Common Architecture for Building
Applications and Libraries

User's Guide

Table of Contents

L PBCKAJES ...oeveieeeei ettt ettt enaas 1
2. Creating @PACKAOEu eeen ettt e e e e 2
2.1, PaCKage dESCIIPLIONS . ..vuiiiieiii et et e e e e e e e e e e e e e et e e et e e et e e et e e aaeeanaes 4
2.1.1. PaCKagE PrOPEITIES ...ovuiiii i eiiiee et e e e e e e e e e e e r e r e aa e 5
P N 1 o Y PSP 6
213 EXECULBDIESoiiiiieii e 6
2.1.4. BUIld INFOrMBLHION ...eeiieie e e et e e et e et e e e e e eaan e 6
2.2. Accessing datafiles from package CoUEiiuuiiiii i 8
2.3. System-dependent PAraMELErSiiie e e e e e 8
2.4. MOre COMPIEX PECKAGES ...vvuueernietiiieteeeeee e e e e e et e e ettt e e et e e et e e et e e et e e et eeaa e e et aaetnaeranaeeees 10
3. Building and installing @Packagecccuuuiiiiiiiieiii e 11
3L SELUP CONFIGUIE .ttt ettt et e e et e eeeaa e eenans 12
3.1.1. Programs used fOr DUITINGooieuiiiiiiii e 12
3.1.2. INStAl@ION PALNS ...t 15
3.1.3. MISCEIlaNEOUS OPLIONSuuiiiiciiii e e e e e e e e e e 19
G 370K 1] o J o 1111 o 20
3.3 SEUP NBAAOCK ... e 20
S SEIUP INSLAIL ... eaaas 20
3.5, SEIUP COPY ittt ettt et 20
N S (0 o =oK< S PP 21
A (1 o] 01010 [= 22
GRS T (1o I = o 22
3.0, SEIUP LS .ttt 22
N L (1] 0 o [PP UPPPT 22
4. Known bugs and defiCIENCIESiiiiiiiii e 22

The Cabal aims to simplify the distribution of Haskell [http://www.haskell.org/] software. It does this by
specifying a number of interfaces between package authors, builders and users, as well as providing a
library implementing these interfaces.

1. Packages

A package is the unit of distribution for the Cabal. Its purpose, when installed, is to make available
either or both of:

* Alibrary, exposing a number of Haskell modules. A library may also contain hidden modules, which
are used internally but not available to clients.
e One or more Haskell programs.

However having both alibrary and executables in a package does not work very well; if the executables

depend on the library, they must explicitly list al the modules they directly or indirectly import from
"Hugs doesn't support module hiding.

http://www.haskell.org/

Common Architecture for Building
Applicationsand Libraries

that library.

Internally, the package may consist of much more than a bunch of Haskell modules: it may aso have C
source code and header files, source code meant for preprocessing, documentation, test cases, auxiliary
tools etc.

A packageisidentified by a globally-unique package name, which consists of one or more al phanumeric
words separated by hyphens. To avoid ambiguity, each of these words should contain at least one letter.
Chaos will result if two distinct packages with the same name are installed on the same system, but there
is not yet a mechanism for allocating these names. A particular version of the package is distinguished
by a version number, consisting of a sequence of one or more integers separated by dots. These can be
combined to form a single text string called the package ID, using a hyphen to separate the name from
theversion, eg. “HuUni t - 1. 1”.

Note

Packages are not part of the Haskell language; they simply populate the hierarchical space of module
names. It is till the case that all the modules of a program must have distinct module names, regardless
of the package they come from, and whether they are exposed or hidden. This also means that although
some implementations (i.e. GHC) may alow several versions of a package to be installed at the same
time, a program cannot use two packages, P and Q that depend on different versions of the same under-
lying package R.

2. Creating a package

Suppose you have a directory hierarchy containing the source files that make up your package. Y ou will
need to add two more filesto the root directory of the package:

.cab atext file containing a package description (for details of the syntax of this file, see
packageal Section 2.1, “Package descriptions’), and

Set up. hs or asinglemodule Haskell program to perform various setup tasks (with the interface

Set up. | hs described in Section 3, “Building and installing a package”). This module should im-
port only modules that will be present in al Haskell implementations, including mod-
ules of the Cabal library. In most cases it will be trivial, calling on the Cabal library
to do most of the work.

Once you have these, you can create a source bundle of this directory for distribution. Building of the
package is discussed in Section 3, “Building and installing a package”.

Example 1. A package containing asimplelibrary

The HUnit package contains afile HUni t . cabal containing:

Nanme: HUnNi t

Ver si on: 1.1

Li cense: BSD3

Aut hor : Dean Heri ngton

Honepage: http://hunit.sourceforge. net/

Cat egory: Testing

Bui | d- Depends: base

Synopsi s: Unit testing framework for Haskell

Exposed- nodul es:
Test.HUnit, Test.HUnit.Base, Test.Hunit.Lang,

Common Architecture for Building
Applicationsand Libraries

Test. HUnit. Term nal ,

Ext ensi ons:

Test . HUni t . Text
CPP

and the following Set up. hs:

i mport

Di stribution.Sinple

mal n = def aul t Mai n

Example 2. A package containing executable programs

Nane:

Ver si on:

Li cense:

Aut hor :
Synopsi s:

Bui | d- Depends:

Execut abl e:
Mai n-1s:
Hs- Source-Dirs:

Execut abl e:

Mai n-1s:

Hs- Source-Dirs:
O her - Modul es:

Test Package

0.0

BSD3

Angel a Aut hor

Smal | package with two progranms
HUni t

pr ogr aml
Mai n. hs
progl

progr an
Mai n. hs
prog2
Uils

with Set up. hs the same as above.

Example 3. A package containing a library and executable programs

Narme:

Ver si on:

Li cense:

Aut hor :
Synopsi s:

Bui | d- Depends:

Exposed- Modul es:

Execut abl e:

Mai n-1s:

Hs- Source-Dirs:
O her - Modul es:

Execut abl e:

Mai n-1s:

Hs- Source-Dirs:
O her - Mbdul es:

with Set up. hs the same as above. Note that any library modules required (directly or indirectly) by an

Test Package

0.0

BSD3

Angel a Aut hor

Package with library and two prograns
HUni t

A B C
programl
Mai n. hs
progl

A B

pr ogr an®
Mai n. hs
prog2

A C Uils

executable must be listed again.

Common Architecture for Building
Applicationsand Libraries

Thetrivia setup script used in these examples uses the simple build infrastructure provided by the Cabal
library (see Distribution.Simple [../libraries/Cabal/Distribution-Simple.html]). The simplicity lies in its
interface rather that its implementation. It automatically handles preprocessing with standard prepro-
cessors, and builds packages for all the Haskell implementations (except nhc98, for now).

The simple build infrastructure can also handle packages where building is governed by system-de-

pendent parameters, if you specify a little more (see Section 2.3, “System-dependent parameters’). A
few packages require more elaborate solutions (see Section 2.4, “More complex packages’).

2.1. Package descriptions

The package description file should have a name ending in “. cabal ”. There must be exactly one such
file in the directory. The first part of the name is immaterial, but it is conventional to use the package
name.

In the package description file, lines beginning with “- - " are treated as comments and ignored.

Thisfile should contain one or more stanzas separated by blank lines:

» The first stanza describes the package as a whole (see Section 2.1.1, “Package properties’), as well
as an optiona library (see Section 2.1.2, “Library”) and relevant build information (see Sec-
tion 2.1.4, “Build information”).

» Each subsequent stanza (if any) describes an executable program (see Section 2.1.3, “ Executables’)
and relevant build information (see Section 2.1.4, “Build information™).

Each stanza consists of anumber of field/value pairs, with a syntax like mail message headers.

e caseisnot significant in field names
» tocontinue afield value, indent the next line

» togetablank lineinafield value, use anindented “. ”

The syntax of the value depends on the field. Field types include:

t oken ,file- Either a sequence of one or more non-space non-comma characters, or a quoted
nane ,direct- stringin Haskell 98 lexical syntax. Unless otherwise stated, relative filenames and
ory directories are interpreted from the package root directory.

freeform,URL An arbitrary, uninterpreted string.

,addr ess

identifier A letter followed by zero or more a phanumerics or underscores.

M odules and preprocessor s

Haskell module names listed in the exposed- nodul es and ot her - nodul es fields may corres-
pond to Haskell source files, i.e. with names ending in “. hs” or “. | hs”, or to inputs for various
Haskell preprocessors. The simple build infrastructure understands the extensions “. gc” (greencard
[http://www.haskell .org/greencard/]), “.chs” (c2hs
[http://www.cse.unsw.edu.au/~chak/haskell/c2hs/]), “. hsc” (hsczhs), “.y” and “.1y” (happy
[http:/Iwww.haskell.org/happy/]), “. X" (alex [http://www.haskell.org/alex/]) and “. cpphs” (cpphs
[http://www.haskell.org/cpphs/]). When building, Cabal will automatically run the appropriate prepro-

../libraries/Cabal/Distribution-Simple.html
http://www.haskell.org/greencard/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/cpphs/

Common Architecture for Building
Applicationsand Libraries

cessor and compile the Haskell module it produces.

Some fields take lists of values, which are optionally separated by commas, except for the bui | d-
depends field, where the commas are mandatory.

Some fields are marked as required. All others are optional, and unless otherwise specified have empty

default values.

2.1.1. Package properties

These fields may occur in the first stanza, and describe the package as awhole:

nane: package-
nane (required)

ver si on: num
ber s (required)

cabal - ver si on:
> <=, etc. &

nunber s

| i cense: i den-
tifier (default:
Al Ri ght s-
Reser ved)
license-file:
filenane
copyri ght:
freeform

aut hor: free-
form

mai nt ai ner: ad-
dress

stability:
freeform

honepage: URL

package-url :
URL

synopsi s: free-
form

descri ption:
freeform

cat egory: free-
form

The unique name of the package (see Section 1, “Packages’), without the ver-
sion number.

The package version number, usualy consisting of a sequence of natural num-
bers separated by dots.

The version of Cabal required for this package. Use only if this package re-
quires a particular version of Cabal, since unfortunately early versions of Cabal
do not recognize this field. List the field early in your . cabal file so that it
will appear as a syntax error before any others.

The type of license under which this package is distributed. License names are
the constants of the Li cense
[../libraries/Cabal/Distribution-License.html#t:License] type.

The name of afile containing the precise license for this package.

The content of a copyright notice, typically the name of the holder of the copy-
right on the package and the year(s) from which copyright is claimed.

The original author of the package.

The current maintainer or maintainers of the package. Thisis an e-mail address
to which users should send bug reports, feature requests and patches.

The stability level of the package, e.g. al pha, experi nental , provi -
si onal , st abl e.

The package homepage.

The location of a source bundle for the package. The distribution should be a
Cabal package.

A very short description of the package, for use in atable of packages. Thisis
your headline, so keep it short (one line) but as informative as possible. Save
space by not including the package name or saying it's written in Haskell.

Description of the package. This may be severa paragraphs, and should be
aimed at a Haskell programmer who has never heard of your package before.

For library packages, this field is used as prologue text by setup haddock (see
Section 3.3, “setup haddock™), and thus may contain the same markup as had-
dock [http://www.haskell .org/haddock/] documentation comments.

A classification category for future use by the package catalogue Hackage.
These categories have not yet been specified, but the upper levels of the module
hierarchy make agood start.

5

../libraries/Cabal/Distribution-License.html#t:License
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/

Common Architecture for Building
Applicationsand Libraries

tested-wth: A list of compilers and versions against which the package has been tested (or
conpiler list at least built).

bui | d- depends: A list of packages, possibly annotated with versions, needed to build this one,
package |i st eg.foo > 1.2, bar. If noversion constraint is specified, any version is
assumed to be acceptable.

data-files: fi- Alistof filesto beinstalled for run-time use by the package. This is useful for

| enanme |i st packages that use a large amount of static data, such as tables of values or code
templates. For details on how to find these files at run-time, see Section 2.2,
“Accessing data files from package code”.

extra- A list of additional files to be included in source distributions built with setup
source-files: sdist (see Section 3.10, “setup sdist”).

filename |i st

extra- A list of additiona files or directories to be removed by setup clean (see Sec-
tnp-files: fi- tion 3.8, “setup clean”). These would typically be additional files created by ad-
| ename |i st ditional hooks, such as the scheme described in Section 2.3

“ System-dependent parameters”.

2.1.2. Library

If the package contains alibrary, the first stanza should also contain the following field:

exposed- nod- A list of modules added by this package.

ules: identifi-

er |ist (requiredif

tHe sk Also contain build information fields (see Section 2.1.4, “Build information”) relat-
HgBesEs [brary.

2.1.3. Executables

Subsequent stanzas (if present) describe executable programs contained in the package, using the fol-
lowing fields, aswell as build information fields (see Section 2.1.4, “Build information™).

execut abl e: The name of the executable program.

freeform

(reduirddy: file- The name of the source file containing the Mai n module, relative to one of the
nane (required) directorieslistedinhs- sour ce-di rs.

These stanzas may also contain build information fields (see Section 2.1.4, “Build information”) relating
to the executable.

2.1.4. Build information

The following fields may be optionally present in any stanza, and give information for the building of
the corresponding library or executable. See also Section 2.3, “ System-dependent parameters’ for away
to supply system-dependent values for these fields.

bui | dabl e: Is the component buildable? Like some of the other fields below, this field is
Bool ean (default: more useful with the dlightly more elaborate form of the simple build infra-
True) structure described in Section 2.3, “ System-dependent parameters’.

Common Architecture for Building
Applicationsand Libraries

ot her - nodul es:
identifier |ist

hs-source-dirs:
directory Ii st
(default: “. ™)

ext ensi ons:

identifier |ist

ghc- opti ons:
t oken |i st

ghc-
prof - opti ons:
hoRenopt sons:
token |i st

nhc- opti ons:
t oken Ii st

i ncl udes: file-

name |i st
install-in-
cludes: fil e-
name |i st

A list of modules used by the component but not exposed to users. For alibrary
component, these would be hidden modules of the library. For an executable,
these would be auxiliary modules to be linked with the file named in the
mai n-i s field.

Root directories for the module hierarchy.

For backwards compatibility, the old variant hs- sour ce- di r is also recog-
nized.

A list of Haskell extensions used by every module. Extension names are the
constructors of the Ext ensi on
[../libraries/Cabal/Language-Haskell-Extension.html#t:Extension] type. These
determine corresponding compiler options. In particular, CPP specifies that
Haskell source files are to be preprocessed with a C preprocessor.

Extensions used only by one module may be specified by placing a LANGUAGE
pragmain the source file affected, e.g.:

{-# LANGUACE CPP, Muilti ParanilypeC asses #-}
Note

GHC versions prior to 6.6 do not support the LANGUAGE pragma.

Additional options for GHC. You can often achieve the same effect using the
ext ensi ons field, whichis preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_GHC pragmain the source file affected.

Additional options for GHC when the package is built with profiling enabled.

Additional options for Hugs. You can often achieve the same effect using the
ext ensi ons field, whichis preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_HUGS pragmain the source file affected.

Additional options for nhc98. Y ou can often achieve the same effect using the
ext ensi ons field, which is preferred.

Options required only by one module may be specified by placing an OP-
TI ONS_NHC pragmain the source file affected.

A list of header files aready installed on the system (i.e. not part of this pack-
age) to be included in any compilations via C. These files typically contain
function prototypes for foreign imports used by the package.

A list of header files from this package to be included in any compilations via
C. These header fileswill beinstalled into $(| i bdi r) /i ncl udes when the
packageisinstalled. Fileslistedini nst al | -i ncl udes: should be found in
one of the directorieslisted ini ncl ude-di rs.

instal | -incl udes istypicaly used to name header files that contain pro-
totypes for foreign imports used in Haskell code in this package, for which the
C implementations are also provided with the package.

../libraries/Cabal/Language-Haskell-Extension.html#t:Extension

Common Architecture for Building
Applicationsand Libraries

directory Ii st A list of directories to search for header files, when preprocessing with c2hs,
hsc2hs, ffi hugs, cpphs, or the C preprocessor, and aso when compiling
viaC.

c-sources: fi- A list of C source files to be compiled and linked with the Haskell files.

| ename |i st
If you use this field, you should also name the C files in CFI LES pragmas in
the Haskell source files that use them, e.g.:

{-# CFILES dir/filel.c dir/file2.c #-}
These are ignored by the compilers, but needed by Hugs.
extra-Ilib- A list of extralibrariesto link with.
raries: token

eksta-1ib-dirs: Alistof directoriesto search for libraries.
directory I|ist

cc-options: Command-line arguments to be passed to the C compiler. Since the arguments

t oken |i st are compiler-dependent, this field is more useful with the setup described in
Section 2.3, “ System-dependent parameters’.

| d- opti ons: Command-line arguments to be passed to the linker. Since the arguments are

token |i st compiler-dependent, this field is more useful with the setup described in Sec-
tion 2.3, “ System-dependent parameters”.

f ramewor ks: On Darwin/MacOS X, a list of frameworks to link to. See Apple's devel oper

token |i st documentation for more details on frameworks. This entry isignored on all oth-
er platforms.

2.2. Accessing data files from package code

The placement on the target system of files listed in the dat a- fi | es field varies between systems,
and in some cases one can even move packages around after installation (see Section 3.1.2.2,
“Prefix-independence’). To enable packages to find these files in a portable way, Cabal generates a
module called Pat hs_pkgnane (with any hyphens in pkgnane replaced by underscores) during
building, so that it may be imported by modules of the package. This module defines afunction

getDataFil eNane :: FilePath -> 10 Fil ePath

If the argument is a filename listed in the dat a- f i | es field, the result is the name of the correspond-
ing file on the system on which the program is running.

2.3. System-dependent parameters

For some packages, especially those interfacing with C libraries, implementation details and the build
procedure depend on the build environment. The simple build infrastructure can handle many such situ-
ations using aslightly longer Set up. hs:

i mport Distribution.Sinmple
mal n = def aul t Mai nW t hHooks def aul t User Hooks

This program differs from def aul t Mai n intwo ways:

1. If the package root directory contains a file called conf i gur e, the configure step will run that.

Common Architecture for Building
Applicationsand Libraries

This configure progran may be a script produced by the autoconf
[http://Avww.gnu.org/software/autoconf/] system, or may be hand-written. This program typically
discovers information about the system and records it for later steps, e.g. by generating system-
dependent header files for inclusion in C source files and preprocessed Haskell source files.
(Clearly thiswon't work for Windows without MSY S or Cygwin: other ideas are needed.)

2. If the package root directory contains afile called package. bui | di nf o after the configuration
step, subsequent steps will read it to obtain additional settings for build information fields (see Sec-
tion 2.1.4, “Build information”), to be merged with the ones given in the . cabal file. In particu-
lar, this file may be generated by the conf i gur e script mentioned above, alowing these settings
to vary depending on the build environment.

The build information file should have the following structure:

bui | di nfo

execut abl e: nane
bui l di nfo

execut abl e: nane
bui | di nfo

where each bui | di nf o consists of settings of fields listed in Section 2.1.4, “Build information”.
The first one (if present) relates to the library, while each of the others relate to the named execut-
able. (The names must match the package description, but you don't have to have entries for all of
them.)

Neither of these filesis required. If they are absent, this setup script is equivalent to def aul t Mai n.

Example 4. Using autoconf

(Thisexampleisfor people familiar with the autoconf [http://www.gnu.org/software/autoconf/] tools.)

In the X11 package, thefileconf i gur e. ac contains:

AC | NI T([Haskel | X11 package], [1.1], [libraries@askell.org], [X11])

Safety check: Ensure that we are in the correct source directory.
AC_CONFI G_SRCDI R([X11. cabal])

Header file to place defines in
AC_CONFI G_HEADERS([i ncl ude/ HsX11Confi g. h])

Check for X11 include paths and libraries
AC_PATH_XTRA
AC TRY_CPP([#i ncl ude <X11/ Xl'ib. h>],,[no_x=yes])

Build the package if we found X11 stuff
if test "$no_x" = yes

t hen BU LD _PACKAGE BOOL=Fal se

el se BU LD _PACKAGE BOOL=Tr ue

fi

AC_SUBST([BU LD_PACKAGE_BOQL])

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/

Common Architecture for Building
Applicationsand Libraries

AC_CONFI G_FI LES([X11. bui | di nfo])
AC_OUTPUT

Then the setup script will run the conf i gur e script, which checks for the presence of the X11 libraries
and substitutes for variablesin thefile X11. bui | di nfo. i n:

bui | dabl e: @UI LD_PACKAGE_BOOL@
cc-options: @ _CFLAGS@
| d-options: @X LI BS@

Thisgeneratesafile X11. bui | di nf o supplying the parameters needed by later stages:

bui | dabl e: True
cc-options: -l/usr/X11R6/i ncl ude
I d-options: -L/usr/X11R6/I1ib

The conf i gur e script also generates a header file i ncl ude/ HsX11Conf i g. h containing C pre-
processor defines recording the results of various tests. This file may be included by C source files and
preprocessed Haskell source filesin the package.

Note

Packages using these features will also need to list additional files such as conf i gur e, templates for
. bui | di nf o files, files named only in . bui | di nf o files, header files and so on in the ext r a-
source-fil es field, to ensure that they are included in source distributions. They should also list
files and directories generated by configureintheextra-t np-fi | es field to ensure that they are re-
moved by setup clean.

2.4. More complex packages

For packages that don't fit the simple schemes described above, you have afew options:

* You can customize the simple build infrastructure using hooks. These allow you to perform addition-
al actions before and after each command is run, and also to specify additional preprocessors. See
User Hooks in Distribution.Simple [../libraries/Cabal/Distribution-Simple.html] for the details, but
note that thisinterface is experimental, and likely to change in future releases.

* You could delegate all the work to make, though thisis unlikely to be very portable. Cabal supports
this with a trivial setup library Distribution.Make [../libraries/Cabal/Distribution-Make.html], which
simply parses the command line arguments and invokes make. Here Set up. hs looks like

i mport Distribution. Make
mal n = defaul t Main

The root directory of the package should contain a conf i gur e script, and, after that has run, a
Makef i | e with a default target that builds the package, plus targetsi nst al | , regi st er, un-
regi ster,cl ean, di st and docs. Some options to commands are passed through as follows:

e The--with-hc,--with-hc-pkg,--prefix,--bindir,--1ibdir,--datadir and
--1ibexecdir options to the confi gure command are passed on to the confi gure

10

../libraries/Cabal/Distribution-Simple.html
../libraries/Cabal/Distribution-Make.html

Common Architecture for Building
Applicationsand Libraries

script.

e the--destdir optiontothecopy command becomes a setting of adest di r variable on the
invocation of nake copy. The supplied Makef i | e should provide acopy target, which will
probably look like this:

copy :
$(MAKE) install prefix=$(destdir)/$(prefix) \
bi ndi r=$(destdir)/$(bindir) \
l'i bdir=$(destdir)/$(libdir) \
dat adi r=$(destdir)/$(datadir) \
l'i bexecdir=$(destdir)/$(libexecdir)

* You can write your own setup script conforming to the interface of Section 3, “Building and in-
stalling a package”, possibly using the Cabal library for part of the work. One option is to copy the
sourceof Di stri buti on. Si npl e, and alter it for your needs. Good luck.

3. Building and installing a package

After you've unpacked a Cabal package, you can build it by moving into the root directory of the pack-
age and using the Set up. hs or Set up. | hs script there:
runhaskel | Setup. hs [command] [opti on..]

wherer unhaskel | might be runhugs, runghc or runnhc. The conmmand argument selects a particu-
lar step in the build/install process. Y ou can also get a summary of the command syntax with
runhaskell Setup.hs --help

Example 5. Building and installing a system package

runhaskel | Setup.hs configure --ghc
runhaskel | Setup.hs build
runhaskel | Setup.hs install

The first line readies the system to build the tool using GHC; for example, it checks that GHC exists on
the system. The second line performs the actual building, while the last both copies the build results to
some permanent place and registers the package with GHC.

Example 6. Building and installing a user package

runhaskel | Setup.hs configure --ghc --user --prefix=$HOVE
runhaskel | Setup.hs build
runhaskel | Setup.hs install

The package may use packages from the user's package database as well as the global one (- - user), is
installed under the user's home directory (- - pr ef i x), and is registered in the user's package database
(--user).

11

Common Architecture for Building
Applicationsand Libraries

Example 7. Creating a binary package

When creating binary packages (e.g. for RedHat or Debian) one needs to create a tarball that can be sent
to another system for unpacking in the root directory:

runhaskel | Setup.hs configure --ghc --prefix=/usr
runhaskel | Setup.hs build

runhaskel | Setup.hs copy --destdir=/tnp/ mypkg

(cd /tnp/ mypkg; tar cf - .) | gzip -9 >nypkg.tar.gz

If the package contains alibrary, you need two additional steps:

runhaskel | Setup.hs register --gen-script
runhaskel | Setup.hs unregi ster --gen-script

This creates shell scriptsr egi st er. sh and unr egi st er . sh, which must also be sent to the target
system. After unpacking there, the package must be registered by running the r egi st er . sh script.
The unr egi st er. sh script would be used in the uninstall procedure of the package. Similar steps
may be used for creating binary packages for Windows.

The following options are understood by all commands:

--hel p,-hor Listtheavailable options for the command.
)

--verbose=n Set the verbosity level (0-5). The normal level is 1; amissing n defaultsto 3.
or-vn

The various commands and the additional options they support are described below. In the simple build
infrastructure, any other options will be reported as errors, except in the case of the conf i gur e com-
mand.

3.1. setup configure

Prepare to build the package. Typically, this step checks that the target platform is capable of building
the package, and discovers platform-specific features that are needed during the build.

The user may also adjust the behaviour of later stages using the options listed in the following subsec-
tions. In the simple build infrastructure, the values supplied via these options are recorded in a private
file read by later stages.

If a user-supplied conf i gur e script is run (see Section 2.3, “ System-dependent parameters’ or Sec-

tion 2.4, “More complex packages’), it is passed the - - wi t h- hc, - -wi t h- hc- pkg, - - prefi x, -
-bindir,--libdir,--datadir and--1i bexecdi r options, plusany unrecognized options.

3.1.1. Programs used for building

The following options govern the programs used to process the source files of a package:

--ghcor-g,--nhc Specify which Haskell implementation to use to build the package. At most
or-n,--hugs one of these flags may be given. If none is given, the implementation under

12

Common Architecture for Building
Applicationsand Libraries

which the setup script was compiled or interpreted is used.

13

Common Architecture for Building
Applicationsand Libraries

pat h or - wpat h Specify the path to a particular compiler. If given, this must match the imple-
mentation selected above. The default is to search for the usual name of the
selected implementation.

pa Specify the path to the package toal, e.g. ghc-pkg.
--wi th-hc-pkg=th
Specify the path to haddock [http://www.haskell.org/haddock/].

a Specify the path to happy [http://www.haskell.org/happy/].

[« H o]

t

Wi t h- happgek=h _
wi t h- al ex=pat h Specify the path to alex [http://www.haskell.org/alex/].
pa Specify the path to hsc2hs.

--with-hsc2hs=th
--w t h-c2hs=pat h Specify the path to c2hs [http://www.cse.unsw.edu.au/~chak/haskell/c2hs/].

14

http://www.haskell.org/haddock/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

Common Architecture for Building
Applicationsand Libraries

=pat h Specify the path to greencard [http://www.haskell.org/greencard/].
pat Specify the path to cpphs [http://www.haskell.org/cpphs/].
--w t h-cpphs=h

3.1.2. Installation paths

The following options govern the location of installed files from a package:

--prefix=dir

--bindir=dir
--libdir=dir

The root of the installation, for example /usr/ | ocal on a Unix system, or
C:\ Program Fi | es on aWindows system. The other installation paths are usu-
aly subdirectories of pr ef i x, but they don't have to be.
Executables that the user might invoke are installed here.

Object-code libraries are installed here.

15

http://www.haskell.org/greencard/
http://www.haskell.org/cpphs/

Common Architecture for Building
Applicationsand Libraries

dir

di
--datadir=r

A subdirectory of | i bdi r inwhich libraries are actually installed. For example, in
the simple build system on Unix, the default | i bdi r is/usr/1 ocal /Iib, and
|'i bsubdir contains the package identifier and compiler, e.g. mypkg-
0. 2/ ghc- 6. 4, So] libraries would be installed in /
usr/local/lib/nmypkg-0.2/ghc-6. 4.

Not all build systems make use of | i bsubdi r, in particular the Distribution.Make
[../libraries/Cabal/Distribution-Make.html] system does not.

Architecture-independent datafiles are installed here.

16

../libraries/Cabal/Distribution-Make.html

Common Architecture for Building
Applicationsand Libraries

=dir A subdirectory of dat adi r in which datafiles are actually installed. Thisoption is
similarto- -1 i bsubdi r inthat not al build systems make use of it.

17

Common Architecture for Building
Applicationsand Libraries

=dir Executables that are not expected to be invoked directly by the user are installed

here.

3.1.2.1. Paths in the simple build system

For the simple build system, the following defaults apply:

Option Windows Default Unix Default
--prefix C:\Program Fi l es /usr/ 1 ocal
--bindir $prefi x\ Haskel '\ bin $prefix/bin
--libdir $prefi x\ Haskel | $prefix/lib

--1i bsubdir (Hugs)

hugs\ packages\ $pkg

hugs/ packages/ $pkg

--11i bsubdi r (others)

$pkgi d\ $conpi | er

$pkgi d/ $conpi | er

- - dat adi r (executable)

$pr ef i x\ Haskel |

$prefix/share

- -dat adi r (library)

C:\ Program Fi | es\ Comrmon

$prefix/share

Files
- -dat asubdir $pkgi d $pkgi d
--1ibexecdir $prefi x\ $pkgi d $prefix/|ibexec

The following strings are substituted into directory names:

$Sprefix Thevaueof prefi x

$pkgi d The full package identifier, eg. pkg- 0. 1
$conpi | er Thecompiler and version, e.g. ghc-6. 4. 1
$pkg The name of the package only

$version Theversion of the package

3.1.2.2. Prefix-independence

On Windows (and perhaps other OSs), it is possible to query the pathname of the running binary. This
means that we can construct an installable executable package that is independent of its absolute install
location. The executable can find its auxiliary files by finding its own path and knowing the location of
the other files relative to bi ndi r. Prefix-independence is particularly useful: it means the user can
choose the install location (i.e. the value of pr ef i x) at install-time, rather than having to bake the path
into the binary when it is built.

In order to achieve this, we require that for an executable on Windows, al of bi ndir, |'i bdir,
dat adi r andl i bexecdi r beginwith $pr ef i x. If thisis not the case then the compiled executable
will have baked in all absolute paths.

The application need do nothing special to achieve prefix-independence. If it finds any files using get -
Dat aFi | eNane and the other functions provided for the purpose (see Section 2.2, “Accessing data
files from package code”), the files will be accessed relative to the location of the current executable.

A library cannot (currently) be prefix-independent, because it will be linked into an executable whose
filesystem location bears no relation to the library package.

18

Common Architecture for Building
Applicationsand Libraries

3.1.3. Miscellaneous options

--user

--gl obal

en

abl e-library-profilingor
-p

-di s-
able-library-profiling

- en_
abl e- execut -
abl e-profiling

-di s-
abl e- execut -

Allow dependencies to be satisfied by the user package database,
in addition to the global database.

This also implies a default of - - user for any subsequent i n-
stal | command, as packages registered in the global database
should not depend on packages registered in a user's database.

(default) Dependencies must be satisfied by the global package
database.

Request that an additional version of the library with profiling
features enabled be built and installed (only for implementations
that support profiling).

(default) Do not generate an additional profiling version of the
library.

Any executables generated should have profiling enabled (only
for implementations that support profiling). For this to work, all
libraries used by these executables must also have been built with
profiling support.

(default) Do not enable profiling in generated executables.

Hbthe sippile Pl 6h gnfrastructure, an additional option is recognized:

19

Common Architecture for Building
Applicationsand Libraries

=dir or-bdir Specify thedirectory into which the package will be built (default: di st/ bui | d).

3.2. setup build

Perform any preprocessing or compilation needed to make this package ready for installation.

3.3. setup haddock

Build the interface documentation for alibrary using haddock [http://www.haskell.org/haddock/].
This command takes the following option:
--hoogl e Generate a file di st/ doc/ ht m / pkgi d. t xt, which can be converted by Hoogle

[http://www.haskell.org/hoogle/] into a database for searching. This is equivalent to run-
ning haddock [http://www.haskell.org/haddock/] with the - - hoogl e flag.

3.4. setup install

Copy thefilesinto the install locations and (for library packages) register the package with the compiler,
i.e. make the modulesit contains available to programs.

Theinstall locations are determined by optionsto set up confi gur e (see Section 3.1.2, “Installation
paths’).

This command takes the following options:
--global Register this package in the system-wide database. (This is the default, unless the -
- user option was supplied to theconf i gur e command.)

- -user Register this package in the user's local package database. (This is the default if the -
- user option was supplied totheconf i gur e command.)

3.5. setup copy

Copy the files without registering them. This command is mainly of use to those creating binary pack-
ages.

This command takes the following option:

20

http://www.haskell.org/haddock/
http://www.haskell.org/hoogle/
http://www.haskell.org/haddock/

Common Architecture for Building
Applicationsand Libraries

=pat h Specify the directory under which to place installed files. If this is not given, then the
root directory is assumed.

3.6. setup register

Register this package with the compiler, i.e. make the modules it contains available to programs. This
only makes sense for library packages. Note that the i nst al | command incorporates this action. The
main use of this separate command is in the post-installation step for a binary package.

This command takes the following options:

- - gl obal
- -user

--gen-script

--inplace

Register this package in the system-wide database. (Thisis the default.)
Register this package in the user's local package database.

Instead of registering the package, generate a script containing commands to per-
form the registration. On Unix, this file is called r egi st er . sh, on Windows,
regi st er. bat . Thisscript might be included in a binary bundle, to be run after
the bundle is unpacked on the target system.

Registers the package for use directly from the build tree, without needing to in-
stall it. This can be useful for testing: there's no need to install the package after
modifying it, just recompile and test.

This flag does not create a build-tree-local package database. It still registers the
package in one of the user or global databases.

However, there are some caveats. It only works with GHC (currently). It only
works if your package doesn't depend on having any supplemental files installed -
plain Haskell libraries should be fine.

21

Common Architecture for Building
Applicationsand Libraries

=pat h Specify the path to the package tool, e.g. ghc-pkg. This overrides the hc- pkg
tool discovered during configure.

3.7. setup unregister

Deregister this package with the compiler.

This command takes the following options:

--gl obal Deregister this package in the system-wide database. (Thisis the default.)

- -user Deregister this package in the user's local package database.

--gen-script Instead of deregistering the package, generate a script containing commands to per-
form the deregistration. On Unix, this file is called unr egi st er. sh, on Win-

dows, unr egi st er . bat . This script might be included in a binary bundle, to be
run on the target system.

3.8. setup clean

Remove any local files created during the conf i gur e, bui | d, haddock, regi ster or unre-
gi st er steps, and also any filesand directorieslisted intheextra-t np-fi |l es field.

3.9. setup test

Run the test suite specified by ther unTest s field of Di stri buti on. Si npl e. User Hooks. See
Distribution.Simple [../libraries/Cabal/Distribution-Simple.html] for information about creating hooks
and using def aul t Mai NW t hHooks.

3.10. setup sdist

Create a system- and compiler-independent source distribution in afile package- ver si on. tar. gz
inthe di st subdirectory, for distribution to package builders. When unpacked, the commands listed in
this section will be available.

The files placed in this distribution are the package description file, the setup script, the sources of the
modules named in the package description file, and filesnamed inthel i cense-fil e,mai n-i s, c-

sources,data-fil esandextra-source-fil es fields.

This command takes the following option:

--snapshot Append today's date (in YYYYMVDD form) to the version number for the generated
source package. The original package is unaffected.

4. Known bugs and deficiencies

All these should be fixed in future versions:

» The scheme described in Section 2.3, “System-dependent parameters’ will not work on Windows

22

../libraries/Cabal/Distribution-Simple.html

Common Architecture for Building
Applicationsand Libraries

without MSY S or Cygwin.
» Cabal has some limitations both running under Hugs and building packages for it:
e Cabal requiresthe latest release (Mar 2005).
e It doesn't work with Windows.
e Thereisno hugs- pkg tool.

» Though thelibrary runs under Nhc98, it cannot build packages for Nhc98.

Please report any other flawsto <l i br ari es@askel | . or g>.

23

	Common Architecture for Building Applications and Libraries
	Table of Contents
	1. Packages
	2. Creating a package
	2.1. Package descriptions
	2.1.1. Package properties
	2.1.2. Library
	2.1.3. Executables
	2.1.4. Build information

	2.2. Accessing data files from package code
	2.3. System-dependent parameters
	2.4. More complex packages

	3. Building and installing a package
	3.1. setup configure
	3.1.1. Programs used for building
	3.1.2. Installation paths
	3.1.2.1. Paths in the simple build system
	3.1.2.2. Prefix-independence

	3.1.3. Miscellaneous options

	3.2. setup build
	3.3. setup haddock
	3.4. setup install
	3.5. setup copy
	3.6. setup register
	3.7. setup unregister
	3.8. setup clean
	3.9. setup test
	3.10. setup sdist

	4. Known bugs and deficiencies

