
Haddock User Guide i

Haddock User Guide

Haddock User Guide ii

Copyright © 2010 Simon Marlow, David Waern

Haddock User Guide iii

COLLABORATORS

TITLE :

Haddock User Guide

ACTION NAME DATE SIGNATURE

WRITTEN BY Simon Marlow and
David Waern

2004-08-02

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Haddock User Guide iv

Contents

1 Introduction 1

1.1 Obtaining Haddock . 1

1.2 License . 2

1.3 Contributors . 2

1.4 Acknowledgements . 3

2 Invoking Haddock 4

2.1 Using literate or pre-processed source . 7

3 Documentation and Markup 8

3.1 Documenting a top-level declaration . 8

3.2 Documenting parts of a declaration . 9

3.2.1 Class methods . 9

3.2.2 Constructors and record fields . 9

3.2.3 Function arguments . 10

3.3 The module description . 10

3.4 Controlling the documentation structure . 11

3.4.1 Re-exporting an entire module . 12

3.4.2 Omitting the export list . 12

3.5 Named chunks of documentation . 12

3.6 Hyperlinking and re-exported entities . 13

3.7 Module Attributes . 14

3.8 Markup . 14

3.8.1 Paragraphs . 14

3.8.2 Special characters . 14

3.8.3 Character references . 15

3.8.4 Code Blocks . 15

3.8.5 Examples . 15

3.8.6 Properties . 15

3.8.7 Hyperlinked Identifiers . 15

3.8.8 Emphasis, Bold and Monospaced text . 16

Haddock User Guide v

3.8.9 Linking to modules . 16

3.8.10 Itemized and Enumerated lists . 16

3.8.11 Definition lists . 17

3.8.12 URLs . 18

3.8.13 Images . 18

3.8.14 Anchors . 18

3.8.15 Headings . 18

4 Index 20

Abstract

This document describes Haddock version 2.14.3, a Haskell documentation tool.

Haddock User Guide 1 / 20

Chapter 1

Introduction

This is Haddock, a tool for automatically generating documentation from annotated Haskell source code. Haddock was designed
with several goals in mind:

• When documenting APIs, it is desirable to keep the documentation close to the actual interface or implementation of the
API, preferably in the same file, to reduce the risk that the two become out of sync. Haddock therefore lets you write the
documentation for an entity (function, type, or class) next to the definition of the entity in the source code.

• There is a tremendous amount of useful API documentation that can be extracted from just the bare source code, including
types of exported functions, definitions of data types and classes, and so on. Haddock can therefore generate documentation
from a set of straight Haskell 98 modules, and the documentation will contain precisely the interface that is available to a
programmer using those modules.

• Documentation annotations in the source code should be easy on the eye when editing the source code itself, so as not to
obscure the code and to make reading and writing documentation annotations easy. The easier it is to write documentation,
the more likely the programmer is to do it. Haddock therefore uses lightweight markup in its annotations, taking several ideas
from IDoc. In fact, Haddock can understand IDoc-annotated source code.

• The documentation should not expose any of the structure of the implementation, or to put it another way, the implementer of
the API should be free to structure the implementation however he or she wishes, without exposing any of that structure to the
consumer. In practical terms, this means that while an API may internally consist of several Haskell modules, we often only
want to expose a single module to the user of the interface, where this single module just re-exports the relevant parts of the
implementation modules.

Haddock therefore understands the Haskell module system and can generate documentation which hides not only non-exported
entities from the interface, but also the internal module structure of the interface. A documentation annotation can still be placed
next to the implementation, and it will be propagated to the external module in the generated documentation.

• Being able to move around the documentation by following hyperlinks is essential. Documentation generated by Haddock
is therefore littered with hyperlinks: every type and class name is a link to the corresponding definition, and user-written
documentation annotations can contain identifiers which are linked automatically when the documentation is generated.

• We might want documentation in multiple formats - online and printed, for example. Haddock comes with HTML, LaTeX,
and Hoogle backends, and it is structured in such a way that adding new backends is straightforward.

1.1 Obtaining Haddock

Distributions (source & binary) of Haddock can be obtained from its web site.

Up-to-date sources can also be obtained from our public darcs repository. The Haddock sources are at http://code.hask
ell.org/haddock. See darcs.net for more information on the darcs version control utility.

http://www.cse.unsw.edu.au/~chak/haskell/idoc/
http://www.haskell.org/haddock/
http://www.darcs.net/

Haddock User Guide 2 / 20

1.2 License

The following license covers this documentation, and the Haddock source code, except where otherwise indicated.

Copyright 2002-2010, Simon Marlow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3 Contributors

Haddock was originally written by Simon Marlow. Since it is an open source project, many people have contributed to its
development over the years. Below is a list of contributors in alphabetical order that we hope is somewhat complete. If you think
you are missing from this list, please contact us.

• Ashley Yakeley

• Benjamin Franksen

• Brett Letner

• Clemens Fruhwirth

• Conal Elliott

• David Waern

• Duncan Coutts

• George Pollard

• George Russel

• Hal Daume

• Ian Lynagh

• Isaac Dupree

• Joachim Breitner

• Krasimir Angelov

• Lennart Augustsson

• Luke Plant

Haddock User Guide 3 / 20

• Malcolm Wallace

• Manuel Chakravarty

• Mark Lentczner

• Mark Shields

• Mateusz Kowalczyk

• Mike Thomas

• Neil Mitchell

• Oliver Brown

• Roman Cheplyaka

• Ross Paterson

• Sigbjorn Finne

• Simon Hengel

• Simon Marlow

• Simon Peyton-Jones

• Stefan O’Rear

• Sven Panne

• Thomas Schilling

• Wolfgang Jeltsch

• Yitzchak Gale

1.4 Acknowledgements

Several documentation systems provided the inspiration for Haddock, most notably:

• IDoc

• HDoc

• Doxygen

and probably several others I’ve forgotten.

Thanks to the the members of haskelldoc@haskell.org, haddock@projects.haskell.org and everyone who contributed to the many
libraries that Haddock makes use of.

http://www.cse.unsw.edu.au/~chak/haskell/idoc/
http://www.fmi.uni-passau.de/~groessli/hdoc/
http://www.stack.nl/~dimitri/doxygen/
mailto:haskelldoc@haskell.org
mailto:haddock@projects.haskell.org

Haddock User Guide 4 / 20

Chapter 2

Invoking Haddock

Haddock is invoked from the command line, like so:

haddock [option...] file...

Where each file is a filename containing a Haskell source module (.hs) or a Literate Haskell source module (.lhs) or just a
module name.

All the modules specified on the command line will be processed together. When one module refers to an entity in another
module being processed, the documentation will link directly to that entity.

Entities that cannot be found, for example because they are in a module that isn’t being processed as part of the current batch,
simply won’t be hyperlinked in the generated documentation. Haddock will emit warnings listing all the identifiers it couldn’t
resolve.

The modules should not be mutually recursive, as Haddock don’t like swimming in circles.

Note that while older version would fail on invalid markup, this is considered a bug in the new versions. If you ever get failed
parsing message, please report it.

You must also specify an option for the output format. Currently only the -h option for HTML and the --hoogle option for
outputting Hoogle data are functional.

The packaging tool Cabal has Haddock support, and is often used instead of invoking Haddock directly.

The following options are available:

-B dir Tell GHC that that its lib directory is dir. Can be used to override the default path.

-o dir , --odir=dir Generate files into dir instead of the current directory.

-l dir , --lib=dir Use Haddock auxiliary files (themes, javascript, etc...) in dir.

-i path,file , --read-interface=path,file Read the interface file in file, which must have been produced by run-
ning Haddock with the --dump-interface option. The interface describes a set of modules whose HTML documen-
tation is located in path (which may be a relative pathname). The path is optional, and defaults to “.”.

This option allows Haddock to produce separate sets of documentation with hyperlinks between them. The path is used
to direct hyperlinks to point to the right files; so make sure you don’t move the HTML files later or these links will break.
Using a relative path means that a documentation subtree can still be moved around without breaking links.

Multiple --read-interface options may be given.

-D file , --dump-interface=file Produce an interface file1 in the file file. An interface file contains information
Haddock needs to produce more documentation that refers to the modules currently being processed - see the --read-
interface option for more details. The interface file is in a binary format; don’t try to read it.

1 Haddock interface files are not the same as Haskell interface files, I just couldn’t think of a better name.

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Haddock User Guide 5 / 20

-h , --html Generate documentation in HTML format. Several files will be generated into the current directory (or the
specified directory if the -o option is given), including the following:

module.html, mini_module.html An HTML page for each module, and a "mini" page for each used when viewing
in frames.

index.html The top level page of the documentation: lists the modules available, using indentation to represent the
hierarchy if the modules are hierarchical.

doc-index.html, doc-index-X.html The alphabetic index, possibly split into multiple pages if big enough.

frames.html The top level document when viewing in frames.

some.css, etc... Files needed for the themes used. Specify your themes using the --theme option.

haddock-util.js Some JavaScript utilities used to implement some of the dynamic features like collapsible sections,
and switching to frames view.

--latex Generate documentation in LaTeX format. Several files will be generated into the current directory (or the specified
directory if the -o option is given), including the following:

package.tex The top-level LaTeX source file; to format the documentation into PDF you might run something like this:

$ pdflatex package.tex

haddock.sty The default style. The file contains definitions for various macros used in the LaTeX sources generated
by Haddock; to change the way the formatted output looks, you might want to override these by specifying your own
style with the --latex-style option.

module.tex The LaTeX documentation for each module.

--latex-style=style This option lets you override the default style used by the LaTeX generated by the --latex
option. Normally Haddock puts a standard haddock.sty in the output directory, and includes the command \usepac
kage{haddock} in the LaTeX source. If this option is given, then haddock.sty is not generated, and the command
is instead \usepackage{style}.

-S , --docbook Reserved for future use (output documentation in DocBook XML format).

--source-base=URL , --source-module=URL , --source-entity=URL , --source-entity-line=URL Include
links to the source files in the generated documentation. Use the --source-base option to add a source code link in
the header bar of the contents and index pages. Use the --source-module to add a source code link in the header bar
of each module page. Use the --source-entity option to add a source code link next to the documentation for every
value and type in each module. --source-entity-line is a flag that gets used for entities that need to link to an
exact source location rather than a name, eg. since they were defined inside a Template Haskell splice.

In each case URL is the base URL where the source files can be found. For the per-module and per-entity URLs, the
following substitutions are made within the string URL:

• The string %M or %{MODULE} is replaced by the module name. Note that for the per-entity URLs this is the name of the
exporting module.

• The string %F or %{FILE} is replaced by the original source file name. Note that for the per-entity URLs this is the
name of the defining module.

• The string %N or %{NAME} is replaced by the name of the exported value or type. This is only valid for the --source-
entity option.

• The string %K or %{KIND} is replaced by a flag indicating whether the exported name is a value ’v’ or a type ’t’. This
is only valid for the --source-entity option.

• The string %L or %{LINE} is replaced by the number of the line where the exported value or type is defined. This is
only valid for the --source-entity option.

• The string %% is replaced by %.

Haddock User Guide 6 / 20

For example, if your sources are online under some directory, you would say haddock --source-base=url/--
source-module=url/%F

If you have html versions of your sources online with anchors for each type and function name, you would say haddock
--source-base=url/--source-module=url/%M.html --source-entity=url/%M.html#%N

For the %{MODULE} substitution you may want to replace the ’.’ character in the module names with some other character
(some web servers are known to get confused by multiple ’.’ characters in a file name). To replace it with a character c
use %{MODULE/./c}.

Similarly, for the %{FILE} substitution you may want to replace the ’/’ character in the file names with some other
character (especially for links to colourised entity source code with a shared css file). To replace it with a character c use
%{FILE///c}/

One example of a tool that can generate syntax-highlighted HTML from your source code, complete with anchors suitable
for use from haddock, is hscolour.

-s URL , --source=URL Deprecated aliases for --source-module

--comments-base=URL , --comments-module=URL , --comments-entity=URL Include links to pages where read-
ers may comment on the documentation. This feature would typically be used in conjunction with a Wiki system.

Use the --comments-base option to add a user comments link in the header bar of the contents and index pages. Use
the --comments-module to add a user comments link in the header bar of each module page. Use the --comments-
entity option to add a comments link next to the documentation for every value and type in each module.

In each case URL is the base URL where the corresponding comments page can be found. For the per-module and per-entity
URLs the same substitutions are made as with the --source-module and --source-entity options above.

For example, if you want to link the contents page to a wiki page, and every module to subpages, you would say haddock
--comments-base=url --comments-module=url/%M

If your Wiki system doesn’t like the ’.’ character in Haskell module names, you can replace it with a different character.
For example to replace the ’.’ characters with ’_’ use haddock --comments-base=url --comments-mod
ule=url/%{MODULE/./_} Similarly, you can replace the ’/’ in a file name (may be useful for entity comments,
but probably not.)

--theme=path Specify a theme to be used for HTML (--html) documentation. If given multiple times then the pages will
use the first theme given by default, and have alternate style sheets for the others. The reader can switch between themes
with browsers that support alternate style sheets, or with the "Style" menu that gets added when the page is loaded. If no
themes are specified, then just the default built-in theme ("Ocean") is used.

The path parameter can be one of:

• A directory: The base name of the directory becomes the name of the theme. The directory must contain exactly one
some.css file. Other files, usually image files, will be copied, along with the some.css file, into the generated output
directory.

• A CSS file: The base name of the file becomes the name of the theme.

• The name of a built-in theme ("Ocean" or "Classic").

--built-in-themes Includes the built-in themes ("Ocean" and "Classic"). Can be combined with --theme. Note that
order matters: The first specified theme will be the default.

-c file , --css=file Deprecated aliases for --theme

-p file , --prologue=file Specify a file containing documentation which is placed on the main contents page under the
heading “Description”. The file is parsed as a normal Haddock doc comment (but the comment markers are not required).

-t title , --title=title Use title as the page heading for each page in the documentation.This will normally be the
name of the library being documented.

The title should be a plain string (no markup please!).

-q mode , --qual=mode Specify how identifiers are qualified.

mode should be one of

http://www.cs.york.ac.uk/fp/darcs/hscolour

Haddock User Guide 7 / 20

• none (default): don’t qualify any identifiers

• full: always qualify identifiers completely

• local: only qualify identifiers that are not part of the module

• relative: like local, but strip name of the module from qualifications of identifiers in submodules

Example: If you generate documentation for module A, then the identifiers A.x, A.B.y and C.z are qualified as follows.

• none: x, y, z

• full: A.x, A.B.y, C.z

• local: x, A.B.y, C.z

• relative: x, B.y, C.z

-? , --help Display help and exit.

-V , --version Output version information and exit.

-v , --verbose Increase verbosity. Currently this will cause Haddock to emit some extra warnings, in particular about
modules which were imported but it had no information about (this is often quite normal; for example when there is no
information about the Prelude).

--use-contents=URL , --use-index=URL When generating HTML, do not generate an index. Instead, redirect the
Contents and/or Index link on each page to URL. This option is intended for use in conjunction with --gen-contents
and/or --gen-index for generating a separate contents and/or index covering multiple libraries.

--gen-contents , --gen-index Generate an HTML contents and/or index containing entries pulled from all the spec-
ified interfaces (interfaces are specified using -i or --read-interface). This is used to generate a single contents
and/or index for multiple sets of Haddock documentation.

--ignore-all-exports Causes Haddock to behave as if every module has the ignore-exports attribute (Sec-
tion 3.7). This might be useful for generating implementation documentation rather than interface documentation, for
example.

--hide module Causes Haddock to behave as if module module has the hide attribute. (Section 3.7).

--show-extensions module Causes Haddock to behave as if module module has the show-extensions attribute.
(Section 3.7).

--optghc=option Pass option to GHC. Note that there is a double dash there, unlike for GHC.

-w , --no-warnings Turn off all warnings.

--compatible-interface-versions Prints out space-separated versions of binary Haddock interface files that this
version is compatible with.

--no-tmp-comp-dir Do not use a temporary directory for reading and writing compilation output files (.o, .hi, and stub
files). Instead, use the present directory or another directory that you have explicitly told GHC to use via the --optghc
flag.

This flag can be used to avoid recompilation if compilation files already exist. Compilation files are produced when
Haddock has to process modules that make use of Template Haskell, in which case Haddock compiles the modules using
the GHC API.

2.1 Using literate or pre-processed source

Since Haddock uses GHC internally, both plain and literate Haskell sources are accepted without the need for the user to do
anything. To use the C pre-processor, however, the user must pass the the -cpp option to GHC using --optghc.

Haddock User Guide 8 / 20

Chapter 3

Documentation and Markup

Haddock understands special documentation annotations in the Haskell source file and propagates these into the generated doc-
umentation. The annotations are purely optional: if there are no annotations, Haddock will just generate documentation that
contains the type signatures, data type declarations, and class declarations exported by each of the modules being processed.

3.1 Documenting a top-level declaration

The simplest example of a documentation annotation is for documenting any top-level declaration (function type signature, type
declaration, or class declaration). For example, if the source file contains the following type signature:

square :: Int -> Int
square x = x * x

Then we can document it like this:

-- |The ’square’ function squares an integer.
square :: Int -> Int
square x = x * x

The “--|” syntax begins a documentation annotation, which applies to the following declaration in the source file. Note that the
annotation is just a comment in Haskell — it will be ignored by the Haskell compiler.

The declaration following a documentation annotation should be one of the following:

• A type signature for a top-level function,

• A data declaration,

• A newtype declaration,

• A type declaration

• A class declaration,

• A data family or type family declaration, or

• A data instance or type instance declaration.

If the annotation is followed by a different kind of declaration, it will probably be ignored by Haddock.

Some people like to write their documentation after the declaration; this is possible in Haddock too:

square :: Int -> Int
-- ^The ’square’ function squares an integer.
square x = x * x

Haddock User Guide 9 / 20

Note that Haddock doesn’t contain a Haskell type system — if you don’t write the type signature for a function, then Haddock
can’t tell what its type is and it won’t be included in the documentation.

Documentation annotations may span several lines; the annotation continues until the first non-comment line in the source file.
For example:

-- |The ’square’ function squares an integer.
-- It takes one argument, of type ’Int’.
square :: Int -> Int
square x = x * x

You can also use Haskell’s nested-comment style for documentation annotations, which is sometimes more convenient when
using multi-line comments:

{-|
The ’square’ function squares an integer.
It takes one argument, of type ’Int’.

-}
square :: Int -> Int
square x = x * x

3.2 Documenting parts of a declaration

In addition to documenting the whole declaration, in some cases we can also document individual parts of the declaration.

3.2.1 Class methods

Class methods are documented in the same way as top level type signatures, by using either the “-- |” or “-- ˆ” annotations:

class C a where
-- | This is the documentation for the ’f’ method
f :: a -> Int
-- | This is the documentation for the ’g’ method
g :: Int -> a

3.2.2 Constructors and record fields

Constructors are documented like so:

data T a b
-- | This is the documentation for the ’C1’ constructor
= C1 a b
-- | This is the documentation for the ’C2’ constructor
| C2 a b

or like this:

data T a b
= C1 a b -- ^ This is the documentation for the ’C1’ constructor
| C2 a b -- ^ This is the documentation for the ’C2’ constructor

Record fields are documented using one of these styles:

data R a b =
C { -- | This is the documentation for the ’a’ field

a :: a,
-- | This is the documentation for the ’b’ field

Haddock User Guide 10 / 20

b :: b
}

data R a b =
C { a :: a -- ^ This is the documentation for the ’a’ field
, b :: b -- ^ This is the documentation for the ’b’ field
}

Alternative layout styles are generally accepted by Haddock - for example doc comments can appear before or after the comma
in separated lists such as the list of record fields above.

In case that more than one constructor exports a field with the same name, the documentation attached to the first occurence of
the field will be used, even if a comment is not present.

data T a = A { someField :: a -- ^ Doc for someField of A
}

| B { someField :: a -- ^ Doc for someField of B
}

In the above example, all occurences of someField in the documentation are going to be documented with Doc for some
Field of A. Note that Haddock versions 2.14.0 and before would join up documentation of each field and render the result.
The reason for this seemingly weird behaviour is the fact that someField is actually the same (partial) function.

3.2.3 Function arguments

Individual arguments to a function may be documented like this:

f :: Int -- ^ The ’Int’ argument
-> Float -- ^ The ’Float’ argument
-> IO () -- ^ The return value

3.3 The module description

A module itself may be documented with multiple fields that can then be displayed by the backend. In particular, the HTML
backend displays all the fields it currently knows about. We first show the most complete module documentation example and
then talk about the fields.

{-|
Module : W
Description : Short description
Copyright : (c) Some Guy, 2013

Someone Else, 2014
License : GPL-3
Maintainer : sample@email.com
Stability : experimental
Portability : POSIX

Here is a longer description of this module, containing some
commentary with @some markup@.
-}
module W where
...

The “Module” field should be clear. It currently doesn’t affect the output of any of the backends but you might want to include it
for human information or for any other tools that might be parsing these comments without the help of GHC.

The “Description” field accepts some short text which outlines the general purpose of the module. If you’re generating HTML,
it will show up next to the module link in the module index.

Haddock User Guide 11 / 20

The “Copyright”, “License”, “Maintainer” and “Stability” fields should be obvious. An alternative spelling for the “License”
field is accepted as “Licence” but the output will always prefer “License”.

The “Portability” field has seen varied use by different library authors. Some people put down things like operating system
constraints there while others put down which GHC extensions are used in the module. Note that you might want to consider
using the “show-extensions” module flag for the latter.

Finally, a module may contain a documentation comment before the module header, in which case this comment is interpreted
by Haddock as an overall description of the module itself, and placed in a section entitled “Description” in the documentation
for the module. All usual Haddock markup is valid in this comment.

All fields are optional but they must be in order if they do appear. Multi-line fields are accepted but the consecutive lines have to
start indented more than their label. If your label is indented one space as is often the case with “--” syntax, the consecutive lines
have to start at two spaces at the very least. Please note that we do not enforce the format for any of the fields and the established
formats are just a convention.

3.4 Controlling the documentation structure

Haddock produces interface documentation that lists only the entities actually exported by the module. The documentation for a
module will include all entities exported by that module, even if they were re-exported by another module. The only exception is
when Haddock can’t see the declaration for the re-exported entity, perhaps because it isn’t part of the batch of modules currently
being processed.

However, to Haddock the export list has even more significance than just specifying the entities to be included in the documen-
tation. It also specifies the order that entities will be listed in the generated documentation. This leaves the programmer free
to implement functions in any order he/she pleases, and indeed in any module he/she pleases, but still specify the order that the
functions should be documented in the export list. Indeed, many programmers already do this: the export list is often used as a
kind of ad-hoc interface documentation, with headings, groups of functions, type signatures and declarations in comments.

You can insert headings and sub-headings in the documentation by including annotations at the appropriate point in the export
list. For example:

module Foo (
-- * Classes
C(..),
-- * Types
-- ** A data type
T,
-- ** A record
R,
-- * Some functions
f, g
) where

Headings are introduced with the syntax “-- *”, “-- **” and so on, where the number of *s indicates the level of the heading
(section, sub-section, sub-sub-section, etc.).

If you use section headings, then Haddock will generate a table of contents at the top of the module documentation for you.

The alternative style of placing the commas at the beginning of each line is also supported. eg.:

module Foo (
-- * Classes
, C(..)
-- * Types
-- ** A data type
, T
-- ** A record
, R
-- * Some functions
, f

Haddock User Guide 12 / 20

, g
) where

3.4.1 Re-exporting an entire module

Haskell allows you to re-export the entire contents of a module (or at least, everything currently in scope that was imported from
a given module) by listing it in the export list:

module A (
module B,
module C

) where

What will the Haddock-generated documentation for this module look like? Well, it depends on how the modules B and C are
imported. If they are imported wholly and without any hiding qualifiers, then the documentation will just contain a cross-
reference to the documentation for B and C. However, if the modules are not completely re-exported, for example:

module A (
module B,
module C

) where

import B hiding (f)
import C (a, b)

then Haddock behaves as if the set of entities re-exported from B and C had been listed explicitly in the export list1.

The exception to this rule is when the re-exported module is declared with the hide attribute (Section 3.7), in which case the
module is never cross-referenced; the contents are always expanded in place in the re-exporting module.

3.4.2 Omitting the export list

If there is no export list in the module, how does Haddock generate documentation? Well, when the export list is omitted, e.g.:

module Foo where

this is equivalent to an export list which mentions every entity defined at the top level in this module, and Haddock treats it in
the same way. Furthermore, the generated documentation will retain the order in which entities are defined in the module. In this
special case the module body may also include section headings (normally they would be ignored by Haddock).

module Foo where

-- * This heading will now appear before foo.

-- | Documentation for ’foo’.
foo :: Integer
foo = 5

3.5 Named chunks of documentation

Occasionally it is desirable to include a chunk of documentation which is not attached to any particular Haskell declaration.
There are two ways to do this:

• The documentation can be included in the export list directly, e.g.:
1 NOTE: this is not fully implemented at the time of writing (version 0.2). At the moment, Haddock always inserts a cross-reference.

Haddock User Guide 13 / 20

module Foo (
-- * A section heading

-- | Some documentation not attached to a particular Haskell entity
...

) where

• If the documentation is large and placing it inline in the export list might bloat the export list and obscure the structure, then it
can be given a name and placed out of line in the body of the module. This is achieved with a special form of documentation
annotation “-- $”:

module Foo (
-- * A section heading

-- $doc
...

) where

-- $doc
-- Here is a large chunk of documentation which may be referred to by
-- the name $doc.

The documentation chunk is given a name, which is the sequence of alphanumeric characters directly after the “-- $”, and it
may be referred to by the same name in the export list.

3.6 Hyperlinking and re-exported entities

When Haddock renders a type in the generated documentation, it hyperlinks all the type constructors and class names in that type
to their respective definitions. But for a given type constructor or class there may be several modules re-exporting it, and therefore
several modules whose documentation contains the definition of that type or class (possibly including the current module!) so
which one do we link to?

Let’s look at an example. Suppose we have three modules A, B and C defined as follows:

module A (T) where
data T a = C a

module B (f) where
import A
f :: T Int -> Int
f (C i) = i

module C (T, f) where
import A
import B

Module A exports a datatype T. Module B imports A and exports a function f whose type refers to T. Also, both T and f are
re-exported from module C.

Haddock takes the view that each entity has a home module; that is, the module that the library designer would most like to direct
the user to, to find the documentation for that entity. So, Haddock makes all links to an entity point to the home module. The one
exception is when the entity is also exported by the current module: Haddock makes a local link if it can.

How is the home module for an entity determined? Haddock uses the following rules:

• If modules A and B both export the entity, and module A imports (directly or indirectly) module B, then B is preferred.

• A module with the hide attribute is never chosen as the home.

Haddock User Guide 14 / 20

• A module with the not-home attribute is only chosen if there are no other modules to choose.

If multiple modules fit the criteria, then one is chosen at random. If no modules fit the criteria (because the candidates are all
hidden), then Haddock will issue a warning for each reference to an entity without a home.

In the example above, module A is chosen as the home for T because it does not import any other module that exports T. The
link from f’s type in module B will therefore point to A.T. However, C also exports T and f, and the link from f’s type in C will
therefore point locally to C.T.

3.7 Module Attributes

Certain attributes may be specified for each module which affects the way that Haddock generates documentation for that module.
Attributes are specified in a comma-separated list in an {-#OPTIONS_HADDOCK ...#-} pragma at the top of the module,
either before or after the module description. For example:

{-# OPTIONS_HADDOCK hide, prune, ignore-exports #-}

-- |Module description
module A where
...

The options and module description can be in either order.

The following attributes are currently understood by Haddock:

hide Omit this module from the generated documentation, but nevertheless propagate definitions and documentation from
within this module to modules that re-export those definitions.

prune Omit definitions that have no documentation annotations from the generated documentation.

ignore-exports Ignore the export list. Generate documentation as if the module had no export list - i.e. all the top-level
declarations are exported, and section headings may be given in the body of the module.

not-home Indicates that the current module should not be considered to be the home module for each entity it exports, unless
that entity is not exported from any other module. See Section 3.6 for more details.

show-extensions Indicates that we should render the extensions used in this module in the resulting documentation. This
will only render if the output format supports it. If Language is set, it will be shown as well and all the extensions implied
by it won’t. All enabled extensions will be rendered, including those implied by their more powerful versions.

3.8 Markup

Haddock understands certain textual cues inside documentation annotations that tell it how to render the documentation. The
cues (or “markup”) have been designed to be simple and mnemonic in ASCII so that the programmer doesn’t have to deal with
heavyweight annotations when editing documentation comments.

3.8.1 Paragraphs

One or more blank lines separates two paragraphs in a documentation comment.

3.8.2 Special characters

The following characters have special meanings in documentation comments: \, /, ’, `, ", @, <. To insert a literal occurrence
of one of these special characters, precede it with a backslash (\).

Additionally, the character > has a special meaning at the beginning of a line, and the following characters have special meanings
at the beginning of a paragraph: *, -. These characters can also be escaped using \.

Furthermore, the character sequence >>> has a special meaning at the beginning of a line. To escape it, just prefix the characters
in the sequence with a backslash.

Haddock User Guide 15 / 20

3.8.3 Character references

Although Haskell source files may contain any character from the Unicode character set, the encoding of these characters as
bytes varies between systems, so that only source files restricted to the ASCII character set are portable. Other characters may
be specified in character and string literals using Haskell character escapes. To represent such characters in documentation
comments, Haddock supports SGML-style numeric character references of the forms &#D; and &#xH; where D and H are
decimal and hexadecimal numbers denoting a code position in Unicode (or ISO 10646). For example, the references λ,
λ and λ all represent the lower-case letter lambda.

3.8.4 Code Blocks

Displayed blocks of code are indicated by surrounding a paragraph with @...@ or by preceding each line of a paragraph with >
(we often call these “bird tracks”). For example:

-- | This documentation includes two blocks of code:
--
-- @
-- f x = x + x
-- @
--
-- > g x = x * 42

There is an important difference between the two forms of code block: in the bird-track form, the text to the right of the ‘>’ is
interpreted literally, whereas the @...@ form interprets markup as normal inside the code block.

3.8.5 Examples

Haddock has markup support for examples of interaction with a read-eval-print loop (REPL). An example is introduced with
>>> followed by an expression followed by zero or more result lines:

-- | Two examples are given below:
--
-- >>> fib 10
-- 55
--
-- >>> putStrLn "foo\nbar"
-- foo
-- bar

Result lines that only contain the string <BLANKLINE> are rendered as blank lines in the generated documentation.

3.8.6 Properties

Haddock provides markup for properties:

-- | Addition is commutative:
--
-- prop> a + b = b + a

This allows third-party applications to extract and verify them.

3.8.7 Hyperlinked Identifiers

Referring to a Haskell identifier, whether it be a type, class, constructor, or function, is done by surrounding it with single quotes:

-- | This module defines the type ’T’.

Haddock User Guide 16 / 20

If there is an entity T in scope in the current module, then the documentation will hyperlink the reference in the text to the
definition of T (if the output format supports hyperlinking, of course; in a printed format it might instead insert a page reference
to the definition).

It is also possible to refer to entities that are not in scope in the current module, by giving the full qualified name of the entity:

-- | The identifier ’M.T’ is not in scope

If M.T is not otherwise in scope, then Haddock will simply emit a link pointing to the entity T exported from module M (without
checking to see whether either M or M.T exist).

To make life easier for documentation writers, a quoted identifier is only interpreted as such if the quotes surround a lexically
valid Haskell identifier. This means, for example, that it normally isn’t necessary to escape the single quote when used as an
apostrophe:

-- | I don’t have to escape my apostrophes; great, isn’t it?

For compatibility with other systems, the following alternative form of markup is accepted2: `T’.

3.8.8 Emphasis, Bold and Monospaced text

Emphasis may be added by surrounding text with /.../. Other markup is valid inside emphasis. To have a forward slash inside
of emphasis, just escape it: /fo\/o/

Bold (strong) text is indicated by surrounding it with __...__. Other markup is valid inside bold. For example, __/foo/__
will make the emphasised text foo bold. You don’t have to escape a single underscore if you need it bold: __This_text_wi
th_underscores_is_bold__.

Monospaced (or typewriter) text is indicated by surrounding it with @...@. Other markup is valid inside a monospaced span:
for example @’f’ a b@ will hyperlink the identifier f inside the code fragment.

3.8.9 Linking to modules

Linking to a module is done by surrounding the module name with double quotes:

-- | This is a reference to the "Foo" module.

A basic check is done on the syntax of the header name to ensure that it is valid before turning it into a link but unlike with
identifiers, whether the module is in scope isn’t checked and will always be turned into a link.

3.8.10 Itemized and Enumerated lists

A bulleted item is represented by preceding a paragraph with either “*” or “-”. A sequence of bulleted paragraphs is rendered
as an itemized list in the generated documentation, eg.:

-- | This is a bulleted list:
--
-- * first item
--
-- * second item

An enumerated list is similar, except each paragraph must be preceded by either “(n)” or “n.” where n is any integer. e.g.

-- | This is an enumerated list:
--
-- (1) first item
--
-- 2. second item

2 We chose not to use this as the primary markup for identifiers because strictly speaking the ` character should not be used as a left quote, it is a grave
accent.

Haddock User Guide 17 / 20

Lists of the same type don’t have to be separated by a newline:

-- | This is an enumerated list:
--
-- (1) first item
-- 2. second item
--
-- This is a bulleted list:
--
-- * first item
-- * second item

You can have more than one line of content in a list element:

-- |
-- * first item
-- and more content for the first item
-- * second item
-- and more content for the second item

You can even nest whole paragraphs inside of list elements. The rules are 4 spaces for each indentation level. You’re required to
use a newline before such nested paragraph:

{-|

* Beginning of list
This belongs to the list above!

> nested
> bird
> tracks

* Next list
More of the indented list.

* Deeper

@
even code blocks work
@

* Deeper

1. Even deeper!
2. No newline separation even in indented lists.

-}

3.8.11 Definition lists

Definition lists are written as follows:

-- | This is a definition list:
--
-- [@foo@] The description of @foo@.
--
-- [@bar@] The description of @bar@.

To produce output something like this:

foo The description of foo.

Haddock User Guide 18 / 20

bar The description of bar.

Each paragraph should be preceded by the “definition term” enclosed in square brackets. The square bracket characters have
no special meaning outside the beginning of a definition paragraph. That is, if a paragraph begins with a [character, then it is
assumed to be a definition paragraph, and the next] character found will close the definition term. Other markup operators may
be used freely within the definition term. You can escape] with a backslash as usual.

Same rules about nesting and no newline separation as for bulleted and numbered lists apply.

3.8.12 URLs

A URL can be included in a documentation comment by surrounding it in angle brackets: <...>. If the output format supports
it, the URL will be turned into a hyperlink when rendered.

The URL can be followed by an optional label:

<http://example.com label>

The label is then used as a descriptive text for the hyperlink, if the output format supports it.

If Haddock sees something that looks like a URL (such as something starting with http:// or ssh://) where the URL
markup is valid, it will automatically make it a hyperlink.

3.8.13 Images

An image can be included in a documentation comment by surrounding it in double angle brackets: <<...>>. If the output
format supports it, the image will be rendered inside the documentation.

Title text can be included using an optional label:

<<pathtoimage.png title>>

3.8.14 Anchors

Sometimes it is useful to be able to link to a point in the documentation which doesn’t correspond to a particular entity. For that
purpose, we allow anchors to be included in a documentation comment. The syntax is #label#, where label is the name of
the anchor. An anchor is invisible in the generated documentation.

To link to an anchor from elsewhere, use the syntax "module#label"where module is the module name containing the anchor,
and label is the anchor label. The module does not have to be local, it can be imported via an interface. Please note that in
Haddock versions 2.13.x and earlier, the syntax was "module\#label". This is deprecated as of version 2.14.3 and will be
removed in future versions.

3.8.15 Headings

Headings inside of comment documentation are possible be preceding them with a number of =s. From 1 to 6 are accepted.
Extra =s will be treated as belonging to the text of the heading. Note that it’s up to the output format to decide how to render the
different levels.

-- |
-- = Heading level 1 with some __bold__
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- Even more content.

Haddock User Guide 19 / 20

Note that while headings have to start on a new paragraph, we allow paragraph-level content to follow these immediately.

-- |
-- = Heading level 1 with some __bold__
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- >>> examples are only allowed at the start of paragraphs

Haddock User Guide 20 / 20

Chapter 4

Index

_
--built-in-themes, 6
--comments-base, 6
--comments-entity, 6
--comments-module, 6
--compatible-interface-versions, 7
--css, 6
--docbook, 5
--dump-interface, 4
--gen-contents, 7
--gen-index, 7
--help, 7
--hide, 7
--html, 5
--ignore-all-exports, 7
--latex, 5
--latex-style, 5
--lib, 4
--no-tmp-comp-dir, 7
--no-warnings, 7
--odir, 4
--optghc, 7
--prologue, 6
--qual, 6
--read-interface, 4
--show-extensions, 7
--source, 6
--source-base, 5
--source-entity, 5
--source-entity-line, 5
--source-module, 5
--theme, 6
--title, 6
--use-contents, 7
--use-index, 7
--verbose, 7
--version, 7
-?, 7
-B, 4
-D, 4
-S, 5
-V, 7
-c, 6

-h, 5
-i, 4
-l, 4
-o, 4
-p, 6
-q, 6
-s, 6
-t, 6
-v, 7
-w, 7

H
hide, 14

I
ignore-exports, 14

N
not-home, 14

S
show-extensions, 14

	Introduction
	Obtaining Haddock
	License
	Contributors
	Acknowledgements

	Invoking Haddock
	Using literate or pre-processed source

	Documentation and Markup
	Documenting a top-level declaration
	Documenting parts of a declaration
	Class methods
	Constructors and record fields
	Function arguments

	The module description
	Controlling the documentation structure
	Re-exporting an entire module
	Omitting the export list

	Named chunks of documentation
	Hyperlinking and re-exported entities
	Module Attributes
	Markup
	Paragraphs
	Special characters
	Character references
	Code Blocks
	Examples
	Properties
	Hyperlinked Identifiers
	Emphasis, Bold and Monospaced text
	Linking to modules
	Itemized and Enumerated lists
	Definition lists
	URLs
	Images
	Anchors
	Headings

	Index

