Required type arguments ======================= .. extension:: RequiredTypeArguments :shortdesc: Allow use of required type argument syntax in terms. :since: 9.10.1 :status: Experimental Allow visible dependent quantification ``forall x ->`` in types of terms. **This feature is only partially implemented in GHC.** In this section we describe the implemented subset, while the full specification can be found in `GHC Proposal #281 `__. The :extension:`RequiredTypeArguments` extension enables the use of visible dependent quantification in types of terms:: id :: forall a. a -> a -- invisible dependent quantification id_vdq :: forall a -> a -> a -- visible dependent quantification The arrow in ``forall a ->`` is part of the syntax and not a function arrow, just like the dot in ``forall a.`` is not a type operator. The choice between ``forall a.`` and ``forall a ->`` does not have any effect on program execution. Both quantifiers introduce type variables, which are erased during compilation. Rather, the main difference is in the syntax used at call sites:: x1 = id True -- invisible forall, the type argument is inferred by GHC x2 = id @Bool True -- invisible forall, the type argument is supplied by the programmer x3 = id_vdq _ True -- visible forall, the type argument is inferred by GHC x4 = id_vdq Bool True -- visible forall, the type argument is supplied by the programmer .. _dependent-quantifier: Terminology: Dependent quantifier ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Both ``forall a.`` and ``forall a ->`` are said to be "dependent" because the result type depends on the supplied type argument: :: id @Integer :: Integer -> Integer id @String :: String -> String id_vdq Integer :: Integer -> Integer id_vdq String :: String -> String Notice how the RHS of the signature is influenced by the LHS. This is in contrast to the function arrow ``->``, which is a non-dependent quantifier:: putStrLn "Hello" :: IO () putStrLn "World" :: IO () The type of ``putStrLn`` is ``String -> IO ()``. No matter what string we pass as input, the result type ``IO ()`` does not depend on it. This notion of dependence is weaker than the one used in dependently-typed languages (see :ref:`pi-types`). Terminology: Visible quantifier ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We say that ``forall a.`` is an *invisible* quantifier and ``forall a ->`` is a *visible* quantifier. This notion of "visibility" is unrelated to implicit quantification, which happens when the quantifier is omitted: :: id :: a -> a -- implicit quantification, invisible forall id :: forall a. a -> a -- explicit quantification, invisible forall id_vdq :: forall a -> a -> a -- explicit quantification, visible forall The property of "visibility" actually describes whether the corresponding type argument is visible at the definition site and at call sites: :: -- Invisible quantification id :: forall a. a -> a id x = x -- defn site: `a` is not mentioned call_id = id True -- call site: `a` is invisibly instantiated to `Bool` -- Visible quantification id_vdq :: forall a -> a -> a id_vdq t x = x -- defn site: `a` is visibly bound to `t` call_id_vdq = id_vdq Bool True -- call site: `a` is visibly instantiated to `Bool` In the equation for ``id`` there is just one binder on the LHS, ``x``, and it corresponds to the value argument, not to the type argument. Compare that with the definition of ``id_vdq``:: id_vdq :: forall a -> a -> a id_vdq t x = x This time we have two binders on the LHS: * ``t``, corresponding to ``forall a ->`` in the signature * ``x``, corresponding to ``a ->`` in the signature The bound ``t`` can be used in subsequent patterns, as well as on the right-hand side of the equation:: id_vdq :: forall a -> a -> a id_vdq t (x :: t) = x :: t -- ↑ ↑ ↑ -- bound used used We use the terms "visible type argument" and "required type argument" interchangeably. Relation to :extension:`TypeApplications` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :extension:`RequiredTypeArguments` are similar to :extension:`TypeApplications` in that we pass a type to a function as an explicit argument. The difference is that type applications are optional: it is up to the caller whether to write ``id @Bool True`` or ``id True``. By default, the compiler infers that the type variable is instantiated to ``Bool``. The existence of a type argument is not reflected syntactically in the expression, it is invisible unless we use a *visibility override*, i.e. ``@``. Required type arguments are compulsory. They must appear syntactically at call sites:: x1 = id_vdq Bool True -- OK x2 = id_vdq True -- not OK You may use an underscore to infer a required type argument:: x3 = id_vdq _ True -- OK That is, it is mostly a matter of syntax whether to use ``forall a.`` with type applications or ``forall a ->``. One advantage of required type arguments is that they are never ambiguous. Consider the type of ``Foreign.Storable.sizeOf``:: sizeOf :: forall a. Storable a => a -> Int The value parameter is not actually used, its only purpose is to drive type inference. At call sites, one might write ``sizeOf (undefined :: Bool)`` or ``sizeOf @Bool undefined``. Either way, the ``undefined`` is entirely superfluous and exists only to avoid an ambiguous type variable. With :extension:`RequiredTypeArguments`, we can imagine a slightly different API:: sizeOf :: forall a -> Storable a => Int If ``sizeOf`` had this type, we could write ``sizeOf Bool`` without passing a dummy value. Required type arguments are erased during compilation. While the source program appears to bind and pass required type arguments alongside value arguments, the compiled program does not. There is no runtime overhead associated with required type arguments relative to the usual, invisible type arguments. Relation to :extension:`ExplicitNamespaces` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A required type argument is syntactically indistinguishable from a value argument. In a function call ``f arg1 arg2 arg3``, it is impossible to tell, without looking at the type of ``f``, which of the three arguments are required type arguments, if any. At the same time, one of the design goals of GHC is to be able to perform name resolution (find the binding sites of identifiers) without involving the type system. Consider: :: data Ty = Int | Double | String deriving Show main = print Int In this example, there are two constructors named ``Int`` in scope: * The **type constructor** ``Int`` of kind ``Type`` (imported from ``Prelude``) * The **data constructor** ``Int`` of type ``Ty`` (defined locally) How does the compiler or someone reading the code know that ``print Int`` is supposed to refer to the data constructor, not the type constructor? In GHC, this is resolved as follows. Each identifier is said to occur either in **type syntax** or **term syntax**, depending on the surrounding syntactic context:: -- Examples of X in type syntax type T = X -- RHS of a type synonym data D = MkD X -- field of a data constructor declaration a :: X -- RHS of a type signature b = f (c :: X) -- RHS of a type signature (in expressions) f (x :: X) = x -- RHS of a type signature (in patterns) -- Examples of X in term syntax c X = a -- LHS of a function equation c a = X -- RHS of a function equation One could imagine the entire program "zoned" into type syntax and term syntax, each zone having its own rules for name resolution: * In type syntax, type constructors take precedence over data constructors. * In term syntax, data constructors take precedence over type constructors. This means that in the ``print Int`` example, the data constructor is selected solely based on the fact that the ``Int`` occurs in term syntax. This is firmly determined before GHC attempts to type-check the expression, so the type of ``print`` does not influence which of the two ``Int``\s is passed to it. This may not be the desired behavior in a required type argument. Consider:: vshow :: forall a -> Show a => a -> String vshow t x = show (x :: t) s1 = vshow Int 42 -- "42" s2 = vshow Double 42 -- "42.0" The function calls ``vshow Int 42`` and ``vshow Double 42`` are written in *term* syntax, while the intended referents of ``Int`` and ``Double`` are the respective *type* constructors. As long as there are no data constructors named ``Int`` or ``Double`` in scope, the example works as intended. However, if such clashing constructor names are introduced, they may disrupt name resolution:: data Ty = Int | Double | String vshow :: forall a -> Show a => a -> String vshow t x = show (x :: t) s1 = vshow Int 42 -- error: Expected a type, but ‘Int’ has kind ‘Ty’ s2 = vshow Double 42 -- error: Expected a type, but ‘Double’ has kind ‘Ty’ In this example the intent was to refer to ``Int`` and ``Double`` as types, but the names were resolved in favor of data constructors, resulting in type errors. The example can be fixed with the help of :extension:`ExplicitNamespaces`, which allows embedding type syntax into term syntax using the ``type`` keyword:: s1 = vshow (type Int) 42 s2 = vshow (type Double) 42 A similar problem occurs with list and tuple syntax. In type syntax, ``[a]`` is the type of a list, i.e. ``Data.List.List a``. In term syntax, ``[a]`` is a singleton list, i.e. ``a : []``. A naive attempt to use the list type as a required type argument will result in a type error:: s3 = vshow [Int] [1,2,3] -- error: Expected a type, but ‘[Int]’ has kind ‘[Type]’ The problem is that GHC assumes ``[Int]`` to stand for ``Int : []`` instead of the intended ``Data.List.List Int``. This, too, can be solved using the ``type`` keyword:: s3 = vshow (type [Int]) [1,2,3] Since the ``type`` keyword is merely a namespace disambiguation mechanism, it need not apply to the entire type argument. Using it to disambiguate only a part of the type argument is also valid:: f :: forall a -> ... -- `f`` is a function that expects a required type argument r1 = f (type (Either () Int)) -- `type` applied to the entire type argument r2 = f (Either (type ()) Int) -- `type` applied to one part of it r3 = f (Either (type ()) (type Int)) -- `type` applied to multiple parts That is, the expression ``Either (type ()) (type Int)`` does *not* indicate that ``Either`` is applied to two type arguments; rather, the entire expression is a single type argument and ``type`` is used to disambiguate parts of it. Outside a required type argument, it is illegal to use ``type``: :: r4 = type Int -- illegal use of ‘type’ Finally, there are types that require the ``type`` keyword only due to limitations of the current implementation:: a1 = f (type (Int -> Bool)) -- function type a2 = f (type (Read T => T)) -- constrained type a3 = f (type (forall a. a)) -- universally quantified type a4 = f (type (forall a. Read a => String -> a)) -- a combination of the above This restriction will be relaxed in a future release of GHC. Effect on implicit quantification ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implicit quantification is said to occur when GHC inserts an implicit ``forall`` to bind type variables:: const :: a -> b -> a -- implicit quantification const :: forall a b. a -> b -> a -- explicit quantification Normally, implicit quantification is unaffected by term variables in scope: :: f a = ... -- the LHS binds `a` where const :: a -> b -> a -- implicit quantification over `a` takes place -- despite the `a` bound on the LHS of `f` When :extension:`RequiredTypeArguments` is in effect, names bound in term syntax are not implicitly quantified. This allows us to accept the following example: :: readshow :: forall a -> (Read a, Show a) => String -> String readshow t s = show (read s :: t) s1 = readshow Int "42" -- "42" s2 = readshow Double "42" -- "42.0" Note how ``t`` is bound on the LHS of a function equation (term syntax), and then used in a type annotation (type syntax). Under the usual rules for implicit quantification, the ``t`` would have been implicitly quantified: :: -- RequiredTypeArguments readshow t s = show (read s :: t) -- the `t` is captured -- ↑ ↑ -- bound used -- NoRequiredTypeArguments readshow t s = show (read s :: t) -- the `t` is implicitly quantified as follows: readshow t s = show (read s :: forall t. t) -- ↑ ↑ ↑ -- bound bound used On the one hand, taking the current scope into account allows us to accept programs like the one above. On the other hand, some existing programs will no longer compile: :: a = 42 f :: a -> a -- RequiredTypeArguments: the top-level `a` is captured Because of that, merely enabling :extension:`RequiredTypeArguments` might lead to type errors of this form:: Term variable ‘a’ cannot be used here (term variables cannot be promoted) There are two possible ways to fix this error:: a = 42 f1 :: b -> b -- (1) use a different variable name f2 :: forall a. a -> a -- (2) use an explicit forall If you are converting a large codebase to be compatible with :extension:`RequiredTypeArguments`, consider using :ghc-flag:`-Wterm-variable-capture` during the migration. It is a warning that detects instances of implicit quantification incompatible with :extension:`RequiredTypeArguments`: :: The type variable ‘a’ is implicitly quantified, even though another variable of the same name is in scope: ‘a’ defined at ... .. _pi-types: Relation to Π-types ~~~~~~~~~~~~~~~~~~~ Both ``forall a.`` and ``forall a ->`` are dependent quantifiers in the narrow sense defined in :ref:`dependent-quantifier`. However, neither of them constitutes a dependent function type (Π-type) that might be familiar to users coming from dependently-typed languages or proof assistants. * Haskell has always had functions whose result *value* depends on the argument *value*:: not True = False -- argument value: True; result value: False (*2) 5 = 10 -- argument value: 5; result value: 10 This captures the usual idea of a function, denoted ``a -> b``. * Haskell also has functions whose result *type* depends on the argument *type*: :: id @Int :: Int -> Int -- argument type: Int; result type: Int -> Int id_vdq Bool :: Bool -> Bool -- argument type: Bool; result type: Bool -> Bool This captures the idea of parametric polymorphism, denoted ``forall a. b`` or ``forall a -> b``. * Furthermore, Haskell has functions whose result *value* depends on the argument *type*:: maxBound @Int8 = 127 -- argument type: Int8; result value: 127 maxBound @Int16 = 32767 -- argument type: Int16; result value: 32767 This captures the idea of ad-hoc (class-based) polymorphism, denoted ``C a => b``. * However, Haskell does **not** have direct support for functions whose result *type* depends on the argument *value*. In the literature, these are often called "dependent functions", or "Π-types". Consider: :: type F :: Bool -> Bool type family F b where F True = ... F False = ... f :: Bool -> Bool f True = ... f False = ... In this example, we define a type family ``F`` to pattern-match on ``b`` at the type level; and a function ``f`` to pattern-match on ``b`` at the term level. However, it is impossible to quantify over ``b`` in such a way that both ``F`` and ``f`` could be applied to it:: depfun :: forall (b :: Bool) -> F b -- Allowed depfun b = ... (f b) ... -- Not allowed It is illegal to pass ``b`` to ``f`` because ``b`` does not exist at runtime. Types and type arguments are erased before runtime. The :extension:`RequiredTypeArguments` extension does not add dependent functions, which would be a much bigger step. Rather :extension:`RequiredTypeArguments` just makes it possible for the type arguments of a function to be compulsory.