{-# LANGUAGE BangPatterns            #-}
{-# LANGUAGE DeriveFunctor           #-}
{-# LANGUAGE FlexibleContexts        #-}
{-# LANGUAGE FunctionalDependencies  #-}
{-# LANGUAGE LambdaCase              #-}
{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE ScopedTypeVariables     #-}
{-# LANGUAGE TypeFamilies            #-}
{-# LANGUAGE ViewPatterns            #-}

{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


This module converts Template Haskell syntax into Hs syntax
-}

module GHC.ThToHs
   ( convertToHsExpr
   , convertToPat
   , convertToHsDecls
   , convertToHsType
   , thRdrNameGuesses
   )
where

import GHC.Prelude

import GHC.Hs as Hs
import GHC.Builtin.Names
import GHC.Types.Name.Reader
import qualified GHC.Types.Name as Name
import GHC.Unit.Module
import GHC.Parser.PostProcess
import GHC.Types.Name.Occurrence as OccName
import GHC.Types.SrcLoc
import GHC.Core.Type as Hs
import qualified GHC.Core.Coercion as Coercion ( Role(..) )
import GHC.Builtin.Types
import GHC.Types.Basic as Hs
import GHC.Types.Fixity as Hs
import GHC.Types.ForeignCall
import GHC.Types.Unique
import GHC.Types.SourceText
import GHC.Utils.Error
import GHC.Data.Bag
import GHC.Utils.Lexeme
import GHC.Utils.Misc
import GHC.Data.FastString
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic

import qualified Data.ByteString as BS
import Control.Monad( unless, ap )

import Data.Maybe( catMaybes, isNothing )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH
import Foreign.ForeignPtr
import Foreign.Ptr
import System.IO.Unsafe

-------------------------------------------------------------------
--              The external interface

convertToHsDecls :: Origin -> SrcSpan -> [TH.Dec] -> Either SDoc [LHsDecl GhcPs]
convertToHsDecls origin loc ds = initCvt origin loc (fmap catMaybes (mapM cvt_dec ds))
  where
    cvt_dec d = wrapMsg "declaration" d (cvtDec d)

convertToHsExpr :: Origin -> SrcSpan -> TH.Exp -> Either SDoc (LHsExpr GhcPs)
convertToHsExpr origin loc e
  = initCvt origin loc $ wrapMsg "expression" e $ cvtl e

convertToPat :: Origin -> SrcSpan -> TH.Pat -> Either SDoc (LPat GhcPs)
convertToPat origin loc p
  = initCvt origin loc $ wrapMsg "pattern" p $ cvtPat p

convertToHsType :: Origin -> SrcSpan -> TH.Type -> Either SDoc (LHsType GhcPs)
convertToHsType origin loc t
  = initCvt origin loc $ wrapMsg "type" t $ cvtType t

-------------------------------------------------------------------
newtype CvtM a = CvtM { unCvtM :: Origin -> SrcSpan -> Either SDoc (SrcSpan, a) }
    deriving (Functor)
        -- Push down the Origin (that is configurable by
        -- -fenable-th-splice-warnings) and source location;
        -- Can fail, with a single error message

-- NB: If the conversion succeeds with (Right x), there should
--     be no exception values hiding in x
-- Reason: so a (head []) in TH code doesn't subsequently
--         make GHC crash when it tries to walk the generated tree

-- Use the loc everywhere, for lack of anything better
-- In particular, we want it on binding locations, so that variables bound in
-- the spliced-in declarations get a location that at least relates to the splice point

instance Applicative CvtM where
    pure x = CvtM $ \_ loc -> Right (loc,x)
    (<*>) = ap

instance Monad CvtM where
  (CvtM m) >>= k = CvtM $ \origin loc -> case m origin loc of
    Left err -> Left err
    Right (loc',v) -> unCvtM (k v) origin loc'

initCvt :: Origin -> SrcSpan -> CvtM a -> Either SDoc a
initCvt origin loc (CvtM m) = fmap snd (m origin loc)

force :: a -> CvtM ()
force a = a `seq` return ()

failWith :: SDoc -> CvtM a
failWith m = CvtM (\_ _ -> Left m)

getOrigin :: CvtM Origin
getOrigin = CvtM (\origin loc -> Right (loc,origin))

getL :: CvtM SrcSpan
getL = CvtM (\_ loc -> Right (loc,loc))

setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ _ -> Right (loc, ()))

returnL :: a -> CvtM (Located a)
returnL x = CvtM (\_ loc -> Right (loc, L loc x))

-- returnLA :: a -> CvtM (LocatedA a)
returnLA :: e -> CvtM (GenLocated (SrcSpanAnn' (EpAnn' ann)) e)
returnLA x = CvtM (\_ loc -> Right (loc, L (noAnnSrcSpan loc) x))

returnJustLA :: a -> CvtM (Maybe (LocatedA a))
returnJustLA = fmap Just . returnLA

-- wrapParL :: (Located a -> a) -> a -> CvtM a
-- wrapParL add_par x = CvtM (\_ loc -> Right (loc, add_par (L loc x)))

wrapParLA :: (LocatedA a -> a) -> a -> CvtM a
wrapParLA add_par x = CvtM (\_ loc -> Right (loc, add_par (L (noAnnSrcSpan loc) x)))

wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
-- E.g  wrapMsg "declaration" dec thing
wrapMsg what item (CvtM m)
  = CvtM $ \origin loc -> case m origin loc of
      Left err -> Left (err $$ msg)
      Right v  -> Right v
  where
        -- Show the item in pretty syntax normally,
        -- but with all its constructors if you say -dppr-debug
    msg = hang (text "When splicing a TH" <+> text what <> colon)
                 2 (getPprDebug $ \case
                     True  -> text (show item)
                     False -> text (pprint item))

wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM $ \origin loc -> case m origin loc of
  Left err -> Left err
  Right (loc', v) -> Right (loc', L loc v)

wrapLN :: CvtM a -> CvtM (LocatedN a)
wrapLN (CvtM m) = CvtM $ \origin loc -> case m origin loc of
  Left err -> Left err
  Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)

wrapLA :: CvtM a -> CvtM (LocatedA a)
wrapLA (CvtM m) = CvtM $ \origin loc -> case m origin loc of
  Left err -> Left err
  Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)

-------------------------------------------------------------------
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs]
cvtDecs = fmap catMaybes . mapM cvtDec

cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs))
cvtDec (TH.ValD pat body ds)
  | TH.VarP s <- pat
  = do  { s' <- vNameN s
        ; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds)
        ; th_origin <- getOrigin
        ; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin s' [cl'] }

  | otherwise
  = do  { pat' <- cvtPat pat
        ; body' <- cvtGuard body
        ; ds' <- cvtLocalDecs (text "a where clause") ds
        ; returnJustLA $ Hs.ValD noExtField $
          PatBind { pat_lhs = pat'
                  , pat_rhs = GRHSs noExtField body' ds'
                  , pat_ext = noAnn
                  , pat_ticks = ([],[]) } }

cvtDec (TH.FunD nm cls)
  | null cls
  = failWith (text "Function binding for"
                 <+> quotes (text (TH.pprint nm))
                 <+> text "has no equations")
  | otherwise
  = do  { nm' <- vNameN nm
        ; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls
        ; th_origin <- getOrigin
        ; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin nm' cls' }

cvtDec (TH.SigD nm typ)
  = do  { nm' <- vNameN nm
        ; ty' <- cvtSigType typ
        ; returnJustLA $ Hs.SigD noExtField
                                    (TypeSig noAnn [nm'] (mkHsWildCardBndrs ty')) }

cvtDec (TH.KiSigD nm ki)
  = do  { nm' <- tconNameN nm
        ; ki' <- cvtSigKind ki
        ; let sig' = StandaloneKindSig noAnn nm' ki'
        ; returnJustLA $ Hs.KindSigD noExtField sig' }

cvtDec (TH.InfixD fx nm)
  -- Fixity signatures are allowed for variables, constructors, and types
  -- the renamer automatically looks for types during renaming, even when
  -- the RdrName says it's a variable or a constructor. So, just assume
  -- it's a variable or constructor and proceed.
  = do { nm' <- vcNameN nm
       ; returnJustLA (Hs.SigD noExtField (FixSig noAnn
                                      (FixitySig noExtField [nm'] (cvtFixity fx)))) }

cvtDec (PragmaD prag)
  = cvtPragmaD prag

cvtDec (TySynD tc tvs rhs)
  = do  { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
        ; rhs' <- cvtType rhs
        ; returnJustLA $ TyClD noExtField $
          SynDecl { tcdSExt = noAnn, tcdLName = tc', tcdTyVars = tvs'
                  , tcdFixity = Prefix
                  , tcdRhs = rhs' } }

cvtDec (DataD ctxt tc tvs ksig constrs derivs)
  = do  { let isGadtCon (GadtC    _ _ _) = True
              isGadtCon (RecGadtC _ _ _) = True
              isGadtCon (ForallC  _ _ c) = isGadtCon c
              isGadtCon _                = False
              isGadtDecl  = all isGadtCon constrs
              isH98Decl   = all (not . isGadtCon) constrs
        ; unless (isGadtDecl || isH98Decl)
                 (failWith (text "Cannot mix GADT constructors with Haskell 98"
                        <+> text "constructors"))
        ; unless (isNothing ksig || isGadtDecl)
                 (failWith (text "Kind signatures are only allowed on GADTs"))
        ; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
        ; ksig' <- cvtKind `traverse` ksig
        ; cons' <- mapM cvtConstr constrs
        ; derivs' <- cvtDerivs derivs
        ; let defn = HsDataDefn { dd_ext = noAnn
                                , dd_ND = DataType, dd_cType = Nothing
                                , dd_ctxt = Just ctxt'
                                , dd_kindSig = ksig'
                                , dd_cons = cons', dd_derivs = derivs' }
        ; returnJustLA $ TyClD noExtField $
          DataDecl { tcdDExt = noAnn
                   , tcdLName = tc', tcdTyVars = tvs'
                   , tcdFixity = Prefix
                   , tcdDataDefn = defn } }

cvtDec (NewtypeD ctxt tc tvs ksig constr derivs)
  = do  { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
        ; ksig' <- cvtKind `traverse` ksig
        ; con' <- cvtConstr constr
        ; derivs' <- cvtDerivs derivs
        ; let defn = HsDataDefn { dd_ext = noAnn
                                , dd_ND = NewType, dd_cType = Nothing
                                , dd_ctxt = Just ctxt'
                                , dd_kindSig = ksig'
                                , dd_cons = [con']
                                , dd_derivs = derivs' }
        ; returnJustLA $ TyClD noExtField $
          DataDecl { tcdDExt = noAnn
                   , tcdLName = tc', tcdTyVars = tvs'
                   , tcdFixity = Prefix
                   , tcdDataDefn = defn } }

cvtDec (ClassD ctxt cl tvs fds decs)
  = do  { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
        ; fds'  <- mapM cvt_fundep fds
        ; (binds', sigs', fams', at_defs', adts') <- cvt_ci_decs (text "a class declaration") decs
        ; unless (null adts')
            (failWith $ (text "Default data instance declarations"
                     <+> text "are not allowed:")
                   $$ (Outputable.ppr adts'))
        ; returnJustLA $ TyClD noExtField $
          ClassDecl { tcdCExt = (noAnn, NoAnnSortKey, NoLayoutInfo)
                    , tcdCtxt = Just cxt', tcdLName = tc', tcdTyVars = tvs'
                    , tcdFixity = Prefix
                    , tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs'
                    , tcdMeths = binds'
                    , tcdATs = fams', tcdATDefs = at_defs', tcdDocs = [] }
                              -- no docs in TH ^^
        }

cvtDec (InstanceD o ctxt ty decs)
  = do  { let doc = text "an instance declaration"
        ; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
        ; unless (null fams') (failWith (mkBadDecMsg doc fams'))
        ; ctxt' <- cvtContext funPrec ctxt
        ; (L loc ty') <- cvtType ty
        ; let inst_ty' = L loc $ mkHsImplicitSigType $
                         mkHsQualTy ctxt loc ctxt' $ L loc ty'
        ; returnJustLA $ InstD noExtField $ ClsInstD noExtField $
          ClsInstDecl { cid_ext = (noAnn, NoAnnSortKey), cid_poly_ty = inst_ty'
                      , cid_binds = binds'
                      , cid_sigs = Hs.mkClassOpSigs sigs'
                      , cid_tyfam_insts = ats', cid_datafam_insts = adts'
                      , cid_overlap_mode
                                   = fmap (L (l2l loc) . overlap) o } }
  where
  overlap pragma =
    case pragma of
      TH.Overlaps      -> Hs.Overlaps     (SourceText "OVERLAPS")
      TH.Overlappable  -> Hs.Overlappable (SourceText "OVERLAPPABLE")
      TH.Overlapping   -> Hs.Overlapping  (SourceText "OVERLAPPING")
      TH.Incoherent    -> Hs.Incoherent   (SourceText "INCOHERENT")




cvtDec (ForeignD ford)
  = do { ford' <- cvtForD ford
       ; returnJustLA $ ForD noExtField ford' }

cvtDec (DataFamilyD tc tvs kind)
  = do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
       ; result <- cvtMaybeKindToFamilyResultSig kind
       ; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
         FamilyDecl noAnn DataFamily TopLevel tc' tvs' Prefix result Nothing }

cvtDec (DataInstD ctxt bndrs tys ksig constrs derivs)
  = do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
       ; ksig' <- cvtKind `traverse` ksig
       ; cons' <- mapM cvtConstr constrs
       ; derivs' <- cvtDerivs derivs
       ; let defn = HsDataDefn { dd_ext = noAnn
                               , dd_ND = DataType, dd_cType = Nothing
                               , dd_ctxt = Just ctxt'
                               , dd_kindSig = ksig'
                               , dd_cons = cons', dd_derivs = derivs' }

       ; returnJustLA $ InstD noExtField $ DataFamInstD
           { dfid_ext = noAnn
           , dfid_inst = DataFamInstDecl { dfid_eqn =
                           FamEqn { feqn_ext = noAnn
                                  , feqn_tycon = tc'
                                  , feqn_bndrs = bndrs'
                                  , feqn_pats = typats'
                                  , feqn_rhs = defn
                                  , feqn_fixity = Prefix } }}}

cvtDec (NewtypeInstD ctxt bndrs tys ksig constr derivs)
  = do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
       ; ksig' <- cvtKind `traverse` ksig
       ; con' <- cvtConstr constr
       ; derivs' <- cvtDerivs derivs
       ; let defn = HsDataDefn { dd_ext = noAnn
                               , dd_ND = NewType, dd_cType = Nothing
                               , dd_ctxt = Just ctxt'
                               , dd_kindSig = ksig'
                               , dd_cons = [con'], dd_derivs = derivs' }
       ; returnJustLA $ InstD noExtField $ DataFamInstD
           { dfid_ext = noAnn
           , dfid_inst = DataFamInstDecl { dfid_eqn =
                           FamEqn { feqn_ext = noAnn
                                  , feqn_tycon = tc'
                                  , feqn_bndrs = bndrs'
                                  , feqn_pats = typats'
                                  , feqn_rhs = defn
                                  , feqn_fixity = Prefix } }}}

cvtDec (TySynInstD eqn)
  = do  { (L _ eqn') <- cvtTySynEqn eqn
        ; returnJustLA $ InstD noExtField $ TyFamInstD
            { tfid_ext = noExtField
            , tfid_inst = TyFamInstDecl { tfid_xtn = noAnn, tfid_eqn = eqn' } }}

cvtDec (OpenTypeFamilyD head)
  = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
       ; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
         FamilyDecl noAnn OpenTypeFamily TopLevel tc' tyvars' Prefix result' injectivity'
       }

cvtDec (ClosedTypeFamilyD head eqns)
  = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
       ; eqns' <- mapM cvtTySynEqn eqns
       ; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
         FamilyDecl noAnn (ClosedTypeFamily (Just eqns')) TopLevel tc' tyvars' Prefix
                           result' injectivity' }

cvtDec (TH.RoleAnnotD tc roles)
  = do { tc' <- tconNameN tc
       ; let roles' = map (noLoc . cvtRole) roles
       ; returnJustLA
                   $ Hs.RoleAnnotD noExtField (RoleAnnotDecl noAnn tc' roles') }

cvtDec (TH.StandaloneDerivD ds cxt ty)
  = do { cxt' <- cvtContext funPrec cxt
       ; ds'  <- traverse cvtDerivStrategy ds
       ; (L loc ty') <- cvtType ty
       ; let inst_ty' = L loc $ mkHsImplicitSigType $
                        mkHsQualTy cxt loc cxt' $ L loc ty'
       ; returnJustLA $ DerivD noExtField $
         DerivDecl { deriv_ext = noAnn
                   , deriv_strategy = ds'
                   , deriv_type = mkHsWildCardBndrs inst_ty'
                   , deriv_overlap_mode = Nothing } }

cvtDec (TH.DefaultSigD nm typ)
  = do { nm' <- vNameN nm
       ; ty' <- cvtSigType typ
       ; returnJustLA $ Hs.SigD noExtField
                      $ ClassOpSig noAnn True [nm'] ty'}

cvtDec (TH.PatSynD nm args dir pat)
  = do { nm'   <- cNameN nm
       ; args' <- cvtArgs args
       ; dir'  <- cvtDir nm' dir
       ; pat'  <- cvtPat pat
       ; returnJustLA $ Hs.ValD noExtField $ PatSynBind noExtField $
           PSB noAnn nm' args' pat' dir' }
  where
    cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixCon noTypeArgs <$> mapM vNameN args
    cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixCon <$> vNameN a1 <*> vNameN a2
    cvtArgs (TH.RecordPatSyn sels)
      = do { sels' <- mapM (fmap (\ (L li i) -> FieldOcc noExtField (L li i)) . vNameN) sels
           ; vars' <- mapM (vNameN . mkNameS . nameBase) sels
           ; return $ Hs.RecCon $ zipWith RecordPatSynField sels' vars' }

    -- cvtDir :: LocatedN RdrName -> (PatSynDir -> CvtM (HsPatSynDir RdrName))
    cvtDir _ Unidir          = return Unidirectional
    cvtDir _ ImplBidir       = return ImplicitBidirectional
    cvtDir n (ExplBidir cls) =
      do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls
         ; th_origin <- getOrigin
         ; return $ ExplicitBidirectional $ mkMatchGroup th_origin (noLocA ms) }

cvtDec (TH.PatSynSigD nm ty)
  = do { nm' <- cNameN nm
       ; ty' <- cvtPatSynSigTy ty
       ; returnJustLA $ Hs.SigD noExtField $ PatSynSig noAnn [nm'] ty'}

-- Implicit parameter bindings are handled in cvtLocalDecs and
-- cvtImplicitParamBind. They are not allowed in any other scope, so
-- reaching this case indicates an error.
cvtDec (TH.ImplicitParamBindD _ _)
  = failWith (text "Implicit parameter binding only allowed in let or where")

----------------
cvtTySynEqn :: TySynEqn -> CvtM (LTyFamInstEqn GhcPs)
cvtTySynEqn (TySynEqn mb_bndrs lhs rhs)
  = do { mb_bndrs' <- traverse (mapM cvt_tv) mb_bndrs
       ; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs mb_bndrs'
       ; (head_ty, args) <- split_ty_app lhs
       ; case head_ty of
           ConT nm -> do { nm' <- tconNameN nm
                         ; rhs' <- cvtType rhs
                         ; let args' = map wrap_tyarg args
                         ; returnLA
                            $ FamEqn { feqn_ext    = noAnn
                                     , feqn_tycon  = nm'
                                     , feqn_bndrs  = outer_bndrs
                                     , feqn_pats   = args'
                                     , feqn_fixity = Prefix
                                     , feqn_rhs    = rhs' } }
           InfixT t1 nm t2 -> do { nm' <- tconNameN nm
                                 ; args' <- mapM cvtType [t1,t2]
                                 ; rhs' <- cvtType rhs
                                 ; returnLA
                                      $ FamEqn { feqn_ext    = noAnn
                                               , feqn_tycon  = nm'
                                               , feqn_bndrs  = outer_bndrs
                                               , feqn_pats   =
                                                (map HsValArg args') ++ args
                                               , feqn_fixity = Hs.Infix
                                               , feqn_rhs    = rhs' } }
           _ -> failWith $ text "Invalid type family instance LHS:"
                          <+> text (show lhs)
        }

----------------
cvt_ci_decs :: SDoc -> [TH.Dec]
            -> CvtM (LHsBinds GhcPs,
                     [LSig GhcPs],
                     [LFamilyDecl GhcPs],
                     [LTyFamInstDecl GhcPs],
                     [LDataFamInstDecl GhcPs])
-- Convert the declarations inside a class or instance decl
-- ie signatures, bindings, and associated types
cvt_ci_decs doc decs
  = do  { decs' <- cvtDecs decs
        ; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
        ; let (adts', no_ats')       = partitionWith is_datafam_inst bind_sig_decs'
        ; let (sigs', prob_binds')   = partitionWith is_sig no_ats'
        ; let (binds', prob_fams')   = partitionWith is_bind prob_binds'
        ; let (fams', bads)          = partitionWith is_fam_decl prob_fams'
        ; unless (null bads) (failWith (mkBadDecMsg doc bads))
        ; return (listToBag binds', sigs', fams', ats', adts') }

----------------
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr ()]
             -> CvtM ( LHsContext GhcPs
                     , LocatedN RdrName
                     , LHsQTyVars GhcPs)
cvt_tycl_hdr cxt tc tvs
  = do { cxt' <- cvtContext funPrec cxt
       ; tc'  <- tconNameN tc
       ; tvs' <- cvtTvs tvs
       ; return (cxt', tc', mkHsQTvs tvs')
       }

cvt_datainst_hdr :: TH.Cxt -> Maybe [TH.TyVarBndr ()] -> TH.Type
               -> CvtM ( LHsContext GhcPs
                       , LocatedN RdrName
                       , HsOuterFamEqnTyVarBndrs GhcPs
                       , HsTyPats GhcPs)
cvt_datainst_hdr cxt bndrs tys
  = do { cxt' <- cvtContext funPrec cxt
       ; bndrs' <- traverse (mapM cvt_tv) bndrs
       ; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs bndrs'
       ; (head_ty, args) <- split_ty_app tys
       ; case head_ty of
          ConT nm -> do { nm' <- tconNameN nm
                        ; let args' = map wrap_tyarg args
                        ; return (cxt', nm', outer_bndrs, args') }
          InfixT t1 nm t2 -> do { nm' <- tconNameN nm
                                ; args' <- mapM cvtType [t1,t2]
                                ; return (cxt', nm', outer_bndrs,
                                         ((map HsValArg args') ++ args)) }
          _ -> failWith $ text "Invalid type instance header:"
                          <+> text (show tys) }

----------------
cvt_tyfam_head :: TypeFamilyHead
               -> CvtM ( LocatedN RdrName
                       , LHsQTyVars GhcPs
                       , Hs.LFamilyResultSig GhcPs
                       , Maybe (Hs.LInjectivityAnn GhcPs))

cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity)
  = do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars
       ; result' <- cvtFamilyResultSig result
       ; injectivity' <- traverse cvtInjectivityAnnotation injectivity
       ; return (tc', tyvars', result', injectivity') }

-------------------------------------------------------------------
--              Partitioning declarations
-------------------------------------------------------------------

is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs)
is_fam_decl (L loc (TyClD _ (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl

is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs)
is_tyfam_inst (L loc (Hs.InstD _ (TyFamInstD { tfid_inst = d })))
  = Left (L loc d)
is_tyfam_inst decl
  = Right decl

is_datafam_inst :: LHsDecl GhcPs
                -> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs)
is_datafam_inst (L loc (Hs.InstD  _ (DataFamInstD { dfid_inst = d })))
  = Left (L loc d)
is_datafam_inst decl
  = Right decl

is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs)
is_sig (L loc (Hs.SigD _ sig)) = Left (L loc sig)
is_sig decl                    = Right decl

is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs)
is_bind (L loc (Hs.ValD _ bind)) = Left (L loc bind)
is_bind decl                     = Right decl

is_ip_bind :: TH.Dec -> Either (String, TH.Exp) TH.Dec
is_ip_bind (TH.ImplicitParamBindD n e) = Left (n, e)
is_ip_bind decl             = Right decl

mkBadDecMsg :: Outputable a => SDoc -> [a] -> SDoc
mkBadDecMsg doc bads
  = sep [ text "Illegal declaration(s) in" <+> doc <> colon
        , nest 2 (vcat (map Outputable.ppr bads)) ]

---------------------------------------------------
--      Data types
---------------------------------------------------

cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs)

cvtConstr (NormalC c strtys)
  = do  { c'   <- cNameN c
        ; tys' <- mapM cvt_arg strtys
        ; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing (PrefixCon noTypeArgs (map hsLinear tys')) }

cvtConstr (RecC c varstrtys)
  = do  { c'    <- cNameN c
        ; args' <- mapM cvt_id_arg varstrtys
        ; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing
                                   (RecCon (noLocA args')) }

cvtConstr (InfixC st1 c st2)
  = do  { c'   <- cNameN c
        ; st1' <- cvt_arg st1
        ; st2' <- cvt_arg st2
        ; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing
                       (InfixCon (hsLinear st1') (hsLinear st2')) }

cvtConstr (ForallC tvs ctxt con)
  = do  { tvs'      <- cvtTvs tvs
        ; ctxt'     <- cvtContext funPrec ctxt
        ; L _ con'  <- cvtConstr con
        ; returnLA $ add_forall tvs' ctxt' con' }
  where
    add_cxt lcxt         Nothing           = Just lcxt
    add_cxt (L loc cxt1) (Just (L _ cxt2))
      = Just (L loc (cxt1 ++ cxt2))

    add_forall :: [LHsTyVarBndr Hs.Specificity GhcPs] -> LHsContext GhcPs
               -> ConDecl GhcPs -> ConDecl GhcPs
    add_forall tvs' cxt' con@(ConDeclGADT { con_bndrs = L l outer_bndrs, con_mb_cxt = cxt })
      = con { con_bndrs  = L l outer_bndrs'
            , con_mb_cxt = add_cxt cxt' cxt }
      where
        outer_bndrs'
          | null all_tvs = mkHsOuterImplicit
          | otherwise    = mkHsOuterExplicit noAnn all_tvs

        all_tvs = tvs' ++ outer_exp_tvs

        outer_exp_tvs = hsOuterExplicitBndrs outer_bndrs

    add_forall tvs' cxt' con@(ConDeclH98 { con_ex_tvs = ex_tvs, con_mb_cxt = cxt })
      = con { con_forall = not (null all_tvs)
            , con_ex_tvs = all_tvs
            , con_mb_cxt = add_cxt cxt' cxt }
      where
        all_tvs = tvs' ++ ex_tvs

cvtConstr (GadtC [] _strtys _ty)
  = failWith (text "GadtC must have at least one constructor name")

cvtConstr (GadtC c strtys ty)
  = do  { c'      <- mapM cNameN c
        ; args    <- mapM cvt_arg strtys
        ; ty'     <- cvtType ty
        ; returnLA $ mk_gadt_decl c' (PrefixConGADT $ map hsLinear args) ty'}

cvtConstr (RecGadtC [] _varstrtys _ty)
  = failWith (text "RecGadtC must have at least one constructor name")

cvtConstr (RecGadtC c varstrtys ty)
  = do  { c'       <- mapM cNameN c
        ; ty'      <- cvtType ty
        ; rec_flds <- mapM cvt_id_arg varstrtys
        ; returnLA $ mk_gadt_decl c' (RecConGADT $ noLocA rec_flds) ty' }

mk_gadt_decl :: [LocatedN RdrName] -> HsConDeclGADTDetails GhcPs -> LHsType GhcPs
             -> ConDecl GhcPs
mk_gadt_decl names args res_ty
  = ConDeclGADT { con_g_ext  = noAnn
                , con_names  = names
                , con_bndrs  = noLocA mkHsOuterImplicit
                , con_mb_cxt = Nothing
                , con_g_args = args
                , con_res_ty = res_ty
                , con_doc    = Nothing }

cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness
cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack
cvtSrcUnpackedness SourceNoUnpack       = SrcNoUnpack
cvtSrcUnpackedness SourceUnpack         = SrcUnpack

cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness
cvtSrcStrictness NoSourceStrictness = NoSrcStrict
cvtSrcStrictness SourceLazy         = SrcLazy
cvtSrcStrictness SourceStrict       = SrcStrict

cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs)
cvt_arg (Bang su ss, ty)
  = do { ty'' <- cvtType ty
       ; let ty' = parenthesizeHsType appPrec ty''
             su' = cvtSrcUnpackedness su
             ss' = cvtSrcStrictness ss
       ; returnLA $ HsBangTy noAnn (HsSrcBang NoSourceText su' ss') ty' }

cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs)
cvt_id_arg (i, str, ty)
  = do  { L li i' <- vNameN i
        ; ty' <- cvt_arg (str,ty)
        ; return $ noLocA (ConDeclField
                          { cd_fld_ext = noAnn
                          , cd_fld_names
                              = [L (locA li) $ FieldOcc noExtField (L li i')]
                          , cd_fld_type =  ty'
                          , cd_fld_doc = Nothing}) }

cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs)
cvtDerivs cs = do { cs' <- mapM cvtDerivClause cs
                  ; return cs' }

cvt_fundep :: TH.FunDep -> CvtM (LHsFunDep GhcPs)
cvt_fundep (TH.FunDep xs ys) = do { xs' <- mapM tNameN xs
                                  ; ys' <- mapM tNameN ys
                                  ; returnLA (Hs.FunDep noAnn xs' ys') }


------------------------------------------
--      Foreign declarations
------------------------------------------

cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs)
cvtForD (ImportF callconv safety from nm ty)
  -- the prim and javascript calling conventions do not support headers
  -- and are inserted verbatim, analogous to mkImport in GHC.Parser.PostProcess
  | callconv == TH.Prim || callconv == TH.JavaScript
  = mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing
                    (CFunction (StaticTarget (SourceText from)
                                             (mkFastString from) Nothing
                                             True))
                    (noLoc $ quotedSourceText from))
  | Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety')
                                 (mkFastString (TH.nameBase nm))
                                 from (noLoc $ quotedSourceText from)
  = mk_imp impspec
  | otherwise
  = failWith $ text (show from) <+> text "is not a valid ccall impent"
  where
    mk_imp impspec
      = do { nm' <- vNameN nm
           ; ty' <- cvtSigType ty
           ; return (ForeignImport { fd_i_ext = noAnn
                                   , fd_name = nm'
                                   , fd_sig_ty = ty'
                                   , fd_fi = impspec })
           }
    safety' = case safety of
                     Unsafe     -> PlayRisky
                     Safe       -> PlaySafe
                     Interruptible -> PlayInterruptible

cvtForD (ExportF callconv as nm ty)
  = do  { nm' <- vNameN nm
        ; ty' <- cvtSigType ty
        ; let e = CExport (noLoc (CExportStatic (SourceText as)
                                                (mkFastString as)
                                                (cvt_conv callconv)))
                                                (noLoc (SourceText as))
        ; return $ ForeignExport { fd_e_ext = noAnn
                                 , fd_name = nm'
                                 , fd_sig_ty = ty'
                                 , fd_fe = e } }

cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall      = CCallConv
cvt_conv TH.StdCall    = StdCallConv
cvt_conv TH.CApi       = CApiConv
cvt_conv TH.Prim       = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv

------------------------------------------
--              Pragmas
------------------------------------------

cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs))
cvtPragmaD (InlineP nm inline rm phases)
  = do { nm' <- vNameN nm
       ; let dflt = dfltActivation inline
       ; let src TH.NoInline  = "{-# NOINLINE"
             src TH.Inline    = "{-# INLINE"
             src TH.Inlinable = "{-# INLINABLE"
       ; let ip   = InlinePragma { inl_src    = SourceText $ src inline
                                 , inl_inline = cvtInline inline
                                 , inl_rule   = cvtRuleMatch rm
                                 , inl_act    = cvtPhases phases dflt
                                 , inl_sat    = Nothing }
       ; returnJustLA $ Hs.SigD noExtField $ InlineSig noAnn nm' ip }

cvtPragmaD (SpecialiseP nm ty inline phases)
  = do { nm' <- vNameN nm
       ; ty' <- cvtSigType ty
       ; let src TH.NoInline  = "{-# SPECIALISE NOINLINE"
             src TH.Inline    = "{-# SPECIALISE INLINE"
             src TH.Inlinable = "{-# SPECIALISE INLINE"
       ; let (inline', dflt,srcText) = case inline of
               Just inline1 -> (cvtInline inline1, dfltActivation inline1,
                                src inline1)
               Nothing      -> (NoUserInlinePrag,   AlwaysActive,
                                "{-# SPECIALISE")
       ; let ip = InlinePragma { inl_src    = SourceText srcText
                               , inl_inline = inline'
                               , inl_rule   = Hs.FunLike
                               , inl_act    = cvtPhases phases dflt
                               , inl_sat    = Nothing }
       ; returnJustLA $ Hs.SigD noExtField $ SpecSig noAnn nm' [ty'] ip }

cvtPragmaD (SpecialiseInstP ty)
  = do { ty' <- cvtSigType ty
       ; returnJustLA $ Hs.SigD noExtField $
         SpecInstSig noAnn (SourceText "{-# SPECIALISE") ty' }

cvtPragmaD (RuleP nm ty_bndrs tm_bndrs lhs rhs phases)
  = do { let nm' = mkFastString nm
       ; let act = cvtPhases phases AlwaysActive
       ; ty_bndrs' <- traverse cvtTvs ty_bndrs
       ; tm_bndrs' <- mapM cvtRuleBndr tm_bndrs
       ; lhs'   <- cvtl lhs
       ; rhs'   <- cvtl rhs
       ; returnJustLA $ Hs.RuleD noExtField
            $ HsRules { rds_ext = noAnn
                      , rds_src = SourceText "{-# RULES"
                      , rds_rules = [noLocA $
                          HsRule { rd_ext  = noAnn
                                 , rd_name = (noLoc (quotedSourceText nm,nm'))
                                 , rd_act  = act
                                 , rd_tyvs = ty_bndrs'
                                 , rd_tmvs = tm_bndrs'
                                 , rd_lhs  = lhs'
                                 , rd_rhs  = rhs' }] }

          }

cvtPragmaD (AnnP target exp)
  = do { exp' <- cvtl exp
       ; target' <- case target of
         ModuleAnnotation  -> return ModuleAnnProvenance
         TypeAnnotation n  -> do
           n' <- tconName n
           return (TypeAnnProvenance  (noLocA n'))
         ValueAnnotation n -> do
           n' <- vcName n
           return (ValueAnnProvenance (noLocA n'))
       ; returnJustLA $ Hs.AnnD noExtField
                     $ HsAnnotation noAnn (SourceText "{-# ANN") target' exp'
       }

cvtPragmaD (LineP line file)
  = do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
       ; return Nothing
       }
cvtPragmaD (CompleteP cls mty)
  = do { cls' <- noLoc <$> mapM cNameN cls
       ; mty'  <- traverse tconNameN mty
       ; returnJustLA $ Hs.SigD noExtField
                   $ CompleteMatchSig noAnn NoSourceText cls' mty' }

dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _           = AlwaysActive

cvtInline :: TH.Inline -> Hs.InlineSpec
cvtInline TH.NoInline  = Hs.NoInline
cvtInline TH.Inline    = Hs.Inline
cvtInline TH.Inlinable = Hs.Inlinable

cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike

cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases       dflt = dflt
cvtPhases (FromPhase i)   _    = ActiveAfter NoSourceText i
cvtPhases (BeforePhase i) _    = ActiveBefore NoSourceText i

cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs)
cvtRuleBndr (RuleVar n)
  = do { n' <- vNameN n
       ; return $ noLoc $ Hs.RuleBndr noAnn n' }
cvtRuleBndr (TypedRuleVar n ty)
  = do { n'  <- vNameN n
       ; ty' <- cvtType ty
       ; return $ noLoc $ Hs.RuleBndrSig noAnn n' $ mkHsPatSigType ty' }

---------------------------------------------------
--              Declarations
---------------------------------------------------

cvtLocalDecs :: SDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs)
cvtLocalDecs doc ds
  = case partitionWith is_ip_bind ds of
      ([], []) -> return (EmptyLocalBinds noExtField)
      ([], _) -> do
        ds' <- cvtDecs ds
        let (binds, prob_sigs) = partitionWith is_bind ds'
        let (sigs, bads) = partitionWith is_sig prob_sigs
        unless (null bads) (failWith (mkBadDecMsg doc bads))
        return (HsValBinds noAnn (ValBinds NoAnnSortKey (listToBag binds) sigs))
      (ip_binds, []) -> do
        binds <- mapM (uncurry cvtImplicitParamBind) ip_binds
        return (HsIPBinds noAnn (IPBinds noExtField binds))
      ((_:_), (_:_)) ->
        failWith (text "Implicit parameters mixed with other bindings")

cvtClause :: HsMatchContext GhcPs
          -> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtClause ctxt (Clause ps body wheres)
  = do  { ps' <- cvtPats ps
        ; let pps = map (parenthesizePat appPrec) ps'
        ; g'  <- cvtGuard body
        ; ds' <- cvtLocalDecs (text "a where clause") wheres
        ; returnLA $ Hs.Match noAnn ctxt pps (GRHSs noExtField g' ds') }

cvtImplicitParamBind :: String -> TH.Exp -> CvtM (LIPBind GhcPs)
cvtImplicitParamBind n e = do
    n' <- wrapL (ipName n)
    e' <- cvtl e
    returnLA (IPBind noAnn (Left n') e')

-------------------------------------------------------------------
--              Expressions
-------------------------------------------------------------------

cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs)
cvtl e = wrapLA (cvt e)
  where
    cvt (VarE s)   = do { s' <- vName s; return $ HsVar noExtField (noLocA s') }
    cvt (ConE s)   = do { s' <- cName s; return $ HsVar noExtField (noLocA s') }
    cvt (LitE l)
      | overloadedLit l = go cvtOverLit (HsOverLit noComments)
                             (hsOverLitNeedsParens appPrec)
      | otherwise       = go cvtLit (HsLit noComments)
                             (hsLitNeedsParens appPrec)
      where
        go :: (Lit -> CvtM (l GhcPs))
           -> (l GhcPs -> HsExpr GhcPs)
           -> (l GhcPs -> Bool)
           -> CvtM (HsExpr GhcPs)
        go cvt_lit mk_expr is_compound_lit = do
          l' <- cvt_lit l
          let e' = mk_expr l'
          return $ if is_compound_lit l' then HsPar noAnn (noLocA e') else e'
    cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y
                                   ; return $ HsApp noComments (mkLHsPar x')
                                                          (mkLHsPar y')}
    cvt (AppE x y)            = do { x' <- cvtl x; y' <- cvtl y
                                   ; return $ HsApp noComments (mkLHsPar x')
                                                          (mkLHsPar y')}
    cvt (AppTypeE e t) = do { e' <- cvtl e
                            ; t' <- cvtType t
                            ; let tp = parenthesizeHsType appPrec t'
                            ; return $ HsAppType noSrcSpan e'
                                     $ mkHsWildCardBndrs tp }
    cvt (LamE [] e)    = cvt e -- Degenerate case. We convert the body as its
                               -- own expression to avoid pretty-printing
                               -- oddities that can result from zero-argument
                               -- lambda expressions. See #13856.
    cvt (LamE ps e)    = do { ps' <- cvtPats ps; e' <- cvtl e
                            ; let pats = map (parenthesizePat appPrec) ps'
                            ; th_origin <- getOrigin
                            ; return $ HsLam noExtField (mkMatchGroup th_origin
                                             (noLocA [mkSimpleMatch LambdaExpr
                                             pats e']))}
    cvt (LamCaseE ms)  = do { ms' <- mapM (cvtMatch CaseAlt) ms
                            ; th_origin <- getOrigin
                            ; return $ HsLamCase noAnn
                                                   (mkMatchGroup th_origin (noLocA ms'))
                            }
    cvt (TupE es)        = cvt_tup es Boxed
    cvt (UnboxedTupE es) = cvt_tup es Unboxed
    cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e
                                       ; unboxedSumChecks alt arity
                                       ; return $ ExplicitSum noAnn
                                                                   alt arity e'}
    cvt (CondE x y z)  = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
                            ; return $ mkHsIf x' y' z' noAnn }
    cvt (MultiIfE alts)
      | null alts      = failWith (text "Multi-way if-expression with no alternatives")
      | otherwise      = do { alts' <- mapM cvtpair alts
                            ; return $ HsMultiIf noAnn alts' }
    cvt (LetE ds e)    = do { ds' <- cvtLocalDecs (text "a let expression") ds
                            ; e' <- cvtl e; return $ HsLet noAnn ds' e'}
    cvt (CaseE e ms)   = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms
                            ; th_origin <- getOrigin
                            ; return $ HsCase noAnn e'
                                                 (mkMatchGroup th_origin (noLocA ms')) }
    cvt (DoE m ss)     = cvtHsDo (DoExpr (mk_mod <$> m)) ss
    cvt (MDoE m ss)    = cvtHsDo (MDoExpr (mk_mod <$> m)) ss
    cvt (CompE ss)     = cvtHsDo ListComp ss
    cvt (ArithSeqE dd) = do { dd' <- cvtDD dd
                            ; return $ ArithSeq noAnn Nothing dd' }
    cvt (ListE xs)
      | Just s <- allCharLs xs       = do { l' <- cvtLit (StringL s)
                                          ; return (HsLit noComments l') }
             -- Note [Converting strings]
      | otherwise       = do { xs' <- mapM cvtl xs
                             ; return $ ExplicitList noAnn xs'
                             }

    -- Infix expressions
    cvt (InfixE (Just x) s (Just y)) = ensureValidOpExp s $
      do { x' <- cvtl x
         ; s' <- cvtl s
         ; y' <- cvtl y
         ; let px = parenthesizeHsExpr opPrec x'
               py = parenthesizeHsExpr opPrec y'
         ; wrapParLA (HsPar noAnn)
           $ OpApp noAnn px s' py }
           -- Parenthesise both arguments and result,
           -- to ensure this operator application does
           -- does not get re-associated
           -- See Note [Operator association]
    cvt (InfixE Nothing  s (Just y)) = ensureValidOpExp s $
                                       do { s' <- cvtl s; y' <- cvtl y
                                          ; wrapParLA (HsPar noAnn) $
                                                          SectionR noComments s' y' }
                                            -- See Note [Sections in HsSyn] in GHC.Hs.Expr
    cvt (InfixE (Just x) s Nothing ) = ensureValidOpExp s $
                                       do { x' <- cvtl x; s' <- cvtl s
                                          ; wrapParLA (HsPar noAnn) $
                                                          SectionL noComments x' s' }

    cvt (InfixE Nothing  s Nothing ) = ensureValidOpExp s $
                                       do { s' <- cvtl s
                                          ; return $ HsPar noAnn s' }
                                       -- Can I indicate this is an infix thing?
                                       -- Note [Dropping constructors]

    cvt (UInfixE x s y)  = ensureValidOpExp s $
                           do { x' <- cvtl x
                              ; let x'' = case unLoc x' of
                                            OpApp {} -> x'
                                            _ -> mkLHsPar x'
                              ; cvtOpApp x'' s y } --  Note [Converting UInfix]

    cvt (ParensE e)      = do { e' <- cvtl e; return $ HsPar noAnn e' }
    cvt (SigE e t)       = do { e' <- cvtl e; t' <- cvtSigType t
                              ; let pe = parenthesizeHsExpr sigPrec e'
                              ; return $ ExprWithTySig noAnn pe (mkHsWildCardBndrs t') }
    cvt (RecConE c flds) = do { c' <- cNameN c
                              ; flds' <- mapM (cvtFld (mkFieldOcc . noLocA)) flds
                              ; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) noAnn }
    cvt (RecUpdE e flds) = do { e' <- cvtl e
                              ; flds'
                                  <- mapM (cvtFld (mkAmbiguousFieldOcc . noLocA))
                                           flds
                              ; return $ RecordUpd noAnn e' (Left flds') }
    cvt (StaticE e)      = fmap (HsStatic noAnn) $ cvtl e
    cvt (UnboundVarE s)  = do -- Use of 'vcName' here instead of 'vName' is
                              -- important, because UnboundVarE may contain
                              -- constructor names - see #14627.
                              { s' <- vcName s
                              ; return $ HsVar noExtField (noLocA s') }
    cvt (LabelE s)       = return $ HsOverLabel noComments (fsLit s)
    cvt (ImplicitParamVarE n) = do { n' <- ipName n; return $ HsIPVar noComments n' }

{- | #16895 Ensure an infix expression's operator is a variable/constructor.
Consider this example:

  $(uInfixE [|1|] [|id id|] [|2|])

This infix expression is obviously ill-formed so we use this helper function
to reject such programs outright.

The constructors `ensureValidOpExp` permits should be in sync with `pprInfixExp`
in Language.Haskell.TH.Ppr from the template-haskell library.
-}
ensureValidOpExp :: TH.Exp -> CvtM a -> CvtM a
ensureValidOpExp (VarE _n) m = m
ensureValidOpExp (ConE _n) m = m
ensureValidOpExp (UnboundVarE _n) m = m
ensureValidOpExp _e _m =
    failWith (text "Non-variable expression is not allowed in an infix expression")

{- Note [Dropping constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we drop constructors from the input, we must insert parentheses around the
argument. For example:

  UInfixE x * (AppE (InfixE (Just y) + Nothing) z)

If we convert the InfixE expression to an operator section but don't insert
parentheses, the above expression would be reassociated to

  OpApp (OpApp x * y) + z

which we don't want.
-}

cvtFld :: (RdrName -> t) -> (TH.Name, TH.Exp)
       -> CvtM (LHsRecField' GhcPs t (LHsExpr GhcPs))
cvtFld f (v,e)
  = do  { v' <- vNameL v; e' <- cvtl e
        ; return (noLocA $ HsRecField { hsRecFieldAnn = noAnn
                                      , hsRecFieldLbl = reLoc $ fmap f v'
                                      , hsRecFieldArg = e'
                                      , hsRecPun      = False}) }

cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs)
cvtDD (FromR x)           = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y)     = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y)       = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }

cvt_tup :: [Maybe Exp] -> Boxity -> CvtM (HsExpr GhcPs)
cvt_tup es boxity = do { let cvtl_maybe Nothing  = return (missingTupArg noAnn)
                             cvtl_maybe (Just e) = fmap (Present noAnn) (cvtl e)
                       ; es' <- mapM cvtl_maybe es
                       ; return $ ExplicitTuple
                                    noAnn
                                    es'
                                    boxity }

{- Note [Operator association]
We must be quite careful about adding parens:
  * Infix (UInfix ...) op arg      Needs parens round the first arg
  * Infix (Infix ...) op arg       Needs parens round the first arg
  * UInfix (UInfix ...) op arg     No parens for first arg
  * UInfix (Infix ...) op arg      Needs parens round first arg


Note [Converting UInfix]
~~~~~~~~~~~~~~~~~~~~~~~~
When converting @UInfixE@, @UInfixP@, and @UInfixT@ values, we want to readjust
the trees to reflect the fixities of the underlying operators:

  UInfixE x * (UInfixE y + z) ---> (x * y) + z

This is done by the renamer (see @mkOppAppRn@, @mkConOppPatRn@, and
@mkHsOpTyRn@ in GHC.Rename.HsType), which expects that the input will be completely
right-biased for types and left-biased for everything else. So we left-bias the
trees of @UInfixP@ and @UInfixE@ and right-bias the trees of @UInfixT@.

Sample input:

  UInfixE
   (UInfixE x op1 y)
   op2
   (UInfixE z op3 w)

Sample output:

  OpApp
    (OpApp
      (OpApp x op1 y)
      op2
      z)
    op3
    w

The functions @cvtOpApp@, @cvtOpAppP@, and @cvtOpAppT@ are responsible for this
biasing.
-}

{- | @cvtOpApp x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix expressions will be left-biased, provided @x@ is.

We can see that @cvtOpApp@ is correct as follows. The inductive hypothesis
is that @cvtOpApp x op y@ is left-biased, provided @x@ is. It is clear that
this holds for both branches (of @cvtOpApp@), provided we assume it holds for
the recursive calls to @cvtOpApp@.

When we call @cvtOpApp@ from @cvtl@, the first argument will always be left-biased
since we have already run @cvtl@ on it.
-}
cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs)
cvtOpApp x op1 (UInfixE y op2 z)
  = do { l <- wrapLA $ cvtOpApp x op1 y
       ; cvtOpApp l op2 z }
cvtOpApp x op y
  = do { op' <- cvtl op
       ; y' <- cvtl y
       ; return (OpApp noAnn x op' y') }

-------------------------------------
--      Do notation and statements
-------------------------------------

cvtHsDo :: HsStmtContext GhcRn -> [TH.Stmt] -> CvtM (HsExpr GhcPs)
cvtHsDo do_or_lc stmts
  | null stmts = failWith (text "Empty stmt list in do-block")
  | otherwise
  = do  { stmts' <- cvtStmts stmts
        ; let Just (stmts'', last') = snocView stmts'

        ; last'' <- case last' of
                    (L loc (BodyStmt _ body _ _))
                      -> return (L loc (mkLastStmt body))
                    _ -> failWith (bad_last last')

        ; return $ HsDo noAnn do_or_lc (noLocA (stmts'' ++ [last''])) }
  where
    bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAStmtContext do_or_lc <> colon
                         , nest 2 $ Outputable.ppr stmt
                         , text "(It should be an expression.)" ]

cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)]
cvtStmts = mapM cvtStmt

cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs))
cvtStmt (NoBindS e)    = do { e' <- cvtl e; returnLA $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnLA $ mkPsBindStmt noAnn p' e' }
cvtStmt (TH.LetS ds)   = do { ds' <- cvtLocalDecs (text "a let binding") ds
                            ; returnLA $ LetStmt noAnn ds' }
cvtStmt (TH.ParS dss)  = do { dss' <- mapM cvt_one dss
                            ; returnLA $ ParStmt noExtField dss' noExpr noSyntaxExpr }
  where
    cvt_one ds = do { ds' <- cvtStmts ds
                    ; return (ParStmtBlock noExtField ds' undefined noSyntaxExpr) }
cvtStmt (TH.RecS ss) = do { ss' <- mapM cvtStmt ss; returnLA (mkRecStmt noAnn (noLocA ss')) }

cvtMatch :: HsMatchContext GhcPs
         -> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtMatch ctxt (TH.Match p body decs)
  = do  { p' <- cvtPat p
        ; let lp = case p' of
                     (L loc SigPat{}) -> L loc (ParPat noAnn p') -- #14875
                     _                -> p'
        ; g' <- cvtGuard body
        ; decs' <- cvtLocalDecs (text "a where clause") decs
        ; returnLA $ Hs.Match noAnn ctxt [lp] (GRHSs noExtField g' decs') }

cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e)      = do { e' <- cvtl e
                               ; g' <- returnL $ GRHS noAnn [] e'; return [g'] }

cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
                              ; g' <- returnLA $ mkBodyStmt ge'
                              ; returnL $ GRHS noAnn [g'] rhs' }
cvtpair (PatG gs,rhs)    = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
                              ; returnL $ GRHS noAnn gs' rhs' }

cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs)
cvtOverLit (IntegerL i)
  = do { force i; return $ mkHsIntegral   (mkIntegralLit i) }
cvtOverLit (RationalL r)
  = do { force r; return $ mkHsFractional (mkTHFractionalLit r) }
cvtOverLit (StringL s)
  = do { let { s' = mkFastString s }
       ; force s'
       ; return $ mkHsIsString (quotedSourceText s) s'
       }
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
-- An Integer is like an (overloaded) '3' in a Haskell source program
-- Similarly 3.5 for fractionals

{- Note [Converting strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get (ListE [CharL 'x', CharL 'y']) we'd like to convert to
a string literal for "xy".  Of course, we might hope to get
(LitE (StringL "xy")), but not always, and allCharLs fails quickly
if it isn't a literal string
-}

allCharLs :: [TH.Exp] -> Maybe String
-- Note [Converting strings]
-- NB: only fire up this setup for a non-empty list, else
--     there's a danger of returning "" for [] :: [Int]!
allCharLs xs
  = case xs of
      LitE (CharL c) : ys -> go [c] ys
      _                   -> Nothing
  where
    go cs []                    = Just (reverse cs)
    go cs (LitE (CharL c) : ys) = go (c:cs) ys
    go _  _                     = Nothing

cvtLit :: Lit -> CvtM (HsLit GhcPs)
cvtLit (IntPrimL i)    = do { force i; return $ HsIntPrim NoSourceText i }
cvtLit (WordPrimL w)   = do { force w; return $ HsWordPrim NoSourceText w }
cvtLit (FloatPrimL f)
  = do { force f; return $ HsFloatPrim noExtField (mkTHFractionalLit f) }
cvtLit (DoublePrimL f)
  = do { force f; return $ HsDoublePrim noExtField (mkTHFractionalLit f) }
cvtLit (CharL c)       = do { force c; return $ HsChar NoSourceText c }
cvtLit (CharPrimL c)   = do { force c; return $ HsCharPrim NoSourceText c }
cvtLit (StringL s)     = do { let { s' = mkFastString s }
                            ; force s'
                            ; return $ HsString (quotedSourceText s) s' }
cvtLit (StringPrimL s) = do { let { !s' = BS.pack s }
                            ; return $ HsStringPrim NoSourceText s' }
cvtLit (BytesPrimL (Bytes fptr off sz)) = do
  let bs = unsafePerformIO $ withForeignPtr fptr $ \ptr ->
             BS.packCStringLen (ptr `plusPtr` fromIntegral off, fromIntegral sz)
  force bs
  return $ HsStringPrim NoSourceText bs
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
        -- cvtLit should not be called on IntegerL, RationalL
        -- That precondition is established right here in
        -- "GHC.ThToHs", hence panic

quotedSourceText :: String -> SourceText
quotedSourceText s = SourceText $ "\"" ++ s ++ "\""

cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs]
cvtPats pats = mapM cvtPat pats

cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs)
cvtPat pat = wrapLA (cvtp pat)

cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtp (TH.LitP l)
  | overloadedLit l    = do { l' <- cvtOverLit l
                            ; return (mkNPat (noLoc l') Nothing noAnn) }
                                  -- Not right for negative patterns;
                                  -- need to think about that!
  | otherwise          = do { l' <- cvtLit l; return $ Hs.LitPat noExtField l' }
cvtp (TH.VarP s)       = do { s' <- vName s
                            ; return $ Hs.VarPat noExtField (noLocA s') }
cvtp (TupP ps)         = do { ps' <- cvtPats ps
                            ; return $ TuplePat noAnn ps' Boxed }
cvtp (UnboxedTupP ps)  = do { ps' <- cvtPats ps
                            ; return $ TuplePat noAnn ps' Unboxed }
cvtp (UnboxedSumP p alt arity)
                       = do { p' <- cvtPat p
                            ; unboxedSumChecks alt arity
                            ; return $ SumPat noAnn p' alt arity }
cvtp (ConP s ts ps)    = do { s' <- cNameN s
                            ; ps' <- cvtPats ps
                            ; ts' <- mapM cvtType ts
                            ; let pps = map (parenthesizePat appPrec) ps'
                            ; return $ ConPat
                                { pat_con_ext = noAnn
                                , pat_con = s'
                                , pat_args = PrefixCon (map mkHsPatSigType ts') pps
                                }
                            }
cvtp (InfixP p1 s p2)  = do { s' <- cNameN s; p1' <- cvtPat p1; p2' <- cvtPat p2
                            ; wrapParLA (ParPat noAnn) $
                              ConPat
                                { pat_con_ext = noAnn
                                , pat_con = s'
                                , pat_args = InfixCon
                                    (parenthesizePat opPrec p1')
                                    (parenthesizePat opPrec p2')
                                }
                            }
                            -- See Note [Operator association]
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 } -- Note [Converting UInfix]
cvtp (ParensP p)       = do { p' <- cvtPat p;
                            ; case unLoc p' of  -- may be wrapped ConPatIn
                                ParPat {} -> return $ unLoc p'
                                _         -> return $ ParPat noAnn p' }
cvtp (TildeP p)        = do { p' <- cvtPat p; return $ LazyPat noAnn p' }
cvtp (BangP p)         = do { p' <- cvtPat p; return $ BangPat noAnn p' }
cvtp (TH.AsP s p)      = do { s' <- vNameN s; p' <- cvtPat p
                            ; return $ AsPat noAnn s' p' }
cvtp TH.WildP          = return $ WildPat noExtField
cvtp (RecP c fs)       = do { c' <- cNameN c; fs' <- mapM cvtPatFld fs
                            ; return $ ConPat
                                { pat_con_ext = noAnn
                                , pat_con = c'
                                , pat_args = Hs.RecCon $ HsRecFields fs' Nothing
                                }
                            }
cvtp (ListP ps)        = do { ps' <- cvtPats ps
                            ; return
                                   $ ListPat noAnn ps'}
cvtp (SigP p t)        = do { p' <- cvtPat p; t' <- cvtType t
                            ; return $ SigPat noAnn p' (mkHsPatSigType t') }
cvtp (ViewP e p)       = do { e' <- cvtl e; p' <- cvtPat p
                            ; return $ ViewPat noAnn e' p'}

cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs))
cvtPatFld (s,p)
  = do  { L ls s' <- vNameN s
        ; p' <- cvtPat p
        ; return (noLocA $ HsRecField { hsRecFieldAnn = noAnn
                                      , hsRecFieldLbl
                                         = L (locA ls) $ mkFieldOcc (L ls s')
                                      , hsRecFieldArg = p'
                                      , hsRecPun      = False}) }

{- | @cvtOpAppP x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix patterns will be left-biased, provided @x@ is.

See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtOpAppP x op1 (UInfixP y op2 z)
  = do { l <- wrapLA $ cvtOpAppP x op1 y
       ; cvtOpAppP l op2 z }
cvtOpAppP x op y
  = do { op' <- cNameN op
       ; y' <- cvtPat y
       ; return $ ConPat
          { pat_con_ext = noAnn
          , pat_con = op'
          , pat_args = InfixCon x y'
          }
       }

-----------------------------------------------------------
--      Types and type variables

class CvtFlag flag flag' | flag -> flag' where
  cvtFlag :: flag -> flag'

instance CvtFlag () () where
  cvtFlag () = ()

instance CvtFlag TH.Specificity Hs.Specificity where
  cvtFlag TH.SpecifiedSpec = Hs.SpecifiedSpec
  cvtFlag TH.InferredSpec  = Hs.InferredSpec

cvtTvs :: CvtFlag flag flag' => [TH.TyVarBndr flag] -> CvtM [LHsTyVarBndr flag' GhcPs]
cvtTvs tvs = mapM cvt_tv tvs

cvt_tv :: CvtFlag flag flag' => (TH.TyVarBndr flag) -> CvtM (LHsTyVarBndr flag' GhcPs)
cvt_tv (TH.PlainTV nm fl)
  = do { nm' <- tNameN nm
       ; let fl' = cvtFlag fl
       ; returnLA $ UserTyVar noAnn fl' nm' }
cvt_tv (TH.KindedTV nm fl ki)
  = do { nm' <- tNameN nm
       ; let fl' = cvtFlag fl
       ; ki' <- cvtKind ki
       ; returnLA $ KindedTyVar noAnn fl' nm' ki' }

cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR          = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR          = Just Coercion.Phantom
cvtRole TH.InferR            = Nothing

cvtContext :: PprPrec -> TH.Cxt -> CvtM (LHsContext GhcPs)
cvtContext p tys = do { preds' <- mapM cvtPred tys
                      ; parenthesizeHsContext p <$> returnLA preds' }

cvtPred :: TH.Pred -> CvtM (LHsType GhcPs)
cvtPred = cvtType

cvtDerivClauseTys :: TH.Cxt -> CvtM (LDerivClauseTys GhcPs)
cvtDerivClauseTys tys
  = do { tys' <- mapM cvtSigType tys
         -- Since TH.Cxt doesn't indicate the presence or absence of
         -- parentheses in a deriving clause, we have to choose between
         -- DctSingle and DctMulti somewhat arbitrarily. We opt to use DctMulti
         -- unless the TH.Cxt is a singleton list whose type is a bare type
         -- constructor with no arguments.
       ; case tys' of
           [ty'@(L l (HsSig { sig_bndrs = HsOuterImplicit{}
                            , sig_body  = L _ (HsTyVar _ NotPromoted _) }))]
                 -> return $ L (l2l l) $ DctSingle noExtField ty'
           _     -> returnLA $ DctMulti noExtField tys' }

cvtDerivClause :: TH.DerivClause
               -> CvtM (LHsDerivingClause GhcPs)
cvtDerivClause (TH.DerivClause ds tys)
  = do { tys' <- cvtDerivClauseTys tys
       ; ds'  <- traverse cvtDerivStrategy ds
       ; returnL $ HsDerivingClause noAnn ds' tys' }

cvtDerivStrategy :: TH.DerivStrategy -> CvtM (Hs.LDerivStrategy GhcPs)
cvtDerivStrategy TH.StockStrategy    = returnL (Hs.StockStrategy noAnn)
cvtDerivStrategy TH.AnyclassStrategy = returnL (Hs.AnyclassStrategy noAnn)
cvtDerivStrategy TH.NewtypeStrategy  = returnL (Hs.NewtypeStrategy noAnn)
cvtDerivStrategy (TH.ViaStrategy ty) = do
  ty' <- cvtSigType ty
  returnL $ Hs.ViaStrategy (XViaStrategyPs noAnn ty')

cvtType :: TH.Type -> CvtM (LHsType GhcPs)
cvtType = cvtTypeKind "type"

cvtSigType :: TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigType = cvtSigTypeKind "type"

-- | Convert a Template Haskell 'Type' to an 'LHsSigType'. To avoid duplicating
-- the logic in 'cvtTypeKind' here, we simply reuse 'cvtTypeKind' and perform
-- surgery on the 'LHsType' it returns to turn it into an 'LHsSigType'.
cvtSigTypeKind :: String -> TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigTypeKind ty_str ty = do
  ty' <- cvtTypeKind ty_str ty
  pure $ hsTypeToHsSigType ty'

cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs)
cvtTypeKind ty_str ty
  = do { (head_ty, tys') <- split_ty_app ty
       ; let m_normals = mapM extract_normal tys'
                                where extract_normal (HsValArg ty) = Just ty
                                      extract_normal _ = Nothing

       ; case head_ty of
           TupleT n
            | Just normals <- m_normals
            , normals `lengthIs` n         -- Saturated
            -> returnLA (HsTupleTy noAnn HsBoxedOrConstraintTuple normals)
            | otherwise
            -> mk_apps
               (HsTyVar noAnn NotPromoted
                                     (noLocA (getRdrName (tupleTyCon Boxed n))))
               tys'
           UnboxedTupleT n
             | Just normals <- m_normals
             , normals `lengthIs` n               -- Saturated
             -> returnLA (HsTupleTy noAnn HsUnboxedTuple normals)
             | otherwise
             -> mk_apps
                (HsTyVar noAnn NotPromoted
                                   (noLocA (getRdrName (tupleTyCon Unboxed n))))
                tys'
           UnboxedSumT n
             | n < 2
            -> failWith $
                   vcat [ text "Illegal sum arity:" <+> text (show n)
                        , nest 2 $
                            text "Sums must have an arity of at least 2" ]
             | Just normals <- m_normals
             , normals `lengthIs` n -- Saturated
             -> returnLA (HsSumTy noAnn normals)
             | otherwise
             -> mk_apps
                (HsTyVar noAnn NotPromoted (noLocA (getRdrName (sumTyCon n))))
                tys'
           ArrowT
             | Just normals <- m_normals
             , [x',y'] <- normals -> do
                 x'' <- case unLoc x' of
                          HsFunTy{}    -> returnLA (HsParTy noAnn x')
                          HsForAllTy{} -> returnLA (HsParTy noAnn x') -- #14646
                          HsQualTy{}   -> returnLA (HsParTy noAnn x') -- #15324
                          _            -> return $
                                          parenthesizeHsType sigPrec x'
                 let y'' = parenthesizeHsType sigPrec y'
                 returnLA (HsFunTy noAnn (HsUnrestrictedArrow NormalSyntax) x'' y'')
             | otherwise
             -> mk_apps
                (HsTyVar noAnn NotPromoted (noLocA (getRdrName unrestrictedFunTyCon)))
                tys'
           MulArrowT
             | Just normals <- m_normals
             , [w',x',y'] <- normals -> do
                 x'' <- case unLoc x' of
                          HsFunTy{}    -> returnLA (HsParTy noAnn x')
                          HsForAllTy{} -> returnLA (HsParTy noAnn x') -- #14646
                          HsQualTy{}   -> returnLA (HsParTy noAnn x') -- #15324
                          _            -> return $
                                          parenthesizeHsType sigPrec x'
                 let y'' = parenthesizeHsType sigPrec y'
                     w'' = hsTypeToArrow w'
                 returnLA (HsFunTy noAnn w'' x'' y'')
             | otherwise
             -> mk_apps
                (HsTyVar noAnn NotPromoted (noLocA (getRdrName funTyCon)))
                tys'
           ListT
             | Just normals <- m_normals
             , [x'] <- normals ->
                returnLA (HsListTy noAnn x')
             | otherwise
             -> mk_apps
                (HsTyVar noAnn NotPromoted (noLocA (getRdrName listTyCon)))
                tys'

           VarT nm -> do { nm' <- tNameN nm
                         ; mk_apps (HsTyVar noAnn NotPromoted nm') tys' }
           ConT nm -> do { nm' <- tconName nm
                         ; let prom = name_promotedness nm'
                         ; mk_apps (HsTyVar noAnn prom (noLocA nm')) tys'}

           ForallT tvs cxt ty
             | null tys'
             -> do { tvs' <- cvtTvs tvs
                   ; cxt' <- cvtContext funPrec cxt
                   ; ty'  <- cvtType ty
                   ; loc <- getL
                   ; let loc' = noAnnSrcSpan loc
                   ; let tele   = mkHsForAllInvisTele noAnn tvs'
                         hs_ty  = mkHsForAllTy loc' tele rho_ty
                         rho_ty = mkHsQualTy cxt loc' cxt' ty'

                   ; return hs_ty }

           ForallVisT tvs ty
             | null tys'
             -> do { tvs' <- cvtTvs tvs
                   ; ty'  <- cvtType ty
                   ; loc  <- getL
                   ; let loc' = noAnnSrcSpan loc
                   ; let tele = mkHsForAllVisTele noAnn tvs'
                   ; pure $ mkHsForAllTy loc' tele ty' }

           SigT ty ki
             -> do { ty' <- cvtType ty
                   ; ki' <- cvtKind ki
                   ; mk_apps (HsKindSig noAnn ty' ki') tys'
                   }

           LitT lit
             -> mk_apps (HsTyLit noExtField (cvtTyLit lit)) tys'

           WildCardT
             -> mk_apps mkAnonWildCardTy tys'

           InfixT t1 s t2
             -> do { s'  <- tconName s
                   ; t1' <- cvtType t1
                   ; t2' <- cvtType t2
                   ; let prom = name_promotedness s'
                   ; mk_apps
                      (HsTyVar noAnn prom (noLocA s'))
                      ([HsValArg t1', HsValArg t2'] ++ tys')
                   }

           UInfixT t1 s t2
             -> do { t2' <- cvtType t2
                   ; t <- cvtOpAppT t1 s t2'
                   ; mk_apps (unLoc t) tys'
                   } -- Note [Converting UInfix]

           ParensT t
             -> do { t' <- cvtType t
                   ; mk_apps (HsParTy noAnn t') tys'
                   }

           PromotedT nm -> do { nm' <- cName nm
                              ; mk_apps (HsTyVar noAnn IsPromoted
                                         (noLocA nm'))
                                        tys' }
                 -- Promoted data constructor; hence cName

           PromotedTupleT n
              | Just normals <- m_normals
              , normals `lengthIs` n   -- Saturated
              -> returnLA (HsExplicitTupleTy noAnn normals)
              | otherwise
              -> mk_apps
                 (HsTyVar noAnn IsPromoted
                                   (noLocA (getRdrName (tupleDataCon Boxed n))))
                 tys'

           PromotedNilT
             -> mk_apps (HsExplicitListTy noAnn IsPromoted []) tys'

           PromotedConsT  -- See Note [Representing concrete syntax in types]
                          -- in Language.Haskell.TH.Syntax
              | Just normals <- m_normals
              , [ty1, L _ (HsExplicitListTy _ ip tys2)] <- normals
              -> returnLA (HsExplicitListTy noAnn ip (ty1:tys2))
              | otherwise
              -> mk_apps
                 (HsTyVar noAnn IsPromoted (noLocA (getRdrName consDataCon)))
                 tys'

           StarT
             -> mk_apps
                (HsTyVar noAnn NotPromoted
                                      (noLocA (getRdrName liftedTypeKindTyCon)))
                tys'

           ConstraintT
             -> mk_apps
                (HsTyVar noAnn NotPromoted
                                      (noLocA (getRdrName constraintKindTyCon)))
                tys'

           EqualityT
             | Just normals <- m_normals
             , [x',y'] <- normals ->
                   let px = parenthesizeHsType opPrec x'
                       py = parenthesizeHsType opPrec y'
                   in returnLA (HsOpTy noExtField px (noLocA eqTyCon_RDR) py)
               -- The long-term goal is to remove the above case entirely and
               -- subsume it under the case for InfixT. See #15815, comment:6,
               -- for more details.

             | otherwise ->
                   mk_apps (HsTyVar noAnn NotPromoted
                            (noLocA eqTyCon_RDR)) tys'
           ImplicitParamT n t
             -> do { n' <- wrapL $ ipName n
                   ; t' <- cvtType t
                   ; returnLA (HsIParamTy noAnn n' t')
                   }

           _ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty))
    }

hsTypeToArrow :: LHsType GhcPs -> HsArrow GhcPs
hsTypeToArrow w = case unLoc w of
                     HsTyVar _ _ (L _ (isExact_maybe -> Just n))
                        | n == oneDataConName -> HsLinearArrow NormalSyntax Nothing
                        | n == manyDataConName -> HsUnrestrictedArrow NormalSyntax
                     _ -> HsExplicitMult NormalSyntax Nothing w

-- ConT/InfixT can contain both data constructor (i.e., promoted) names and
-- other (i.e, unpromoted) names, as opposed to PromotedT, which can only
-- contain data constructor names. See #15572/#17394. We use this function to
-- determine whether to mark a name as promoted/unpromoted when dealing with
-- ConT/InfixT.
name_promotedness :: RdrName -> Hs.PromotionFlag
name_promotedness nm
  | isRdrDataCon nm = IsPromoted
  | otherwise       = NotPromoted

-- | Constructs an application of a type to arguments passed in a list.
mk_apps :: HsType GhcPs -> [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
mk_apps head_ty type_args = do
  head_ty' <- returnLA head_ty
  -- We must parenthesize the function type in case of an explicit
  -- signature. For instance, in `(Maybe :: Type -> Type) Int`, there
  -- _must_ be parentheses around `Maybe :: Type -> Type`.
  let phead_ty :: LHsType GhcPs
      phead_ty = parenthesizeHsType sigPrec head_ty'

      go :: [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
      go [] = pure head_ty'
      go (arg:args) =
        case arg of
          HsValArg ty  -> do p_ty <- add_parens ty
                             mk_apps (HsAppTy noExtField phead_ty p_ty) args
          HsTypeArg l ki -> do p_ki <- add_parens ki
                               mk_apps (HsAppKindTy l phead_ty p_ki) args
          HsArgPar _   -> mk_apps (HsParTy noAnn phead_ty) args

  go type_args
   where
    -- See Note [Adding parens for splices]
    add_parens lt@(L _ t)
      | hsTypeNeedsParens appPrec t = returnLA (HsParTy noAnn lt)
      | otherwise                   = return lt

wrap_tyarg :: LHsTypeArg GhcPs -> LHsTypeArg GhcPs
wrap_tyarg (HsValArg ty)    = HsValArg  $ parenthesizeHsType appPrec ty
wrap_tyarg (HsTypeArg l ki) = HsTypeArg l $ parenthesizeHsType appPrec ki
wrap_tyarg ta@(HsArgPar {}) = ta -- Already parenthesized

-- ---------------------------------------------------------------------
-- Note [Adding parens for splices]
{-
The hsSyn representation of parsed source explicitly contains all the original
parens, as written in the source.

When a Template Haskell (TH) splice is evaluated, the original splice is first
renamed and type checked and then finally converted to core in
GHC.HsToCore.Quote. This core is then run in the TH engine, and the result
comes back as a TH AST.

In the process, all parens are stripped out, as they are not needed.

This Convert module then converts the TH AST back to hsSyn AST.

In order to pretty-print this hsSyn AST, parens need to be adde back at certain
points so that the code is readable with its original meaning.

So scattered through "GHC.ThToHs" are various points where parens are added.

See (among other closed issues) https://gitlab.haskell.org/ghc/ghc/issues/14289
-}
-- ---------------------------------------------------------------------

split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsTypeArg GhcPs])
split_ty_app ty = go ty []
  where
    go (AppT f a) as' = do { a' <- cvtType a; go f (HsValArg a':as') }
    go (AppKindT ty ki) as' = do { ki' <- cvtKind ki
                                 ; go ty (HsTypeArg noSrcSpan ki':as') }
    go (ParensT t) as' = do { loc <- getL; go t (HsArgPar loc: as') }
    go f as           = return (f,as)

cvtTyLit :: TH.TyLit -> HsTyLit
cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i
cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s)
cvtTyLit (TH.CharTyLit c) = HsCharTy NoSourceText c

{- | @cvtOpAppT x op y@ converts @op@ and @y@ and produces the operator
application @x `op` y@. The produced tree of infix types will be right-biased,
provided @y@ is.

See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppT :: TH.Type -> TH.Name -> LHsType GhcPs -> CvtM (LHsType GhcPs)
cvtOpAppT (UInfixT x op2 y) op1 z
  = do { l <- cvtOpAppT y op1 z
       ; cvtOpAppT x op2 l }
cvtOpAppT x op y
  = do { op' <- tconNameN op
       ; x' <- cvtType x
       ; returnLA (mkHsOpTy x' op' y) }

cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs)
cvtKind = cvtTypeKind "kind"

cvtSigKind :: TH.Kind -> CvtM (LHsSigType GhcPs)
cvtSigKind = cvtSigTypeKind "kind"

-- | Convert Maybe Kind to a type family result signature. Used with data
-- families where naming of the result is not possible (thus only kind or no
-- signature is possible).
cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind
                              -> CvtM (LFamilyResultSig GhcPs)
cvtMaybeKindToFamilyResultSig Nothing   = returnL (Hs.NoSig noExtField)
cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki
                                             ; returnL (Hs.KindSig noExtField ki') }

-- | Convert type family result signature. Used with both open and closed type
-- families.
cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs)
cvtFamilyResultSig TH.NoSig           = returnL (Hs.NoSig noExtField)
cvtFamilyResultSig (TH.KindSig ki)    = do { ki' <- cvtKind ki
                                           ; returnL (Hs.KindSig noExtField  ki') }
cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr
                                           ; returnL (Hs.TyVarSig noExtField tv) }

-- | Convert injectivity annotation of a type family.
cvtInjectivityAnnotation :: TH.InjectivityAnn
                         -> CvtM (Hs.LInjectivityAnn GhcPs)
cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS)
  = do { annLHS' <- tNameN annLHS
       ; annRHS' <- mapM tNameN annRHS
       ; returnL (Hs.InjectivityAnn noAnn annLHS' annRHS') }

cvtPatSynSigTy :: TH.Type -> CvtM (LHsSigType GhcPs)
-- pattern synonym types are of peculiar shapes, which is why we treat
-- them separately from regular types;
-- see Note [Pattern synonym type signatures and Template Haskell]
cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty))
  | null exis, null provs = cvtSigType (ForallT univs reqs ty)
  | null univs, null reqs = do { l'  <- getL
                               ; let l = noAnnSrcSpan l'
                               ; ty' <- cvtType (ForallT exis provs ty)
                               ; return $ L l $ mkHsImplicitSigType
                                        $ L l (HsQualTy { hst_ctxt = Nothing
                                                        , hst_xqual = noExtField
                                                        , hst_body = ty' }) }
  | null reqs             = do { l'      <- getL
                               ; let l'' = noAnnSrcSpan l'
                               ; univs' <- cvtTvs univs
                               ; ty'    <- cvtType (ForallT exis provs ty)
                               ; let forTy = mkHsExplicitSigType noAnn univs' $ L l'' cxtTy
                                     cxtTy = HsQualTy { hst_ctxt = Nothing
                                                      , hst_xqual = noExtField
                                                      , hst_body = ty' }
                               ; return $ L (noAnnSrcSpan l') forTy }
  | otherwise             = cvtSigType (ForallT univs reqs (ForallT exis provs ty))
cvtPatSynSigTy ty         = cvtSigType ty

-----------------------------------------------------------
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir)
   where
     cvt_dir TH.InfixL = Hs.InfixL
     cvt_dir TH.InfixR = Hs.InfixR
     cvt_dir TH.InfixN = Hs.InfixN

-----------------------------------------------------------


-----------------------------------------------------------
-- some useful things

overloadedLit :: Lit -> Bool
-- True for literals that Haskell treats as overloaded
overloadedLit (IntegerL  _) = True
overloadedLit (RationalL _) = True
overloadedLit _             = False

-- Checks that are performed when converting unboxed sum expressions and
-- patterns alike.
unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM ()
unboxedSumChecks alt arity
    | alt > arity
    = failWith $ text "Sum alternative"    <+> text (show alt)
             <+> text "exceeds its arity," <+> text (show arity)
    | alt <= 0
    = failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt)
                      , nest 2 $ text "Sum alternatives must start from 1" ]
    | arity < 2
    = failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity)
                      , nest 2 $ text "Sums must have an arity of at least 2" ]
    | otherwise
    = return ()

-- | If passed an empty list of 'LHsTyVarBndr's, this simply returns the
-- third argument (an 'LHsType'). Otherwise, return an 'HsForAllTy'
-- using the provided 'LHsQTyVars' and 'LHsType'.
mkHsForAllTy :: SrcSpanAnnA
             -- ^ The location of the returned 'LHsType' if it needs an
             --   explicit forall
             -> HsForAllTelescope GhcPs
             -- ^ The converted type variable binders
             -> LHsType GhcPs
             -- ^ The converted rho type
             -> LHsType GhcPs
             -- ^ The complete type, quantified with a forall if necessary
mkHsForAllTy loc tele rho_ty
  | no_tvs    = rho_ty
  | otherwise = L loc $ HsForAllTy { hst_tele = tele
                                   , hst_xforall = noExtField
                                   , hst_body = rho_ty }
  where
    no_tvs = case tele of
      HsForAllVis   { hsf_vis_bndrs   = bndrs } -> null bndrs
      HsForAllInvis { hsf_invis_bndrs = bndrs } -> null bndrs

-- | If passed an empty 'TH.Cxt', this simply returns the third argument
-- (an 'LHsType'). Otherwise, return an 'HsQualTy' using the provided
-- 'LHsContext' and 'LHsType'.

-- It's important that we don't build an HsQualTy if the context is empty,
-- as the pretty-printer for HsType _always_ prints contexts, even if
-- they're empty. See #13183.
mkHsQualTy :: TH.Cxt
           -- ^ The original Template Haskell context
           -> SrcSpanAnnA
           -- ^ The location of the returned 'LHsType' if it needs an
           --   explicit context
           -> LHsContext GhcPs
           -- ^ The converted context
           -> LHsType GhcPs
           -- ^ The converted tau type
           -> LHsType GhcPs
           -- ^ The complete type, qualified with a context if necessary
mkHsQualTy ctxt loc ctxt' ty
  | null ctxt = ty
  | otherwise = L loc $ HsQualTy { hst_xqual = noExtField
                                 , hst_ctxt  = Just ctxt'
                                 , hst_body  = ty }

mkHsOuterFamEqnTyVarBndrs :: Maybe [LHsTyVarBndr () GhcPs] -> HsOuterFamEqnTyVarBndrs GhcPs
mkHsOuterFamEqnTyVarBndrs = maybe mkHsOuterImplicit (mkHsOuterExplicit noAnn)

--------------------------------------------------------------------
--      Turning Name back into RdrName
--------------------------------------------------------------------

-- variable names
vNameN, cNameN, vcNameN, tNameN, tconNameN :: TH.Name -> CvtM (LocatedN RdrName)
vNameL                                     :: TH.Name -> CvtM (LocatedA RdrName)
vName,  cName,  vcName,  tName,  tconName  :: TH.Name -> CvtM RdrName

-- Variable names
vNameN n = wrapLN (vName n)
vNameL n = wrapLA (vName n)
vName n = cvtName OccName.varName n

-- Constructor function names; this is Haskell source, hence srcDataName
cNameN n = wrapLN (cName n)
cName n = cvtName OccName.dataName n

-- Variable *or* constructor names; check by looking at the first char
vcNameN n = wrapLN (vcName n)
vcName n = if isVarName n then vName n else cName n

-- Type variable names
tNameN n = wrapLN (tName n)
tName n = cvtName OccName.tvName n

-- Type Constructor names
tconNameN n = wrapLN (tconName n)
tconName n = cvtName OccName.tcClsName n

ipName :: String -> CvtM HsIPName
ipName n
  = do { unless (okVarOcc n) (failWith (badOcc OccName.varName n))
       ; return (HsIPName (fsLit n)) }

cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
  | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
  | otherwise
  = do { loc <- getL
       ; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
       ; force rdr_name
       ; return rdr_name }
  where
    occ_str = TH.occString occ

okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
  | OccName.isVarNameSpace ns     = okVarOcc str
  | OccName.isDataConNameSpace ns = okConOcc str
  | otherwise                     = okTcOcc  str

-- Determine the name space of a name in a type
--
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
  = case TH.occString occ of
      ""    -> False
      (c:_) -> startsVarId c || startsVarSym c

badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
  = text "Illegal" <+> pprNameSpace ctxt_ns
        <+> text "name:" <+> quotes (text occ)

thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
-- This turns a TH Name into a RdrName; used for both binders and occurrences
-- See Note [Binders in Template Haskell]
-- The passed-in name space tells what the context is expecting;
--      use it unless the TH name knows what name-space it comes
--      from, in which case use the latter
--
-- We pass in a SrcSpan (gotten from the monad) because this function
-- is used for *binders* and if we make an Exact Name we want it
-- to have a binding site inside it.  (cf #5434)
--
-- ToDo: we may generate silly RdrNames, by passing a name space
--       that doesn't match the string, like VarName ":+",
--       which will give confusing error messages later
--
-- The strict applications ensure that any buried exceptions get forced
thRdrName loc ctxt_ns th_occ th_name
  = case th_name of
     TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
     TH.NameQ mod  -> (mkRdrQual  $! mk_mod mod) $! occ
     TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq (fromInteger uniq)) $! occ) loc)
     TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq (fromInteger uniq)) $! occ) loc)
     TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
              | otherwise                           -> mkRdrUnqual $! occ
              -- We check for built-in syntax here, because the TH
              -- user might have written a (NameS "(,,)"), for example
  where
    occ :: OccName.OccName
    occ = mk_occ ctxt_ns th_occ

-- Return an unqualified exact RdrName if we're dealing with built-in syntax.
-- See #13776.
thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod =
  let occ' = mk_occ (mk_ghc_ns th_ns) occ
  in case isBuiltInOcc_maybe occ' of
       Just name -> nameRdrName name
       Nothing   -> (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! occ'

thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
  -- This special case for NameG ensures that we don't generate duplicates in the output list
  | TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
  | otherwise                         = [ thRdrName noSrcSpan gns occ_str flavour
                                        | gns <- guessed_nss]
  where
    -- guessed_ns are the name spaces guessed from looking at the TH name
    guessed_nss
      | isLexCon (mkFastString occ_str) = [OccName.tcName,  OccName.dataName]
      | otherwise                       = [OccName.varName, OccName.tvName]
    occ_str = TH.occString occ

-- The packing and unpacking is rather turgid :-(
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ

mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName  = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName   = OccName.varName

mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)

mk_pkg :: TH.PkgName -> Unit
mk_pkg pkg = stringToUnit (TH.pkgString pkg)

mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u

{-
Note [Binders in Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this TH term construction:
  do { x1 <- TH.newName "x"   -- newName :: String -> Q TH.Name
     ; x2 <- TH.newName "x"   -- Builds a NameU
     ; x3 <- TH.newName "x"

     ; let x = mkName "x"     -- mkName :: String -> TH.Name
                              -- Builds a NameS

     ; return (LamE (..pattern [x1,x2]..) $
               LamE (VarPat x3) $
               ..tuple (x1,x2,x3,x)) }

It represents the term   \[x1,x2]. \x3. (x1,x2,x3,x)

a) We don't want to complain about "x" being bound twice in
   the pattern [x1,x2]
b) We don't want x3 to shadow the x1,x2
c) We *do* want 'x' (dynamically bound with mkName) to bind
   to the innermost binding of "x", namely x3.
d) When pretty printing, we want to print a unique with x1,x2
   etc, else they'll all print as "x" which isn't very helpful

When we convert all this to HsSyn, the TH.Names are converted with
thRdrName.  To achieve (b) we want the binders to be Exact RdrNames.
Achieving (a) is a bit awkward, because
   - We must check for duplicate and shadowed names on Names,
     not RdrNames, *after* renaming.
     See Note [Collect binders only after renaming] in GHC.Hs.Utils

   - But to achieve (a) we must distinguish between the Exact
     RdrNames arising from TH and the Unqual RdrNames that would
     come from a user writing \[x,x] -> blah

So in Convert.thRdrName we translate
   TH Name                          RdrName
   --------------------------------------------------------
   NameU (arising from newName) --> Exact (Name{ System })
   NameS (arising from mkName)  --> Unqual

Notice that the NameUs generate *System* Names.  Then, when
figuring out shadowing and duplicates, we can filter out
System Names.

This use of System Names fits with other uses of System Names, eg for
temporary variables "a". Since there are lots of things called "a" we
usually want to print the name with the unique, and that is indeed
the way System Names are printed.

There's a small complication of course; see Note [Looking up Exact
RdrNames] in GHC.Rename.Env.
-}

{-
Note [Pattern synonym type signatures and Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In general, the type signature of a pattern synonym

  pattern P x1 x2 .. xn = <some-pattern>

is of the form

   forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t

with the following parts:

   1) the (possibly empty lists of) universally quantified type
      variables `univs` and required constraints `reqs` on them.
   2) the (possibly empty lists of) existentially quantified type
      variables `exis` and the provided constraints `provs` on them.
   3) the types `t1`, `t2`, .., `tn` of the pattern synonym's arguments x1,
      x2, .., xn, respectively
   4) the type `t` of <some-pattern>, mentioning only universals from `univs`.

Due to the two forall quantifiers and constraint contexts (either of
which might be empty), pattern synonym type signatures are treated
specially in `GHC.HsToCore.Quote`, `GHC.ThToHs`, and
`GHC.Tc.Gen.Splice`:

   (a) When desugaring a pattern synonym from HsSyn to TH.Dec in
       `GHC.HsToCore.Quote`, we represent its *full* type signature in TH, i.e.:

           ForallT univs reqs (ForallT exis provs ty)
              (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)

   (b) When converting pattern synonyms from TH.Dec to HsSyn in
       `GHC.ThToHs`, we convert their TH type signatures back to an
       appropriate Haskell pattern synonym type of the form

         forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t

       where initial empty `univs` type variables or an empty `reqs`
       constraint context are represented *explicitly* as `() =>`.

   (c) When reifying a pattern synonym in `GHC.Tc.Gen.Splice`, we always
       return its *full* type, i.e.:

           ForallT univs reqs (ForallT exis provs ty)
              (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)

The key point is to always represent a pattern synonym's *full* type
in cases (a) and (c) to make it clear which of the two forall
quantifiers and/or constraint contexts are specified, and which are
not. See GHC's user's guide on pattern synonyms for more information
about pattern synonym type signatures.

-}