
Haskell Libraries
The GHC Team

Haskell Libraries
The GHC Team

Table of Contents
1. Introduction .. 1

1.1. Usage .. 1
2. The concurrent package: concurrency support ... 2
3. The data package: datatypes .. 3

3.1. Edison ... 3
3.2. The FiniteMap type ... 3
3.3. Set .. 3

4. The lang package: language support .. 4
4.1. Bits .. 4
4.2. CError .. 4
4.3. CForeign .. 4
4.4. CTypes .. 4
4.5. CTypesISO .. 4
4.6. CString .. 4
4.7. DiffArray .. 4
4.8. DirectoryExts .. 4
4.9. Dynamic .. 5
4.10. Exception .. 5
4.11. Foreign .. 5
4.12. ForeignPtr .. 5
4.13. GlaExts .. 5
4.14. IArray .. 5
4.15. Int .. 5
4.16. IOExts .. 5

4.16.1. IO monad extensions ... 6
4.16.2. Mutable Variables ... 6
4.16.3. Mutable Arrays ... 6
4.16.4. Extended file modes .. 7
4.16.5. Bulk transfers ... 7
4.16.6. Terminal control ... 8
4.16.7. Redirecting handles ... 8
4.16.8. Trace .. 8
4.16.9. Extra IOError Predicates ... 8
4.16.10. Miscellany ... 9

4.17. LazyST .. 9
4.18. MArray .. 9
4.19. MarshalAlloc .. 9
4.20. MarshalArray .. 10
4.21. MarshalError .. 10
4.22. MarshalUtils .. 10
4.23. NumExts .. 10
4.24. PackedString .. 11
4.25. Ptr .. 11
4.26. ShowFunctions .. 11
4.27. ST .. 11
4.28. StableName .. 11
4.29. StablePtr .. 11
4.30. Storable .. 12
4.31. StorableArray .. 12
4.32. SystemExts .. 12
4.33. Weak .. 13
4.34. Word .. 13

5. The net package: networking support ... 14

iv

5.1. BSD: System database info .. 14
5.2. Socket: The high-level networking interface .. 14
5.3. SocketPrim: The low-level socket binding ... 14
5.4. URI .. 14

6. The num package: numeric operations ... 15
7. The posix package: POSIX support .. 16

7.1. Posix data types .. 16
7.2. Posix Process Primitives ... 20
7.3. Posix Process Environment ... 25
7.4. Posix operations on files and directories .. 28
7.5. Posix Input and Output Primitives .. 33
7.6. Posix, Device- and Class-Specific Functions .. 35
7.7. Posix System Databases ... 36
7.8. POSIX Errors ... 38
7.9. POpen ... 38

8. The text package: text manipulation ... 40
8.1. MatchPS: The Perl-like matching interface ... 40
8.2. Parsec: Parsing combinators ... 40
8.3. Pretty: Pretty printing combimators .. 40
8.4. Regex: The low-level regex matching interface ... 40
8.5. RegexString: Regex matching made simple ... 40

9. The util package: miscellaneous utilities ... 41
9.1. GetOpt: Command line parsing .. 41
9.2. Memo: Fast memo functions .. 41
9.3. QuickCheck .. 41
9.4. Readline: Command line editing .. 41
9.5. Select: Synchronous I/O multiplexing .. 42

9.5.1. Using hSelect with Concurrent Haskell ... 43
10. The Win32 package .. 44

Haskell Libraries

v

Chapter 1. Introduction
Previous versions of GHC (versions 5.02 and older) came with a set of libraries called the hslibs, also
known as the Hugs-GHC libraries. These libraries are being phased out in favour of the new hierarchical
libraries, but for the time being we still provide hslibs for backwards compatibility.

The status of each module in hslibs can be considered to have three possible values:

Moved The module has moved to the hierarchical libraries, and its documentation (in this doc-
ument) will report its new location.

Not moved The module is waiting to be moved to the new hierarchical libraries, but it hasn't
moved yet. Please continue to use it from its current hslibs package for the time be-
ing. The documentation for the module (if it had any) is still in place in this document.

Deprecated The module is deprecated and should not be used. A deprecated module will be indic-
ated as such in its documentation, along with an suggested alternative API.

1.1. Usage
If you're using hslibs with GHC[i], then you need to add -package p to the command line for each
package from which you're using a module. See the section on packages in the User's Guide
[../users_guide/packages.html] for an explanation of packages.

1

../users_guide/packages.html

Chapter 2. The concurrent package:
concurrency support

The concurrency libraries (and the associated documentation) have moved. See the module Con-
trol.Concurrent [../libraries/base/Control.Concurrent.html] in the hierarchical libraries.

2

../libraries/base/Control.Concurrent.html
../libraries/base/Control.Concurrent.html

Chapter 3. The data package:
datatypes
3.1. Edison

Edison is a complete package of data structures for Haskell. Documentation is available online
[http://www.haskell.org/ghc/docs/edison/].

3.2. The FiniteMap type
This module has moved to Data.FiniteMap [../libraries/base/Data.FiniteMap.html] in the hierarch-
ical libraries.

3.3. Set
This module has moved to Data.Set [../libraries/base/Data.Set.html] in the hierarchical libraries.

3

http://www.haskell.org/ghc/docs/edison/
../libraries/base/Data.FiniteMap.html
../libraries/base/Data.Set.html

Chapter 4. The lang package:
language support
4.1. Bits

This module has moved to Data.Bits [../libraries/base/Data.Bits.html] in the hierarchical libraries.

4.2. CError
This module has moved to Foreign.C.Error [../libraries/base/Foreign.C.Error.html] in the hierarch-
ical libraries.

4.3. CForeign
This module has moved to Foreign.C [../libraries/base/Foreign.C.html] in the hierarchical libraries.

4.4. CTypes
This module has moved to Foreign.C.Types [../libraries/base/Foreign.C.Types.html] in the hier-
archical libraries.

4.5. CTypesISO
This module has been merged into Foreign.C.Types [../libraries/base/Foreign.C.Types.html] in the
hierarchical libraries.

4.6. CString
This module has moved to Foreign.C.String [../libraries/base/Foreign.C.String.html] in the hier-
archical libraries.

4.7. DiffArray
This module has moved to Data.Array.Diff [../libraries/base/Data.Array.Diff.html] in the hierarch-
ical libraries.

4.8. DirectoryExts
The DirectoryExts module follows the footstep of other 'Exts' modules and provides functionality
that goes beyond what the Haskell 98 module Directory offers. That is, functionality that provides
access to file/directory operations in an OS-independent manner.

DirectoryExts currently exports the following:

copyFile :: FilePath -> FilePath -> IO ()

4

../libraries/base/Data.Bits.html
../libraries/base/Foreign.C.Error.html
../libraries/base/Foreign.C.html
../libraries/base/Foreign.C.Types.html
../libraries/base/Foreign.C.Types.html
../libraries/base/Foreign.C.String.html
../libraries/base/Data.Array.Diff.html

Notes:

• copyFile lets you copy a file to another non-existent file.

File copying is done external to Haskell, and is for natural reasons quicker as a result and, most im-
portantly, file copying handles the number of the OS-specific error conditions that might arise as a
result of trying to perform the file copy operation.

Should the file copying operation for some reason not succeed, the action copyFile raises an IO
exception to signal the fact.

4.9. Dynamic
This module has moved to Data.Dynamic [../libraries/base/Data.Dynamic.html] in the hierarchical
libraries.

4.10. Exception
This module has moved to Control.Exception [../libraries/base/Control.Exception.html] in the
hierarchical libraries.

4.11. Foreign
This module has moved to Foreign [../libraries/base/Foreign.html] in the hierarchical libraries.

4.12. ForeignPtr
This module has moved to Foreign.ForeignPtr [../libraries/base/Foreign.ForeignPtr.html] in the
hierarchical libraries.

4.13. GlaExts
This module has moved to GHC.Exts [../libraries/base/GHC.Exts.html] in the hierarchical libraries.

4.14. IArray
This module has moved to Data.Array.IArray [../libraries/base/Data.Array.IArray.html] in the
hierarchical libraries.

4.15. Int
This module has moved to Data.Int [../libraries/base/Data.Int.html] in the hierarchical libraries.

4.16. IOExts
This library is the home for miscellaneous IO-related extensions.

The lang package: language support

5

../libraries/base/Data.Dynamic.html
../libraries/base/Control.Exception.html
../libraries/base/Foreign.html
../libraries/base/Foreign.ForeignPtr.html
../libraries/base/GHC.Exts.html
../libraries/base/Data.Array.IArray.html
../libraries/base/Data.Int.html

4.16.1. IO monad extensions

fixIO :: (a -> IO a) ->
IO a

fixIO allows recursive IO operations to be defined. The first ar-
gument to fixIO should be a function that takes its own output
as an argument (sometimes called "tying the knot").

unsafePerformIO :: IO a
-> a

This is the "back door" into the IO monad, allowing IO computa-
tion to be performed at any time. For this to be safe, the IO com-
putation should be free of side effects and independent of its en-
vironment.

If the I/O computation wrapped in unsafePerformIO per-
forms side effects, then the relative order in which those side ef-
fects take place (relative to the main I/O trunk, or other calls to
unsafePerformIO) is indeterminate.

However, it is less well known that unsafePerformIO is not
type safe. For example:

test :: IORef [a]
test = unsafePerformIO $ newIORef []

main = do
writeIORef test [42]
bang <- readIORef test
print (bang :: [Char])

This program will core dump. This problem with polymorphic
references is well known in the ML community, and does not
arise with normal monadic use of references. There is no easy
way to make it impossible once you use unsafePerformIO.
Indeed, it is possible to write coerce :: a -> b with the
help of unsafePerformIO. So be careful!

unsafeInterleaveIO :: IO
a -> IO a

unsafeInterleaveIO allows IO computation to be deferred
lazily. When passed a value of type IO a, the IO will only be
performed when the value of the a is demanded. This is used to
implement lazy file reading, see IO.hGetContents.

4.16.2. Mutable Variables

data IORef -- instance of: Eq
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()
mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))

-- deprecated, use modifyIORef
updateIORef :: IORef a -> (a -> a) -> IO ()

4.16.3. Mutable Arrays

The lang package: language support

6

data IOArray -- instance of: Eq
newIOArray :: Ix ix => (ix,ix) -> elt -> IO (IOArray ix elt)
boundsIOArray :: Ix ix => IOArray ix elt -> (ix, ix)
readIOArray :: Ix ix => IOArray ix elt -> ix -> IO elt
writeIOArray :: Ix ix => IOArray ix elt -> ix -> elt -> IO ()
freezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
thawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)
unsafeFreezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
unsafeThawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)

Note: unsafeFreezeIOArray and unsafeThawIOArray are not provided by Hugs.

4.16.4. Extended file modes

data IOModeEx
= BinaryMode IOMode
| TextMode IOMode
deriving (Eq, Read, Show)

openFileEx :: FilePath -> IOModeEx -> IO Handle
hSetBinaryMode :: Handle -> Bool -> IO Bool

GHC's implementation of the IO library distinguishes between binary- and text-mode files. This unfortu-
nate hack is imposed on us by the need to support Win32 platforms.

On Win32, files opened in text mode are subject to CR-LF translation. When reading a handle in text
mode, CR-LF sequences in the physical file are translated into lone LFs in the stream presented to the
Haskell program. Writes to a text mode handle are subject to the inverse transformation.

On Unix platforms there is no such translation. What you get is exactly the contents of the file, and vice
versa.

Unfortunately this behaviour makes it difficult to correctly implement file-positioning operations in text
mode on Win32. If you want to use such operations, you must first place the handle in binary mode.
Failure to do so results in IO exceptions being raised. This applies only to Win32, and not to any other
platforms. If your programs use seek operations and you want them to be portable between Unix and
Win32, you need to ensure the relevant handles are in binary mode.

You can get hold of a binary-mode file handle one of two ways. Either open the file with
openFileEx, which allows the mode to be specified. Or, if you already have an open handle, use
hSetBinaryMode to change its mode.

Also as a result of this, note that on Win32 there are also several operations which, whist still allowed,
may give different results in text mode than their Unix counterparts. These are: changing buffering
modes of a handle (hSetBuffering), and writing to a read-write handle. In both cases, the read-
buffer associated with the handle needs to be flushed, and, due to the Win32 text mode translation, the
resulting physical file position following the flush may be wrong.

This issue of seeking in the presence of a non-identity transform between file and buffer contents will
need to be revisited when the library is re-done to properly support Unicode. The present arrangement is
the least-worst kludge we could come up with at present.

4.16.5. Bulk transfers

hGetBuf :: Handle -> Addr -> Int -> IO Int

The lang package: language support

7

hPutBuf :: Handle -> Addr -> Int -> IO ()

These functions read and write chunks of data to/from a handle. They will return only when either the
full buffer has been transfered, or the end of file is reached (in the case of hGetBuf.

hGetBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO Int
hPutBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO ()

These functions mirror the previous two functions, but operate on MutableByteArrays instead of
Addrs. This may be more convenient and/or faster, depending on the circumstances.

4.16.6. Terminal control

hIsTerminalDevice :: Handle -> IO Bool
hSetEcho :: Handle -> Bool -> IO ()
hGetEcho :: Handle -> IO Bool

4.16.7. Redirecting handles

withHandleFor :: Handle -> Handle -> IO a -> IO a
withStdout :: Handle -> IO a -> IO a
withStdin :: Handle -> IO a -> IO a
withStderr :: Handle -> IO a -> IO a

4.16.8. Trace

trace :: String -> a -> a

When called, trace prints the string in its first argument to standard error, before returning the second
argument as its result. The trace function is not referentially transparent, and should only be used for
debugging, or for monitoring execution. Some implementations of trace may decorate the string that's
output to indicate that you're tracing.

trace is implemented using unsafePerformIO.

4.16.9. Extra IOError Predicates
The IO module provides several predicates over the IOError type, such as isEOFError, isDoes-
NotExistError, and so on. Here we define an extended set of these predicates, taking into account
more types of error:

isHardwareFault :: IOError -> Bool
isInappropriateType :: IOError -> Bool
isInterrupted :: IOError -> Bool
isInvalidArgument :: IOError -> Bool
isOtherError :: IOError -> Bool
isProtocolError :: IOError -> Bool
isResourceVanished :: IOError -> Bool

The lang package: language support

8

isSystemError :: IOError -> Bool
isTimeExpired :: IOError -> Bool
isUnsatisfiedConstraints :: IOError -> Bool
isUnsupportedOperation :: IOError -> Bool
isDynIOError :: IOError -> Bool

4.16.10. Miscellany

unsafePtrEq :: a -> a -> Bool
slurpFile :: FilePath -> IO (Addr, Int)
hConnectTo :: Handle -> Handle -> IO ()
performGC :: IO ()
freeHaskellFunctionPtr :: Addr -> IO ()

getDynIOError :: IOError -> Maybe Dynamic.Dynamic

performGC triggers an immediate garbage collection

unsafePtrEq compares two values for pointer equality without evaluating them. The results are not
referentially transparent and may vary significantly from one compiler to another or in the face of se-
mantics-preserving program changes. However, pointer equality is useful in creating a number of refer-
entially transparent constructs such as this simplified memoisation function:

> cache :: (a -> b) -> (a -> b)
> cache f = \x -> unsafePerformIO (check x)
> where
> ref = unsafePerformIO (newIORef (error "cache", error "cache"))
> check x = readIORef ref >>= \ (x',a) ->
> if x `unsafePtrEq` x' then
> return a
> else
> let a = f x in
> writeIORef ref (x, a) >>
> return a

getDynIOError takes an IOError as argument. If it is a dynamic IO error, it returns Just d,
where d is the dynamic value. Of (some) use by library providers to provide their own IOError types.

4.17. LazyST
The contents of this module can now be found in Control.Monad.ST.Lazy
[../libraries/base/Control.Monad.ST.Lazy.html], and Data.STRef.Lazy
[../libraries/base/Data.STRef.Lazy.html].

4.18. MArray
This module has moved to Data.Array.MArray [../libraries/base/Data.Array.MArray.html] in the
hierarchical libraries.

4.19. MarshalAlloc
This module has moved to Foreign.Marshal.Alloc [../libraries/base/Foreign.Marshal.Alloc.html]

The lang package: language support

9

../libraries/base/Control.Monad.ST.Lazy.html
../libraries/base/Data.STRef.Lazy.html
../libraries/base/Data.Array.MArray.html
../libraries/base/Foreign.Marshal.Alloc.html

in the hierarchical libraries.

4.20. MarshalArray
This module has moved to Foreign.Marshal.Array
[../libraries/base/Foreign.Marshal.Array.html] in the hierarchical libraries.

4.21. MarshalError
This module has moved to Foreign.Marshal.Error [../libraries/base/Foreign.Marshal.Error.html]
in the hierarchical libraries.

4.22. MarshalUtils
This module has moved to Foreign.Marshal.Utils [../libraries/base/Foreign.Marshal.Utils.html]
in the hierarchical libraries.

4.23. NumExts
The NumExts interface collect together various numeric operations that have proven to be commonly
useful

-- Going between Doubles and Floats:
doubleToFloat :: Double -> Float
floatToDouble :: Float -> Double

showHex :: Integral a => a -> ShowS
showOct :: Integral a => a -> ShowS
showBin :: Integral a => a -> ShowS

showIntAtBase :: Integral a
=> a -- base
-> (a -> Char) -- digit to char
-> a -- number to show.
-> ShowS

showListWith :: (a -> ShowS) -> [a] -> ShowS

Notes:

• If doubleToFloat is applied to a Double that is within the representable range for Float, the
result may be the next higher or lower representable Float value. If the Double is out of range,
the result is undefined.

• No loss of precision occurs in the other direction with floatToDouble, the floating value remains
unchanged.

• showOct, showHex and showBin will prefix 0o, 0x and 0b, respectively. Like Numer-
ic.showInt, these show functions work on positive numbers only.

• showIntAtBase is the more general function for converting a number at some base into a series
of characters. The above show* functions use it, for instance, here's how showHex could be
defined

The lang package: language support

10

../libraries/base/Foreign.Marshal.Array.html
../libraries/base/Foreign.Marshal.Error.html
../libraries/base/Foreign.Marshal.Utils.html

showHex :: Integral a => a -> ShowS
showHex n r =
showString "0x" $
showIntAtBase 16 (toChrHex) n r
where
toChrHex d
| d < 10 = chr (ord '0' + fromIntegral d)
| otherwise = chr (ord 'a' + fromIntegral (d - 10))

• showListWith is strictly speaking not a 'NumExts' kind of function, but it's sometimes useful in
conjunction with the other show* functions that NumExts exports. It is the non-overloaded version
of showList, allowing you to supply the shows function to use per list element. For instance,

putStrLn (NumExts.showListWith NumExts.showHex [0..16])

will print out the elements of [0..16] in hexadecimal form.

4.24. PackedString
This module has moved to Data.PackedString [../libraries/base/Data.PackedString.html] in the
hierarchical libraries.

4.25. Ptr
This module has moved to Foreign.Ptr [../libraries/base/Foreign.Ptr.html] in the hierarchical librar-
ies.

4.26. ShowFunctions
This module has moved to Text.Show.Functions [../libraries/base/Text.Show.Functions.html] in
the hierarchical libraries.

4.27. ST
The contents of this module can now be found in Control.Monad.ST
[../libraries/base/Control.Monad.ST.html], Data.STRef [../libraries/base/Data.STRef.html], and
Data.Array.ST [../libraries/base/Data.Array.ST.html] in the hierarchical libraries.

4.28. StableName
This module has moved to System.Mem.StableName
[../libraries/base/System.Mem.StableName.html] in the hierarchical libraries.

4.29. StablePtr
This module has moved to Foreign.StablePtr [../libraries/base/Foreign.StablePtr.html] in the
hierarchical libraries.

The lang package: language support

11

../libraries/base/Data.PackedString.html
../libraries/base/Foreign.Ptr.html
../libraries/base/Text.Show.Functions.html
../libraries/base/Control.Monad.ST.html
../libraries/base/Data.STRef.html
../libraries/base/Data.Array.ST.html
../libraries/base/System.Mem.StableName.html
../libraries/base/Foreign.StablePtr.html

4.30. Storable
This module has moved to Foreign.Storable [../libraries/base/Foreign.Storable.html] in the hier-
archical libraries.

4.31. StorableArray
This module has moved to Data.Array.Storable [../libraries/base/Data.Array.Storable.html] in
the hierarchical libraries.

4.32. SystemExts
The SystemExts module contains functionality that goes beyond what the Haskell 98 module Sys-
tem provides. That is, functionality that provides access to the underlying OS' facilities in an OS-
independent manner.

Notice that SystemExts shares the goal of System. That is, it aims to provide functionality that's
supported by all platforms. So, if you're looking to do serious system programming for a particular
(family) of platforms, you really want to check out the libraries provided for the platform in question as
well. e.g., The Posix library for POSIX.1-conforming platforms, the Win32 library for Win32 plat-
forms.

SystemExts exports the following:

rawSystem :: String -> IO ExitCode
withArgs :: [String] -> IO a -> IO a
withProgName :: String -> IO a -> IO a
getEnvironment :: IO [(String, String)]

Notes:

• rawSystem provides the exact same behaviour as System.system, except that the system com-
mand isn't invoked via a shell / command interpreter.

Not involving your platform's shell / command interpreter is quicker if you don't need its functional-
ity, and it avoids running into limitations imposed by the shell / command interpreter. For instance,
Win32 command interpreters place a limit on the length of the command they can execute (~4k),
which sometimes gets in the way of what you want to do.

• The withArgs action lets you change the value returned by System.getArgs while executing
an IO action.

When the action has finished executing (or if it raises an exception), the argument vector of Sys-
tem.getArgs is restored.

• The withProgName action lets you change the program name string returned by Sys-
tem.getProgName while executing an IO action.

As withArgs, when the action has finished executing (or if it raises an exception), the program
name string System.getArgs is restored.

• The getEnvironment action returns all the environment values present in your process' environ-
ment block.

The lang package: language support

12

../libraries/base/Foreign.Storable.html
../libraries/base/Data.Array.Storable.html

4.33. Weak
This module has moved to System.Mem.Weak [../libraries/base/System.Mem.Weak.html] in the hier-
archical libraries.

4.34. Word
This module has moved to Data.Word [../libraries/base/Data.Word.html] in the hierarchical libraries.

The lang package: language support

13

../libraries/base/System.Mem.Weak.html
../libraries/base/Data.Word.html

Chapter 5. The net package:
networking support

(Darren Moffat supplied the initial version of this library.)

5.1. BSD: System database info
This module has moved to Network.BSD [../libraries/network/Network.BSD.html] (package net-
work) in the hierarchical libraries.

5.2. Socket: The high-level networking inter-
face

This module has moved to Network [../libraries/network/Network.html] (package network) in the
hierarchical libraries.

5.3. SocketPrim: The low-level socket binding
This module has moved to Network.Socket [../libraries/network/Network.Socket.html] (package
network) in the hierarchical libraries.

5.4. URI
This module has moved to Network.URI [../libraries/network/Network.URI.html] (package net-
work) in the hierarchical libraries.

14

../libraries/network/Network.BSD.html
../libraries/network/Network.html
../libraries/network/Network.Socket.html
../libraries/network/Network.URI.html

Chapter 6. The num package: numeric
operations

This category is currently empty.

15

Chapter 7. The posix package: POSIX
support

The Posix interface gives you access to the set of OS services standardised by POSIX 1003.1b (or the
IEEE Portable Operating System Interface for Computing Environments - IEEE Std. 1003.1). The inter-
face is accessed by import Posix and adding -package posix on your command-line.

The Posix package is not supported under Windows. We've looked into various ways of providing sup-
port, and other than using Cygwin, none is particularly attractive. If you want Posix support under Win-
dows, try building GHC for Cygwin; we don't currently do this, but it is mostly supported.

7.1. Posix data types

data ByteCount -- instances of : Eq Ord Num Real Integral Ix Enum Show

A ByteCount is a primitive of type unsigned. At a minimum, an conforming implementation must
support values in the range [0, UINT_MAX].

data ClockTick -- instances of : Eq Ord Num Real Integral Ix Enum Show

A ClockTick is a primitive of type clock_t, which is used to measure intervals of time in fractions
of a second. The resolution is determined by getSysVar ClockTick.

data DeviceID -- instances of : Eq Ord Num Real Integral Ix Enum Show

A DeviceID is a primitive of type dev_t. It must be an arithmetic type.

data EpochTime -- instances of : Eq Ord Num Real Integral Ix Enum Show

A EpochTime is a primitive of type time_t, which is used to measure seconds since the Epoch. At a
minimum, the implementation must support values in the range [0, INT_MAX].

data FileID -- instances of : Eq Ord Num Real Integral Ix Enum Show

A FileID is a primitive of type ino_t. It must be an arithmetic type.

data FileMode -- instance of : Eq

16

A FileMode is a primitive of type mode_t. It must be an arithmetic type.

data FileOffset -- instances of : Eq Ord Num Real Integral Ix Enum Show

A FileOffset is a primitive of type off_t. It must be an arithmetic type.

data GroupID -- instances of : Eq Ord Num Real Integral Ix Enum Show

A GroupID is a primitive of type gid_t. It must be an arithmetic type.

data Limit -- instances of : Eq Ord Num Real Integral Ix Enum Show

A Limit is a primitive of type long. At a minimum, the implementation must support values in the
range [LONG_MIN, LONG_MAX].

data LinkCount -- instances of : Eq Ord Num Real Integral Ix Enum Show

A LinkCount is a primitive of type nlink_t. It must be an arithmetic type.

data ProcessID -- instances of : Eq Ord Num Real Integral Ix Enum Show
type ProcessGroupID = ProcessID

A ProcessID is a primitive of type pid_t. It must be a signed arithmetic type.

data UserID -- instances of : Eq Ord Num Real Integral Ix Enum Show

A UserID is a primitive of type uid_t. It must be an arithmetic type.

data DirStream

A DirStream is a primitive of type DIR *.

data FileStatus

A FileStatus is a primitive of type struct stat.

data GroupEntry

A GroupEntry is a primitive of type struct group.

The posix package: POSIX support

17

data ProcessTimes

ProcessTimes is a primitive structure containing a clock_t and a struct tms.

data SignalSet

An SignalSet is a primitive of type sigset_t.

data SystemID

A SystemID is a primitive of type struct utsname.

data TerminalAttributes

TerminalAttributes is a primitive of type struct termios.

data UserEntry

A UserEntry is a primitive of type struct passwd.

data BaudRate = B0 | B50 | B75 | B110 | B134 | B150 | B200 | B300 | B600
| B1200 | B1800 | B2400 | B4800 | B9600 | B19200 | B38400
deriving (Eq, Show)

data Fd

instance Eq Fd
instance Show Fd

intToFd :: Int -> Fd -- use with care.
fdToInt :: Fd -> Int -- ditto.

data FdOption = AppendOnWrite
| CloseOnExec
| NonBlockingRead

data ControlCharacter = EndOfFile
| EndOfLine
| Erase
| Interrupt
| Kill
| Quit
| Suspend
| Start
| Stop

type ErrorCode = Int

The posix package: POSIX support

18

type FileLock = (LockRequest, SeekMode, FileOffset, FileOffset)
-- whence start length

data FlowAction = SuspendOutput | RestartOutput | TransmitStop | TransmitStart

data Handler = Default | Ignore | Catch (IO ())

data LockRequest = ReadLock | WriteLock | Unlock
deriving (Eq, Show)

data OpenMode = ReadOnly | WriteOnly | ReadWrite

data PathVar = LinkLimit
| InputLineLimit
| InputQueueLimit
| FileNameLimit
| PathNameLimit
| PipeBufferLimit
| SetOwnerAndGroupIsRestricted
| FileNamesAreNotTruncated

data QueueSelector = InputQueue | OutputQueue | BothQueues

type Signal = Int

data SysVar = ArgumentLimit
| ChildLimit
| ClockTick
| GroupLimit
| OpenFileLimit
| PosixVersion
| HasSavedIDs
| HasJobControl

data TerminalMode = InterruptOnBreak -- BRKINT
| MapCRtoLF -- ICRNL
| IgnoreBreak -- IGNBRK
| IgnoreCR -- IGNCR
| IgnoreParityErrors -- IGNPAR
| MapLFtoCR -- INLCR
| CheckParity -- INPCK
| StripHighBit -- ISTRIP
| StartStopInput -- IXOFF
| StartStopOutput -- IXON
| MarkParityErrors -- PARMRK
| ProcessOutput -- OPOST
| LocalMode -- CLOCAL
| ReadEnable -- CREAD
| TwoStopBits -- CSTOPB
| HangupOnClose -- HUPCL
| EnableParity -- PARENB
| OddParity -- PARODD
| EnableEcho -- ECHO
| EchoErase -- ECHOE
| EchoKill -- ECHOK
| EchoLF -- ECHONL
| ProcessInput -- ICANON
| ExtendedFunctions -- IEXTEN
| KeyboardInterrupts -- ISIG
| NoFlushOnInterrupt -- NOFLSH
| BackgroundWriteInterrupt -- TOSTOP

data TerminalState = Immediately | WhenDrained | WhenFlushed

The posix package: POSIX support

19

data ProcessStatus = Exited ExitCode
| Terminated Signal
| Stopped Signal
deriving (Eq, Show)

7.2. Posix Process Primitives

forkProcess :: IO (Maybe ProcessID)

forkProcess calls fork, returning Just pid to the parent, where pid is the ProcessID of the
child, and returning Nothing to the child.

executeFile :: FilePath -- Command
-> Bool -- Search PATH?
-> [String] -- Arguments
-> Maybe [(String, String)] -- Environment
-> IO ()

executeFile cmd args env calls one of the execv* family, depending on whether or not the
current PATH is to be searched for the command, and whether or not an environment is provided to su-
persede the process's current environment. The basename (leading directory names suppressed) of the
command is passed to execv* as arg[0]; the argument list passed to executeFile therefore be-
gins with arg[1].

Search PATH? Supersede environ? Call
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~
False False execv
False True execve
True False execvp
True True execvpe*

Note that execvpe is not provided by the POSIX standard, and must be written by hand. Care must be
taken to ensure that the search path is extracted from the original environment, and not from the environ-
ment to be passed on to the new image.

NOTE: In general, sharing open files between parent and child processes is potential bug farm, and
should be avoided unless you really depend on this `feature' of POSIX' fork() semantics. Using
Haskell, there's the extra complication that arguments to executeFile might come from files that are
read lazily (using hGetContents, or some such.) If this is the case, then for your own sanity, please
ensure that the arguments to executeFile have been fully evaluated before calling forkProcess
(followed by executeFile.) Consider yourself warned :-)

A successful executeFile overlays the current process image with a new one, so it only returns on
failure.

runProcess :: FilePath -- Command
-> [String] -- Arguments
-> Maybe [(String, String)] -- Environment (Nothing -> Inherited)

The posix package: POSIX support

20



-> Maybe FilePath -- Working directory (Nothing -> inherited)
-> Maybe Handle -- stdin (Nothing -> inherited)
-> Maybe Handle -- stdout (Nothing -> inherited)
-> Maybe Handle -- stderr (Nothing -> inherited)
-> IO ()

runProcess is our candidate for the high-level OS-independent primitive.

runProcess cmd args env wd inhdl outhdl errhdl runs cmd (searching the current
PATH) with arguments args. If env is Just pairs, the command is executed with the environment
specified by pairs of variables and values; otherwise, the command is executed with the current envir-
onment. If wd is Just dir, the command is executed with working directory dir; otherwise, the
command is executed in the current working directory. If {in,out,errhdl} is Just handle, the
command is executed with the Fd for std{in,out,err} attached to the specified handle; other-
wise, the Fd for std{in,out,err} is left unchanged.

getProcessStatus :: Bool -- Block?
-> Bool -- Stopped processes?
-> ProcessID
-> IO (Maybe ProcessStatus)

getProcessStatus blk stopped pid calls waitpid, returning Just tc, the Pro-
cessStatus for process pid if it is available, Nothing otherwise. If blk is False, then WNO-
HANG is set in the options for waitpid, otherwise not. If stopped is True, then WUNTRACED is set
in the options for waitpid, otherwise not.

getGroupProcessStatus :: Bool -- Block?
-> Bool -- Stopped processes?
-> ProcessGroupID
-> IO (Maybe (ProcessID, ProcessStatus))

getGroupProcessStatus blk stopped pgid calls waitpid, returning Just (pid,
tc), the ProcessID and ProcessStatus for any process in group pgid if one is available,
Nothing otherwise. If blk is False, then WNOHANG is set in the options for waitpid, otherwise
not. If stopped is True, then WUNTRACED is set in the options for waitpid, otherwise not.

getAnyProcessStatus :: Bool -- Block?
-> Bool -- Stopped processes?
-> IO (Maybe (ProcessID, ProcessStatus))

getAnyProcessStatus blk stopped calls waitpid, returning Just (pid, tc), the
ProcessID and ProcessStatus for any child process if one is available, Nothing otherwise. If
blk is False, then WNOHANG is set in the options for waitpid, otherwise not. If stopped is True,
then WUNTRACED is set in the options for waitpid, otherwise not.

exitImmediately :: ExitCode -> IO ()

exitImmediately status calls _exit to terminate the process with the indicated exit status.

The posix package: POSIX support

21



The operation never returns.

getEnvironment :: IO [(String, String)]

getEnvironment parses the environment variable mapping provided by environ, returning
(variable, value) pairs. The operation never fails.

setEnvironment :: [(String, String)] -> IO ()

setEnvironment replaces the process environment with the provided mapping of (variable,
value) pairs.

getEnvVar :: String -> IO String

getEnvVar var returns the value associated with variable var in the current environment (identical
functionality provided through standard Haskell library function System.getEnv).

The operation may fail with:

NoSuchThing The variable has no mapping in the current environment.

setEnvVar :: String -> String -> IO ()

setEnvVar var val sets the value associated with variable var in the current environment to be
val. Any previous mapping is superseded.

removeEnvVar :: String -> IO ()

removeEnvVar var removes any value associated with variable var in the current environment.
Deleting a variable for which there is no mapping does not generate an error.

nullSignal :: Signal
nullSignal = 0

backgroundRead, sigTTIN :: Signal
backgroundWrite, sigTTOU :: Signal
continueProcess, sigCONT :: Signal
floatingPointException, sigFPE :: Signal
illegalInstruction, sigILL :: Signal
internalAbort, sigABRT :: Signal
keyboardSignal, sigINT :: Signal
keyboardStop, sigTSTP :: Signal
keyboardTermination, sigQUIT :: Signal

The posix package: POSIX support

22



killProcess, sigKILL :: Signal
lostConnection, sigHUP :: Signal
openEndedPipe, sigPIPE :: Signal
processStatusChanged, sigCHLD :: Signal
realTimeAlarm, sigALRM :: Signal
segmentationViolation, sigSEGV :: Signal
softwareStop, sigSTOP :: Signal
softwareTermination, sigTERM :: Signal
userDefinedSignal1, sigUSR1 :: Signal
userDefinedSignal2, sigUSR2 :: Signal

signalProcess :: Signal -> ProcessID -> IO ()

signalProcess int pid calls kill to signal process pid with interrupt signal int.

raiseSignal :: Signal -> IO ()

raiseSignal int calls kill to signal the current process with interrupt signal int.

signalProcessGroup :: Signal -> ProcessGroupID -> IO ()

signalProcessGroup int pgid calls kill to signal all processes in group pgid with interrupt
signal int.

setStoppedChildFlag :: Bool -> IO Bool

setStoppedChildFlag bool sets a flag which controls whether or not the NOCLDSTOP option
will be used the next time a signal handler is installed for SIGCHLD. If bool is True (the default),
NOCLDSTOP will not be used; otherwise it will be. The operation never fails.

queryStoppedChildFlag :: IO Bool

queryStoppedChildFlag queries the flag which controls whether or not the NOCLDSTOP option
will be used the next time a signal handler is installed for SIGCHLD. If NOCLDSTOP will be used, it re-
turns False; otherwise (the default) it returns True. The operation never fails.

emptySignalSet :: SignalSet
fullSignalSet :: SignalSet
addSignal :: Signal -> SignalSet -> SignalSet
deleteSignal :: Signal -> SignalSet -> SignalSet
inSignalSet :: Signal -> SignalSet -> Bool

installHandler :: Signal
-> Handler
-> Maybe SignalSet -- other signals to block
-> IO Handler -- old handler

The posix package: POSIX support

23



installHandler int handler iset calls sigaction to install an interrupt handler for sig-
nal int. If handler is Default, SIG_DFL is installed; if handler is Ignore, SIG_IGN is in-
stalled; if handler is Catch action, a handler is installed which will invoke action in a new
thread when (or shortly after) the signal is received. See Chapter 2, The concurrent package: con-
currency support for details on how to communicate between threads.

If iset is Just s, then the sa_mask of the sigaction structure is set to s; otherwise it is cleared.
The previously installed signal handler for int is returned.

getSignalMask :: IO SignalSet

getSignalMask calls sigprocmask to determine the set of interrupts which are currently being
blocked.

setSignalMask :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_SETMASK to block all interrupts in mask.
The previous set of blocked interrupts is returned.

blockSignals :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_BLOCK to add all interrupts in mask to the
set of blocked interrupts. The previous set of blocked interrupts is returned.

unBlockSignals :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_UNBLOCK to remove all interrupts in mask
from the set of blocked interrupts. The previous set of blocked interrupts is returned.

getPendingSignals :: IO SignalSet

getPendingSignals calls sigpending to obtain the set of interrupts which have been received
but are currently blocked.

awaitSignal :: Maybe SignalSet -> IO ()

awaitSignal iset suspends execution until an interrupt is received. If iset is Just s, await-
Signal calls sigsuspend, installing s as the new signal mask before suspending execution; other-
wise, it calls pause. awaitSignal returns on receipt of a signal. If you have installed any signal
handlers with installHandler, it may be wise to call yield directly after awaitSignal to en-
sure that the signal handler runs as promptly.

The posix package: POSIX support

24



scheduleAlarm :: Int -> IO Int

scheduleAlarm i calls alarm to schedule a real time alarm at least i seconds in the future.

sleep :: Int -> IO ()

sleep i calls sleep to suspend execution of the program until at least i seconds have elapsed or a
signal is received.

7.3. Posix Process Environment

getProcessID :: IO ProcessID

getProcessID calls getpid to obtain the ProcessID for the current process.

getParentProcessID :: IO ProcessID

getProcessID calls getppid to obtain the ProcessID for the parent of the current process.

getRealUserID :: IO UserID

getRealUserID calls getuid to obtain the real UserID associated with the current process.

getEffectiveUserID :: IO UserID

getEffectiveUserID calls geteuid to obtain the effective UserID associated with the current
process.

setUserID :: UserID -> IO ()

setUserID uid calls setuid to set the real, effective, and saved set-user-id associated with the
current process to uid.

getLoginName :: IO String

getLoginName calls getlogin to obtain the login name associated with the current process.

The posix package: POSIX support

25



getRealGroupID :: IO GroupID

getRealGroupID calls getgid to obtain the real GroupID associated with the current process.

getEffectiveGroupID :: IO GroupID

getEffectiveGroupID calls getegid to obtain the effective GroupID associated with the cur-
rent process.

setGroupID :: GroupID -> IO ()

setGroupID gid calls setgid to set the real, effective, and saved set-group-id associated with the
current process to gid.

getGroups :: IO [GroupID]

getGroups calls getgroups to obtain the list of supplementary GroupIDs associated with the cur-
rent process.

getEffectiveUserName :: IO String

getEffectiveUserName calls cuserid to obtain a name associated with the effective UserID of
the process.

getProcessGroupID :: IO ProcessGroupID

getProcessGroupID calls getpgrp to obtain the ProcessGroupID for the current process.

createProcessGroup :: ProcessID -> IO ProcessGroupID

createProcessGroup pid calls setpgid to make process pid a new process group leader.

joinProcessGroup :: ProcessGroupID -> IO ProcessGroupID

joinProcessGroup pgid calls setpgid to set the ProcessGroupID of the current process to
pgid.

The posix package: POSIX support

26



setProcessGroupID :: ProcessID -> ProcessGroupID -> IO ()

setProcessGroupID pid pgid calls setpgid to set the ProcessGroupID for process pid
to pgid.

createSession :: IO ProcessGroupID

createSession calls setsid to create a new session with the current process as session leader.

systemName :: SystemID -> String
nodeName :: SystemID -> String
release :: SystemID -> String
version :: SystemID -> String
machine :: SystemID -> String

getSystemID :: IO SystemID

getSystemID calls uname to obtain information about the current operating system.

> epochTime :: IO EpochTime

epochTime calls time to obtain the number of seconds that have elapsed since the epoch (Jan 01
00:00:00 GMT 1970).

elapsedTime :: ProcessTimes -> ClockTick
userTime :: ProcessTimes -> ClockTick
systemTime :: ProcessTimes -> ClockTick
childUserTime :: ProcessTimes -> ClockTick
childSystemTime :: ProcessTimes -> ClockTick

getProcessTimes :: IO ProcessTimes

getProcessTimes calls times to obtain time-accounting information for the current process and its
children.

getControllingTerminalName :: IO FilePath

getControllingTerminalName calls ctermid to obtain a name associated with the controlling
terminal for the process. If a controlling terminal exists, getControllingTerminalName returns
the name of the controlling terminal.

The operation may fail with:

The posix package: POSIX support

27



NoSuchThing There is no controlling terminal, or its name cannot be determined.

SystemError Various other causes.

getTerminalName :: Fd -> IO FilePath

getTerminalName fd calls ttyname to obtain a name associated with the terminal for Fd fd. If
fd is associated with a terminal, getTerminalName returns the name of the terminal.

The operation may fail with:

InappropriateType The channel is not associated with a terminal.

NoSuchThing The channel is associated with a terminal, but it has no name.

SystemError Various other causes.

queryTerminal :: Fd -> IO Bool

queryTerminal fd calls isatty to determine whether or not Fd fd is associated with a terminal.

getSysVar :: SysVar -> IO Limit

getSysVar var calls sysconf to obtain the dynamic value of the requested configurable system
limit or option. For defined system limits, getSysVar returns the associated value. For defined system
options, the result of getSysVar is undefined, but not failure.

The operation may fail with:

NoSuchThing The requested system limit or option is undefined.

7.4. Posix operations on files and directories

openDirStream :: FilePath -> IO DirStream

openDirStream dir calls opendir to obtain a directory stream for dir.

readDirStream :: DirStream -> IO String

The posix package: POSIX support

28



readDirStream dp calls readdir to obtain the next directory entry (struct dirent) for the
open directory stream dp, and returns the d_name member of that structure.

The operation may fail with:

EOF End of file has been reached.

SystemError Various other causes.

rewindDirStream :: DirStream -> IO ()

rewindDirStream dp calls rewinddir to reposition the directory stream dp at the beginning of
the directory.

closeDirStream :: DirStream -> IO ()

closeDirStream dp calls closedir to close the directory stream dp.

getWorkingDirectory :: IO FilePath

getWorkingDirectory calls getcwd to obtain the name of the current working directory.

changeWorkingDirectory :: FilePath -> IO ()

changeWorkingDirectory dir calls chdir to change the current working directory to dir.

nullFileMode :: FileMode -- ---------
ownerReadMode :: FileMode -- r--------
ownerWriteMode :: FileMode -- -w-------
ownerExecuteMode :: FileMode -- --x------
groupReadMode :: FileMode -- ---r-----
groupWriteMode :: FileMode -- ----w----
groupExecuteMode :: FileMode -- -----x---
otherReadMode :: FileMode -- ------r--
otherWriteMode :: FileMode -- -------w-
otherExecuteMode :: FileMode -- --------x
setUserIDMode :: FileMode -- --S------
setGroupIDMode :: FileMode -- -----S---

stdFileMode :: FileMode -- rw-rw-rw-

ownerModes :: FileMode -- rwx------
groupModes :: FileMode -- ---rwx---

The posix package: POSIX support

29



otherModes :: FileMode -- ------rwx
accessModes :: FileMode -- rwxrwxrwx

unionFileModes :: FileMode -> FileMode -> FileMode
intersectFileModes :: FileMode -> FileMode -> FileMode

stdInput :: Fd
stdInput = intToFd 0

stdOutput :: Fd
stdOutput = intToFd 1

stdError :: Fd
stdError = intToFd 2

data OpenFileFlags =
OpenFileFlags {

append :: Bool,
exclusive :: Bool,
noctty :: Bool,
nonBlock :: Bool,
trunc :: Bool

}

openFd :: FilePath
-> OpenMode
-> Maybe FileMode -- Just x => O_CREAT, Nothing => must exist
-> OpenFileFlags
-> IO Fd

openFd path acc mode (OpenFileFlags app excl noctty nonblock trunc)
calls open to obtain a Fd for the file path with access mode acc. If mode is Just m, the O_CREAT
flag is set and the file's permissions will be based on m if it does not already exist; otherwise, the
O_CREAT flag is not set. The arguments app, excl, noctty, nonblock, and trunc control wheth-
er or not the flags O_APPEND, O_EXCL, O_NOCTTY, O_NONBLOCK, and O_TRUNC are set, respect-
ively.

createFile :: FilePath -> FileMode -> IO Fd

createFile path mode calls creat to obtain a Fd for file path, which will be created with per-
missions based on mode if it does not already exist.

setFileCreationMask :: FileMode -> IO FileMode

setFileCreationMask mode calls umask to set the process's file creation mask to mode. The
previous file creation mask is returned.

createLink :: FilePath -> FilePath -> IO ()

createLink old new calls link to create a new path, new, linked to an existing file, old.

createDirectory :: FilePath -> FileMode -> IO ()

The posix package: POSIX support

30



createDirectory dir mode calls mkdir to create a new directory, dir, with permissions
based on mode.

createNamedPipe :: FilePath -> FileMode -> IO ()

createNamedPipe fifo mode calls mkfifo to create a new named pipe, fifo, with permis-
sions based on mode.

removeLink :: FilePath -> IO ()

removeLink path calls unlink to remove the link named path.

removeDirectory :: FilePath -> IO ()

removeDirectory dir calls rmdir to remove the directory named dir.

rename :: FilePath -> FilePath -> IO ()

rename old new calls rename to rename a file or directory from old to new.

fileMode :: FileStatus -> FileMode

fileID :: FileStatus -> FileID
deviceID :: FileStatus -> DeviceID

linkCount :: FileStatus -> LinkCount

fileOwner :: FileStatus -> UserID
fileGroup :: FileStatus -> GroupID
fileSize :: FileStatus -> FileOffset

accessTime :: FileStatus -> EpochTime
modificationTime :: FileStatus -> EpochTime
statusChangeTime :: FileStatus -> EpochTime

isDirectory :: FileStatus -> Bool
isCharacterDevice :: FileStatus -> Bool
isBlockDevice :: FileStatus -> Bool
isRegularFile :: FileStatus -> Bool
isNamedPipe :: FileStatus -> Bool

getFileStatus :: FilePath -> IO FileStatus

getFileStatus path calls stat to get the FileStatus information for the file path.

The posix package: POSIX support

31



getFdStatus :: Fd -> IO FileStatus

getFdStatus fd calls fstat to get the FileStatus information for the file associated with Fd
fd.

queryAccess :: FilePath -> Bool -> Bool -> Bool -> IO Bool

queryAccess path r w x calls access to test the access permissions for file path. The three
arguments, r, w, and x control whether or not access is called with R_OK, W_OK, and X_OK respect-
ively.

queryFile :: FilePath -> IO Bool

queryFile path calls access with F_OK to test for the existence for file path.

setFileMode :: FilePath -> FileMode -> IO ()

setFileMode path mode calls chmod to set the permission bits associated with file path to
mode.

setOwnerAndGroup :: FilePath -> UserID -> GroupID -> IO ()

setOwnerAndGroup path uid gid calls chown to set the UserID and GroupID associated
with file path to uid and gid, respectively.

setFileTimes :: FilePath -> EpochTime -> EpochTime -> IO ()

setFileTimes path atime mtime calls utime to set the access and modification times associ-
ated with file path to atime and mtime, respectively.

touchFile :: FilePath -> IO ()

touchFile path calls utime to set the access and modification times associated with file path to
the current time.

getPathVar :: PathVar -> FilePath -> IO Limit

getPathVar var path calls pathconf to obtain the dynamic value of the requested configurable
file limit or option associated with file or directory path. For defined file limits, getPathVar returns

The posix package: POSIX support

32



the associated value. For defined file options, the result of getPathVar is undefined, but not failure.
The operation may fail with:

NoSuchThing The requested file limit or option is undefined.

SystemError Various other causes.

getFdVar :: PathVar -> Fd -> IO Limit

getFdVar var fd calls fpathconf to obtain the dynamic value of the requested configurable file
limit or option associated with the file or directory attached to the open channel fd. For defined file lim-
its, getFdVar returns the associated value. For defined file options, the result of getFdVar is un-
defined, but not failure.

The operation may fail with:

NoSuchThing The requested file limit or option is undefined.

SystemError Various other causes.

7.5. Posix Input and Output Primitives

createPipe :: IO (Fd, Fd)

createPipe calls pipe to create a pipe and returns a pair of Fds, the first for reading and the second
for writing.

dup :: Fd -> IO Fd

dup fd calls dup to duplicate Fd fd to another Fd.

dupTo :: Fd -> Fd -> IO ()

dupTo src dst calls dup2 to duplicate Fd src to Fd dst.

fdClose :: Fd -> IO ()

fdClose fd calls close to close Fd fd.

The posix package: POSIX support

33



fdRead :: Fd -> ByteCount -> IO (String, ByteCount)

fdRead fd nbytes calls read to read at most nbytes bytes from Fd fd, and returns the result as
a string paired with the number of bytes actually read.

The operation may fail with:

EOF End of file has been reached.

SystemError Various other causes.

fdWrite :: Fd -> String -> IO ByteCount

fdWrite fd s calls write to write the string s to Fd fd as a contiguous sequence of bytes. It re-
turns the number of bytes successfully written.

queryFdOption :: FdOption -> Fd -> IO Bool

getFdOption opt fd calls fcntl to determine whether or not the flag associated with FdOp-
tion opt is set for Fd fd.

setFdOption :: Fd -> FdOption -> Bool -> IO ()

setFdOption fd opt val calls fcntl to set the flag associated with FdOption opt on Fd fd
to val.

getLock :: Fd -> FileLock -> IO (Maybe (ProcessID, FileLock))

getLock fd lock calls fcntl to get the first FileLock for Fd fd which blocks the FileLock
lock. If no such FileLock exists, getLock returns Nothing. Otherwise, it returns Just (pid,
block), where block is the blocking FileLock and pid is the ProcessID of the process holding
the blocking FileLock.

setLock :: Fd -> FileLock -> IO ()

setLock fd lock calls fcntl with F_SETLK to set or clear a lock segment for Fd fd as indic-
ated by the FileLock lock. setLock does not block, but fails with SystemError if the request
cannot be satisfied immediately.

The posix package: POSIX support

34



waitToSetLock :: Fd -> FileLock -> IO ()

waitToSetLock fd lock calls fcntl with F_SETLKW to set or clear a lock segment for Fd fd
as indicated by the FileLock lock. If the request cannot be satisfied immediately, waitToSet-
Lock blocks until the request can be satisfied.

fdSeek :: Fd -> SeekMode -> FileOffset -> IO FileOffset

fdSeek fd whence offset calls lseek to position the Fd fd at the given offset from the
starting location indicated by whence. It returns the resulting offset from the start of the file in bytes.

7.6. Posix, Device- and Class-Specific Func-
tions

terminalMode :: TerminalMode -> TerminalAttributes -> Bool
withMode :: TerminalAttributes -> TerminalMode -> TerminalAttributes
withoutMode :: TerminalAttributes -> TerminalMode -> TerminalAttributes

bitsPerByte :: TerminalAttributes -> Int
withBits :: TerminalAttributes -> Int -> TerminalAttributes

controlChar :: TerminalAttributes -> ControlCharacter -> Maybe Char
withCC :: TerminalAttributes

-> (ControlCharacter, Char)
-> TerminalAttributes

withoutCC :: TerminalAttributes
-> ControlCharacter
-> TerminalAttributes

inputTime :: TerminalAttributes -> Int
withTime :: TerminalAttributes -> Int -> TerminalAttributes

minInput :: TerminalAttributes -> Int
withMinInput :: TerminalAttributes -> Int -> TerminalAttributes

inputSpeed :: TerminalAttributes -> BaudRate
withInputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

outputSpeed :: TerminalAttributes -> BaudRate
withOutputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

getTerminalAttributes :: Fd -> IO TerminalAttributes

getTerminalAttributes fd calls tcgetattr to obtain the TerminalAttributes associ-
ated with Fd fd.

setTerminalAttributes :: Fd
-> TerminalAttributes
-> TerminalState
-> IO ()

The posix package: POSIX support

35



setTerminalAttributes fd attr ts calls tcsetattr to change the TerminalAttrib-
utes associated with Fd fd to attr, when the terminal is in the state indicated by ts.

sendBreak :: Fd -> Int -> IO ()

sendBreak fd duration calls tcsendbreak to transmit a continuous stream of zero-valued
bits on Fd fd for the specified implementation-dependent duration.

drainOutput :: Fd -> IO ()

drainOutput fd calls tcdrain to block until all output written to Fd fd has been transmitted.

discardData :: Fd -> QueueSelector -> IO ()

discardData fd queues calls tcflush to discard pending input and/or output for Fd fd, as in-
dicated by the QueueSelector queues.

controlFlow :: Fd -> FlowAction -> IO ()

controlFlow fd action calls tcflow to control the flow of data on Fd fd, as indicated by ac-
tion.

getTerminalProcessGroupID :: Fd -> IO ProcessGroupID

getTerminalProcessGroupID fd calls tcgetpgrp to obtain the ProcessGroupID of the
foreground process group associated with the terminal attached to Fd fd.

setTerminalProcessGroupID :: Fd -> ProcessGroupID -> IO ()

setTerminalProcessGroupID fd pgid calls tcsetpgrp to set the ProcessGroupID of
the foreground process group associated with the terminal attached to Fd fd to pgid.

7.7. Posix System Databases

groupName :: GroupEntry -> String
groupID :: GroupEntry -> GroupID
groupMembers :: GroupEntry -> [String]

The posix package: POSIX support

36



getGroupEntryForID :: GroupID -> IO GroupEntry

getGroupEntryForID gid calls getgrgid to obtain the GroupEntry information associated
with GroupID gid.

The operation may fail with:

NoSuchThing There is no group entry for the GroupID.

getGroupEntryForName :: String -> IO GroupEntry

getGroupEntryForName name calls getgrnam to obtain the GroupEntry information associ-
ated with the group called name.

The operation may fail with:

NoSuchThing There is no group entry for the name.

userName :: UserEntry -> String
userID :: UserEntry -> UserID
userGroupID :: UserEntry -> GroupID
homeDirectory :: UserEntry -> String
userShell :: UserEntry -> String

getUserEntryForID :: UserID -> IO UserEntry

getUserEntryForID gid calls getpwuid to obtain the UserEntry information associated with
UserID uid. The operation may fail with:

NoSuchThing There is no user entry for the UserID.

getUserEntryForName :: String -> IO UserEntry

getUserEntryForName name calls getpwnam to obtain the UserEntry information associated
with the user login name.

The operation may fail with:

NoSuchThing There is no user entry for the name.

The posix package: POSIX support

37



7.8. POSIX Errors

getErrorCode :: IO ErrorCode

getErrorCode returns the current value of the external variable errno. It never fails.

setErrorCode :: ErrorCode -> IO ()

setErrorCode err sets the external variable errno to err. It never fails.

noError :: ErrorCode
noError = 0

argumentListTooLong, e2BIG :: ErrorCode
badFd, eBADF :: ErrorCode
brokenPipe, ePIPE :: ErrorCode
directoryNotEmpty, eNOTEMPTY :: ErrorCode
execFormatError, eNOEXEC :: ErrorCode
fileAlreadyExists, eEXIST :: ErrorCode
fileTooLarge, eFBIG :: ErrorCode
filenameTooLong, eNAMETOOLONG :: ErrorCode
improperLink, eXDEV :: ErrorCode
inappropriateIOControlOperation, eNOTTY :: ErrorCode
inputOutputError, eIO :: ErrorCode
interruptedOperation, eINTR :: ErrorCode
invalidArgument, eINVAL :: ErrorCode
invalidSeek, eSPIPE :: ErrorCode
isADirectory, eISDIR :: ErrorCode
noChildProcess, eCHILD :: ErrorCode
noLocksAvailable, eNOLCK :: ErrorCode
noSpaceLeftOnDevice, eNOSPC :: ErrorCode
noSuchOperationOnDevice, eNODEV :: ErrorCode
noSuchDeviceOrAddress, eNXIO :: ErrorCode
noSuchFileOrDirectory, eNOENT :: ErrorCode
noSuchProcess, eSRCH :: ErrorCode
notADirectory, eNOTDIR :: ErrorCode
notEnoughMemory, eNOMEM :: ErrorCode
operationNotImplemented, eNOSYS :: ErrorCode
operationNotPermitted, ePERM :: ErrorCode
permissionDenied, eACCES :: ErrorCode
readOnlyFileSystem, eROFS :: ErrorCode
resourceBusy, eBUSY :: ErrorCode
resourceDeadlockAvoided, eDEADLK :: ErrorCode
resourceTemporarilyUnavailable, eAGAIN :: ErrorCode
tooManyLinks, eMLINK :: ErrorCode
tooManyOpenFiles, eMFILE :: ErrorCode
tooManyOpenFilesInSystem, eNFILE :: ErrorCode

7.9. POpen
POpen provides a convenient way of sending string input to a subprocess and reading output from it
lazily.

The posix package: POSIX support

38



popen :: FilePath -- Command
-> [String] -- Arguments
-> Maybe String -- Input
-> IO (String, String, ProcessID) -- (stdout, stderr, pid)

popen cmd args inp executes cmd with args in a forked process. If inp is Just str then str
in sent in a pipe to the standard input of the process. The output and error streams from the process are
returned, together with the process id.

popenEnvDir :: FilePath -- Command
-> [String] -- Arguments
-> Maybe String -- Input
-> Maybe [(String, String)] -- Environment
-> Maybe FilePath -- Working directory
-> IO (String, String, ProcessID) -- (stdout, stderr, pid)

popenEnvDir cmd args inp env dir like popen executes cmd with args in a forked pro-
cess. If inp is Just str then str in sent in a pipe to the standard input of the process. If env is Just
pairs, the command in executed in the environment specified by pairs, instead of the current one. If
dir is Just d the command is executed in directory d instead of the current directory. The output and
error streams from the process are returned, together with the process id.

The posix package: POSIX support

39



Chapter 8. The text package: text
manipulation
8.1. MatchPS: The Perl-like matching interface

The MatchPS library is no longer available, please use Text.Regex
[../libraries/base/Text.Regex.html] instead.

8.2. Parsec: Parsing combinators
The Parsec library has been moved to the hierarchical libraries; it can be found in
Text.ParserCombinators.Parsec [../libraries/parsec/Text.ParserCombinators.Parsec.html] in
the parsec package.

8.3. Pretty: Pretty printing combimators
The Pretty library has been moved to the hierarchical libraries; it can be found in
Text.PrettyPrint.HughesPJ [../libraries/base/Text.PrettyPrint.HughesPJ.html] in the base
package.

8.4. Regex: The low-level regex matching inter-
face

The Regex library has been removed. Please use Text.Regex [../libraries/base/Text.Regex.html] in
the base package.

8.5. RegexString: Regex matching made
simple

The RegexString library has been moved to the hierarchical libraries; it can be found in
Text.Regex [../libraries/base/Text.Regex.html] in the base package.

40

../libraries/base/Text.Regex.html
../libraries/parsec/Text.ParserCombinators.Parsec.html
../libraries/base/Text.PrettyPrint.HughesPJ.html
../libraries/base/Text.Regex.html
../libraries/base/Text.Regex.html


Chapter 9. The util package:
miscellaneous utilities
9.1. GetOpt: Command line parsing

The GetOpt library has been moved to the hierarchical libraries; it can be found in Sys-
tem.Console.GetOpt [../libraries/base/System.Console.GetOpt.html] in the base package.

9.2. Memo: Fast memo functions
The Memo library provides fast polymorphic memo functions using hash tables. The interface is:

memo :: (a -> b) -> a -> b

So, for example, memo f is a version of f that caches the results of previous calls.

The searching is very fast, being based on pointer equality. One consequence of this is that the caching
will only be effective if exactly the same argument is passed again to the memoised function. This
means not just a copy of a previous argument, but the same instance. It's not useful to memoise integer
functions using this interface, because integers are generally copied a lot and two instances of '27' are
unlikely to refer to the same object.

This memoisation library works well when the keys are large (or even infinite).

The memo table implementation uses weak pointers and stable names (see the GHC/Hugs library docu-
ment) to avoid space leaks and allow hashing for arbitrary Haskell objects. NOTE: while individual
memo table entries will be garbage collected if the associated key becomes garbage, the memo table it-
self will not be collected if the function becomes garbage. We plan to fix this in a future version.

There's another version of memo if you want to explicitly give a size for the hash table (the default size
is 1001 buckets):

memoSized :: Int -> (a -> b) -> a -> b

9.3. QuickCheck
The QuickCheck library has been moved to the hierarchical libraries; it can be found in
Test.QuickCheck [../libraries/QuickCheck/Test.QuickCheck.html] in the QuickCheck package.

9.4. Readline: Command line editing

(Darren Moffat supplied the initial version of the Readline module.)

The Readline module is a straightforward interface to the GNU Readline library. As such, you will
need to look at the GNU documentation (and have a libreadline.a file around somewhere…)

41

../libraries/base/System.Console.GetOpt.html
../libraries/base/System.Console.GetOpt.html
../libraries/QuickCheck/Test.QuickCheck.html


The main function you'll use is:

readline :: String{-the prompt-} -> IO (Maybe String)

If you want to mess around with Full Readline G(l)ory, we also provide:

type KeyCode = Char

type CallbackFunction =
(Int -> -- Numeric Argument
KeyCode -> -- KeyCode of pressed Key
IO Int) -- What's this?

initialize :: IO ()
addHistory :: String -> IO ()
bindKey :: KeyCode -> CallbackFunction -> IO ()
addDefun :: String -> CallbackFunction -> Maybe KeyCode -> IO ()

getReadlineName :: IO String
setReadlineName :: String -> IO ()
getLineBuffer :: IO String
setLineBuffer :: String -> IO ()
getPoint :: IO Int
setPoint :: Int -> IO ()
getEnd :: IO Int
setEnd :: Int -> IO ()
getMark :: IO Int
setMark :: Int -> IO ()
setDone :: Bool -> IO ()
setPendingInput :: KeyCode -> IO ()
getPrompt :: IO String
getTerminalName :: IO String

inStream :: Handle
outStream :: Handle

(All those names are just Haskellised versions of what you will see in the GNU readline documentation.)

9.5. Select: Synchronous I/O multiplexing
The Select interface provides a Haskell wrapper for the select() OS call supplied by many mod-
ern UNIX variants. Select exports the following:

type TimeOut = Maybe Int
-- Nothing => wait indefinitely.
-- Just x | x >= 0 => block waiting for 'x' micro seconds.
-- | otherwise => block waiting for '-x' micro seconds.

hSelect :: [Handle]
-> [Handle]
-> [Handle]
-> TimeOut
-> IO SelectResult

type SelectResult
= ( [Handle] -- input handles ready
, [Handle] -- output handles ready

The util package: miscellaneous
utilities

42



, [Handle] -- exc. handles ready
)

Here's an example of how it could be used:

module Main(main) where

import Select
import IO

main :: IO ()
main = do
hSetBuffering stdin NoBuffering
putStrLn "waiting for input to appear"
hSelect [stdin] [] [] Nothing
putStrLn "input ready, let's try reading"
x <- getChar
print x

where the call to hSelect makes the process go to sleep until there's input available on stdin.

9.5.1. Using hSelect with Concurrent Haskell
In brief: don't. For two reasons:

• hSelect will cause all your Haskell threads to block until the hSelect returns, much like any
call to a foreign function.

• You don't need to. Concurrent Haskell will let you do I/O on multiple file handles concurrently by
forking threads, and if you need to assign a timeout, then this can be done using a combination of
threadDelay and asynchronous exceptions.

The util package: miscellaneous
utilities

43



Chapter 10. The Win32 package
The win32 package is a thin and incomplete veneer over the Win32 API. Look at the source code to see
what is available; the usage should be obvious from the Microsoft's C API documentation.

44


	Haskell Libraries
	Table of Contents
	Chapter 1. Introduction
	1.1. Usage

	Chapter 2. The concurrent package: concurrency support
	Chapter 3. The data package: datatypes
	3.1. Edison
	3.2. The FiniteMap type
	3.3. Set

	Chapter 4. The lang package: language support
	4.1. Bits
	4.2. CError
	4.3. CForeign
	4.4. CTypes
	4.5. CTypesISO
	4.6. CString
	4.7. DiffArray
	4.8. DirectoryExts
	4.9. Dynamic
	4.10. Exception
	4.11. Foreign
	4.12. ForeignPtr
	4.13. GlaExts
	4.14. IArray
	4.15. Int
	4.16. IOExts
	4.16.1. IO monad extensions
	4.16.2. Mutable Variables
	4.16.3. Mutable Arrays
	4.16.4. Extended file modes
	4.16.5. Bulk transfers
	4.16.6. Terminal control
	4.16.7. Redirecting handles
	4.16.8. Trace
	4.16.9. Extra IOError Predicates
	4.16.10. Miscellany

	4.17. LazyST
	4.18. MArray
	4.19. MarshalAlloc
	4.20. MarshalArray
	4.21. MarshalError
	4.22. MarshalUtils
	4.23. NumExts
	4.24. PackedString
	4.25. Ptr
	4.26. ShowFunctions
	4.27. ST
	4.28. StableName
	4.29. StablePtr
	4.30. Storable
	4.31. StorableArray
	4.32. SystemExts
	4.33. Weak
	4.34. Word

	Chapter 5. The net package: networking support
	5.1. BSD: System database info
	5.2. Socket: The high-level networking interface
	5.3. SocketPrim: The low-level socket binding
	5.4. URI

	Chapter 6. The num package: numeric operations
	Chapter 7. The posix package: POSIX support
	7.1. Posix data types
	7.2. Posix Process Primitives
	7.3. Posix Process Environment
	7.4. Posix operations on files and directories
	7.5. Posix Input and Output Primitives
	7.6. Posix, Device- and Class-Specific Functions
	7.7. Posix System Databases
	7.8. POSIX Errors
	7.9. POpen

	Chapter 8. The text package: text manipulation
	8.1. MatchPS: The Perl-like matching interface
	8.2. Parsec: Parsing combinators
	8.3. Pretty: Pretty printing combimators
	8.4. Regex: The low-level regex matching interface
	8.5. RegexString: Regex matching made simple

	Chapter 9. The util package: miscellaneous utilities
	9.1. GetOpt: Command line parsing
	9.2. Memo: Fast memo functions
	9.3. QuickCheck
	9.4. Readline: Command line editing
	9.5. Select: Synchronous I/O multiplexing
	9.5.1. Using hSelect with Concurrent Haskell


	Chapter 10. The Win32 package

