the parallel world and the function has free vars [Reason: in parallel world, we always enter functions with free vars via the closure.] * The function closure Needed iff (a) we have any un-saturated calls to the function OR (b) the function is passed as an arg OR (c) if the function has free vars (ie not top level) Why case (a) here? Because if the arg-satis check fails, UpdatePAP stuffs a pointer to the function closure in the PAP. [Could be changed; UpdatePAP could stuff in a code ptr instead, but doesn't seem worth it.] [NB: these conditions imply that we might need the closure without the slow-entry code. Here's how. f x y = let g w = ...x..y..w... in ...(g t)... Here we need a closure for g which contains x and y, but since the calls are all saturated we just jump to the fast entry point for g, with R1 pointing to the closure for g.] * Standard info table Needed iff (a) we have any un-saturated calls to the function OR (b) the function is passed as an arg OR (c) the function has free vars (ie not top level) NB. In the sequential world, (c) is only required so that the function closure has an info table to point to, to keep the storage manager happy. If (c) alone is true we could fake up an info table by choosing one of a standard family of info tables, whose entry code just bombs out. [NB In the parallel world (c) is needed regardless because we enter functions with free vars via the closure.] If (c) is retained, then we'll sometimes generate an info table (for storage mgr purposes) without slow-entry code. Then we need to use an error label in the info table to substitute for the absent slow entry code. -} staticClosureRequired :: Name -> StgBinderInfo -> LambdaFormInfo -> Bool staticClosureRequired binder bndr_info (LFReEntrant top_level _ _ _) -- It's a function = ASSERT( isTopLevel top_level ) -- Assumption: it's a top-level, no-free-var binding not (satCallsOnly bndr_info) staticClosureRequired binder other_binder_info other_lf_info = True -} ----------------------------------------------------------------------------- -- Data types for closure information} ----------------------------------------------------------------------------- {- Information about a closure, from the code generator's point of view. A ClosureInfo decribes the info pointer of a closure. It has enough information a) to construct the info table itself b) to allocate a closure containing that info pointer (i.e. it knows the info table label) We make a ClosureInfo for - each let binding (both top level and not) - each data constructor (for its shared static and dynamic info tables) -} data ClosureInfo = ClosureInfo { closureName :: !Name, -- The thing bound to this closure closureLFInfo :: !LambdaFormInfo, -- NOTE: not an LFCon (see below) closureSMRep :: !SMRep, -- representation used by storage mgr closureSRT :: !C_SRT, -- What SRT applies to this closure closureType :: !Type, -- Type of closure (ToDo: remove) closureDescr :: !String, -- closure description (for profiling) closureCafs :: !CafInfo, -- whether the closure may have CAFs closureInfLcl :: Bool -- can the info pointer be a local symbol? } -- Constructor closures don't have a unique info table label (they use -- the constructor's info table), and they don't have an SRT. | ConInfo { closureCon :: !DataCon, closureSMRep :: !SMRep } {- XXX temp imported from old ClosureInfo -- C_SRT is what StgSyn.SRT gets translated to... -- we add a label for the table, and expect only the 'offset/length' form data C_SRT = NoC_SRT | C_SRT !CLabel !WordOff !StgHalfWord {-bitmap or escape-} deriving (Eq) instance Outputable C_SRT where ppr (NoC_SRT) = ptext SLIT("_no_srt_") ppr (C_SRT label off bitmap) = parens (ppr label <> comma <> ppr off <> comma <> text (show bitmap)) -} needsSRT :: C_SRT -> Bool needsSRT NoC_SRT = False needsSRT (C_SRT _ _ _) = True -------------------------------------- -- Building ClosureInfos -------------------------------------- mkClosureInfo :: Bool -- Is static -> Id -> LambdaFormInfo -> Int -> Int -- Total and pointer words -> C_SRT -> String -- String descriptor -> ClosureInfo mkClosureInfo is_static id lf_info tot_wds ptr_wds srt_info descr = ClosureInfo { closureName = name, closureLFInfo = lf_info, closureSMRep = sm_rep, closureSRT = srt_info, closureType = idType id, closureDescr = descr, closureCafs = idCafInfo id, closureInfLcl = isDataConWorkId id } -- Make the _info pointer for the implicit datacon worker binding -- local. The reason we can do this is that importing code always -- either uses the _closure or _con_info. By the invariants in CorePrep -- anything else gets eta expanded. where name = idName id sm_rep = chooseSMRep is_static lf_info tot_wds ptr_wds mkConInfo :: Bool -- Is static -> DataCon -> Int -> Int -- Total and pointer words -> ClosureInfo mkConInfo is_static data_con tot_wds ptr_wds = ConInfo { closureSMRep = sm_rep, closureCon = data_con } where sm_rep = chooseSMRep is_static (mkConLFInfo data_con) tot_wds ptr_wds -- We need a black-hole closure info to pass to @allocDynClosure@ when we -- want to allocate the black hole on entry to a CAF. These are the only -- ways to build an LFBlackHole, maintaining the invariant that it really -- is a black hole and not something else. cafBlackHoleClosureInfo :: ClosureInfo -> ClosureInfo cafBlackHoleClosureInfo (ClosureInfo { closureName = nm, closureType = ty, closureCafs = cafs }) = ClosureInfo { closureName = nm, closureLFInfo = LFBlackHole, closureSMRep = BlackHoleRep, closureSRT = NoC_SRT, closureType = ty, closureDescr = "", closureCafs = cafs, closureInfLcl = False } cafBlackHoleClosureInfo _ = panic "cafBlackHoleClosureInfo" -------------------------------------- -- Extracting ClosureTypeInfo -------------------------------------- -- JD: I've added the continuation arguments not for fun but because -- I don't want to pipe the monad in here (circular module dependencies), -- and I don't want to pull this code out of this module, which would -- require us to expose a bunch of abstract types. closureTypeInfo :: ClosureInfo -> ((ConstrDescription -> ClosureTypeInfo) -> DataCon -> CLabel -> a) -> (ClosureTypeInfo -> a) -> a closureTypeInfo cl_info k_with_con_name k_simple = case cl_info of ConInfo { closureCon = con } -> k_with_con_name (ConstrInfo (ptrs, nptrs) (fromIntegral (dataConTagZ con))) con info_lbl where --con_name = panic "closureTypeInfo" -- Was: -- cstr <- mkByteStringCLit $ dataConIdentity con -- con_name = makeRelativeRefTo info_lbl cstr ClosureInfo { closureName = name, closureLFInfo = LFReEntrant _ arity _ arg_descr, closureSRT = srt } -> k_simple $ FunInfo (ptrs, nptrs) srt (fromIntegral arity) arg_descr (CmmLabel (mkSlowEntryLabel name (clHasCafRefs cl_info))) ClosureInfo { closureLFInfo = LFThunk _ _ _ (SelectorThunk offset) _, closureSRT = srt } -> k_simple $ ThunkSelectorInfo (fromIntegral offset) srt ClosureInfo { closureLFInfo = LFThunk {}, closureSRT = srt } -> k_simple $ ThunkInfo (ptrs, nptrs) srt _ -> panic "unexpected lambda form in mkCmmInfo" where info_lbl = infoTableLabelFromCI cl_info ptrs = fromIntegral $ closurePtrsSize cl_info size = fromIntegral $ closureNonHdrSize cl_info nptrs = size - ptrs -------------------------------------- -- Functions about closure *sizes* -------------------------------------- closureSize :: ClosureInfo -> WordOff closureSize cl_info = hdr_size + closureNonHdrSize cl_info where hdr_size | closureIsThunk cl_info = thunkHdrSize | otherwise = fixedHdrSize -- All thunks use thunkHdrSize, even if they are non-updatable. -- this is because we don't have separate closure types for -- updatable vs. non-updatable thunks, so the GC can't tell the -- difference. If we ever have significant numbers of non- -- updatable thunks, it might be worth fixing this. closureNonHdrSize :: ClosureInfo -> WordOff closureNonHdrSize cl_info = tot_wds + computeSlopSize tot_wds cl_info where tot_wds = closureGoodStuffSize cl_info closureGoodStuffSize :: ClosureInfo -> WordOff closureGoodStuffSize cl_info = let (ptrs, nonptrs) = sizes_from_SMRep (closureSMRep cl_info) in ptrs + nonptrs closurePtrsSize :: ClosureInfo -> WordOff closurePtrsSize cl_info = let (ptrs, _) = sizes_from_SMRep (closureSMRep cl_info) in ptrs -- not exported: sizes_from_SMRep :: SMRep -> (WordOff,WordOff) sizes_from_SMRep (GenericRep _ ptrs nonptrs _) = (ptrs, nonptrs) sizes_from_SMRep BlackHoleRep = (0, 0) -- Computing slop size. WARNING: this looks dodgy --- it has deep -- knowledge of what the storage manager does with the various -- representations... -- -- Slop Requirements: every thunk gets an extra padding word in the -- header, which takes the the updated value. slopSize :: ClosureInfo -> WordOff slopSize cl_info = computeSlopSize payload_size cl_info where payload_size = closureGoodStuffSize cl_info computeSlopSize :: WordOff -> ClosureInfo -> WordOff computeSlopSize payload_size cl_info = max 0 (minPayloadSize smrep updatable - payload_size) where smrep = closureSMRep cl_info updatable = closureNeedsUpdSpace cl_info closureNeedsUpdSpace :: ClosureInfo -> Bool -- We leave space for an update if either (a) the closure is updatable -- or (b) it is a static thunk. This is because a static thunk needs -- a static link field in a predictable place (after the slop), regardless -- of whether it is updatable or not. closureNeedsUpdSpace (ClosureInfo { closureLFInfo = LFThunk TopLevel _ _ _ _ }) = True closureNeedsUpdSpace cl_info = closureUpdReqd cl_info minPayloadSize :: SMRep -> Bool -> WordOff minPayloadSize smrep updatable = case smrep of BlackHoleRep -> min_upd_size GenericRep _ _ _ _ | updatable -> min_upd_size GenericRep True _ _ _ -> 0 -- static GenericRep False _ _ _ -> mIN_PAYLOAD_SIZE -- ^^^^^___ dynamic where min_upd_size = ASSERT(mIN_PAYLOAD_SIZE <= sIZEOF_StgSMPThunkHeader) 0 -- check that we already have enough -- room for mIN_SIZE_NonUpdHeapObject, -- due to the extra header word in SMP -------------------------------------- -- Other functions over ClosureInfo -------------------------------------- blackHoleOnEntry :: DynFlags -> ClosureInfo -> Bool -- Static closures are never themselves black-holed. -- Updatable ones will be overwritten with a CAFList cell, which points to a -- black hole; -- Single-entry ones have no fvs to plug, and we trust they don't form part -- of a loop. blackHoleOnEntry _ ConInfo{} = False blackHoleOnEntry dflags (ClosureInfo { closureLFInfo = lf_info, closureSMRep = rep }) | isStaticRep rep = False -- Never black-hole a static closure | otherwise = case lf_info of LFReEntrant _ _ _ _ -> False LFLetNoEscape -> False LFThunk _ no_fvs updatable _ _ -> if updatable then not opt_OmitBlackHoling else doingTickyProfiling dflags || not no_fvs -- the former to catch double entry, -- and the latter to plug space-leaks. KSW/SDM 1999-04. _other -> panic "blackHoleOnEntry" -- Should never happen staticClosureNeedsLink :: ClosureInfo -> Bool -- A static closure needs a link field to aid the GC when traversing -- the static closure graph. But it only needs such a field if either -- a) it has an SRT -- b) it's a constructor with one or more pointer fields -- In case (b), the constructor's fields themselves play the role -- of the SRT. staticClosureNeedsLink (ClosureInfo { closureSRT = srt }) = needsSRT srt staticClosureNeedsLink (ConInfo { closureSMRep = sm_rep, closureCon = con }) = not (isNullaryRepDataCon con) && not_nocaf_constr where not_nocaf_constr = case sm_rep of GenericRep _ _ _ ConstrNoCaf -> False _other -> True isStaticClosure :: ClosureInfo -> Bool isStaticClosure cl_info = isStaticRep (closureSMRep cl_info) closureUpdReqd :: ClosureInfo -> Bool closureUpdReqd ClosureInfo{ closureLFInfo = lf_info } = lfUpdatable lf_info closureUpdReqd ConInfo{} = False lfUpdatable :: LambdaFormInfo -> Bool lfUpdatable (LFThunk _ _ upd _ _) = upd lfUpdatable LFBlackHole = True -- Black-hole closures are allocated to receive the results of an -- alg case with a named default... so they need to be updated. lfUpdatable _ = False closureIsThunk :: ClosureInfo -> Bool closureIsThunk ClosureInfo{ closureLFInfo = lf_info } = isLFThunk lf_info closureIsThunk ConInfo{} = False closureSingleEntry :: ClosureInfo -> Bool closureSingleEntry (ClosureInfo { closureLFInfo = LFThunk _ _ upd _ _}) = not upd closureSingleEntry _ = False closureReEntrant :: ClosureInfo -> Bool closureReEntrant (ClosureInfo { closureLFInfo = LFReEntrant _ _ _ _ }) = True closureReEntrant _ = False isConstrClosure_maybe :: ClosureInfo -> Maybe DataCon isConstrClosure_maybe (ConInfo { closureCon = data_con }) = Just data_con isConstrClosure_maybe _ = Nothing closureFunInfo :: ClosureInfo -> Maybe (Int, ArgDescr) closureFunInfo (ClosureInfo { closureLFInfo = lf_info }) = lfFunInfo lf_info closureFunInfo _ = Nothing lfFunInfo :: LambdaFormInfo -> Maybe (Int, ArgDescr) lfFunInfo (LFReEntrant _ arity _ arg_desc) = Just (arity, arg_desc) lfFunInfo _ = Nothing funTag :: ClosureInfo -> DynTag funTag (ClosureInfo { closureLFInfo = lf_info }) = lfDynTag lf_info funTag (ConInfo {}) = panic "funTag" isToplevClosure :: ClosureInfo -> Bool isToplevClosure (ClosureInfo { closureLFInfo = lf_info }) = case lf_info of LFReEntrant TopLevel _ _ _ -> True LFThunk TopLevel _ _ _ _ -> True _other -> False isToplevClosure _ = False -------------------------------------- -- Label generation -------------------------------------- infoTableLabelFromCI :: ClosureInfo -> CLabel infoTableLabelFromCI = fst . labelsFromCI entryLabelFromCI :: ClosureInfo -> CLabel entryLabelFromCI = snd . labelsFromCI labelsFromCI :: ClosureInfo -> (CLabel, CLabel) -- (Info, Entry) labelsFromCI cl@(ClosureInfo { closureName = name, closureLFInfo = lf_info, closureInfLcl = is_lcl }) = case lf_info of LFBlackHole -> (mkCAFBlackHoleInfoTableLabel, mkCAFBlackHoleEntryLabel) LFThunk _ _ upd_flag (SelectorThunk offset) _ -> bothL (mkSelectorInfoLabel, mkSelectorEntryLabel) upd_flag offset LFThunk _ _ upd_flag (ApThunk arity) _ -> bothL (mkApInfoTableLabel, mkApEntryLabel) upd_flag arity LFThunk{} -> bothL std_mk_lbls name $ clHasCafRefs cl LFReEntrant _ _ _ _ -> bothL std_mk_lbls name $ clHasCafRefs cl _other -> panic "labelsFromCI" where std_mk_lbls = if is_lcl then (mkLocalInfoTableLabel, mkLocalEntryLabel) else (mkInfoTableLabel, mkEntryLabel) labelsFromCI cl@(ConInfo { closureCon = con, closureSMRep = rep }) | isStaticRep rep = bothL (mkStaticInfoTableLabel, mkStaticConEntryLabel) name $ clHasCafRefs cl | otherwise = bothL (mkConInfoTableLabel, mkConEntryLabel) name $ clHasCafRefs cl where name = dataConName con bothL :: (a -> b -> c, a -> b -> c) -> a -> b -> (c, c) bothL (f, g) x y = (f x y, g x y) -- ClosureInfo for a closure (as opposed to a constructor) is always local closureLabelFromCI :: ClosureInfo -> CLabel closureLabelFromCI cl@(ClosureInfo { closureName = nm }) = mkLocalClosureLabel nm $ clHasCafRefs cl closureLabelFromCI _ = panic "closureLabelFromCI" thunkEntryLabel :: Name -> CafInfo -> StandardFormInfo -> Bool -> CLabel -- thunkEntryLabel is a local help function, not exported. It's used from both -- entryLabelFromCI and getCallMethod. thunkEntryLabel _thunk_id _ (ApThunk arity) upd_flag = enterApLabel upd_flag arity thunkEntryLabel _thunk_id _ (SelectorThunk offset) upd_flag = enterSelectorLabel upd_flag offset thunkEntryLabel thunk_id c _ _ = enterIdLabel thunk_id c enterApLabel :: Bool -> Arity -> CLabel enterApLabel is_updatable arity | tablesNextToCode = mkApInfoTableLabel is_updatable arity | otherwise = mkApEntryLabel is_updatable arity enterSelectorLabel :: Bool -> WordOff -> CLabel enterSelectorLabel upd_flag offset | tablesNextToCode = mkSelectorInfoLabel upd_flag offset | otherwise = mkSelectorEntryLabel upd_flag offset enterIdLabel :: Name -> CafInfo -> CLabel enterIdLabel id c | tablesNextToCode = mkInfoTableLabel id c | otherwise = mkEntryLabel id c enterLocalIdLabel :: Name -> CafInfo -> CLabel enterLocalIdLabel id c | tablesNextToCode = mkLocalInfoTableLabel id c | otherwise = mkLocalEntryLabel id c -------------------------------------- -- Profiling -------------------------------------- -- Profiling requires two pieces of information to be determined for -- each closure's info table --- description and type. -- The description is stored directly in the @CClosureInfoTable@ when the -- info table is built. -- The type is determined from the type information stored with the @Id@ -- in the closure info using @closureTypeDescr@. closureValDescr, closureTypeDescr :: ClosureInfo -> String closureValDescr (ClosureInfo {closureDescr = descr}) = descr closureValDescr (ConInfo {closureCon = con}) = occNameString (getOccName con) closureTypeDescr (ClosureInfo { closureType = ty }) = getTyDescription ty closureTypeDescr (ConInfo { closureCon = data_con }) = occNameString (getOccName (dataConTyCon data_con)) getTyDescription :: Type -> String getTyDescription ty = case (tcSplitSigmaTy ty) of { (_, _, tau_ty) -> case tau_ty of TyVarTy _ -> "*" AppTy fun _ -> getTyDescription fun FunTy _ res -> '-' : '>' : fun_result res TyConApp tycon _ -> getOccString tycon PredTy sty -> getPredTyDescription sty ForAllTy _ ty -> getTyDescription ty } where fun_result (FunTy _ res) = '>' : fun_result res fun_result other = getTyDescription other getPredTyDescription :: PredType -> String getPredTyDescription (ClassP cl _) = getOccString cl getPredTyDescription (IParam ip _) = getOccString (ipNameName ip) getPredTyDescription (EqPred {}) = "Type equality" -------------------------------------- -- SRTs/CAFs -------------------------------------- -- We need to know whether a closure may have CAFs. clHasCafRefs :: ClosureInfo -> CafInfo clHasCafRefs (ClosureInfo {closureCafs = cafs}) = cafs clHasCafRefs (ConInfo {}) = NoCafRefs