
The Glasgow Haskell Compiler User’s
Guide, Version 5.04

The GHC Team

The Glasgow Haskell Compiler User’s Guide, Version 5.04
by The GHC Team

Table of Contents
The Glasgow Haskell Compiler License...9

1. Introduction to GHC ..10

1.1. Meta-information: Web sites, mailing lists, etc...10
1.2. Reporting bugs in GHC..12

1.2.1. How do I tell if I should report my bug?...12
1.2.2. What to put in a bug report..12

1.3. GHC version numbering policy...13
1.4. Release notes for version 5.04...13

1.4.1. User-visible compiler changes...14
1.4.2. User-visible interpreter (GHCi) changes...15
1.4.3. User-visible library changes..15
1.4.4. New experimental features..16
1.4.5. Internal changes...16

2. Installing GHC ..17

2.1. Installing on Unix-a-likes...17
2.1.1. When a platform-specific package is available...17
2.1.2. GHC binary distributions...17

2.1.2.1. Installing...19
2.1.2.2. What bundles there are..20
2.1.2.3. Testing that GHC seems to be working..21

2.2. Installing on Windows..22
2.2.1. Installing GHC on Windows...22
2.2.2. Moving GHC around...23
2.2.3. Installing ghc-win32 FAQ...23

2.3. The layout of installed files..23
2.3.1. Layout of the library directory..24

3. Using GHCi ...26

3.1. Introduction to GHCi...26
3.2. Loading source files...27

3.2.1. Modules vs. filenames...28
3.2.2. Making changes and recompilation...28

3.3. Loading compiled code..29
3.4. Interactive evaluation at the prompt...30

3.4.1. What’s really in scope at the prompt?...31
3.4.1.1. Qualified names..32

3.4.2. Usingdo- notation at the prompt...32
3.4.3. Theit variable..34

3.5. Invoking GHCi...34
3.5.1. Packages..35
3.5.2. Extra libraries..35

3.6. GHCi commands..36

3

3.7. The:set command...38
3.7.1. GHCi options...39
3.7.2. Setting GHC command-line options in GHCi...39

3.8. The.ghci file..39
3.9. FAQ and Things To Watch Out For..40

4. Using GHC..42

4.1. Options overview...42
4.1.1. Command-line arguments..42
4.1.2. Command line options in source files...42
4.1.3. Setting options in GHCi..43

4.2. Static vs. Dynamic options...43
4.3. Meaningful file suffixes..43
4.4. Help and verbosity options...44
4.5. Usingghc --make ...45
4.6. GHC without--make ..46
4.7. Re-directing the compilation output(s)..47

4.7.1. Keeping Intermediate Files..48
4.7.2. Redirecting temporary files...49

4.8. Warnings and sanity-checking...49
4.9. Separate compilation..52

4.9.1. Interface files...52
4.9.2. Finding interface files..53
4.9.3. Finding interfaces for hierarchical modules..54
4.9.4. Other options related to interface files...54
4.9.5. The recompilation checker..54
4.9.6. Usingmake...55

4.9.6.1. Dependency generation...56
4.9.7. How to compile mutually recursive modules..58
4.9.8. Orphan modules and instance declarations...59

4.10. Packages...60
4.10.1. Using a package...60
4.10.2. Maintaining a local set of packages...61
4.10.3. Building a package from Haskell source...61
4.10.4. Package management..62

4.11. Optimisation (code improvement)...66
4.11.1.-O* : convenient “packages” of optimisation flags..67
4.11.2.-f* : platform-independent flags...68

4.12. Options related to a particular phase..69
4.12.1. Replacing the program for one or more phases...69
4.12.2. Forcing options to a particular phase...70
4.12.3. Options affecting the C pre-processor...70

4.12.3.1. CPP and string gaps..72
4.12.4. Options affecting a Haskell pre-processor...72
4.12.5. Options affecting the C compiler (if applicable)...72

4

4.12.6. Options affecting code generation...73
4.12.7. Options affecting linking...73

4.13. Using Concurrent Haskell..75
4.14. Using Parallel Haskell..75

4.14.1. Dummy’s guide to using PVM..75
4.14.2. Parallelism profiles..76
4.14.3. Other useful info about running parallel programs...76
4.14.4. RTS options for Concurrent/Parallel Haskell..77

4.15. Platform-specific Flags..78
4.16. Running a compiled program...78

4.16.1. Setting global RTS options..79
4.16.2. RTS options to control the garbage collector..80
4.16.3. RTS options for hackers, debuggers, and over-interested souls..........................82
4.16.4. “Hooks” to change RTS behaviour..83

4.17. Generating External Core Files..85
4.18. Debugging the compiler...85

4.18.1. Dumping out compiler intermediate structures...85
4.18.2. Checking for consistency...88
4.18.3. How to read Core syntax (from some-ddump flags)..89
4.18.4. Unregisterised compilation..91

4.19. Flag reference...91
4.19.1. Help and verbosity options (Section 4.4) ..91
4.19.2. Which phases to run (Section 4.6)...92
4.19.3. Redirecting output (Section 4.7)..92
4.19.4. Keeping intermediate files (Section 4.7.1) ..92
4.19.5. Temporary files (Section 4.7.2) ...93
4.19.6. Finding imports (Section 4.9.2)...93
4.19.7. Interface file options (Section 4.9.4) ...93
4.19.8. Recompilation checking (Section 4.9.5) ...93
4.19.9. Interactive-mode options (Section 3.8) ...94
4.19.10. Packages (Section 4.10)...94
4.19.11. Language options (Section 7.1)...94
4.19.12. Warnings (Section 4.8) ..95
4.19.13. Optimisation levels (Section 4.11) ..96
4.19.14. Individual optimisations (Section 4.11.2)..96
4.19.15. Profiling options (Chapter 5) ...97
4.19.16. Parallelism options (Section 4.14)...98
4.19.17. C pre-processor options (Section 4.12.3) ..98
4.19.18. C compiler options (Section 4.12.5)..98
4.19.19. Code generation options (Section 4.12.6) ...99
4.19.20. Linking options (Section 4.12.7) ...99
4.19.21. Replacing phases (Section 4.12.1)...100
4.19.22. Forcing options to particular phases (Section 4.12.2)100
4.19.23. Platform-specific options (Section 4.15) ...100

5

4.19.24. External core file options (Section 4.17) ...101
4.19.25. Compiler debugging options (Section 4.18)..101
4.19.26. Misc compiler options...102

5. Profiling ...104

5.1. Cost centres and cost-centre stacks..104
5.1.1. Inserting cost centres by hand...106
5.1.2. Rules for attributing costs..107

5.2. Compiler options for profiling...107
5.3. Time and allocation profiling...108
5.4. Profiling memory usage...109

5.4.1. RTS options for heap profiling..109
5.4.2. Retainer Profiling...111

5.4.2.1. Hints for using retainer profiling...111
5.4.3. Biographical Profiling...112

5.5. Graphical time/allocation profile...112
5.6.hp2ps––heap profile to PostScript...113
5.7. Using “ticky-ticky” profiling (for implementors)..115

6. Advice on: sooner, faster, smaller, thriftier...118

6.1. Sooner: producing a program more quickly..118
6.2. Faster: producing a program that runs quicker..119
6.3. Smaller: producing a program that is smaller..123
6.4. Thriftier: producing a program that gobbles less heap space...123

7. GHC Language Features..124

7.1. Language options...124
7.2. Unboxed types and primitive operations..125

7.2.1. Unboxed types...125
7.2.2. Unboxed Tuples...126

7.3. Type system extensions..127
7.3.1. Data types with no constructors..127
7.3.2. Infix type constructors...127
7.3.3. Explicitly-kinded quantification..128
7.3.4. Class method types..129
7.3.5. Multi-parameter type classes...129

7.3.5.1. Types...130
7.3.5.2. Class declarations..131
7.3.5.3. Instance declarations...132

7.3.6. Implicit parameters..134
7.3.7. Linear implicit parameters...136

7.3.7.1. Warnings...138
7.3.7.2. Recursive functions...138

7.3.8. Functional dependencies...139
7.3.9. Arbitrary-rank polymorphism...139

7.3.9.1. Examples...140

6

7.3.9.2. Type inference...142
7.3.9.3. Implicit quantification...143

7.3.10. Liberalised type synonyms..143
7.3.11. For-all hoisting..145
7.3.12. Existentially quantified data constructors..145

7.3.12.1. Why existential?..146
7.3.12.2. Type classes..147
7.3.12.3. Restrictions...147

7.3.13. Scoped type variables..148
7.3.13.1. What a pattern type signature means..149
7.3.13.2. Scope and implicit quantification..150
7.3.13.3. Result type signatures...151
7.3.13.4. Where a pattern type signature can occur...151

7.4. Assertions..152
7.5. Syntactic extensions...153

7.5.1. Hierarchical Modules..153
7.5.2. Pattern guards..154
7.5.3. Parallel List Comprehensions..155
7.5.4. Rebindable syntax...156

7.6. Pragmas..157
7.6.1. INLINE pragma...157
7.6.2. NOINLINE pragma...158
7.6.3. SPECIALIZE pragma..158
7.6.4. SPECIALIZE instance pragma..159
7.6.5. LINE pragma...159
7.6.6. RULES pragma..159
7.6.7. DEPRECATED pragma...159

7.7. Rewrite rules ...160
7.7.1. Syntax..160
7.7.2. Semantics...161
7.7.3. List fusion..162
7.7.4. Specialisation...163
7.7.5. Controlling what’s going on..164

7.8. Generic classes...164
7.8.1. Using generics...165
7.8.2. Changes wrt the paper...166
7.8.3. Terminology and restrictions...166
7.8.4. Another example..168

7.9. Generalised derived instances for newtypes..168
7.9.1. Generalising the deriving clause..168
7.9.2. A more precise specification...169

7.10. Concurrent and Parallel Haskell...170
7.10.1. Features specific to Parallel Haskell...171

7.10.1.1. TheParallel interface (recommended)..171

7

7.10.1.2. Underlying functions and primitives...172
7.10.1.3. Scheduling policy for concurrent threads...172
7.10.1.4. Scheduling policy for parallel threads..172

8. Foreign function interface (FFI)..173

8.1. GHC extensions to the FFI Addendum..173
8.1.1. Arrays..173
8.1.2. Unboxed types...173

8.2. Using the FFI with GHC..173
8.2.1. Usingforeign export andforeign import ccall "wrapper" with GHC

173
8.2.1.1. Using your ownmain() ...174
8.2.1.2. Usingforeign import ccall "wrapper" with GHC....................175

8.2.2. Using function headers..175

9. What to do when something goes wrong..177

9.1. When the compiler “does the wrong thing”...177
9.2. When your program “does the wrong thing”...178

10. Other Haskell utility programs ...180

10.1. Ctags and Etags for Haskell:hasktags..180
10.1.1. Using tags with your editor...180

10.2. “Yacc for Haskell”:happy...180
10.3. Writing Haskell interfaces to C code:hsc2hs..181

10.3.1. Command line syntax..181
10.3.2. Input syntax...182
10.3.3. Custom constructs...184

11. Building and using Win32 DLLs...186

11.1. Linking with DLLs...186
11.2. Not linking with DLLs..186
11.3. Creating a DLL..186
11.4. Making DLLs to be called from other languages..188

12. Known bugs and infelicities...190

12.1. Haskell 98 vs. Glasgow Haskell: language non-compliance...190
12.1.1. Divergence from Haskell 98..190

12.1.1.1. Lexical syntax...190
12.1.1.2. Context-free syntax...190
12.1.1.3. Expressions and patterns...191
12.1.1.4. Declarations and bindings...191
12.1.1.5. Module system and interface files...191
12.1.1.6. Numbers, basic types, and built-in classes..191
12.1.1.7. In Prelude support...191

12.1.2. GHC’s interpretation of undefined behaviour in Haskell 98.............................192
12.2. Known bugs or infelicities...192

13. GHC FAQ ..194

8

The Glasgow Haskell Compiler License
Copyright 2002, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR
THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9

Chapter 1. Introduction to GHC
This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch compilation
system for theHaskell 98 (http://www.haskell.org/) language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi), described
in Chapter 3, and a batch compiler, described throughoutChapter 4. In fact, GHC consists of a single
program which is just run with different options to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an interactive
session and used in the same way as interpreted code, and in fact when using GHCi most of the
library code will be pre-compiled. This means you get the best of both worlds: fast pre-compiled
library code, and fast compile turnaround for the parts of your program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function interface,
exceptions, type system extensions such as multi-parameter type classes, local universal and
existential quantification, functional dependencies, scoped type variables and explicit unboxed types.
These are all described inChapter 7.

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time to
spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as fast as
possible while not making too much effort to optimise the generated code (although GHC probably
isn’t what you’d describe as a fast compiler :-).

GHC’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. SeeChapter 5for more details.

GHC comes with a large collection of libraries, with everything from parser combinators to
networking. The libraries are described in separate documentation.

1.1. Meta-information: Web sites, mailing lists,
etc.
On the World-Wide Web, there are several URLs of likely interest:

• Haskell home page (http://www.haskell.org/)

• GHC home page (http://www.haskell.org/ghc/)

• comp.lang.functional FAQ (http://www.cs.nott.ac.uk/Department/Staff/mpj/faq.html)

We run the following mailing lists about Glasgow Haskell. We encourage you to join, as you feel is
appropriate.

glasgow-haskell-users:

This list is for GHC users to chat among themselves. If you have a specific question about
GHC, please check the FAQ first (Chapter 13).

10

Chapter 1. Introduction to GHC

list email address:

<glasgow-haskell-users@haskell.org >

subscribe at:

http://www.haskell.org/mailman/listinfo/glasgow-haskell-users .

admin email address:

<glasgow-haskell-users-admin@haskell.org >

list archives:

http://www.haskell.org/pipermail/glasgow-haskell-users/

glasgow-haskell-bugs:

Send bug reports for GHC to this address! The sad and lonely people who subscribe to this list
will muse upon what’s wrong and what you might do about it.

list email address:

<glasgow-haskell-bugs@haskell.org >

subscribe at:

http://www.haskell.org/mailman/listinfo/glasgow-haskell-bugs .

admin email address:

<glasgow-haskell-bugs-admin@haskell.org >

list archives:

http://www.haskell.org/pipermail/glasgow-haskell-bugs/

cvs-ghc:

The hardcore GHC developers hang out here. This list also gets commit message from the CVS
repository. There are several other similar lists for other parts of the CVS repository (eg.
cvs-hslibs , cvs-happy , cvs-hdirect etc.)

list email address:

<cvs-ghc@haskell.org >

subscribe at:

http://www.haskell.org/mailman/listinfo/cvs-ghc .

11

Chapter 1. Introduction to GHC

admin email address:

<cvs-ghc-admin@haskell.org >

list archives:

http://www.haskell.org/pipermail/cvs-ghc/

There are several other haskell and GHC-related mailing lists served bywww.haskell.org . Go to
http://www.haskell.org/mailman/listinfo/ for the full list.

Some Haskell-related discussion also takes place in the Usenet newsgroup
comp.lang.functional .

1.2. Reporting bugs in GHC
Glasgow Haskell is a changing system so there are sure to be bugs in it.

To report a bug, either:

• Go to the SoureForge GHC page (http://sourceforge.net/projects/ghc/), go to the “bugs” section,
click on “submit”, and enter your bug report. You can also check the outstanding bugs here and
search the archives to make sure it hasn’t already been reported. Or:

• Email your bug report to <glasgow-haskell-bugs@haskell.org >.

1.2.1. How do I tell if I should report my bug?
Take a look at the FAQ (Chapter 13) andChapter 9, which will give you some guidance as to
whether the behaviour you’re seeing is really a bug or not.

If it is a bug, then it might have been reported before: try searching the mailing list archives. The
archives don’t have a built-in search facility, but we find thatGoogle (http://www.google.com/)’s site
search works pretty well: enter“site:www.haskell.org ” followed by your search term into
Google.

If in doubt, just report it.

1.2.2. What to put in a bug report
The name of the bug-reporting game is: facts, facts, facts. Don’t omit them because “Oh, they won’t
be interested. . . ”

1. What kind of machine are you running on, and exactly what version of the operating system are
you using? (on a Unix system,uname -aor cat /etc/motdwill show the desired information.)

2. What version of GCC are you using?gcc -vwill tell you.

12

Chapter 1. Introduction to GHC

3. Run the sequence of compiles/runs that caused the offending behaviour, capturing all the
input/output in a “script” (a UNIX command) or in an Emacs shell window. We’d prefer to see
the whole thing.

4. Be sure any Haskell compilations are run with a-v (verbose) flag, so we can see exactly what
was run, what versions of things you have, etc.

5. What is the program behaviour that is wrong, in your opinion?

6. If practical, please send enough source files for us to duplicate the problem.

7. If you are a Hero and track down the problem in the compilation-system sources, please send us
patches relative to a known released version of GHC, or whole files if you prefer.

1.3. GHC version numbering policy
As of GHC version 4.08, we have adopted the following policy for numbering GHC versions:

Stable Releases

These are numberedx.yy.z , whereyy is even, andz is the patchlevel number (the trailing.z
can be omitted ifz is zero). Patchlevels are bug-fix releases only, and never change the
programmer interface to any system-supplied code. However, if you install a new patchlevel
over an old one you will need to recompile any code that was compiled against the old libraries.

The value of__GLASGOW_HASKELL__(seeSection 4.12.3) for a major releasex.yy.z is the
integerxyy .

Snapshots/unstable releases

We may make snapshot releases of the current development sources from time to time, and the
current sources are always available via the CVS repository (see the GHC web site for details).

Snapshot releases are namedx.yy.YYYYMMDD whereyy is odd, andYYYYMMDDis the date of
the sources from which the snapshot was built. In theory, you can check out the exact same
sources from the CVS repository using this date.

The value of__GLASGOW_HASKELL__for a snapshot release is the integerxyy . You should
never write any conditional code which tests for this value, however: since interfaces change on
a day-to-day basis, and we don’t have finer granularity in the values of
__GLASGOW_HASKELL__, you should only conditionally compile using predicates which test
whether__GLASGOW_HASKELL__is equal to, later than, or earlier than a given major release.

The version number of your copy of GHC can be found by invokingghc with the--version flag
(seeSection 4.4).

13

Chapter 1. Introduction to GHC

1.4. Release notes for version 5.04

1.4.1. User-visible compiler changes

• Full support for MacOS X, including fully optimized compilation, has been added. Only a native
code generator and support for-split-objs is still missing. Everything else needs more testing,
but should work.

• ghc-pkg : new options-auto-ghci-libs , -u /-update-package , -force , and
-i /-input-file , and suppport for expanding environment variables in package descriptions.
SeeSection 4.10).

• The latest version of the FFI spec is fully supported. The syntax of FFI declarations has changed
accordingly. The old syntax is still accepted for the time being, but will elicit a warning from the
compiler.

• New option:-F specifies a user-defined preprocessing phase (seeSection 4.12.4).

• Major overhaul of the heap profiling subsystem, with new facilities for retainer profiling and
biographical profiling (ala nhc98, albeit with a couple of omissions). The syntax of the runtime
heap-profiling options has changed. SeeSection 5.4.

• The type system now supports full rank-N types (previously only limited rank-2 types were
supported). SeeSection 7.3.9.

• Explicit kind annotations can now be given on any binding occurrence of a type variable. See
Section 7.3.3.

• The handling of type synonyms has been rationalised. SeeSection 7.3.10.

• Fixes for several space leaks in the compiler itself (these fixes were also merged into 5.02.3).

• It is now possible to derive arbitrary classes for newtypes. SeeSection 7.9.

• Deadlock is now an exception, rather than a return status from the scheduler. See the module
Control.Exception in the library documentation for more details.

• The syntax and behaviour ofRULEpragmas has changed slightly. SeeSection 7.7.

• Interface files are now in a binary format to reduce compilation times. To view an interface file in
plain text, use the-show-iface flag.

• A restriction on the form of class declarations has been lifted. In Haskell 98, it is illegal for class
method types to mention constraints on the class type variable. eg.

class Seq s a where
elem :: Eq a => a -> s a -> Bool

This restriction has now been lifted in GHC.

• Main threads can now receive theBlockedOnDeadMVar exception in the same way as other
threads.

14

Chapter 1. Introduction to GHC

• The-fall-strict flag never really worked, and has been removed.

• The syntax of.hi-boot files is now much clearer and Haskell-like. SeeSection 4.9.7.

• There is a new flag-fffi which enables FFI support without turning on the rest of the GHC
extensions.

• The syntax for implicit parameter bindings has changed. Previously the keywordwith was used to
introduce implicit bindings, but now implicit bindings may be introduced usinglet (seeSection
7.3.6). As a result of this,with is no longer a keyword when-fglasgow-exts is turned on.

The option-fwith may be used to restore the old behaviour.

• Infix type constructors are now allowed, and must begin with a colon (as with data constructors).
SeeSection 7.3.2.

• Thedo-notation syntax is now rebindable in the same way as other built-in syntax. SeeSection
7.5.4.

• Support for using “frameworks” on Darwin/MacOS X has been added. See the-framework

option inSection 4.12.7, and theframework_dirs field of a package spec inSection 4.10.4.

1.4.2. User-visible interpreter (GHCi) changes

• New commands::browse , :set args , :set prog , :show binadings , and:show modules

(seeSection 3.6).

• There is a much more flexible mechanism for manipulating the scope for expressions typed at the
prompt. For example, one can now have both thePrelude and the exports of several compiled
modules in scope at the same time. SeeSection 3.4.1.

• GHCi now supportsforeign import "wrapper" FFI declarations.

1.4.3. User-visible library changes

• GHC is in the process of moving to a new hierarchical set of libraries. At the moment, we have
two sets of libraries, both described in accompanying documents:

• The “new libraries” which are hierarchical and consist of the following packages:base ,
haskell98 , haskell-src , andnetwork . Broadly speaking,base contains thePrelude ,
standard libraries and most of the contents of the oldlang package. By default, thebase and
haskell98 packages are enabled.

• Thehslibs , most of which are now deprecated. Where possible, new code should be written to
use the new libraries instead.

The following libraries inhslibs have not moved yet:

15

Chapter 1. Introduction to GHC

• The packageswin32 , xlib , graphics , andposix .

• The Edison libraries in thedata package.

• In the lang package, the modulesTimeExts , DirectoryExts , SystemExts , and
NumExts .

• The HaXml libraries in thetext package.

• In theutil package, the modulesMD5, Select , Memo, Observe , andReadline .

All other libraries fromhslibs either have equivalents in the new libraries (see thehslibs

docs for details), or were already deprecated and hence were not moved into the new hierarchy.

• TheRead class is now based on a parsing combinator library which is vastly more efficient than
the previous one. See the modulesText.Read . Text.ParserCombinators.ReadP , and
Text.ParserCombinators.ReadPrec in the library documentation.

The code generated by the compiler for derivedRead instances should be much shorter than
before.

1.4.4. New experimental features

• Linear implicit parameters. SeeSection 7.3.7.

• The RTS has support for running in a multi-threaded environment and making non-blocking (from
Haskell’s point of view) calls to foreign C functions which would normally block. To enable this
behaviour, configure with the-enable-threaded-rts option.

• The compiler can now read in files containing Core syntax (such as those produced by the
-fext-core option) and compile them. Input files with the.hcr file extension are assumed to
contain Core syntax.

1.4.5. Internal changes

• Happy 1.13 is now required to build GHC, because of the change in names of certain libraries.

16

Chapter 2. Installing GHC
Installing from binary distributions is easiest, and recommended! (Why binaries? Because GHC is a
Haskell compiler written in Haskell, so you’ve got to bootstrap it somehow. We provide
machine-generated C-files-from-Haskell for this purpose, but it’s really quite a pain to use them. If
you must build GHC from its sources, using a binary-distributed GHC to do so is a sensible way to
proceed. For the otherfptools programs, many are written in Haskell, so binary distributions allow
you to install them without having a Haskell compiler.)

This guide is in several parts:

• Installing on Unix-a-likes (Section 2.1).

• Installing on Windows (Section 2.2).

• The layout of installed files (Section 2.3). You don’t need to know this to install GHC, but it’s
useful if you are changing the implementation.

2.1. Installing on Unix-a-likes

2.1.1. When a platform-specific package is available
For certain platforms, we provide GHC binaries packaged using the native package format for the
platform. This is likely to be by far the best way to install GHC for your platform if one of these
packages is available, since dependencies will automatically be handled and the package system
normally provides a way to uninstall the package at a later date.

We generally provide the following packages:

RedHat or SuSE Linux/x86

RPM source & binary packages for RedHat and SuSE Linux (x86 only) are available for most
major releases.

Debian Linux/x86

Debian packages for Linux (x86 only), also for most major releases.

FreeBSD/x86

On FreeBSD/x86, GHC can be installed using either the ports tree (cd

/usr/ports/lang/ghc && make install) or from a pre-compiled package available from
your local FreeBSD mirror.

Other platform-specific packages may be available, check the GHC download page for details.

17

Chapter 2. Installing GHC

2.1.2. GHC binary distributions

Binary distributions come in “bundles,” one bundle per file calledbundle - platform .tar.gz .
(See the building guide for the definition of a platform.) Suppose that you untar a binary-distribution
bundle, thus:

% cd /your/scratch/space
% gunzip < ghc-x.xx-sun-sparc-solaris2.tar.gz | tar xvf -

Then you should find a single directory,ghc- version , with the following structure:

Makefile.in

the raw material from which theMakefile will be made (Section 2.1.2.1).

configure

the configuration script (Section 2.1.2.1).

README

Contains this file summary.

INSTALL

Contains this description of how to install the bundle.

ANNOUNCE

The announcement message for the bundle.

NEWS

release notes for the bundle—a longer version ofANNOUNCE. For GHC, the release notes are
contained in the User Guide and this file isn’t present.

bin/ platform

contains platform-specific executable files to be invoked directly by the user. These are the files
that must end up in your path.

lib/ platform /

contains platform-specific support files for the installation. Typically there is a subdirectory for
eachfptools project, whose name is the name of the project with its version number. For
example, for GHC there would be a sub-directoryghc-x.xx / wherex.xx is the version
number of GHC in the bundle.

These sub-directories have the following general structure:

18

Chapter 2. Installing GHC

libHSstd.a etc:

supporting library archives.

ghc-iface.prl etc:

support scripts.

import/

(.hi) for the prelude.

include/

A few C #include files.

share/

contains platform-independent support files for the installation. Again, there is a sub-directory
for eachfptools project.

html/

contains HTML documentation files (one sub-directory per project).

man/

contains Unix manual pages.

2.1.2.1. Installing

OK, so let’s assume that you have unpacked your chosen bundles into a scratch directoryfptools .
What next? Well, you will at least need to run theconfigure script by changing your directory to
fptools and typing./configure . That should convertMakefile.in to Makefile .

You can now either start using the toolsin-situwithout going through any installation process, just
typemake in-place to set the tools up for this. You’ll also want to add the path whichmake will
now echo to yourPATHenvironment variable. This option is useful if you simply want to try out the
package and/or you don’t have the necessary privileges (or inclination) to properly install the tools
locally. Note that if you do decide to install the package ‘properly’ at a later date, you have to go
through the installation steps that follow.

To install anfptools package, you’ll have to do the following:

1. Edit theMakefile and check the settings of the following variables:

platform

the platform you are going to install for.

19

Chapter 2. Installing GHC

bindir

the directory in which to install user-invokable binaries.

libdir

the directory in which to install platform-dependent support files.

datadir

the directory in which to install platform-independent support files.

infodir

the directory in which to install Emacs info files.

htmldir

the directory in which to install HTML documentation.

dvidir

the directory in which to install DVI documentation.

The values for these variables can be set through invocation of theconfigurescript that comes with
the distribution, but doing an optical diff to see if the values match your expectations is always a
Good Idea.

Instead of runningconfigure, it is perfectly OK to copyMakefile.in to Makefile and set all
these variables directly yourself. But do it right!

2. Runmake install . Thisshouldwork with ordinary Unixmake—no need for fancy stuff like
GNU make.

3. rehash (t?csh or zsh users), so your shell will see the new stuff in your bin directory.

4. Once done, test your “installation” as suggested inSection 2.1.2.3. Be sure to use a-v option,
so you can see exactly what pathnames it’s using. If things don’t work as expected, check the list
of known pitfalls in the building guide.

When installing the user-invokable binaries, this installation procedure will install GHC as
ghc-x.xx wherex.xx is the version number of GHC. It will also make a link (in the binary
installation directory) fromghc to ghc-x.xx . If you install multiple versions of GHC then the last
one “wins”, and “ghc ” will invoke the last one installed. You can change this manually if you want.
But regardless,ghc-x.xx should always invoke GHC versionx.xx .

2.1.2.2. What bundles there are

There are plenty of “non-basic” GHC bundles. The files for them are called
ghc-x.xx- bundle - platform .tar.gz , where theplatform is as above, andbundle is one of
these:

20

Chapter 2. Installing GHC

prof :

Profiling with cost-centres. You probably want this.

par :

Parallel Haskell features (sits on top of PVM). You’ll want this if you’re into that kind of thing.

gran :

The “GranSim” parallel-Haskell simulator (hmm. . . mainly for implementors).

ticky :

“Ticky-ticky” profiling; very detailed information about “what happened when I ran this
program”—really for implementors.

One likely scenario is that you will grabtwo binary bundles—basic, and profiling. We don’t usually
make the rest, although you can build them yourself from a source distribution.

The various GHC bundles are designed to be unpacked into the same directory; then installing as per
the directions above will install the whole lot in one go. Note: youmustat least have the basic GHC
binary distribution bundle, these extra bundles won’t install on their own.

2.1.2.3. Testing that GHC seems to be working

The way to do this is, of course, to compile and runthisprogram (in a fileMain.hs):

main = putStr "Hello, world!\n"

Compile the program, using the-v (verbose) flag to verify that libraries, etc., are being found
properly:

% ghc -v -o hello Main.hs

Now run it:

% ./hello
Hello, world!

Some simple-but-profitable tests are to compile and run the notoriousnfib program, using different
numeric types. Start withnfib :: Int -> Int , and then tryInteger , Float , Double ,
Rational and perhaps the overloaded version. Code for this is distributed in
ghc/misc/examples/nfib/ in a source distribution.

For more information on how to “drive” GHC, read on...

21

Chapter 2. Installing GHC

2.2. Installing on Windows
Getting the Glasgow Haskell Compiler (post 5.02) to run on Windows platforms is a snap: the
Installshield does everything you need.

2.2.1. Installing GHC on Windows
To install GHC, use the following steps:

• Download the Installshieldsetup.exe from the GHC download page haskell.org
(http://www.haskell.org/ghc).

• Runsetup.exe . (If you have a previous version of GHC, Installshield will offer to "modify", or
"remove" GHC. Choose "remove"; then runsetup.exe a second time. This time it should offer
to install.)

At this point you should find GHCi and the GHC documentation are available in your Start menu
under "Start/Programs/Glasgow Haskell Compiler".

• The final dialogue box from the install process tells you where GHC has been installed. If you
want to invoke GHC from a command line, add this to your PATH environment variable. Usually,
GHC installs intoc:/ghc/ghc-5.02 , though the last part of this path depends on which version
of GHC you are installing, of course. You need to addc:/ghc/ghc-5.02/bin to your path if yo

• GHC needs a directory in which to create, and later delete, temporary files. It uses the standard
Windows procedureGetTempPath() to find a suitable directory. This procedure returns:

• The path in environment variable TMP, if TMP is set.

• Otherwise, the path in environment variable TEMP, if TEMP is set.

• Otherwise, there is a per-user default which varies between versions of Windows. On NT and
XP-ish versions, it might be:c:\Documents and Settings\<username>\Local

Settings\Temp

The main point is that if you don’t do anything GHC will work fine; but if you want to control where
the directory is, you can do so by setting TMP or TEMP.

• To test the fruits of your labour, try now to compile a simple Haskell program:

bash$ cat main.hs
module Main(main) where

main = putStrLn "Hello, world!"
bash$ ghc -o main main.hs
..
bash$./main
Hello, world!
bash$

You donot need the Cygwin toolchain, or anything else, to install and run GHC.

22

Chapter 2. Installing GHC

An installation of GHC requires about 140M of disk space. To run GHC comfortably, your machine
should have at least 64M of memory.

2.2.2. Moving GHC around
At the moment, GHC installs in a fixed place (c:/ghc/ghc-x.yy , but once it is installed, you can
freely move the entire GHC tree just by copying theghc-x.yy directory. (You may need to fix up
the links in "Start/Programs/Glasgow Haskell Compiler" if you do this.)

It is OK to put GHC tree in a directory whose path involves spaces. However, don’t do this if you use
want to use GHC with the Cygwin tools, because Cygwin can get confused when this happpens. We
havn’t quite got to the bottom of this, but so far as we know it’s not a problem with GHC itself.
Nevertheless, just to keep life simple we usually put GHC in a place with a space-free path.

2.2.3. Installing ghc-win32 FAQ

1. I’m having trouble with symlinks.

Symlinks only work under Cygwin (Section 2.1.2.1), so binaries not linked to the Cygwin DLL, in
particular those built for Mingwin, will not work with symlinks.

2. I’m getting “permission denied” messages from therm or mv.

This can have various causes: trying to rename a directory when an Explorer window is open on it
tends to fail. Closing the window generally cures the problem, but sometimes its cause is more
mysterious, and logging off and back on or rebooting may be the quickest cure.

2.3. The layout of installed files
This section describes what files get installed where. You don’t need to know it if you are simply
installing GHC, but it is vital information if you are changing the implementation.

GHC is installed in two directory trees:

Binary directory

known as$(bindir) , holds executables that the user is expected to invoke. Notably,ghc and
ghci . On Unix, this directory is typically something like/usr/local/bin . On Windows,
however, this directory is always$(libdir)/bin .

Library directory,

known as$(libdir) , holds all the support files needed to run GHC. On Unix, this directory is
usually something like/usr/lib/ghc/ghc-5.02 .

23

Chapter 2. Installing GHC

When GHC runs, it must know where its library directory is. It finds this out in one of two ways:

• $(libdir) is passed to GHC using the-B flag. On Unix (but not Windows), the installedghc is
just a one-line shell script that invokes the real GHC, passing a suitable-B flag. [All the
user-supplied flags follow, and a later-B flag overrides an earlier one, so a user-supplied one
wins.]

• On Windows (but not Unix), if no-B flag is given, GHC uses a system call to find the directory in
which the running GHC executable lives, and derives$(libdir) from that. [Unix lacks such a
system call.]

2.3.1. Layout of the library directory
The layout of the library directory is almost identical on Windows and Unix, as follows: layout:

$(libdir)/
package.conf GHC package configuration
ghc-usage.txt Message displayed by ghc --help

bin/ [Win32 only] User-visible binaries
ghc.exe
ghci.bat

unlit Remove literate markup

touchy.exe [Win32 only]
perl.exe [Win32 only]
gcc.exe [Win32 only]

ghc-x.xx GHC executable [Unix only]

ghc-split Asm code splitter
ghc-asm Asm code mangler

gcc-lib/ [Win32 only] Support files for gcc
specs gcc configuration

cpp0.exe gcc support binaries
as.exe
ld.exe

crt0.o Standard
..etc.. binaries

libmingw32.a Standard
..etc.. libraries

*.h Include files

24

Chapter 2. Installing GHC

imports/ GHC interface files
std/*.hi ’std’ library

lang/*.hi ’lang’ library
..etc..

include/ C header files
StgMacros.h GHC-specific
..etc... header files

mingw/*.h [Win32 only] Mingwin header files

libHSrts.a GHC library archives
libHSstd.a
libHSlang.a

..etc..

HSstd1.o GHC library linkables
HSstd2.o (used by ghci, which does
HSlang.o not grok .a files yet)

Note that:

• On Win32, the$(libdir)/bin directory contains user-visible binaries; add it to yourPATH. The
ghci executable is a.bat file which invokesghc .

The GHC executable is the Real Thing (no intervening shell scripts or.bat files). Reason: we
sometimes invoke GHC with very long command lines, andcmd.exe (which executes.bat files)
truncates them. [We assume people won’t invoke ghci with very long command lines.]

On Unix, the user-invokableghc invokes$(libdir)/ghc- version , passing a suitable-B flag.

• $(libdir) also contains support binaries. These arenot expected to be on the user’sPATH, but
and are invoked directly by GHC. In the Makefile system, this directory is also called
$(libexecdir) , butyou are not free to change it. It must be the same as$(libdir) .

• We distributegcc with the Win32 distribution of GHC, so that users don’t need to installgcc , nor
need to care about which version it is. Allgcc ’s support files are kept in$(libdir)/gcc-lib/ .

• Similarly, we distributeperl and atouch replacement (touchy.exe) with the Win32
distribution of GHC.

• The support programsghc-split andghc-asm are Perl scripts. The first line says
#!/bin/perl ; on Unix, the script is indeed invoked as a shell script, which invokes Perl; on
Windows, GHC invokes$(libdir)/perl.exe directly, which treats the#!/bin/perl as a
comment. Reason: on Windows we want to invoke the Perl distributed with GHC, rather than
assume some installed one.

25

Chapter 3. Using GHCi
GHCi1 is GHC’s interactive environment, in which Haskell expressions can be interactively evaluated
and programs can be interpreted. If you’re famililar withHugs (http://www.haskell.org/hugs/), then
you’ll be right at home with GHCi. However, GHCi also has support for interactively loading
compiled code, as well as supporting all2 the language extensions that GHC provides.

3.1. Introduction to GHCi
Let’s start with an example GHCi session. You can fire up GHCi with the commandghci :

$ ghci
___ ___ _

/ _ \ /\ /\/ __(_)
/ /_\// /_/ / / | | GHC Interactive, version 5.04, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/
____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.
Loading package haskell98 ... linking ... done.
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which the
prompt is shown. If we follow the instructions and type:? for help, we get:

Commands available from the prompt:

<stmt> evaluate/run <stmt>
:add <filename> ... add module(s) to the current target set
:browse [*]<module> display the names defined by <module>
:cd <dir> change directory to <dir>
:def <cmd> <expr> define a command :<cmd>
:help, :? display this list of commands
:info [<name> ...] display information about the given names
:load <filename> ... load module(s) and their dependents
:module [+/-] [*]<mod> ... set the context for expression evaluation
:reload reload the current module set

:set <option> ... set options
:set args <arg> ... set the arguments returned by System.getArgs
:set prog <progname> set the value returned by System.getProgName

:show modules show the currently loaded modules
:show bindings show the current bindings made at the prompt

:type <expr> show the type of <expr>
:undef <cmd> undefine user-defined command :<cmd>

26

Chapter 3. Using GHCi

:unset <option> ... unset options
:quit exit GHCi
:!<command> run the shell command <command>

Options for ‘:set’ and ‘:unset’:

+r revert top-level expressions after each evaluation
+s print timing/memory stats after each evaluation
+t print type after evaluation
-<flags> most GHC command line flags can also be set here

(eg. -v2, -fglasgow-exts, etc.)

We’ll explain most of these commands as we go along. For Hugs users: many things work the same
as in Hugs, so you should be able to get going straight away.

Haskell expressions can be typed at the prompt:

Prelude> 1+2
3
Prelude> let x = 42 in x / 9
4.666666666666667
Prelude>

GHCi interprets the whole line as an expression to evaluate. The expression may not span several
lines - as soon as you press enter, GHCi will attempt to evaluate it.

3.2. Loading source files
Suppose we have the following Haskell source code, which we place in a fileMain.hs :

main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)

You can saveMain.hs anywhere you like, but if you save it somewhere other than the current
directory3 then we will need to change to the right directory in GHCi:

Prelude> :cd dir

wheredir is the directory (or folder) in which you savedMain.hs .

To load a Haskell source file into GHCi, use the:load command:

Prelude> :load Main
Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.
*Main>

27

Chapter 3. Using GHCi

GHCi has loaded theMain module, and the prompt has changed to “*Main> ” to indicate that the
current context for expressions typed at the prompt is theMain module we just loaded (we’ll explain
what the* means later inSection 3.4.1). So we can now type expressions involving the functions
from Main.hs :

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost”
module to the:load command (hint::load can be abbreviated to:l). The topmost module will
normally beMain , but it doesn’t have to be. GHCi will discover which modules are required,
directly or indirectly, by the topmost module, and load them all in dependency order.

3.2.1. Modules vs. filenames
Question: How does GHC find the filename which contains moduleM? Answer: it looks for the file
M.hs , or M.lhs . This means that for most modules, the module name must match the filename. If it
doesn’t, GHCi won’t be able to find it.

There is one exception to this general rule: when you load a program with:load , or specify it when
you invokeghci , you can give a filename rather than a module name. This filename is loaded if it
exists, and it may contain any module you like. This is particularly convenient if you have several
Main modules in the same directory and you can’t call them allMain.hs .

The search path for finding source files is specified with the-i option on the GHCi command line,
like so:

ghci -i dir
1
:...: dir

n

or it can be set using the:set command from within GHCi (seeSection 3.7.2)4

One consequence of the way that GHCi follows dependencies to find modules to load is that every
module must have a source file. The only exception to the rule is modules that come from a package,
including thePrelude and standard libraries such asIO andComplex . If you attempt to load a
module for which GHCi can’t find a source file, even if there are object and interface files for the
module, you’ll get an error message.

One final note: if you load a module called Main, it must contain amain function, just like in GHC.

3.2.2. Making changes and recompilation
If you make some changes to the source code and want GHCi to recompile the program, give the
:reload command. The program will be recompiled as necessary, with GHCi doing its best to
avoid actually recompiling modules if their external dependencies haven’t changed. This is the same
mechanism we use to avoid re-compiling modules in the batch compilation setting (seeSection
4.9.5).

28

Chapter 3. Using GHCi

3.3. Loading compiled code
When you load a Haskell source module into GHCi, it is normally converted to byte-code and run
using the interpreter. However, interpreted code can also run alongside compiled code in GHCi;
indeed, normally when GHCi starts, it loads up a compiled copy of thebase package, which
contains thePrelude .

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on). So it
pays to compile the parts of a program that aren’t changing very often, and use the interpreter for the
code being actively developed.

When loading up source files with:load , GHCi looks for any corresponding compiled object files,
and will use one in preference to interpreting the source if possible. For example, suppose we have a
4-module program consisting of modules A, B, C, and D. Modules B and C both import D only, and
A imports both B & C:

A
/ \

B C
\ /

D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c D.hs
Prelude> :load A
Skipping D (D.hs, D.o)
Compiling C (C.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.
*Main>

In the messages from the compiler, we see that it skipped D, and used the object fileD.o . The
messageSkipping module indicates that compilation formodule isn’t necessary, because the
source and everything it depends on is unchanged since the last compilation.

At any time you can use the command:show modules to get a list of the modules currently loaded
into GHCi:

*Main> :show modules
D (D.hs, D.o)
C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)
*Main>

29

Chapter 3. Using GHCi

If we now modify the source of D (or pretend to: using Unix commandtouch on the source file is
handy for this), the compiler will no longer be able to use the object file, because it might be out of
date:

*Main> :! touch D.hs
*Main> :reload
Compiling D (D.hs, interpreted)
Skipping C (C.hs, interpreted)
Skipping B (B.hs, interpreted)
Skipping A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.
*Main>

Note that module D was compiled, but in this instance because its source hadn’t really changed, its
interface remained the same, and the recompilation checker determined that A, B and C didn’t need
to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs
*Main> :load A
Compiling D (D.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module may
only depend on other compiled modules, and in this case C depends on D, which doesn’t have an
object file, so GHCi also rejected C’s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by:reload ,
only :load :

*Main> :load A
Skipping D (D.hs, D.o)
Skipping C (C.hs, C.o)
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

HINT: since GHCi will only use a compiled object file if it can sure that the compiled version is
up-to-date, a good technique when working on a large program is to occasionally runghc --make

to compile the whole project (say before you go for lunch :-), then continue working in the

30

Chapter 3. Using GHCi

interpreter. As you modify code, the new modules will be interpreted, but the rest of the project will
remain compiled.

3.4. Interactive evaluation at the prompt
When you type an expression at the prompt, GHCi immediately evaluates and prints the result. But
that’s not the whole story: if you type something of typeIO a for somea, then GHCiexecutesit as
an IO-computation, and doesn’t attempt to print the result:.

Prelude> "hello"
"hello"
Prelude> putStrLn "hello"
hello

What actually happens is that GHCi typechecks the expression, and if it doesn’t have anIO type,
then it transforms it as follows: an expressione turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of theShow class, or GHCi will
complain:

Prelude> id
No instance for ‘Show (a -> a)’
arising from use of ‘print’
in a ‘do’ expression pattern binding: print it

The error message contains some clues as to the transformation happening internally.

3.4.1. What’s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi provides
a flexible way to control exactly how the context for an expression is constructed. Let’s start with the
simple cases; when you start GHCi the prompt looks like this:

Prelude>

Which indicates that everything from the modulePrelude is currently in scope. If we now load a
file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

31

Chapter 3. Using GHCi

The new prompt is*Main , which indicates that we are typing expressions in the context of the
top-level of theMain module. Everything that is in scope at the top-level in the moduleMain we just
loaded is also in scope at the prompt (probably includingPrelude , as long asMain doesn’t
explicitly hide it).

The syntax* module indicates that it is the full top-level scope ofmodule that is contributing to the
scope for expressions typed at the prompt. Without the* , just the exports of the module are visible.

We’re not limited to a single module: GHCi can combine scopes from multiple modules, in any
mixture of* and non-* forms. GHCi combines the scopes from all of these modules to form the
scope that is in effect at the prompt. For technical reasons, GHCi can only support the* -form for
modules which are interpreted, so compiled modules and package modules can only contribute their
exports to the current scope.

The scope is manipulated using the:module command. For example, if the current scope is
Prelude , then we can bring into scope the exports from the moduleIO like so:

Prelude> :module +IO
Prelude,IO> hPutStrLn stdout "hello\n"
hello
Prelude,IO>

(Note: :module can be shortened to:m). The full syntax of the:module command is:

:module [+|-] [*] mod
1

... [*] mod
n

Using the+ form of themodule commands adds modules to the current scope, and- removes them.
Without either+ or - , the current scope is replaced by the set of modules specified. Note that if you
use this form and leave outPrelude , GHCi will assume that you really wanted thePrelude and
add it in for you (if you don’t want thePrelude , then ask to remove it with:m -Prelude).

The scope is automatically set after a:load command, to the most recently loaded "target" module,
in a * -form if possible. For example, if you say:load foo.hs bar.hs andbar.hs contains
moduleBar , then the scope will be set to*Bar if Bar is interpreted, or ifBar is compiled it will be
set toPrelude,Bar (GHCi automatically addsPrelude if it isn’t present and there aren’t any
* -form modules).

With multiple modules in scope, especially multiple* -form modules, it is likely that name clashes
will occur. Haskell specifies that name clashes are only reported when an ambiguous identifier is
used, and GHCi behaves in the same way for expressions typed at the prompt.

3.4.1.1. Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicitimport

qualified declaration for every module in every package, and every module currently loaded into
GHCi.

32

Chapter 3. Using GHCi

3.4.2. Using do- notation at the prompt
GHCi actually acceptsstatementsrather than just expressions at the prompt. This means you can
bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax of a
statement in a Haskelldo expression. However, there’s no monad overloading here: statements typed
at the prompt must be in theIO monad.

Here’s an example:

Prelude> x <- return 42
Prelude> print x
42
Prelude>

The statementx <- return 42 means “executereturn 42 in the IO monad, and bind the result
to x”. We can then usex in future statements, for example to print it as we did above.

Of course, you can also bind normal non-IO expressions using thelet -statement:

Prelude> let x = 42
Prelude> print x
42
Prelude>

An important difference between the two types of binding is that the monadic bind (p <- e) is strict
(it evaluatese), whereas with thelet form, the expression isn’t evaluated immediately:

Prelude> let x = error "help!"
Prelude> print x
*** Exception: help!
Prelude>

Any exceptions raised during the evaluation or execution of the statement are caught and printed by
the GHCi command line interface (for more information on exceptions, see the module
Control.Exception in the libraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that are in
scope in the current module context.

WARNING: temporary bindings introduced at the prompt only last until the next:load or :reload

command, at which time they will be simply lost. However, they do survive a change of context with
:module : the temporary bindings just move to the new location.

HINT: To get a list of the bindings currently in scope, use the:show bindings command:

Prelude> :show bindings
x :: Int
Prelude>

33

Chapter 3. Using GHCi

HINT: if you turn on the+t option, GHCi will show the type of each variable bound by a statement.
For example:

Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

3.4.3. The it variable
Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt, GHCi
implicitly binds its value to the variableit . For example:

Prelude> 1+2
3
Prelude> it * 2
6

This is a result of the translation mentioned earlier, namely that an expressione is translated to

let it = e;
print it

before execution, resulting in a binding forit .

If the expression was of typeIO a for somea, thenit will be bound to the result of theIO
computation, which is of typea. eg.:

Prelude> Time.getClockTime
Prelude> print it
Wed Mar 14 12:23:13 GMT 2001

The corresponding translation for an IO-typede is

it <- e

Note thatit is shadowed by the new value each time you evaluate a new expression, and the old
value ofit is lost.

3.5. Invoking GHCi
GHCi is invoked with the commandghci or ghc --interactive . One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said:load modules

34

Chapter 3. Using GHCi

at the GHCi prompt (seeSection 3.6). For example, to start GHCi and load the program whose
topmost module is in the fileMain.hs , we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (seeChapter 4) also make sense in interactive
mode. The ones that don’t make sense are mostly obvious; for example, GHCi doesn’t generate
interface files, so options related to interface file generation won’t have any effect.

3.5.1. Packages
GHCi can make use of all the packages that come with GHC, For example, to start up GHCi with the
network package loaded:

$ ghci -package network
___ ___ _

/ _ \ /\ /\/ __(_)
/ /_\// /_/ / / | | GHC Interactive, version 5.04, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/
____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.
Loading package haskell98 ... linking ... done.
Loading package network ... linking ... done.
Prelude>

Note that GHCi will also automatically load any packages on which the requested package depends.

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

3.5.2. Extra libraries
Extra libraries may be specified on the command line using the normal-l lib option. For example,
to load the “m” library:

$ ghci -lm

On systems with.so -style shared libraries, the actual library loaded will thelib lib .so . GHCi
searches the following places for libraries, in this order:

• Paths specified using the-L path command-line option,

35

Chapter 3. Using GHCi

• the standard library search path for your system, which on some systems may be overriden by
setting theLD_LIBRARY_PATHenvironment variable.

On systems with.dll -style shared libraries, the actual library loaded will belib .dll . Again,
GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.o or .obj depending on your platform) from the
command-line. Just add the name the object file to the command line.

3.6. GHCi commands
GHCi commands all begin with ‘: ’ and consist of a single command name followed by zero or more
parameters. The command name may be abbreviated, as long as the abbreviation is not ambiguous.
All of the builtin commands, with the exception of:unset and:undef , may be abbreviated to a
single letter.

:add module ...

Add module (s) to the currenttarget set, and perform a reload.

:browse [*]module ...

Displays the identifiers defined by the modulemodule , which must be either loaded into GHCi
or be a member of a package. If the* symbol is placed before the module name, thenall the
identifiers defined inmodule are shown; otherwise the list is limited to the exports of
module . The* -form is only available for modules which are interpreted; for compiled
modules (including modules from packages) only the non-* form of :browse is available.

:cd dir

Changes the current working directory todir . A ‘’ symbol at the beginning ofdir will be
replaced by the contents of the environment variableHOME.

:def name expr

The command:def name expr defines a new GHCi command: name, implemented by the
Haskell expressionexpr , which must have typeString -> IO String . When: name

args is typed at the prompt, GHCi will run the expression(name args) , take the resulting
String , and feed it back into GHCi as a new sequence of commands. Separate commands in
the result must be separated by ‘\n ’.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the current
date & time:

Prelude> let date _ = Time.getClockTime »= print » return ""
Prelude> :def date date
Prelude> :date

36

Chapter 3. Using GHCi

Fri Mar 23 15:16:40 GMT 2001

Here’s an example of a command that takes an argument. It’s a re-implementation of:cd :

Prelude> let mycd d = Directory.setCurrentDirectory d » return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main ” in the current directory:

Prelude> :def make (_ -> return ":! ghc --make Main")

:help

:?

Displays a list of the available commands.

:info name ...

Displays information about the given name(s). For example, ifname is a class, then the class
methods and their types will be printed; ifname is a type constructor, then its definition will be
printed; ifname is a function, then its type will be printed. Ifname has been loaded from a
source file, then GHCi will also display the location of its definition in the source.

:load module ...

Recursively loads the specifiedmodule s, and all the modules they depend on. Here, each
module must be a module name or filename, but may not be the name of a module in a
package.

All previously loaded modules, except package modules, are forgotten. The new set of modules
is known as thetarget set. Note that:load can be used without any arguments to unload all the
currently loaded modules and bindings.

After a :load command, the current context is set to:

• module , if it was loaded successfully, or

• the most recently successfully loaded module, if any other modules were loaded as a result of
the current:load , or

• Prelude otherwise.

:module [+|-] [*] mod
1

... [*] mod
n

Sets or modifies the current context for statements typed at the prompt. SeeSection 3.4.1for
more details.

:quit

Quits GHCi. You can also quit by typing a control-D at the prompt.

37

Chapter 3. Using GHCi

:reload

Attempts to reload the current target set (see:load) if any of the modules in the set, or any
dependent module, has changed. Note that this may entail loading new modules, or dropping
modules which are no longer indirectly required by the target.

:set [option ...]

Sets various options. SeeSection 3.7for a list of available options. The:set command by
itself shows which options are currently set.

:set args arg ...

Sets the list of arguments which are returned when the program callsSystem.getArgs .

:set prog prog

Sets the string to be returned when the program callsSystem.getProgName .

:show bindings

Show the bindings made at the prompt and their types.

:show modules

Show the list of modules currently load.

:type expression

Infers and prints the type ofexpression , including explicit forall quantifiers for polymorphic
types. The monomorphism restriction isnot applied to the expression during type inference.

:undef name

Undefines the user-defined commandname (see:def above).

:unset option ...

Unsets certain options. SeeSection 3.7for a list of available options.

:! command...

Executes the shell commandcommand.

3.7. The :set command
The :set command sets two types of options: GHCi options, which begin with ‘+” and
“command-line” options, which begin with ‘-’.

NOTE: at the moment, the:set command doesn’t support any kind of quoting in its arguments:
quotes will not be removed and cannot be used to group words together. For example,:set

-DFOO=’BAR BAZ’ will not do what you expect.

38

Chapter 3. Using GHCi

3.7.1. GHCi options
GHCi options may be set using:set and unset using:unset .

The available GHCi options are:

+r

Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on+r causes all
evaluation of top-level expressions to be discarded after each evaluation (they are still retained
duringa single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts of
space, or if you need repeatable performance measurements.

+s

Display some stats after evaluating each expression, including the elapsed time and number of
bytes allocated. NOTE: the allocation figure is only accurate to the size of the storage
manager’s allocation area, because it is calculated at every GC. Hence, you might see values of
zero if no GC has occurred.

+t

Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable ‘it ’.

3.7.2. Setting GHC command-line options in GHCi
Normal GHC command-line options may also be set using:set . For example, to turn on
-fglasgow-exts , you would say:

Prelude> :set -fglasgow-exts

Any GHC command-line option that is designated asdynamic(see the table inSection 4.19), may be
set using:set . To unset an option, you can set the reverse option:

Prelude> :set -fno-glasgow-exts

Section 4.19lists the reverse for each option where applicable.

Certain static options (-package , -I , -i , and-l in particular) will also work, but some may not
take effect until the next reload.

39

Chapter 3. Using GHCi

3.8. The .ghci file
When it starts, GHCi always reads and executes commands from$HOME/.ghci , followed by
./.ghci .

The .ghci in your home directory is most useful for turning on favourite options (eg.:set +s),
and defining useful macros. Placing a.ghci file in a directory with a Haskell project is a useful way
to set certain project-wide options so you don’t have to type them everytime you start GHCi: eg. if
your project uses GHC extensions and CPP, and has source files in three subdirectories A B and C,
you might put the following lines in.ghci :

:set -fglasgow-exts -cpp
:set -iA:B:C

(Note that strictly speaking the-i flag is a static one, but in fact it works to set it using:set like
this. The changes won’t take effect until the next:load , though.)

Two command-line options control whether the.ghci files are read:

-ignore-dot-ghci

Don’t read either./.ghci or $HOME/.ghci when starting up.

-read-dot-ghci

Read.ghci and$HOME/.ghci . This is normally the default, but the-read-dot-ghci option
may be used to override a previous-ignore-dot-ghci option.

3.9. FAQ and Things To Watch Out For

GHCi complains aboutmain not being in scope when I load a module.

You probably omitted themodule declaration at the top of the module, which causes the
module name to default toMain . In Haskell, theMain module must define a function called
main . Admittedly this doesn’t make a great deal of sense for an interpreter, but the rule was
kept for compatibility with GHC.

The interpreter can’t load modules with foreign export declarations!

Unfortunately not. We haven’t implemented it yet. Please compile any offending modules by
hand before loading them into GHCi.

-O doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the optimisation
passes, so we have disabled optimisation when using the interpreter. This isn’t a great loss:
you’ll get a much bigger win by compiling the bits of your code that need to go fast, rather than
interpreting them with optimisation turned on.

40

Chapter 3. Using GHCi

Unboxed tuples don’t work with GHCi

That’s right. You can always compile a module that uses unboxed tuples and load it into GHCi,
however. (Incidentally the previous point, namely that-O is incompatible with GHCi, is
because the bytecode compiler can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCi is waiting for input.

No, they don’t. This is because the Haskell binding to the GNU readline library doesn’t support
reading from the terminal in a non-blocking way, which is required to work properly with
GHC’s concurrency model.

After usinggetContents , I can’t usestdin again until I do:load or :reload .

This is the defined behaviour ofgetContents : it puts the stdin Handle in a state known as
semi-closed, wherein any further I/O operations on it are forbidden. Because I/O state is
retained between computations, the semi-closed state persists until the next:load or :reload

command.

You can makestdin reset itself after every evaluation by giving GHCi the command:set

+r . This works becausestdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

Notes
1. The ‘i’ stands for “Interactive”

2. exceptforeign export , at the moment

3. If you started up GHCi from the command line then GHCi’s current directory is the same as the
current directory of the shell from which it was started. If you started GHCi from the “Start”
menu in Windows, then the current directory is probably something likeC:\Documents and

Settings\ user name .

4. Note that in GHCi, and--make mode, the-i option is used to specify the search path forsource
files, whereas in standard batch-compilation mode the-i option is used to specify the search
path for interface files, seeSection 4.9.2.

41

Chapter 4. Using GHC
GHC can work in one of three “modes”:

ghc ––interactive

Interactive mode, which is also available asghci. Interactive mode is described in more detail in
Chapter 3.

ghc ––make

In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to be much
easier, and faster, than usingmake.

ghc [-E | -C | -S| -c]

This is the traditional batch-compiler mode, in which GHC can compile source files one at a
time, or link objects together into an executable.

4.1. Options overview
GHC’s behaviour is controlled byoptions, which for historical reasons are also sometimes referred
to as command-line flags or arguments. Options can be specified in three ways:

4.1.1. Command-line arguments
An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with- . They maynot be grouped:-vO is different from-v -O .
Options need not precede filenames: e.g.,ghc *.o -o foo . All options are processed and then
applied to all files; you cannot, for example, invokeghc -c -O1 Foo.hs -O2 Bar.hs to apply
different optimisation levels to the filesFoo.hs andBar.hs .

42

Chapter 4. Using GHC

4.1.2. Command line options in source files
Sometimes it is useful to make the connection between a source file and the command-line options it
requires quite tight. For instance, if a Haskell source file uses GHC extensions, it will always need to
be compiled with the-fglasgow-exts option. Rather than maintaining the list of per-file options
in a Makefile , it is possible to do this directly in the source file using theOPTIONSpragma:

{-# OPTIONS -fglasgow-exts #-}
module X where
...

OPTIONSpragmas are only looked for at the top of your source files, upto the first
(non-literate,non-empty) line not containingOPTIONS. Multiple OPTIONSpragmas are recognised.
Note that your command shell does not get to the source file options, they are just included literally
in the array of command-line arguments the compiler driver maintains internally, so you’ll be
desperately disappointed if you try to glob etc. insideOPTIONS.

NOTE: the contents of OPTIONS are prepended to the command-line options, so youdohave the
ability to override OPTIONS settings via the command line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some
circumstances, theOPTIONSpragma is the Right Thing. (If you use-keep-hc-file-too and have
OPTION flags in your module, the OPTIONS will get put into the generated .hc file).

4.1.3. Setting options in GHCi
Options may also be modified from within GHCi, using the:set command. SeeSection 3.7for
more details.

4.2. Static vs. Dynamic options
Each of GHC’s command line options is classified as eitherstaticor dynamic. A static flag may only
be specified on the command line, whereas a dynamic flag may also be given in anOPTIONSpragma
in a source file or set from the GHCi command-line with:set .

As a rule of thumb, all the language options are dynamic, as are the warning options and the
debugging options. The rest are static, with the notable exceptions of-v , -cpp , -fasm , -fvia-C ,
and-#include . The flag reference tables (Section 4.19) lists the status of each flag.

4.3. Meaningful file suffixes
File names with “meaningful” suffixes (e.g.,.lhs or .o) cause the “right thing” to happen to those
files.

43

Chapter 4. Using GHC

.lhs

A “literate Haskell” module.

.hs

A not-so-literate Haskell module.

.hi

A Haskell interface file, probably compiler-generated.

.hc

Intermediate C file produced by the Haskell compiler.

.c

A C file not produced by the Haskell compiler.

.s

An assembly-language source file, usually produced by the compiler.

.o

An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

4.4. Help and verbosity options

--help

-?

Cause GHC to spew a long usage message to standard output and then exit.

-v

The-v option makes GHCverbose: it reports its version number and shows (on stderr) exactly
how it invokes each phase of the compilation system. Moreover, it passes the-v flag to most
phases; each reports its version number (and possibly some other information).

Please, oh please, use the-v option when reporting bugs! Knowing that you ran the right bits in
the right order is always the first thing we want to verify.

-v n

To provide more control over the compiler’s verbosity, the-v flag takes an optional numeric
argument. Specifying-v on its own is equivalent to-v3 , and the other levels have the following
meanings:

44

Chapter 4. Using GHC

-v0

Disable all non-essential messages (this is the default).

-v1

Minimal verbosity: print one line per compilation (this is the default when--make or
--interactive is on).

-v2

Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes).

-v3

The same as-v2 , except that in addition the full command line (if appropriate) for each
compilation phase is also printed.

-v4

The same as-v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

--version

Print a one-line string including GHC’s version number.

--numeric-version

Print GHC’s numeric version number only.

--print-libdir

Print the path to GHC’s library directory. This is the top of the directory tree containing GHC’s
libraries, interfaces, and include files (usually something like/usr/local/lib/ghc-5.04 on
Unix). This is the value of$libdir in the package configuration file (seeSection 4.10).

4.5. Using ghc --make

When given the--make option, GHC will build a multi-module Haskell program by following
dependencies from a single root module (usuallyMain). For example, if yourMain module is in a
file calledMain.hs , you could compile and link the program like this:

ghc --make Main.hs

The command line must contain one source file or module name; GHC will figure out all the
modules in the program by following the imports from this initial module. It will then attempt to
compile each module which is out of date, and finally if the top module isMain , the program will
also be linked into an executable.

45

Chapter 4. Using GHC

The main advantages to usingghc --make over traditionalMakefile s are:

• GHC doesn’t have to be restarted for each compilation, which means it can cache information
between compilations. Compiling a muli-module program withghc --make can be up to twice
as fast as runningghc individually on each source file.

• You don’t have to write aMakefile .

• GHC re-calculates the dependencies each time it is invoked, so the dependencies never get out of
sync with the source.

Any of the command-line options described in the rest of this chapter can be used with--make , but
note that any options you give on the command line will apply to all the source files compiled, so if
you want any options to apply to a single source file only, you’ll need to use anOPTIONSpragma
(seeSection 4.1.2).

If the program needs to be linked with additional objects (say, some auxilliary C code), these can be
specified on the command line as usual.

Note that GHC can only follow dependencies if it has the source file available, so if your program
includes a module for which there is no source file, even if you have an object and an interface file
for the module, then GHC will complain. The exception to this rule is for package modules, which
may or may not have source files.

The source files for the program don’t all need to be in the same directory; the-i option can be used
to add directories to the search path (seeSection 4.9.2).

4.6. GHC without --make

Without --make , GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined by a
flag. If no relevant flag is present, then go all the way through linking. This table summarises:

Phase of the
compilation system

Suffix saying “start
here”

Flag saying “stop
after”

(suffix of) output file

literate pre-processor .lhs - .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hc or .c -S .s

assembler .s -c .o

linker other - a.out

Thus, a common invocation would be:ghc -c Foo.hs

Note: What the Haskell compiler proper produces depends on whether a native-code generatoris
used (producing assembly language) or not (producing C). SeeSection 4.12.6for more details.

46

Chapter 4. Using GHC

Note: C pre-processing is optional, the-ccp flag turns it on. SeeSection 4.12.3for more details.

Note: The option-E runs just the pre-processing passes of the compiler, dumping the result in a file.
Note that this differs from the previous behaviour of dumping the file to standard output.

4.7. Re-directing the compilation output(s)

-o

GHC’s compiled output normally goes into a.hc , .o , etc., file, depending on the last-run
compilation phase. The option-o foo re-directs the output of that last-run phase to filefoo .

Note: this “feature” can be counterintuitive:ghc -C -o foo.o foo.hswill put the intermediate C
code in the filefoo.o , name notwithstanding!

Note: on Windows, if the result is an executable file, the extension ".exe " is added if the
specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the moduleMain.hs , and put the resulting executable infoo.exe (not
foo).

-odir

The-o option isn’t of much use if you haveseveralinput files. . . Non-interface output files are
normally put in the same directory as their corresponding input file came from. You may
specify that they be put in another directory using the-odir <dir> (the “Oh, dear” option).
For example:

% ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir ‘arch‘

The output files,Foo.o , Bar.o , andBumble.o would be put into a subdirectory named after
the architecture of the executing machine (sun4 , mips , etc). The directory must already exist; it
won’t be created.

Note that the-odir option doesnot affect where the interface files are put. In the above
example, they would still be put inparse/Foo.hi , parse/Bar.hi , and
gurgle/Bumble.hi .

-ohi file

The interface output may be directed to another filebar2/Wurble.iface with the option
-ohi bar2/Wurble.iface (not recommended).

WARNING: if you redirect the interface file somewhere that GHC can’t find it, then the
recompilation checker may get confused (at the least, you won’t get any recompilation
avoidance). We recommend using a combination of-hidir and-hisuf options instead, if
possible.

47

Chapter 4. Using GHC

To avoid generating an interface at all, you could use this option to redirect the interface into the
bit bucket:-ohi /dev/null , for example.

-hidir directory

Redirects all generated interface files intodirectory , instead of the default which is to place
the interface file in the same directory as the source file.

-osuf suffix
-hisuf suffix
-hcsuf suffix

EXOTICA: The-osuf suffix will change the.o file suffix for object files to whatever you
specify. We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.

Similarly, the-hisuf suffix will change the.hi file suffix for non-system interface files
(seeSection 4.9.4).

Finally, the option-hcsuf suffix will change the.hc file suffix for compiler-generated
intermediate C files.

The-hisuf /-osuf game is particularly useful if you want to compile a program both with and
without profiling, in the same directory. You can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

4.7.1. Keeping Intermediate Files
The following options are useful for keeping certain intermediate files around, when normally GHC
would throw these away after compilation:

-keep-hc-files

Keep intermediate.hc files when doing.hs -to-.o compilations via C (NOTE:.hc files aren’t
generated when using the native code generator, you may need to use-fvia-C to force them to
be produced).

-keep-s-files

Keep intermediate.s files.

48

Chapter 4. Using GHC

-keep-raw-s-files

Keep intermediate.raw-s files. These are the direct output from the C compiler, before GHC
does “assembly mangling” to produce the.s file. Again, these are not produced when using the
native code generator.

-keep-tmp-files

Instructs the GHC driver not to delete any of its temporary files, which it normally keeps in
/tmp (or possibly elsewhere; seeSection 4.7.2). Running GHC with-v will show you what
temporary files were generated along the way.

4.7.2. Redirecting temporary files

-tmpdir

If you have trouble because of running out of space in/tmp (or wherever your installation
thinks temporary files should go), you may use the-tmpdir <dir> option to specify an
alternate directory. For example,-tmpdir . says to put temporary files in the current working
directory.

Alternatively, use yourTMPDIRenvironment variable.Set it to the name of the directory where
temporary files should be put. GCC and other programs will honour theTMPDIRvariable as
well.

Even better idea: Set theDEFAULT_TMPDIRmake variable when building GHC, and never
worry aboutTMPDIRagain. (see the build documentation).

4.8. Warnings and sanity-checking
GHC has a number of options that select which types of non-fatal error messages, otherwise known
as warnings, can be generated during compilation. By default, you get a standard set of warnings
which are generally likely to indicate bugs in your program. These are:
-fwarn-overlpapping-patterns , -fwarn-deprecations , -fwarn-duplicate-exports ,
-fwarn-missing-fields , and-fwarn-missing-methods . The following flags are simple ways
to select standard “packages” of warnings:

-W:

Provides the standard warnings plus-fwarn-incomplete-patterns ,
-fwarn-unused-matches , -fwarn-unused-imports , -fwarn-misc , and
-fwarn-unused-binds .

49

Chapter 4. Using GHC

-w :

Turns off all warnings, including the standard ones.

-Wall :

Turns on all warning options.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding-fno-warn-... option on the command line.

-fwarn-deprecations :

Causes a warning to be emitted when a deprecated function or type is used. Entities can be
marked as deprecated using a pragma, seeSection 7.6.7.

-fwarn-duplicate-exports :

Have the compiler warn about duplicate entries in export lists. This is useful information if you
maintain large export lists, and want to avoid the continued export of a definition after you’ve
deleted (one) mention of it in the export list.

This option is on by default.

-fwarn-hi-shadowing :

Causes the compiler to emit a warning when a module or interface file in the current directory is
shadowing one with the same module name in a library or other directory.

-fwarn-incomplete-patterns :

Similarly for incomplete patterns, the functiong below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when-fwarn-incomplete-patterns is
enabled.

g [] = 2

This option isn’t enabled be default because it can be a bit noisy, and it doesn’t always indicate
a bug in the program. However, it’s generally considered good practice to cover all the cases in
your functions.

50

Chapter 4. Using GHC

-fwarn-misc :

Turns on warnings for various harmless but untidy things. This currently includes: importing a
type with(..) when the export is abstract, and listing duplicate class assertions in a qualified
type.

-fwarn-missing-fields :

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initializers for one or more fields. While not an error (the
missing fields are initialised with bottoms), it is often an indication of a programmer error.

-fwarn-missing-methods :

This option is on by default, and warns you whenever an instance declaration is missing one or
more methods, and the corresponding class declaration has no default declaration for them.

-fwarn-missing-signatures :

If you would like GHC to check that every top-level function/value has a type signature, use the
-fwarn-missing-signatures option. This option is off by default.

-fwarn-name-shadowing :

This option causes a warning to be emitted whenever an inner-scope value has the same name
as an outer-scope value, i.e. the inner value shadows the outer one. This can catch typographical
errors that turn into hard-to-find bugs, e.g., in the inadvertent cyclic definitionlet x = ... x

... in .

Consequently, this option doeswill complain about cyclic recursive definitions.

-fwarn-overlapping-patterns :

By default, the compiler will warn you if a set of patterns are overlapping, i.e.,

f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2

where the last pattern match inf won’t ever be reached, as the second pattern overlaps it. More
often than not, redundant patterns is a programmer mistake/error, so this option is enabled by
default.

51

Chapter 4. Using GHC

-fwarn-simple-patterns :

Causes the compiler to warn about lambda-bound patterns that can fail, eg.\(x:xs)->... .
Normally, these aren’t treated as incomplete patterns by-fwarn-incomplete-patterns .

-fwarn-type-defaults :

Have the compiler warn/inform you where in your source the Haskell defaulting mechanism for
numeric types kicks in. This is useful information when converting code from a context that
assumed one default into one with another, e.g., the ‘default default’ for Haskell 1.4 caused the
otherwise unconstrained value1 to be given the typeInt , whereas Haskell 98 defaults it to
Integer . This may lead to differences in performance and behaviour, hence the usefulness of
being non-silent about this.

This warning is off by default.

-fwarn-unused-binds :

Report any function definitions (and local bindings) which are unused. For top-level functions,
the warning is only given if the binding is not exported.

-fwarn-unused-imports :

Report any objects that are explicitly imported but never used.

-fwarn-unused-matches :

Report all unused variables which arise from pattern matches, including patterns consisting of a
single variable. For instancef x y = [] would reportx andy as unused. To eliminate the
warning, all unused variables can be replaced with wildcards.

If you’re feeling really paranoid, the-dcore-lint optionis a good choice. It turns on heavyweight
intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

4.9. Separate compilation
This section describes how GHC supports separate compilation.

52

Chapter 4. Using GHC

4.9.1. Interface files
When GHC compiles a source fileA.hs which contains a moduleA, say, it generates an objectA.o ,
anda companioninterface fileA.hi . The interface file is merely there to help the compiler compile
other modules in the same program. Interfaces are in a binary format, so don’t try to look at one;
however youcansee the contents of an interface file by using GHC with the-show-iface option
(seeSection 4.9.4, below).

NOTE: In general, the name of a file containing moduleMshould be namedM.hs or M.lhs . The
only exception to this rule is moduleMain , which can be placed in any file.

The interface file forA contains information needed by the compiler when it compiles any moduleB

that importsA, whether directly or indirectly. When compilingB, GHC will readA.hi to find the
details that it needs to know about things defined inA.

The interface file may contain all sorts of things that aren’t explicitly exported fromA by the
programmer. For example, even though a data type is exported abstractly,A.hi will contain the full
data type definition. For small function definitions,A.hi will contain the complete definition of the
function. For bigger functions,A.hi will contain strictness information about the function. And so
on. GHC puts much more information into.hi files when optimisation is turned on with the-O flag
(seeSection 4.11). Without -O it puts in just the minimum; with-O it lobs in a whole pile of stuff.

A.hi should really be thought of as a compiler-readable version ofA.o . If you use a.hi file that
wasn’t generated by the same compilation run that generates the.o file the compiler may assume all
sorts of incorrect things aboutA, resulting in core dumps and other unpleasant happenings.

4.9.2. Finding interface files
In your program, you import a moduleFoo by sayingimport Foo . GHC goes looking for an
interface file,Foo.hi . It has a builtin list of directories (notably including.) where it looks.

-i<dirs>

This flag appends a colon-separated list ofdirs to the “import directories” list, which initially
contains a single entry: “.”.

This list is scanned before any package directories (seeSection 4.10) when looking for imports,
but note that if you have a home module with the same name as a package module then this is
likely to cause trouble in other ways, with link errors being the least nasty thing that can go
wrong...

See alsoSection 4.9.5for the significance of using relative and absolute pathnames in the-i

list.

-i

resets the “import directories” list back to nothing.

See also the section on packages (Section 4.10), which describes how to use installed libraries.

53

Chapter 4. Using GHC

4.9.3. Finding interfaces for hierarchical modules
GHC supports a hierarchical module namespace as an extension to Haskell 98 (seeSection 7.5.1).

A module name in general consists of a sequence of components separated by dots (‘. ’). When
looking for interface files for a hierarchical module, the compiler turns the dots into path separators,
so for example a moduleA.B.C becomesA/B/C (or A\B\C under Windows). Then each component
of the import directories list is tested in turn; so for example if the list contains directoriesD

1
to D

n
,

then the compiler will look for the interface inD
1
/A/B/C.hi first, thenD

2
/A/B/C.hi and so on.

Note that it’s perfectly reasonable to have a module which is both a leaf and a branch of the tree. For
example, if we have modulesA.B andA.B.C , thenA.B ’s interface file will be inA/B.hi and
A.B.C ’s interface file will be inA/B/C.hi .

For GHCi and-make , the search strategy for source files is exactly the same, just replace the.hi

suffix in the above description with.hs or .lhs .

4.9.4. Other options related to interface files

-ddump-hi

Dumps the new interface to standard output.

-ddump-hi-diffs

The compiler does not overwrite an existing.hi interface file if the new one is the same as the
old one; this is friendly tomake. When an interface does change, it is often enlightening to be
informed. The-ddump-hi-diffs option will make GHC rundiff on the old and new.hi

files.

-ddump-minimal-imports

Dump to the file "M.imports" (where M is the module being compiled) a "minimal" set of
import declarations. You can safely replace all the import declarations in "M.hs" with those
found in "M.imports". Why would you want to do that? Because the "minimal" imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can be
quite painful to maintain this property by hand, so this flag is intended to reduce the labour.

-show-iface file

Wherefile is the name of an interface file, dumps the contents of that interface in a
human-readable (ish) format.

4.9.5. The recompilation checker

-no-recomp

Turn off recompilation checking (which is on by default). Recompilation checking normally

54

Chapter 4. Using GHC

stops compilation early, leaving an existing.o file in place, if it can be determined that the
module does not need to be recompiled.

In the olden days, GHC compared the newly-generated.hi file with the previous version; if they
were identical, it left the old one alone and didn’t change its modification date. In consequence,
importers of a module with an unchanged output.hi file were not recompiled.

This doesn’t work any more. Suppose moduleC imports moduleB, andB imports moduleA. So
changes toA.hi should force a recompilation ofC. And some changes toA (changing the definition
of a function that appears in an inlining of a function exported byB, say) may conceivably not
changeB.hi one jot. So now. . .

GHC keeps a version number on each interface file, and on each type signature within the interface
file. It also keeps in every interface file a list of the version numbers of everything it used when it last
compiled the file. If the source file’s modification date is earlier than the.o file’s date (i.e. the source
hasn’t changed since the file was last compiled), and the reompilation checking is on, GHC will be
clever. It compares the version numbers on the things it needs this time with the version numbers on
the things it needed last time (gleaned from the interface file of the module being compiled); if they
are all the same it stops compiling rather early in the process saying “Compilation IS NOT required”.
What a beautiful sight!

Patrick Sansom had a workshop paper about how all this is done (though the details have changed
quite a bit).Ask him (mailto:sansom@dcs.gla.ac.uk) if you want a copy.

4.9.6. Using make
It is reasonably straightforward to set up aMakefile to use with GHC, assuming you name your
source files the same as your modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm -f $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

Standard suffix rules
.o.hi:

@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

55

Chapter 4. Using GHC

.hs.o:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

(Sophisticatedmakevariants may achieve some of the above more elegantly. Notably,gmake’s
pattern rules let you write the more comprehensible:

%.o : %.lhs
$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with anymake.)

Note the cheesy.o.hi rule: It records the dependency of the interface (.hi) file on the source. The
rule says a.hi file can be made from a.o file by doing. . . nothing. Which is true.

Note the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tellmake that if any ofFoo.o , Foo.hc or Foo.s have an earlier modification date than
Baz.hi , then the out-of-date file must be brought up to date. To bring it up to date,make looks for a
rule to do so; one of the preceding suffix rules does the job nicely.

4.9.6.1. Dependency generation

Putting inter-dependencies of the formFoo.o : Bar.hi into yourMakefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required dependencies.
Add the following to yourMakefile :

depend :
ghc -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change theimports in your program, domake
dependbefore you domake cool_pgm. ghc -M will append the needed dependencies to your
Makefile .

In general, if moduleA contains the line

import B ...blah...

thenghc -M will generate a dependency line of the form:

A.o : B.hi

If moduleA contains the line

import {-# SOURCE #-} B ...blah...

56

Chapter 4. Using GHC

thenghc -M will generate a dependency line of the form:

A.o : B.hi-boot

(SeeSection 4.9.7for details ofhi-boot style interface files.) IfA imports multiple modules, then
there will be multiple lines withA.o as the target.

By default,ghc -M generates all the dependencies, and then concatenates them onto the end of
makefile (or Makefile if makefile doesn’t exist) bracketed by the lines "# DO NOT DELETE:

Beginning of Haskell dependencies " and "# DO NOT DELETE: End of Haskell

dependencies ". If these lines already exist in themakefile , then the old dependencies are deleted
first.

Don’t forget to use the same-package options on theghc -M command line as you would when
compiling; this enables the dependency generator to locate any imported modules that come from
packages. The package modules won’t be included in the dependencies generated, though (but see
the--include-prelude option below).

The dependency generation phase of GHC can take some additional options, which you may find
useful. For historical reasons, each option passed to the dependency generator from the GHC
command line must be preceded by-optdep . For example, to pass-f .depend to the dependency
generator, you say

ghc -M -optdep-f -optdep.depend ...

The options which affect dependency generation are:

-w

Turn off warnings about interface file shadowing.

-f file

Usefile as the makefile, rather thanmakefile or Makefile . If file doesn’t exist,
mkdependHScreates it. We often use-f .depend to put the dependencies in.depend and
theninclude the file .depend into Makefile .

-o <osuf>

Use.<osuf> as the "target file" suffix (default:o). Multiple -o flags are permitted (GHC2.05
onwards). Thus "-o hc -o o " will generate dependencies for.hc and.o files.

-s <suf>

Make extra dependencies that declare that files with suffix.<suf>_<osuf> depend on
interface files with suffix.<suf>_hi , or (for {-# SOURCE #-} imports) on.hi-boot .
Multiple -s flags are permitted. For example,-o hc -s a -s b will make dependencies for
.hc on .hi , .a_hc on .a_hi , and.b_hc on .b_hi . (Useful in conjunction with NoFib
"ways".)

57

Chapter 4. Using GHC

--exclude-module=<file>

Regard<file> as "stable"; i.e., exclude it from having dependencies on it.

-x

same as--exclude-module

--exclude-directory=<dirs>

Regard the colon-separated list of directories<dirs> as containing stable, don’t generate any
dependencies on modules therein.

--include-module=<file>

Regard<file> as not "stable"; i.e., generate dependencies on it (if any). This option is
normally used in conjunction with the--exclude-directory option.

--include-prelude

Regard modules imported from packages as unstable, i.e., generate dependencies on the
package modules used (includingPrelude , and all other standard Haskell libraries). This
option is normally only used by the various system libraries.

4.9.7. How to compile mutually recursive modules
Currently, the compiler does not have proper support for dealing with mutually recursive modules:

module A where

import B

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where

import A

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

When compiling either module A and B, the compiler will try (in vain) to look for the interface file
of the other. So, to get mutually recursive modules off the ground, you need to hand write an
interface file for A or B, so as to break the loop. These hand-written interface files are called

58

Chapter 4. Using GHC

hi-boot files, and are placed in a file called<module>.hi-boot . To import from anhi-boot file
instead of the standard.hi file, use the following syntax in the importing module:

import {-# SOURCE #-} A

The hand-written interface need only contain the bare minimum of information needed to get the
bootstrapping process started. For example, it doesn’t need to contain declarations foreverythingthat
moduleA exports, only the things required by the module that importsA recursively.

For the example at hand, the boot interface file for A would look like the following:

module A where
newtype TA = MkTA GHC.Base.Int

The syntax is similar to a normal Haskell source file, but with some important differences:

• Non-local entities must be qualified with theiroriginal defining module. Qualifying by a module
which just re-exports the entity won’t do. In particular, mostPrelude entities aren’t actually
defined in thePrelude (see for exampleGHC.Base.Int in the above example).

• Only data , type , newtype , class , and type signature declarations may be included.

Notice that we only put the declaration for the newtypeTA in thehi-boot file, not the signature for
f , sincef isn’t used byB.

If you want anhi-boot file to export a data type, but you don’t want to give its constructors
(because the constructors aren’t used by the SOURCE-importing module), you can write simply:

module A where
data TA

(You must write all the type parameters, but leave out the ’=’ and everything that follows it.)

4.9.8. Orphan modules and instance declarations
Haskell specifies that when compiling module M, any instance declaration in any module "below" M
is visible. (Module A is "below" M if A is imported directly by M, or if A is below a module that M
imports directly.) In principle, GHC must therefore read the interface files of every module below M,
just in case they contain an instance declaration that matters to M. This would be a disaster in
practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type or class
mentioned in the head of the instance declaration, then GHC has to visit that interface file anyway.
Example:

module A where
instance C a => D (T a) where ...
data T a = ...

59

Chapter 4. Using GHC

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited A’s
interface file to find T’s definition.

The only problem comes when a module contains an instance declaration and GHC has no other
reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”,
defined thus:

• An orphan modulecontains at least oneorphan instanceor at least oneorphan rule.

• An instance declaration in a module M is anorphan instanceif none of the type constructors or
classes mentioned in the instance head (the part after the “=>”) are declared in M.

Only the instance head counts. In the example above, it is not good enough for C’s declaration to
be in module A; it must be the declaration of D or T.

• A rewrite rule in a module M is anorphan rule if none of the variables, type constructors, or
classes that are free in the left hand side of the rule are declared in M.

GHC identifies orphan modules, and visits the interface file of every orphan module below the
module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.

You can identify an orphan module by looking in its interface file,M.hi , using the-show-iface . If
there is a “!” on the first line, GHC considers it an orphan module.

4.10. Packages
Packages are collections of libraries, conveniently grouped together as a single entity. The package
system is flexible: a package may consist of Haskell code, foreign language code (eg. C libraries), or
a mixture of the two. A package is a good way to group together related Haskell modules, and is
essential if you intend to make the modules into a Windows DLL (see below).

Because packages can contain both Haskell and C libraries, they are also a good way to provide
convenient access to a Haskell layer over a C library.

GHC comes with several packages (see the accompanying library documentation), and packages can
be added to or removed from an existing GHC installation, using the suppliedghc-pkg tool,
described inSection 4.10.4.

60

Chapter 4. Using GHC

4.10.1. Using a package
To use a package, add the-package flag to the GHC command line:

-package lib

This option brings into scope all the modules from packagelib (they still have to be imported
in your Haskell source, however). It also causes the relevant libraries to be linked when linking
is being done.

Some packages depend on other packages, for example thetext package makes use of some of the
modules in thelang package. The package system takes care of all these dependencies, so that when
you say-package text on the command line, you automatically get-package lang too.

4.10.2. Maintaining a local set of packages
When GHC starts up, it automatically reads the default set of packages from a configuration file,
normally namedpackage.conf in your GHC installation directory.

You can load in additional package configuration files using the-package-conf option:

-package-conf file

Read in the package configuration filefile in addition to the system default file. This allows
the user to have a local set of packages in addition to the system-wide ones.

To create your own package configuration file, just create a new file and put the string“ [] ” in it.
Packages can be added to the new configuration file using theghc-pkg tool, described inSection
4.10.4.

4.10.3. Building a package from Haskell source
It takes some special considerations to build a new package:

• A package may contain several Haskell modules. A package may span many directories, or many
packages may exist in a single directory. Packages may not be mutually recursive.

• A package has a name (e.g.base)

• The Haskell code in a package may be built into one or more archive libraries (e.g.libHSfoo.a),
or a single DLL on Windows (e.g.HSfoo.dll). The restriction to a single DLL on Windows is
because the package system is used to tell the compiler when it should make an inter-DLL call
rather than an intra-DLL call (inter-DLL calls require an extra indirection).Building packages as
DLLs doesn’t work at the moment; seeSection 11.3for the gory details.

Building a static library is done by using thear tool, like so:

ar cqs libHSfoo.a A.o B.o C.o ...

61

Chapter 4. Using GHC

whereA.o , B.o and so on are the compiled Haskell modules, andlibHSfoo.a is the library you
wish to create. The syntax may differ slightly on your system, so check the documentation if you
run into difficulties.

Versions of the Haskell libraries for use with GHCi may also be included: GHCi cannot load.a

files directly, instead it will look for an object file calledHSfoo.o and load that. On some systems,
theghc-pkg tool can automatically build the GHCi version of each library, seeSection 4.10.4. To
build these libraries by hand from the.a archive, it is possible to use GNUld as follows:

ld -r --whole-archive -o HSfoo.o libHSfoo.a

• GHC does not maintain detailed cross-package dependency information. It does remember which
modules in other packages the current module depends on, but not which things within those
imported things.

To compile a module which is to be part of a new package, use the-package-name option:

-package-name foo

This option is added to the command line when compiling a module that is destined to be part
of packagefoo . If this flag is omitted then the default packageMain is assumed.

Failure to use the-package-name option when compiling a package will result in disaster on
Windows, but is relatively harmless on Unix at the moment (it will just cause a few extra
dependencies in some interface files). However, bear in mind that we might add support for Unix
shared libraries at some point in the future.

It is worth noting that on Windows, when each package is built as a DLL, since a reference to a DLL
costs an extra indirection, intra-package references are cheaper than inter-package references. Of
course, this applies to theMain package as well.

4.10.4. Package management
Theghc-pkg tool allows packages to be added or removed from a package configuration file. By
default, the system-wide configuration file is used, but alternatively packages can be added, updated
or removed from a user-specified configuration file using the--config-file option. An empty
package configuration file consists of the string“ [] ”.

Theghc-pkg program accepts the following options:

--add-package

-a

Reads package specification from the input (see below), and adds it to the database of installed
packages. The package specification must be a package that isn’t already installed.

62

Chapter 4. Using GHC

--input-file= file

-i file

Read new package specifications from filefile . If a value of"-" is given, standard input is
used. If no-i is present on the command-line, an input file of"-" is assumed.

--auto-ghci-libs

-g

Automatically generate the GHCi.o version of each.a Haskell library, using GNU ld (if that
is available). Without this option,ghc-pkg will warn if GHCi versions of any Haskell libraries
in the package don’t exist.

GHCi .o libraries don’t necessarily have to live in the same directory as the corresponding.a

library. However, this option will cause the GHCi library to be created in the same directory as
the .a library.

--config-file file

-f file

Usefile instead of the default package configuration file. This, in conjunction with GHC’s
-package-conf option, allows a user to have a local set of packages in addition to the
system-wide installed set.

--list-packages

-l

This option displays the list of currently installed packages.

$ ghc-pkg --list-packages
gmp, rts, std, lang, concurrent, data, net, posix, text, util

Note that your GHC installation might have a slightly different set of packages installed.

Thegmpandrts packages are always present, and represent the multi-precision integer and
runtime system libraries respectively. Thestd package contains the Haskell prelude and
standard libraries. The rest of the packages are optional libraries.

--remove-package foo

-r foo

Removes the specified package from the installed configuration.

--update-package

-u

Reads package specification from the input, and adds it to the database of installed packages. If
a package with the same name is already installed, its configuration data is replaced with the
new information. If the package doesn’t already exist, it’s added.

63

Chapter 4. Using GHC

--force

Causesghc-pkg to ignore missing directories and libraries when adding a package, and just go
ahead and add it anyway. This might be useful if your package installation system needs to add
the package to GHC before building and installing the files.

When modifying the configuration filefile , a copy of the original file is saved infile .old , so in
an emergency you can always restore the old settings by copying the old file back again.

A package specification looks like this:

Package {
name = "mypkg",
import_dirs = ["${installdir}/imports/mypkg"],
source_dirs = [],
library_dirs = ["${installdir}"],
hs_libraries = ["HSmypkg"],
extra_libraries = ["HSmypkg_cbits"],
include_dirs = [],
c_includes = ["HsMyPkg.h"],
package_deps = ["text", "data"],
extra_ghc_opts = [],
extra_cc_opts = [],
extra_ld_opts = ["-lmy_clib"]

}

Components of a package specification may be specified in any order, and are:

name

The package’s name, for use with the-package flag and as listed in the--list-packages

list.

import_dirs

A list of directories containing interface files (.hi files) for this package.

If the package contains profiling libraries, then the interface files for those library modules
should have the suffix.p_hi . So the package can contain both normal and profiling versions of
the same library without conflict (see alsolibrary_dirs below).

source_dirs

A list of directories containing Haskell source files for this package. This field isn’t used by
GHC, but could potentially be used by an all-interpreted system like Hugs.

library_dirs

A list of directories containing libraries for this package.

64

Chapter 4. Using GHC

hs_libraries

A list of libraries containing Haskell code for this package, with the.a or .dll suffix omitted.
When packages are built as libraries, thelib prefix is also omitted.

For use with GHCi, each library should have an object file too. The name of the object file does
not have alib prefix, and has the normal object suffix for your platform.

For example, if we specify a Haskell library asHSfoo in the package spec, then the various
flavours of library that GHC actually uses will be called:

libHSfoo.a

The name of the library on Unix and Windows (mingw) systems. Note that we don’t
support building dynamic libraries of Haskell code on Unix systems.

HSfoo.dll

The name of the dynamic library on Windows systems (optional).

HSfoo.o

HSfoo.obj

The object version of the library used by GHCi.

extra_libraries

A list of extra libraries for this package. The difference betweenhs_libraries and
extra_libraries is thaths_libraries normally have several versions, to support
profiling, parallel and other build options. The various versions are given different suffixes to
distinguish them, for example the profiling version of the standard prelude library is named
libHSstd_p.a , with the_p indicating that this is a profiling version. The suffix is added
automatically by GHC forhs_libraries only, no suffix is added for libraries in
extra_libraries .

The libraries listed inextra_libraries may be any libraries supported by your system’s
linker, including dynamic libraries (.so on Unix, .DLL on Windows).

Also, extra_libraries are placed on the linker command line after thehs_libraries for
the same package. If your package has dependencies in the other direction (i.e.
extra_libraries depends onhs_libraries), and the libraries are static, you might need
to make two separate packages.

include_dirs

A list of directories containing C includes for this package (maybe the empty list).

c_includes

A list of files to include for via-C compilations using this package. Typically this include file
will contain function prototypes for any C functions used in the package, in case they end up

65

Chapter 4. Using GHC

being called as a result of Haskell functions from the package being inlined.

package_deps

A list of packages which this package depends on.

extra_ghc_opts

Extra arguments to be added to the GHC command line when this package is being used.

extra_cc_opts

Extra arguments to be added to the gcc command line when this package is being used (only for
via-C compilations).

extra_ld_opts

Extra arguments to be added to the gcc command line (for linking) when this package is being
used.

framework_dirs

On Darwin/MacOS X, a list of directories containing frameworks for this package. This
corresponds to the-framework-path option. It is ignored on all other platforms.

extra_frameworks

On Darwin/MacOS X, a list of frameworks to link to. This corresponds to the-framework

option. Take a look at Apple’s developer documentation to find out what frameworks actually
are. This entry is ignored on all other platforms.

Theghc-pkg tool performs expansion of environment variables occurring in input package
specifications. So, if themypkg was added to the package database as follows:

$ installdir=/usr/local/lib ghc-pkg -a < mypkg.pkg

The occurrence of${installdir} is replaced with/usr/local/lib in the package data that is
added formypkg.

This feature enables the distribution of package specification files that can be easily configured when
installing.

For examples of more package specifications, take a look at thepackage.conf in your GHC
installation.

4.11. Optimisation (code improvement)
The-O* options specify convenient “packages” of optimisation flags; the-f* options described
later on specifyindividualoptimisations to be turned on/off; the-m* options specify
machine-specificoptimisations to be turned on/off.

66

Chapter 4. Using GHC

4.11.1. -O* : convenient “packages” of optimisation flags.
There aremanyoptions that affect the quality of code produced by GHC. Most people only have a
general goal, something like “Compile quickly” or “Make my program run like greased lightning.”
The following “packages” of optimisations (or lack thereof) should suffice.

Once you choose a-O* “package,” stick with it—don’t chop and change. Modules’ interfaceswill
change with a shift to a new-O* option, and you may have to recompile a large chunk of all
importing modules before your program can again be run safely (seeSection 4.9.5).

No -O* -type option specified:

This is taken to mean: “Please compile quickly; I’m not over-bothered about compiled-code
quality.” So, for example:ghc -c Foo.hs

-O0 :

Means “turn off all optimisation”, reverting to the same settings as if no-O options had been
specified. Saying-O0 can be useful if eg.makehas inserted a-O on the command line already.

-O or -O1 :

Means: “Generate good-quality code without taking too long about it.” Thus, for example:ghc
-c -O Main.lhs

-O2 :

Means: “Apply every non-dangerous optimisation, even if it means significantly longer compile
times.”

The avoided “dangerous” optimisations are those that can make runtime or spaceworseif
you’re unlucky. They are normally turned on or off individually.

At the moment,-O2 is unlikelyto produce better code than-O.

-Ofile <file> :

(NOTE: not supported yet in GHC 5.x. Please ask if you’re interested in this.)

For those who needabsolutecontrol overexactlywhat options are used (e.g., compiler writers,
sometimes :-), a list of options can be put in a file and then slurped in with-Ofile .

In that file, comments are of the#-to-end-of-line variety; blank lines and most whitespace is
ignored.

Please ask if you are baffled and would like an example of-Ofile !

We don’t use a-O* flag for day-to-day work. We use-O to get respectable speed; e.g., when we
want to measure something. When we want to go for broke, we tend to use-O -fvia-C (and we go
for lots of coffee breaks).

The easiest way to see what-O (etc.) “really mean” is to run with-v , then stand back in amazement.

67

Chapter 4. Using GHC

4.11.2. -f* : platform-independent flags
These flags turn on and off individual optimisations. They are normally set via the-O options
described above, and as such, you shouldn’t need to set any of them explicitly (indeed, doing so
could lead to unexpected results). However, there are one or two that may be of interest:

-fexcess-precision :

When this option is given, intermediate floating point values can have agreaterprecision/range
than the final type. Generally this is a good thing, but some programs may rely on the exact
precision/range ofFloat /Double values and should not use this option for their compilation.

-fignore-asserts :

Causes GHC to ignore uses of the functionException.assert in source code (in other
words, rewritingException.assert p e to e (seeSection 7.4). This flag is turned on by-O.

-fno-strictness

Turns off the strictness analyser; sometimes it eats too many cycles.

-fno-cpr-analyse

Turns off the CPR (constructed product result) analysis; it is somewhat experimental.

-funbox-strict-fields :

This option causes all constructor fields which are marked strict (i.e. “!”) to be unboxed or
unpacked if possible. For example:

data T = T !Float !Float

will create a constructorT containing two unboxed floats if the-funbox-strict-fields flag
is given. This may not always be an optimisation: if theT constructor is scrutinised and the
floats passed to a non-strict function for example, they will have to be reboxed (this is done
automatically by the compiler).

This option should only be used in conjunction with-O, in order to expose unfoldings to the
compiler so the reboxing can be removed as often as possible. For example:

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxingf1 andf2 by inlining + on floats, but only when-O is on.

Any single-constructor data is eligible for unpacking; for example

data T = T !(Int,Int)

68

Chapter 4. Using GHC

will store the twoInt s directly in theT constructor, by flattening the pair. Multi-level
unpacking is also supported:

data T = T !S
data S = S !Int !Int

will store two unboxedInt# s directly in theT constructor.

-funfolding-update-in-place<n>

Switches on an experimental "optimisation". Switching it on makes the compiler a little keener
to inline a function that returns a constructor, if the context is that of a thunk.

x = plusInt a b

If we inlined plusInt we might get an opportunity to use update-in-place for the thunk ’x’.

-funfolding-creation-threshold<n> :

(Default: 45) Governs the maximum size that GHC will allow a function unfolding to be. (An
unfolding has a “size” that reflects the cost in terms of “code bloat” of expanding that unfolding
at at a call site. A bigger function would be assigned a bigger cost.)

Consequences: (a) nothing larger than this will be inlined (unless it has an INLINE pragma); (b)
nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code. The next
option is more useful:

-funfolding-use-threshold<n> :

(Default: 8) This is the magic cut-off figure for unfolding: below this size, a function definition
will be unfolded at the call-site, any bigger and it won’t. The size computed for a function
depends on two things: the actual size of the expression minus any discounts that apply (see
-funfolding-con-discount).

4.12. Options related to a particular phase

4.12.1. Replacing the program for one or more phases
You may specify that a different program be used for one of the phases of the compilation system, in
place of whatever theghchas wired into it. For example, you might want to try a different assembler.
The following options allow you to change the external program used for a given compilation phase:

69

Chapter 4. Using GHC

-pgmL cmd

Usecmd as the literate pre-processor.

-pgmP cmd

Usecmd as the C pre-processor (with-cpp only).

-pgmc cmd

Usecmd as the C compiler.

-pgma cmd

Usecmd as the assembler.

-pgml cmd

Usecmd as the linker.

-pgmdll cmd

Usecmd as the DLL generator.

-pgmdep cmd

Usecmd as the dependency generator.

-pgmF cmd

Usecmd as the pre-processor (with-F only).

4.12.2. Forcing options to a particular phase
Options can be forced through to a particlar compilation phase, using the following flags:

So, for example, to force an-Ewurble option to the assembler, you would tell the driver
-opta-Ewurble (the dash before the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime system
you can enclose them in+RTS ... -RTS (seeSection 4.16).

4.12.3. Options affecting the C pre-processor

-cpp

The C pre-processorcpp is run over your Haskell code only if the-cpp option is given. Unless
you are building a large system with significant doses of conditional compilation, you really
shouldn’t need it.

70

Chapter 4. Using GHC

-Dsymbol [=value]

Define macrosymbol in the usual way. NB: doesnot affect-D macros passed to the
C compiler when compiling via C! For those, use the-optc-Dfoo hack. . . (seeSection
4.12.2).

-Usymbol

Undefine macrosymbol in the usual way.

-I dir

Specify a directory in which to look for#include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs

files):

__HASKELL98__

If defined, this means that GHC supports the language defined by the Haskell 98 report.

__HASKELL__=98

In GHC 4.04 and later, the__HASKELL__ macro is defined as having the value98.

__HASKELL1__

If defined ton, that means GHC supports the Haskell language defined in the Haskell report
version1.n. Currently 5. This macro is deprecated, and will probably disappear in future
versions.

__GLASGOW_HASKELL__

For versionn of the GHC system, this will be#define d to100n . For example, for version
5.00, it is 500.

With any luck,__GLASGOW_HASKELL__will be undefined in all other implementations that
support C-style pre-processing.

(For reference: the comparable symbols for other systems are:__HUGS__for Hugs,__NHC__

for nhc98, and__HBC__ for Chalmers.)

NB. This macro is set when pre-processing both Haskell source and C source, including the C
source generated from a Haskell module (i.e..hs , .lhs , .c and.hc files).

__CONCURRENT_HASKELL__

This symbol is defined when pre-processing Haskell (input) and pre-processing C (GHC
output). Since GHC from verion 4.00 now supports concurrent haskell by default, this symbol is
always defined.

71

Chapter 4. Using GHC

__PARALLEL_HASKELL__

Only defined when-parallel is in use! This symbol is defined when pre-processing Haskell
(input) and pre-processing C (GHC output).

4.12.3.1. CPP and string gaps

A small word of warning:-cpp is not friendly to “string gaps”.. In other words, strings such as the
following:

strmod = "\
\ p \
\ "

don’t work with -cpp ; /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, thencpp (at least GNUcpp and
possibly othercpps) leaves the backslash-space pairs alone and the string gap works as expected.

4.12.4. Options affecting a Haskell pre-processor

-F

A custom pre-processor is run over your Haskell source file only if the-F option is given.

Running a custom pre-processor at compile-time is in some settings appropriate and useful. The
-F option lets you run a pre-processor as part of the overall GHC compilation pipeline, which
has the advantage over running a Haskell pre-processor separately in that it works in interpreted
mode and you can continue to take reap the benefits of GHC’s recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the Haskell input,
but after the literate markup has been stripped away and (possibly) the C pre-processor has
washed the Haskell input.

-pgmF cmd

Usecmd as the Haskell pre-processor. When invoked, thecmd pre-processor is given at least
three arguments on its command-line: the first argument is the name of the original source file,
the second is the name of the file holding the input, and the third is the name of the file where
cmd should write its output to.

Additional arguments to thecmd pre-processor can be passed in using the-optF option. These
are fed tocmd on the command line after the three standard input and output arguments.

72

Chapter 4. Using GHC

4.12.5. Options affecting the C compiler (if applicable)
If you are compiling with lots of foreign calls, you may need to tell the C compiler about some
#include files. There is no real pretty way to do this, but you can use this hack from the
command-line:

% ghc -c ’-#include <X/Xlib.h>’ Xstuff.lhs

4.12.6. Options affecting code generation

-fasm

Use GHC’s native code generator rather than compiling via C. This will compile faster (up to
twice as fast), but may produce code that is slightly slower than compiling via C.-fasm is the
default when optimisation is off (seeSection 4.11).

-fvia-C

Compile via C instead of using the native code generator. This is default for optimised
compilations, and on architectures for which GHC doesn’t have a native code generator.

-fno-code

Omit code generation (and all later phases) altogether. Might be of some use if you just want to
see dumps of the intermediate compilation phases.

4.12.7. Options affecting linking
GHC has to link your code with various libraries, possibly including: user-supplied, GHC-supplied,
and system-supplied (-lm math library, for example).

-l lib

Link in the lib library. On Unix systems, this will be in a file calledlib lib .a or lib lib .so

which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter. If library
foo requires librarybar , then in general-l foo should comebefore-l bar on the command
line.

There’s one other gotcha to bear in mind when using external libraries: if the library contains a
main() function, then this will be linked in preference to GHC’s ownmain() function (eg.
libf2c andlibl have their ownmain() s). This is because GHC’smain() comes from the
HSrts library, which is normally includedafter all the other libraries on the linker’s command
line. To force GHC’smain() to be used in preference to any othermain() s from external
libraries, just add the option-lHSrts before any other libraries on the command line.

73

Chapter 4. Using GHC

-package name

If you are using a Haskell “package” (seeSection 4.10), don’t forget to add the relevant
-package option when linking the program too: it will cause the appropriate libraries to be
linked in with the program. Forgetting the-package option will likely result in several pages
of link errors.

-framework name

On Darwin/MacOS X only, link in the frameworkname. This option corresponds to the
-framework option for Apple’s Linker. Please note that frameworks and packages are two
different things - frameworks don’t contain any haskell code. Rather, they are Apple’s way of
packaging shared libraries. To link to Apple’s “Carbon” API, for example, you’d use
-framework Carbon .

-L dir

Where to find user-supplied libraries. . . Prepend the directorydir to the library directories
path.

-framework-path dir

On Darwin/MacOS X only, prepend the directorydir to the framework directories path. This
option corresponds to the-F option for Apple’s Linker (-F already means something else for
GHC).

-split-objs

Tell the linker to split the single object file that would normally be generated into multiple
object files, one per top-level Haskell function or type in the module. We use this feature for
building GHC’s libraries libraries (warning: don’t use it unless you know what you’re doing!).

-static

Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic

Tell the linker to use shared Haskell libraries, if available (this option is only supported on
Windows at the moment, and also note that your distribution of GHC may not have been
supplied with shared libraries).

-no-hs-main

In the event you want to include ghc-compiled code as part of another (non-Haskell) program,
the RTS will not be supplying its definition ofmain() at link-time, you will have to. To signal
that to the driver script when linking, use-no-hs-main .

Notice that since the command-line passed to the linker is rather involved, you probably want to
useghc to do the final link of your ‘mixed-language’ application. This is not a requirement

74

Chapter 4. Using GHC

though, just try linking once with-v on to see what options the driver passes through to the
linker.

4.13. Using Concurrent Haskell
GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell, just import
Control.Concurrent (details are in the accompanying library documentation).

RTS options are provided for modifying the behaviour of the threaded runtime system. SeeSection
4.14.4.

Concurrent Haskell is described in more detail in the documentation for theControl.Concurrent

module.

4.14. Using Parallel Haskell

[You won’t be able to execute parallel Haskell programs unless PVM3 (Parallel Virtual Machine,
version 3) is installed at your site.]

To compile a Haskell program for parallel execution under PVM, use the-parallel option,both
when compilingand linking. You will probably want toimport Parallel into your Haskell
modules.

To run your parallel program, once PVM is going, just invoke it “as normal”. The main extra RTS
option is-qp<n> , to say how many PVM “processors” your program to run on. (For more details of
all relevant RTS options, please seeSection 4.14.4.)

In truth, running Parallel Haskell programs and getting information out of them (e.g., parallelism
profiles) is a battle with the vagaries of PVM, detailed in the following sections.

4.14.1. Dummy’s guide to using PVM
Before you can run a parallel program under PVM, you must set the required environment variables
(PVM’s idea, not ours); something like, probably in your.cshrc or equivalent:

setenv PVM_ROOT /wherever/you/put/it
setenv PVM_ARCH ‘$PVM_ROOT/lib/pvmgetarch‘
setenv PVM_DPATH $PVM_ROOT/lib/pvmd

Creating and/or controlling your “parallel machine” is a purely-PVM business; nothing specific to
Parallel Haskell. The following paragraphs describe how to configure your parallel machine
interactively.

75

Chapter 4. Using GHC

If you use parallel Haskell regularly on the same machine configuration it is a good idea to maintain
a file with all machine names and to make the environment variable PVM_HOST_FILE point to this
file. Then you can avoid the interactive operations described below by just saying

pvm $PVM_HOST_FILE

You use thepvm command to start PVM on your machine. You can then do various things to
control/monitor your “parallel machine;” the most useful being:

Control-D exit pvm, leaving it running

halt kill off this “parallel machine” & exit

add <host> add<host> as a processor

delete <host> delete<host>

reset kill what’s going, but leave PVM up

conf list the current configuration

ps report processes’ status

pstat <pid> status of a particular process

The PVM documentation can tell you much, much more aboutpvm!

4.14.2. Parallelism profiles

With Parallel Haskell programs, we usually don’t care about the results—only with “how parallel” it
was! We want pretty pictures.

Parallelism profiles (à lahbcpp) can be generated with the-qP RTS option. The per-processor
profiling info is dumped into files named<full-path><program>.gr . These are then munged
into a PostScript picture, which you can then display. For example, to run your programa.out on 8
processors, then view the parallelism profile, do:

$./a.out +RTS -qP -qp8
$ grs2gr *.???.gr > temp.gr # combine the 8 .gr files into one
$ gr2ps -O temp.gr # cvt to .ps; output in temp.ps
$ ghostview -seascape temp.ps # look at it!

The scripts for processing the parallelism profiles are distributed inghc/utils/parallel/ .

4.14.3. Other useful info about running parallel programs
The “garbage-collection statistics” RTS options can be useful for seeing what parallel programs are
doing. If you do either+RTS -Sstderr or +RTS -sstderr , then you’ll get mutator,

76

Chapter 4. Using GHC

garbage-collection, etc., times on standard error. The standard error of all PE’s other than the ‘main
thread’ appears in/tmp/pvml.nnn , courtesy of PVM.

Whether doing+RTS -Sstderr or not, a handy way to watch what’s happening overall is:tail -f
/tmp/pvml.nnn.

4.14.4. RTS options for Concurrent/Parallel Haskell

Besides the usual runtime system (RTS) options (Section 4.16), there are a few options particularly
for concurrent/parallel execution.

-qp<N> :

(PARALLEL ONLY) Use <N> PVM processors to run this program; the default is 2.

-C[<us>] :

Sets the context switch interval to<s> seconds. A context switch will occur at the next heap
block allocation after the timer expires (a heap block allocation occurs every 4k of allocation).
With -C0 or -C , context switches will occur as often as possible (at every heap block
allocation). By default, context switches occur every 20ms milliseconds. Note that GHC’s
internal timer ticks every 20ms, and the context switch timer is always a multiple of this timer,
so 20ms is the maximum granularity available for timed context switches.

-q[v] :

(PARALLEL ONLY) Produce a quasi-parallel profile of thread activity, in the file
<program>.qp . In the style ofhbcpp, this profile records the movement of threads between
the green (runnable) and red (blocked) queues. If you specify the verbose suboption (-qv), the
green queue is split into green (for the currently running thread only) and amber (for other
runnable threads). We do not recommend that you use the verbose suboption if you are planning
to use thehbcpp profiling tools or if you are context switching at every heap check (with-C).
–>

-qt<num> :

(PARALLEL ONLY) Limit the thread pool size, i.e. the number of concurrent threads per
processor to<num>. The default is 32. Each thread requires slightly over 1Kwordsin the heap
for thread state and stack objects. (For 32-bit machines, this translates to 4K bytes, and for
64-bit machines, 8K bytes.)

-qe<num> :

(PARALLEL ONLY) Limit the spark pool size i.e. the number of pending sparks per processor
to <num>. The default is 100. A larger number may be appropriate if your program generates
large amounts of parallelism initially.

77

Chapter 4. Using GHC

-qQ<num>:

(PARALLEL ONLY) Set the size of packets transmitted between processors to<num>. The
default is 1024 words. A larger number may be appropriate if your machine has a high
communication cost relative to computation speed.

-qh<num> :

(PARALLEL ONLY) Select a packing scheme. Set the number of non-root thunks to pack in
one packet to <num>-1 (0 means infinity). By default GUM uses full-subgraph packing, i.e. the
entire subgraph with the requested closure as root is transmitted (provided it fits into one
packet). Choosing a smaller value reduces the amount of pre-fetching of work done in GUM.
This can be advantageous for improving data locality but it can also worsen the balance of the
load in the system.

-qg<num> :

(PARALLEL ONLY) Select a globalisation scheme. This option affects the generation of
global addresses when transferring data. Global addresses are globally unique identifiers
required to maintain sharing in the distributed graph structure. Currently this is a binary option.
With <num>=0 full globalisation is used (default). This means a global address is generated for
every closure that is transmitted. With <num>=1 a thunk-only globalisation scheme is used,
which generated global address only for thunks. The latter case may lose sharing of data but has
a reduced overhead in packing graph structures and maintaining internal tables of global
addresses.

4.15. Platform-specific Flags
Some flags only make sense for particular target platforms.

-mv8 :

(SPARC machines) Means to pass the like-named option to GCC; it says to use the Version 8
SPARC instructions, notably integer multiply and divide. The similiar-m* GCC options for
SPARC also work, actually.

-monly-[32]-regs :

(iX86 machines) GHC tries to “steal” four registers from GCC, for performance reasons; it
almost always works. However, when GCC is compiling some modules with four stolen
registers, it will crash, probably saying:

Foo.hc:533: fixed or forbidden register was spilled.
This may be due to a compiler bug or to impossible asm
statements or clauses.

78

Chapter 4. Using GHC

Just give some registers back with-monly-N-regs . Try ‘3’ first, then ‘2’. If ‘2’ doesn’t work,
please report the bug to us.

4.16. Running a compiled program
To make an executable program, the GHC system compiles your code and then links it with a
non-trivial runtime system (RTS), which handles storage management, profiling, etc.

You have some control over the behaviour of the RTS, by giving special command-line arguments to
your program.

When your Haskell program starts up, its RTS extracts command-line arguments bracketed between
+RTSand-RTS as its own. For example:

% ./a.out -f +RTS -p -S -RTS -h foo bar

The RTS will snaffle-p -S for itself, and the remaining arguments-f -h foo bar will be handed
to your program if/when it callsSystem.getArgs .

No -RTS option is required if the runtime-system options extend to the end of the command line, as
in this example:

% hls -ltr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the program
(and not the RTS), use a--RTS .

As always, for RTS options that takesize s: If the last character ofsize is a K or k, multiply by
1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in the
counters isyour fault!)

Giving a+RTS -f option will print out the RTS options actually available in your program (which
vary, depending on how you compiled).

NOTE: since GHC is itself compiled by GHC, you can change RTS options in the compiler using the
normal+RTS ... -RTS combination. eg. to increase the maximum heap size for a compilation to
128M, you would add+RTS -M128m -RTS to the command line.

4.16.1. Setting global RTS options
RTS options are also taken from the environment variableGHCRTS. For example, to set the
maximum heap size to 128M for all GHC-compiled programs (using ansh -like shell):

GHCRTS=’-M128m’
export GHCRTS

RTS options taken from theGHCRTS environment variable can be overriden by options given on the
command line.

79

Chapter 4. Using GHC

4.16.2. RTS options to control the garbage collector
There are several options to give you precise control over garbage collection. Hopefully, you won’t
need any of these in normal operation, but there are several things that can be tweaked for maximum
performance.

-A size

[Default: 256k] Set the allocation area size used by the garbage collector. The allocation area
(actually generation 0 step 0) is fixed and is never resized (unless you use-H , below).

Increasing the allocation area size may or may not give better performance (a bigger allocation
area means worse cache behaviour but fewer garbage collections and less promotion).

With only 1 generation (-G1) the-A option specifies the minimum allocation area, since the
actual size of the allocation area will be resized according to the amount of data in the heap (see
-F , below).

-c

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted in-place
instead. The compaction algorithm is slower than the copying algorithm, but the savings in
memory use can be considerable.

For a given heap size (using the-H option), compaction can in fact reduce the GC cost by
allowing fewer GCs to be performed. This is more likely when the ratio of live data to heap size
is high, say >30%.

NOTE: compaction doesn’t currently work when a single generation is requested using the-G1

option.

-c n

[Default: 30] Automatically enable compacting collection when the live data exceedsn% of the
maximum heap size (see the-M option). Note that the maximum heap size is unlimited by
default, so this option has no effect unless the maximum heap size is set with-Msize .

-F factor

[Default: 2] This option controls the amount of memory reserved for the older generations (and
in the case of a two space collector the size of the allocation area) as a factor of the amount of
live data. For example, if there was 2M of live data in the oldest generation when we last
collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to use
-Hsize than to increase-F factor .

80

Chapter 4. Using GHC

The-F setting will be automatically reduced by the garbage collector when the maximum heap
size (the-Msize setting) is approaching.

-Ggenerations

[Default: 2] Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything larger
than about 4 is probably not a good idea unless your program runs for along time, because the
oldest generation will hardly ever get collected.

Specifying 1 generation with+RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the-A option (see above) specifies theminimumallocation area
size, since the allocation area will grow with the amount of live data in the heap. In a
multi-generational collector the allocation area is a fixed size (unless you use the-H option, see
below).

-Hsize

[Default: 0] This option provides a “suggested heap size” for the garbage collector. The garbage
collector will use about this much memory until the program residency grows and the heap size
needs to be expanded to retain reasonable performance.

By default, the heap will start small, and grow and shrink as necessary. This can be bad for
performance, so if you have plenty of memory it’s worthwhile supplying a big-Hsize . For
improving GC performance, using-Hsize is usually a better bet than-A size .

-k size

[Default: 1k] Set the initial stack size for new threads. Thread stacks (including the main
thread’s stack) live on the heap, and grow as required. The default value is good for concurrent
applications with lots of small threads; if your program doesn’t fit this model then increasing
this option may help performance.

The main thread is normally started with a slightly larger heap to cut down on unnecessary
stack growth while the program is starting up.

-K size

[Default: 1M] Set the maximum stack size for an individual thread tosize bytes. This option
is there purely to stop the program eating up all the available memory in the machine if it gets
into an infinite loop.

-mn

Minimum % n of heap which must be available for allocation. The default is 3%.

-Msize

[Default: unlimited] Set the maximum heap size tosize bytes. The heap normally grows and
shrinks according to the memory requirements of the program. The only reason for having this

81

Chapter 4. Using GHC

option is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating system.

The maximum heap size also affects other garbage collection parameters: when the amount of
live data in the heap exceeds a certain fraction of the maximum heap size, compacting
collection will be automatically enabled for the oldest generation, and the-F parameter will be
reduced in order to avoid exceeding the maximum heap size.

-s file
-S file

Write modest (-s) or verbose (-S) garbage-collector statistics into filefile . The default
file is program .stat . Thefile stderr is treated specially, with the output really being
sent tostderr .

This option is useful for watching how the storage manager adjusts the heap size based on the
current amount of live data.

-t

Write a one-line GC stats summary after running the program. This output is in the same format
as that produced by the-Rghc-timing option.

4.16.3. RTS options for hackers, debuggers, and
over-interested souls
These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”, or
(c) because you feel like it. Not recommended for everyday use!

-B

Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul Callaghan,
writes: “Some people here use it for a variety of purposes—honestly!—e.g., confirmation that
the code/machine is doing something, infinite loop detection, gauging cost of recently added
code. Certain people can even tell what stage [the program] is in by the beep pattern. But the
major use is for annoying others in the same office. . . ”

-Dnum

An RTS debugging flag; varying quantities of output depending on which bits are set innum.
Only works if the RTS was compiled with theDEBUGoption.

-r file

Produce “ticky-ticky” statistics at the end of the program run. Thefile business works just
like on the-S RTS option (above).

82

Chapter 4. Using GHC

“Ticky-ticky” statistics are counts of various program actions (updates, enters, etc.) The
program must have been compiled using-ticky (a.k.a. “ticky-ticky profiling”), and, for it to
be really useful, linked with suitable system libraries. Not a trivial undertaking: consult the
installation guide on how to set things up for easy “ticky-ticky” profiling. For more information,
seeSection 5.7.

-xc

(Only available when the program is compiled for profiling.) When an exception is raised in the
program, this option causes the current cost-centre-stack to be dumped tostderr .

This can be particularly useful for debugging: if your program is complaining about ahead []

error and you haven’t got a clue which bit of code is causing it, compiling with-prof

-auto-all and running with+RTS -xc -RTS will tell you exactly the call stack at the point
the error was raised.

The output contains one line for each exception raised in the program (the program might raise
and catch several exceptions during its execution), where each line is of the form:

< cc
1
, ..., cc

n
>

eachcc
i
is a cost centre in the program (seeSection 5.1), and the sequence represents the “call

stack” at the point the exception was raised. The leftmost item is the innermost function in the
call stack, and the rightmost item is the outermost function.

-Z

Turnoff “update-frame squeezing” at garbage-collection time. (There’s no particularly good
reason to turn it off, except to ensure the accuracy of certain data collected regarding thunk
entry counts.)

4.16.4. “Hooks” to change RTS behaviour
GHC lets you exercise rudimentary control over the RTS settings for any given program, by
compiling in a “hook” that is called by the run-time system. The RTS contains stub definitions for all
these hooks, but by writing your own version and linking it on the GHC command line, you can
override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the program is
built dynamically.

The functiondefaultsHook lets you change various RTS options. The commonest use for this is to
give your program a default heap and/or stack size that is greater than the default. For example, to set
-M128m -K1m:

#include "Rts.h"
#include "RtsFlags.h"
void defaultsHook (void) {

RtsFlags.GcFlags.maxStkSize = 1000002 / sizeof(W_);

83

Chapter 4. Using GHC

RtsFlags.GcFlags.maxHeapSize = 128*1024*1024 / BLOCK_SIZE_W;
}

Don’t use powers of two for heap/stack sizes: these are more likely to interact badly with
direct-mapped caches. The full set of flags is defined inghc/rts/RtsFlags.h the the GHC source
tree.

You can also change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:

void ErrorHdrHook (FILE *)

What’s printed out before the message fromerror .

void OutOfHeapHook (unsigned long, unsigned long)

The heap-overflow message.

void StackOverflowHook (long int)

The stack-overflow message.

void MallocFailHook (long int)

The message printed ifmalloc fails.

void PatErrorHdrHook (FILE *)

The message printed if a pattern-match fails (the failures that were not handled by the Haskell
programmer).

void PreTraceHook (FILE *)

What’s printed out before atrace message.

void PostTraceHook (FILE *)

What’s printed out after atrace message.

For example, here is the “hooks” code used by GHC itself:

#include "Rts.h"
#include "../rts/RtsFlags.h"
#include "HsFFI.h"

void
defaultsHook (void)
{

RtsFlags.GcFlags.heapSizeSuggestion = 6*1024*1024 / BLOCK_SIZE;
RtsFlags.GcFlags.maxStkSize = 8*1024*1024 / sizeof(W_);
RtsFlags.GcFlags.giveStats = COLLECT_GC_STATS;
RtsFlags.GcFlags.statsFile = stderr;

}

84

Chapter 4. Using GHC

void
ErrorHdrHook (long fd)
{

char msg[]="\n";
write(fd,msg,1);

}

void
PatErrorHdrHook (long fd)
{

const char msg[]="\n*** Pattern-matching error within GHC!\n\nThis is a compiler bug; please report it to glasgow-haskell-bugs@haskell.org.\n\nFail:";
write(fd,msg,sizeof(msg)-1);

}

void
PreTraceHook (long fd)
{

const char msg[]="\n";
write(fd,msg,sizeof(msg)-1);

}

void
PostTraceHook (long fd)
{
#if 0

const char msg[]="\n";
write(fd,msg,sizeof(msg)-1);

#endif
}

4.17. Generating External Core Files
GHC can dump its optimized intermediate code (said to be in “Core” format) to a file as a side-effect
of compilation. Core files, which are given the suffix.hcr , can be read and processed by non-GHC
back-end tools. The Core format is formally described inAn External Representation for the GHC
Core Language(http://www.haskell.org/ghc/docs/papers/core.ps.gz), and sample tools (in Haskell)
for manipulating Core files are available in the GHC source distribution directory
/fptools/ghc/utils/ext-core . Note that the format of.hcr files isdifferent(though similar)
to the Core output format generated for debugging purposes (Section 4.18).

-fext-core

Generate.hcr files.

85

Chapter 4. Using GHC

4.18. Debugging the compiler
HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

4.18.1. Dumping out compiler intermediate structures

-ddump- pass

Make a debugging dump after pass<pass> (may be common enough to need a short form. . .).
You can get all of these at once (lots of output) by using-ddump-all , or most of them with
-ddump-most . Some of the most useful ones are:

-ddump-parsed :

parser output

-ddump-rn :

renamer output

-ddump-tc :

typechecker output

-ddump-types :

Dump a type signature for each value defined at the top level of the module. The list is
sorted alphabetically. Using-dppr-debug dumps a type signature for all the imported
and system-defined things as well; useful for debugging the compiler.

-ddump-deriv :

derived instances

-ddump-ds :

desugarer output

-ddump-spec :

output of specialisation pass

-ddump-rules :

dumps all rewrite rules (including those generated by the specialisation pass)

-ddump-simpl :

simplifer output (Core-to-Core passes)

86

Chapter 4. Using GHC

-ddump-inlinings :

inlining info from the simplifier

-ddump-usagesp :

UsageSP inference pre-inf and output

-ddump-cpranal :

CPR analyser output

-ddump-stranal :

strictness analyser output

-ddump-cse :

CSE pass output

-ddump-workwrap :

worker/wrapper split output

-ddump-occur-anal :

‘occurrence analysis’ output

-ddump-sat :

output of “saturate” pass

-ddump-stg :

output of STG-to-STG passes

-ddump-absC :

unflattened Abstract C

-ddump-flatC :

flattenedAbstract C

-ddump-realC :

same as what goes to the C compiler

-ddump-stix :

native-code generator intermediate form

-ddump-asm :

assembly language from the native-code generator

87

Chapter 4. Using GHC

-ddump-bcos :

byte code compiler output

-ddump-foreign :

dump foreign export stubs

-dverbose-core2core

-dverbose-stg2stg

Show the output of the intermediate Core-to-Core and STG-to-STG passes, respectively. (Lots
of output!) So: when we’re really desperate:

% ghc -noC -O -ddump-simpl -dverbose-simpl -dcore-lint Foo.hs

-ddump-simpl-iterations :

Show the output of eachiterationof the simplifier (each run of the simplifier has a maximum
number of iterations, normally 4). Used when even-dverbose-simpl doesn’t cut it.

-dppr-debug

Debugging output is in one of several “styles.” Take the printing of types, for example. In the
“user” style (the default), the compiler’s internal ideas about types are presented in Haskell
source-level syntax, insofar as possible. In the “debug” style (which is the default for debugging
output), the types are printed in with explicit foralls, and variables have their unique-id attached
(so you can check for things that look the same but aren’t). This flag makes debugging output
appear in the more verbose debug style.

-dppr-user-length

In error messages, expressions are printed to a certain “depth”, with subexpressions beyond the
depth replaced by ellipses. This flag sets the depth.

-ddump-simpl-stats

Dump statistics about how many of each kind of transformation too place. If you add
-dppr-debug you get more detailed information.

-ddump-rn-trace

Make the renamer be *real* chatty about what it is upto.

-ddump-rn-stats

Print out summary of what kind of information the renamer had to bring in.

-dshow-unused-imports

Have the renamer report what imports does not contribute.

88

Chapter 4. Using GHC

4.18.2. Checking for consistency

-dcore-lint

Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks GHC’s
sanity, not yours.)

-dstg-lint :

Ditto for STG level. (NOTE: currently doesn’t work).

-dusagesp-lint :

Turn on checks around UsageSP inference (-fusagesp). This verifies various simple
properties of the results of the inference, and also warns if any identifier with a used-once
annotation before the inference has a used-many annotation afterwards; this could indicate a
non-worksafe transformation is being applied.

4.18.3. How to read Core syntax (from some -ddump flags)
Let’s do this by commenting an example. It’s from doing-ddump-ds on this code:

skip2 m = m : skip2 (m+2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are
identified by their “Uniques.” These are of the form ‘letter’ plus ‘number’ (both loosely interpreted).
The ‘letter’ gives some idea of where the Unique came from; e.g.,_ means “built-in type variable”;t
means “from the typechecker”;s means “from the simplifier”; and so on. The ‘number’ is printed
fairly compactly in a ‘base-62’ format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usually printed out when debugging, in some form or
another. So here we go. . .

Desugared:
Main.skip2{-r1L6-} :: _forall_ a$_4 =>{{Num a$_4}} -> a$_4 -> [a$_4]

-# ‘r1L6’ is the Unique for Main.skip2;
-# ‘_4’ is the Unique for the type-variable (template) ‘a’
-# ‘{{Num a$_4}}’ is a dictionary argument

NI

-# ‘_NI_’ means "no (pragmatic) information" yet; it will later
-# evolve into the GHC_PRAGMA info that goes into interface files.

Main.skip2{-r1L6-} =
/\ _4 -> \ d.Num.t4Gt ->

let {
{- CoRec -}

89

Chapter 4. Using GHC

+.t4Hg :: _4 -> _4 -> _4
NI
+.t4Hg = (+{-r3JH-} _4) d.Num.t4Gt

fromInt.t4GS :: Int{-2i-} -> _4
NI
fromInt.t4GS = (fromInt{-r3JX-} _4) d.Num.t4Gt

-# The ‘+’ class method (Unique: r3JH) selects the addition code
-# from a ‘Num’ dictionary (now an explicit lamba’d argument).
-# Because Core is 2nd-order lambda-calculus, type applications
-# and lambdas (/\) are explicit. So ‘+’ is first applied to a
-# type (‘_4’), then to a dictionary, yielding the actual addition
-# function that we will use subsequently...

-# We play the exact same game with the (non-standard) class method
-# ‘fromInt’. Unsurprisingly, the type ‘Int’ is wired into the
-# compiler.

lit.t4Hb :: _4
NI
lit.t4Hb =

let {
ds.d4Qz :: Int{-2i-}
NI
ds.d4Qz = I#! 2#

} in fromInt.t4GS ds.d4Qz

-# ‘I# 2#’ is just the literal Int ‘2’; it reflects the fact that
-# GHC defines ‘data Int = I# Int#’, where Int# is the primitive
-# unboxed type. (see relevant info about unboxed types elsewhere...)

-# The ‘!’ after ‘I#’ indicates that this is a *saturated*
-# application of the ‘I#’ data constructor (i.e., not partially
-# applied).

skip2.t3Ja :: _4 -> [_4]
NI
skip2.t3Ja =

\ m.r1H4 ->
let { ds.d4QQ :: [_4]

NI
ds.d4QQ =

let {
ds.d4QY :: _4
NI
ds.d4QY = +.t4Hg m.r1H4 lit.t4Hb

} in skip2.t3Ja ds.d4QY
} in

90

Chapter 4. Using GHC

:! _4 m.r1H4 ds.d4QQ

{- end CoRec -}
} in skip2.t3Ja

(“It’s just a simple functional language” is an unregisterised trademark of Peyton Jones Enterprises,
plc.)

4.18.4. Unregisterised compilation
The term "unregisterised" really means "compile via vanilla C", disabling some of the
platform-specific tricks that GHC normally uses to make programs go faster. When compiling
unregisterised, GHC simply generates a C file which is compiled via gcc.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the
prerequisite tools togcc, as, andld and nothing more, and furthermore the amount of
platform-specific code that needs to be written in order to get unregisterised compilation going is
usually fairly small.

-unreg :

Compile via vanilla ANSI C only, turning off platform-specific optimisations. NOTE: in order
to use-unreg , you need to have a set of libraries (including the RTS) built for unregisterised
compilation. This amounts to building GHC with way "u" enabled.

4.19. Flag reference
This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
static/dynamic status (seeSection 4.2), and the flag’s opposite (if available).

4.19.1. Help and verbosity options (Section 4.4)

Flag Description Static/Dynamic Reverse

-? help static -

-help help static -

-v verbose mode (equivalent to
-v3)

dynamic -

-v n set verbosity level dynamic -

--version display GHC version static -

--numeric-version display GHC version (numeric
only)

static -

91

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

--print-libdir display GHC library directory static -

4.19.2. Which phases to run (Section 4.6)

Flag Description Static/Dynamic Reverse

-E Stop after preprocessing (.hspp

file)

static -

-C Stop after generating C (.hc

file)

static -

-S Stop after generating assembly
(.s file)

static -

-c Stop after compiling to object
code (.o file)

static -

4.19.3. Redirecting output (Section 4.7)

Flag Description Static/Dynamic Reverse

-hcsuf suffix set the suffix to use for
intermediate C files

static -

-hidir dir set directory for interface files static -

-hisuf suffix set the suffix to use for interface
files

static -

-o filename set output filename static -

-odir dir set output directory static -

-ohi filename set the filename in which to put
the interface

static

-osuf suffix set the output file suffix static -

4.19.4. Keeping intermediate files (Section 4.7.1)

Flag Description Static/Dynamic Reverse

-keep-hc-file retain intermediate.hc files static -

-keep-s-file retain intermediate.s files static -

92

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-keep-raw-s-file retain intermediate.raw_s

files

static -

-keep-tmp-files retain all intermediate temporary
files

static -

4.19.5. Temporary files (Section 4.7.2)

Flag Description Static/Dynamic Reverse

-tmpdir set the directory for temporary
files

static -

4.19.6. Finding imports (Section 4.9.2)

Flag Description Static/Dynamic Reverse

-i dir1:dir2:... adddir, dir2, etc. to
import path

static -

-i Empty the import directory list static -

4.19.7. Interface file options (Section 4.9.4)

Flag Description Static/Dynamic Reverse

-ddump-hi Dump the new interface to
stdout

dynamic -

-ddump-hi-diffs Show the differences vs. the old
interface

dynamic -

-ddump-minimal-imports Dump a minimal set of importsdynamic -

-show-iface file Read the interface infile
and dump it as text to
stdout.

static -

4.19.8. Recompilation checking (Section 4.9.5)

Flag Description Static/Dynamic Reverse

93

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-no-recomp Turn off recompilation checkingstatic -recomp

4.19.9. Interactive-mode options (Section 3.8)

Flag Description Static/Dynamic Reverse

-ignore-dot-ghci Disable reading of.ghci

files

static -

-read-dot-ghci Enable reading of.ghci

files

static -

4.19.10. Packages (Section 4.10)

Flag Description Static/Dynamic Reverse

-package name Use packagename static -

-package-conf file Load more packages fromfile static -

-package-name name Compile code for packagename static -

4.19.11. Language options (Section 7.1)

Flag Description Static/Dynamic Reverse

-fallow-overlapping-instances

dynamic -fno-allow-overlapping-instances

-fallow-undecidable-instances

Enable undecidable instances dynamic -fno-allow-undecidable-instances

-fgenerics Enable generics dynamic -fno-fgenerics

-fglasgow-exts Enable most language
extensions

dynamic -fno-glasgow-exts

-ffi or -fffi Enable foreign function
interface (implied by
-fglasgow-exts)

dynamic -fno-ffi

94

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-fwith Enable deprecatedwith

keyword

dynamic -fno-with

-fignore-asserts Ignore assertions dynamic -fno-ignore-asserts

-fno-implicit-prelude Don’t implicitly import

Prelude

dynamic -

-fno-monomorphism-restriction

Disable the monomorphism
restriction

dynamic -

-firrefutable-tuples Make tuple pattern matching
irrefutable

dynamic -fno-irrefutable-tuples

-fcontext-stack n set the limit for context
reduction

dynamic -

4.19.12. Warnings (Section 4.8)

Flag Description Static/Dynamic Reverse

-W enable normal warnings dynamic -w

-w disable all warnings dynamic -

-Wall enable all warnings dynamic -w

-fwarn-deprecations warn about uses of functions &
types that are deprecated

dynamic -fno-warn-deprecations

-fwarn-duplicate-exports warn when an entity is exported
multiple times

dynamic -fno-warn-duplicate-exports

-fwarn-hi-shadowing warn when a.hi file in

the current directory

shadows a library

dynamic -fno-warn-hi-shadowing

-fwarn-incomplete-patterns

warn when a pattern match
could fail

dynamic -fno-warn-incomplete-patterns

-fwarn-misc enable miscellaneous warningsdynamic -fno-warn-misc

-fwarn-missing-fields warn when fields of a record are
uninitialised

dynamic -fno-warn-missing-fields

-fwarn-missing-methods warn when class methods are
undefined

dynamic -fno-warn-missing-methods

-fwarn-missing-signatures

warn about top-level functions
without signatures

dynamic -fno-warn-missing-signatures

-fwarn-name-shadowing warn when names are shadoweddynamic -fno-warn-name-shadowing

95

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-fwarn-overlapping-patterns

warn about overlapping patternsdynamic -fno-warn-overlapping-patterns

-fwarn-simple-patterns warn about lambda-patterns that
can fail

dynamic -fno-warn-simple-patterns

-fwarn-type-defaults warn when defaulting happensdynamic -fno-warn-type-defaults

-fwarn-unused-binds warn about bindings that are
unused

dynamic -fno-warn-unused-binds

-fwarn-unused-imports warn about unnecessary importsdynamic -fno-warn-unused-imports

-fwarn-unused-matches warn about variables in patterns
that aren’t used

dynamic -fno-warn-unused-matches

4.19.13. Optimisation levels (Section 4.11)

Flag Description Static/Dynamic Reverse

-O Enable default optimisation
(level 1)

static -O0

-On Set optimisation leveln static -O0

4.19.14. Individual optimisations (Section 4.11.2)

Flag Description Static/Dynamic Reverse

-fcase-merge Enable case-merging static -fno-case-merge

-fdicts-strict Make dictionaries strict dynamic -fno-dicts-strict

-fdo-eta-reduction Enable eta-reduction static -fno-do-eta-reduction

-fdo-lambda-eta-expansion

Enable lambda eta-reduction static -fno-do-lambda-eta-expansion

-fexcess-precision Enable excess intermediate
precision

static -fno-excess-precision

-ffoldr-build-on Enable foldr-build optimisation static -fno-foldr-build-on

-fignore-asserts Ignore assertions in the sourcestatic -fno-ignore-asserts

-fignore-interface-pragmas

Ignore pragmas in interface filesstatic -fno-ignore-interface-pragmas

96

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-flet-no-escape Enable let-no-escape
optimisation

static -fno-let-no-escape

-fliberate-case-threshold

Tweak the liberate-case
optimisation (default: 10)

static -fno-liberate-case-threshold

-fomit-interface-pragmas Don’t generate interface
pragmas

static -fno-omit-interface-pragmas

-fmax-worker-args If a worker has that many
arguments, none will be
unpacked anymore (default: 10)

static -

-fmax-simplifier-iterations

Set the max iterations for the
simplifier

static -

-fno-cpr Turn off CPR analysis static -

-fno-cse Turn off common
sub-expression

static -

-fno-pre-inlining Turn off pre-inlining static -

-fno-strictness Turn off strictness analysis static -

-fnumbers-strict Make numbers strict dynamic -fno-numbers-strict

-funbox-strict-fields Flatten strict constructor fields static -fno-unbox-strict-fields

-funfolding-creation-threshold

Tweak unfolding settings static -fno-unfolding-creation-threshold

-funfolding-fun-discount Tweak unfolding settings static -fno-unfolding-fun-discount

-funfolding-keeness-factor

Tweak unfolding settings static -fno-unfolding-keeness-factor

-funfolding-update-in-place

Tweak unfolding settings static -fno-unfolding-update-in-place

-funfolding-use-threshold

Tweak unfolding settings static -fno-unfolding-use-threshold

-fusagesp Turn on UsageSP analysis static -fno-usagesp

4.19.15. Profiling options (Chapter 5)

97

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-auto Auto-add_scc_s to all

exported functions

static -no-auto

-auto-all Auto-add_scc_s to all

top-level functions

static -no-auto-all

-auto-dicts Auto-add_scc_s to all

dictionaries

static -no-auto-dicts

-caf-all Auto-add_scc_s to all

CAFs

static -no-caf-all

-prof Turn on profiling static -

-ticky Turn on ticky-ticky profiling static -

4.19.16. Parallelism options (Section 4.14)

Flag Description Static/Dynamic Reverse

-gransim Enable GRANSIM static -

-parallel Enable Parallel Haskell static -

-smp Enable SMP support static -

4.19.17. C pre-processor options (Section 4.12.3)

Flag Description Static/Dynamic Reverse

-cpp Run the C pre-processor on
Haskell source files

dynamic -

-D symbol[=value] Define a symbol in the C
pre-processor

dynamic -U symbol

-U symbol Undefine a symbol in the C
pre-processor

dynamic -

-I dir Add dir to the
directory search list
for #include files

static -

4.19.18. C compiler options (Section 4.12.5)

Flag Description Static/Dynamic Reverse

98

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-#include file Includefile when
compiling the .hc file

dynamic -

4.19.19. Code generation options (Section 4.12.6)

Flag Description Static/Dynamic Reverse

-fasm Use the native code generator dynamic -fvia-C

-fvia-C Compile via C dynamic -fasm

-fno-code Omit code generation static -

4.19.20. Linking options (Section 4.12.7)

Flag Description Static/Dynamic Reverse

-dynamic Use dynamic Haskell libraries
(if available)

static -

-l lib Link in library lib static -

-L dir Add dir to the list of
directories searched
for libraries

static -

-package name Link in packagename static -

-framework name On Darwin/MacOS X only, link
in the frameworkname. This
option corresponds to
the -framework option

for Apple’s Linker.

static -

-framework-path name On Darwin/MacOS X only, add
dir to the list of
directories searched
for frameworks. This
option corresponds to
the -F option for

Apple’s Linker.

static -

-split-objs Split objects (for libraries) static -

-static Use static Haskell libraries static -

-no-hs-main Don’t asssume this program
containsmain

static -

99

Chapter 4. Using GHC

4.19.21. Replacing phases (Section 4.12.1)

Flag Description Static/Dynamic Reverse

-pgmL cmd Usecmd as the
literate pre-processor

static -

-pgmP cmd Usecmd as the C
pre-processor (with
-cpp only)

static -

-pgmc cmd Usecmd as the C
compiler

static -

-pgma cmd Usecmd as the
assembler

static -

-pgml cmd Usecmd as the linker static -

-pgmdll cmd Usecmd as the DLL
generator

static -

-pgmdep cmd Usecmd as the
dependency generator

static -

-pgmF cmd Usecmd as the
pre-processor (with -F

only)

static -

4.19.22. Forcing options to particular phases (Section
4.12.2)

Flag Description Static/Dynamic Reverse

-optL option passoption to the
literate pre-processor

dynamic -

-optP option passoption to cpp
(with -cpp only)

dynamic -

-optc option passoption to the C
compiler

dynamic -

-opta option passoption to the
assembler

dynamic -

-optl option passoption to the
linker

static -

-optdll option passoption to the DLL
generator

static -

-optdep option passoption to the
dependency generator

static -

100

Chapter 4. Using GHC

4.19.23. Platform-specific options (Section 4.15)

Flag Description Static/Dynamic Reverse

-mv8 (SPARC only) enable version 8
support

static -

-monly-[32]-regs (x86 only) give some registers
back to the C compiler

dynamic -

4.19.24. External core file options (Section 4.17)

Flag Description Static/Dynamic Reverse

-fext-core Generate.hcr external

Core files

static -

4.19.25. Compiler debugging options (Section 4.18)

Flag Description Static/Dynamic Reverse

-dcore-lint Turn on internal sanity checkingdynamic -

-ddump-absC Dump abstract C dynamic -

-ddump-asm Dump assembly dynamic -

-ddump-bcos Dump interpreter byte code dynamic -

-ddump-cpranal Dump output from CPR analysisdynamic -

-ddump-cse Dump CSE output dynamic -

-ddump-deriv Dump deriving output dynamic -

-ddump-ds Dump desugarer output dynamic -

-ddump-flatC Dump “flat” C dynamic -

-ddump-foreign Dump foreign export

stubs

dynamic -

-ddump-inlinings Dump inlining info dynamic -

-ddump-occur-anal Dump occurrence analysis
output

dynamic -

-ddump-parsed Dump parse tree dynamic -

-ddump-realC Dump “real” C dynamic -

-ddump-rn Dump renamer output dynamic -

101

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-ddump-rules Dump rules dynamic -

-ddump-sat Dump saturated output dynamic -

-ddump-simpl Dump final simplifier output dynamic -

-ddump-simpl-iterations Dump output from each
simplifier iteration

dynamic -

-ddump-spec Dump specialiser output dynamic -

-ddump-stg Dump final STG dynamic -

-ddump-stranal Dump strictness analyser outputdynamic -

-ddump-tc Dump typechecker output dynamic -

-ddump-types Dump type signatures dynamic -

-ddump-usagesp Dump UsageSP analysis outputdynamic -

-ddump-worker-wrapper Dump worker-wrapper output dynamic -

-ddump-rn-trace Trace renamer dynamic -

-ddump-rn-stats Renamer stats dynamic -

-ddump-stix Native code generator
intermediate form

dynamic -

-ddump-simpl-stats Dump simplifier stats dynamic -

-dppr-debug Turn on debug printing (more
verbose)

static -

-dppr-noprags Don’t output pragma info in
dumps

static -

-dppr-user-length Set the depth for printing
expressions in error msgs

static -

-dsource-stats Dump haskell source stats dynamic -

-dstg-lint STG pass sanity checking dynamic -

-dstg-stats Dump STG stats dynamic -

-dusagesp-lint UsageSP sanity checker dynamic -

-dverbose-core2core Show output from each
core-to-core pass

dynamic -

-dverbose-stg2stg Show output from each
STG-to-STG pass

dynamic -

-unreg Enable unregisterised
compilation

static -

4.19.26. Misc compiler options

102

Chapter 4. Using GHC

Flag Description Static/Dynamic Reverse

-funfold-casms-in-hi-file

Allow casms in unfoldings static -

-femit-extern-decls ??? static -

-fglobalise-toplev-names Make all top-level names global
(for -split-objs)

static -

-fno-hi-version-check Don’t complain about.hi

file mismatches

static -

-dno-black-holing Turn off black holing (probably
doesn’t work)

static -

-fno-method-sharing Don’t share specialisations of
overloaded functions

static -

-fno-prune-decls Renamer: don’t prune
declarations

static -

-fno-prune-tydecls Renamer: don’t prune type
declarations

static -

-fhistory-size Set simplification history size static -

-funregisterised Unregisterised compilation (use
-unreg instead)

static -

-fno-asm-mangling Turn off assembly mangling
(use-unreg instead)

static -

103

Chapter 5. Profiling
Glasgow Haskell comes with a time and space profiling system. Its purpose is to help you improve
your understanding of your program’s execution behaviour, so you can improve it.

Any comments, suggestions and/or improvements you have are welcome. Recommended “profiling
tricks” would be especially cool!

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the-prof option, and probably one of the-auto

or -auto-all options. These options are described in more detail inSection 5.2

2. Run your program with one of the profiling options, eg.+RTS -p -RTS . This generates a file
of profiling information.

3. Examine the generated profiling information, using one of GHC’s profiling tools. The tool to
use will depend on the kind of profiling information generated.

5.1. Cost centres and cost-centre stacks
GHC’s profiling system assignscoststo cost centres. A cost is simply the time or space required to
evaluate an expression. Cost centres are program annotations around expressions; all costs incurred
by the annotated expression are assigned to the enclosing cost centre. Furthermore, GHC will
remember the stack of enclosing cost centres for any given expression at run-time and generate a
call-graph of cost attributions.

Let’s take a look at an example:

main = print (nfib 25)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as follows:

$ ghc -prof -auto-all -o Main Main.hs
$./Main +RTS -p
121393
$

When a GHC-compiled program is run with the-p RTS option, it generates a file called
<prog>.prof . In this case, the file will contain something like this:

Fri May 12 14:06 2000 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.14 secs (7 ticks @ 20 ms)
total alloc = 8,741,204 bytes (excludes profiling overheads)

104

Chapter 5. Profiling

COST CENTRE MODULE %time %alloc

nfib Main 100.0 100.0

individual inherited
COST CENTRE MODULE entries %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0
CAF Main 6 0.0 0.0 100.0 100.0

main Main 1 0.0 0.0 100.0 100.0
nfib Main 242785 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total memory
allocation measured during the run of the program (note that the total memory allocation figure isn’t
the same as the amount oflive memory needed by the program at any one time; the latter can be
determined using heap profiling, which we will describe shortly).

The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namelynfib , and it
was responsible for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is roughly
a call-graph profile of the program. In the example above, it is clear that the costly call tonfib came
from main .

The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone, and
“inherited”, which includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 25 + g 25)
f n = nfib n
g n = nfib (n ‘div‘ 2)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

COST CENTRE MODULE scc %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0
CAF Main 9 0.0 0.0 100.0 100.0

105

Chapter 5. Profiling

main Main 1 0.0 0.0 100.0 100.0
g Main 1 0.0 0.0 0.0 0.2

nfib Main 465 0.0 0.2 0.0 0.2
f Main 1 0.0 0.0 100.0 99.8

nfib Main 242785 100.0 99.8 100.0 99.8

Now although we had two calls tonfib in the program, it is immediately clear that it was the call
from f which took all the time.

The actual meaning of the various columns in the output is:

entries

The number of times this particular point in the call graph was entered.

individual %time

The percentage of the total run time of the program spent at this point in the call graph.

individual %alloc

The percentage of the total memory allocations (excluding profiling overheads) of the program
made by this call.

inherited %time

The percentage of the total run time of the program spent below this point in the call graph.

inherited %alloc

The percentage of the total memory allocations (excluding profiling overheads) of the program
made by this call and all of its sub-calls.

In addition you can use the-P RTS option to get the following additional information:

ticks

The raw number of time “ticks” which were attributed to this cost-centre; from this, we get the
%time figure mentioned above.

bytes

Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number
from which we get the%alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs
attributed? Well, although GHC does keep information about which groups of functions called each
other recursively, this information isn’t displayed in the basic time and allocation profile, instead the
call-graph is flattened into a tree. The XML profiling tool (described inSection 5.5) will be able to
display real loops in the call-graph.

106

Chapter 5. Profiling

5.1.1. Inserting cost centres by hand
Cost centres are just program annotations. When you say-auto-all to the compiler, it
automatically inserts a cost centre annotation around every top-level function in your program, but
you are entirely free to add the cost centre annotations yourself.

The syntax of a cost centre annotation is

{-# SCC "name" #-} <expression>

where"name" is an aribrary string, that will become the name of your cost centre as it appears in the
profiling output, and<expression> is any Haskell expression. AnSCCannotation extends as far to
the right as possible when parsing.

5.1.2. Rules for attributing costs
The cost of evaluating any expression in your program is attributed to a cost-centre stack using the
following rules:

• If the expression is part of theone-offcosts of evaluating the enclosing top-level definition, then
costs are attributed to the stack of lexically enclosingSCCannotations on top of the specialCAF

cost-centre.

• Otherwise, costs are attributed to the stack of lexically-enclosingSCCannotations, appended to the
cost-centre stack in effect at thecall siteof the current top-level definition1. Notice that this is a
recursive definition.

• Time spent in foreign code (seeChapter 8) is always attributed to the cost centre in force at the
Haskell call-site of the foreign function.

What do we mean by one-off costs? Well, Haskell is a lazy language, and certain expressions are
only ever evaluated once. For example, if we write:

x = nfib 25

thenx will only be evaluated once (if at all), and subsequent demands forx will immediately get to
see the cached result. The definitionx is called a CAF (Constant Applicative Form), because it has
no arguments.

For the purposes of profiling, we say that the expressionnfib 25 belongs to the one-off costs of
evaluatingx .

Since one-off costs aren’t strictly speaking part of the call-graph of the program, they are attributed
to a special top-level cost centre,CAF. There may be oneCAFcost centre for each module (the
default), or one for each top-level definition with any one-off costs (this behaviour can be selected by
giving GHC the-caf-all flag).

If you think you have a weird profile, or the call-graph doesn’t look like you expect it to, feel free to
send it (and your program) to us at<glasgow-haskell-bugs@haskell.org >.

107

Chapter 5. Profiling

5.2. Compiler options for profiling

-prof :

To make use of the profiling systemall modules must be compiled and linked with the-prof

option. AnySCCannotations you’ve put in your source will spring to life.

Without a-prof option, yourSCCs are ignored; so you can compileSCC-laden code without
changing it.

There are a few other profiling-related compilation options. Use themin addition to-prof . These
do not have to be used consistently for all modules in a program.

-auto :

GHC will automatically add_scc_ constructs for all top-level, exported functions.

-auto-all :

All top-level functions, exported or not, will be automatically_scc_ ’d.

-caf-all :

The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre. With
this option, all CAFs get their own cost-centre. An “if all else fails” option. . .

-ignore-scc :

Ignore any_scc_ constructs, so a module which already has_scc_ s can be compiled for
profiling with the annotations ignored.

5.3. Time and allocation profiling
To generate a time and allocation profile, give one of the following RTS options to the compiled
program when you run it (RTS options should be enclosed between+RTS...-RTS as usual):

-p or -P :

The-p option produces a standardtime profilereport. It is written into the fileprogram .prof .

The-P option produces a more detailed report containing the actual time and allocation data as
well. (Not used much.)

-px :

The-px option generates profiling information in the XML format understood by our new
profiling tool, seeSection 5.5.

108

Chapter 5. Profiling

-xc

This option makes use of the extra information maintained by the cost-centre-stack profiler to
provide useful information about the location of runtime errors. SeeSection 4.16.3.

5.4. Profiling memory usage
In addition to profiling the time and allocation behaviour of your program, you can also generate a
graph of its memory usage over time. This is useful for detecting the causes ofspace leaks, when
your program holds on to more memory at run-time that it needs to. Space leaks lead to longer
run-times due to heavy garbage collector ativity, and may even cause the program to run out of
memory altogether.

To generate a heap profile from your program:

1. Compile the program for profiling (Section 5.2).

2. Run it with one of the heap profiling options described below (eg.-hc for a basic producer
profile). This generates the fileprog .hp .

3. Runhp2psto produce a Postscript file,prog .ps . Thehp2psutility is described in detail in
Section 5.6.

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a
Postscript-capable printer.

5.4.1. RTS options for heap profiling
There are several different kinds of heap profile that can be generated. All the different profile types
yield a graph of live heap against time, but they differ in how the live heap is broken down into
bands. The following RTS options select which break-down to use:

-hc

Breaks down the graph by the cost-centre stack which produced the data.

-hm

Break down the live heap by the module containing the code which produced the data.

-hd

Breaks down the graph byclosure description. For actual data, the description is just the
constructor name, for other closures it is a compiler-generated string identifying the closure.

-hy

Breaks down the graph bytype. For closures which have function type or
unknown/polymorphic type, the string will represent an approximation to the actual type.

109

Chapter 5. Profiling

-hr

Break down the graph byretainer set. Retainer profiling is described in more detail below
(Section 5.4.2).

-hb

Break down the graph bybiography. Biographical profiling is described in more detail below
(Section 5.4.3).

In addition, the profile can be restricted to heap data which satisfies certain criteria - for example,
you might want to display a profile by type but only for data produced by a certain module, or a
profile by retainer for a certain type of data. Restrictions are specified as follows:

-hc name,...

Restrict the profile to closures produced by cost-centre stacks with one of the specified cost
centres at the top.

-hC name,...

Restrict the profile to closures produced by cost-centre stacks with one of the specified cost
centres anywhere in the stack.

-hmmodule ,...

Restrict the profile to closures produced by the specified modules.

-hd desc ,...

Restrict the profile to closures with the specified description strings.

-hy type ,...

Restrict the profile to closures with the specified types.

-hr cc ,...

Restrict the profile to closures with retainer sets containing cost-centre stacks with one of the
specified cost centres at the top.

-hb bio ,...

Restrict the profile to closures with one of the specified biographies, wherebio is one oflag ,
drag , void , or use .

For example, the following options will generate a retainer profile restricted toBranch andLeaf

constructors:

prog +RTS -hr -hdBranch,Leaf

110

Chapter 5. Profiling

There can only be one "break-down" option (eg.-hr in the example above), but there is no limit on
the number of further restrictions that may be applied. All the options may be combined, with one
exception: GHC doesn’t currently support mixing the-hr and-hb options.

There’s one more option which relates to heap profiling:

-i secs :

Set the profiling (sampling) interval tosecs seconds (the default is 0.1 second). Fractions are
allowed: for example-i0.2 will get 5 samples per second. This only affects heap profiling;
time profiles are always sampled on a 1/50 second frequency.

5.4.2. Retainer Profiling
Retainer profiling is designed to help answer questions like“why is this data being retained?”. We
start by defining what we mean by a retainer:

A retainer is either the system stack, or an unevaluated closure (thunk).

In particular, constructors arenot retainers.

An object A is retained by an object B if object A can be reached by recursively following pointers
starting from object B but not meeting any other retainers on the way. Each object has one or more
retainers, collectively called itsretainer set.

When retainer profiling is requested by giving the program the-hr option, a graph is generated
which is broken down by retainer set. A retainer set is displayed as a set of cost-centre stacks;
because this is usually too large to fit on the profile graph, each retainer set is numbered and shown
abbreviated on the graph along with its number, and the full list of retainer sets is dumped into the
file prog .prof .

Retainer profiling requires multiple passes over the live heap in order to discover the full retainer set
for each object, which can be quite slow. So we set a limit on the maximum size of a retainer set,
where all retainer sets larger than the maximum retainer set size are replaced by the special setMANY.
The maximum set size defaults to 8 and can be altered with the-R RTS option:

-Rsize

Restrict the number of elements in a retainer set tosize (default 8).

5.4.2.1. Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large structure is
retained by an unevaluated computation, and will be released once the compuation is forced. A good
example is looking up a value in a finite map, where unless the lookup is forced in a timely manner
the unevaluated lookup will cause the whole mapping to be retained. These kind of space leaks can
often be eliminated by forcing the relevant computations to be performed eagerly, usingseq or
strictness annotations on data constructor fields.

111

Chapter 5. Profiling

Often a particular data structure is being retained by a chain of unevaluated closures, only the nearest
of which will be reported by retainer profiling - for example A retains B, B retains C, and C retains a
large structure. There might be a large number of Bs but only a single A, so A is really the one we’re
interested in eliminating. However, retainer profiling will in this case report B as the retainer of the
large structure. To move further up the chain of retainers, we can ask for another retainer profile but
this time restrict the profile to B objects, so we get a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the
retainers we are interested in, but we’ve found this to be a useful technique in most cases.

5.4.3. Biographical Profiling
A typical heap object may be in one of the following four states at each point in its lifetime:

• The lag stage, which is the time between creation and the first use of the object,

• theusestage, which lasts from the first use until the last use of the object, and

• Thedragstage, which lasts from the final use until the last reference to the object is dropped.

• An object which is never used is said to be in thevoid state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states listed
above. Usually the most interesting states are the void and drag states: live heap in these states is
more likely to be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria, by
restricting a profile by biography. For example, to show the portion of the heap in the drag or void
state by producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step is usually
to find the retainer(s):

prog +RTS -hr -hc cc ...

NOTE: this two stage process is required because GHC cannot currently profile using both
biographical and retainer information simultaneously.

5.5. Graphical time/allocation profile
You can view the time and allocation profiling graph of your program graphically, usingghcprof.
This is a new tool with GHC 4.08, and will eventually be the de-facto standard way of viewing GHC

112

Chapter 5. Profiling

profiles2

To runghcprof, you needdaVinci installed, which can be obtained fromThe Graph Visualisation
Tool daVinci(http://www.informatik.uni-bremen.de/daVinci/). Install one of the binary distributions3,
and set yourDAVINCIHOME environment variable to point to the installation directory.

ghcprof uses an XML-based profiling log format, and you therefore need to run your program with a
different option:-px . The file generated is still called<prog>.prof . To see the profile, runghcprof
like this:

$ ghcprof <prog>.prof

which should pop up a window showing the call-graph of your program in glorious detail. More
information on usingghcprof can be found atThe Cost-Centre Stack Profiling Tool for GHC
(http://www.dcs.warwick.ac.uk/people/academic/Stephen.Jarvis/profiler/index.html).

5.6. hp2ps––heap profile to PostScript
Usage:

hp2ps [flags] [<file>[.hp]]

The programhp2psconverts a heap profile as produced by the-h<break-down> runtime option
into a PostScript graph of the heap profile. By convention, the file to be processed byhp2pshas a
.hp extension. The PostScript output is written to<file>@.ps . If <file> is omitted entirely, then
the program behaves as a filter.

hp2ps is distributed inghc/utils/hp2ps in a GHC source distribution. It was originally
developed by Dave Wakeling as part of the HBC/LML heap profiler.

The flags are:

-d

In order to make graphs more readable,hp2pssorts the shaded bands for each identifier. The
default sort ordering is for the bands with the largest area to be stacked on top of the smaller
ones. The-d option causes rougher bands (those representing series of values with the largest
standard deviations) to be stacked on top of smoother ones.

-b

Normally,hp2psputs the title of the graph in a small box at the top of the page. However, if the
JOB string is too long to fit in a small box (more than 35 characters), thenhp2pswill choose to
use a big box instead. The-b option forceshp2psto use a big box.

-e<float>[in|mm|pt]

Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually, the
PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches high, and

113

Chapter 5. Profiling

hp2psarranges for this area to be approximately centred on a sheet of a4 paper. This format is
convenient of studying the graph in detail, but it is unsuitable for inclusion in LaTeX
documents. The-e option causes the graph to be drawn in portrait mode, with float specifying
the width in inches, millimetres or points (the default). The resulting PostScript file conforms to
the Encapsulated PostScript (EPS) convention, and it can be included in a LaTeX document
using Rokicki’s dvi-to-PostScript converterdvips.

-g

Create output suitable for thegsPostScript previewer (or similar). In this case the graph is
printed in portrait mode without scaling. The output is unsuitable for a laser printer.

-l

Normally a profile is limited to 20 bands with additional identifiers being grouped into an
OTHERband. The-l flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with many
bands.

-m<int>

Normally a profile is limited to 20 bands with additional identifiers being grouped into an
OTHERband. The-m flag specifies an alternative band limit (the maximum is 20).

-m0 requests the band limit to be removed. As many bands as necessary are produced. However
no key is produced as it won’t fit! It is useful for displaying creation time profiles with many
bands.

-p

Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series of graphs
for use in a presentation, it is often useful to draw a new graph using the same scale, shading
and ordering as a previous one. The-p flag causes the graph to be drawn using the parameters
determined by a previous run ofhp2pson file . These are extracted fromfile@.aux .

-s

Use a small box for the title.

-t<float>

Normally trace elements which sum to a total of less than 1% of the profile are removed from
the profile. The-t option allows this percentage to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring that all the data will be
displayed.

-c

Generate colour output.

114

Chapter 5. Profiling

-y

Ignore marks.

-?

Print out usage information.

5.7. Using “ticky-ticky” profiling (for
implementors)
(ToDo: document properly.)

It is possible to compile Glasgow Haskell programs so that they will count lots and lots of interesting
things, e.g., number of updates, number of data constructors entered, etc., etc. We call this
“ticky-ticky” profiling, because that’s the sound a Sun4 makes when it is running up all those
counters (slowly).

Ticky-ticky profiling is mainly intended for implementors; it is quite separate from the main
“cost-centre” profiling system, intended for all users everywhere.

To be able to use ticky-ticky profiling, you will need to have built appropriate libraries and things
when you made the system. See “Customising what libraries to build,” in the installation guide.

To get your compiled program to spit out the ticky-ticky numbers, use a-r RTS option. SeeSection
4.16.

Compiling your program with the-ticky switch yields an executable that performs these counts.
Here is a sample ticky-ticky statistics file, generated by the invocationfoo +RTS -rfoo.ticky.

foo +RTS -rfoo.ticky

ALLOCATIONS: 3964631 (11330900 words total: 3999476 admin, 6098829 goods, 1232595 slop)
total words: 2 3 4 5 6+

69647 (1.8%) function values 50.0 50.0 0.0 0.0 0.0
2382937 (60.1%) thunks 0.0 83.9 16.1 0.0 0.0
1477218 (37.3%) data values 66.8 33.2 0.0 0.0 0.0

0 (0.0%) big tuples
2 (0.0%) black holes 0.0 100.0 0.0 0.0 0.0
0 (0.0%) prim things

34825 (0.9%) partial applications 0.0 0.0 0.0 100.0 0.0
2 (0.0%) thread state objects 0.0 0.0 0.0 0.0 100.0

Total storage-manager allocations: 3647137 (11882004 words)
[551104 words lost to speculative heap-checks]

STACK USAGE:

ENTERS: 9400092 of which 2005772 (21.3%) direct to the entry code

115

Chapter 5. Profiling

[the rest indirected via Node’s info ptr]
1860318 (19.8%) thunks
3733184 (39.7%) data values
3149544 (33.5%) function values

[of which 1999880 (63.5%) bypassed arg-satisfaction chk]
348140 (3.7%) partial applications
308906 (3.3%) normal indirections

0 (0.0%) permanent indirections

RETURNS: 5870443
2137257 (36.4%) from entering a new constructor

[the rest from entering an existing constructor]
2349219 (40.0%) vectored [the rest unvectored]

RET_NEW: 2137257: 32.5% 46.2% 21.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_OLD: 3733184: 2.8% 67.9% 29.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_UNBOXED_TUP: 2: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

RET_VEC_RETURN : 2349219: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

UPDATE FRAMES: 2241725 (0 omitted from thunks)
SEQ FRAMES: 1
CATCH FRAMES: 1
UPDATES: 2241725

0 (0.0%) data values
34827 (1.6%) partial applications

[2 in place, 34825 allocated new space]
2206898 (98.4%) updates to existing heap objects (46 by squeezing)
UPD_CON_IN_NEW: 0: 0 0 0 0 0 0 0 0 0
UPD_PAP_IN_NEW: 34825: 0 0 0 34825 0 0 0 0 0

NEW GEN UPDATES: 2274700 (99.9%)

OLD GEN UPDATES: 1852 (0.1%)

Total bytes copied during GC: 190096

**
3647137 ALLOC_HEAP_ctr
11882004 ALLOC_HEAP_tot

69647 ALLOC_FUN_ctr
69647 ALLOC_FUN_adm
69644 ALLOC_FUN_gds
34819 ALLOC_FUN_slp
34831 ALLOC_FUN_hst_0
34816 ALLOC_FUN_hst_1

0 ALLOC_FUN_hst_2
0 ALLOC_FUN_hst_3
0 ALLOC_FUN_hst_4

116

Chapter 5. Profiling

2382937 ALLOC_UP_THK_ctr
0 ALLOC_SE_THK_ctr

308906 ENT_IND_ctr
0 E!NT_PERM_IND_ctr requires +RTS -Z

[... lots more info omitted ...]
0 GC_SEL_ABANDONED_ctr
0 GC_SEL_MINOR_ctr
0 GC_SEL_MAJOR_ctr
0 GC_FAILED_PROMOTION_ctr

47524 GC_WORDS_COPIED_ctr

The formatting of the information above the row of asterisks is subject to change, but hopefully
provides a useful human-readable summary. Below the asterisksall countersmaintained by the
ticky-ticky system are dumped, in a format intended to be machine-readable: zero or more spaces, an
integer, a space, the counter name, and a newline.

In fact, notall counters are necessarily dumped; compile- or run-time flags can render certain
counters invalid. In this case, either the counter will simply not appear, or it will appear with a
modified counter name, possibly along with an explanation for the omission (notice
ENT_PERM_IND_ctr appears with an inserted! above). Software analysing this output should
always check that it has the counters it expects. Also, beware: some of the counters can havelarge
values!

Notes
1. The call-site is just the place in the source code which mentions the particular function or

variable.

2. Actually this isn’t true any more, we are working on a new tool for displaying heap profiles
using Gtk+HS, soghcprof may go away at some point in the future.

3. daVinci is sadly not open-source :-(.

117

Chapter 6. Advice on: sooner, faster,
smaller, thriftier
Please advise us of other “helpful hints” that should go here!

6.1. Sooner: producing a program more quickly

Don’t use-O or (especially)-O2 :

By using them, you are telling GHC that you are willing to suffer longer compilation times for
better-quality code.

GHC is surprisingly zippy for normal compilations without-O!

Use more memory:

Within reason, more memory for heap space means less garbage collection for GHC, which
means less compilation time. If you use the-Rghc-timing option, you’ll get a
garbage-collector report. (Again, you can use the cheap-and-nasty+RTS -Sstderr -RTS

option to send the GC stats straight to standard error.)

If it says you’re using more than 20% of total time in garbage collecting, then more memory
would help.

If the heap size is approaching the maximum (64M by default), and you have lots of memory,
try increasing the maximum with the-M<size> option, e.g.:ghc -c -O -M1024m Foo.hs.

Increasing the default allocation area size used by the compiler’s RTS might also help: use the
-A<size> option.

If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory!

As soon as GHC plus its “fellow citizens” (other processes on your machine) start using more
than thereal memoryon your machine, and the machine starts “thrashing,”the party is over.
Compile times will be worse than terrible! Use something like the csh-builtintime command to
get a report on how many page faults you’re getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t know the
memory configuration of your machine,don’t try to be clever about memory use: you’ll just
make your life a misery (and for other people, too, probably).

Try to use local disks when linking:

Because Haskell objects and libraries tend to be large, it can take many real seconds to slurp the
bits to/from a remote filesystem.

118

Chapter 6. Advice on: sooner, faster, smaller, thriftier

It would be quite sensible tocompileon a fast machine using remotely-mounted disks; thenlink
on a slow machine that had your disks directly mounted.

Don’t derive/useRead unnecessarily:

It’s ugly and slow.

GHC compiles some program constructs slowly:

Deeply-nested list comprehensions seem to be one such; in the past, very large constant tables
were bad, too.

We’d rather you reported such behaviour as a bug, so that we can try to correct it.

The part of the compiler that is occasionally prone to wandering off for a long time is the
strictness analyser. You can turn this off individually with-fno-strictness .

To figure out which part of the compiler is badly behaved, the-v2 option is your friend.

If your module has big wads of constant data, GHC may produce a huge basic block that will
cause the native-code generator’s register allocator to founder. Bring on-fvia-C (not that
GCC will be that quick about it, either).

Explicit import declarations:

Instead of sayingimport Foo , sayimport Foo (...stuff I want...) You can get
GHC to tell you the minimal set of required imports by using the-ddump-minimal-imports

option (seeSection 4.9.4).

Truthfully, the reduction on compilation time will be very small. However, judicious use of
import declarations can make a program easier to understand, so it may be a good idea
anyway.

6.2. Faster: producing a program that runs
quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately inChapter 5. There isno substitutefor finding where your program’s
time/space isreally going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program’s performancedramatically
is to use better algorithms. Once profiling has thrown the spotlight on the guilty time-consumer(s), it
may be better to re-think your program than to try all the tweaks listed below.

Another extremely efficient way to make your program snappy is to use library code that has been
Seriously Tuned By Someone Else. Youmightbe able to write a better quicksort than the one in the
HBC library, but it will take you much longer than typingimport QSort . (Incidentally, it doesn’t
hurt if the Someone Else is Lennart Augustsson.)

119

Chapter 6. Advice on: sooner, faster, smaller, thriftier

Please report any overly-slow GHC-compiled programs. The current definition of “overly-slow” is
“the HBC-compiled version ran faster”. . .

Optimise, using-O or -O2 :

This is the most basic way to make your program go faster. Compilation time will be slower,
especially with-O2 .

At present,-O2 is nearly indistinguishable from-O.

Compile via C and crank up GCC:

The native code-generator is designed to be quick, not mind-bogglingly clever. Better to let
GCC have a go, as it tries much harder on register allocation, etc.

At the moment, if you turn on-O you get GCC instead. This may change in the future.

So, when we want very fast code, we use:-O -fvia-C .

Overloaded functions are not your friend:

Haskell’s overloading (using type classes) is elegant, neat, etc., etc., but it is death to
performance if left to linger in an inner loop. How can you squash it?

Give explicit type signatures:

Signatures are the basic trick; putting them on exported, top-level functions is good
software-engineering practice, anyway. (Tip: using-fwarn-missing-signatures can
help enforce good signature-practice).

The automatic specialisation of overloaded functions (with-O) should take care of
overloaded local and/or unexported functions.

UseSPECIALIZE pragmas:

Specialize the overloading on key functions in your program. SeeSection 7.6.3and
Section 7.6.4.

“But how do I know where overloading is creeping in?”:

A low-tech way: grep (search) your interface files for overloaded type signatures; e.g.,:

% egrep ’^[a-z].*::.*=>’ *.hi

Strict functions are your dear friends:

and, among other things, lazy pattern-matching is your enemy.

120

Chapter 6. Advice on: sooner, faster, smaller, thriftier

(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use ofcases instead oflets to get stricter code (a good
thing):

f (Wibble x y) # beautiful but slow
= let

(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y

in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->

case (unpackFoo y) of { (a2, b2, c2) ->
...
}}

GHC loves single-constructor data-types:

It’s all the better if a function is strict in a single-constructor type (a type with only one
data-constructor; for example, tuples are single-constructor types).

Newtypes are better than datatypes:

If your datatype has a single constructor with a single field, use anewtype declaration instead
of a data declaration. Thenewtype will be optimised away in most cases.

“How do I find out a function’s strictness?”

Don’t guess—look it up.

Look for your function in the interface file, then for the third field in the pragma; it should say
__S <string> . The<string> gives the strictness of the function’s arguments.L is lazy
(bad),S andE are strict (good),P is “primitive” (good),U(...) is strict and “unpackable”
(very good), andA is absent (very good).

For an “unpackable”U(...) argument, the info inside tells the strictness of its components.
So, if the argument is a pair, and it saysU(AU(LSS)) , that means “the first component of the
pair isn’t used; the second component is itself unpackable, with three components (lazy in the
first, strict in the second \& third).”

121

Chapter 6. Advice on: sooner, faster, smaller, thriftier

If the function isn’t exported, just compile with the extra flag-ddump-simpl ; next to the
signature for any binder, it will print the self-same pragmatic information as would be put in an
interface file. (Besides, Core syntax is fun to look at!)

Force key functions to beINLINE d (esp. monads):

PlacingINLINE pragmas on certain functions that are used a lot can have a dramatic effect. See
Section 7.6.1.

Explicit export list:

If you do not have an explicit export list in a module, GHC must assume that everything in that
module will be exported. This has various pessimising effects. For example, if a bit of code is
actuallyunused(perhaps because of unfolding effects), GHC will not be able to throw it away,
because it is exported and some other module may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not exported.

Look at the Core syntax!

(The form in which GHC manipulates your code.) Just run your compilation with
-ddump-simpl (don’t forget the-O).

If profiling has pointed the finger at particular functions, look at their Core code.lets are bad,
cases are good, dictionaries (d.<Class>.<Unique>) [or anything overloading-ish] are bad,
nested lambdas are bad, explicit data constructors are good, primitive operations (e.g.,eqInt#)
are good,. . .

Use unboxed types (a GHC extension):

When you arereally desperate for speed, and you want to get right down to the “raw bits.”
Please seeSection 7.2.1for some information about using unboxed types.

Useforeign import (a GHC extension) to plug into fast libraries:

This may take real work, but. . . There exist piles of massively-tuned library code, and the best
thing is not to compete with it, but link with it.

Chapter 8describes the foreign function interface.

Don’t useFloat s:

If you’re usingComplex , definitely useComplex Double rather thanComplex Float (the
former is specialised heavily, but the latter isn’t).

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern machines
will use the same floating-point unit for both. WithDoubles , you are much less likely to hang
yourself with numerical errors.

122

Chapter 6. Advice on: sooner, faster, smaller, thriftier

One time whenFloat might be a good idea is if you have alot of them, say a giant array of
Float s. They take up half the space in the heap compared toDoubles . However, this isn’t true
on a 64-bit machine.

Use a bigger heap!

If your program’s GC stats (-S RTS option) indicate that it’s doing lots of garbage-collection
(say, more than 20% of execution time), more memory might help—with the-M<size> or
-A<size> RTS options (seeSection 4.16.2).

6.3. Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a
-funfolding-use-threshold0 option for the extreme case. (“Only unfoldings with zero cost
should proceed.”) Warning: except in certain specialised cases (like Happy parsers) this is likely to
actuallyincreasethe size of your program, because unfolding generally enables extra simplifying
optimisations to be performed.

Avoid Read.

Usestrip on your executables.

6.4. Thriftier: producing a program that gobbles
less heap space

“I think I have a space leak. . . ” Re-run your program with+RTS -Sstderr , and remove all doubt!
(You’ll see the heap usage get bigger and bigger. . .) [Hmmm. . . this might be even easier with the
-G1 RTS option; so. . ../a.out +RTS -Sstderr -G1...]

Once again, the profiling facilities (Chapter 5) are the basic tool for demystifying the space
behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous section.
Strict functions get right down to business, rather than filling up the heap with closures (the system’s
notes to itself about how to evaluate something, should it eventually be required).

123

Chapter 7. GHC Language Features
As with all known Haskell systems, GHC implements some extensions to the language. To use them,
you’ll need to give a-fglasgow-exts option.

Virtually all of the Glasgow extensions serve to give you access to the underlying facilities with
which we implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write some
non-standard code at a more primitive level. You need not be “stuck” on performance because of the
implementation costs of Haskell’s “high-level” features—you can always code “under” them. In an
extreme case, you can write all your time-critical code in C, and then just glue it together with
Haskell!

Before you get too carried away working at the lowest level (e.g., sloshingMutableByteArray# s
around your program), you may wish to check if there are libraries that provide a “Haskellised
veneer” over the features you want. The separate libraries documentation describes all the libraries
that come with GHC.

7.1. Language options
These flags control what variation of the language are permitted. Leaving out all of them gives you
standard Haskell 98.

-fglasgow-exts :

This simultaneously enables all of the extensions to Haskell 98 described inChapter 7, except
where otherwise noted.

-ffi and-fffi :

This option enables the language extension defined in the Haskell 98 Foreign Function Interface
Addendum plus deprecated syntax of previous versions of the FFI for backwards compatibility.

-fwith :

This option enables the deprecatedwith keyword for implicit parameters; it is merely provided
for backwards compatibility. It is independent of the-fglasgow-exts flag.

-fno-monomorphism-restriction :

Switch off the Haskell 98 monomorphism restriction. Independent of the-fglasgow-exts

flag.

-fallow-overlapping-instances

-fallow-undecidable-instances

-fallow-incoherent-instances

-fcontext-stack

SeeSection 7.3.5.3. Only relevant if you also use-fglasgow-exts .

124

Chapter 7. GHC Language Features

-finline-phase

SeeSection 7.7. Only relevant if you also use-fglasgow-exts .

-fgenerics

SeeSection 7.8. Independent of-fglasgow-exts .

-fno-implicit-prelude

GHC normally importsPrelude.hi files for you. If you’d rather it didn’t, then give it a
-fno-implicit-prelude option. The idea is that you can then import a Prelude of your own.
(But don’t call it Prelude ; the Haskell module namespace is flat, and you must not conflict
with any Prelude module.)

Even though you have not imported the Prelude, most of the built-in syntax still refers to the
built-in Haskell Prelude types and values, as specified by the Haskell Report. For example, the
type [Int] still meansPrelude.[] Int ; tuples continue to refer to the standard Prelude
tuples; the translation for list comprehensions continues to usePrelude.map etc.

However,-fno-implicit-prelude does change the handling of certain built-in syntax: see
Section 7.5.4.

7.2. Unboxed types and primitive operations
GHC is built on a raft of primitive data types and operations. While you really can use this stuff to
write fast code, we generally find it a lot less painful, and more satisfying in the long run, to use
higher-level language features and libraries. With any luck, the code you write will be optimised to
the efficient unboxed version in any case. And if it isn’t, we’d like to know about it.

We do not currently have good, up-to-date documentation about the primitives, perhaps because they
are mainly intended for internal use. There used to be a long section about them here in the User
Guide, but it became out of date, and wrong information is worse than none.

The Real Truth about what primitive types there are, and what operations work over those types, is
held in the filefptools/ghc/compiler/prelude/primops.txt . This file is used directly to
generate GHC’s primitive-operation definitions, so it is always correct! It is also intended for
processing into text.

Indeed, the result of such processing is part of the description of theExternal Core language
(http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz). So that document is a good place to look for
a type-set version. We would be very happy if someone wanted to volunteer to produce an SGML
back end to the program that processesprimops.txt so that we could include the results here in
the User Guide.

What follows here is a brief summary of some main points.

7.2.1. Unboxed types

125

Chapter 7. GHC Language Features

Most types in GHC areboxed, which means that values of that type are represented by a pointer to a
heap object. The representation of a HaskellInt , for example, is a two-word heap object. An
unboxedtype, however, is represented by the value itself, no pointers or heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C:Int# (long int),
Double# (double),Addr# (void *), etc. Theprimitive operations(PrimOps) on these types are what
you might expect; e.g.,(+#) is addition onInt# s, and is the machine-addition that we all know and
love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and
compiler. Primitive types are always unlifted; that is, a value of a primitive type cannot be bottom.
We use the convention that primitive types, values, and operations have a# suffix.

Primitive values are often represented by a simple bit-pattern, such asInt# , Float# , Double# . But
this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples includeArray# , the type of primitive arrays. A primitive array is
heap-allocated because it is too big a value to fit in a register, and would be too expensive to copy
around; in a sense, it is accidental that it is represented by a pointer. If a pointer represents a
primitive value, then it really does point to that value: no unevaluated thunks, no
indirections. . . nothing can be at the other end of the pointer than the primitive value.

There are some restrictions on the use of primitive types, the main one being that you can’t pass a
primitive value to a polymorphic function or store one in a polymorphic data type. This rules out
things like[Int#] (i.e. lists of primitive integers). The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an unboxed integer is stored in one of
these, the garbage collector would attempt to follow it, leading to unpredictable space leaks. Or aseq

operation on the polymorphic component may attempt to dereference the pointer, with disastrous
results. Even worse, the unboxed value might be larger than a pointer (Double# for instance).

Nevertheless, A numerically-intensive program using unboxed types can go alot faster than its
“standard” counterpart—we saw a threefold speedup on one example.

7.2.2. Unboxed Tuples
Unboxed tuples aren’t really exported byGHC.Exts , they’re available by default with
-fglasgow-exts . An unboxed tuple looks like this:

(# e_1, ..., e_n #)

wheree_1..e_n are expressions of any type (primitive or non-primitive). The type of an unboxed
tuple looks the same.

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap
allocation normally associated with using fully-fledged tuples. When an unboxed tuple is returned,
the components are put directly into registers or on the stack; the unboxed tuple itself does not have a
composite representation. Many of the primitive operations listed in this section return unboxed
tuples.

126

Chapter 7. GHC Language Features

There are some pretty stringent restrictions on the use of unboxed tuples:

• Unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they may not
be stored in polymorphic data structures or passed to polymorphic functions.

• Unboxed tuples may only be constructed as the direct result of a function, and may only be
deconstructed with acase expression. eg. the following are valid:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

but the following are invalid:

f x y = g (# x, y #)
g (# x, y #) = x + y

• No variable can have an unboxed tuple type. This is illegal:

f :: (# Int, Int #) -> (# Int, Int #)
f x = x

becausex has an unboxed tuple type.

Note: we may relax some of these restrictions in the future.

The IO andST monads use unboxed tuples to avoid unnecessary allocation during sequences of
operations.

7.3. Type system extensions

7.3.1. Data types with no constructors
With the-fglasgow-exts flag, GHC lets you declare a data type with no constructors. For
example:

data S - S :: *
data T a - T :: * -> *

Syntactically, the declaration lacks the "= constrs" part. The type can be parameterised over types of
any kind, but if the kind is not* then an explicit kind annotation must be used (seeSection 7.3.3).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when defining
"phantom types".

127

Chapter 7. GHC Language Features

7.3.2. Infix type constructors
GHC allows type constructors to be operators, and to be written infix, very much like expressions.
More specifically:

• A type constructor can be an operator, beginning with a colon; e.g.:*: . The lexical syntax is the
same as that for data constructors.

• Types can be written infix. For exampleInt :*: Bool .

• Back-quotes work as for expressions, both for type constructors and type variables; e.g.Int

‘Either‘ Bool , or Int ‘a‘ Bool . Similarly, parentheses work the same; e.g.(:*:) Int

Bool .

• Fixities may be declared for type constructors just as for data constructors. However, one cannot
distinguish between the two in a fixity declaration; a fixity declaration sets the fixity for a data
constructor and the corresponding type constructor. For example:

infixl 7 T, :*:

sets the fixity for both type constructorT and data constructorT, and similarly for:*: . Int ‘a‘

Bool .

• Function arrow isinfixr with fixity 0. (This might change; I’m not sure what it should be.)

• Data type and type-synonym declarations can be written infix. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b

• The only thing that differs between operators in types and operators in expressions is that
ordinary non-constructor operators, such as+ and* are not allowed in types. Reason: the uniform
thing to do would be to make them type variables, but that’s not very useful. A less uniform but
more useful thing would be to allow them to be typeconstructors. But that gives trouble in export
lists. So for now we just exclude them.

7.3.3. Explicitly-kinded quantification
Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind
explicitly as (machine-checked) documentation, just as it is nice to give a type signature for a
function. On some occasions, it is essential to do so. For example, in his paper "Restricted Data
Types in Haskell" (Haskell Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for theUnused constructor was to force the correct kind for the type variablecxt .

GHC now instead allows you to specify the kind of a type variable directly, wherever a type variable
is explicitly bound. Namely:

128

Chapter 7. GHC Language Features

• data declarations:

data Set (cxt :: * -> *) a = Set [a]

• type declarations:

type T (f :: * -> *) = f Int

• class declarations:

class (Eq a) => C (f :: * -> *) a where ...

• forall ’s in type signatures:

f :: forall (cxt :: * -> *). Set cxt Int

The parentheses are required. Some of the spaces are required too, to separate the lexemes. If you
write (f::*->*) you will get a parse error, because "::*->* " is a single lexeme in Haskell.

As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: *) -> Int
g :: forall a. a -> (a :: *)

The syntax is

atype ::= ’(’ ctype ’::’ kind ’)

The parentheses are required.

7.3.4. Class method types
Haskell 98 prohibits class method types to mention constraints on the class type variable, thus:

class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool

The type ofelem is illegal in Haskell 98, because it contains the constraintEq a, constrains only the
class type variable (in this casea).

With the-fglasgow-exts GHC lifts this restriction.

7.3.5. Multi-parameter type classes
This section documents GHC’s implementation of multi-parameter type classes. There’s lots of
background in the paperType classes: exploring the design space
(http://research.microsoft.com/~simonpj/multi.ps.gz) (Simon Peyton Jones, Mark Jones, Erik
Meijer).

129

Chapter 7. GHC Language Features

I’d like to thank people who reported shorcomings in the GHC 3.02 implementation. Our default
decisions were all conservative ones, and the experience of these heroic pioneers has given useful
concrete examples to support several generalisations. (These appear below as design choices not
implemented in 3.02.)

I’ve discussed these notes with Mark Jones, and I believe that Hugs will migrate towards the same
design choices as I outline here. Thanks to him, and to many others who have offered very useful
feedback.

7.3.5.1. Types

There are the following restrictions on the form of a qualified type:

forall tv1..tvn (c1, ...,cn) => type

(Here, I write the "foralls" explicitly, although the Haskell source language omits them; in Haskell
1.4, all the free type variables of an explicit source-language type signature are universally
quantified, except for the class type variables in a class declaration. However, in GHC, you can give
the foralls if you want. SeeSection 7.3.9).

1. Each universally quantified type variabletvi must be mentioned (i.e. appear free) intype .
The reason for this is that a value with a type that does not obey this restriction could not be
used without introducing ambiguity. Here, for example, is an illegal type:

forall a. Eq a => Int

When a value with this type was used, the constraintEq tv would be introduced wheretv is a fresh
type variable, and (in the dictionary-translation implementation) the value would be applied to a
dictionary forEq tv . The difficulty is that we can never know which instance ofEq to use
because we never get any more information abouttv .

2. Every constraintci must mention at least one of the universally quantified type variablestvi .
For example, this type is OK becauseC a b mentions the universally quantified type variableb:

forall a. C a b => burble

The next type is illegal because the constraintEq b does not mentiona:

forall a. Eq b => burble

The reason for this restriction is milder than the other one. The excluded types are never useful or
necessary (because the offending context doesn’t need to be witnessed at this point; it can be
floated out). Furthermore, floating them out increases sharing. Lastly, excluding them is a
conservative choice; it leaves a patch of territory free in case we need it later.

These restrictions apply to all types, whether declared in a type signature or inferred.

Unlike Haskell 1.4, constraints in types donot have to be of the form(class type-variables). Thus,
these type signatures are perfectly OK

130

Chapter 7. GHC Language Features

f :: Eq (m a) => [m a] -> [m a]
g :: Eq [a] => ...

This choice recovers principal types, a property that Haskell 1.4 does not have.

7.3.5.2. Class declarations

1. Multi-parameter type classes are permitted. For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

2. The class hierarchy must be acyclic. However, the definition of "acyclic" involves only the
superclass relationships. For example, this is OK:

class C a where {
op :: D b => a -> b -> b

}

class C a => D a where { ... }

Here,C is a superclass ofD, but it’s OK for a class operationop of C to mentionD. (It would not be
OK for D to be a superclass ofC.)

3. There are no restrictions on the context in a class declaration (which introduces superclasses),
except that the class hierarchy must be acyclic. So these class declarations are OK:

class Functor (m k) => FiniteMap m k where
...

class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a

4. In the signature of a class operation, every constraint must mention at least one type variable
that is not a class type variable. Thus:

class Collection c a where
mapC :: Collection c b => (a->b) -> c a -> c b

is OK because the constraint(Collection a b) mentionsb, even though it also mentions the
class variablea. On the other hand:

class C a where
op :: Eq a => (a,b) -> (a,b)

is not OK because the constraint(Eq a) mentions on the class type variablea, but notb. However,
any such example is easily fixed by moving the offending context up to the superclass context:

class Eq a => C a where
op ::(a,b) -> (a,b)

131

Chapter 7. GHC Language Features

A yet more relaxed rule would allow the context of a class-op signature to mention only class type
variables. However, that conflicts with Rule 1(b) for types above.

5. The type of each class operation must mention all of the class type variables. For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type ofempty doesn’t mentiona. This rule is a consequence of Rule 1(a),
above, for types, and has the same motivation. Sometimes, offending class declarations exhibit
misunderstandings. For example,Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

which makes the connection between the type of a collection ofa’s (namely(s a)) and the element
typea. Occasionally this really doesn’t work, in which case you can split the class like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

7.3.5.3. Instance declarations

1. Instance declarations may not overlap. The two instance declarations

instance context1 => C type1 where ...
instance context2 => C type2 where ...

"overlap" if type1 andtype2 unify However, if you give the command line option
-fallow-overlapping-instances then overlapping instance declarations are permitted.
However, GHC arranges never to commit to using an instance declaration if another instance
declaration also applies, either now or later.

• EITHER type1 andtype2 do not unify

• OR type2 is a substitution instance oftype1 (but not identical totype1), or vice versa.

Notice that these rules

• make it clear which instance decl to use (pick the most specific one that matches)

• do not mention the contextscontext1 , context2 Reason: you can pick which instance
decl "matches" based on the type.

132

Chapter 7. GHC Language Features

However the rules are over-conservative. Two instance declarations can overlap, but it can still be
clear in particular situations which to use. For example:

instance C (Int,a) where ...
instance C (a,Bool) where ...

These are rejected by GHC’s rules, but it is clear what to do when trying to solve the constraintC

(Int,Int) because the second instance cannot apply. Yell if this restriction bites you.

GHC is also conservative about committing to an overlapping instance. For example:

class C a where { op :: a -> a }
instance C [Int] where ...
instance C a => C [a] where ...

f :: C b => [b] -> [b]
f x = op x

From the RHS of f we get the constraintC [b] . But GHC does not commit to the second
instance declaration, because in a paricular call of f, b might be instantiate to Int, so the first
instance declaration would be appropriate. So GHC rejects the program. If you add
-fallow-incoherent-instances GHC will instead silently pick the second instance,
without complaining about the problem of subsequent instantiations.

Regrettably, GHC doesn’t guarantee to detect overlapping instance declarations if they appear in
different modules. GHC can "see" the instance declarations in the transitive closure of all the
modules imported by the one being compiled, so it can "see" all instance decls when it is
compilingMain . However, it currently chooses not to look at ones that can’t possibly be of use
in the module currently being compiled, in the interests of efficiency. (Perhaps we should
change that decision, at least forMain .)

2. There are no restrictions on the type in an instance head, except that at least one must not be a
type variable. The instance "head" is the bit after the "=>" in an instance decl. For example,
these are OK:

instance C Int a where ...

instance D (Int, Int) where ...

instance E [[a]] where ...

Note that instance headsmaycontain repeated type variables. For example, this is OK:

instance Stateful (ST s) (MutVar s) where ...

The "at least one not a type variable" restriction is to ensure that context reduction terminates: each
reduction step removes one type constructor. For example, the following would make the type
checker loop if it wasn’t excluded:

instance C a => C a where ...

133

Chapter 7. GHC Language Features

There are two situations in which the rule is a bit of a pain. First, if one allows overlapping instance
declarations then it’s quite convenient to have a "default instance" declaration that applies if
something more specific does not:

instance C a where
op = ... - Default

Second, sometimes you might want to use the following to get the effect of a "class synonym":

class (C1 a, C2 a, C3 a) => C a where { }

instance (C1 a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: C a => ...

instead of

f :: (C1 a, C2 a, C3 a) => ...

I’m on the lookout for a simple rule that preserves decidability while allowing these idioms. The
experimental flag-fallow-undecidable-instances lifts this restriction, allowing all the
types in an instance head to be type variables.

3. Unlike Haskell 1.4, instance heads may use type synonyms. As always, using a type synonym is
just shorthand for writing the RHS of the type synonym definition. For example:

type Point = (Int,Int)
instance C Point where ...
instance C [Point] where ...

is legal. However, if you added

instance C (Int,Int) where ...

as well, then the compiler will complain about the overlapping (actually, identical) instance
declarations. As always, type synonyms must be fully applied. You cannot, for example, write:

type P a = [[a]]
instance Monad P where ...

This design decision is independent of all the others, and easily reversed, but it makes sense to me.

4. The types in an instance-declaration context must all be type variables. Thus

instance C a b => Eq (a,b) where ...

is OK, but

instance C Int b => Foo b where ...

is not OK. Again, the intent here is to make sure that context reduction terminates. Voluminous
correspondence on the Haskell mailing list has convinced me that it’s worth experimenting with
a more liberal rule. If you use the flag-fallow-undecidable-instances can use arbitrary
types in an instance context. Termination is ensured by having a fixed-depth recursion stack. If
you exceed the stack depth you get a sort of backtrace, and the opportunity to increase the stack
depth with-fcontext-stack N.

134

Chapter 7. GHC Language Features

7.3.6. Implicit parameters
Implicit paramters are implemented as described in "Implicit parameters: dynamic scoping with
static types", J Lewis, MB Shields, E Meijer, J Launchbury, 27th ACM Symposium on Principles of
Programming Languages (POPL’00), Boston, Jan 2000.

(Most of the following, stil rather incomplete, documentation is due to Jeff Lewis.)

A variable is calleddynamically boundwhen it is bound by the calling context of a function and
statically boundwhen bound by the callee’s context. In Haskell, all variables are statically bound.
Dynamic binding of variables is a notion that goes back to Lisp, but was later discarded in more
modern incarnations, such as Scheme. Dynamic binding can be very confusing in an untyped
language, and unfortunately, typed languages, in particular Hindley-Milner typed languages like
Haskell, only support static scoping of variables.

However, by a simple extension to the type class system of Haskell, we can support dynamic
binding. Basically, we express the use of a dynamically bound variable as a constraint on the type.
These constraints lead to types of the form(?x::t’) => t , which says "this function uses a
dynamically-bound variable?x of type t’ ". For example, the following expresses the type of a sort
function, implicitly parameterized by a comparison function namedcmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.

An implicit parameter is introduced by the special form?x , wherex is any valid identifier. Use if
this construct also introduces new dynamic binding constraints. For example, the following
definition shows how we can define an implicitly parameterized sort function in terms of an
explicitly parameterizedsortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

Dynamic binding constraints behave just like other type class constraints in that they are
automatically propagated. Thus, when a function is used, its implicit parameters are inherited by the
function that called it. For example, oursort function might be used to pick out the least value in a
list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = fst (sort xs)

Without lifting a finger, the?cmp parameter is propagated to become a parameter ofleast as well.
With explicit parameters, the default is that parameters must always be explicit propagated. With
implicit parameters, the default is to always propagate them.

An implicit parameter differs from other type class constraints in the following way: All uses of a
particular implicit parameter must have the same type. This means that the type of(?x, ?x) is

135

Chapter 7. GHC Language Features

(?x::a) => (a,a) , and not(?x::a, ?x::b) => (a, b) , as would be the case for type class
constraints.

An implicit parameter is bound using the standardlet binding form, where the bindings must be a
collection of simple bindings to implicit-style variables (no function-style bindings, and no type
signatures); these bindings are neither polymorphic or recursive. This form binds the implicit
parameters arising in the body, not the free variables as alet or where would do. For example, we
define themin function by bindingcmp.

min :: [a] -> a
min = let ?cmp = (<=) in least

Note the following additional constraints:

• You can’t have an implicit parameter in the context of a class or instance declaration. For
example, both these declarations are illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a
function. But the “invocation” of instance declarations is done behind the scenes by the compiler,
so it’s hard to figure out exactly where it is done. Easiest thing is to outlaw the offending types.

7.3.7. Linear implicit parameters
Linear implicit parameters are an idea developed by Koen Claessen, Mark Shields, and Simon PJ.
They address the long-standing problem that monads seem over-kill for certain sorts of problem,
notably:

• distributing a supply of unique names

• distributing a suppply of random numbers

• distributing an oracle (as in QuickCheck)

Linear implicit parameters are just like ordinary implicit parameters, except that they are "linear" –
that is, they cannot be copied, and must be explicitly "split" instead. Linear implicit parameters are
written ’%x’ instead of ’?x ’. (The ’/’ in the ’%’ suggests the split!)

For example:

import GHC.Exts(Splittable)

data NameSupply = ...

splitNS :: NameSupply -> (NameSupply, NameSupply)

136

Chapter 7. GHC Language Features

newName :: NameSupply -> Name

instance Splittable NameSupply where
split = splitNS

f :: (%ns :: NameSupply) => Env -> Expr -> Expr
f env (Lam x e) = Lam x’ (f env e)
where

x’ = newName %ns
env’ = extend env x x’

...more equations for f...

Notice that the implicit parameter %ns is consumed

• once by the call tonewName

• once by the recursive call tof

So the translation done by the type checker makes the parameter explicit:

f :: NameSupply -> Env -> Expr -> Expr
f ns env (Lam x e) = Lam x’ (f ns1 env e)

where
(ns1,ns2) = splitNS ns

x’ = newName ns2
env = extend env x x’

Notice the call to ’split’ introduced by the type checker. How did it know to use ’splitNS’? Because
what it really did was to introduce a call to the overloaded function ’split’, defined by the class
Splittable :

class Splittable a where
split :: a -> (a,a)

The instance forSplittable NameSupply tells GHC how to implement split for name supplies.
But we can simply write

g x = (x, %ns, %ns)

and GHC will infer

g :: (Splittable a, %ns :: a) => b -> (b,a,a)

TheSplittable class is built into GHC. It’s exported by moduleGHC.Exts .

Other points:

137

Chapter 7. GHC Language Features

• ’?x ’ and ’%x’ are entirely distinct implicit parameters: you can use them together and they won’t
intefere with each other.

• You can bind linear implicit parameters in ’with’ clauses.

• You cannot have implicit parameters (whether linear or not) in the context of a class or instance
declaration.

7.3.7.1. Warnings

The monomorphism restriction is even more important than usual. Consider the example above:

f :: (%ns :: NameSupply) => Env -> Expr -> Expr
f env (Lam x e) = Lam x’ (f env e)
where

x’ = newName %ns
env’ = extend env x x’

If we replaced the two occurrences of x’ by (newName %ns), which is usually a harmless thing to
do, we get:

f :: (%ns :: NameSupply) => Env -> Expr -> Expr
f env (Lam x e) = Lam (newName %ns) (f env e)
where

env’ = extend env x (newName %ns)

But now the name supply is consumed inthreeplaces (the two calls to newName,and the recursive
call to f), so the result is utterly different. Urk! We don’t even have the beta rule.

Well, this is an experimental change. With implicit parameters we have already lost beta reduction
anyway, and (as John Launchbury puts it) we can’t sensibly reason about Haskell programs without
knowing their typing.

7.3.7.2. Recursive functions

Linear implicit parameters can be particularly tricky when you have a recursive function Consider

foo :: %x::T => Int -> [Int]
foo 0 = []
foo n = %x : foo (n-1)

where T is some type in class Splittable.

Do you get a list of all the same T’s or all different T’s (assuming that split gives two distinct T’s
back)?

If you supply the type signature, taking advantage of polymorphic recursion, you get what you’d
probably expect. Here’s the translated term, where the implicit param is made explicit:

138

Chapter 7. GHC Language Features

foo x 0 = []
foo x n = let (x1,x2) = split x

in x1 : foo x2 (n-1)

But if you don’t supply a type signature, GHC uses the Hindley Milner trick of using a single
monomorphic instance of the function for the recursive calls. That is what makes Hindley Milner
type inference work. So the translation becomes

foo x = let
foom 0 = []
foom n = x : foom (n-1)

in
foom

Result: ’x’ is not split, and you get a list of identical T’s. So the semantics of the program depends on
whether or not foo has a type signature. Yikes!

You may say that this is a good reason to dislike linear implicit parameters and you’d be right. That
is why they are an experimental feature.

7.3.8. Functional dependencies
Functional dependencies are implemented as described by Mark Jones in “Type Classes with
Functional Dependencies (http://www.cse.ogi.edu/~mpj/pubs/fundeps.html)”, Mark P. Jones, In
Proceedings of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany,
March 2000, Springer-Verlag LNCS 1782, .

There should be more documentation, but there isn’t (yet). Yell if you need it.

7.3.9. Arbitrary-rank polymorphism
Haskell type signatures are implicitly quantified. The new keywordforall allows us to say exactly
what this means. For example:

g :: b -> b

means this:

g :: forall b. (b -> b)

The two are treated identically.

However, GHC’s type system supportsarbitrary-rank explicit universal quantification in types. For
example, all the following types are legal:

f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a

139

Chapter 7. GHC Language Features

f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool

Here,f1 andg1 are rank-1 types, and can be written in standard Haskell (e.g.f1 :: a->b->a).
The forall makes explicit the universal quantification that is implicitly added by Haskell.

The functionsf2 andg2 have rank-2 types; theforall is on the left of a function arrrow. Asg2

shows, the polymorphic type on the left of the function arrow can be overloaded.

The functionsf3 andg3 have rank-3 types; they have rank-2 types on the left of a function arrow.

GHC allows types of arbitrary rank; you can nestforall s arbitrarily deep in function arrows. (GHC
used to be restricted to rank 2, but that restriction has now been lifted.) In particular, a forall-type
(also called a "type scheme"), including an operational type class context, is legal:

• On the left of a function arrow

• On the right of a function arrow (seeSection 7.3.11)

• As the argument of a constructor, or type of a field, in a data type declaration. For example, any of
the f1,f2,f3,g1,g2,g3 above would be valid field type signatures.

• As the type of an implicit parameter

• In a pattern type signature (seeSection 7.3.13)

There is one place you cannot put aforall : you cannot instantiate a type variable with a forall-type.
So you cannot make a forall-type the argument of a type constructor. So these types are illegal:

x1 :: [forall a. a->a]
x2 :: (forall a. a->a, Int)
x3 :: Maybe (forall a. a->a)

Of courseforall becomes a keyword; you can’t useforall as a type variable any more!

7.3.9.1. Examples

In a data or newtype declaration one can quantify the types of the constructor arguments. Here are
several examples:

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])

140

Chapter 7. GHC Language Features

The constructors have rank-2 types:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)

-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle

Notice that you don’t need to use aforall if there’s an explicit context. For example in the first
argument of the constructorMkSwizzle , an implicit "forall a. " is prefixed to the argument type.
The implicit forall quantifies all type variables that are not already in scope, and are mentioned in
the type quantified over.

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write
this:

data T a = MkT (Either a b) (b -> b)

it’s just as if you had written this:

data T a = MkT (forall b. Either a b) (forall b. b -> b)

That is, since the type variableb isn’t in scope, it’s implicitly universally quantified. (Arguably, it
would be better torequireexplicit quantification on constructor arguments where that is what is
wanted. Feedback welcomed.)

You construct values of typesT1, MonadT, Swizzle by applying the constructor to suitable
values, just as usual. For example,

a1 :: T Int
a1 = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x

b m k = case m of
Just y -> k y
Nothing -> Nothing

in
MkMonad r b

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

141

Chapter 7. GHC Language Features

The type of the argument can, as usual, be more general than the type required, as(MkSwizzle

reverse) shows. (reverse does not need theOrd constraint.)

When you use pattern matching, the bound variables may now have polymorphic types. For example:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w ’c’ ’d’)

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

In the functionh we use the record selectorsreturn andbind to extract the polymorphic bind and
return functions from theMonadT data structure, rather than using pattern matching.

7.3.9.2. Type inference

In general, type inference for arbitrary-rank types is undecideable. GHC uses an algorithm proposed
by Odersky and Laufer ("Putting type annotations to work", POPL’96) to get a decidable algorithm
by requiring some help from the programmer. We do not yet have a formal specification of "some
help" but the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an explicit
polymorphic type for x, or GHC’s type inference will assume that x’s type has no foralls in it.

What does it mean to "provide" an explicit type for x? You can do that by giving a type signature for
x directly, using a pattern type signature (Section 7.3.13), thus:

\ f :: (forall a. a->a) -> (f True, f ’c’)

Alternatively, you can give a type signature to the enclosing context, which GHC can "push down" to
find the type for the variable:

(\ f -> (f True, f ’c’)) :: (forall a. a->a) -> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for f.
Similarly, and more commonly, one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f ’c’)

You don’t need to give a type signature if the lambda bound variable is a constructor argument. Here
is an example we saw earlier:

142

Chapter 7. GHC Language Features

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w ’c’ ’d’)

Here we do not need to give a type signature tow, because it is an argument of constructorT1 and
that tells GHC all it needs to know.

7.3.9.3. Implicit quantification

GHC performs implicit quantification as follows.At the top level (only) of user-written types, if and
only if there is no explicitforall , GHC finds all the type variables mentioned in the type that are
not already in scope, and universally quantifies them.For example, the following pairs are
equivalent:

f :: a -> a
f :: forall a. a -> a

g (x::a) = let
h :: a -> b -> b
h x y = y

in ...
g (x::a) = let

h :: forall b. a -> b -> b
h x y = y

in ...

Notice that GHC doesnot find the innermost possible quantification point. For example:

f :: (a -> a) -> Int
- MEANS

f :: forall a. (a -> a) -> Int
- NOT

f :: (forall a. a -> a) -> Int

g :: (Ord a => a -> a) -> Int
- MEANS the illegal type

g :: forall a. (Ord a => a -> a) -> Int
- NOT

g :: (forall a. Ord a => a -> a) -> Int

The latter produces an illegal type, which you might think is silly, but at least the rule is simple. If
you want the latter type, you can write your for-alls explicitly. Indeed, doing so is strongly advised
for rank-2 types.

143

Chapter 7. GHC Language Features

7.3.10. Liberalised type synonyms
Type synonmys are like macros at the type level, and GHC does validity checking on typesonly after
expanding type synonyms. That means that GHC can be very much more liberal about type
synonyms than Haskell 98:

• You can write aforall (including overloading) in a type synonym, thus:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f x y = (x, show y)

g :: Discard Int -> (Int,Bool) - A rank-2 type
g f = f Int True

• You can write an unboxed tuple in a type synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

• You can apply a type synonym to a forall type:

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym,f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

• You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After epxanding the synonym,foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be changed.)

After expanding type synonyms, GHC does validity checking on types, looking for the following
mal-formedness which isn’t detected simply by kind checking:

• Type constructor applied to a type involving for-alls.

• Unboxed tuple on left of an arrow.

144

Chapter 7. GHC Language Features

• Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = (# Int, Int #)

h :: Pr -> Int
h x = ...

because GHC does not allow unboxed tuples on the left of a function arrow.

7.3.11. For-all hoisting
It is often convenient to use generalised type synonyms at the right hand end of an arrow, thus:

type Discard a = forall b. a -> b -> a

g :: Int -> Discard Int
g x y z = x+y

Simply expanding the type synonym would give

g :: Int -> (forall b. Int -> b -> Int)

but GHC "hoists" theforall to give the isomorphic type

g :: forall b. Int -> Int -> b -> Int

In general, the rule is this:to determine the type specified by any explicit user-written type (e.g. in a
type signature), GHC expands type synonyms and then repeatedly performs the transformation:

type1 -> forall a1..an. context2 => type2
==>

forall a1..an. context2 => type1 -> type2

(In fact, GHC tries to retain as much synonym information as possible for use in error messages, but
that is a usability issue.) This rule applies, of course, whether or not theforall comes from a
synonym. For example, here is another valid way to writeg’s type signature:

g :: Int -> Int -> forall b. b -> Int

When doing this hoisting operation, GHC eliminates duplicate constraints. For example:

type Foo a = (?x::Int) => Bool -> a
g :: Foo (Foo Int)

means

g :: (?x::Int) => Bool -> Bool -> Int

145

Chapter 7. GHC Language Features

7.3.12. Existentially quantified data constructors
The idea of using existential quantification in data type declarations was suggested by Laufer (I
believe, thought doubtless someone will correct me), and implemented in Hope+. It’s been in
Lennart Augustsson’shbc Haskell compiler for several years, and proved very useful. Here’s the
idea. Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data typeFoo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variablea in the type ofMkFoo does not appear in the data type itself, which is
plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo ’c’ isUpper] :: [Foo]

Here,(MkFoo 3 even) packages an integer with a functioneven that maps an integer toBool ;
andMkFoo ’c’ isUpper packages a character with a compatible function. These two things are
each of typeFoo and can be put in a list.

What can we do with a value of typeFoo?. In particular, what happens when we pattern-match on
MkFoo?

f (MkFoo val fn) = ???

Since all we know aboutval andfn is that they are compatible, the only (useful) thing we can do
with them is to applyfn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogenous values together with a bunch of functions that
manipulate them, and then treat that collection of packages in a uniform manner. You can express
quite a bit of object-oriented-like programming this way.

7.3.12.1. Why existential?

What has this to do withexistentialquantification? Simply thatMkFoo has the (nearly) isomorphic
type

146

Chapter 7. GHC Language Features

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinaryuniversallyquantified type given above,
thereby avoiding adding a new existential quantification construct.

7.3.12.2. Type classes

An easy extension (implemented inhbc) is to allow arbitrary contexts before the constructor. For
example:

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching onBaz1 the matched values can be compared for equality, and when
pattern matching onBaz2 the first matched value can be converted to a string (as well as applying
the function to it). So this program is legal:

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz2 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructorsBaz1 andBaz2 must store
the dictionaries forEq andShow respectively, and extract it on pattern matching.

Notice the way that the syntax fits smoothly with that used for universal quantification earlier.

7.3.12.3. Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can be use.

• When pattern matching, each pattern match introduces a new, distinct, type for each existential
type variable. These types cannot be unified with any other type, nor can they escape from the
scope of the pattern match. For example, these fragments are incorrect:

f1 (MkFoo a f) = a

Here, the type bound byMkFoo "escapes", becausea is the result off1 . One way to see why this is
wrong is to ask what typef1 has:

147

Chapter 7. GHC Language Features

f1 :: Foo -> a - Weird!

What is this "a" in the result type? Clearly we don’t mean this:

f1 :: forall a. Foo -> a - Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It’s ok to saya==b or p==q , buta==q is wrong because it equates the two distinct types arising from
the twoBaz1 constructors.

• You can’t pattern-match on an existentially quantified constructor in alet or where group of
bindings. So this is illegal:

f3 x = a==b where { Baz1 a b = x }

Instead, use acase expression:

f3 x = case x of Baz1 a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in acase

expression or in the patterns of a function definition. The reason for this restriction is really an
implementation one. Type-checking binding groups is already a nightmare without existentials
complicating the picture. Also an existential pattern binding at the top level of a module doesn’t
make sense, because it’s not clear how to prevent the existentially-quantified type "escaping". So
for now, there’s a simple-to-state restriction. We’ll see how annoying it is.

• You can’t use existential quantification fornewtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of typeT must be represented as a pair of a dictionary forOrd t and a value of type
t . That contradicts the idea thatnewtype should have no concrete representation. You can get just
the same efficiency and effect by usingdata instead ofnewtype . If there is no overloading
involved, then there is more of a case for allowing an existentially-quantifiednewtype , because
thedata because thedata version does carry an implementation cost, but single-field
existentially quantified constructors aren’t much use. So the simple restriction (no existential stuff
on newtype) stands, unless there are convincing reasons to change it.

• You can’t usederiving to define instances of a data type with existentially quantified data
constructors. Reason: in most cases it would not make sense. For example:#

data T = forall a. MkT [a] deriving(Eq)

To deriveEq in the standard way we would need to have equality between the single component of
two MkTconstructors:

instance Eq T where
(MkT a) == (MkT b) = ???

But a andb have distinct types, and so can’t be compared. It’s just about possible to imagine
examples in which the derived instance would make sense, but it seems altogether simpler simply
to prohibit such declarations. Define your own instances!

148

Chapter 7. GHC Language Features

7.3.13. Scoped type variables
A pattern type signaturecan introduce ascoped type variable. For example

f (xs::[a]) = ys ++ ys
where

ys :: [a]
ys = reverse xs

The pattern(xs::[a]) includes a type signature forxs . This brings the type variablea into scope;
it scopes over all the patterns and right hand sides for this equation forf . In particular, it is in scope
at the type signature fory .

Pattern type signatures are completely orthogonal to ordinary, separate type signatures. The two can
be used independently or together. At ordinary type signatures, such as that forys , any type
variables mentioned in the type signaturethat are not in scopeare implicitly universally quantified.
(If there are no type variables in scope, all type variables mentioned in the signature are universally
quantified, which is just as in Haskell 98.) In this case, sincea is in scope, it is not universally
quantified, so the type ofys is the same as that ofxs . In Haskell 98 it is not possible to declare a
type forys ; a major benefit of scoped type variables is that it becomes possible to do so.

Scoped type variables are implemented in both GHC and Hugs. Where the implementations differ
from the specification below, those differences are noted.

So much for the basic idea. Here are the details.

7.3.13.1. What a pattern type signature means

A type variable brought into scope by a pattern type signature is simply the name for a type. The
restriction they express is that all occurrences of the same name mean the same type. For example:

f :: [Int] -> Int -> Int
f (xs::[a]) (y::a) = (head xs + y) :: a

The pattern type signatures on the left hand side off express the fact thatxs must be a list of things
of some typea; and thaty must have this same type. The type signature on the expression(head

xs) specifies that this expression must have the same typea. There is no requirement that the type
named by "a" is in fact a type variable. Indeed, in this case, the type named by "a" is Int . (This is a
slight liberalisation from the original rather complex rules, which specified that a pattern-bound type
variable should be universally quantified.) For example, all of these are legal:

t (x::a) (y::a) = x+y*2

f (x::a) (y::b) = [x,y] - a unifies with b

g (x::a) = x + 1::Int - a unifies with Int

h x = let k (y::a) = [x,y] - a is free in the

149

Chapter 7. GHC Language Features

in k x - environment

k (x::a) True = ... - a unifies with Int
k (x::Int) False = ...

w :: [b] -> [b]
w (x::a) = x - a unifies with [b]

7.3.13.2. Scope and implicit quantification

• All the type variables mentioned in a pattern, that are not already in scope, are brought into scope
by the pattern. We describe this set as thetype variables bound by the pattern. For example:

f (x::a) = let g (y::(a,b)) = fst y
in
g (x,True)

The pattern(x::a) brings the type variablea into scope, as well as the term variablex . The pattern
(y::(a,b)) contains an occurrence of the already-in-scope type variablea, and brings into
scope the type variableb.

• The type variable(s) bound by the pattern have the same scope as the term variable(s) bound by
the pattern. For example:

let
f (x::a) = <...rhs of f...>
(p::b, q::b) = (1,2)

in <...body of let...>

Here, the type variablea scopes over the right hand side off , just likex does; while the type variable
b scopes over the body of thelet , and all the other definitions in thelet , just likep andq do.
Indeed, the newly bound type variables also scope over any ordinary, separate type signatures in
the let group.

• The type variables bound by the pattern may be mentioned in ordinary type signatures or pattern
type signatures anywhere within their scope.

• In ordinary type signatures, any type variable mentioned in the signature that is in scope isnot
universally quantified.

• Ordinary type signatures do not bring any new type variables into scope (except in the type
signature itself!). So this is illegal:

f :: a -> a
f x = x::a

It’s illegal becausea is not in scope in the body off , so the ordinary signaturex::a is equivalent to
x::forall a.a ; and that is an incorrect typing.

• The pattern type signature is a monotype:

150

Chapter 7. GHC Language Features

• A pattern type signature cannot contain any explicitforall quantification.

• The type variables bound by a pattern type signature can only be instantiated to monotypes, not
to type schemes.

• There is no implicit universal quantification on pattern type signatures (in contrast to ordinary
type signatures).

• The type variables in the head of aclass or instance declaration scope over the methods
defined in thewhere part. For example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

in
head ys

(Not implemented in Hugs yet, Dec 98).

7.3.13.3. Result type signatures

• The result type of a function can be given a signature, thus:

f (x::a) :: [a] = [x,x,x]

The final:: [a] after all the patterns gives a signature to the result type. Sometimes this is the only
way of naming the type variable you want:

f :: Int -> [a] -> [a]
f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)

in \xs -> map g (reverse xs ‘zip‘ xs)

Result type signatures are not yet implemented in Hugs.

7.3.13.4. Where a pattern type signature can occur

A pattern type signature can occur in any pattern. For example:

• A pattern type signature can be on an arbitrary sub-pattern, not ust on a variable:

f ((x,y)::(a,b)) = (y,x) :: (b,a)

• Pattern type signatures, including the result part, can be used in lambda abstractions:

(\ (x::a, y) :: a -> x)

151

Chapter 7. GHC Language Features

• Pattern type signatures, including the result part, can be used incase expressions:

case e of { (x::a, y) :: a -> x }

• To avoid ambiguity, the type after the “:: ” in a result pattern signature on a lambda orcase must
be atomic (i.e. a single token or a parenthesised type of some sort). To see why, consider how one
would parse this:

\ x :: a -> b -> x

• Pattern type signatures can bind existential type variables. For example:

data T = forall a. MkT [a]

f :: T -> T
f (MkT [t::a]) = MkT t3

where
t3::[a] = [t,t,t]

• Pattern type signatures can be used in pattern bindings:

f x = let (y, z::a) = x in ...
f1 x = let (y, z::Int) = x in ...
f2 (x::(Int,a)) = let (y, z::a) = x in ...
f3 :: (b->b) = \x -> x

In all such cases, the binding is not generalised over the pattern-bound type variables. Thusf3 is
monomorphic;f3 has typeb -> b for some typeb, andnot forall b. b -> b . In contrast,
the binding

f4 :: b->b
f4 = \x -> x

makes a polymorphic function, butb is not in scope anywhere inf4 ’s scope.

7.4. Assertions
If you want to make use of assertions in your standard Haskell code, you could define a function like
the following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message – an assertion failed, but which and
where?

152

Chapter 7. GHC Language Features

One way out is to define an extendedassert function which also takes a descriptive string to
include in the error message and perhaps combine this with the use of a pre-processor which inserts
the source location whereassert was used.

Ghc offers a helping hand here, doing all of this for you. For every use ofassert in the user’s
source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of
Control.Exception.assert , so you can still define and use your own versions ofassert ,
should you so wish. If not, importControl.Exception to make useassert in your code.

To have the compiler ignore uses of assert, use the compiler option-fignore-asserts . That is,
expressions of the formassert pred e will be rewritten toe.

Assertion failures can be caught, see the documentation for theControl.Exception library for the
details.

7.5. Syntactic extensions

7.5.1. Hierarchical Modules
GHC supports a small extension to the syntax of module names: a module name is allowed to
contain a dot‘.’ . This is also known as the “hierarchical module namespace” extension, because it
extends the normally flat Haskell module namespace into a more flexible hierarchy of modules.

This extension has very little impact on the language itself; modules names arealwaysfully
qualified, so you can just think of the fully qualified module name as“the module name”. In
particular, this means that the full module name must be given after themodule keyword at the
beginning of the module; for example, the moduleA.B.C must begin

module A.B.C

It is a common strategy to use theas keyword to save some typing when using qualified names with
hierarchical modules. For example:

import qualified Control.Monad.ST.Strict as ST

Hierarchical modules have an impact on the way that GHC searches for files. For a description, see
Section 4.9.3.

153

Chapter 7. GHC Language Features

GHC comes with a large collection of libraries arranged hierarchically; see the accompanying library
documentation. There is an ongoing project to create and maintain a stable set of“core” libraries
used by several Haskell compilers, and the libraries that GHC comes with represent the current
status of that project. For more details, seeHaskell Libraries
(http://www.haskell.org/~simonmar/libraries/libraries.html).

7.5.2. Pattern guards
The discussion that follows is an abbreviated version of Simon Peyton Jones’s originalproposal
(http://research.microsoft.com/~simonpj/Haskell/guards.html). (Note that the proposal was written
before pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returnsNothing if the supplied key is not in the domain of the mapping, and(Just v)

otherwise, wherev is the value that the key maps to. Now consider the following definition:

clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise = var1 + var2
where

m1 = lookup env var1
m2 = lookup env var2
ok1 = maybeToBool m1
ok2 = maybeToBool m2
val1 = expectJust m1
val2 = expectJust m2

The auxiliary functions are

maybeToBool :: Maybe a -> Bool
maybeToBool (Just x) = True
maybeToBool Nothing = False

expectJust :: Maybe a -> a
expectJust (Just x) = x
expectJust Nothing = error "Unexpected Nothing"

What isclunky doing? The guardok1 && ok2 checks that both lookups succeed, using
maybeToBool to convert theMaybe types to booleans. The (lazily evaluated)expectJust calls
extract the values from the results of the lookups, and binds the returned values toval1 andval2

respectively. If either lookup fails, then clunky takes theotherwise case and returns the sum of its
arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the
desired effect. Arguably, a more direct way to write clunky would be to use case expressions:

154

Chapter 7. GHC Language Features

clunky env var1 var1 = case lookup env var1 of
Nothing -> fail
Just val1 -> case lookup env var2 of

Nothing -> fail
Just val2 -> val1 + val2

where
fail = val1 + val2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded
equations as case expressions; that is precisely what the compiler does when compiling equations!
The reason that Haskell provides guarded equations is because they allow us to write down the cases
we want to consider, one at a time, independently of each other. This structure is hidden in the case
version. Two of the right-hand sides are really the same (fail), and the whole expression tends to
become more and more indented.

Here is how I would write clunky:

clunky env var1 var1
| Just val1 <- lookup env var1
, Just val2 <- lookup env var2
= val1 + val2

...other equations for clunky...

The semantics should be clear enough. The qualifers are matched in order. For a<- qualifier, which I
call a pattern guard, the right hand side is evaluated and matched against the pattern on the left. If the
match fails then the whole guard fails and the next equation is tried. If it succeeds, then the
appropriate binding takes place, and the next qualifier is matched, in the augmented environment.
Unlike list comprehensions, however, the type of the expression to the right of the<- is the same as
the type of the pattern to its left. The bindings introduced by pattern guards scope over all the
remaining guard qualifiers, and over the right hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern
guards. For example:

f x | [y] <- x
, y > 3
, Just z <- h y
= ...

Haskell’s current guards therefore emerge as a special case, in which the qualifier list has just one
element, a boolean expression.

7.5.3. Parallel List Comprehensions
Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can
be thought of as a nice syntax for writing maps and filters. Parallel comprehensions extend this to
include the zipWith family.

155

Chapter 7. GHC Language Features

A parallel list comprehension has multiple independent branches of qualifier lists, each separated by
a ‘|’ symbol. For example, the following zips together two lists:

[(x, y) | x <- xs | y <- ys]

The behavior of parallel list comprehensions follows that of zip, in that the resulting list will have the
same length as the shortest branch.

We can define parallel list comprehensions by translation to regular comprehensions. Here’s the
basic idea:

Given a parallel comprehension of the form:

[e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

where ‘zipN’ is the appropriate zip for the given number of branches.

7.5.4. Rebindable syntax
GHC allows most kinds of built-in syntax to be rebound by the user, to facilitate replacing the
Prelude with a home-grown version, for example.

You may want to define your own numeric class hierarchy. It completely defeats that purpose if the
literal "1" means "Prelude.fromInteger 1 ", which is what the Haskell Report specifies. So the
-fno-implicit-prelude flag causes the following pieces of built-in syntax to refer towhatever is
in scope, not the Prelude versions:

• Integer and fractional literals mean "fromInteger 1 " and "fromRational 3.2 ", not the
Prelude-qualified versions; both in expressions and in patterns.

However, the standard PreludeEq class is still used for the equality test necessary for literal
patterns.

• Negation (e.g. "- (f x) ") means "negate (f x) " (not Prelude.negate).

• In an n+k pattern, the standard PreludeOrd class is still used for comparison, but the necessary
subtraction uses whatever "(-) " is in scope (not "Prelude.(-) ").

156

Chapter 7. GHC Language Features

• "Do" notation is translated using whatever functions(»=) , (») , fail , andreturn , are in scope
(not the Prelude versions). List comprehensions, and parallel array comprehensions, are
unaffected.

Be warned: this is an experimental facility, with fewer checks than usual. In particular, it is essential
that the functions GHC finds in scope must have the appropriate types, namely:

fromInteger :: forall a. (...) => Integer -> a
fromRational :: forall a. (...) => Rational -> a
negate :: forall a. (...) => a -> a
(-) :: forall a. (...) => a -> a -> a
(»=) :: forall m a. (...) => m a -> (a -> m b) -> m b
(») :: forall m a. (...) => m a -> m b -> m b
return :: forall m a. (...) => a -> m a
fail :: forall m a. (...) => String -> m a

(The (...) part can be any context including the empty context; that part is up to you.) If the functions
don’t have the right type, very peculiar things may happen. Use-dcore-lint to typecheck the
desugared program. If Core Lint is happy you should be all right.

7.6. Pragmas
GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas
don’t normally affect the meaning of the program, but they might affect the efficiency of the
generated code.

Pragmas all take the form{-# word ... #-} whereword indicates the type of pragma, and is
followed optionally by information specific to that type of pragma. Case is ignored inword . The
various values forword that GHC understands are described in the following sections; any pragma
encountered with an unrecognisedword is (silently) ignored.

7.6.1. INLINE pragma
GHC (with -O, as always) tries to inline (or “unfold”) functions/values that are “small enough,” thus
avoiding the call overhead and possibly exposing other more-wonderful optimisations.

You will probably see these unfoldings (in Core syntax) in your interface files.

Normally, if GHC decides a function is “too expensive” to inline, it will not do so, nor will it export
that unfolding for other modules to use.

The sledgehammer you can bring to bear is theINLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)

#ifdef __GLASGOW_HASKELL__

157

Chapter 7. GHC Language Features

{-# INLINE key_function #-}
#endif

(You don’t need to do the C pre-processor carry-on unless you’re going to stick the code through
HBC—it doesn’t likeINLINE pragmas.)

The major effect of anINLINE pragma is to declare a function’s “cost” to be very low. The normal
unfolding machinery will then be very keen to inline it.

An INLINE pragma for a function can be put anywhere its type signature could be put.

INLINE pragmas are a particularly good idea for thethen /return (or bind /unit) functions in a
monad. For example, in GHC’s ownUniqueSupply monad code, we have:

#ifdef __GLASGOW_HASKELL__
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
#endif

7.6.2. NOINLINE pragma
TheNOINLINE pragma does exactly what you’d expect: it stops the named function from being
inlined by the compiler. You shouldn’t ever need to do this, unless you’re very cautious about code
size.

NOTINLINE is a synonym forNOINLINE (NOTINLINE is specified by Haskell 98 as the standard way
to disable inlining, so it should be used if you want your code to be portable).

7.6.3. SPECIALIZE pragma
(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB: more
code space) specialised to particular types. Thus, if you have an overloaded function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists withWidget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

A SPECIALIZE pragma for a function can be put anywhere its type signature could be put.

To get very fancy, you can also specify a named function to use for the specialised value, as in:

{-# RULES "hammeredLookup" hammeredLookup = blah #-}

whereblah is an implementation ofhammerdLookup written specialy forWidget lookups. It’s
Your Responsibilityto make sure thatblah really behaves as a specialised version of
hammeredLookup !!!

158

Chapter 7. GHC Language Features

Note we use theRULEpragma here to indicate thathammeredLookup applied at a certain type
should be replaced byblah . SeeSection 7.6.6for more information onRULES.

An example in which usingRULESfor specialisation will Win Big:

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) - uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an intermediate
Rational —is obscenely expensive by comparison.

7.6.4. SPECIALIZE instance pragma
Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...

}

The pragma must occur inside thewhere part of the instance declaration.

Compatible with HBC, by the way, except perhaps in the placement of the pragma.

7.6.5. LINE pragma

This pragma is similar to C’s#line pragma, and is mainly for use in automatically generated
Haskell code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you’d generated the current file from something calledFoo.vhs and this line corresponds to line
42 in the original. GHC will adjust its error messages to refer to the line/file named in theLINE

pragma.

7.6.6. RULES pragma
The RULES pragma lets you specify rewrite rules. It is described inSection 7.7.

159

Chapter 7. GHC Language Features

7.6.7. DEPRECATED pragma
The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.
There are two forms.

• You can deprecate an entire module thus:

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...

When you compile any module that importWibble , GHC will print the specified message.

• You can deprecate a function, class, or type, with the following top-level declaration:

{-# DEPRECATED f, C, T "Don’t use these" #-}

When you compile any module that imports and uses any of the specifed entities, GHC will print
the specified message.

You can suppress the warnings with the flag-fno-warn-deprecations .

7.7. Rewrite rules
The programmer can specify rewrite rules as part of the source program (in a pragma). GHC applies
these rewrite rules wherever it can.

Here is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

7.7.1. Syntax
From a syntactic point of view:

• Each rule has a name, enclosed in double quotes. The name itself has no significance at all. It is
only used when reporting how many times the rule fired.

• There may be zero or more rules in aRULESpragma.

• Layout applies in aRULESpragma. Currently no new indentation level is set, so you must lay out
your rules starting in the same column as the enclosing definitions.

• Each variable mentioned in a rule must either be in scope (e.g.map), or bound by theforall

(e.g.f , g, xs). The variables bound by theforall are called thepatternvariables. They are
separated by spaces, just like in a typeforall .

160

Chapter 7. GHC Language Features

• A pattern variable may optionally have a type signature. If the type of the pattern variable is
polymorphic, itmusthave a type signature. For example, here is thefoldr/build rule:

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Sinceg has a polymorphic type, it must have a type signature.

• The left hand side of a rule must consist of a top-level variable applied to arbitrary expressions.
For example, this isnot OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True

In "wrong1" , the LHS is not an application; in"wrong2" , the LHS has a pattern variable in the
head.

• A rule does not need to be in the same module as (any of) the variables it mentions, though of
course they need to be in scope.

• Rules are automatically exported from a module, just as instance declarations are.

7.7.2. Semantics
From a semantic point of view:

• Rules are only applied if you use the-O flag.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a
substitution instance of the LHS of a rule, it replaces the expression by the
(appropriately-substituted) RHS. By "a substitution instance" we mean that the LHS can be made
equal to the expression by substituting for the pattern variables.

• The LHS and RHS of a rule are typechecked, and must have the same type.

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the same
meaning. That is undecideable in general, and infeasible in most interesting cases. The
responsibility is entirely the programmer’s!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For example:

"loop" forall x,y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.

• If more than one rule matches a call, GHC will choose one arbitrarily to apply.

• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule LHS with an
expression. It seeks a substitution which makes the LHS and expression syntactically equal
modulo alpha conversion. The pattern (rule), but not the expression, is eta-expanded if necessary.
(Eta-expanding the epression can lead to laziness bugs.) But not beta conversion (that’s called
higher-order matching).

161

Chapter 7. GHC Language Features

Matching is carried out on GHC’s intermediate language, which includes type abstractions and
applications. So a rule only matches if the types match too. SeeSection 7.7.4below.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s = map f
t = map g

in
s (t xs)

The expressions (t xs) does not match the rule"map/map" , but GHC will substitute fors andt ,
giving an expression which does match. Ifs or t was (a) used more than once, and (b) large or a
redex, then it would not be substituted, and the rule would not fire.

• In the earlier phases of compilation, GHC inlinesnothing that appears on the LHS of a rule,
because once you have substituted for something you can’t match against it (given the simple
minded matching). So if you write the rule

"map/map" forall f,g. map f . map g = map (f.g)

thiswon’t match the expressionmap f (map g xs) . It will only match something written with
explicit use of ".". Well, not quite. Itwill match the expression

wibble f g xs

wherewibble is defined:

wibble f g = map f . map g

becausewibble will be inlined (it’s small). Later on in compilation, GHC starts inlining even things
on the LHS of rules, but still leaves the rules enabled. This inlining policy is controlled by the
per-simplification-pass flag-finline-phase n.

• All rules are implicitly exported from the module, and are therefore in force in any module that
imports the module that defined the rule, directly or indirectly. (That is, if A imports B, which
imports C, then C’s rules are in force when compiling A.) The situation is very similar to that for
instance declarations.

7.7.3. List fusion
The RULES mechanism is used to implement fusion (deforestation) of common list functions. If a
"good consumer" consumes an intermediate list constructed by a "good producer", the intermediate
list should be eliminated entirely.

The following are good producers:

• List comprehensions

• Enumerations ofInt andChar (e.g.[’a’..’z’]).

• Explicit lists (e.g.[True, False])

• The cons constructor (e.g3:4:[])

162

Chapter 7. GHC Language Features

• ++

• map

• filter

• iterate , repeat

• zip , zipWith

The following are good consumers:

• List comprehensions

• array (on its second argument)

• length

• ++ (on its first argument)

• foldr

• map

• filter

• concat

• unzip , unzip2 , unzip3 , unzip4

• zip , zipWith (but on one argument only; if both are good producers,zip will fuse with one but
not the other)

• partition

• head

• and , or , any , all

• sequence_

• msum

• sortBy

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are not
included, please tell us.

If you want to write your own good consumers or producers, look at the Prelude definitions of the
above functions to see how to do so.

163

Chapter 7. GHC Language Features

7.7.4. Specialisation
Rewrite rules can be used to get the same effect as a feature present in earlier version of GHC:

{-# SPECIALIZE fromIntegral :: Int8 -> Int16 = int8ToInt16 #-}

This told GHC to useint8ToInt16 instead offromIntegral whenever the latter was called with
type Int8 -> Int16 . That is, rather than specialising the original definition offromIntegral the
programmer is promising that it is safe to useint8ToInt16 instead.

This feature is no longer in GHC. But rewrite rules let you do the same thing:

{-# RULES
"fromIntegral/Int8/Int16" fromIntegral = int8ToInt16

#-}

This slightly odd-looking rule instructs GHC to replacefromIntegral by int8ToInt16 whenever
the types match. Speaking more operationally, GHC adds the type and dictionary applications to get
the typed rule

forall (d1::Integral Int8) (d2::Num Int16) .
fromIntegral Int8 Int16 d1 d2 = int8ToInt16

What is more, this rule does not need to be in the same file as fromIntegral, unlike theSPECIALISE

pragmas which currently do (so that they have an original definition available to specialise).

7.7.5. Controlling what’s going on

• Use-ddump-rules to see what transformation rules GHC is using.

• Use-ddump-simpl-stats to see what rules are being fired. If you add-dppr-debug you get a
more detailed listing.

• The defintion of (say)build in PrelBase.lhs looks llike this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []

Notice theINLINE ! That prevents(:) from being inlined when compilingPrelBase , so that an
importing module will “see” the(:) , and can match it on the LHS of a rule.INLINE prevents any
inlining happening in the RHS of theINLINE thing. I regret the delicacy of this.

• In ghc/lib/std/PrelBase.lhs look at the rules formap to see how to write rules that will do
fusion and yet give an efficient program even if fusion doesn’t happen. More rules in
PrelList.lhs .

164

Chapter 7. GHC Language Features

7.8. Generic classes
(Note: support for generic classes is currently broken in GHC 5.02).

The ideas behind this extension are described in detail in "Derivable type classes", Ralf Hinze and
Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. An example will give the
idea:

import Generics

class Bin a where
toBin :: a -> [Int]
fromBin :: [Int] -> (a, [Int])

toBin {| Unit |} Unit = []
toBin {| a :+: b |} (Inl x) = 0 : toBin x
toBin {| a :+: b |} (Inr y) = 1 : toBin y
toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y

fromBin {| Unit |} bs = (Unit, bs)
fromBin {| a :+: b |} (0:bs) = (Inl x, bs’) where (x,bs’) = fromBin bs
fromBin {| a :+: b |} (1:bs) = (Inr y, bs’) where (y,bs’) = fromBin bs
fromBin {| a :*: b |} bs

= (x :*: y, bs”) where (x,bs’) = fromBin bs
(y,bs”) = fromBin bs’

This class declaration explains howtoBin andfromBin work for arbitrary data types. They do so
by giving cases for unit, product, and sum, which are defined thus in the library moduleGenerics :

data Unit = Unit
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b

Now you can make a data type into an instance of Bin like this:

instance (Bin a, Bin b) => Bin (a,b)
instance Bin a => Bin [a]

That is, just leave off the "where" clasuse. Of course, you can put in the where clause and over-ride
whichever methods you please.

7.8.1. Using generics
To use generics you need to

• Use the flags-fglasgow-exts (to enable the extra syntax),-fgenerics (to generate extra
per-data-type code), and-package lang (to make theGenerics library available.

165

Chapter 7. GHC Language Features

• Import the moduleGenerics from thelang package. This import brings into scope the data
typesUnit , :*: , and:+: . (You don’t need this import if you don’t mention these types explicitly;
for example, if you are simply giving instance declarations.)

7.8.2. Changes wrt the paper
Note that the type constructors:+: and:*: can be written infix (indeed, you can now use any
operator starting in a colon as an infix type constructor). Also note that the type constructors are not
exactly as in the paper (Unit instead of 1, etc). Finally, note that the syntax of the type patterns in the
class declaration uses "{| " and "|} " brackets; curly braces alone would ambiguous when they
appear on right hand sides (an extension we anticipate wanting).

7.8.3. Terminology and restrictions
Terminology. A "generic default method" in a class declaration is one that is defined using type
patterns as above. A "polymorphic default method" is a default method defined as in Haskell 98. A
"generic class declaration" is a class declaration with at least one generic default method.

Restrictions:

• Alas, we do not yet implement the stuff about constructor names and field labels.

• A generic class can have only one parameter; you can’t have a generic multi-parameter class.

• A default method must be defined entirely using type patterns, or entirely without. So this is
illegal:

class Foo a where
op :: a -> (a, Bool)
op {| Unit |} Unit = (Unit, True)
op x = (x, False)

However it is perfectly OK for some methods of a generic class to have generic default methods and
others to have polymorphic default methods.

• The type variable(s) in the type pattern for a generic method declaration scope over the right hand
side. So this is legal (note the use of the type variable “p” in a type signature on the right hand side:

class Foo a where
op :: a -> Bool
op {| p :*: q |} (x :*: y) = op (x :: p)
...

• The type patterns in a generic default method must take one of the forms:

a :+: b
a :*: b
Unit

166

Chapter 7. GHC Language Features

where "a" and "b" are type variables. Furthermore, all the type patterns for a single type constructor
(:*: , say) must be identical; they must use the same type variables. So this is illegal:

class Foo a where
op :: a -> Bool
op {| a :+: b |} (Inl x) = True
op {| p :+: q |} (Inr y) = False

The type patterns must be identical, even in equations for different methods of the class. So this too
is illegal:

class Foo a where
op1 :: a -> Bool
op1 {| a :*: b |} (x :*: y) = True

op2 :: a -> Bool
op2 {| p :*: q |} (x :*: y) = False

(The reason for this restriction is that we gather all the equations for a particular type consructor into
a single generic instance declaration.)

• A generic method declaration must give a case for each of the three type constructors.

• The type for a generic method can be built only from:

• Function arrows

• Type variables

• Tuples

• Arbitrary types not involving type variables

Here are some example type signatures for generic methods:

op1 :: a -> Bool
op2 :: Bool -> (a,Bool)
op3 :: [Int] -> a -> a
op4 :: [a] -> Bool

Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable inside a list.

This restriction is an implementation restriction: we just havn’t got around to implementing the
necessary bidirectional maps over arbitrary type constructors. It would be relatively easy to add
specific type constructors, such as Maybe and list, to the ones that are allowed.

• In an instance declaration for a generic class, the idea is that the compiler will fill in the methods
for you, based on the generic templates. However it can only do so if

• The instance type is simple (a type constructor applied to type variables, as in Haskell 98).

• No constructor of the instance type has unboxed fields.

(Of course, these things can only arise if you are already using GHC extensions.) However, you can
still give an instance declarations for types which break these rules, provided you give explicit
code to override any generic default methods.

167

Chapter 7. GHC Language Features

The option-ddump-deriv dumps incomprehensible stuff giving details of what the compiler does
with generic declarations.

7.8.4. Another example
Just to finish with, here’s another example I rather like:

class Tag a where
nCons :: a -> Int
nCons {| Unit |} _ = 1
nCons {| a :*: b |} _ = 1
nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)

tag :: a -> Int
tag {| Unit |} _ = 1
tag {| a :*: b |} _ = 1
tag {| a :+: b |} (Inl x) = tag x
tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y

7.9. Generalised derived instances for newtypes
When you define an abstract type usingnewtype , you may want the new type to inherit some
instances from its representation. In Haskell 98, you can inherit instances ofEq, Ord , Enumand
Bounded by deriving them, but for any other classes you have to write an explicit instance
declaration. For example, if you define

newtype Dollars = Dollars Int

and you want to use arithmetic onDollars , you have to explicitly define an instance ofNum:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...

All the instance does is apply and remove thenewtype constructor. It is particularly galling that,
since the constructor doesn’t appear at run-time, this instance declaration defines a dictionary which
is wholly equivalentto theInt dictionary, only slower!

7.9.1. Generalising the deriving clause
GHC now permits such instances to be derived instead, so one can write

newtype Dollars = Dollars Int deriving (Eq,Show,Num)

168

Chapter 7. GHC Language Features

and the implementation uses thesameNumdictionary forDollars as forInt . Notionally, the
compiler derives an instance declaration of the form

instance Num Int => Num Dollars

which just adds or removes thenewtype constructor according to the type.

We can also derive instances of constructor classes in a similar way. For example, suppose we have
implemented state and failure monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension, we
can make the parser type abstract, without needing to write an instance of classMonad, via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, sinceMonad is a constructor class, the instance is apartial applicationof the new type,
not the entire left hand side. We can imagine that the type declaration is “eta-converted” to generate
the context of the instance declaration.

We can even derive instances of multi-parameter classes, provided the newtype is the last class
parameter. In this case, a “partial application” of the class appears in thederiving clause. For
example, given the class

class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...

then we can derive an instance ofStateMonad for Parser s by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

169

Chapter 7. GHC Language Features

As a result of this extension, all derived instances in newtype declarations are treated uniformly (and
implemented just by reusing the dictionary for the representation type),exceptShow andRead,
which really behave differently for the newtype and its representation.

7.9.2. A more precise specification
Derived instance declarations are constructed as follows. Consider the declaration (after expansion
of any type synonyms)

newtype T v1...vn = T’ (S t1...tk vk+1...vn) deriving (c1...cm)

whereS is a type constructor,t1...tk are types,vk+1...vn are type variables which do not occur
in any of theti , and theci are partial applications of classes of the formC t1’...tj’ . The
derived instance declarations are, for eachci ,

instance ci (S t1...tk vk+1...v) => ci (T v1...vp)

wherep is chosen so thatT v1...vp is of the rightkind for the last parameter of classCi .

As an example which doesnot work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variables occurs inState s m , and so cannot be "eta-converted" away. It is a
good thing that thisderiving clause is rejected, becauseNonMonad mis not, in fact, a monad —
for the same reason. Try defining»= with the correct type: you won’t be able to.

Notice also that theorder of class parameters becomes important, since we can only derive instances
for the last one. If theStateMonad class above were instead defined as

class StateMonad m s | m -> s where ...

then we would not have been able to derive an instance for theParser type above. We hypothesise
that multi-parameter classes usually have one "main" parameter for which deriving new instances is
most interesting.

7.10. Concurrent and Parallel Haskell
Concurrent and Parallel Haskell are Glasgow extensions to Haskell which let you structure your
program as a group of independent ‘threads’.

Concurrent and Parallel Haskell have very different purposes.

170

Chapter 7. GHC Language Features

Concurrent Haskell is for applications which have an inherent structure of interacting, concurrent
tasks (i.e. ‘threads’). Threads in such programs may berequired. For example, if a concurrent thread
has been spawned to handle a mouse click, it isn’t optional—the user wants something done!

A Concurrent Haskell program implies multiple ‘threads’ running within a single Unix process on a
single processor.

You will find at least one paper about Concurrent Haskell hanging off ofSimon Peyton Jones’s Web
page (http://research.microsoft.com/~simonpj/).

Parallel Haskell is aboutspeed—spawning threads onto multiple processors so that your program
will run faster. The ‘threads’ are alwaysadvisory—if the runtime system thinks it can get the job
done more quickly by sequential execution, then fine.

A Parallel Haskell program implies multiple processes running on multiple processors, under a PVM
(Parallel Virtual Machine) framework. An MPI interface is under development but not fully
functional, yet.

Parallel Haskell is still relatively new; it is more about “research fun” than about “speed.” That will
change.

Check theGPH Page (http://www.cee.hw.ac.uk/~dsg/gph/) for more information on “GPH”
(Haskell98 with extensions for parallel execution), the latest version of “GUM” (the runtime system
to enable parallel executions) and papers on research issues. A list of publications about GPH and
about GUM is also available from Simon’s Web Page.

Some details about Parallel Haskell follow. For more information about concurrent Haskell, see the
moduleControl.Concurrent in the library documentation.

7.10.1. Features specific to Parallel Haskell

7.10.1.1. The Parallel interface (recommended)

GHC provides two functions for controlling parallel execution, through theParallel interface:

interface Parallel where
infixr 0 ‘par‘
infixr 1 ‘seq‘

par :: a -> b -> b
seq :: a -> b -> b

The expression(x ‘par‘ y) sparksthe evaluation ofx (to weak head normal form) and returnsy .
Sparks are queued for execution in FIFO order, but are not executed immediately. At the next heap
allocation, the currently executing thread will yield control to the scheduler, and the scheduler will
start a new thread (until reaching the active thread limit) for each spark which has not already been
evaluated to WHNF.

171

Chapter 7. GHC Language Features

The expression(x ‘seq‘ y) evaluatesx to weak head normal form and then returnsy . Theseq

primitive can be used to force evaluation of an expression beyond WHNF, or to impose a desired
execution sequence for the evaluation of an expression.

For example, consider the following parallel version of our old nemesis,nfib :

import Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (seq n2 (n1 + n2 + 1))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values ofn greater than 1, we usepar to spark a thread to evaluatenfib (n-1) , and then we
useseq to force the parent thread to evaluatenfib (n-2) before going on to add together these
two subexpressions. In this divide-and-conquer approach, we only spark a new thread for one branch
of the computation (leaving the parent to evaluate the other branch). Also, we must useseq to
ensure that the parent will evaluaten2 beforen1 in the expression(n1 + n2 + 1) . It is not
sufficient to reorder the expression as(n2 + n1 + 1) , because the compiler may not generate code
to evaluate the addends from left to right.

7.10.1.2. Underlying functions and primitives

The functionspar andseq are wired into GHC, and unfold into uses of thepar# andseq#

primitives, respectively. If you’d like to see this with your very own eyes, just run GHC with the
-ddump-simpl option. (Anything for a good time. . .)

7.10.1.3. Scheduling policy for concurrent threads

Runnable threads are scheduled in round-robin fashion. Context switches are signalled by the
generation of new sparks or by the expiry of a virtual timer (the timer interval is configurable with
the-C[<num>] RTS option). However, a context switch doesn’t really happen until the current heap
block is full. You can’t get any faster context switching than this.

When a context switch occurs, pending sparks which have not already been reduced to weak head
normal form are turned into new threads. However, there is a limit to the number of active threads
(runnable or blocked) which are allowed at any given time. This limit can be adjusted with the
-t<num> RTS option (the default is 32). Once the thread limit is reached, any remaining sparks are
deferred until some of the currently active threads are completed.

7.10.1.4. Scheduling policy for parallel threads

In GUM we use an unfair scheduler, which means that a thread continues to perform graph reduction
until it blocks on a closure under evaluation, on a remote closure or until the thread finishes.

172

Chapter 8. Foreign function interface
(FFI)
GHC (mostly) conforms to the Haskell 98 Foreign Function Interface Addendum 1.0, whose
definition is available fromhttp://haskell.org/ . The FFI support in GHC diverges from the
Addendum in the following ways:

• The routineshs_init() , hs_exit() , andhs_set_argv() from Chapter 6.1 of the Addendum
are not supported yet.

• Syntactic forms and library functions proposed in earlier versions of the FFI are still supported for
backwards compatibility.

• GHC implements a number of GHC-specific extensions to the FFI Addendum. These extensions
are described inSection 8.1, but please note that programs using these features are not portable.
Hence, these features should be avoided where possible.

The FFI libraries are documented in the accompanying library documentation; see for example the
Foreign module.

8.1. GHC extensions to the FFI Addendum
The FFI features that are described in this section are specific to GHC. Avoid them where possible to
not compromise the portability of the resulting code.

8.1.1. Arrays
The typesByteArray andMutableByteArray may be used as basic foreign types (see FFI
Addendum, Section 3.2). In C land, they map to(char *) .

8.1.2. Unboxed types
The following unboxed types may be used as basic foreign types (see FFI Addendum, Section 3.2):
Int# , Word#, Char# , Float# , Double# , Addr# , StablePtr# a , MutableByteArray# ,
ForeignObj# , andByteArray# .

8.2. Using the FFI with GHC
The following sections also give some hints and tips on the use of the foreign function interface in
GHC.

173

Chapter 8. Foreign function interface (FFI)

8.2.1. Using foreign export and foreign import ccall
"wrapper" with GHC
When GHC compiles a module (sayM.hs) which usesforeign export or foreign import

"wrapper" , it generates two additional files,M_stub.c andM_stub.h . GHC will automatically
compileM_stub.c to generateM_stub.o at the same time.

For a plainforeign export , the fileM_stub.h contains a C prototype for the foreign exported
function, andM_stub.c contains its definition. For example, if we compile the following module:

module Foo where

foreign export ccall foo :: Int -> IO Int

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))

ThenFoo_stub.h will contain something like this:

#include "HsFFI.h"
extern HsInt foo(HsInt a0);

andFoo_stub.c contains the compiler-generated definition offoo() . To invokefoo() from C,
just #include "Foo_stub.h" and callfoo() .

8.2.1.1. Using your own main()

Normally, GHC’s runtime system provides amain() , which arranges to invokeMain.main in the
Haskell program. However, you might want to link some Haskell code into a program which has a
main function written in another languagem, say C. In order to do this, you have to initialize the
Haskell runtime system explicitly.

Let’s take the example from above, and invoke it from a standalone C program. Here’s the C code:

#include <stdio.h>
#include "foo_stub.h"

#include "RtsAPI.h"

extern void __stginit_Foo (void);

int main(int argc, char *argv[])
{

int i;

174

Chapter 8. Foreign function interface (FFI)

startupHaskell(argc, argv, __stginit_Foo);

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

shutdownHaskell();

return 0;
}

The call tostartupHaskell() initializes GHC’s runtime system. Do NOT try to invoke any
Haskell functions before callingstartupHaskell() : strange things will undoubtedly happen.

We passargc andargv to startupHaskell() so that it can separate out any arguments for the
RTS (i.e. those arguments between+RTS...-RTS).

The third argument tostartupHaskell() is used for initializing the Haskell modules in the
program. It must be the name of the initialization function for the "top" module in the
program/library - in other words, the module which directly or indirectly imports all the other
Haskell modules in the program. In a standalone Haskell program this would be moduleMain , but
when you are only using the Haskell code as a library it may not be. If your library doesn’t have such
a module, then it is straightforward to create one, purely for this initialization process. The name of
the initialization function for moduleM is __stginit_ M, and it may be declared as an external
function symbol as in the code above.

After we’ve finished invoking our Haskell functions, we can callshutdownHaskell() , which
terminates the RTS. It runs any outstanding finalizers and generates any profiling or stats output that
might have been requested.

The functionsstartupHaskell() andshutdownHaskell() may be called only once each, and
only in that order.

NOTE: when linking the final program, it is normally easiest to do the link using GHC, although this
isn’t essential. If you do use GHC, then don’t forget the flag-no-hs-main , otherwise GHC will try
to link to theMain Haskell module.

8.2.1.2. Using foreign import ccall "wrapper" with GHC

Whenforeign import ccall "wrapper" is used in a Haskell module, The C stub file
M_stub.c generated by GHC contains small helper functions used by the code generated for the
imported wrapper, so it must be linked in to the final program. When linking the program, remember
to includeM_stub.o in the final link command line, or you’ll get link errors for the missing
function(s) (this isn’t necessary when building your program withghc --make , as GHC will
automatically link in the correct bits).

175

Chapter 8. Foreign function interface (FFI)

8.2.2. Using function headers
When generating C (using the-fvia-C directive), one can assist the C compiler in detecting type
errors by using the-#include directive (Section 4.12.5) to provide.h files containing function
headers.

For example,

#include "HsFFI.h"

void initialiseEFS (HsInt size);
HsInt terminateEFS (void);
HsForeignObj emptyEFS(void);
HsForeignObj updateEFS (HsForeignObj a, HsInt i, HsInt x);
HsInt lookupEFS (HsForeignObj a, HsInt i);

The typesHsInt , HsForeignObj etc. are described in the H98 FFI Addendum.

Note that this approach is onlyessentialfor returningfloat s (or if sizeof(int) !=

sizeof(int *) on your architecture) but is a Good Thing for anyone who cares about writing
solid code. You’re crazy not to do it.

176

Chapter 9. What to do when something
goes wrong
If you still have a problem after consulting this section, then you may have found abug—please
report it! SeeSection 1.2for details on how to report a bug and a list of things we’d like to know
about your bug. If in doubt, send a report—we love mail from irate users :-!

(Section 12.1, which describes Glasgow Haskell’s shortcomings vs. the Haskell language definition,
may also be of interest.)

9.1. When the compiler “does the wrong thing”

“Help! The compiler crashed (or ‘panic’d)!”

These events arealwaysbugs in the GHC system—please report them.

“This is a terrible error message.”

If you think that GHC could have produced a better error message, please report it as a bug.

“What about this warning from the C compiler?”

For example: “. . . warning: ‘Foo’ declared ‘static’ but never defined.” Unsightly, but shouldn’t
be a problem.

Sensitivity to.hi interface files:

GHC is very sensitive about interface files. For example, if it picks up a non-standard
Prelude.hi file, pretty terrible things will happen. If you turn on-fno-implicit-prelude ,
the compiler will almost surely die, unless you know what you are doing.

Furthermore, as sketched below, you may have big problems running programs compiled using
unstable interfaces.

“I think GHC is producing incorrect code”:

Unlikely :-) A useful be-more-paranoid option to give to GHC is-dcore-lint ; this causes a
“lint” pass to check for errors (notably type errors) after each Core-to-Core transformation pass.
We run with-dcore-lint on all the time; it costs about 5% in compile time.

“Why did I get a link error?”

If the linker complains about not finding_<something>_fast , then something is
inconsistent: you probably didn’t compile modules in the proper dependency order.

177

Chapter 9. What to do when something goes wrong

“Is this line number right?”

On this score, GHC usually does pretty well, especially if you “allow” it to be off by one or
two. In the case of an instance or class declaration, the line number may only point you to the
declaration, not to a specific method.

Please report line-number errors that you find particularly unhelpful.

9.2. When your program “does the wrong thing”
(For advice about overly slow or memory-hungry Haskell programs, please seeChapter 6).

“Help! My program crashed!”

(e.g., a ‘segmentation fault’ or ‘core dumped’)

If your program has no foreign calls in it, and no calls to known-unsafe functions (such as
unsafePerformIO) then a crash is always a BUG in the GHC system, except in one case: If
your program is made of several modules, each module must have been compiled after any
modules on which it depends (unless you use.hi-boot files, in which case thesemustbe
correct with respect to the module source).

For example, if an interface is lying about the type of an imported value then GHC may well
generate duff code for the importing module.This applies to pragmas inside interfaces too!If
the pragma is lying (e.g., about the “arity” of a value), then duff code may result. Furthermore,
arities may change even if types do not.

In short, if you compile a module and its interface changes, then all the modules that import that
interfacemustbe re-compiled.

A useful option to alert you when interfaces change is-hi-diffs . It will run diff on the
changed interface file, before and after, when applicable.

If you are usingmake, GHC can automatically generate the dependencies required in order to
make sure that every moduleis up-to-date with respect to its imported interfaces. Please see
Section 4.9.6.1.

If you are down to your last-compile-before-a-bug-report, we would recommend that you add a
-dcore-lint option (for extra checking) to your compilation options.

So, before you report a bug because of a core dump, you should probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -hi-diffs to highlight changes;

as mentioned above, use -dcore-lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets are off, because you can trash
the heap, the stack, or whatever.

178

Chapter 9. What to do when something goes wrong

“My program entered an ‘absent’ argument.”

This is definitely caused by a bug in GHC. Please report it (seeSection 1.2).

“What’s with this ‘arithmetic (or ‘floating’) exception’ ”?

Int , Float , andDouble arithmetic isunchecked. Overflows, underflows and loss of precision
are either silent or reported as an exception by the operating system (depending on the
platform). Divide-by-zeromaycause an untrapped exception (please report it if it does).

179

Chapter 10. Other Haskell utility
programs
This section describes other program(s) which we distribute, that help with the Great Haskell
Programming Task.

10.1. Ctags and Etags for Haskell: hasktags
hasktagsis a very simple Haskell program that produces ctags "tags" and etags "TAGS" files for
Haskell programs.

When loaded into an editor such an NEdit, Vim, or Emacs, this allows one to easily navigate around
a multi-file program, finding definitions of functions, types, and constructors.

Invocation Syntax:

hasktags files

This will read all the files listed infiles and produce a ctags "tags" file and an etags "TAGS" file in
the current directory.

Example usage

find -name *.*hs | xargs hasktags

This will find all haskell source files in the current directory and below, and create tags files indexing
them in the current directory.

hasktagsis a simple program that uses simple parsing rules to find definitions of functions,
constructors, and types. It isn’t guranteed to find everything, and will sometimes create false index
entries, but it usually gets the job done fairly well. In particular, at present, functions are only
indexed if a type signature is given for them.

Before hasktags, there used to befptagsandhstags, which did essentially the same job, however
neither of these seem to be maintained any more.

10.1.1. Using tags with your editor
With NEdit, load the "tags" file using "File/Load Tags File". Use "Ctrl-D" to search for a tag.

With XEmacs, load the "TAGS" file using "visit-tags-table". Use "M-." to search for a tag.

10.2. “Yacc for Haskell”: happy
Andy Gill and Simon Marlow have written a parser-generator for Haskell, calledhappy. Happy is
to Haskell whatYacc is to C.

180

Chapter 10. Other Haskell utility programs

You can gethappy from the Happy Homepage (http://www.haskell.org/happy/).

Happy is at its shining best when compiled by GHC.

10.3. Writing Haskell interfaces to C code:
hsc2hs
Thehsc2hscommand can be used to automate some parts of the process of writing Haskell bindings
to C code. It reads an almost-Haskell source with embedded special constructs, and outputs a real
Haskell file with these constructs processed, based on information taken from some C headers. The
extra constructs deal with accessing C data from Haskell.

It may also output a C file which contains additional C functions to be linked into the program,
together with a C header that gets included into the C code to which the Haskell module will be
compiled (when compiled via C) and into the C file. These two files are created when the#def

construct is used (see below).

Actually hsc2hsdoes not output the Haskell file directly. It creates a C program that includes the
headers, gets automatically compiled and run. That program outputs the Haskell code.

In the following, “Haskell file” is the main output (usually a.hs file), “compiled Haskell file” is the
Haskell file afterghchas compiled it to C (i.e. a.hc file), “C program” is the program that outputs
the Haskell file, “C file” is the optionally generated C file, and “C header” is its header file.

10.3.1. Command line syntax
hsc2hstakes input files as arguments, and flags that modify its behavior:

-t FILE or --template=FILE

The template file (see below).

-c PROGor --cc=PROG

The C compiler to use (default:ghc)

-l PROG or --ld=PROG

The linker to use (default:gcc).

-C FLAG or --cflag=FLAG

An extra flag to pass to the C compiler.

-I DIR

Passed to the C compiler.

181

Chapter 10. Other Haskell utility programs

-L FLAG or --lflag=FLAG

An extra flag to pass to the linker.

-i FILE or --include=FILE

As if the appropriate#include directive was placed in the source.

-D NAME[=VALUE] or --define=NAME[=VALUE]

As if the appropriate#define directive was placed in the source.

-o FILE or --output=FILE

Name of the Haskell file.

--help

Display a summary of the available flags.

--version

Output version information.

--no-compile

Stop after writing out the intermediate C program to disk. The file name for the intermediate C
program is the input file name with.hsc replaced with_hsc_make.c .

The input file should end with .hsc (it should be plain Haskell source only; literate Haskell is not
supported at the moment). Output files by default get names with the.hsc suffix replaced:

.hs Haskell file

_hsc.h C header

_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path toHsFFI.h

which is automatically included into the C program.

10.3.2. Input syntax
All special processing is triggered by the# operator. To output a literal#, write it twice:##. Inside
string literals and comments# characters are not processed.

A # is followed by optional spaces and tabs, an alphanumeric keyword that describes the kind of
processing, and its arguments. Arguments look like C expressions separated by commas (they are
not written inside parens). They extend up to the nearest unmatched) ,] or } , or to the end of line if
it occurs outside any() [] {} ” "" /**/ and is not preceded by a backslash. Backslash-newline
pairs are stripped.

182

Chapter 10. Other Haskell utility programs

In addition#{stuff} is equivalent to#stuff except that it’s self-delimited and thus needs not to
be placed at the end of line or in some brackets.

Meanings of specific keywords:

#include <file.h>

#include "file.h"

The specified file gets included into the C program, the compiled Haskell file, and the C header.
<HsFFI.h> is included automatically.

#define name

#define name value

#undef name

Similar to#include . Note that#includes and#defines may be put in the same file twice
so they should not assume otherwise.

#let name parameters = "definition"

Defines a macro to be applied to the Haskell source. Parameter names are comma-separated, not
inside parens. Such macro is invoked as other#-constructs, starting with#name. The definition
will be put in the C program inside parens as arguments ofprintf . To refer to a parameter,
close the quote, put a parameter name and open the quote again, to let C string literals
concatenate. Or useprintf ’s format directives. Values of arguments must be given as strings,
unless the macro stringifies them itself using the C preprocessor’s#parameter syntax.

#def C_definition

The definition (of a function, variable, struct or typedef) is written to the C file, and its
prototype or extern declaration to the C header. Inline functions are handled correctly. struct
definitions and typedefs are written to the C program too. Theinline , struct or typedef

keyword must come just afterdef .

#if condition

#ifdef name

#ifndef name

#elif condition

#else

#endif

#error message

#warning message

Conditional compilation directives are passed unmodified to the C program, C file, and C
header. Putting them in the C program means that appropriate parts of the Haskell file will be
skipped.

183

Chapter 10. Other Haskell utility programs

#const C_expression

The expression must be convertible tolong or unsigned long . Its value (literal or negated
literal) will be output.

#const_str C_expression

The expression must be convertible to const char pointer. Its value (string literal) will be output.

#type C_type

A Haskell equivalent of the C numeric type will be output. It will be one of
{Int,Word}{8,16,32,64} , Float , Double , LDouble .

#peek struct_type, field

A function that peeks a field of a C struct will be output. It will have the typeStorable b =>

Ptr a -> IO b . The intention is that#peek and#poke can be used for implementing the
operations of classStorable for a given C struct (see theForeign.Storable module in the
library documentation).

#poke struct_type, field

Similarly for poke. It will have the typeStorable b => Ptr a -> b -> IO () .

#ptr struct_type, field

Makes a pointer to a field struct. It will have the typePtr a -> Ptr b .

#enum type, constructor, value, value, ...

A shortcut for multiple definitions which use#const . Eachvalue is a name of a C integer
constant, e.g. enumeration value. The name will be translated to Haskell by making each letter
following an underscore uppercase, making all the rest lowercase, and removing underscores.
You can supply a different translation by writinghs_name = c_value instead of avalue , in
which casec_value may be an arbitrary expression. Thehs_name will be defined as having
the specifiedtype . Its definition is the specifiedconstructor (which in fact may be an
expression or be empty) applied to the appropriate integer value. You can have multiple#enum

definitions with the sametype ; this construct does not emit the type definition itself.

10.3.3. Custom constructs
#const , #type , #peek , #poke and#ptr are not hardwired into thehsc2hs, but are defined in a C
template that is included in the C program:template-hsc.h . Custom constructs and templates can
be used too. Any#-construct with unknown key is expected to be handled by a C template.

A C template should define a macro or function with name prefixed byhsc_ that handles the
construct by emitting the expansion to stdout. Seetemplate-hsc.h for examples.

184

Chapter 10. Other Haskell utility programs

Such macros can also be defined directly in the source. They are useful for making a#let -like
macro whose expansion uses other#let macros. Plain#let prependshsc_ to the macro name and
wraps the defininition in aprintf call.

185

Chapter 11. Building and using Win32
DLLs
On Win32 platforms, the compiler is capable of both producing and using dynamic link libraries
(DLLs) containing ghc-compiled code. This section shows you how to make use of this facility.

Until recently,strip didn’t work reliably on DLLs, so you should test your version with care, or
make sure you have the latest binutils. Unfortunately, we don’t know exactly which version of
binutils cured the problem (it was supposedly fixed some years ago).

11.1. Linking with DLLs
The default on Win32 platforms is to link applications in such a way that the executables will use the
Prelude and system libraries DLLs, rather than contain (large chunks of) them. This is transparent at
the command-line, so

sh$ cat main.hs
module Main where
main = putStrLn "hello, world!"
sh$ ghc -o main main.hs
ghc: module version changed to 1; reason: no old .hi file
sh$ strip main.exe
sh$ ls -l main.exe
-rwxr-xr-x 1 544 everyone 4608 May 3 17:11 main.exe*
sh$./main
hello, world!
sh$

will give you a binary as before, but themain.exe generated will use the Prelude and RTS DLLs
instead of linking them in statically.

4K for a "hello, world" application—not bad, huh? :-)

11.2. Not linking with DLLs
If you want to build an executable that doesn’t depend on any ghc-compiled DLLs, use the-static

option to link in the code statically.

Notice that you cannot mix code that has been compiled with-static and not, so you have to use
the-static option on all the Haskell modules that make up your application.

186

Chapter 11. Building and using Win32 DLLs

11.3. Creating a DLL
Making libraries into DLLs doesn’t work on Windows at the moment (and is no longer supported);
however, all the machinery is still there. If you’re interested, contact the GHC team. Note that
building an entire Haskell application as a DLL is still supported (it’s just inter-DLL Haskell calls
that don’t work). Sealing up your Haskell library inside a DLL is straightforward; compile up the
object files that make up the library, and then build the DLL by issuing a command of the form:

ghc --mk-dll -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option--mk-dll , it will build a DLL rather than produce an
executable. The DLL will consist of all the object files and archives given on the command line.

To create a ‘static’ DLL, i.e. one that does not depend on the GHC DLLs, use the-static when
compiling up your Haskell code and building the DLL.

A couple of things to notice:

• Since DLLs correspond to packages (seeSection 4.10) you need to use-package-name

dll-name when compiling modules that belong to a DLL if you’re going to call them from
Haskell. Otherwise, Haskell code that calls entry points in that DLL will do so incorrectly, and
crash. For similar reasons, you can only compile a single module tree into a DLL, as
startupHaskell needs to be able to call its initialisation function, and only takes one such
argument (seeSection 11.4). Hence the modules you compile into a DLL must have a common
root.

• By default, the entry points of all the object files will be exported from the DLL when using
--mk-dll . Should you want to constrain this, you can specify themodule definition fileto use on
the command line as follows:

ghc --mk-dll -o -optdll-def -optdllMyDef.def

See Microsoft documentation for details, but a module definition file simply lists what entry points
you want to export. Here’s one that’s suitable when building a Haskell COM server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the--mk-dll option also creates an import library. The import
library name is derived from the name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool_imp.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-existence of
import libraries with ordinary static libraries (e.g.,libHSfoo.a andlibHSfoo_imp.a .
Additionally, when the compiler driver is linking in non-static mode, it will rewrite occurrence of

187

Chapter 11. Building and using Win32 DLLs

-lHSfoo on the command line to-lHSfoo_imp . By doing this for you, switching from
non-static to static linking is simply a question of adding-static to your command line.

11.4. Making DLLs to be called from other
languages
If you want to package up Haskell code to be called from other languages, such as Visual Basic or
C++, there are some extra things it is useful to know. The dirty details are in theForeign Function
Interfacedefinition, but it can be tricky to work out how to combine this with DLL building, so
here’s an example:

• Useforeign export declarations to export the Haskell functions you want to call from the
outside. For example,

module Adder where

adder :: Int -> Int -> IO Int - gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

• Compile it up:

ghc -c adder.hs -fglasgow-exts

This will produce two files, adder.o and adder_stub.o

• compile up aDllMain() that starts up the Haskell RTS-––a possible implementation is:

#include <windows.h>
#include <Rts.h>

EXTFUN(__stginit_Adder);

static char* args[] = { "ghcDll", NULL };
/* N.B. argv arrays must end with NULL */

BOOL
STDCALL
DllMain

(HANDLE hModule
, DWORD reason
, void* reserved
)

{
if (reason == DLL_PROCESS_ATTACH) {

/* By now, the RTS DLL should have been hoisted in, but we need to start it up. */
startupHaskell(1, args, __stginit_Adder);
return TRUE;

188

Chapter 11. Building and using Win32 DLLs

}
return TRUE;

}

Here,Adder is the name of the root module in the module tree (as mentioned above, there must be a
single root module, and hence a single module tree in the DLL). Compile this up:

ghc -c dllMain.c

• Construct the DLL:

ghc --mk-dll -o adder.dll adder.o adder_stub.o dllMain.o

• Start usingadder from VBA-––here’s how I wouldDeclare it:

Private Declare Function adder Lib "adder.dll" Alias "adder@8"
(ByVal x As Long, ByVal y As Long) As Long

Since this Haskell DLL depends on a couple of the DLLs that come with GHC, make sure that they
are in scope/visible.

Building statically linked DLLs is the same as in the previous section: it suffices to add-static

to the commands used to compile up the Haskell source and build the DLL.

189

Chapter 12. Known bugs and infelicities

12.1. Haskell 98 vs. Glasgow Haskell: language
non-compliance
This section lists Glasgow Haskell infelicities in its implementation of Haskell 98. See also the
“when things go wrong” section (Chapter 9) for information about crashes, space leaks, and other
undesirable phenomena.

The limitations here are listed in Haskell Report order (roughly).

12.1.1. Divergence from Haskell 98

12.1.1.1. Lexical syntax

• The Haskell report specifies that programs may be written using Unicode. GHC only accepts the
ISO-8859-1 character set at the moment.

• Certain lexical rules regarding qualified identifiers are slightly different in GHC compared to the
Haskell report. When you havemodule . reservedop , such asM.\ , GHC will interpret it as a
single qualified operator rather than the two lexemesMand.\ .

• When-fglasgow-exts is on, GHC reserves several keywords beginning with two underscores.
This is due to the fact that GHC uses the same lexical analyser for interface file parsing as it does
for source file parsing, and these keywords are used in interface files. Do not use any identifiers
beginning with a double underscore in-fglasgow-exts mode.

12.1.1.2. Context-free syntax

• GHC doesn’t do fixity resolution in expressions during parsing. For example, according to the
Haskell report, the following expression is legal Haskell:

let x = 42 in x == 42 == True

and parses as:

(let x = 42 in x == 42) == True

because according to the report, thelet expression “extends as far to the right as possible”. Since it
can’t extend past the second equals sign without causing a parse error (== is non-fix), the
let -expression must terminate there. GHC simply gobbles up the whole expression, parsing like
this:

(let x = 42 in x == 42 == True)

190

Chapter 12. Known bugs and infelicities

The Haskell report is arguably wrong here, but nevertheless it’s a difference between GHC &
Haskell 98.

12.1.1.3. Expressions and patterns

Very longString constants:

May not go through. If you add a “string gap” every few thousand characters, then the strings
can be as long as you like.

Bear in mind that string gaps and the-cpp option don’t mix very well (seeSection 4.12.3).

12.1.1.4. Declarations and bindings

None known.

12.1.1.5. Module system and interface files

Namespace pollution

Several modules internal to GHC are visible in the standard namespace. All of these modules
begin withPrel , so the rule is: don’t use any modules beginning withPrel in your program,
or you may be comprehensively screwed.

12.1.1.6. Numbers, basic types, and built-in classes

Multiply-defined array elements—not checked:

This code fragmentshouldelicit a fatal error, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

12.1.1.7. In Prelude support

TheChar type

The Haskell report says that theChar type holds 16 bits. GHC follows the ISO-10646 standard
a little more closely:maxBound :: Char in GHC is0x10FFFF .

Arbitrary-sized tuples:

Tuples are currently limited to size 61. HOWEVER: standard instances for tuples (Eq, Ord ,
Bounded , Ix Read , andShow) are availableonlyup to 5-tuples.

191

Chapter 12. Known bugs and infelicities

This limitation is easily subvertible, so please ask if you get stuck on it.

12.1.2. GHC’s interpretation of undefined behaviour in
Haskell 98
This section documents GHC’s take on various issues that are left undefined or implementation
specific in Haskell 98.

Sized integral types

In GHC theInt type follows the size of an address on the host architecture; in other words it
holds 32 bits on a 32-bit machine, and 64-bits on a 64-bit machine.

Arithmetic onInt is unchecked for overflow, so all operations onInt happen modulo 2n where
n is the size in bits of theInt type.

The fromInteger function (and hence alsofromIntegral) is a special case when converting
to Int . The value offromIntegral x :: Int is given by taking the lowern bits of (abs

x) , multiplied by the sign ofx (in 2’s complementn-bit arithmetic). This behaviour was chosen
so that for example writing0xffffffff :: Int preserves the bit-pattern in the resultingInt .

Negative literals, such as-3 , are specified by (a careful reading of) the Haskell Report as
meaningPrelude.negate (Prelude.fromInteger 3) . So-2147483648 meansnegate

(fromInteger 2147483648) . SincefromInteger takes the lower 32 bits of the
representation,fromInteger (2147483648::Integer) , computed at typeInt is
-2147483648::Int . Thenegate operation then overflows, but it is unchecked, sonegate

(-2147483648::Int) is just-2147483648 . In short, one can writeminBound::Int as a
literal with the expected meaning (but that is not in general guaranteed.

The fromIntegral function also preserves bit-patterns when converting between the sized
integral types (Int8 , Int16 , Int32 , Int64 and the unsignedWord variants), see the modules
Data.Int andData.Word in the library documentation.

Unchecked float arithmetic

Operations onFloat andDouble numbers areuncheckedfor overflow, underflow, and other
sad occurrences. (note, however that some architectures trap floating-point overflow and
loss-of-precision and report a floating-point exception, probably terminating the program).

192

Chapter 12. Known bugs and infelicities

12.2. Known bugs or infelicities
GHC has the following known bugs or infelicities:

• GHC only provides tuples up to size 62, and derived tuple instances (for Eq, Ord, etc) up to size
15.

• GHC can warn about non-exhaustive or overlapping patterns, and usually does so correctly. But
not always. It gets confused by string patterns, and by guards, and can then emit bogus warnings.
The entire overlap-check code needs an overhaul really.

• Dangers with multiple Main modules.

GHC does not insist that moduleMain lives in a file calledMain.hs . This is useful if you want
multiple versions ofMain . But there’s a danger: when compiling moduleMain (regardless of
what file it comes from), GHC looks for the interfaceMain.hi ; it uses this to get version
information from the last time it recompiledMain . The trouble is that thisMain.hi may not
correspond to the source file being compiled.

Solution: removeMain.hi first. A better solution would be for GHC to record the source-file
filename in the interface file, or even an MD5 checksum.

• GHCi does not respect thedefault declaration in the module whose scope you are in. Instead,
for expressions typed at the command line, you always get the default default-type behaviour; that
is, default(Int,Double) .

It would be better for GHCi to record what the default settings in each module are, and use those
of the ’current’ module (whatever that is).

• GHCi does not keep careful track of what instance declarations are ’in scope’ if they come from
other packages. Instead, all instance declarations that GHC has seen in other packages are all in
scope everywhere, whether or not the module from that package is used by the command-line
expression.

• GHC’s inliner can be persuaded into non-termination using the standard way to encode recursion
via a data type:

data U = MkU (U -> Bool)

russel :: U -> Bool
russel u@(MkU p) = not $ p u

x :: Bool
x = russel (MkU russel)

We have never found another program, other than this contrived one, that makes GHC diverge, and
fixing the problem would impose an extra overhead on every compilation. So the bug remains
un-fixed. There is more background in Secrets of the GHC inliner
(http://research.microsoft.com/~simonpj/Papers/inlining).

193

Chapter 13. GHC FAQ
This section has the answers to questions that get asked regularly on the GHC mailing lists, in no
particular order. Please let us know if you think there’s a question/answer that should be added here.

How do I port GHC to platform X?

There are two distinct possibilities: either

• The hardware architecture for your system is already supported by GHC, but you’re running
an OS that isn’t supported (or perhaps has been supported in the past, but currently isn’t).
This is the easiest type of porting job, but it still requires some careful bootstrapping.

• Your system’s hardware architecture isn’t supported by GHC. This will be a more difficult
port (though by comparison perhaps not as difficult as porting gcc).

Both ways require you to bootrap from intermediateHCfiles: these are the stylised C files
generated by GHC when it compiles Haskell source. Basically the idea is to take the HC files
for GHC itself to the target machine and compile them withgcc to get a working GHC, and go
from there.

TheBuilding Guide (http://www.haskell.org/ghc/latest/building/building-guide.html) has all the
details on how to bootstrap GHC on a new platform.

Do I have to recompile all my code if I upgrade GHC?

Yes. There are two reasons for this:

• GHC does a lot of cross-module optimisation, so compiled code will include parts of the
libraries it was compiled against (including the Prelude), so will be deeply tied to the actual
version of those libraries it was compiled against. When you upgrade GHC, the libraries may
change; even if the external interface of the libraries doesn’t change, sometimes internal
details may change because GHC optimised the code in the library differently.

• We sometimes change the ABI (application binary interface) between versions of GHC.
Code compiled with one version of GHC is not necessarily compatible with code compiled
by a different version, even if you arrange to keep the same libraries.

Why doesn’t GHC use shared libraries?

The subject of shared libraries has come up several times in the past — take a look through the
mailing-list archives for some of the previous discussions. The upshot is that shared libraries
wouldn’t really buy much unless you really need to save the disk space: in all other
considerations, static linking comes out better.

Unfortunately GHC-compiled libraries are very tightly coupled, which means it’s unlikely
you’d be able to swap out a shared library for a newer version unless it was compiled with
exactlythe same compiler and set of libraries as the old version.

194

Chapter 13. GHC FAQ

I can’t get string gaps to work

If you’re also using CPP, beware of the known pitfall with string gaps mentioned inSection
4.12.3.1.

GHCi complains about missing symbols likeCC_LIST when loading a previously compiled .o file.

This probably means the .o files in question were compiled for profiling (with-prof).
Workaround: recompile them without profiling. We really ought to detect this situation and give
a proper error message.

Linking a program causes the following error on Linux:/usr/bin/ld: cannot open -lgmp: No such

file or directory

The problem is that your system doesn’t have the GMP library installed. If this is a RedHat
distribution, install the RedHat-suppliedgmp-devel package, and thegmppackage if you don’t
already have it. There have been reports that installing the RedHat packages also works for
SuSE (SuSE don’t supply a shared gmp library).

I Can’t run GHCi on Linux, because it complains about a missinglibreadline.so.3 .

The "correct" fix for this problem is to install the correct RPM for the particular flavour of
Linux on your machine. If this isn’t an option, however, there is a hack that might work: make a
symbolic link fromlibreadline.so.4 to libreadline.so.3 in /usr/lib . We tried this
on a SuSE 7.1 box and it seemed to work, but YMMV.

Solaris users may sometimes get link errors due to libraries needed by GNU Readline.

We suggest you try linking in some combination of thetermcap , curses andncurses

libraries, by giving-ltermcap , -lcurses and-lncurses respectively. If you encounter this
problem, we would appreciate feedback on it, since we don’t fully understand what’s going on
here.

When I try to start ghci (probably one I compiled myself) it saysghc-5.02: not built for interactive

use

To build a working ghci, you need to build GHC 5.02 with itself; the above message appears if
you build it with 4.08.X, for example. It’ll still work fine for batch-mode compilation, though.
Note that you really must build with exactly the same version of the compiler. Building 5.02
with 5.00.2, for example, may or may not give a working interactive system; it probably won’t,
and certainly isn’t supported. Note also that you can build 5.02 with any older compiler, back to
4.08.1, if you don’t want a working interactive system; that’s OK, and supported.

When I use a foreign function that takes or returns a float, it gives the wrong answer, or crashes.

You should use the-#include option to bring the correct prototype into scope (seeSection
4.12.5).

195

Chapter 13. GHC FAQ

My program that uses a really large heap crashes on Windows.

For utterly horrible reasons, programs that use more than 128Mb of heap won’t work when
compiled dynamically on Windows (they should be fine statically compiled).

GHC doesn’t like filenames containing+.

Indeed not. You could change+ to p or plus .

When I open a FIFO (named pipe) and try to read from it, I get EOF immediately.

This is a consequence of the fact that GHC opens the FIFO in non-blocking mode. The
behaviour varies from OS to OS: on Linux and Solaris you can wait for a writer by doing an
explicit threadWaitRead on the file descriptor (gotten fromPosix.handleToFd) before the
first read, but this doesn’t work on FreeBSD (although rumour has it that recent versions of
FreeBSD changed the behavour to match other OSs). A workaround for all systems is to open
the FIFO for writing yourself, before (or at the same time as) opening it for reading.

When I foreign import a function that returnschar or short , I get garbage back.

This is a known bug in GHC versions prior to 5.02.2. GHC doesn’t mask out the more
significant bits of the result. It doesn’t manifest with gcc 2.95, but apparently shows up with
g++ and gcc 3.0.

My program is failing withhead [] , or an array bounds error, or some other random error, and I have no idea
how to find the bug. Can you help?

Compile your program with-prof -auto-all (make sure you have the profiling libraries
installed), and run it with+RTS -xc -RTS to get a “stack trace” at the point at which the
exception was raised. SeeSection 4.16.3for more details.

How do I increase the heap size permanently for a given binary?

SeeSection 4.16.4.

I’m trying to compile my program for parallel execution with the-parallel , and GHC complains with an error
like “failed to load interface file for Prelude”.

GHC doesn’t ship with support for parallel execution, that support is provided separately by the
GPH (http://www.macs.hw.ac.uk/~dsg/gph/) project.

When is it safe to useunsafePerformIO ?

We’ll give two answers to this question, each of which may be helpful. These criteria are not
rigorous in any real sense (you’d need a formal semantics for Haskell in order to give a proper
answer to this question), but should give you a feel for the kind of things you can and cannot do
with unsafePerformIO .

• It is safe to implement a function or API usingunsafePerformIO if you could imagine also
implementing the same function or API in Haskell without usingunsafePerformIO (forget
about efficiency, just consider the semantics).

196

Chapter 13. GHC FAQ

• In pure Haskell, the value of a function depends only on the values of its arguments (and free
variables, if it has any). If you can implement the function usingunsafePerformIO and still
retain this invariant, then you’re probably usingunsafePerformIO in a safe way. Note that
you need only consider theobservablevalues of the arguments and result.

For more information, seethis thread
(http://www.haskell.org/pipermail/glasgow-haskell-users/2002-July/003681.html).

Why does linking take so long?

Linking a small program should take no more than a few seconds. Larger programs can take
longer, but even linking GHC itself only takes 3-4 seconds on our development machines.

Long link times have been attributed to using Sun’s linker on Solaris, as compared to GNUld
which appears to be much faster. So if you’re on a Sun box, try switching to GNUld. This
article (http://www.haskell.org/pipermail/glasgow-haskell-users/2002-November/004477.html)
from the mailing list has more information.

197

