
Haskell Libraries

The GHC Team

Haskell Libraries
by The GHC Team

Table of Contents
1. Introduction ...5

1.1. Usage..5

2. Theconcurrent package: concurrency support...6

3. Thedata package: datatypes..7

3.1. Edison...7
3.2. TheFiniteMap type...7
3.3.Set ...7

4. The lang package: language support...8

4.1.Bits ...8
4.2.CError ...8
4.3.CForeign ..8
4.4.CTypes ...8
4.5.CTypesISO ..8
4.6.CString ...8
4.7.DiffArray ..8
4.8.DirectoryExts ...8
4.9.Dynamic ...9
4.10.Exception ..9
4.11.Foreign ...9
4.12.ForeignPtr ..9
4.13.GlaExts ...9
4.14.IArray ...9
4.15.Int ..10
4.16.IOExts ...10

4.16.1. IO monad extensions...10
4.16.2. Mutable Variables..11
4.16.3. Mutable Arrays..11
4.16.4. Extended file modes..11
4.16.5. Bulk transfers...12
4.16.6. Terminal control..12
4.16.7. Redirecting handles...13
4.16.8. Trace..13
4.16.9. ExtraIOError Predicates...13
4.16.10. Miscellany...13

4.17.LazyST ...14
4.18.MArray ...14
4.19.MarshalAlloc ..14
4.20.MarshalArray ..15
4.21.MarshalError ..15
4.22.MarshalUtils ..15
4.23.NumExts ...15

3

4.24.PackedString ..16
4.25.Ptr ...16
4.26.ShowFunctions ...16
4.27.ST ...16
4.28.StableName ..17
4.29.StablePtr ..17
4.30.Storable ..17
4.31.StorableArray ..17
4.32.SystemExts ...17
4.33.Weak...18
4.34.Word ...18

5. Thenet package: networking support...19

5.1.BSD: System database info..19
5.2.Socket : The high-level networking interface...19
5.3.SocketPrim : The low-level socket binding...19
5.4.URI ...19

6. Thenumpackage: numeric operations..20

7. Theposix package: POSIX support..21

7.1. Posix data types..21
7.2. Posix Process Primitives..25
7.3. Posix Process Environment..30
7.4. Posix operations on files and directories..34
7.5. Posix Input and Output Primitives...38
7.6. Posix, Device- and Class-Specific Functions...40
7.7. Posix System Databases...42
7.8. POSIX Errors...43
7.9. POpen...44

8. The text package: text manipulation..46

8.1.HaXml: Handling XML data ...46
8.2.MatchPS : The Perl-like matching interface..46
8.3.Parsec : Parsing combinators...47
8.4.Pretty : Pretty printing combimators...47
8.5.Regex : The low-level regex matching interface..47
8.6.RegexString : Regex matching made simple...49

9. Theutil package: miscellaneous utilities...50

9.1.GetOpt : Command line parsing...50
9.2.Memo: Fast memo functions..50
9.3.QuickCheck ..50
9.4.Readline : Command line editing...50
9.5.Select : Synchronous I/O multiplexing...51

9.5.1. UsinghSelect with Concurrent Haskell...52

10. The Win32 package..54

4

Chapter 1. Introduction
Previous versions of GHC (versions 5.02 and older) came with a set of libraries called thehslibs ,
also known as the Hugs-GHC libraries. These libraries are being phased out in favour of the new
hierarchical libraries, but for the time being we still providehslibs for backwards compatibility.

The status of each module inhslibs can be considered to have three possible values:

Moved

The module has moved to the hierarchical libraries, and its documentation (in this document)
will report its new location.

Not moved

The module is waiting to be moved to the new hierarchical libraries, but it hasn’t moved yet.
Please continue to use it from its currenthslibs package for the time being. The
documentation for the module (if it had any) is still in place in this document.

Deprecated

The module is deprecated and should not be used. A deprecated module will be indicated as
such in its documentation, along with an suggested alternative API.

1.1. Usage
If you’re using hslibs with GHC[i], then you need to add-package p to the command line for each
package from which you’re using a module. See thesection on packages in the User’s Guide
(../users_guide/packages.html) for an explanation of packages.

5

Chapter 2. The concurrent package:
concurrency support
The concurrency libraries (and the associated documentation) have moved. See the module
Control.Concurrent (../base/Control.Concurrent.html) in the hierarchical libraries.

6

Chapter 3. The data package: datatypes

3.1. Edison
Edison is a complete package of data structures for Haskell. Documentation is availableonline
(http://www.haskell.org/ghc/docs/edison/).

3.2. The FiniteMap type
This module has moved toData.FiniteMap (../base/Data.FiniteMap.html) in the hierarchical
libraries.

3.3. Set

This module has moved toData.Set (../base/Data.Set.html) in the hierarchical libraries.

7

Chapter 4. The lang package: language
support

4.1. Bits

This module has moved toData.Bits (../base/Data.Bits.html) in the hierarchical libraries.

4.2. CError

This module has moved toForeign.C.Error (../base/Foreign.C.Error.html) in the hierarchical
libraries.

4.3. CForeign

This module has moved toForeign.C (../base/Foreign.C.html) in the hierarchical libraries.

4.4. CTypes

This module has moved toForeign.C.Types (../base/Foreign.C.Types.html) in the hierarchical
libraries.

4.5. CTypesISO

This module has moved toForeign.C.TypesISO (../base/Foreign.C.TypesISO.html) in the
hierarchical libraries.

4.6. CString

This module has moved toForeign.C.String (../base/Foreign.C.String.html) in the hierarchical
libraries.

4.7. DiffArray

This module has moved toData.Array.Diff (../base/Data.Array.Diff.html) in the hierarchical
libraries.

8

Chapter 4. Thelang package: language support

4.8. DirectoryExts

TheDirectoryExts module follows the footstep of other ’Exts ’ modules and provides
functionality that goes beyond what the Haskell 98 moduleDirectory offers. That is, functionality
that provides access to file/directory operations in an OS-independent manner.

DirectoryExts currently exports the following:

copyFile :: FilePath -> FilePath -> IO ()

Notes:

• copyFile lets you copy a file to another non-existent file.

File copying is done external to Haskell, and is for natural reasons quicker as a result and, most
importantly, file copying handles the number of the OS-specific error conditions that might arise
as a result of trying to perform the file copy operation.

Should the file copying operation for some reason not succeed, the actioncopyFile raises an IO
exception to signal the fact.

4.9. Dynamic

This module has moved toData.Dynamic (../base/Data.Dynamic.html) in the hierarchical libraries.

4.10. Exception

This module has moved toControl.Exception (../base/Control.Exception.html) in the
hierarchical libraries.

4.11. Foreign

This module has moved toForeign (../base/Foreign.html) in the hierarchical libraries.

4.12. ForeignPtr

This module has moved toForeign.ForeignPtr (../base/Foreign.ForeignPtr.html) in the
hierarchical libraries.

9

Chapter 4. Thelang package: language support

4.13. GlaExts

This module has moved toGHC.Exts (../base/GHC.Exts.html) in the hierarchical libraries.

4.14. IArray

This module has moved toData.Array.IArray (../base/Data.Array.IArray.html) in the
hierarchical libraries.

4.15. Int

This module has moved toData.Int (../base/Data.Int.html) in the hierarchical libraries.

4.16. IOExts

This library is the home for miscellaneous IO-related extensions.

4.16.1. IO monad extensions

fixIO :: (a -> IO a) -> IO a

fixIO allows recursive IO operations to be defined. The first argument tofixIO should be a
function that takes its own output as an argument (sometimes called "tying the knot").

unsafePerformIO :: IO a -> a

This is the "back door" into theIO monad, allowingIO computation to be performed at any
time. For this to be safe, theIO computation should be free of side effects and independent of
its environment.

If the I/O computation wrapped inunsafePerformIO performs side effects, then the relative
order in which those side effects take place (relative to the main I/O trunk, or other calls to
unsafePerformIO) is indeterminate.

However, it is less well known thatunsafePerformIO is not type safe. For example:

test :: IORef [a]
test = unsafePerformIO $ newIORef []

main = do
writeIORef test [42]
bang <- readIORef test
print (bang :: [Char])

10

Chapter 4. Thelang package: language support

This program will core dump. This problem with polymorphic references is well known in the
ML community, and does not arise with normal monadic use of references. There is no easy
way to make it impossible once you useunsafePerformIO . Indeed, it is possible to write
coerce :: a -> b with the help ofunsafePerformIO . So be careful!

unsafeInterleaveIO :: IO a -> IO a

unsafeInterleaveIO allows IO computation to be deferred lazily. When passed a value of
type IO a , theIO will only be performed when the value of thea is demanded. This is used to
implement lazy file reading, seeIO.hGetContents .

4.16.2. Mutable Variables

data IORef - instance of: Eq
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()
mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))

- deprecated, use modifyIORef
updateIORef :: IORef a -> (a -> a) -> IO ()

4.16.3. Mutable Arrays

data IOArray - instance of: Eq
newIOArray :: Ix ix => (ix,ix) -> elt -> IO (IOArray ix elt)
boundsIOArray :: Ix ix => IOArray ix elt -> (ix, ix)
readIOArray :: Ix ix => IOArray ix elt -> ix -> IO elt
writeIOArray :: Ix ix => IOArray ix elt -> ix -> elt -> IO ()
freezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
thawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)
unsafeFreezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
unsafeThawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)

Note:unsafeFreezeIOArray andunsafeThawIOArray are not provided by Hugs.

4.16.4. Extended file modes

data IOModeEx
= BinaryMode IOMode
| TextMode IOMode

deriving (Eq, Read, Show)

openFileEx :: FilePath -> IOModeEx -> IO Handle

11

Chapter 4. Thelang package: language support

hSetBinaryMode :: Handle -> Bool -> IO Bool

GHC’s implementation of the IO library distinguishes between binary- and text-mode files. This
unfortunate hack is imposed on us by the need to support Win32 platforms.

On Win32, files opened in text mode are subject to CR-LF translation. When reading a handle in text
mode, CR-LF sequences in the physical file are translated into lone LFs in the stream presented to
the Haskell program. Writes to a text mode handle are subject to the inverse transformation.

On Unix platforms there is no such translation. What you get is exactly the contents of the file, and
vice versa.

Unfortunately this behaviour makes it difficult to correctly implement file-positioning operations in
text mode on Win32. If you want to use such operations, you must first place the handle in binary
mode. Failure to do so results in IO exceptions being raised. This applies only to Win32, and not to
any other platforms. If your programs use seek operations and you want them to be portable between
Unix and Win32, you need to ensure the relevant handles are in binary mode.

You can get hold of a binary-mode file handle one of two ways. Either open the file with
openFileEx , which allows the mode to be specified. Or, if you already have an open handle, use
hSetBinaryMode to change its mode.

Also as a result of this, note that on Win32 there are also several operations which, whist still
allowed, may give different results in text mode than their Unix counterparts. These are: changing
buffering modes of a handle (hSetBuffering), and writing to a read-write handle. In both cases,
the read-buffer associated with the handle needs to be flushed, and, due to the Win32 text mode
translation, the resulting physical file position following the flush may be wrong.

This issue of seeking in the presence of a non-identity transform between file and buffer contents
will need to be revisited when the library is re-done to properly support Unicode. The present
arrangement is the least-worst kludge we could come up with at present.

4.16.5. Bulk transfers

hGetBuf :: Handle -> Addr -> Int -> IO Int
hPutBuf :: Handle -> Addr -> Int -> IO ()

These functions read and write chunks of data to/from a handle. They will return only when either
the full buffer has been transfered, or the end of file is reached (in the case ofhGetBuf .

hGetBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO Int
hPutBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO ()

These functions mirror the previous two functions, but operate onMutableByteArray s instead of
Addr s. This may be more convenient and/or faster, depending on the circumstances.

12

Chapter 4. Thelang package: language support

4.16.6. Terminal control

hIsTerminalDevice :: Handle -> IO Bool
hSetEcho :: Handle -> Bool -> IO ()
hGetEcho :: Handle -> IO Bool

4.16.7. Redirecting handles

withHandleFor :: Handle -> Handle -> IO a -> IO a
withStdout :: Handle -> IO a -> IO a
withStdin :: Handle -> IO a -> IO a
withStderr :: Handle -> IO a -> IO a

4.16.8. Trace

trace :: String -> a -> a

When called,trace prints the string in its first argument to standard error, before returning the
second argument as its result. Thetrace function is not referentially transparent, and should only be
used for debugging, or for monitoring execution. Some implementations oftrace may decorate the
string that’s output to indicate that you’re tracing.

trace is implemented usingunsafePerformIO .

4.16.9. Extra IOError Predicates
The IO module provides several predicates over theIOError type, such asisEOFError ,
isDoesNotExistError , and so on. Here we define an extended set of these predicates, taking into
account more types of error:

isHardwareFault :: IOError -> Bool
isInappropriateType :: IOError -> Bool
isInterrupted :: IOError -> Bool
isInvalidArgument :: IOError -> Bool
isOtherError :: IOError -> Bool
isProtocolError :: IOError -> Bool
isResourceVanished :: IOError -> Bool
isSystemError :: IOError -> Bool
isTimeExpired :: IOError -> Bool
isUnsatisfiedConstraints :: IOError -> Bool
isUnsupportedOperation :: IOError -> Bool
isDynIOError :: IOError -> Bool

13

Chapter 4. Thelang package: language support

4.16.10. Miscellany

unsafePtrEq :: a -> a -> Bool
slurpFile :: FilePath -> IO (Addr, Int)
hConnectTo :: Handle -> Handle -> IO ()
performGC :: IO ()
freeHaskellFunctionPtr :: Addr -> IO ()

getDynIOError :: IOError -> Maybe Dynamic.Dynamic

performGC triggers an immediate garbage collection

unsafePtrEq compares two values for pointer equality without evaluating them. The results are not
referentially transparent and may vary significantly from one compiler to another or in the face of
semantics-preserving program changes. However, pointer equality is useful in creating a number of
referentially transparent constructs such as this simplified memoisation function:

> cache :: (a -> b) -> (a -> b)
> cache f = \x -> unsafePerformIO (check x)
> where
> ref = unsafePerformIO (newIORef (error "cache", error "cache"))
> check x = readIORef ref »= \ (x’,a) ->
> if x ‘unsafePtrEq‘ x’ then
> return a
> else
> let a = f x in
> writeIORef ref (x, a) »
> return a

getDynIOError takes anIOError as argument. If it is a dynamic IO error, it returnsJust d ,
whered is the dynamic value. Of (some) use by library providers to provide their ownIOError

types.

4.17. LazyST

The contents of this module can now be found inControl.Monad.ST.Lazy

(../base/Control.Monad.ST.Lazy.html), andData.STRef.Lazy (../base/Data.STRef.Lazy.html).

4.18. MArray

This module has moved toData.Array.MArray (../base/Data.Array.MArray.html) in the
hierarchical libraries.

14

Chapter 4. Thelang package: language support

4.19. MarshalAlloc

This module has moved toForeign.Marshal.Alloc (../base/Foreign.Marshal.Alloc.html) in the
hierarchical libraries.

4.20. MarshalArray

This module has moved toForeign.Marshal.Array (../base/Foreign.Marshal.Array.html) in the
hierarchical libraries.

4.21. MarshalError

This module has moved toForeign.Marshal.Error (../base/Foreign.Marshal.Error.html) in the
hierarchical libraries.

4.22. MarshalUtils

This module has moved toForeign.Marshal.Utils (../base/Foreign.Marshal.Utils.html) in the
hierarchical libraries.

4.23. NumExts

TheNumExts interface collect together various numeric operations that have proven to be
commonly useful

- Going between Doubles and Floats:
doubleToFloat :: Double -> Float
floatToDouble :: Float -> Double

showHex :: Integral a => a -> ShowS
showOct :: Integral a => a -> ShowS
showBin :: Integral a => a -> ShowS

showIntAtBase :: Integral a
=> a - base
-> (a -> Char) - digit to char
-> a - number to show.
-> ShowS

showListWith :: (a -> ShowS) -> [a] -> ShowS

Notes:

15

Chapter 4. Thelang package: language support

• If doubleToFloat is applied to aDouble that is within the representable range forFloat , the
result may be the next higher or lower representableFloat value. If theDouble is out of range,
the result is undefined.

• No loss of precision occurs in the other direction withfloatToDouble , the floating value
remains unchanged.

• showOct , showHex andshowBin will prefix 0o, 0x and0b, respectively. Like
Numeric.showInt , these show functions work on positive numbers only.

• showIntAtBase is the more general function for converting a number at some base into a series
of characters. The aboveshow* functions use it, for instance, here’s howshowHex could be
defined

showHex :: Integral a => a -> ShowS
showHex n r =

showString "0x" $
showIntAtBase 16 (toChrHex) n r
where

toChrHex d
| d < 10 = chr (ord ’0’ + fromIntegral d)
| otherwise = chr (ord ’a’ + fromIntegral (d - 10))

• showListWith is strictly speaking not a ’NumExts ’ kind of function, but it’s sometimes useful in
conjunction with the othershow* functions thatNumExts exports. It is the non-overloaded version
of showList , allowing you to supply theshows function to use per list element. For instance,

putStrLn (NumExts.showListWith NumExts.showHex [0..16])

will print out the elements of[0..16] in hexadecimal form.

4.24. PackedString

This module has moved toData.PackedString (../base/Data.PackedString.html) in the
hierarchical libraries.

4.25. Ptr

This module has moved toForeign.Ptr (../base/Foreign.Ptr.html) in the hierarchical libraries.

4.26. ShowFunctions

This module has moved toText.Show.Functions (../base/Text.Show.Functions.html) in the
hierarchical libraries.

16

Chapter 4. Thelang package: language support

4.27. ST

The contents of this module can now be found inControl.Monad.ST

(../base/Control.Monad.ST.html),Data.STRef (../base/Data.STRef.html), andData.Array.ST

(../base/Data.Array.ST.html) in the hierarchical libraries.

4.28. StableName

This module has moved toSystem.Mem.StableName (../base/System.Mem.StableName.html) in
the hierarchical libraries.

4.29. StablePtr

This module has moved toForeign.StablePtr (../base/Foreign.StablePtr.html) in the hierarchical
libraries.

4.30. Storable

This module has moved toForeign.Storable (../base/Foreign.Storable.html) in the hierarchical
libraries.

4.31. StorableArray

This module has moved toData.Array.Storable (../base/Data.Array.Storable.html) in the
hierarchical libraries.

4.32. SystemExts

TheSystemExts module contains functionality that goes beyond what the Haskell 98 module
System provides. That is, functionality that provides access to the underlying OS’ facilities in an
OS-independent manner.

Notice thatSystemExts shares the goal ofSystem . That is, it aims to provide functionality that’s
supported by all platforms. So, if you’re looking to do serious system programming for a particular
(family) of platforms, you really want to check out the libraries provided for the platform in question
as well. e.g., ThePosix library for POSIX.1 -conforming platforms, theWin32 library for Win32
platforms.

SystemExts exports the following:

rawSystem :: String -> IO ExitCode

17

Chapter 4. Thelang package: language support

withArgs :: [String] -> IO a -> IO a
withProgName :: String -> IO a -> IO a
getEnvironment :: IO [(String, String)]

Notes:

• rawSystem provides the exact same behaviour asSystem.system , except that the system
command isn’t invoked via a shell / command interpreter.

Not involving your platform’s shell / command interpreter is quicker if you don’t need its
functionality, and it avoids running into limitations imposed by the shell / command interpreter.
For instance, Win32 command interpreters place a limit on the length of the command they can
execute (~4k), which sometimes gets in the way of what you want to do.

• ThewithArgs action lets you change the value returned bySystem.getArgs while executing
an IO action.

When the action has finished executing (or if it raises an exception), the argument vector of
System.getArgs is restored.

• ThewithProgName action lets you change the program name string returned by
System.getProgName while executing an IO action.

As withArgs , when the action has finished executing (or if it raises an exception), the program
name stringSystem.getArgs is restored.

• ThegetEnvironment action returns all the environment values present in your process’
environment block.

4.33. Weak

This module has moved toSystem.Mem.Weak (../base/System.Mem.Weak.html) in the hierarchical
libraries.

4.34. Word

This module has moved toData.Word (../base/Data.Word.html) in the hierarchical libraries.

18

Chapter 5. The net package: networking
support
(Darren Moffat supplied the initial version of this library.)

5.1. BSD: System database info
This module has moved toNetwork.BSD (../network/Network.BSD.html) (packagenetwork) in
the hierarchical libraries.

5.2. Socket : The high-level networking interface
This module has moved toNetwork (../network/Network.html) (packagenetwork) in the
hierarchical libraries.

5.3. SocketPrim : The low-level socket binding
This module has moved toNetwork.Socket (../network/Network.Socket.html) (packagenetwork)
in the hierarchical libraries.

5.4. URI

This module has moved toNetwork.URI (../network/Network.URI.html) (packagenetwork) in the
hierarchical libraries.

19

Chapter 6. The num package: numeric
operations
This category is currently empty.

20

Chapter 7. The posix package: POSIX
support

ThePosix interface gives you access to the set of OS services standardised by POSIX 1003.1b (or
theIEEE Portable Operating System Interface for Computing Environments- IEEE Std. 1003.1).
The interface is accessed byimport Posix and adding-package posix on your command-line.

The Posix package isnot supported under Windows. We’ve looked into various ways of providing
support, and other than using Cygwin, none is particularly attractive. If you want Posix support
under Windows, try building GHC for Cygwin; we don’t currently do this, but it is mostly supported.

7.1. Posix data types

data ByteCount - instances of : Eq Ord Num Real Integral Ix Enum Show

A ByteCount is a primitive of typeunsigned . At a minimum, an conforming implementation must
support values in the range[0, UINT_MAX] .

data ClockTick - instances of : Eq Ord Num Real Integral Ix Enum Show

A ClockTick is a primitive of typeclock_t , which is used to measure intervals of time in
fractions of a second. The resolution is determined bygetSysVar ClockTick .

data DeviceID - instances of : Eq Ord Num Real Integral Ix Enum Show

A DeviceID is a primitive of typedev_t . It must be an arithmetic type.

data EpochTime - instances of : Eq Ord Num Real Integral Ix Enum Show

A EpochTime is a primitive of typetime_t , which is used to measure seconds since the Epoch. At
a minimum, the implementation must support values in the range[0, INT_MAX] .

data FileID - instances of : Eq Ord Num Real Integral Ix Enum Show

A FileID is a primitive of typeino_t . It must be an arithmetic type.

data FileMode - instance of : Eq

A FileMode is a primitive of typemode_t . It must be an arithmetic type.

21

Chapter 7. Theposix package: POSIX support

data FileOffset - instances of : Eq Ord Num Real Integral Ix Enum Show

A FileOffset is a primitive of typeoff_t . It must be an arithmetic type.

data GroupID - instances of : Eq Ord Num Real Integral Ix Enum Show

A GroupID is a primitive of typegid_t . It must be an arithmetic type.

data Limit - instances of : Eq Ord Num Real Integral Ix Enum Show

A Limit is a primitive of typelong . At a minimum, the implementation must support values in the
range[LONG_MIN, LONG_MAX].

data LinkCount - instances of : Eq Ord Num Real Integral Ix Enum Show

A LinkCount is a primitive of typenlink_t . It must be an arithmetic type.

data ProcessID - instances of : Eq Ord Num Real Integral Ix Enum Show
type ProcessGroupID = ProcessID

A ProcessID is a primitive of typepid_t . It must be a signed arithmetic type.

data UserID - instances of : Eq Ord Num Real Integral Ix Enum Show

A UserID is a primitive of typeuid_t . It must be an arithmetic type.

data DirStream

A DirStream is a primitive of typeDIR * .

data FileStatus

A FileStatus is a primitive of typestruct stat .

data GroupEntry

A GroupEntry is a primitive of typestruct group .

data ProcessTimes

ProcessTimes is a primitive structure containing aclock_t and astruct tms .

data SignalSet

22

Chapter 7. Theposix package: POSIX support

An SignalSet is a primitive of typesigset_t .

data SystemID

A SystemID is a primitive of typestruct utsname .

data TerminalAttributes

TerminalAttributes is a primitive of typestruct termios .

data UserEntry

A UserEntry is a primitive of typestruct passwd .

data BaudRate = B0 | B50 | B75 | B110 | B134 | B150 | B200 | B300 | B600
| B1200 | B1800 | B2400 | B4800 | B9600 | B19200 | B38400
deriving (Eq, Show)

data Fd

instance Eq Fd
instance Show Fd

intToFd :: Int -> Fd - use with care.
fdToInt :: Fd -> Int - ditto.

data FdOption = AppendOnWrite
| CloseOnExec
| NonBlockingRead

data ControlCharacter = EndOfFile
| EndOfLine
| Erase
| Interrupt
| Kill
| Quit
| Suspend
| Start
| Stop

type ErrorCode = Int

type FileLock = (LockRequest, SeekMode, FileOffset, FileOffset)
- whence start length

data FlowAction = SuspendOutput | RestartOutput | TransmitStop | TransmitStart

23

Chapter 7. Theposix package: POSIX support

data Handler = Default | Ignore | Catch (IO ())

data LockRequest = ReadLock | WriteLock | Unlock
deriving (Eq, Show)

data OpenMode = ReadOnly | WriteOnly | ReadWrite

data PathVar = LinkLimit
| InputLineLimit
| InputQueueLimit
| FileNameLimit
| PathNameLimit
| PipeBufferLimit
| SetOwnerAndGroupIsRestricted
| FileNamesAreNotTruncated

data QueueSelector = InputQueue | OutputQueue | BothQueues

type Signal = Int

data SysVar = ArgumentLimit
| ChildLimit
| ClockTick
| GroupLimit
| OpenFileLimit
| PosixVersion
| HasSavedIDs
| HasJobControl

data TerminalMode = InterruptOnBreak - BRKINT
| MapCRtoLF - ICRNL
| IgnoreBreak - IGNBRK
| IgnoreCR - IGNCR
| IgnoreParityErrors - IGNPAR
| MapLFtoCR - INLCR
| CheckParity - INPCK
| StripHighBit - ISTRIP
| StartStopInput - IXOFF
| StartStopOutput - IXON
| MarkParityErrors - PARMRK
| ProcessOutput - OPOST
| LocalMode - CLOCAL
| ReadEnable - CREAD
| TwoStopBits - CSTOPB
| HangupOnClose - HUPCL
| EnableParity - PARENB
| OddParity - PARODD
| EnableEcho - ECHO
| EchoErase - ECHOE

24

Chapter 7. Theposix package: POSIX support

| EchoKill - ECHOK
| EchoLF - ECHONL
| ProcessInput - ICANON
| ExtendedFunctions - IEXTEN
| KeyboardInterrupts - ISIG
| NoFlushOnInterrupt - NOFLSH
| BackgroundWriteInterrupt - TOSTOP

data TerminalState = Immediately | WhenDrained | WhenFlushed

data ProcessStatus = Exited ExitCode
| Terminated Signal
| Stopped Signal
deriving (Eq, Show)

7.2. Posix Process Primitives

forkProcess :: IO (Maybe ProcessID)

forkProcess calls fork , returningJust pid to the parent, wherepid is the ProcessID of the
child, and returningNothing to the child.

executeFile :: FilePath - Command
-> Bool - Search PATH?
-> [String] - Arguments
-> Maybe [(String, String)] - Environment
-> IO ()

executeFile cmd args env calls one of theexecv* family, depending on whether or not the
current PATH is to be searched for the command, and whether or not an environment is provided to
supersede the process’s current environment. The basename (leading directory names suppressed) of
the command is passed toexecv* asarg[0] ; the argument list passed toexecuteFile therefore
begins witharg[1] .

Search PATH? Supersede environ? Call
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~
False False execv
False True execve
True False execvp
True True execvpe*

25



Chapter 7. Theposix package: POSIX support

Note thatexecvpe is not provided by the POSIX standard, and must be written by hand. Care must
be taken to ensure that the search path is extracted from the original environment, and not from the
environment to be passed on to the new image.

NOTE: In general, sharing open files between parent and child processes is potential bug farm, and
should be avoided unless you really depend on this ‘feature’ of POSIX’fork() semantics. Using
Haskell, there’s the extra complication that arguments toexecuteFile might come from files that
are read lazily (usinghGetContents , or some such.) If this is the case, then for your own sanity,
please ensure that the arguments toexecuteFile have been fully evaluated before calling
forkProcess (followed byexecuteFile .) Consider yourself warned :-)

A successfulexecuteFile overlays the current process image with a new one, so it only returns on
failure.

runProcess :: FilePath - Command
-> [String] - Arguments
-> Maybe [(String, String)] - Environment (Nothing -> Inherited)
-> Maybe FilePath - Working directory (Nothing -> inherited)
-> Maybe Handle - stdin (Nothing -> inherited)
-> Maybe Handle - stdout (Nothing -> inherited)
-> Maybe Handle - stderr (Nothing -> inherited)
-> IO ()

runProcess is our candidate for the high-level OS-independent primitive.

runProcess cmd args env wd inhdl outhdl errhdl runscmd (searching the current
PATH) with argumentsargs . If env is Just pairs , the command is executed with the environment
specified bypairs of variables and values; otherwise, the command is executed with the current
environment. Ifwd is Just dir , the command is executed with working directorydir ; otherwise,
the command is executed in the current working directory. If{in,out,err hdl} is Just handle ,
the command is executed with theFd for std{in,out,err } attached to the specifiedhandle ;
otherwise, theFd for std{in,out,err } is left unchanged.

getProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> ProcessID
-> IO (Maybe ProcessStatus)

getProcessStatus blk stopped pid callswaitpid , returningJust tc , the
ProcessStatus for processpid if it is available,Nothing otherwise. Ifblk is False , then
WNOHANGis set in the options forwaitpid , otherwise not. Ifstopped is True , thenWUNTRACEDis
set in the options forwaitpid , otherwise not.

getGroupProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> ProcessGroupID
-> IO (Maybe (ProcessID, ProcessStatus))

26



Chapter 7. Theposix package: POSIX support

getGroupProcessStatus blk stopped pgid callswaitpid , returningJust (pid, tc) , the
ProcessID andProcessStatus for any process in grouppgid if one is available,Nothing

otherwise. Ifblk is False , thenWNOHANGis set in the options forwaitpid , otherwise not. If
stopped is True , thenWUNTRACEDis set in the options forwaitpid , otherwise not.

getAnyProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> IO (Maybe (ProcessID, ProcessStatus))

getAnyProcessStatus blk stopped callswaitpid , returningJust (pid, tc) , the
ProcessID andProcessStatus for any child process if one is available,Nothing otherwise. If
blk is False , thenWNOHANGis set in the options forwaitpid , otherwise not. Ifstopped is True ,
thenWUNTRACEDis set in the options forwaitpid , otherwise not.

exitImmediately :: ExitCode -> IO ()

exitImmediately status calls_exit to terminate the process with the indicated exitstatus .
The operation never returns.

getEnvironment :: IO [(String, String)]

getEnvironment parses the environment variable mapping provided byenviron , returning
(variable, value) pairs. The operation never fails.

setEnvironment :: [(String, String)] -> IO ()

setEnvironment replaces the process environment with the provided mapping of(variable,

value) pairs.

getEnvVar :: String -> IO String

getEnvVar var returns the value associated with variablevar in the current environment
(identical functionality provided through standard Haskell library functionSystem.getEnv ).

The operation may fail with:

NoSuchThing

The variable has no mapping in the current environment.

setEnvVar :: String -> String -> IO ()

27



Chapter 7. Theposix package: POSIX support

setEnvVar var val sets the value associated with variablevar in the current environment to be
val . Any previous mapping is superseded.

removeEnvVar :: String -> IO ()

removeEnvVar var removes any value associated with variablevar in the current environment.
Deleting a variable for which there is no mapping does not generate an error.

nullSignal :: Signal
nullSignal = 0

backgroundRead, sigTTIN :: Signal
backgroundWrite, sigTTOU :: Signal
continueProcess, sigCONT :: Signal
floatingPointException, sigFPE :: Signal
illegalInstruction, sigILL :: Signal
internalAbort, sigABRT :: Signal
keyboardSignal, sigINT :: Signal
keyboardStop, sigTSTP :: Signal
keyboardTermination, sigQUIT :: Signal
killProcess, sigKILL :: Signal
lostConnection, sigHUP :: Signal
openEndedPipe, sigPIPE :: Signal
processStatusChanged, sigCHLD :: Signal
realTimeAlarm, sigALRM :: Signal
segmentationViolation, sigSEGV :: Signal
softwareStop, sigSTOP :: Signal
softwareTermination, sigTERM :: Signal
userDefinedSignal1, sigUSR1 :: Signal
userDefinedSignal2, sigUSR2 :: Signal

signalProcess :: Signal -> ProcessID -> IO ()

signalProcess int pid callskill to signal processpid with interrupt signalint .

raiseSignal :: Signal -> IO ()

raiseSignal int callskill to signal the current process with interrupt signalint .

signalProcessGroup :: Signal -> ProcessGroupID -> IO ()

signalProcessGroup int pgid callskill to signal all processes in grouppgid with interrupt
signalint .

setStoppedChildFlag :: Bool -> IO Bool

28



Chapter 7. Theposix package: POSIX support

setStoppedChildFlag bool sets a flag which controls whether or not theNOCLDSTOPoption
will be used the next time a signal handler is installed forSIGCHLD. If bool is True (the default),
NOCLDSTOPwill not be used; otherwise it will be. The operation never fails.

queryStoppedChildFlag :: IO Bool

queryStoppedChildFlag queries the flag which controls whether or not theNOCLDSTOPoption
will be used the next time a signal handler is installed forSIGCHLD. If NOCLDSTOPwill be used, it
returnsFalse ; otherwise (the default) it returnsTrue . The operation never fails.

emptySignalSet :: SignalSet
fullSignalSet :: SignalSet
addSignal :: Signal -> SignalSet -> SignalSet
deleteSignal :: Signal -> SignalSet -> SignalSet
inSignalSet :: Signal -> SignalSet -> Bool

installHandler :: Signal
-> Handler
-> Maybe SignalSet - other signals to block
-> IO Handler - old handler

installHandler int handler iset callssigaction to install an interrupt handler for signal
int . If handler is Default , SIG_DFL is installed; ifhandler is Ignore , SIG_IGN is installed; if
handler is Catch action , a handler is installed which will invokeaction in a new thread when
(or shortly after) the signal is received. SeeChapter 2for details on how to communicate between
threads.

If iset is Just s , then thesa_mask of thesigaction structure is set tos ; otherwise it is cleared.
The previously installed signal handler forint is returned.

getSignalMask :: IO SignalSet

getSignalMask callssigprocmask to determine the set of interrupts which are currently being
blocked.

setSignalMask :: SignalSet -> IO SignalSet

setSignalMask mask callssigprocmask with SIG_SETMASKto block all interrupts inmask.
The previous set of blocked interrupts is returned.

blockSignals :: SignalSet -> IO SignalSet

setSignalMask mask callssigprocmask with SIG_BLOCKto add all interrupts inmask to the
set of blocked interrupts. The previous set of blocked interrupts is returned.

29



Chapter 7. Theposix package: POSIX support

unBlockSignals :: SignalSet -> IO SignalSet

setSignalMask mask callssigprocmask with SIG_UNBLOCKto remove all interrupts inmask

from the set of blocked interrupts. The previous set of blocked interrupts is returned.

getPendingSignals :: IO SignalSet

getPendingSignals callssigpending to obtain the set of interrupts which have been received
but are currently blocked.

awaitSignal :: Maybe SignalSet -> IO ()

awaitSignal iset suspends execution until an interrupt is received. Ifiset is Just s ,
awaitSignal callssigsuspend , installings as the new signal mask before suspending execution;
otherwise, it callspause . awaitSignal returns on receipt of a signal. If you have installed any
signal handlers withinstallHandler , it may be wise to callyield directly afterawaitSignal to
ensure that the signal handler runs as promptly.

scheduleAlarm :: Int -> IO Int

scheduleAlarm i callsalarm to schedule a real time alarm at leasti seconds in the future.

sleep :: Int -> IO ()

sleep i callssleep to suspend execution of the program until at leasti seconds have elapsed or a
signal is received.

7.3. Posix Process Environment

getProcessID :: IO ProcessID

getProcessID callsgetpid to obtain theProcessID for the current process.

getParentProcessID :: IO ProcessID

getProcessID callsgetppid to obtain theProcessID for the parent of the current process.

getRealUserID :: IO UserID

getRealUserID callsgetuid to obtain the realUserID associated with the current process.

30



Chapter 7. Theposix package: POSIX support

getEffectiveUserID :: IO UserID

getEffectiveUserID callsgeteuid to obtain the effectiveUserID associated with the current
process.

setUserID :: UserID -> IO ()

setUserID uid callssetuid to set the real, effective, and saved set-user-id associated with the
current process touid .

getLoginName :: IO String

getLoginName callsgetlogin to obtain the login name associated with the current process.

getRealGroupID :: IO GroupID

getRealGroupID callsgetgid to obtain the realGroupID associated with the current process.

getEffectiveGroupID :: IO GroupID

getEffectiveGroupID callsgetegid to obtain the effectiveGroupID associated with the current
process.

setGroupID :: GroupID -> IO ()

setGroupID gid callssetgid to set the real, effective, and saved set-group-id associated with the
current process togid .

getGroups :: IO [GroupID]

getGroups callsgetgroups to obtain the list of supplementaryGroupID s associated with the
current process.

getEffectiveUserName :: IO String

getEffectiveUserName callscuserid to obtain a name associated with the effectiveUserID of
the process.

getProcessGroupID :: IO ProcessGroupID

getProcessGroupID callsgetpgrp to obtain theProcessGroupID for the current process.

31



Chapter 7. Theposix package: POSIX support

createProcessGroup :: ProcessID -> IO ProcessGroupID

createProcessGroup pid callssetpgid to make processpid a new process group leader.

joinProcessGroup :: ProcessGroupID -> IO ProcessGroupID

joinProcessGroup pgid callssetpgid to set theProcessGroupID of the current process to
pgid .

setProcessGroupID :: ProcessID -> ProcessGroupID -> IO ()

setProcessGroupID pid pgid callssetpgid to set theProcessGroupID for processpid to
pgid .

createSession :: IO ProcessGroupID

createSession callssetsid to create a new session with the current process as session leader.

systemName :: SystemID -> String
nodeName :: SystemID -> String
release :: SystemID -> String
version :: SystemID -> String
machine :: SystemID -> String

getSystemID :: IO SystemID

getSystemID callsuname to obtain information about the current operating system.

> epochTime :: IO EpochTime

epochTime calls time to obtain the number of seconds that have elapsed since the epoch (Jan 01
00:00:00 GMT 1970).

elapsedTime :: ProcessTimes -> ClockTick
userTime :: ProcessTimes -> ClockTick
systemTime :: ProcessTimes -> ClockTick
childUserTime :: ProcessTimes -> ClockTick
childSystemTime :: ProcessTimes -> ClockTick

getProcessTimes :: IO ProcessTimes

getProcessTimes calls times to obtain time-accounting information for the current process and
its children.

32



Chapter 7. Theposix package: POSIX support

getControllingTerminalName :: IO FilePath

getControllingTerminalName callsctermid to obtain a name associated with the controlling
terminal for the process. If a controlling terminal exists,getControllingTerminalName returns
the name of the controlling terminal.

The operation may fail with:

NoSuchThing

There is no controlling terminal, or its name cannot be determined.

SystemError

Various other causes.

getTerminalName :: Fd -> IO FilePath

getTerminalName fd calls ttyname to obtain a name associated with the terminal forFd fd . If
fd is associated with a terminal,getTerminalName returns the name of the terminal.

The operation may fail with:

InappropriateType

The channel is not associated with a terminal.

NoSuchThing

The channel is associated with a terminal, but it has no name.

SystemError

Various other causes.

queryTerminal :: Fd -> IO Bool

queryTerminal fd calls isatty to determine whether or notFd fd is associated with a terminal.

getSysVar :: SysVar -> IO Limit

getSysVar var callssysconf to obtain the dynamic value of the requested configurable system
limit or option. For defined system limits,getSysVar returns the associated value. For defined
system options, the result ofgetSysVar is undefined, but not failure.

The operation may fail with:

33



Chapter 7. Theposix package: POSIX support

NoSuchThing

The requested system limit or option is undefined.

7.4. Posix operations on files and directories

openDirStream :: FilePath -> IO DirStream

openDirStream dir callsopendir to obtain a directory stream fordir .

readDirStream :: DirStream -> IO String

readDirStream dp callsreaddir to obtain the next directory entry (struct dirent ) for the
open directory streamdp, and returns thed_name member of that structure.

The operation may fail with:

EOF

End of file has been reached.

SystemError

Various other causes.

rewindDirStream :: DirStream -> IO ()

rewindDirStream dp callsrewinddir to reposition the directory streamdp at the beginning of
the directory.

closeDirStream :: DirStream -> IO ()

closeDirStream dp callsclosedir to close the directory streamdp.

getWorkingDirectory :: IO FilePath

getWorkingDirectory callsgetcwd to obtain the name of the current working directory.

changeWorkingDirectory :: FilePath -> IO ()

changeWorkingDirectory dir callschdir to change the current working directory todir .

34



Chapter 7. Theposix package: POSIX support

nullFileMode :: FileMode - ------
ownerReadMode :: FileMode - r-----
ownerWriteMode :: FileMode - -w-----
ownerExecuteMode :: FileMode - -x----
groupReadMode :: FileMode - --r---
groupWriteMode :: FileMode - ---w---
groupExecuteMode :: FileMode - ---x--
otherReadMode :: FileMode - ----r-
otherWriteMode :: FileMode - -----w-
otherExecuteMode :: FileMode - -----x
setUserIDMode :: FileMode - -S----
setGroupIDMode :: FileMode - ---S--

stdFileMode :: FileMode - rw-rw-rw-

ownerModes :: FileMode - rwx----
groupModes :: FileMode - --rwx--
otherModes :: FileMode - ----rwx
accessModes :: FileMode - rwxrwxrwx

unionFileModes :: FileMode -> FileMode -> FileMode
intersectFileModes :: FileMode -> FileMode -> FileMode

stdInput :: Fd
stdInput = intToFd 0

stdOutput :: Fd
stdOutput = intToFd 1

stdError :: Fd
stdError = intToFd 2

data OpenFileFlags =
OpenFileFlags {

append :: Bool,
exclusive :: Bool,
noctty :: Bool,
nonBlock :: Bool,
trunc :: Bool

}

openFd :: FilePath
-> OpenMode
-> Maybe FileMode - Just x => O_CREAT, Nothing => must exist
-> OpenFileFlags
-> IO Fd

openFd path acc mode (OpenFileFlags app excl noctty nonblock trunc) calls
open to obtain aFd for the filepath with access modeacc . If mode is Just m , theO_CREATflag is

35



Chapter 7. Theposix package: POSIX support

set and the file’s permissions will be based onmif it does not already exist; otherwise, theO_CREAT

flag is not set. The argumentsapp , excl , noctty , nonblock , andtrunc control whether or not the
flagsO_APPEND, O_EXCL, O_NOCTTY, O_NONBLOCK, andO_TRUNCare set, respectively.

createFile :: FilePath -> FileMode -> IO Fd

createFile path mode callscreat to obtain aFd for file path , which will be created with
permissions based onmode if it does not already exist.

setFileCreationMask :: FileMode -> IO FileMode

setFileCreationMask mode callsumask to set the process’s file creation mask tomode. The
previous file creation mask is returned.

createLink :: FilePath -> FilePath -> IO ()

createLink old new calls link to create a new path,new, linked to an existing file,old .

createDirectory :: FilePath -> FileMode -> IO ()

createDirectory dir mode callsmkdir to create a new directory,dir , with permissions based
on mode.

createNamedPipe :: FilePath -> FileMode -> IO ()

createNamedPipe fifo mode callsmkfifo to create a new named pipe,fifo , with permissions
based onmode.

removeLink :: FilePath -> IO ()

removeLink path callsunlink to remove the link namedpath .

removeDirectory :: FilePath -> IO ()

removeDirectory dir callsrmdir to remove the directory nameddir .

rename :: FilePath -> FilePath -> IO ()

rename old new callsrename to rename a file or directory fromold to new.

fileMode :: FileStatus -> FileMode

fileID :: FileStatus -> FileID

36



Chapter 7. Theposix package: POSIX support

deviceID :: FileStatus -> DeviceID

linkCount :: FileStatus -> LinkCount

fileOwner :: FileStatus -> UserID
fileGroup :: FileStatus -> GroupID
fileSize :: FileStatus -> FileOffset

accessTime :: FileStatus -> EpochTime
modificationTime :: FileStatus -> EpochTime
statusChangeTime :: FileStatus -> EpochTime

isDirectory :: FileStatus -> Bool
isCharacterDevice :: FileStatus -> Bool
isBlockDevice :: FileStatus -> Bool
isRegularFile :: FileStatus -> Bool
isNamedPipe :: FileStatus -> Bool

getFileStatus :: FilePath -> IO FileStatus

getFileStatus path callsstat to get theFileStatus information for the filepath .

getFdStatus :: Fd -> IO FileStatus

getFdStatus fd calls fstat to get theFileStatus information for the file associated withFd

fd .

queryAccess :: FilePath -> Bool -> Bool -> Bool -> IO Bool

queryAccess path r w x callsaccess to test the access permissions for filepath . The three
arguments,r , w, andx control whether or notaccess is called withR_OK, W_OK, andX_OK

respectively.

queryFile :: FilePath -> IO Bool

queryFile path callsaccess with F_OKto test for the existence for filepath .

setFileMode :: FilePath -> FileMode -> IO ()

setFileMode path mode callschmod to set the permission bits associated with filepath to mode.

setOwnerAndGroup :: FilePath -> UserID -> GroupID -> IO ()

setOwnerAndGroup path uid gid callschown to set theUserID andGroupID associated with
file path to uid andgid , respectively.

37



Chapter 7. Theposix package: POSIX support

setFileTimes :: FilePath -> EpochTime -> EpochTime -> IO ()

setFileTimes path atime mtime callsutime to set the access and modification times
associated with filepath to atime andmtime , respectively.

touchFile :: FilePath -> IO ()

touchFile path callsutime to set the access and modification times associated with filepath to
the current time.

getPathVar :: PathVar -> FilePath -> IO Limit

getPathVar var path callspathconf to obtain the dynamic value of the requested configurable
file limit or option associated with file or directorypath . For defined file limits,getPathVar

returns the associated value. For defined file options, the result ofgetPathVar is undefined, but not
failure. The operation may fail with:

NoSuchThing

The requested file limit or option is undefined.

SystemError

Various other causes.

getFdVar :: PathVar -> Fd -> IO Limit

getFdVar var fd calls fpathconf to obtain the dynamic value of the requested configurable file
limit or option associated with the file or directory attached to the open channelfd . For defined file
limits, getFdVar returns the associated value. For defined file options, the result ofgetFdVar is
undefined, but not failure.

The operation may fail with:

NoSuchThing

The requested file limit or option is undefined.

SystemError

Various other causes.

7.5. Posix Input and Output Primitives

38



Chapter 7. Theposix package: POSIX support

createPipe :: IO (Fd, Fd)

createPipe callspipe to create a pipe and returns a pair ofFds, the first for reading and the
second for writing.

dup :: Fd -> IO Fd

dup fd callsdup to duplicateFd fd to anotherFd.

dupTo :: Fd -> Fd -> IO ()

dupTo src dst callsdup2 to duplicateFd src to Fd dst .

fdClose :: Fd -> IO ()

fdClose fd callsclose to closeFd fd .

fdRead :: Fd -> ByteCount -> IO (String, ByteCount)

fdRead fd nbytes callsread to read at mostnbytes bytes fromFd fd , and returns the result as
a string paired with the number of bytes actually read.

The operation may fail with:

EOF

End of file has been reached.

SystemError

Various other causes.

fdWrite :: Fd -> String -> IO ByteCount

fdWrite fd s callswrite to write the strings to Fd fd as a contiguous sequence of bytes. It
returns the number of bytes successfully written.

queryFdOption :: FdOption -> Fd -> IO Bool

getFdOption opt fd calls fcntl to determine whether or not the flag associated withFdOption

opt is set forFd fd .

setFdOption :: Fd -> FdOption -> Bool -> IO ()

39



Chapter 7. Theposix package: POSIX support

setFdOption fd opt val calls fcntl to set the flag associated withFdOption opt on Fd fd to
val .

getLock :: Fd -> FileLock -> IO (Maybe (ProcessID, FileLock))

getLock fd lock calls fcntl to get the firstFileLock for Fd fd which blocks theFileLock

lock . If no suchFileLock exists,getLock returnsNothing . Otherwise, it returnsJust (pid,

block) , whereblock is the blockingFileLock andpid is theProcessID of the process holding
the blockingFileLock .

setLock :: Fd -> FileLock -> IO ()

setLock fd lock calls fcntl with F_SETLK to set or clear a lock segment forFd fd as indicated
by theFileLock lock . setLock does not block, but fails withSystemError if the request cannot
be satisfied immediately.

waitToSetLock :: Fd -> FileLock -> IO ()

waitToSetLock fd lock calls fcntl with F_SETLKWto set or clear a lock segment forFd fd as
indicated by theFileLock lock . If the request cannot be satisfied immediately,waitToSetLock

blocks until the request can be satisfied.

fdSeek :: Fd -> SeekMode -> FileOffset -> IO FileOffset

fdSeek fd whence offset calls lseek to position theFd fd at the givenoffset from the
starting location indicated bywhence . It returns the resulting offset from the start of the file in bytes.

7.6. Posix, Device- and Class-Specific Functions

terminalMode :: TerminalMode -> TerminalAttributes -> Bool
withMode :: TerminalAttributes -> TerminalMode -> TerminalAttributes
withoutMode :: TerminalAttributes -> TerminalMode -> TerminalAttributes

bitsPerByte :: TerminalAttributes -> Int
withBits :: TerminalAttributes -> Int -> TerminalAttributes

controlChar :: TerminalAttributes -> ControlCharacter -> Maybe Char
withCC :: TerminalAttributes

-> (ControlCharacter, Char)
-> TerminalAttributes

withoutCC :: TerminalAttributes
-> ControlCharacter
-> TerminalAttributes

40



Chapter 7. Theposix package: POSIX support

inputTime :: TerminalAttributes -> Int
withTime :: TerminalAttributes -> Int -> TerminalAttributes

minInput :: TerminalAttributes -> Int
withMinInput :: TerminalAttributes -> Int -> TerminalAttributes

inputSpeed :: TerminalAttributes -> BaudRate
withInputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

outputSpeed :: TerminalAttributes -> BaudRate
withOutputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

getTerminalAttributes :: Fd -> IO TerminalAttributes

getTerminalAttributes fd calls tcgetattr to obtain theTerminalAttributes associated
with Fd fd .

setTerminalAttributes :: Fd
-> TerminalAttributes
-> TerminalState
-> IO ()

setTerminalAttributes fd attr ts calls tcsetattr to change theTerminalAttributes

associated withFd fd to attr , when the terminal is in the state indicated byts .

sendBreak :: Fd -> Int -> IO ()

sendBreak fd duration calls tcsendbreak to transmit a continuous stream of zero-valued bits
on Fd fd for the specified implementation-dependentduration .

drainOutput :: Fd -> IO ()

drainOutput fd calls tcdrain to block until all output written toFd fd has been transmitted.

discardData :: Fd -> QueueSelector -> IO ()

discardData fd queues calls tcflush to discard pending input and/or output forFd fd , as
indicated by theQueueSelector queues .

controlFlow :: Fd -> FlowAction -> IO ()

controlFlow fd action calls tcflow to control the flow of data onFd fd , as indicated by
action .

41



Chapter 7. Theposix package: POSIX support

getTerminalProcessGroupID :: Fd -> IO ProcessGroupID

getTerminalProcessGroupID fd calls tcgetpgrp to obtain theProcessGroupID of the
foreground process group associated with the terminal attached toFd fd .

setTerminalProcessGroupID :: Fd -> ProcessGroupID -> IO ()

setTerminalProcessGroupID fd pgid calls tcsetpgrp to set theProcessGroupID of the
foreground process group associated with the terminal attached toFd fd to pgid .

7.7. Posix System Databases

groupName :: GroupEntry -> String
groupID :: GroupEntry -> GroupID
groupMembers :: GroupEntry -> [String]

getGroupEntryForID :: GroupID -> IO GroupEntry

getGroupEntryForID gid callsgetgrgid to obtain theGroupEntry information associated
with GroupID gid .

The operation may fail with:

NoSuchThing

There is no group entry for the GroupID.

getGroupEntryForName :: String -> IO GroupEntry

getGroupEntryForName name callsgetgrnam to obtain theGroupEntry information associated
with the group calledname.

The operation may fail with:

NoSuchThing

There is no group entry for the name.

userName :: UserEntry -> String
userID :: UserEntry -> UserID
userGroupID :: UserEntry -> GroupID
homeDirectory :: UserEntry -> String
userShell :: UserEntry -> String

42



Chapter 7. Theposix package: POSIX support

getUserEntryForID :: UserID -> IO UserEntry

getUserEntryForID gid callsgetpwuid to obtain theUserEntry information associated with
UserID uid . The operation may fail with:

NoSuchThing

There is no user entry for the UserID.

getUserEntryForName :: String -> IO UserEntry

getUserEntryForName name callsgetpwnam to obtain theUserEntry information associated
with the user loginname.

The operation may fail with:

NoSuchThing

There is no user entry for the name.

7.8. POSIX Errors

getErrorCode :: IO ErrorCode

getErrorCode returns the current value of the external variableerrno . It never fails.

setErrorCode :: ErrorCode -> IO ()

setErrorCode err sets the external variableerrno to err . It never fails.

noError :: ErrorCode
noError = 0

argumentListTooLong, e2BIG :: ErrorCode
badFd, eBADF :: ErrorCode
brokenPipe, ePIPE :: ErrorCode
directoryNotEmpty, eNOTEMPTY :: ErrorCode
execFormatError, eNOEXEC :: ErrorCode
fileAlreadyExists, eEXIST :: ErrorCode
fileTooLarge, eFBIG :: ErrorCode
filenameTooLong, eNAMETOOLONG :: ErrorCode
improperLink, eXDEV :: ErrorCode

43



Chapter 7. Theposix package: POSIX support

inappropriateIOControlOperation, eNOTTY :: ErrorCode
inputOutputError, eIO :: ErrorCode
interruptedOperation, eINTR :: ErrorCode
invalidArgument, eINVAL :: ErrorCode
invalidSeek, eSPIPE :: ErrorCode
isADirectory, eISDIR :: ErrorCode
noChildProcess, eCHILD :: ErrorCode
noLocksAvailable, eNOLCK :: ErrorCode
noSpaceLeftOnDevice, eNOSPC :: ErrorCode
noSuchOperationOnDevice, eNODEV :: ErrorCode
noSuchDeviceOrAddress, eNXIO :: ErrorCode
noSuchFileOrDirectory, eNOENT :: ErrorCode
noSuchProcess, eSRCH :: ErrorCode
notADirectory, eNOTDIR :: ErrorCode
notEnoughMemory, eNOMEM :: ErrorCode
operationNotImplemented, eNOSYS :: ErrorCode
operationNotPermitted, ePERM :: ErrorCode
permissionDenied, eACCES :: ErrorCode
readOnlyFileSystem, eROFS :: ErrorCode
resourceBusy, eBUSY :: ErrorCode
resourceDeadlockAvoided, eDEADLK :: ErrorCode
resourceTemporarilyUnavailable, eAGAIN :: ErrorCode
tooManyLinks, eMLINK :: ErrorCode
tooManyOpenFiles, eMFILE :: ErrorCode
tooManyOpenFilesInSystem, eNFILE :: ErrorCode

7.9. POpen
POpen provides a convenient way of sending string input to a subprocess and reading output from it
lazily.

popen :: FilePath - Command
-> [String] - Arguments
-> Maybe String - Input
-> IO (String, String, ProcessID) - (stdout, stderr, pid)

popen cmd args inp executescmd with args in a forked process. Ifinp is Just str then str in
sent in a pipe to the standard input of the process. The output and error streams from the process are
returned, together with the process id.

popenEnvDir :: FilePath - Command
-> [String] - Arguments
-> Maybe String - Input
-> Maybe [(String, String)] - Environment
-> Maybe FilePath - Working directory

44



Chapter 7. Theposix package: POSIX support

-> IO (String, String, ProcessID) - (stdout, stderr, pid)

popenEnvDir cmd args inp env dir like popen executescmd with args in a forked process.
If inp is Just str then str in sent in a pipe to the standard input of the process. Ifenv is Just

pairs , the command in executed in the environment specified bypairs , instead of the current one.
If dir is Just d the command is executed in directoryd instead of the current directory. The output
and error streams from the process are returned, together with the process id.

45



Chapter 8. The text package: text
manipulation

8.1. HaXml: Handling XML data
HaXml is a library for converting Haskell data structures into XML and vice versa. The
documentation hasn’t been incorporated into this book as yet, but for now it can be found atThe
HaXml page (http://www.cs.york.ac.uk/fp/HaXml/).

8.2. MatchPS : The Perl-like matching interface
(Sigbjørn Finne supplied the regular-expressions interface.)

TheMatchPS module provides Perl-like “higher-level” facilities to operate onPackedStrings

(Section 4.24). The regular expressions in question are in Perl syntax. The “flags” on various
functions can include:i for case-insensitive,s for single-line mode, andg for global. (It’s probably
worth your time to peruse the source code. . . )

matchPS :: PackedString - regexp
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch - info about what matched and where

searchPS :: PackedString - regexp
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch

- Perl-like match-and-substitute:
substPS :: PackedString - regexp

-> PackedString - replacement
-> [Char] - flags
-> PackedString - string
-> PackedString

- same as substPS, but no prefix and suffix:
replacePS :: PackedString - regexp

-> PackedString - replacement
-> [Char] - flags
-> PackedString - string
-> PackedString

match2PS :: PackedString - regexp
-> PackedString - string1 to match

46



Chapter 8. Thetext package: text manipulation

-> PackedString - string2 to match
-> [Char] - flags
-> Maybe REmatch

search2PS :: PackedString - regexp
-> PackedString - string to match
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch

- functions to pull the matched pieces out of an REmatch:

getMatchesNo :: REmatch -> Int
getMatchedGroup :: REmatch -> Int -> PackedString -> PackedString
getWholeMatch :: REmatch -> PackedString -> PackedString
getLastMatch :: REmatch -> PackedString -> PackedString
getAfterMatch :: REmatch -> PackedString -> PackedString

- (reverse) brute-force string matching;
- Perl equivalent is index/rindex:
findPS, rfindPS :: PackedString -> PackedString -> Maybe Int

- Equivalent to Perl "chop" (off the last character, if any):
chopPS :: PackedString -> PackedString

- matchPrefixPS: tries to match as much as possible of strA starting
- from the beginning of strB (handy when matching fancy literals in
- parsers):
matchPrefixPS :: PackedString -> PackedString -> Int

8.3. Parsec : Parsing combinators
TheParsec library has been moved to the hierarchical libraries; it can be found in
Text.ParserCombinators.Parsec (../base/Text.ParserCombinators.Parsec.html) in thebase

package.

8.4. Pretty : Pretty printing combimators
ThePretty library has been moved to the hierarchical libraries; it can be found in
Text.PrettyPrint.HughesPJ (../base/Text.PrettyPrint.HughesPJ.html) in thebase package.

47



Chapter 8. Thetext package: text manipulation

8.5. Regex : The low-level regex matching
interface

(Sigbjørn Finne supplied the regular-expressions interface.)

TheRegex library provides quite direct interface to the GNU regular-expression library, for doing
manipulation onPackedString s (Section 4.24). You probably need to see the GNU documentation
if you are operating at this level. Alternatively, you can use the simpler and higher-level
RegexString (Section 8.6) interface.

The datatypes and functions thatRegex provides are:

data PatBuffer # just a bunch of bytes (mutable)

data REmatch
= REmatch (Array Int GroupBounds) - for $1, ... $n

GroupBounds - for $‘ (everything before match)
GroupBounds - for $& (entire matched string)
GroupBounds - for $’ (everything after)
GroupBounds - for $+ (matched by last bracket)

- GroupBounds hold the interval where a group
- matched inside a string, e.g.
-
- matching "reg(exp)" "a regexp" returns the pair (5,7) for the
- (exp) group. (PackedString indices start from 0)

type GroupBounds = (Int, Int)

re_compile_pattern
:: PackedString - pattern to compile
-> Bool - True <=> assume single-line mode
-> Bool - True <=> case-insensitive
-> IO PatBuffer

re_match :: PatBuffer - compiled regexp
-> PackedString - string to match
-> Int - start position
-> Bool - True <=> record results in registers
-> IO (Maybe REmatch)

- Matching on 2 strings is useful when you’re dealing with multiple
- buffers, which is something that could prove useful for
- PackedStrings, as we don’t want to stuff the contents of a file
- into one massive heap chunk, but load (smaller chunks) on demand.

re_match2 :: PatBuffer - 2-string version
-> PackedString
-> PackedString

48



Chapter 8. Thetext package: text manipulation

-> Int
-> Int
-> Bool
-> IO (Maybe REmatch)

re_search :: PatBuffer - compiled regexp
-> PackedString - string to search
-> Int - start index
-> Int - stop index
-> Bool - True <=> record results in registers
-> IO (Maybe REmatch)

re_search2 :: PatBuffer - Double buffer search
-> PackedString
-> PackedString
-> Int - start index
-> Int - range (?)
-> Int - stop index
-> Bool - True <=> results in registers
-> IO (Maybe REmatch)

8.6. RegexString : Regex matching made simple
TheRegexString library has been moved to the hierarchical libraries; it can be found in
Text.Regex (../base/Text.Regex.html) in thebase package.

49



Chapter 9. The util package:
miscellaneous utilities

9.1. GetOpt : Command line parsing
TheGetOpt library has been moved to the hierarchical libraries; it can be found in
System.Console.GetOpt (../base/System.Console.GetOpt.html) in thebase package.

9.2. Memo: Fast memo functions
TheMemolibrary provides fast polymorphic memo functions using hash tables. The interface is:

memo :: (a -> b) -> a -> b

So, for example,memo f is a version off that caches the results of previous calls.

The searching is very fast, being based on pointer equality. One consequence of this is that the
caching will only be effective ifexactly the same argument is passed again to the memoised
function. This means not just a copy of a previous argument, but the same instance. It’s not useful to
memoise integer functions using this interface, because integers are generally copied a lot and two
instances of ’27’ are unlikely to refer to the same object.

This memoisation library works well when the keys are large (or even infinite).

The memo table implementation uses weak pointers and stable names (see the GHC/Hugs library
document) to avoid space leaks and allow hashing for arbitrary Haskell objects. NOTE: while
individual memo table entries will be garbage collected if the associated key becomes garbage, the
memo table itself will not be collected if the function becomes garbage. We plan to fix this in a
future version.

There’s another version ofmemoif you want to explicitly give a size for the hash table (the default
size is 1001 buckets):

memoSized :: Int -> (a -> b) -> a -> b

9.3. QuickCheck

TheQuickCheck library has been moved to the hierarchical libraries; it can be found in
Debug.QuickCheck (../base/Debug.QuickCheck.html) in thebase package.

50



Chapter 9. Theutil package: miscellaneous utilities

9.4. Readline : Command line editing

(Darren Moffat supplied the initial version of theReadline module.)

TheReadline module is a straightforward interface to the GNU Readline library. As such, you will
need to look at the GNU documentation (and have alibreadline.a file around somewhere. . . )

The main function you’ll use is:

readline :: String{-the prompt-} -> IO (Maybe String)

If you want to mess around with Full Readline G(l)ory, we also provide:

type KeyCode = Char

type CallbackFunction =
(Int -> - Numeric Argument

KeyCode -> - KeyCode of pressed Key
IO Int) - What’s this?

initialize :: IO ()
addHistory :: String -> IO ()
bindKey :: KeyCode -> CallbackFunction -> IO ()
addDefun :: String -> CallbackFunction -> Maybe KeyCode -> IO ()

getReadlineName :: IO String
setReadlineName :: String -> IO ()
getLineBuffer :: IO String
setLineBuffer :: String -> IO ()
getPoint :: IO Int
setPoint :: Int -> IO ()
getEnd :: IO Int
setEnd :: Int -> IO ()
getMark :: IO Int
setMark :: Int -> IO ()
setDone :: Bool -> IO ()
setPendingInput :: KeyCode -> IO ()
getPrompt :: IO String
getTerminalName :: IO String

inStream :: Handle
outStream :: Handle

(All those names are just Haskellised versions of what you will see in the GNU readline
documentation.)

51



Chapter 9. Theutil package: miscellaneous utilities

9.5. Select : Synchronous I/O multiplexing
TheSelect interface provides a Haskell wrapper for theselect() OS call supplied by many
modern UNIX variants.Select exports the following:

type TimeOut = Maybe Int
- Nothing => wait indefinitely.
- Just x | x >= 0 => block waiting for ’x’ micro seconds.
- | otherwise => block waiting for ’-x’ micro seconds.

hSelect :: [Handle]
-> [Handle]
-> [Handle]
-> TimeOut
-> IO SelectResult

type SelectResult
= ( [Handle] - input handles ready

, [Handle] - output handles ready
, [Handle] - exc. handles ready
)

Here’s an example of how it could be used:

module Main(main) where

import Select
import IO

main :: IO ()
main = do

hSetBuffering stdin NoBuffering
putStrLn "waiting for input to appear"
hSelect [stdin] [] [] Nothing
putStrLn "input ready, let’s try reading"
x <- getChar
print x

where the call tohSelect makes the process go to sleep until there’s input available onstdin .

9.5.1. Using hSelect with Concurrent Haskell
In brief: don’t. For two reasons:

• hSelect will cause all your Haskell threads to block until thehSelect returns, much like any
call to a foreign function.

52



Chapter 9. Theutil package: miscellaneous utilities

• You don’t need to. Concurrent Haskell will let you do I/O on multiple file handles concurrently by
forking threads, and if you need to assign a timeout, then this can be done using a combination of
threadDelay (see ) and asynchronous exceptions (see ).

53



Chapter 10. The Win32 package
The win32 package is a thin and incomplete veneer over the Win32 API. Look at the source code to
see what is available; the usage should be obvious from the Microsoft’s C API documentation.

54




