
Common Architecture for Building
Applications and Libraries

i

Common Architecture for Building Applications and
Libraries

User’s Guide

Common Architecture for Building
Applications and Libraries

ii

COLLABORATORS

TITLE :

Common Architecture for Building Applications
and Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY May 8, 2009

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Common Architecture for Building
Applications and Libraries

iii

Contents

1 Introduction 1

2 Packages 1

3 Creating a package 2

3.1 Package descriptions . 4

3.1.1 Package properties . 5

3.1.2 Library . 6

3.1.3 Executables . 6

3.1.4 Build information . 7

3.1.5 Configurations . 8

3.1.5.1 Layout . 9

3.1.5.2 Configuration Flags . 10

3.1.5.3 Conditional Blocks . 10

3.1.5.4 Conditions . 11

3.1.5.5 Resolution of Conditions and Flags . 11

3.1.5.6 Meaning of field values when using conditionals . 11

3.1.6 Source Repositories . 12

3.2 Accessing data files from package code . 13

3.3 System-dependent parameters . 14

3.4 Conditional compilation . 15

3.5 More complex packages . 16

4 Building and installing a package 16

4.1 setup configure . 17

4.1.1 Programs used for building . 18

4.1.2 Installation paths . 18

4.1.2.1 Path variables in the simple build system . 19

4.1.2.2 Paths in the simple build system . 20

4.1.2.3 Prefix-independence . 20

4.1.3 Controlling Flag Assignments . 20

4.1.4 Miscellaneous options . 20

4.2 setup build . 22

4.3 setup makefile . 22

4.4 setup haddock . 23

4.5 setup hscolour . 23

4.6 setup install . 24

4.7 setup copy . 24

Common Architecture for Building
Applications and Libraries

iv

4.8 setup register . 24

4.9 setup unregister . 25

4.10 setup clean . 25

4.11 setup test . 25

4.12 setup sdist . 25

5 Reporting bugs and deficiencies 25

6 Stability of Cabal interfaces 25

6.1 Cabal file format . 26

6.2 Command-line interface . 26

6.2.1 Very Stable Command-line interfaces . 26

6.2.2 Stable Command-line interfaces . 26

6.2.3 Unstable command-line . 26

6.3 Functions and Types . 26

6.3.1 Very Stable API . 26

6.3.2 Semi-stable API . 26

6.3.3 Unstable API . 26

6.4 Hackage . 27

Common Architecture for Building
Applications and Libraries

v

Abstract

Cabal aims to simplify the distribution of Haskell software. It does this by specifying a number of interfaces between package
authors, builders and users, as well as providing a library implementing these interfaces.

http://www.haskell.org/

Common Architecture for Building
Applications and Libraries

1 / 27

User’s Guide

1 Introduction

Developers write Cabal packages. These can be for libraries or executables. This involves writing the code obviously and also
creating a .cabal file. The .cabal file contains some information about the package. Some of this information is needed to
actually build the package and some is just useful for identifying the package when it comes to distribution.

name: Foo
version: 1.0

library
build-depends: base
exposed-modules: Foo

Users install Cabal packages so they can use them. It is not expected that users will have to modify any of the information in
the .cabal file. Cabal does provide a number of ways for a user to customise how and where a package is installed. They can
decide where a package will be installed, which Haskell implementation to use and whether to build optimised code or build with
the ability to profile code.

tar -xzf Foo-1.0.tar.gz
cd Foo-1.0
runhaskell Setup configure --with-compiler=ghc-6.4.2 --user
runhaskell Setup build
runhaskell Setup install

One of the purposes of Cabal is to make it easier to build a package with different Haskell implementations. So it provides
abstractions of features present in different Haskell implementations and wherever possible it is best to take advantage of these
to increase portability. Where necessary however it is possible to use specific features of specific implementations. For example
one of the pieces of information a package author can put in the package’s .cabal file is what language extensions the code
uses. This is far preferable to specifying flags for a specific compiler as it allows Cabal to pick the right flags for the Haskell
implementation that the user picks. It also allows Cabal to figure out if the language extension is even supported by the Haskell
implementation that the user picks. Where compiler-specific options are needed however, there is an "escape hatch" available.
The developer can specify implementation-specific options and more generally there is a configuration mechanism to customise
many aspects of how a package is built depending on the Haskell implementation, the Operating system, computer architecture
and user-specified configuration flags.

name: Foo
version: 1.0

library
build-depends: base
exposed-modules: Foo
extensions: ForeignFunctionInterface
ghc-options: -Wall
nhc98-options: -K4m
if os(windows)
build-depends: Win32

2 Packages

A package is the unit of distribution for the Cabal. Its purpose, when installed, is to make available either or both of:

• A library, exposing a number of Haskell modules. A library may also contain hidden modules, which are used internally but
not available to clients.1

1Hugs doesn’t support module hiding.

Common Architecture for Building
Applications and Libraries

2 / 27

• One or more Haskell programs.

However having both a library and executables in a package does not work very well; if the executables depend on the library,
they must explicitly list all the modules they directly or indirectly import from that library.

Internally, the package may consist of much more than a bunch of Haskell modules: it may also have C source code and header
files, source code meant for preprocessing, documentation, test cases, auxiliary tools etc.

A package is identified by a globally-unique package name, which consists of one or more alphanumeric words separated by
hyphens. To avoid ambiguity, each of these words should contain at least one letter. Chaos will result if two distinct packages
with the same name are installed on the same system, but there is not yet a mechanism for allocating these names. A particular
version of the package is distinguished by a version number, consisting of a sequence of one or more integers separated by dots.
These can be combined to form a single text string called the package ID, using a hyphen to separate the name from the version,
e.g. ‘HUnit-1.1’.

Note
Packages are not part of the Haskell language; they simply populate the hierarchical space of module names. In GHC 6.6 and
later a program may contain multiple modules with the same name if they come from separate packages; in all other current
Haskell systems packages may not overlap in the modules they provide, including hidden modules.

3 Creating a package

Suppose you have a directory hierarchy containing the source files that make up your package. You will need to add two more
files to the root directory of the package:

package.cabal a Unicode UTF-8 text file containing a package description (for details of the syntax of this file, see Sec-
tion 3.1)

Setup.hs or Setup.lhs a single-module Haskell program to perform various setup tasks (with the interface described in
Section 4). This module should import only modules that will be present in all Haskell implementations, including modules
of the Cabal library. In most cases it will be trivial, calling on the Cabal library to do most of the work.

Once you have these, you can create a source bundle of this directory for distribution. Building of the package is discussed in
Section 4.

Example 3.1 A package containing a simple library
The HUnit package contains a file HUnit.cabal containing:

Name: HUnit
Version: 1.1.1
Cabal-Version: >= 1.2
License: BSD3
License-File: LICENSE
Author: Dean Herington
Homepage: http://hunit.sourceforge.net/
Category: Testing
Synopsis: A unit testing framework for Haskell

Library
Build-Depends: base
Exposed-modules:
Test.HUnit.Base, Test.HUnit.Lang, Test.HUnit.Terminal,
Test.HUnit.Text, Test.HUnit

Extensions: CPP

and the following Setup.hs:

import Distribution.Simple
main = defaultMain

Common Architecture for Building
Applications and Libraries

3 / 27

Example 3.2 A package containing executable programs

Name: TestPackage
Version: 0.0
Cabal-Version: >= 1.2
License: BSD3
Author: Angela Author
Synopsis: Small package with two programs
Build-Type: Simple

Executable program1
Build-Depends: HUnit
Main-Is: Main.hs
Hs-Source-Dirs: prog1

Executable program2
Main-Is: Main.hs
Build-Depends: HUnit
Hs-Source-Dirs: prog2
Other-Modules: Utils

with Setup.hs the same as above.

Example 3.3 A package containing a library and executable programs

Name: TestPackage
Version: 0.0
Cabal-Version: >= 1.2
License: BSD3
Author: Angela Author
Synopsis: Package with library and two programs
Build-Type: Simple

Library
Build-Depends: HUnit
Exposed-Modules: A, B, C

Executable program1
Main-Is: Main.hs
Hs-Source-Dirs: prog1
Other-Modules: A, B

Executable program2
Main-Is: Main.hs
Hs-Source-Dirs: prog2
Other-Modules: A, C, Utils

with Setup.hs the same as above. Note that any library modules required (directly or indirectly) by an executable must be
listed again.

The trivial setup script used in these examples uses the simple build infrastructure provided by the Cabal library (see Distri-
bution.Simple). The simplicity lies in its interface rather that its implementation. It automatically handles preprocessing with
standard preprocessors, and builds packages for all the Haskell implementations (except nhc98, for now).

The simple build infrastructure can also handle packages where building is governed by system-dependent parameters, if you
specify a little more (see Section 3.3). A few packages require more elaborate solutions (see Section 3.5).

file:../libraries/Cabal/Distribution-Simple.html
file:../libraries/Cabal/Distribution-Simple.html

Common Architecture for Building
Applications and Libraries

4 / 27

3.1 Package descriptions

The package description file must have a name ending in ‘.cabal’. It must be a Unicode text file encoded using valid UTF-8.
There must be exactly one such file in the directory. The first part of the name is usually the package name, and some of the tools
that operate on Cabal packages require this.

In the package description file, lines whose first non-whitespace characters are ‘--’ are treated as comments and ignored.

This file should contain of a number global property descriptions and several sections.

• The global properties describe the package as a whole, such as name, license, author, etc. (see Section 3.1.1).

• Optionally, a number of configuration flags can be declared. These can be used to enable or disable certain features of a
package. (see Section 3.1.5).

• The (optional) library section specifies the library properties (see Section 3.1.2) and relevant build information (see Sec-
tion 3.1.4).

• Following is an arbitrary number of executable sections which describe an executable program and (see Section 3.1.3) relevant
build information (see Section 3.1.4).

Each section consists of a number of property descriptions in the form of field/value pairs, with a syntax roughly like mail
message headers.

• Case is not significant in field names, but is significant in field values.

• To continue a field value, indent the next line relative to the field name.

• Field names may be indented, but all field values in the same section must use the same indentation.

• Tabs are not allowed as indentation characters due to a missing standard interpretation of tab width.

• To get a blank line in a field value, use an indented ‘.’

The syntax of the value depends on the field. Field types include:

token , filename , directory Either a sequence of one or more non-space non-comma characters, or a quoted string in
Haskell 98 lexical syntax. Unless otherwise stated, relative filenames and directories are interpreted from the package root
directory.

freeform , URL , address An arbitrary, uninterpreted string.

identifier A letter followed by zero or more alphanumerics or underscores.

Modules and preprocessors
Haskell module names listed in the exposed-modules and other-modules fields may correspond to Haskell source
files, i.e. with names ending in ‘.hs’ or ‘.lhs’, or to inputs for various Haskell preprocessors. The simple build infrastructure
understands the extensions ‘.gc’ (greencard), ‘.chs’ (c2hs), ‘.hsc’ (hsc2hs), ‘.y’ and ‘.ly’ (happy), ‘.x’ (alex) and ‘.-
cpphs’ (cpphs). When building, Cabal will automatically run the appropriate preprocessor and compile the Haskell module it
produces.

Some fields take lists of values, which are optionally separated by commas, except for the build-depends field, where the
commas are mandatory.

Some fields are marked as required. All others are optional, and unless otherwise specified have empty default values.

http://www.haskell.org/greencard/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/cpphs/

Common Architecture for Building
Applications and Libraries

5 / 27

3.1.1 Package properties

These fields may occur in the first top-level properties section and describe the package as a whole:

name: package-name (required) The unique name of the package (see Section 2), without the version number.

version: numbers (required) The package version number, usually consisting of a sequence of natural numbers separated
by dots.

cabal-version: >, <=, etc. & numbers The version of Cabal required for this package. Since, with Cabal version
1.2 the syntax of package descriptions has changed, this is now a required field. List the field early in your .cabal file so
that it will appear as a syntax error before any others, since old versions of Cabal unfortunately do not recognize this field.

For compatibility, files written in the old syntax are still recognized. Thus if you don’t require features introduced with or
after Cabal version 1.2, you may write your package description file using the old syntax. Please consult the user’s guide
of that Cabal version for a description of that syntax.

build-type: identifier The type of build used by this package. Build types are the constructors of the BuildType type,
defaulting to Custom. If this field is given a value other than Custom, some tools such as cabal-install will be
able to build the package without using the setup script. So if you are just using the default Setup.hs then set the build
type as Simple.

license: identifier (default: AllRightsReserved) The type of license under which this package is distributed.
License names are the constants of the License type.

license-file: filename The name of a file containing the precise license for this package. It will be installed with the
package.

copyright: freeform The content of a copyright notice, typically the name of the holder of the copyright on the package
and the year(s) from which copyright is claimed.

For example: Copyright: (c) 2006-2007 Joe Bloggs

author: freeform The original author of the package.

maintainer: address The current maintainer or maintainers of the package. This is an e-mail address to which users
should send bug reports, feature requests and patches.

stability: freeform The stability level of the package, e.g. alpha, experimental, provisional, stable.

homepage: URL The package homepage.

bug-reports: URL The URL where users should direct bug reports. This would normally be either:

• A mailto: URL, eg for a person or a mailing list.

• An http: (or https:) URL for an online bug tracking system.

For example Cabal itself uses a web-based bug tracking system

bug-reports: http://hackage.haskell.org/trac/hackage/

package-url: URL The location of a source bundle for the package. The distribution should be a Cabal package.

synopsis: freeform A very short description of the package, for use in a table of packages. This is your headline, so keep
it short (one line) but as informative as possible. Save space by not including the package name or saying it’s written in
Haskell.

description: freeform Description of the package. This may be several paragraphs, and should be aimed at a Haskell
programmer who has never heard of your package before.

For library packages, this field is used as prologue text by setup haddock (see Section 4.4), and thus may contain the same
markup as haddock documentation comments.

category: freeform A classification category for future use by the package catalogue Hackage. These categories have not
yet been specified, but the upper levels of the module hierarchy make a good start.

file:../libraries/Cabal/Distribution-PackageDescription.html#t:BuildType
file:../libraries/Cabal/Distribution-License.html#t:License
http://www.haskell.org/haddock/

Common Architecture for Building
Applications and Libraries

6 / 27

tested-with: compiler list A list of compilers and versions against which the package has been tested (or at least
built).

data-files: filename list A list of files to be installed for run-time use by the package. This is useful for packages
that use a large amount of static data, such as tables of values or code templates. For details on how to find these files at
run-time, see Section 3.2.

A limited form of * wildcards in file names, for example data-files: images/*.png matches all the .png files
in the images directory.

The limitation is that * wildcards are only allowed in place of the file name, not in the directory name or file extension.
In particular, wildcards do not include directories contents recursively. Furthermore, if a wildcard is used it must be used
with an extension, so data-files: data/* is not allowed. When matching a wildcard plus extension, a file’s
full extension must match exactly, so *.gz matches foo.gz but not foo.tar.gz. A wildcard that does not match any
files is an error.

The reason for providing only a very limited form of wildcard is to concisely express the common case of a large number
of related files of the same file type without making it too easy to accidentally include unwanted files.

data-dir: directory The directory where Cabal looks for data files to install, relative to the source directory. By default,
Cabal will look in the source directory itself.

extra-source-files: filename list A list of additional files to be included in source distributions built with setup
sdist (see Section 4.12).

As with data-files it can use a limited form of * wildcards in file names.

extra-tmp-files: filename list A list of additional files or directories to be removed by setup clean (see Sec-
tion 4.10). These would typically be additional files created by additional hooks, such as the scheme described in Sec-
tion 3.3.

3.1.2 Library

The library section should contain the following fields:

exposed-modules: identifier list (required if this package contains a library) A list of modules added by this
package.

exposed: boolean (default: True) Some Haskell compilers (notably GHC) support the notion of packages being ‘ex-
posed’ or ‘hidden’ which means the modules they provide can be easily imported without always having to specify which
package they come from. However this only works effectively if the modules provided by all exposed packages do not
overlap (otherwise a module import would be ambiguous).

Almost all new libraries use hierarchical module names that do not clash, so it is very uncommon to have to use this field.
However it may be necessary to set exposed: False for some old libraries that use a flat module namespace or
where it is known that the exposed modules would clash with other common modules.

The library section may also contain build information fields (see Section 3.1.4).

3.1.3 Executables

Executable sections (if present) describe executable programs contained in the package and must have an argument after the
section label, which defines the name of the executable. This is a freeform argument but may not contain spaces.

The executable may be described using the following fields, as well as build information fields (see Section 3.1.4).

main-is: filename (required) The name of the .hs or .lhs file containing the Main module. Note that it is the .hs
filename that must be listed, even if that file is generated using a preprocessor. The source file must be relative to one of
the directories listed in hs-source-dirs.

Common Architecture for Building
Applications and Libraries

7 / 27

3.1.4 Build information

The following fields may be optionally present in a library or executable section, and give information for the building of the
corresponding library or executable. See also Section 3.3 and Section 3.1.5 for a way to supply system-dependent values for
these fields.

build-depends: package list A list of packages needed to build this one. Each package can be annotated with a
version constraint.

Version constraints use the operators ==, >=, >, <, <= and a version number. Multiple constraints can be com-
bined using && or ||. If no version constraint is specified, any version is assumed to be acceptable. For example:

library
build-depends:

base >= 2,
foo >= 1.2 && < 1.3,
bar

Dependencies like foo >= 1.2 && < 1.3 turn out to be very common because it is recommended practise for pack-
age versions to correspond to API versions. There is a special syntax to support this use:

build-depends: foo ==1.2.*

It is only syntactic sugar. It is exactly equivalent to foo >= 1.2 && < 1.3.

other-modules: identifier list A list of modules used by the component but not exposed to users. For a library
component, these would be hidden modules of the library. For an executable, these would be auxiliary modules to be
linked with the file named in the main-is field.

Note
Every module in the package must be listed in one of other-modules, exposed-modules or main-is fields.

hs-source-dirs: directory list (default: ‘.’) Root directories for the module hierarchy.

For backwards compatibility, the old variant hs-source-dir is also recognized.

extensions: identifier list A list of Haskell extensions used by every module. Extension names are the constructors
of the Extension type. These determine corresponding compiler options. In particular, CPP specifies that Haskell source
files are to be preprocessed with a C preprocessor.

Extensions used only by one module may be specified by placing a LANGUAGE pragma in the source file affected, e.g.:

{-# LANGUAGE CPP, MultiParamTypeClasses #-}

Note
GHC versions prior to 6.6 do not support the LANGUAGE pragma.

build-tools: program list A list of programs, possibly annotated with versions, needed to build this package, e.g.
c2hs > 0.15, cpphs. If no version constraint is specified, any version is assumed to be acceptable.

buildable: boolean (default: True) Is the component buildable? Like some of the other fields below, this field is more
useful with the slightly more elaborate form of the simple build infrastructure described in Section 3.3.

ghc-options: token list Additional options for GHC. You can often achieve the same effect using the extensions
field, which is preferred.

Options required only by one module may be specified by placing an OPTIONS_GHC pragma in the source file affected.

ghc-prof-options: token list Additional options for GHC when the package is built with profiling enabled.

file:../libraries/Cabal/Language-Haskell-Extension.html#t:Extension

Common Architecture for Building
Applications and Libraries

8 / 27

ghc-shared-options: token list Additional options for GHC when the package is built as shared library.

hugs-options: token list Additional options for Hugs. You can often achieve the same effect using the extensions
field, which is preferred.

Options required only by one module may be specified by placing an OPTIONS_HUGS pragma in the source file affected.

nhc98-options: token list Additional options for nhc98. You can often achieve the same effect using the extensi-
ons field, which is preferred.

Options required only by one module may be specified by placing an OPTIONS_NHC98 pragma in the source file affected.

Warning: Cabal does not currently support building libraries or executables with nhc98 anyway.

includes: filename list A list of header files to be included in any compilations via C. This field applies to both header
files that are already installed on the system and to those coming with the package to be installed. These files typically
contain function prototypes for foreign imports used by the package.

install-includes: filename list A list of header files from this package to be installed into $libdir/includes
when the package is installed. Files listed in install-includes: should be found in relative to the top of the source
tree or relative to one of the directories listed in include-dirs.

install-includes is typically used to name header files that contain prototypes for foreign imports used in Haskell
code in this package, for which the C implementations are also provided with the package. Note that to include them when
compiling the package itself, they need to be listed in the includes: field as well.

include-dirs: directory list A list of directories to search for header files, when preprocessing with c2hs, hsc2hs,
ffihugs, cpphs or the C preprocessor, and also when compiling via C.

c-sources: filename list A list of C source files to be compiled and linked with the Haskell files.

If you use this field, you should also name the C files in CFILES pragmas in the Haskell source files that use them, e.g.:

{-# CFILES dir/file1.c dir/file2.c #-}

These are ignored by the compilers, but needed by Hugs.

extra-libraries: token list A list of extra libraries to link with.

extra-lib-dirs: directory list A list of directories to search for libraries.

cc-options: token list Command-line arguments to be passed to the C compiler. Since the arguments are compiler-
dependent, this field is more useful with the setup described in Section 3.3.

ld-options: token list Command-line arguments to be passed to the linker. Since the arguments are compiler-dependent,
this field is more useful with the setup described in Section 3.3.

pkgconfig-depends: package list A list of pkg-config packages, needed to build this package. They can be anno-
tated with versions, e.g. gtk+-2.0 >= 2.10, cairo >= 1.0. If no version constraint is specified, any version is
assumed to be acceptable. Cabal uses pkg-config to find if the packages are available on the system and to find the
extra compilation and linker options needed to use the packages.

If you need to bind to a C library that supports pkg-config (use pkg-config --list-all to find out if it is
supported) then it is much preferable to use this field rather than hard code options into the other fields.

frameworks: token list On Darwin/MacOS X, a list of frameworks to link to. See Apple’s developer documentation for
more details on frameworks. This entry is ignored on all other platforms.

3.1.5 Configurations

Library and executable sections may include conditional blocks, which test for various system parameters and configuration
flags. The flags mechanism is rather generic, but most of the time a flag represents certain feature, that can be switched on or off
by the package user.

Here is an example package description file using configurations:

http://pkg-config.freedesktop.org/

Common Architecture for Building
Applications and Libraries

9 / 27

Example 3.4 A package containing a library and executable programs

Name: Test1
Version: 0.0.1
Cabal-Version: >= 1.2
License: BSD3
Author: Jane Doe
Synopsis: Test package to test configurations
Category: Example

Flag Debug
Description: Enable debug support
Default: False

Flag WebFrontend
Description: Include API for web frontend.
-- Cabal checks if the configuration is possible, first
-- with this flag set to True and if not it tries with False

Library
Build-Depends: base
Exposed-Modules: Testing.Test1
Extensions: CPP

if flag(debug)
GHC-Options: -DDEBUG
if !os(windows)

CC-Options: "-DDEBUG"
else

CC-Options: "-DNDEBUG"

if flag(webfrontend)
Build-Depends: cgi > 0.42
Other-Modules: Testing.WebStuff

Executable test1
Main-is: T1.hs
Other-Modules: Testing.Test1
Build-Depends: base

if flag(debug)
CC-Options: "-DDEBUG"
GHC-Options: -DDEBUG

3.1.5.1 Layout

Flags, conditionals, library and executable sections use layout to indicate structure. This is very similar to the Haskell layout rule.
Entries in a section have to all be indented to the same level which must be more than the section header. Tabs are not allowed to
be used for indentation.

As an alternative to using layout you can also use explicit braces {}. In this case the indentation of entries in a section does not
matter, though different fields within a block must be on different lines. Here is a bit of the above example again, using braces:

Common Architecture for Building
Applications and Libraries

10 / 27

Example 3.5 Using explicit braces rather than indentation for layout

Name: Test1
Version: 0.0.1
Cabal-Version: >= 1.2
License: BSD3
Author: Jane Doe
Synopsis: Test package to test configurations
Category: Example

Flag Debug {
Description: Enable debug support
Default: False

}

Library {
Build-Depends: base
Exposed-Modules: Testing.Test1
Extensions: CPP
if flag(debug) {
GHC-Options: -DDEBUG
if !os(windows) {

CC-Options: "-DDEBUG"
} else {

CC-Options: "-DNDEBUG"
}

}
}

3.1.5.2 Configuration Flags

A flag section takes the flag name as an argument and may contain the following fields.

description: freeform The description of this flag.

default: boolean (default: True) The default value of this flag.

Note that this value may be overridden in several ways (see Section 4.1.3). The rationale for having flags default to
True is that users usually want new features as soon as they are available. Flags representing features that are not (yet)
recommended for most users (such as experimental features or debugging support) should therefore explicitly override the
default to False.

3.1.5.3 Conditional Blocks

Conditional blocks may appear anywhere inside a library or executable section. They have to follow rather strict formatting rules.

Conditional blocks must always be of the shape

if condition
property-descriptions-or-conditionals*

or

if condition
property-descriptions-or-conditionals*

else
property-descriptions-or-conditionals*

Note that the if and the condition have to be all on the same line.

Common Architecture for Building
Applications and Libraries

11 / 27

3.1.5.4 Conditions

Conditions can be formed using boolean tests and the boolean operators || (disjunction / logical "or"), && (conjunction /
logical "and"), or ! (negation / logical "not"). The unary ! takes highest precedence, || takes lowest. Precedence levels
may be overridden through the use of parentheses. For example, os(darwin) && !arch(i386) || os(freebsd) is
equivalent to (os(darwin) && !(arch(i386))) || os(freebsd).

The following tests are currently supported.

os(name) Tests if the current operating system is name. The argument is tested against System.Info.os on the target
system. There is unfortunately some disagreement between Haskell implementations about the standard values of S-
ystem.Info.os. Cabal canonicalises it so that in particular os(windows) works on all implementations. If the
canonicalised os names match, this test evaluates to true, otherwise false. The match is case-insensitive.

arch(name) Tests if the current architecture is name. The argument is matched against System.Info.arch on the target
system. If the arch names match, this test evaluates to true, otherwise false. The match is case-insensitive.

impl(compiler) Tests for the configured Haskell implementation. An optional version constraint may be specified (for
example impl(ghc >= 6.6.1)). If the configured implementation is of the right type and matches the version con-
straint, then this evaluates to true, otherwise false. The match is case-insensitive.

flag(name) Evaluates to the current assignment of the flag of the given name. Flag names are case insensitive. Testing for
flags that have not been introduced with a flag section is an error.

true Constant value true.

false Constant value false.

3.1.5.5 Resolution of Conditions and Flags

If a package descriptions specifies configuration flags the package user can control these in several ways (see Section 4.1.3). If
the user does not fix the value of a flag, Cabal will try to find a flag assignment in the following way.

• For each flag specified, it will assign its default value, evaluate all conditions with this flag assignment, and check if all
dependencies can be satisfied. If this check succeeded, the package will be configured with those flag assignments.

• If dependencies were missing, the last flag (as by the order in which the flags were introduced in the package description) is
tried with its alternative value and so on. This continues until either an assignment is found where all dependencies can be
satisfied, or all possible flag assignments have been tried.

To put it another way, Cabal does a complete backtracking search to find a satisfiable package configuration. It is only the
dependencies specified in the build-depends field in conditional blocks that determine if a particular flag assignment is
satisfiable (build-tools are not considered). The order of the declaration and the default value of the flags determines the
search order. Flags overridden on the command line fix the assignment of that flag, so no backtracking will be tried for that flag.

If no suitable flag assignment could be found, the configuration phase will fail and a list of missing dependencies will be printed.
Note that this resolution process is exponential in the worst case (i.e., in the case where dependencies cannot be satisfied). There
are some optimizations applied internally, but the overall complexity remains unchanged.

3.1.5.6 Meaning of field values when using conditionals

During the configuration phase, a flag assignment is chosen, all conditionals are evaluated, and the package description is com-
bined into a flat package descriptions. If the same field both inside a conditional and outside then they are combined using the
following rules.

• Boolean fields are combined using conjunction (logical "and").

• List fields are combined by appending the inner items to the outer items, for example

Common Architecture for Building
Applications and Libraries

12 / 27

Extensions: CPP
if impl(ghc) || impl(hugs)
Extensions: MultiParamTypeClasses

when compiled using Hugs or GHC will be combined to

Extensions: CPP, MultiParamTypeClasses

Similarly, if two conditional sections appear at the same nesting level, properties specified in the latter will come after properties
specified in the former.

• All other fields must not be specified in ambiguous ways. For example

Main-is: Main.hs
if flag(useothermain)
Main-is: OtherMain.hs

will lead to an error. Instead use

if flag(useothermain)
Main-is: OtherMain.hs

else
Main-is: Main.hs

3.1.6 Source Repositories

It is often useful to be able to specify a source revision control repository for a package. Cabal lets you specifying this information
in a relatively structured form which enables other tools to interpret and make effective use of the information. For example the
information should be sufficient for an automatic tool to checkout the sources.

Cabal supports specifying different information for various common source control systems. Obviously not all automated tools
will support all source control systems.

Cabal supports specifying repositories for different use cases. By declaring which case we mean automated tools can be more
useful. There are currently two kinds defined:

• The head kind refers to the latest development branch of the package. This may be used for example to track activity of a
project or as an indication to outside developers what sources to get for making new contributions.

• The this kind refers to the branch and tag of a repository that contains the sources for this version or release of a package.
For most source control systems this involves specifying a tag, id or hash of some form and perhaps a branch. The purpose is
to be able to reconstruct the sources corresponding to a particular package version. This might be used to indicate what sources
to get if someone needs to fix a bug in an older branch that is no longer an active head branch.

You can specify one kind or the other or both. As an example here are the repositories for the Cabal library. Note that the this
kind of repo specifies a tag.

source-repository head
type: darcs
location: http://darcs.haskell.org/cabal/

source-repository this
type: darcs
location: http://darcs.haskell.org/cabal-branches/cabal-1.6/
tag: 1.6.1

The exact fields are as follows:

type: token The name of the source control system used for this repository. The currently recognised types are:

Common Architecture for Building
Applications and Libraries

13 / 27

• darcs

• git

• svn

• cvs

• mercurial (or alias hg)

• bazaar (or alias bzr)

• arch

• monotone

This field is required.

location: URL The location of the repository. The exact form of this field depends on the repository type. For example:

• for darcs: http://code.haskell.org/foo/

• for git: git://github.com/foo/bar.git

• for CVS: anoncvs@cvs.foo.org:/cvs

This field is required.

module: token CVS requires a named module, as each CVS server can host multiple named repositories.

This field is required for the CVS repo type and should not be used otherwise.

branch: token Many source control systems support the notion of a branch, as a distinct concept from having repositories
in separate locations. For example CVS, SVN and git use branches while for darcs uses different locations for different
branches. If you need to specify a branch to identify a your repository then specify it in this field.

This field is optional.

tag: token A tag identifies a particular state of a source repository. The tag can be used with a this repo kind to identify
the state of a repo corresponding to a particular package version or release. The exact form of the tag depends on the
repository type.

This field is required for the this repo kind.

subdir: directory Some projects put the sources for multiple packages under a single source repository. This field lets
you specify the relative path from the root of the repository to the top directory for the package, ie the directory containing
the package’s .cabal file.

This field is optional. It default to empty which corresponds to the root directory of the repository.

3.2 Accessing data files from package code

The placement on the target system of files listed in the data-files field varies between systems, and in some cases one can
even move packages around after installation (see Section 4.1.2.3). To enable packages to find these files in a portable way, Cabal
generates a module called Paths_pkgname (with any hyphens in pkgname replaced by underscores) during building, so that it
may be imported by modules of the package. This module defines a function

getDataFileName :: FilePath -> IO FilePath

If the argument is a filename listed in the data-files field, the result is the name of the corresponding file on the system on
which the program is running.

Note
If you decide to import the Paths_pkgname module then it must be listed in the other-modules field just like any other
module in your package.
The Paths_pkgname module is not platform independent so it does not get included in the source tarballs generated by sdist.

Common Architecture for Building
Applications and Libraries

14 / 27

3.3 System-dependent parameters

For some packages, especially those interfacing with C libraries, implementation details and the build procedure depend on the
build environment. A variant of the simple build infrastructure (the build-type Configure) handles many such situations
using a slightly longer Setup.hs:

import Distribution.Simple
main = defaultMainWithHooks defaultUserHooks

This program differs from defaultMain in two ways:

1. If the package root directory contains a file called configure, the configure step will run that. This configure
program may be a script produced by the autoconf system, or may be hand-written. This program typically discovers
information about the system and records it for later steps, e.g. by generating system-dependent header files for inclusion
in C source files and preprocessed Haskell source files. (Clearly this won’t work for Windows without MSYS or Cygwin:
other ideas are needed.)

2. If the package root directory contains a file called package.buildinfo after the configuration step, subsequent steps
will read it to obtain additional settings for build information fields (see Section 3.1.4), to be merged with the ones given
in the .cabal file. In particular, this file may be generated by the configure script mentioned above, allowing these
settings to vary depending on the build environment.

The build information file should have the following structure:

buildinfo

executable: name
buildinfo

executable: name
buildinfo

...

where each buildinfo consists of settings of fields listed in Section 3.1.4. The first one (if present) relates to the library,
while each of the others relate to the named executable. (The names must match the package description, but you don’t
have to have entries for all of them.)

Neither of these files is required. If they are absent, this setup script is equivalent to defaultMain.

http://www.gnu.org/software/autoconf/

Common Architecture for Building
Applications and Libraries

15 / 27

Example 3.6 Using autoconf
(This example is for people familiar with the autoconf tools.)
In the X11 package, the file configure.ac contains:

AC_INIT([Haskell X11 package], [1.1], [libraries@haskell.org], [X11])

Safety check: Ensure that we are in the correct source directory.
AC_CONFIG_SRCDIR([X11.cabal])

Header file to place defines in
AC_CONFIG_HEADERS([include/HsX11Config.h])

Check for X11 include paths and libraries
AC_PATH_XTRA
AC_TRY_CPP([#include <X11/Xlib.h>],,[no_x=yes])

Build the package if we found X11 stuff
if test "$no_x" = yes
then BUILD_PACKAGE_BOOL=False
else BUILD_PACKAGE_BOOL=True
fi
AC_SUBST([BUILD_PACKAGE_BOOL])

AC_CONFIG_FILES([X11.buildinfo])
AC_OUTPUT

Then the setup script will run the configure script, which checks for the presence of the X11 libraries and substitutes for
variables in the file X11.buildinfo.in:

buildable: @BUILD_PACKAGE_BOOL@
cc-options: @X_CFLAGS@
ld-options: @X_LIBS@

This generates a file X11.buildinfo supplying the parameters needed by later stages:

buildable: True
cc-options: -I/usr/X11R6/include
ld-options: -L/usr/X11R6/lib

The configure script also generates a header file include/HsX11Config.h containing C preprocessor defines recording
the results of various tests. This file may be included by C source files and preprocessed Haskell source files in the package.

Note
Packages using these features will also need to list additional files such as configure, templates for .buildinfo files,
files named only in .buildinfo files, header files and so on in the extra-source-files field, to ensure that they are
included in source distributions. They should also list files and directories generated by configure in the extra-tmp-files
field to ensure that they are removed by setup clean.

3.4 Conditional compilation

Sometimes you want to write code that works with more than one version of a dependency. You can specify a range of versions
for the depenency in the build-depends, but how do you then write the code that can use different versions of the API?

Haskell lets you preprocess your code using the C preprocessor (either the real C preprocessor, or cpphs). To enable this, add
extensions: CPP to your package description. When using CPP, Cabal provides some pre-defined macros to let you test
the version of dependent packages; for example, suppose your package works with either version 3 or version 4 of the base
package, you could select the available version in your Haskell modules like this:

#if MIN_VERSION_base(4,0,0)
... code that works with base-4 ...

http://www.gnu.org/software/autoconf/

Common Architecture for Building
Applications and Libraries

16 / 27

#else
... code that works with base-3 ...
#endif

In general, Cabal supplies a macro MIN_VERSION_package(A,B,C) for each package depended on via build-depends.
This macro is true if the actual version of the package in use is greater than or equal to A.B.C (using the conventional ordering
on version numbers, which is lexicographic on the sequence, but numeric on each component, so for example 1.2.0 is greater
than 1.0.3).

Cabal places the definitions of these macros into an automatically-generated header file, which is included when preprocessing
Haskell source code by passing options to the C preprocessor.

3.5 More complex packages

For packages that don’t fit the simple schemes described above, you have a few options:

• You can customize the simple build infrastructure using hooks. These allow you to perform additional actions before and after
each command is run, and also to specify additional preprocessors. See UserHooks in Distribution.Simple for the details,
but note that this interface is experimental, and likely to change in future releases.

• You could delegate all the work to make, though this is unlikely to be very portable. Cabal supports this with the build-t-
ype Make and a trivial setup library Distribution.Make, which simply parses the command line arguments and invokes make.
Here Setup.hs looks like

import Distribution.Make
main = defaultMain

The root directory of the package should contain a configure script, and, after that has run, a Makefile with a default
target that builds the package, plus targets install, register, unregister, clean, dist and docs. Some options
to commands are passed through as follows:

– The --with-hc-pkg, --prefix, --bindir, --libdir, --datadir and --libexecdir options to the con-
figure command are passed on to the configure script. In addition the value of the --with-compiler option is
passed in a --with-hc option and all options specified with --configure-option= are passed on.

– the --destdir option to the copy command becomes a setting of a destdir variable on the invocation of make copy.
The supplied Makefile should provide a copy target, which will probably look like this:

copy :
$(MAKE) install prefix=$(destdir)/$(prefix) \

bindir=$(destdir)/$(bindir) \
libdir=$(destdir)/$(libdir) \
datadir=$(destdir)/$(datadir) \
libexecdir=$(destdir)/$(libexecdir)

• You can write your own setup script conforming to the interface of Section 4, possibly using the Cabal library for part of the
work. One option is to copy the source of Distribution.Simple, and alter it for your needs. Good luck.

4 Building and installing a package

After you’ve unpacked a Cabal package, you can build it by moving into the root directory of the package and using the Setup.
hs or Setup.lhs script there:

runhaskell Setup.hs [command] [option...]

where runhaskell might be runhugs, runghc or runnhc. The command argument selects a particular step in the build/install
process. You can also get a summary of the command syntax with

runhaskell Setup.hs --help

file:../libraries/Cabal/Distribution-Simple.html
file:../libraries/Cabal/Distribution-Make.html

Common Architecture for Building
Applications and Libraries

17 / 27

Example 4.1 Building and installing a system package

runhaskell Setup.hs configure --ghc
runhaskell Setup.hs build
runhaskell Setup.hs install

The first line readies the system to build the tool using GHC; for example, it checks that GHC exists on the system. The second
line performs the actual building, while the last both copies the build results to some permanent place and registers the package
with GHC.

Example 4.2 Building and installing a user package

runhaskell Setup.hs configure --user
runhaskell Setup.hs build
runhaskell Setup.hs install

The package is installed under the user’s home directory and is registered in the user’s package database (--user).

Example 4.3 Creating a binary package
When creating binary packages (e.g. for RedHat or Debian) one needs to create a tarball that can be sent to another system for
unpacking in the root directory:

runhaskell Setup.hs configure --prefix=/usr
runhaskell Setup.hs build
runhaskell Setup.hs copy --destdir=/tmp/mypkg
tar -czf mypkg.tar.gz /tmp/mypkg/

If the package contains a library, you need two additional steps:

runhaskell Setup.hs register --gen-script
runhaskell Setup.hs unregister --gen-script

This creates shell scripts register.sh and unregister.sh, which must also be sent to the target system. After unpacking
there, the package must be registered by running the register.sh script. The unregister.sh script would be used in the
uninstall procedure of the package. Similar steps may be used for creating binary packages for Windows.

The following options are understood by all commands:

--help, -h or -? List the available options for the command.

--verbose=n or -vn Set the verbosity level (0-3). The normal level is 1; a missing n defaults to 2.

The various commands and the additional options they support are described below. In the simple build infrastructure, any other
options will be reported as errors.

4.1 setup configure

Prepare to build the package. Typically, this step checks that the target platform is capable of building the package, and discovers
platform-specific features that are needed during the build.

The user may also adjust the behaviour of later stages using the options listed in the following subsections. In the simple build
infrastructure, the values supplied via these options are recorded in a private file read by later stages.

If a user-supplied configure script is run (see Section 3.3 or Section 3.5), it is passed the --with-hc-pkg, --prefix,
--bindir, --libdir, --datadir and --libexecdir options. In addition the value of the --with-compiler option
is passed in a --with-hc option and all options specified with --configure-option= are passed on.

Common Architecture for Building
Applications and Libraries

18 / 27

4.1.1 Programs used for building

The following options govern the programs used to process the source files of a package:

--ghc or -g, --nhc, --jhc, --hugs Specify which Haskell implementation to use to build the package. At most one of
these flags may be given. If none is given, the implementation under which the setup script was compiled or interpreted is
used.

--with-compiler=path or -wpath Specify the path to a particular compiler. If given, this must match the implementation
selected above. The default is to search for the usual name of the selected implementation.

This flag also sets the default value of the --with-hc-pkg option to the package tool for this compiler. Check the
output of setup configure -v to ensure that it finds the right package tool (or use --with-hc-pkg explicitly).

--with-hc-pkg=path Specify the path to the package tool, e.g. ghc-pkg. The package tool must be compatible with the
compiler specified by --with-compiler. If this option is omitted, the default value is determined from the compiler
selected.

--with-prog=path Specify the path to the program prog. Any program known to Cabal can be used in place of pro-
g. It can either be a fully path or the name of a program that can be found on the program search path. For example:
--with-ghc=ghc-6.6.1 or --with-cpphs=/usr/local/bin/cpphs.

--prog-options=options Specify additional options to the program prog. Any program known to Cabal can be used in
place of prog. For example: --alex-options="--template=mytemplatedir/".

The options is split into program options based on spaces. Any options containing embeded spaced need to be quoted,
for example --foo-options=’--bar="C:\Program File\Bar"’. As an alternative that takes only one option
at a time but avoids the need to quote, use --prog-option instead.

--prog-option=option Specify a single additional option to the program prog.

For passing an option that contain embeded spaces, such as a file name with embeded spaces, using this rather than --p-
rog-options means you do not need an additional level of quoting. Of course if you are using a command shell you
may still need to quote, for example --foo-options="--bar=C:\Program File\Bar".

All of the options passed with either --prog-options or --prog-option are passed in the order they were specified on
the configure command line.

4.1.2 Installation paths

The following options govern the location of installed files from a package:

--prefix=dir The root of the installation. For example for a global install you might use /usr/local on a Unix system,
or C:\ProgramFiles on a Windows system. The other installation paths are usually subdirectories of prefix, but
they don’t have to be.

In the simple build system, dir may contain the following path variables: $pkgid, $pkg, $version, $compiler, $os,
$arch

--bindir=dir Executables that the user might invoke are installed here.

In the simple build system, dir may contain the following path variables: $prefix, $pkgid, $pkg, $version, $comp-
iler, $os, $arch

--libdir=dir Object-code libraries are installed here.

In the simple build system, dir may contain the following path variables: $prefix, $bindir, $pkgid, $pkg, $versi-
on, $compiler, $os, $arch

--libexecdir=dir Executables that are not expected to be invoked directly by the user are installed here.

In the simple build system, dir may contain the following path variables: $prefix, $bindir, $libdir, $libsubdir,
$pkgid, $pkg, $version, $compiler, $os, $arch

Common Architecture for Building
Applications and Libraries

19 / 27

--datadir=dir Architecture-independent data files are installed here.

In the simple build system, dir may contain the following path variables: $prefix, $bindir, $libdir, $libsubdir,
$pkgid, $pkg, $version, $compiler, $os, $arch

In addition the simple build system supports the following installation path options:

--libsubdir=dir A subdirectory of libdir in which libraries are actually installed. For example, in the simple build
system on Unix, the default libdir is /usr/local/lib, and libsubdir contains the package identifier and compiler,
e.g. mypkg-0.2/ghc-6.4, so libraries would be installed in /usr/local/lib/mypkg-0.2/ghc-6.4.

dir may contain the following path variables: $pkgid, $pkg, $version, $compiler, $os, $arch

--datasubdir=dir A subdirectory of datadir in which data files are actually installed.

dir may contain the following path variables: $pkgid, $pkg, $version, $compiler, $os, $arch

--docdir=dir Documentation files are installed relative to this directory.

dir may contain the following path variables: $prefix, $bindir, $libdir, $libsubdir, $datadir, $datasubdir,
$pkgid, $pkg, $version, $compiler, $os, $arch

--htmldir=dir HTML documentation files are installed relative to this directory.

dir may contain the following path variables: $prefix, $bindir, $libdir, $libsubdir, $datadir, $datasubdir,
$docdir, $pkgid, $pkg, $version, $compiler, $os, $arch

--program-prefix=prefix Prepend prefix to installed program names.

prefix may contain the following path variables: $pkgid, $pkg, $version, $compiler, $os, $arch

--program-suffix=suffix Append suffix to installed program names. The most obvious use for this is to append the
program’s version number to make it possible to install several versions of a program at once: --program-suffix=-
’$version’.

suffix may contain the following path variables: $pkgid, $pkg, $version, $compiler, $os, $arch

4.1.2.1 Path variables in the simple build system

For the simple build system, there are a number of variables that can be used when specifying installation paths. The defaults
are also specified in terms of these variables. A number of the variables are actually for other paths, like $prefix. This allows
paths to be specified relative to each other rather than as absolute paths, which is important for building relocatable packages (see
Section 4.1.2.3).

$prefix The path variable that stands for the root of the installation.

For an installation to be relocatable, all other instllation paths must be relative to the $prefix variable.

$bindir The path variable that expands to the path given by the --bindir configure option (or the default).

$libdir As above but for --libdir

$libsubdir As above but for --libsubdir

$datadir As above but for --datadir

$datasubdir As above but for --datasubdir

$docdir As above but for --docdir

$pkgid The name and version of the package, eg mypkg-0.2

$pkg The name of the package, eg mypkg

$version The version of the package, eg 0.2

$compiler The compiler being used to build the package, eg ghc-6.6.1

$os The operating system of the computer being used to build the package, eg linux, windows, osx, freebsd or solaris

$arch The architecture of the computer being used to build the package, eg i386, x86_64, ppc or sparc

Common Architecture for Building
Applications and Libraries

20 / 27

4.1.2.2 Paths in the simple build system

For the simple build system, the following defaults apply:

Option Windows Default Unix Default
--prefix (global installs with the
--global flag) C:\ProgramFiles\Haskell /usr/local

--prefix (per-user installs with the
--user flag)

C:\DocumentsAndSettings\
user\ApplicationData\
cabal

$HOME/.cabal

--bindir $prefix\bin $prefix/bin
--libdir $prefix $prefix/lib
--libsubdir (Hugs) hugs\packages\$pkg hugs/packages/$pkg
--libsubdir (others) $pkgid\$compiler $pkgid/$compiler
--libexecdir $prefix\$pkgid $prefix/libexec
--datadir (executable) $prefix $prefix/share
--datadir (library) C:\ProgramFiles\Haskell $prefix/share
--datasubdir $pkgid $pkgid
--docdir $prefix\doc\$pkgid $datadir/doc/$pkgid
--htmldir $docdir\html $docdir/html
--program-prefix (empty) (empty)
--program-suffix (empty) (empty)

4.1.2.3 Prefix-independence

On Windows, and when using Hugs on any system, it is possible to obtain the pathname of the running program. This means that
we can construct an installable executable package that is independent of its absolute install location. The executable can find
its auxiliary files by finding its own path and knowing the location of the other files relative to bindir. Prefix-independence is
particularly useful: it means the user can choose the install location (i.e. the value of prefix) at install-time, rather than having
to bake the path into the binary when it is built.

In order to achieve this, we require that for an executable on Windows, all of bindir, libdir, datadir and libexecdir

begin with $prefix. If this is not the case then the compiled executable will have baked in all absolute paths.

The application need do nothing special to achieve prefix-independence. If it finds any files using getDataFileName and
the other functions provided for the purpose (see Section 3.2), the files will be accessed relative to the location of the current
executable.

A library cannot (currently) be prefix-independent, because it will be linked into an executable whose file system location bears
no relation to the library package.

4.1.3 Controlling Flag Assignments

Flag assignments (see Section 3.1.5.5) can be controlled with the following command line options.

-fflagname or -f-flagname Force the specified flag to true or false (if preceded with a -). Later specifications for the
same flags will override earlier, i.e., specifying -fdebug -f-debug is equivalent to -f-debug

--flags=flagspecs Same as -f, but allows specifying multiple flag assignments at once. The parameter is a space-separated
list of flag names (to force a flag to true), optionally preceded by a - (to force a flag to false). For example, --fla-
gs="debug -feature1 feature2" is equivalent to -fdebug -f-feature1 -ffeature2.

4.1.4 Miscellaneous options

--user Does a per-user installation. This changes the default installation prefix (see Section 4.1.2.2). It also allow dependen-
cies to be satisfied by the user’s package database, in addition to the global database.

Common Architecture for Building
Applications and Libraries

21 / 27

This also implies a default of --user for any subsequent install command, as packages registered in the global
database should not depend on packages registered in a user’s database.

--global (default) Does a global installation. In this case package dependencies must be satisfied by the global package
database. All packages in the user’s package database will be ignored. Typically the final instllation step will require
administrative privileges.

--package-db=db Allows package dependencies to be satisfied from this additional package database db in addition to
the global package database. All packages in the user’s package database will be ignored. The interpretation of d-
b is implementation-specific. Typically it will be a file or directory. Not all implementations support arbitrary package
databases.

--enable-optimization[=n] or -O[n] (default) Build with optimization flags (if available). This is appropriate for pro-
duction use, taking more time to build faster libraries and programs.

The optional n value is the optimisation level. Some compilers support multiple optimisation levels. The range is 0 to 2.
Level 0 is equivalent to --disable-optimization, level 1 is the default if no n parameter is given. Level 2 is higher
optimisation if the compiler supports it. Level 2 is likely to lead to longer compile times and bigger generated code.

--disable-optimization Build without optimization. This is suited for development: building will be quicker, but the
resulting library or programs will be slower.

--enable-library-profiling or -p Request that an additional version of the library with profiling features enabled be
built and installed (only for implementations that support profiling).

--disable-library-profiling (default) Do not generate an additional profiling version of the library.

--enable-executable-profiling Any executables generated should have profiling enabled (only for implementations
that support profiling). For this to work, all libraries used by these executables must also have been built with profiling
support.

--disable-executable-profiling (default) Do not enable profiling in generated executables.

--enable-library-vanilla (default) Build ordinary libraries (as opposed to profiling libraries). This is independent of
the --enable-library-profiling option. If you enable both, you get both.

--disable-library-vanilla (default) Do not build ordinary libraries. This is useful in conjunction with --enable-
-library-profiling to build only profiling libraries, rather than profiling and ordinary libraries.

--enable-library-for-ghci (default) Build libraries suitable for use with GHCi.

--disable-library-for-ghci Not all platforms support GHCi and indeed on some platforms, trying to build GHCi libs
fails. In such cases this flag can be used as a workaround.

--enable-split-objs Use the GHC -split-objs feature when building the library. This reduces the final size of the
executables that use the library by allowing them to link with only the bits that they use rather than the entire library. The
downside is that building the library takes longer and uses considerably more memory.

--disable-split-objs (default) Do not use the GHC -split-objs feature. This makes building the library quicker
but the final executables that use the library will be larger.

--enable-executable-stripping (default) When installing binary executable programs, run the strip program on
the binary. This can considerably reduce the size of the executable binary file. It does this by removing debugging
information and symbols. While such extra information is useful for debugging C programs with traditional debuggers it
is rarely helpful for debugging binaries produced by Haskell compilers.

Not all Haskell implementations generate native binaries. For such implementations this option has no effect.

--disable-executable-stripping Do not strip binary executables during installation. You might want to use this
option if you need to debug a program using gdb, for example if you want to debug the C parts of a program containing
both Haskell and C code. Another reason is if your are building a package for a system which has a policy of managing
the stripping itself (such as some linux distributions).

--enable-shared Build shared library. This implies a seperate compiler run to generate position independent code as
required on most platforms.

Common Architecture for Building
Applications and Libraries

22 / 27

--disable-shared (default) Do not build shared library.

--configure-option=str An extra option to an external configure script, if one is used (see Section 3.3). There can
be several of these options.

--extra-include-dirs[=dir] An extra directory to search for C header files. You can use this flag multiple times to get
a list of directories.

You might need to use this flag if you have standard system header files in a non-standard location that is not mentioned in
the package’s .cabal file. Using this option has the same affect as appending the directory dir to the include-dirs
field in each library and executable in the package’s .cabal file. The advantage of course is that you do not have to
modify the package at all. These extra directories will be used while building the package and for libraries it is also saved
in the package registration information and used when compiling modules that use the library.

--extra-lib-dirs[=dir] An extra directory to search for system libraries files. You can use this flag multiple times to get
a list of directories.

You might need to use this flag if you have standard system libraries in a non-standard location that is not mentioned in the
package’s .cabal file. Using this option has the same affect as appending the directory dir to the extra-lib-dirs
field in each library and executable in the package’s .cabal file. The advantage of course is that you do not have to
modify the package at all. These extra directories will be used while building the package and for libraries it is also saved
in the package registration information and used when compiling modules that use the library.

In the simple build infrastructure, an additional option is recognized:

--scratchdir=dir Specify the directory into which the Hugs output will be placed (default: dist/scratch).

4.2 setup build

Perform any preprocessing or compilation needed to make this package ready for installation.

This command takes the following options:

--prog-options=options, --prog-option=option These are mostly the same as the options configure step (see Sec-
tion 4.1.1). Unlike the options specified at the configure step, any program options specified at the build step are not
persistent but are used for that invocation only. They options specified at the build step are in addition not in replacement
of any options specified at the configure step.

4.3 setup makefile

Generate a Makefile that may be used to compile the Haskell modules to object code. This command is currently only
supported when building libraries, and only if the compiler is GHC.

The makefile command replaces part of the work done by setup build. The sequence of commands would typically be:

runhaskell Setup.hs makefile
make
runhaskell Setup.hs build

where setup makefile does the preprocessing, make compiles the Haskell modules, and setup build performs any
final steps, such as building the library archives.

The Makefile does not use GHC’s --make flag to compile the modules, instead it compiles modules one at a time, using
dependency information generated by GHC’s -M flag. There are two reasons you might therefore want to use setup makef-
ile:

• You want to build in parallel using make -j. Currently, setup build on its own does not support building in parallel.

• You want to build an individual module, pass extra flags to a compilation, or do other non-standard things that setup build
does not support.

This command takes the following options:

--file=filename or -f filename Specify the output file (default Makefile).

Common Architecture for Building
Applications and Libraries

23 / 27

4.4 setup haddock

Build the documentation for the package using haddock. By default, only the documentation for the exposed modules is generated
(see --executables).

This command takes the following options:

--hoogle Generate a file dist/doc/html/pkgid.txt, which can be converted by Hoogle into a database for searching.
This is equivalent to running haddock with the --hoogle flag.

--html-location=url Specify a template for the location of HTML documentation for prerequisite packages. The substi-
tutions listed in Section 4.1.2.2 are applied to the template to obtain a location for each package, which will be used by
hyperlinks in the generated documentation. For example, the following command generates links pointing at HackageDB
pages:

setup haddock --html-location=’http://hackage.haskell.org/packages/archive/$pkg/latest/ ←↩
doc/html’

Here the argument is quoted to prevent substitution by the shell.

If this option is omitted, the location for each package is obtained using the package tool (e.g. ghc-pkg).

--executables Also run haddock for the modules of all the executable programs. By default haddock is run only on the
exported modules.

--internal Run haddock for the all modules, including unexposed ones, and make haddock generate documentation for
unexported symbols as well.

--css=path The argument path denotes a CSS file, which is passed to haddock and used to set the style of the generated
documentation. This is only needed to override the default style that haddock uses.

--hyperlink-source Generate haddock documentation integrated with HsColour. First, HsColour is run to generate
colourised code. Then haddock is run to generate HTML documentation. Each entity shown in the documentation is
linked to its definition in the colourised code.

--hscolour-css=path The argument path denotes a CSS file, which is passed to HsColour as in

runhaskell Setup.hs hscolour --css=path

4.5 setup hscolour

Produce colourised code in HTML format using HsColour. Colourised code for exported modules is put in dist/doc/html/
pkgid/src.

This command takes the following options:

--executables Also run HsColour on the sources of all executable programs. Colourised code is put in dist/doc/html/
pkgid/executable/src.

--css=path Copy the CSS file from path to dist/doc/html/pkgid/src/hscolour.css for exported modules, or
to dist/doc/html/pkgid/executable/src/hscolour.css for executable programs. The CSS file defines
the actual colours used to colourise code. Note that the hscolour.css file is required for the code to be actually
colourised.

http://www.haskell.org/haddock/
http://www.haskell.org/hoogle/
http://www.haskell.org/haddock/
http://hackage.haskell.org/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.cs.york.ac.uk/fp/darcs/hscolour/
http://www.cs.york.ac.uk/fp/darcs/hscolour/
http://www.haskell.org/haddock/
http://www.cs.york.ac.uk/fp/darcs/hscolour/
http://www.cs.york.ac.uk/fp/darcs/hscolour/
http://www.cs.york.ac.uk/fp/darcs/hscolour/

Common Architecture for Building
Applications and Libraries

24 / 27

4.6 setup install

Copy the files into the install locations and (for library packages) register the package with the compiler, i.e. make the modules
it contains available to programs.

The install locations are determined by options to setup configure (see Section 4.1.2).

This command takes the following options:

--global Register this package in the system-wide database. (This is the default, unless the --user option was supplied to
the configure command.)

--user Register this package in the user’s local package database. (This is the default if the --user option was supplied to
the configure command.)

4.7 setup copy

Copy the files without registering them. This command is mainly of use to those creating binary packages.

This command takes the following option:

--destdir=path Specify the directory under which to place installed files. If this is not given, then the root directory is
assumed.

4.8 setup register

Register this package with the compiler, i.e. make the modules it contains available to programs. This only makes sense for
library packages. Note that the install command incorporates this action. The main use of this separate command is in the
post-installation step for a binary package.

This command takes the following options:

--global Register this package in the system-wide database. (This is the default.)

--user Register this package in the user’s local package database.

--gen-script Instead of registering the package, generate a script containing commands to perform the registration. On
Unix, this file is called register.sh, on Windows, register.bat. This script might be included in a binary bundle,
to be run after the bundle is unpacked on the target system.

--gen-pkg-config=[path] Instead of registering the package, generate a package registration file. This only applies to
compilers that support package registration files which at the moment is only GHC. The file should be used with the
compiler’s mechanism for registering packages.

This option is mainly intended for packaging systems. If possible use the --gen-script option instead since it is more
portable across Haskell implementations.

The path is optional and can be used to specify a particular output file to generate. Otherwise, by default the file is the
package name and version with a .conf extension.

--inplace Registers the package for use directly from the build tree, without needing to install it. This can be useful for
testing: there’s no need to install the package after modifying it, just recompile and test.

This flag does not create a build-tree-local package database. It still registers the package in one of the user or global
databases.

However, there are some caveats. It only works with GHC (currently). It only works if your package doesn’t depend on
having any supplemental files installed - plain Haskell libraries should be fine.

Common Architecture for Building
Applications and Libraries

25 / 27

4.9 setup unregister

Deregister this package with the compiler.

This command takes the following options:

--global Deregister this package in the system-wide database. (This is the default.)

--user Deregister this package in the user’s local package database.

--gen-script Instead of deregistering the package, generate a script containing commands to perform the deregistration. On
Unix, this file is called unregister.sh, on Windows, unregister.bat. This script might be included in a binary
bundle, to be run on the target system.

4.10 setup clean

Remove any local files created during the configure, build, haddock, register or unregister steps, and also any
files and directories listed in the extra-tmp-files field.

This command takes the following options:

--save-configure or -s Keeps the configuration information so it is not necessary to run the configure step again before
building.

4.11 setup test

Run the test suite specified by the runTests field of Distribution.Simple.UserHooks. See Distribution.Simple for
information about creating hooks and using defaultMainWithHooks.

4.12 setup sdist

Create a system- and compiler-independent source distribution in a file package-version.tar.gz in the dist subdirec-
tory, for distribution to package builders. When unpacked, the commands listed in this section will be available.

The files placed in this distribution are the package description file, the setup script, the sources of the modules named in the
package description file, and files named in the license-file, main-is, c-sources, data-files and extra-sou-
rce-files fields.

This command takes the following option:

--snapshot Append today’s date (in YYYYMMDD form) to the version number for the generated source package. The original
package is unaffected.

5 Reporting bugs and deficiencies

Please report any flaws or feature requests in the bug tracker.

For general discussion or queries email the libraries mailing list libraries@haskell.org. There is also a development mailing list
cabal-devel@haskell.org.

6 Stability of Cabal interfaces

The Cabal library and related infrastructure is still under active development. New features are being added and limitations and
bugs are being fixed. This requires internal changes and often user visible changes as well. We therefor cannot promise complete
future-proof stability, at least not without halting all development work.

This section documents the aspects of the Cabal interface that we can promise to keep stable and which bits are subject to change.

file:../libraries/Cabal/Distribution-Simple.html
http://hackage.haskell.org/trac/hackage/
mailto:libraries@haskell.org
mailto:cabal-devel@haskell.org

Common Architecture for Building
Applications and Libraries

26 / 27

6.1 Cabal file format

This is backwards compatible and mostly forwards compatible. New fields can be added without breaking older versions of
Cabal. Fields can be deprecated without breaking older packages.

6.2 Command-line interface

6.2.1 Very Stable Command-line interfaces

• ./setup configure

– --prefix

– --user

– --ghc, --hugs

– --verbose

– --prefix

• ./setup build

• ./setup install

• ./setup register

• ./setup copy

6.2.2 Stable Command-line interfaces

6.2.3 Unstable command-line

6.3 Functions and Types

The Cabal library follows the Package Versioning Policy. This means that within a stable major release, for example 1.2.x, there
will be no incompatible API changes. But minor versions increments, for example 1.2.3, indicate compatible API additions.

The Package Versioning Policy does not require any API guarantees between major releases, for example between 1.2.x and
1.4.x. In practise of course not everything changes between major releases. Some parts of the API are more prone to change than
others. The rest of this section gives some informal advice on what level of API stability you can expect between major releases.

6.3.1 Very Stable API

• defaultMain

• defaultMainWithHooks defaultUserHooks

But regular defaultMainWithHooks isn’t stable since UserHooks changes.

6.3.2 Semi-stable API

• UserHooks The hooks API will change in the future

• Distribution.* is mostly declarative information about packages and is somewhat stable.

6.3.3 Unstable API

Everything under Distribution.Simple.* has no stability guarantee.

http://haskell.org/haskellwiki/Package_versioning_policy

Common Architecture for Building
Applications and Libraries

27 / 27

6.4 Hackage

The index format is a partly stable interface. It consists of a tar.gz file that contains directories with .cabal files in. In future it
may contain more kinds of files so do not assume every file is a .cabal file. Incompatible revisions to the format would involve
bumping the name of the index file, i.e., 00-index.tar.gz, 01-index.tar.gz etc.

	Introduction
	Packages
	Creating a package
	Package descriptions
	Package properties
	Library
	Executables
	Build information
	Configurations
	Layout
	Configuration Flags
	Conditional Blocks
	Conditions
	Resolution of Conditions and Flags
	Meaning of field values when using conditionals

	Source Repositories

	Accessing data files from package code
	System-dependent parameters
	Conditional compilation
	More complex packages

	Building and installing a package
	setup configure
	Programs used for building
	Installation paths
	Path variables in the simple build system
	Paths in the simple build system
	Prefix-independence

	Controlling Flag Assignments
	Miscellaneous options

	setup build
	setup makefile
	setup haddock
	setup hscolour
	setup install
	setup copy
	setup register
	setup unregister
	setup clean
	setup test
	setup sdist

	Reporting bugs and deficiencies
	Stability of Cabal interfaces
	Cabal file format
	Command-line interface
	Very Stable Command-line interfaces
	Stable Command-line interfaces
	Unstable command-line

	Functions and Types
	Very Stable API
	Semi-stable API
	Unstable API

	Hackage

