
An External Representation for the GHC Core Language

(For GHC 6.10)

Andrew Tolmach, Tim Chevalier ({apt,tjc}@cs.pdx.edu)
and The GHC Team

February 2, 2012

Abstract

This document provides a precise definition for the GHC Core language, so that it can be
used to communicate between GHC and new stand-alone compilation tools such as back-ends
or optimizers.1 The definition includes a formal grammar and an informal semantics. An
executable typechecker and interpreter (in Haskell), which formally embody the static and
dynamic semantics, are available separately.

1 Introduction

The Glasgow Haskell Compiler (GHC) uses an intermediate language, called “Core,” as its
internal program representation within the compiler’s simplification phase. Core resembles a
subset of Haskell, but with explicit type annotations in the style of the polymorphic lambda
calculus (Fω).

GHC’s front-end translates full Haskell 98 (plus some extensions) into Core. The GHC
optimizer then repeatedly transforms Core programs while preserving their meaning. A “Core
Lint” pass in GHC typechecks Core in between transformation passes (at least when the
user enables linting by setting a compiler flag), verifying that transformations preserve type-
correctness. Finally, GHC’s back-end translates Core into STG-machine code [Peyton Jones,
1992] and then into C or native code.

Two existing papers discuss the original rationale for the design and use of Core [Pey-
ton Jones and Marlow, 1999, Peyton Jones and Santos, 1998], although the (two different)
idealized versions of Core described therein differ in significant ways from the actual Core
language in current GHC. In particular, with the advent of GHC support for generalized alge-
braic datatypes (GADTs) [Peyton Jones et al., 2006] Core was extended beyond its previous
Fω-style incarnation to support type equality constraints and safe coercions, and is now based
on a system known as FC [Sulzmann et al., 2007].

Researchers interested in writing just part of a Haskell compiler, such as a new back-end
or a new optimizer pass, might like to use GHC to provide the other parts of the compiler.
For example, they might like to use GHC’s front-end to parse, desugar, and type-check source
Haskell, then feeding the resulting code to their own back-end tool. As another example, they
might like to use Core as the target language for a front-end compiler of their own design,
feeding externally synthesized Core into GHC in order to take advantage of GHC’s optimizer,
code generator, and run-time system. Without external Core, there are two ways for compiler
writers to do this: they can link their code into the GHC executable, which is an arduous

1This is a draft document, which attempts to describe GHC’s current behavior as precisely as possible. Working
notes scattered throughout indicate areas where further work is needed. Constructive comments are very welcome,
both on the presentation, and on ways in which GHC could be improved in order to simplify the Core story.

Support for generating external Core (post-optimization) was originally introduced in GHC 5.02. The definition
of external Core in this document reflects the version of external Core generated by the HEAD (unstable) branch
of GHC as of May 3, 2008 (version 6.9), , using the compiler flag -fext-core. We expect that GHC 6.10 will be
consistent with this definition.

1

process, or they can use the GHC API [Haskell Wiki, 2007] to do the same task more cleanly.
Both ways require new code to be written in Haskell.

We present a precisely specified external format for Core files. The external format is
text-based and human-readable, to promote interoperability and ease of use. We hope this
format will make it easier for external developers to use GHC in a modular way.

It has long been true that GHC prints an ad-hoc textual representation of Core if you
set certain compiler flags. But this representation is intended to be read by people who
are debugging the compiler, not by other programs. Making Core into a machine-readable,
bi-directional communication format requires:

1. precisely specifying the external format of Core;

2. modifying GHC to generate external Core files (post-simplification; as always, users can
control the exact transformations GHC does with command-line flags);

3. modifying GHC to accept external Core files in place of Haskell source files (users will
also be able to control what GHC does to those files with command-line flags).

The first two facilities will let developers couple GHC’s front-end (parser, type-checker,
desugarer), and optionally its optimizer, with new back-end tools. The last facility will let
developers write new Core-to-Core transformations as an external tool and integrate them
into GHC. It will also allow new front-ends to generate Core that can be fed into GHC’s
optimizer or back-end.

However, because there are many (undocumented) idiosyncracies in the way GHC produces
Core from source Haskell, it will be hard for an external tool to produce Core that can be
integrated with GHC-produced Core (e.g., for the Prelude), and we don’t aim to support this.
Indeed, for the time being, we aim to support only the first two facilities and not the third:
we define and implement Core as an external format that GHC can use to communicate with
external back-end tools, and defer the larger task of extending GHC to support reading this
external format back in.

This document addresses the first requirement, a formal Core definition, by proposing a
formal grammar for an external representation of Core (Section 2), and an informal semantics
(Section 3).

GHC supports many type system extensions; the External Core printer built into GHC
only supports some of them. However, External Core should be capable of representing any
Haskell 98 program, and may be able to represent programs that require certain type system
extensions as well. If a program uses unsupported features, GHC may fail to compile it to
Core when the -fext-core flag is set, or GHC may successfully compile it to Core, but the
external tools will not be able to typecheck or interpret it.

Formal static and dynamic semantics in the form of an executable typechecker and inter-
preter are available separately in the GHC source tree2 under utils/ext-core.

2 External Grammar of Core

In designing the external grammar, we have tried to strike a balance among a number of
competing goals, including easy parseability by machines, easy readability by humans, and
adequate structural simplicity to allow straightforward presentations of the semantics. Thus,
we had to make some compromises. Specifically:

• In order to avoid explosion of parentheses, we support standard precedences and short-
cuts for expressions, types, and kinds. Thus we had to introduce multiple non-terminals
for each of these syntactic categories, and as a result, the concrete grammar is longer
and more complex than the underlying abstract syntax.

• On the other hand, we have kept the grammar simpler by avoiding special syntax for
tuple types and terms. Tuples (both boxed and unboxed) are treated as ordinary con-
structors.

2http://darcs.haskell.org/ghc

2

• All type abstractions and applications are given in full, even though some of them
(e.g., for tuples) could be reconstructed; this means a parser for Core does not have to
reconstruct types.3

• The syntax of identifiers is heavily restricted (to just alphanumerics and underscores);
this again makes Core easier to parse but harder to read.

We use the following notational conventions for syntax:
[pat] optional
{ pat } zero or more repetitions
{ pat }+ one or more repetitions
pat1 | pat2 choice
fibonacci terminal syntax in typewriter font

3These choices are certainly debatable. In particular, keeping type applications on tuples and case arms consid-
erably increases the size of Core files and makes them less human-readable, though it allows a Core parser to be
simpler.

3

Module module → %module mident { tdef ; } { vdefg ; }

Type defn. tdef → %data qtycon { tbind } = { [cdef { ; cdef }] } algebraic type
| %newtype qtycon qtycon { tbind } = ty newtype

Constr. defn. cdef → qdcon { @ tbind } { aty }+

Value defn. vdefg → %rec { vdef { ; vdef } } recursive
| vdef non-recursive

vdef → qvar :: ty = exp

Atomic expr. aexp → qvar variable
| qdcon data constructor
| lit literal
| (exp) nested expr.

Expression exp → aexp atomic expresion
| aexp { arg }+ application
| \ { binder }+ -> exp abstraction
| %let vdefg %in exp local definition
| %case (aty) exp %of vbind { alt { ; alt } } case expression
| %cast exp aty type coercion
| %note " { char } " exp expression note
| %external ccall " { char } " aty external reference
| %dynexternal ccall aty external reference (dynamic)
| %label " { char } " external label

Argument arg → @ aty type argument
| aexp value argument

Case alt. alt → qdcon { @ tbind } { vbind } -> exp constructor alternative
| lit -> exp literal alternative
| %_ -> exp default alternative

Binder binder → @ tbind type binder
| vbind value binder

Type binder tbind → tyvar implicitly of kind *

| (tyvar :: kind) explicitly kinded

Value binder vbind → (var :: ty)

Literal lit → ([-] { digit }+ :: ty) integer
| ([-] { digit }+ % { digit }+ :: ty) rational
| (′ char ′ :: ty) character
| (" { char } " :: ty) string

Character char → any ASCII character in range 0x20-0x7E except 0x22,0x27,0x5c
| \x hex hex ASCII code escape sequence

hex → 0 |. . . |9 |a |. . . |f

4

Atomic type aty → tyvar type variable
| qtycon type constructor
| (ty) nested type

Basic type bty → aty atomic type
| bty aty type application
| %trans aty aty transitive coercion
| %sym aty symmetric coercion
| %unsafe aty aty unsafe coercion
| %left aty left coercion
| %right aty right coercion
| %inst aty aty instantiation coercion

Type ty → bty basic type
| %forall { tbind }+ . ty type abstraction
| bty -> ty arrow type construction

Atomic kind akind → * lifted kind
| # unlifted kind
| ? open kind
| bty :=: bty equality kind
| (kind) nested kind

Kind kind → akind atomic kind
| akind -> kind arrow kind

Identifier mident → pname : uname module
tycon → uname type constr.
qtycon → mident . tycon qualified type constr.
tyvar → lname type variable
dcon → uname data constr.
qdcon → mident . dcon qualified data constr.

var → lname variable
qvar → [mident .] var optionally qualified variable

Name lname → lower { namechar }
uname → upper { namechar }
pname → { namechar }+

namechar → lower | upper | digit
lower → a | b | . . . | z | _
upper → A | B | . . . | Z
digit → 0 | 1 | . . . | 9

3 Informal Semantics

At the term level, Core resembles a explicitly-typed polymorphic lambda calculus (Fω), with
the addition of local let bindings, algebraic type definitions, constructors, and case expres-
sions, and primitive types, literals and operators. Its type system is richer than that of System
F, supporting explicit type equality coercions and type functions. [Sulzmann et al., 2007]

In this section we concentrate on the less obvious points about Core.

3.1 Program Organization and Modules

Core programs are organized into modules, corresponding directly to source-level Haskell mod-
ules. Each module has a identifying name mident. A module identifier consists of a package
name followed by a module name, which may be hierarchical: for example, base:GHC.Base
is the module identifier for GHC’s Base module. Its name is Base, and it lives in the GHC

5

hierarchy within the base package. Section 5.8 of the GHC users’ guide explains package
names [The GHC Team, 2008a]. In particular, note that a Core program may contain mul-
tiple modules with the same (possibly hierarchical) module name that differ in their package
names. In some of the code examples that follow, we will omit package names and possibly
full hierarchical module names from identifiers for brevity, but be aware that they are always
required.4

Each module may contain the following kinds of top-level declarations:

• Algebraic data type declarations, each defining a type constructor and one or more data
constructors;

• Newtype declarations, corresponding to Haskell newtype declarations, each defining a
type constructor and a coercion name; and

• Value declarations, defining the types and values of top-level variables.

No type constructor, data constructor, or top-level value may be declared more than once
within a given module. All the type declarations are (potentially) mutually recursive. Value
declarations must be in dependency order, with explicit grouping of potentially mutually
recursive declarations.

Identifiers defined in top-level declarations may be external or internal. External identifiers
can be referenced from any other module in the program, using conventional dot notation (e.g.,
base:GHC.Base.Bool, base:GHC.Base.True). Internal identifiers are visible only within the
defining module. All type and data constructors are external, and are always defined and
referenced using fully qualified names (with dots).

A top-level value is external if it is defined and referenced using a fully qualified name with
a dot (e.g., main:MyModule.foo = ...); otherwise, it is internal (e.g., bar = ...). Note that
Core’s notion of an external identifier does not necessarily coincide with that of “exported”
identifier in a Haskell source module. An identifier can be an external identifier in Core, but
not be exported by the original Haskell source module.5 However, if an identifier was exported
by the Haskell source module, it will appear as an external name in Core.

Core modules have no explicit import or export lists. Modules may be mutually recursive.
Note that because of the latter fact, GHC currently prints out the top-level bindings for every
module as a single recursive group, in order to avoid keeping track of dependencies between
top-level values within a module. An external Core tool could reconstruct dependencies later,
of course.

There is also an implicitly-defined module ghc-prim:GHC.Prim, which exports the “built-
in” types and values that must be provided by any implementation of Core (including GHC).
Details of this module are in Section 4.

A Core program is a collection of distinctly-named modules that includes a module called
main:Main having an exported value called main:ZCMain.main of type base:GHC.IOBase.IO a

(for some type a). (Note that the strangely named wrapper for main is the one exception to
the rule that qualified names defined within a module m must have module name m.)

Many Core programs will contain library modules, such as base:GHC.Base, which imple-
ment parts of the Haskell standard library. In principle, these modules are ordinary Haskell
modules, with no special status. In practice, the requirement on the type of main:Main.main
implies that every program will contain a large subset of the standard library modules.

3.2 Namespaces

There are five distinct namespaces:

1. module identifiers (mident),

2. type constructors (tycon),

3. type variables (tyvar),

4A possible improvement to the Core syntax would be to add explicit import lists to Core modules, which could
be used to specify abbrevations for long qualified names. This would make the code more human-readable.

5Two examples of such identifiers are: data constructors, and values that potentially appear in an unfolding. For
an example of the latter, consider Main.foo = ... Main.bar ..., where Main.foo is inlineable. Since bar appears
in foo’s unfolding, it is defined and referenced with an external name, even if bar was not exported by the original
source module.

6

4. data constructors (dcon),

5. term variables (var).

Spaces (1), (2+3), and (4+5) can be distinguished from each other by context. To distin-
guish (2) from (3) and (4) from (5), we require that data and type constructors begin with
an upper-case character, and that term and type variables begin with a lower-case character.

Primitive types and operators are not syntactically distinguished.
Primitive coercion operators, of which there are six, are syntactically distinguished in the

grammar. This is because these coercions must be fully applied, and because distinguishing
their applications in the syntax makes typechecking easier.

A given variable (type or term) may have multiple definitions within a module. However,
definitions of term variables never “shadow” one another: the scope of the definition of a given
variable never contains a redefinition of the same variable. Type variables may be shadowed.
Thus, if a term variable has multiple definitions within a module, all those definitions must be
local (let-bound). The only exception to this rule is that (necessarily closed) types labelling
%external expressions may contain tyvar bindings that shadow outer bindings.

Core generated by GHC makes heavy use of encoded names, in which the characters Z and
z are used to introduce escape sequences for non-alphabetic characters such as dollar sign $

(zd), hash # (zh), plus + (zp), etc. This is the same encoding used in .hi files and in the
back-end of GHC itself, except that we sometimes change an initial z to Z, or vice-versa, in
order to maintain case distinctions.

Finally, note that hierarchical module names are z-encoded in Core: for example,
base:GHC.Base.foo is rendered as base:GHCziBase.foo. A parser may reconstruct the mod-
ule hierarchy, or regard GHCziBase as a flat name.

3.3 Types and Kinds

In Core, all type abstractions and applications are explicit. This make it easy to typecheck
any (closed) fragment of Core code. An full executable typechecker is available separately.

3.3.1 Types

Types are described by type expressions, which are built from named type constructors
and type variables using type application and universal quantification. Each type construc-
tor has a fixed arity ≥ 0. Because it is so widely used, there is special infix syntax for
the fully-applied function type constructor (->). (The prefix identifier for this constructor
is ghc-prim:GHC.Prim.ZLzmzgZR; this should only appear in unapplied or partially applied
form.)

There are also a number of other primitive type constructors (e.g., Intzh) that are prede-
fined in the GHC.Prim module, but have no special syntax. %data and %newtype declarations
introduce additional type constructors, as described below. Type constructors are distin-
guished solely by name.

3.3.2 Coercions

A type may also be built using one of the primitive coercion operators, as described in Sec-
tion 3.2. For details on the meanings of these operators, see the System FC paper [Sulzmann
et al., 2007]. Also see Section 3.5 for examples of how GHC uses coercions in Core code.

3.3.3 Kinds

As described in the Haskell definition, it is necessary to distinguish well-formed type-
expressions by classifying them into different kinds [Peyton Jones, 2003, p. 41]. In particular,
Core explicitly records the kind of every bound type variable.

In addition, Core’s kind system includes equality kinds, as in System FC [Sulzmann et al.,
2007]. An application of a built-in coercion, or of a user-defined coercion as introduced by a
newtype declaration, has an equality kind.

7

3.3.4 Lifted and Unlifted Types

Semantically, a type is lifted if and only if it has bottom as an element. We need to distinguish
them because operationally, terms with lifted types may be represented by closures; terms
with unlifted types must not be represented by closures, which implies that any unboxed value
is necessarily unlifted. We distinguish between lifted and unlifted types by ascribing them
different kinds.

Currently, all the primitive types are unlifted (including a few boxed primitive types such
as ByteArrayzh). Peyton Jones and Launchbury [1991] described the ideas behind unboxed
and unlifted types.

3.3.5 Type Constructors; Base Kinds and Higher Kinds

Every type constructor has a kind, depending on its arity and whether it or its arguments are
lifted.

Term variables can only be assigned types that have base kinds: the base kinds are *,#,
and ?. The three base kinds distinguish the liftedness of the types they classify: * represents
lifted types; # represents unlifted types; and ? is the “open” kind, representing a type that
may be either lifted or unlifted. Of these, only * ever appears in Core type declarations
generated from user code; the other two are needed to describe certain types in primitive
(or otherwise specially-generated) code (which, after optimization, could potentially appear
anywhere).

In particular, no top-level identifier (except in ghc-prim:GHC.Prim) has a type of kind #

or ?.
Nullary type constructors have base kinds: for example, the type Int has kind *, and Int#

has kind #.
Non-nullary type constructors have higher kinds: kinds that have the form k1->k2, where

k1 and k2 are kinds. For example, the function type constructor -> has kind * -> (* -> *).
Since Haskell allows abstracting over type constructors, type variables may have higher kinds;
however, much more commonly they have kind *, so that is the default if a type binder omits
a kind.

3.3.6 Type Synonyms and Type Equivalence

There is no mechanism for defining type synonyms (corresponding to Haskell type declara-
tions).

Type equivalence is just syntactic equivalence on type expressions (of base kinds) modulo:

• alpha-renaming of variables bound in %forall types;

• the identity a -> b ≡ ghc-prim:GHC.Prim.ZLzmzgZR a b

3.4 Algebraic data types

Each data declaration introduces a new type constructor and a set of one or more data con-
structors, normally corresponding directly to a source Haskell data declaration. For example,
the source declaration

data Bintree a =

Fork (Bintree a) (Bintree a)

| Leaf a

might induce the following Core declaration

%data Bintree a = {

Fork (Bintree a) (Bintree a);

Leaf a)}

which introduces the unary type constructor Bintree of kind *->* and two data constructors
with types

Fork :: %forall a . Bintree a -> Bintree a -> Bintree a

Leaf :: %forall a . a -> Bintree a

8

We define the arity of each data constructor to be the number of value arguments it takes;
e.g. Fork has arity 2 and Leaf has arity 1.

For a less conventional example illustrating the possibility of higher-order kinds, the
Haskell source declaration

data A f a = MkA (f a)

might induce the Core declaration

%data A (f::*->*) a = { MkA (f a) }

which introduces the constructor

MkA :: %forall (f::*->*) a . (f a) -> (A f) a

GHC (like some other Haskell implementations) supports an extension to Haskell98 for
existential types such as

data T = forall a . MkT a (a -> Bool)

This is represented by the Core declaration

%data T = {MkT @a a (a -> Bool)}

which introduces the nullary type constructor T and the data constructor

MkT :: %forall a . a -> (a -> Bool) -> T

In general, existentially quantified variables appear as extra univerally quantified variables in
the data contructor types. An example of how to construct and deconstruct values of type T

is shown in Section 3.6.

3.5 Newtypes

Each Core %newtype declaration introduces a new type constructor and an associated rep-
resentation type, corresponding to a source Haskell newtype declaration. However, unlike in
source Haskell, a %newtype declaration does not introduce any data constructors.

Each %newtype declaration also introduces a new coercion (syntactically, just another
type constructor) that implies an axiom equating the type constructor, applied to any type
variables bound by the %newtype, to the representation type.

For example, the Haskell fragment

newtype U = MkU Bool

u = MkU True

v = case u of

MkU b -> not b

might induce the Core fragment

%newtype U ZCCoU = Bool;

u :: U = %cast (True)

((%sym ZCCoU));

v :: Bool = not (%cast (u) ZCCoU);

The newtype declaration implies that the types U and Bool have equivalent representations,
and the coercion axiom ZCCoU provides evidence that U is equivalent to Bool. Notice that in
the body of u, the boolean value True is cast to type U using the primitive symmetry rule
applied to ZCCoU: that is, using a coercion of kind Bool :=: U. And in the body of v, u is
cast back to type Bool using the axiom ZCCoU.

Notice that the case in the Haskell source code above translates to a cast in the corre-
sponding Core code. That is because operationally, a case on a value whose type is declared
by a newtype declaration is a no-op. Unlike a case on any other value, such a case does no
evaluation: its only function is to coerce its scrutinee’s type.

Also notice that unlike in a previous draft version of External Core, there is no need to
handle recursive newtypes specially.

9

3.6 Expression Forms

Variables and data constructors are straightforward.
Literal (lit) expressions consist of a literal value, in one of four different formats, and a

(primitive) type annotation. Only certain combinations of format and type are permitted;
see Section 4. The character and string formats can describe only 8-bit ASCII characters.

Moreover, because the operational semantics for Core interprets strings as C-style null-
terminated strings, strings should not contain embedded nulls.

In Core, value applications, type applications, value abstractions, and type abstractions
are all explicit. To tell them apart, type arguments in applications and formal type arguments
in abstractions are preceded by an @ symbol. (In abstractions, the @ plays essentially the same
role as the more usual Λ symbol.) For example, the Haskell source declaration

f x = Leaf (Leaf x)

might induce the Core declaration

f :: %forall a . a -> BinTree (BinTree a) =

\ @a (x::a) -> Leaf @(Bintree a) (Leaf @a x)

Value applications may be of user-defined functions, data constructors, or primitives. None
of these sorts of applications are necessarily saturated.

Note that the arguments of type applications are not always of kind *. For example, given
our previous definition of type A:

data A f a = MkA (f a)

the source code

MkA (Leaf True)

becomes

(MkA @Bintree @Bool) (Leaf @Bool True)

Local bindings, of a single variable or of a set of mutually recursive variables, are repre-
sented by %let expressions in the usual way.

By far the most complicated expression form is %case. %case expressions are permitted
over values of any type, although they will normally be algebraic or primitive types (with
literal values). Evaluating a %case forces the evaluation of the expression being tested (the
“scrutinee”). The value of the scrutinee is bound to the variable following the %of keyword,
which is in scope in all alternatives; this is useful when the scrutinee is a non-atomic expression
(see next example). The scrutinee is preceded by the type of the entire %case expression:
that is, the result type that all of the %case alternatives have (this is intended to make type
reconstruction easier in the presence of type equality coercions).

In an algebraic %case, all the case alternatives must be labeled with distinct data construc-
tors from the algebraic type, followed by any existential type variable bindings (see below),
and typed term variable bindings corresponding to the data constructor’s arguments. The
number of variables must match the data constructor’s arity.

For example, the following Haskell source expression

case g x of

Fork l r -> Fork r l

t@(Leaf v) -> Fork t t

might induce the Core expression

%case ((Bintree a)) g x %of (t::Bintree a)

Fork (l::Bintree a) (r::Bintree a) ->

Fork @a r l

Leaf (v::a) ->

Fork @a t t

When performing a %case over a value of an existentially-quantified algebraic type, the
alternative must include extra local type bindings for the existentially-quantified variables.
For example, given

data T = forall a . MkT a (a -> Bool)

10

the source

case x of

MkT w g -> g w

becomes

%case x %of (x’::T)

MkT @b (w::b) (g::b->Bool) -> g w

In a %case over literal alternatives, all the case alternatives must be distinct literals of the
same primitive type.

The list of alternatives may begin with a default alternative labeled with an underscore
(%_), whose right-hand side will be evaluated if none of the other alternatives match. The
default is optional except for in a case over a primitive type, or when there are no other
alternatives. If the case is over neither an algebraic type nor a primitive type, then the list of
alternatives must contain a default alternative and nothing else. For algebraic cases, the set
of alternatives need not be exhaustive, even if no default is given; if alternatives are missing,
this implies that GHC has deduced that they cannot occur.

%cast is used to manipulate newtypes, as described in Section 3.5. The %cast expression
takes an expression and a coercion: syntactically, the coercion is an arbitrary type, but it must
have an equality kind. In an expression (cast e co), if e :: T and co has kind T :=: U,
then the overall expression has type U [GHC Wiki, 2006]. Here, co must be a coercion whose
left-hand side is T.

Note that unlike the %coerce expression that existed in previous versions of Core, this
means that %cast is (almost) type-safe: the coercion argument provides evidence that can be
verified by a typechecker. There are still unsafe %casts, corresponding to the unsafe %coerce

construct that existed in old versions of Core, because there is a primitive unsafe coercion
type that can be used to cast arbitrary types to each other. GHC uses this for such purposes
as coercing the return type of a function (such as error) which is guaranteed to never return:

case (error "") of

True -> 1

False -> 2

becomes:

%cast (error @ Bool (ZMZN @ Char))

(%unsafe Bool Integer);

%cast has no operational meaning and is only used in typechecking.
A %note expression carries arbitrary internal information that GHC finds interesting. The

information is encoded as a string. Expression notes currently generated by GHC include the
inlining pragma (InlineMe) and cost-center labels for profiling.

A %external expression denotes an external identifier, which has the indicated type (al-
ways expressed in terms of Haskell primitive types). External Core supports two kinds of
external calls: %external and %dynexternal. Only the former is supported by the current set
of stand-alone Core tools. In addition, there is a %label construct which GHC may generate
but which the Core tools do not support.

The present syntax for externals is sufficient for describing C functions and labels. Inter-
facing to other languages may require additional information or a different interpretation of
the name string.

3.7 Expression Evaluation

The dynamic semantics of Core are defined on the type-erasure of the program: for example,
we ignore all type abstractions and applications. The denotational semantics of the resulting
type-free program are just the conventional ones for a call-by-name language, in which ex-
pressions are only evaluated on demand. But Core is intended to be a call-by-need language,
in which expressions are only evaluated once. To express the sharing behavior of call-by-need,
we give an operational model in the style of Launchbury [Launchbury, 1993].

This section describes the model informally; a more formal semantics is separately available
as an executable interpreter.

11

To simplify the semantics, we consider only “well-behaved” Core programs in which con-
structor and primitive applications are fully saturated, and in which non-trivial expresssions
of unlifted kind (#) appear only as scrutinees in %case expressions. Any program can easily
be put into this form; a separately available preprocessor illustrates how. In the remainder of
this section, we use “Core” to mean “well-behaved” Core.

Evaluating a Core expression means reducing it to weak-head normal form (WHNF), i.e., a
primitive value, lambda abstraction, or fully-applied data constructor. Evaluating a program
means evaluating the expression main:ZCMain.main.

To make sure that expression evaluation is shared, we make use of a heap, which contains
heap entries. A heap entry can be:

• A thunk, representing an unevaluated expression, also known as a suspension.

• A WHNF, representing an evaluated expression. The result of evaluating a thunk is a
WHNF. A WHNF is always a closure (corresponding to a lambda abstraction in the
source program) or a data constructor application: computations over primitive types
are never suspended.

Heap pointers point to heap entries: at different times, the same heap pointer can point
to either a thunk or a WHNF, because the run-time system overwrites thunks with WHNFs
as computation proceeds.

The suspended computation that a thunk represents might represent evaluating one of
three different kinds of expression. The run-time system allocates a different kind of thunk
depending on what kind of expression it is:

• A thunk for a value definition has a group of suspended defining expressions, along with a
list of bindings between defined names and heap pointers to those suspensions. (A value
definition may be a recursive group of definitions or a single non-recursive definition,
and it may be top-level (global) or let-bound (local)).

• A thunk for a function application (where the function is user-defined) has a suspended
actual argument expression, and a binding between the formal argument and a heap
pointer to that suspension.

• A thunk for a constructor application has a suspended actual argument expression; the
entire constructed value has a heap pointer to that suspension embedded in it.

As computation proceeds, copies of the heap pointer for a given thunk propagate through
the executing program. When another computation demands the result of that thunk, the
thunk is forced: the run-time system computes the thunk’s result, yielding a WHNF, and
overwrites the heap entry for the thunk with the WHNF. Now, all copies of the heap pointer
point to the new heap entry: a WHNF. Forcing occurs only in the context of

• evaluating the operator expression of an application;

• evaluating the scrutinee of a case expression; or

• evaluating an argument to a primitive or external function application

When no pointers to a heap entry (whether it is a thunk or WHNF) remain, the garbage
collector can reclaim the space it uses. We assume this happens implicitly.

With the exception of functions, arrays, and mutable variables, we intend that values of
all primitive types should be held unboxed: they should not be heap-allocated. This does not
violate call-by-need semantics: all primitive types are unlifted, which means that values of
those types must be evaluated strictly. Unboxed tuple types are not heap-allocated either.

Certain primitives and %external functions cause side-effects to state threads or to the
real world. Where the ordering of these side-effects matters, Core already forces this order
with data dependencies on the pseudo-values representing the threads.

An implementation must specially support the raisezh and handlezh primitives: for
example, by using a handler stack. Again, real-world threading guarantees that they will
execute in the correct order.

4 Primitive Module

The semantics of External Core rely on the contents and informal semantics of the primitive
module ghc-prim:GHC.Prim. Nearly all the primitives are required in order to cover GHC’s

12

implementation of the Haskell98 standard prelude; the only operators that can be completely
omitted are those supporting the byte-code interpreter, parallelism, and foreign objects. Some
of the concurrency primitives are needed, but can be given degenerate implementations if it
desired to target a purely sequential backend (see Section 4.1).

In addition to these primitives, a large number of C library functions are required to
implement the full standard Prelude, particularly to handle I/O and arithmetic on less usual
types.

For a full listing of the names and types of the primitive operators, see the GHC library
documentation [The GHC Team, 2008b].

4.1 Non-concurrent Back End

The Haskell98 standard prelude doesn’t include any concurrency support, but GHC’s imple-
mentation of it relies on the existence of some concurrency primitives. However, it never
actually forks multiple threads. Hence, the concurrency primitives can be given degenerate
implementations that will work in a non-concurrent setting, as follows:

• ThreadIdzh can be represented by a singleton type, whose (unique) value is returned by
myThreadIdzh.

• forkzh can just die with an “unimplemented” message.

• killThreadzh and yieldzh can also just die “unimplemented” since in a one-thread
world, the only thread a thread can kill is itself, and if a thread yields the program
hangs.

• MVarzh a can be represented by MutVarzh (Maybe a); where a concurrent implementa-
tion would block, the sequential implementation can just die with a suitable message
(since no other thread exists to unblock it).

• waitReadzh and waitWritezh can be implemented using a select with no timeout.

4.2 Literals

Only the following combination of literal forms and types are permitted:
Literal form Type Description

integer Intzh Int
Wordzh Word
Addrzh Address
Charzh Unicode character code

rational Floatzh Float
Doublezh Double

character Charzh Unicode character specified by ASCII character
string Addrzh Address of specified C-format string

References

GHC Wiki. System FC: equality constraints and coercions. http://hackage.haskell.org/

trac/ghc/wiki/Commentary/Compiler/FC, 2006.

Haskell Wiki. Using GHC as a library. http://haskell.org/haskellwiki/GHC/As_a\

_library, 2007.

J. Launchbury. A natural semantics for lazy evaluation. In Conference Record of the Twen-
tieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 144–154, Charleston, South Carolina, 1993. URL citeseer.ist.psu.edu/

launchbury93natural.html.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge, UK, 2003.

13

S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler inliner. In Workshop
on Implementing Declarative Languages, 1999. URL http://research.microsoft.com/

Users/simonpj/Papers/inlining/inline.pdf.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based type
inference for GADTs. In ICFP ’06: Proceedings of the 2006 ACM SIGPLAN International
Conference on Functional Programming, pages 50–61, New York, NY, USA, 2006. ACM.
URL http://research.microsoft.com/Users/simonpj/papers/gadt/index.htm.

S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: The Spineless
Tagless G-Machine. Journal of Functional Programming, 2(2):127–202, 1992. URL http:

//citeseer.ist.psu.edu/peytonjones92implementing.html.

S. L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In J. Hughes, editor, Proceedings of the Conference on Func-
tional Programming and Computer Architecture, pages 636–666, Cambridge, Massachus-
sets, USA, 26–28 August 1991. Springer-Verlag LNCS523. URL http://citeseer.ist.

psu.edu/jones91unboxed.html.

S. L. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for Haskell.
Science of Computer Programming, 32(1–3):3–47, 1998. URL http://citeseer.ist.psu.

edu/peytonjones98transformationbased.html.

M. Sulzmann, M. M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type
equality coercions. In TLDI ’07: Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Language Design and Implementation, pages 53–66, New York, NY,
USA, 2007. ACM. URL http://portal.acm.org/citation.cfm?id=1190324.

The GHC Team. The Glorious Glasgow Haskell Compilation System user’s guide, ver-
sion 6.8.2. http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html,
2008a.

The GHC Team. Library documentation: GHC.Prim. http://www.haskell.org/ghc/docs/

latest/html/libraries/base/GHC-Prim.html, 2008b.

14

