Common Architecture for Building
Applications and Libraries

User's Guide

Table of Contents

L PBCKAJES ...oeveieeeei ettt ettt enaas 1
2. Creating @PACKAOEu eeen ettt e e e e 2
2.1, PaCKage dESCIIPLIONS . ..vuiiiieiii et et e e e e e e e e e e e e e et e e et e e et e e et e e aaeeanaes 4
210 EXECULADIES ...ttt 5
225 W = 10 T o I g1 1 12 [o P 5
2.2. System-dependent PArBMELENSoiierei et 7
2.3. MOre COMPIEX PACKAGJESieeeiiee ettt ettt ettt e e e e e et e e e e e e e raa s 8
3. Building and installing @ PaCkageccuueiiieii e 9
TN (1 o] oo) U - 10
G 370K 11 o 1 o 1111 o 14
3.3 SEUP NBAAOCK ... e 14
S SEIUP INSLAIL ...t 14
3.5, SEIUP COPY ittt ettt et 14
N S (0 o =oK< S PP 15
A= (1 o] 01010 [= 15
GRS T (1o I 1= o 15
3L, SELUD SAISE ..ttt ettt e et eeaans 15
4. Known bugs and defiCIENCIESviiiiiiii e 15

The Cabal aims to simplify the distribution of Haskell software. It does this by specifying a number of
interfaces between package authors, builders and users, as well as providing a library implementing
these interfaces.

1. Packages

A package is the unit of distribution for the Cabal. Its purpose, when installed, is to make available
either or both of:

* Alibrary, exposing a number of Haskell modules. A library may also contain hidden modules, which
are used internally but not available to clients.!

* One or more Haskell programs.

However having both alibrary and executables in a package does not work very well; if the executables
depend on the library, they must explicitly list al the modules they directly or indirectly import from
that library.

Internally, the package may consist of much more than a bunch of Haskell modules: it may aso have C
source code and header files, source code meant for preprocessing, documentation, test cases, auxiliary
tools etc.

A packageisidentified by a globally-unique package name, which consists of one or more alphanumeric
"Hugs doesn't support module hiding.

Common Architecture for Building
Applicationsand Libraries

words separated by hyphens. To avoid ambiguity, each of these words should contain at |east one letter.
Chaos will result if two distinct packages with the same name are installed on the same system, but there
is not yet a mechanism for allocating these names. A particular version of the package is distinguished
by a version number, consisting of a sequence of one or more integers separated by dots. These can be
combined to form a single text string called the package 1D, using a hyphen to separate the name from
theversion, e.qg. “HUni t - 1. 1”.

Note

Packages are not part of the Haskell language; they simply populate the hierarchical space of module
names. It is still the case that all the modules of a program must have distinct module names, regardless
of the package they come from, and whether they are exposed or hidden. This also means that athough
some implementations (i.e. GHC) may alow several versions of a package to be installed at the same
time, a program cannot use two packages, P and Q that depend on different versions of the same under-
lying package R.

2. Creating a package

Suppose you have a directory hierarchy containing the source files that make up your package. Y ou will
need to add two more files to the root directory of the package:

.cab atext file containing a package description (for details of the syntax of this file, see
packageal Section 2.1, “Package descriptions’), and

Set up. hs or asinglemodule Haskell program to perform various setup tasks (with the interface

Setup. | hs described in Section 3, “Building and installing a package”). This module should im-
port only modules that will be present in al Haskell implementations, including mod-
ules of the Cabal library. In most cases it will be trivial, calling on the Cabal library
to do most of the work.

Once you have these, you can create a source bundle of this directory for distribution. Building of the
package is discussed in Section 3, “Building and installing a package”.

Example 1. A package containing asimplelibrary

The HUnNit package contains afile HUNi t . cabal containing:

Nanme: HUnNi t

Ver si on: 1.1

Li cense: BSD3

Aut hor : Dean Heri ngton

Honepage: http://hunit.sourceforge. net/

Cat egory: Testing

Bui | d- Depends: base

Synopsi s: Unit testing framework for Haskell

Exposed- nodul es:
Test.HUnit, Test.HUnit.Base, Test.HuUnit.Lang,
Test.HUnit. Term nal, Test.HuUnit. Text

Ext ensi ons: CPP

and the following Set up. hs:

i mport Distribution.Sinmple
main = defaul t Main

Common Architecture for Building
Applicationsand Libraries

Example 2. A package containing executable programs

Nane: Test Package
Ver si on: 0.0

Li cense: BSD3

Aut hor : Angel a Aut hor
Synopsi s: Smal | package with two programnms
Bui | d- Depends: HuUni t

Execut abl e: programl

Mai n-1s: Mai n. hs

Hs- Source-Dir: progl

Execut abl e: progr ant

Mai n-1s: Mai n. hs

Hs- Source-Dir: prog2
O her-Mdules: Uils

with Set up. hs the same as above.

Example 3. A package containing alibrary and executable programs

Nane: Test Package

Ver si on: 0.0

Li cense: BSD3

Aut hor : Angel a Aut hor

Synopsi s: Package with library and two prograns

Bui | d- Depends: HUni t
Exposed- Modul es: A, B, C

Execut abl e: progr aml
Mai n-1s: Mai n. hs
Hs- Source-Dir: progl

O her - Modul es: A B

Execut abl e: prograng
Mai n-1s: Mai n. hs

Hs- Source-Dir: prog2

O her - Modul es: A C Uils

with Set up. hs the same as above. Note that any library modules required (directly or indirectly) by an
executable must be listed again.

Thetrivia setup script used in these examples uses the simple build infrastructure provided by the Cabal
library (see Distribution.Simple [../libraries/Cabal/Distribution.Simple.htmi]). The simplicity lies in its
interface rather that its implementation. It automatically handles preprocessing with standard prepro-
cessors, and builds packages for all the Haskell implementations (except nhc98, for now).

The simple build infrastructure can also handle packages where building is governed by system-de-
pendent parameters, if you specify a little more (see Section 2.2, “System-dependent parameters’). A
few packages require more elaborate solutions (see Section 2.3, “More complex packages’).

../libraries/Cabal/Distribution.Simple.html

Common Architecture for Building
Applicationsand Libraries

2.1. Package descriptions

The package description file should have a name ending in “. cabal ”. There must be exactly one such
filein the directory, and the first part of the name isimmaterial, but it is conventional to use the package
name.

This file should contain severa stanzas separated by blank lines. Each stanza consists of a number of

field/value pairs, with a syntax like mail message headers.

e caseisnot significant in field names

» tocontinue afield value, indent the next line

e togetablank lineinafield value, use anindented “. ”

Lines beginning with “- - are treated as comments and ignored.

The syntax of the value depends on the field. Field typesinclude:

t oken,fil e-
name , di rect -
ory

freeform, URL
,addr ess
identifier

Either a sequence of one or more non-space non-comma characters, or a quoted
string in Haskell 98 lexical syntax. Unless otherwise stated, relative filenames and
directories are interpreted from the package root directory.

An arbitrary, uninterpreted string.

A letter followed by zero or more a phanumerics or underscores.

Some fields take lists of values, which are optionally separated by commas, except for the bui | d-
depends field, where the commas are mandatory.

Some fields are marked as required. All others are optional, and unless otherwise specified have empty

default values.

The first stanza describes the package as awhole, as well asthe library it contains (if any), using the fol-

lowing fields:

name: pack-
age- nane
(required)

versi on: num
ber s (required)

| i cense:
identifier
(default: Al 'l -
Ri ght s-

Resensedfi | e:

fil enanme
copyri ght:
freeform

aut hor: free-
form

mai nt ai ner:
addr ess

The unique name of the package (see Section 1, “Packages’), without the version
number.

The package version number, usually consisting of a sequence of natural numbers
separated by dots.

The type of license under which this package is distributed. License names are the
constants of the Li cense [../libraries/Cabal/Distribution.License.html#t:License]

type.
The name of afile containing the precise license for this package.

The content of a copyright notice, typically the name of the holder of the copyright
on the package and the year(s) from which copyright is claimed.

The original author of the package.

The current maintainer or maintainers of the package. Thisis an e-mail address to
which users should send bug reports, feature requests and patches.

4

../libraries/Cabal/Distribution.License.html#t:License

Common Architecture for Building
Applicationsand Libraries

stability:
freeform

honepage: URL

package-url:
URL

synopsi s:
freeform

descri pti on:
freeform

cat egory:
freeform

tested-wth:
conpiler list

bui | d- de-
pends: pack-
age |ist

exposed- nod-
ul es: identi -
Netel i st
(required if this

The stability level of the package, e.g. al pha, experi nent al , provi si on-
al , st abl e.

The package homepage.

The location of a source bundle for the package. The distribution should be a
Cabal package.

A very short description of the package, for use in a table of packages. This is
your headline, so keep it short (one line) but as informative as possible. Save
space by not including the package name or saying it's written in Haskell.

Description of the package. This may be several paragraphs, and should be aimed
at aHaskell programmer who has never heard of your package before.

A classification category for future use by the package catalogue Hackage. These
categories have not yet been specified, but the upper levels of the module hier-
archy make a good start.

A list of compilers and versions against which the package has been tested (or at
least built).

A list of packages, possibly annotated with versions, needed to build this one, e.g.
foo > 1.2, bar.If noversion constraint is specified, any version is assumed
to be acceptable.

A list of modules added by this package.

Rp6liane samiabHay correspond to Haskell source files, i.e. with names ending in “. hs” or “. | hs”, or
ttorafilits for various Haskell preprocessors. The simple build infrastructure understands “. gc”
(GreenCard), “. chs” (c2hs), “. hsc” (hsc2hs), “. y” and “. | y” (happy), “. X" (alex) and “. cpphs”
(cpphs). In such cases the appropriate preprocessor will be run automatically as required.

This stanza may also contain build information fields (see Section 2.1.2, “Build information”) relating to
thelibrary.

2.1.1. Executables

Subsequent stanzas (if present) describe executable programs contained in the package, using the fol-
lowing fields, as well as build information fields (see Section 2.1.2, “Build information”).

execut abl e:
freeform
(reduirddy: il e-
nanme (required)

The name of the executable program.

The name of the source file containing the Mai n module, relative to the hs-
sour ce-di r directory.

2.1.2. Build information

The following fields may be optionally present in any stanza, and give information for the building of
the corresponding library or executable. See also Section 2.2, “ System-dependent parameters’ for away
to supply system-dependent values for these fields.

Common Architecture for Building
Applicationsand Libraries

Bool ean (default:
True)

ot her - nodul es:
identifier |ist

hs-source-dir:
directory
efamsi ons:

identifier |ist

ghc- opti ons:
t oken |i st

hugs- opti ons:
token |i st

nhc- opti ons:
token |i st

i ncl udes: file-
nane |i st

i nclude-dirs:
directory |ist

c-sources: fi-
| enanme |i st

Is the component buildable? Like some of the other fields below, this field is
more useful with the dightly more elaborate form of the simple build infra-
structure described in Section 2.2, “ System-dependent parameters’.

A list of modules used by the component but not exposed to users. For alibrary
component, these would be hidden modules of the library. For an executable,
these would be auxiliary modules to be linked with the file named in the
mai n-i s field.

The name of root directory of the module hierarchy.

A list of Haskell extensions used by every module. Extension names are the
constructors of the Ext ensi on
[../libraries/Cabal/Distribution.Extension.ntml#t:Extension] type. These de-
termine corresponding compiler options. In particular, CPP specifies that
Haskell source files are to be preprocessed with a C preprocessor.

Extensions used only by one module may be specified by placing a LANGUAGE
pragmain the source file affected, e.g.:

{-# LANGUACE CPP, Muilti ParanilypeC asses #-}
Additional options for GHC. You can often achieve the same effect using the
ext ensi ons field, which is preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_GHC pragma.in the source file affected.

Additiona options for Hugs. You can often achieve the same effect using the
ext ensi ons field, which is preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_HUGS pragma in the source file affected.

Additional options for nhc98. Y ou can often achieve the same effect using the
ext ensi ons field, which is preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_NHC pragmain the source file affected.

A list of header files from standard include directories or those listed in i n-
cl ude-di r s, to be included in any compilations via C. These files typically
contain function prototypes for foreign imports used by the package.

A list of directoriesto search for header files, both when using a C preprocessor
and when compiling viaC.

A list of C source files to be compiled and linked with the Haskell files.

If you use this field, you should also name the C files in CFI LES pragmas in
the Haskell source files that use them, e.g.:

{-# CFILES dir/filel.c dir/file2.c #-}

These are ignored by the compilers, but needed by Hugs.

../libraries/Cabal/Distribution.Extension.html#t:Extension

Common Architecture for Building
Applicationsand Libraries

list

extra-lib-dirs:

directory |ist
cc-options:

token |i st
| d- opti ons:
token |i st

f r amewor ks:
t oken |i st

A list of extralibraries to link with.
A list of directoriesto search for libraries.

Command-line arguments to be passed to the C compiler. Since the arguments
are compiler-dependent, this field is more useful with the setup described in
Section 2.2, “ System-dependent parameters’.

Command-line arguments to be passed to the linker. Since the arguments are
compiler-dependent, this field is more useful with the setup described in Sec-
tion 2.2, “ System-dependent parameters”.

On Darwin/MacOS X, a list of frameworks to link to. See Apple's developer
documentation for more details on frameworks. This entry isignored on al oth-
er platforms.

2.2. System-dependent parameters

For some packages, implementation details and the build procedure depend on the build environment.
The simple build infrastructure can handle many such situations using a dightly longer Set up. hs:

i mport Distribution.Sinple
mal n = defaul t Mai nW t hHooks def aul t User Hooks

This program differs from def aul t Mai n in two ways:

1. If the package root directory contains a file called conf i gur e, the configure step will run that.
This conf i gur e program may be a script produced by the autoconf system, or may be hand-
written. This program typically discovers information about the system and records it for later
steps, e.g. by generating system-dependent header files for inclusion in C source files and prepro-
cessed Haskell source files. (Clearly this won't work for Windows without MSY S or Cygwin: other

ideas are needed.)

2. If the package root directory contains afile called package. bui | di nf o after the configuration
step, subsequent steps will read it to obtain additional settings for build information fields (see Sec-
tion 2.1.2, “Build information”), to be merged with the ones given in the . cabal file. In particu-
lar, this file may be generated by the conf i gur e script mentioned above, alowing these settings
to vary depending on the build environment.

The build information file should have the following structure:

bui | di nfo

execut abl e:
bui | di nfo

execut abl e:
bui l di nfo

namne

nane

where each bui | di nf o consists of settings of fields listed in Section 2.1.2, “Build information”.
The first one (if present) relates to the library, while each of the others relate to the named execut-
able. (The names must match the package description, but you don't have to have entries for all of

7

Common Architecture for Building
Applicationsand Libraries

them.)

Neither of thesefilesis required. If they are absent, this setup script is equivalent to def aul t Mai n.

Example 4. Using autoconf

(Thisexampleisfor people familiar with the autoconf toals.)

In the X11 package, thefileconf i gur e. ac contains:

AC I NI T([Haskel | X11 package], [1.1], [libraries@askell.org], [X11])

Safety check: Ensure that we are in the correct source directory.
AC_CONFI G_SRCDI R([X11. cabal])

Header file to place defines in
AC_CONFI G_HEADERS([i ncl ude/ HsX11Confi g. h])

Check for X11 include paths and libraries
AC_PATH XTRA
AC TRY_CPP([#i ncl ude <X11/ Xl'ib.h>],,[no_x=yes])

Build the package if we found X11 stuff
if test "$no_x" = yes

t hen BU LD _PACKAGE BOOL=Fal se

el se BU LD _PACKAGE BOOL=Tr ue

fi

AC_SUBST([BUI LD_PACKAGE_BOOL])

AC_CONFI G_FI LES([X11. bui | di nfo])
AC_OUTPUT

Then the setup script will run the conf i gur e script, which checks for the presence of the X11 libraries
and substitutes for variablesin thefile X11. bui | di nfo. i n:

bui | dabl e: @UI LD_PACKAGE BOOL@
cc-options: @ _CFLAGS@
I d-options: @X LI BS@

Thisgeneratesafile X11. bui | di nf o supplying the parameters needed by later stages:

bui | dabl e: True
cc-options: -l/usr/X11R6/i nclude
I d-options: -L/usr/X11R6/I1ib

The conf i gur e script also generates a header filei ncl ude/ HsX11Conf i g. h containing C pre-
processor defines recording the results of various tests. This file may be included by C source files and
preprocessed Haskell source filesin the package.

2.3. More complex packages

Common Architecture for Building
Applicationsand Libraries

For packages that don't fit the simple schemes described above, you have afew options:

* You can customize the simple build infrastructure using hooks. These allow you to perform addition-
al actions before and after each command is run, and also to specify additional preprocessors. See
Distribution.Simple [../libraries/Cabal/Distribution.Simple.html] for the details, but note that this in-
terface is experimental, and likely to change in future rel eases..

* You could delegate all the work to make, though this is unlikely to be very portable. Cabal supports
this with a trivial setup library Distribution.Make [../libraries/Cabal/Distribution.Make.html], which
simply parses the command line arguments and invokes make. Here Set up. hs looks like

i mport Distribution. Make
mai n = defaul t Mai n

The root directory of the package should contain a conf i gur e script, and, after that has run, a
Makef i | e with a default target that builds the package, plus targetsi nst al | , regi st er, un-
regi ster,cl ean, di st and docs. Some options to commands are passed through as follows:

e The--with-hc, --wth-hc-pkg and - - prefi x options to the conf i gur e command
are passed on to the conf i gur e script.

« the--copy-prefix option to the copy command becomes a setting of a pr ef i x variable
on theinvocation of make i nstall .

* You can write your own setup script conforming to the interface of Section 3, “Building and in-
stalling a package”, possibly using the Cabal library for part of the work. One option is to copy the
source of Distribution.Simple, and alter it for your needs. Good |uck.

3. Building and installing a package

After you've unpacked a Cabal package, you can build it by moving into the root directory of the pack-
age and using the Set up. hs or Set up. | hs script there:
runhaskel | Setup. hs [comrand] [opti on...]

wherer unhaskel | might ber unhugs, r unghc or r unnhc. The command argument selects a par-
ticular step in the build/install process. Y ou can also get a summary of the command syntax with
runhaskel | Setup.hs --help

Example 5. Building and installing a system package

runhaskel | Setup.hs configure --ghc
runhaskel | Setup.hs build
runhaskel | Setup.hs install

The first line readies the system to build the tool using GHC; for example, it checks that GHC exists on
the system. The second line performs the actual building, while the last both copies the build results to
some permanent place and registers the package with GHC.

Example 6. Building and installing a user package

9

../libraries/Cabal/Distribution.Simple.html
../libraries/Cabal/Distribution.Make.html

Common Architecture for Building
Applicationsand Libraries

runhaskel | Setup.hs configure --ghc --prefix=$HOVE
runhaskel | Setup.hs build
runhaskel | Setup.hs install --user

In this case, since the package will be registered in the user's package database, we also install it under
the user's home directory.

Example 7. Creating a binary package

When creating binary packages (e.g. for RedHat or Debian) one needs to create a tarball that can be sent
to another system for unpacking in the root directory:

runhaskel | Setup.hs configure --ghc --prefix=/usr
runhaskel | Setup.hs build
runhaskel | Setup.hs copy --copy-prefix=/tnp/nypkg/ usr

(cd /tnp/ mypkg; tar cf - .) | gzip -9 >nypkg.tar.gz
If the package contains alibrary, you need two additional steps:

runhaskel | Setup.hs register --gen-script
runhaskel | Setup.hs unregi ster --gen-script

This creates shell scriptsr egi st er. sh and unr egi st er . sh, which must also be sent to the target
system. After unpacking there, the package must be registered by running the r egi st er . sh script.
The unr egi st er. sh script would be used in the uninstall procedure of the package. Similar steps
may be used for creating binary packages for Windows.

The following options are understood by all commands:

--hel p,-hor Listtheavailable options for the command.
)

--ver bose=n Set the verbosity level (0-5). The normal level is 1; amissing n defaultsto 3.
or-vn

The various commands and the additional options they support are described below. In the simple build
infrastructure, any other options will be reported as errors, except in the case of the conf i gur e com-
mand.

3.1. setup configure

Prepare to build the package. Typically, this step checks that the target platform is capable of building
the package, and discovers platform-specific features that are needed during the build. In addition to the
genera options, this command recognizes the following

--prefix=dir Specify the installation prefix (default: / usr /1 ocal on Unix systems).

10

Common Architecture for Building
Applicationsand Libraries

- hugs Specify which Haskell implementation to use to build the package. At most one
of these flags may be given. If none is given, the implementation under which
the setup script was compiled or interpreted is used.

11

Common Architecture for Building
Applicationsand Libraries

=pat h or-wpat h Specify the path to a particular compiler. If given, this must match the imple-
mentation selected above. The default is to search for the usual name of the se-
lected implementation.

Specify the path to the package toal, e.g. ghc- pkg.

T

-wi t h- hc- pkg=h

12

Common Architecture for Building
Applicationsand Libraries

pat h Specify the path to Haddock [http://www.haskell .org/haddock/].

pa Specify the path to happy.

--wW t h- happy=th

pat Specify the path to alex.

--w t h-al ex=h

p Specify the path to hsc2hs.

a

pa Specify the path to cpphs.

=-W t h- hpphhasth

- -user Allow dependencies to be satisfied by the user package database, in addition to
the global database.

- - gl obal (default) Dependencies must be satisfied by the global package database.

In the simple build infrastructure, an additional option is recognized:

13

http://www.haskell.org/haddock/

Common Architecture for Building
Applicationsand Libraries

=di r or Specify the directory into which the package will be built (default: di st / bui | d).
-bdir

In the simple build infrastructure, the values supplied via these options are recorded in a private file for
use by later stages.

If a user-supplied confi gur e script is run (see Section 2.2, “ System-dependent parameters’), it is
passed the - - pr ef i x option and any unrecognized options.

3.2. setup build

Perform any preprocessing or compilation needed to make this package ready for installation.

3.3. setup haddock

Build the interface documentation for alibrary using Haddock [http://www.haskell.org/haddock/].

3.4. setup install

Copy thefilesinto theinstall locations and (for library packages) register the package with the compiler,
i.e. make the modulesit contains available to programs.

This command takes the following options:

--gl obal Register this package in the system-wide database. (Thisis the default.)

- -user Register this package in the user's local package database.

3.5. setup copy

Copy the files without registering them. This command is mainly of use to those creating binary pack-
ages.

This command takes the following option:

14

http://www.haskell.org/haddock/

Common Architecture for Building
Applicationsand Libraries

=pat h Specify the directory under which to place installed files. If thisis not given, the
argument of the- - pr ef i x optionto conf i gur e isused.

3.6. setup register

Register this package with the compiler, i.e. make the modules it contains available to programs. This
only makes sense for library packages. Note that the i nst al | command incorporates this action. The
main use of this separate command is in the post-installation step for a binary package.

This command takes the following options:

- - gl obal Register this package in the system-wide database. (Thisis the default.)

- -user Register this package in the user's local package database.

--gen-script Instead of registering the package, generate a script containing commands to per-
form the registration. On Unix, this file is called r egi st er. sh, on Windows,

regi st er. bat. This script might be included in a binary bundle, to be run after
the bundle is unpacked on the target system.

3.7. setup unregister

Deregister this package with the compiler.

This command takes the following options:

- - gl obal Deregister this package in the system-wide database. (Thisis the default.)

--user Deregister this package in the user's local package database.

--gen-script Instead of deregistering the package, generate a script containing commands to per-
form the deregistration. On Unix, this file is called unr egi st er. sh, on Win-

dows, unr egi st er . bat . This script might be included in a binary bundle, to be
run on the target system.

3.8. setup clean

Remove any local files created during the confi gur e, bui | d, haddock, regi ster or unre-
gi ster steps.

3.9. setup sdist

Create a system- and compiler-independent source distribution in afile package- ver si on. t gz that
can be distributed to package builders. When unpacked, the commands listed in this section will be
available.

However this command is not yet working in the simple build infrastructure.

4. Known bugs and deficiencies

15

Common Architecture for Building
Applicationsand Libraries

All these should be fixed in future versions:

» Inthe simple build infrastructure, the sdi st command does not work.

» The scheme described in Section 2.2, “System-dependent parameters’ will not work on Windows
without MSY S or Cygwin.

» Caba has some limitations both running under Hugs and building packages for it:
» Cabal does not work with the current stable release (Nov 2003), just the development version.
e It doesn't work with Windows.
e The--user optionisunavailable.
e Thereisno hugs- pkg tool.

* Though thelibrary runs under Nhc98, it cannot build packages for Nhc98.

Please report any other flawsto <l i br ari es@askel | . or g>.

16

	Common Architecture for Building Applications and Libraries
	Table of Contents
	1. Packages
	2. Creating a package
	2.1. Package descriptions
	2.1.1. Executables
	2.1.2. Build information

	2.2. System-dependent parameters
	2.3. More complex packages

	3. Building and installing a package
	3.1. setup configure
	3.2. setup build
	3.3. setup haddock
	3.4. setup install
	3.5. setup copy
	3.6. setup register
	3.7. setup unregister
	3.8. setup clean
	3.9. setup sdist

	4. Known bugs and deficiencies

