
Building and developing GHC
The GHC Team

Abstract

This Guide is primarily aimed at those who want to build and/or hack on GHC. It describes how to
get started with building GHC on your machine, and how to tweak the settings to get the kind of
build you want. It also describes the inner workings of the build system, so you can extend it,
modify it, and use it to build your code.

The bulk of this guide applies to building on Unix systems; see Section 12, “Instructions for build-
ing under Windows” for Windows notes.

Table of Contents
1. Getting the sources ... 2
2. Things to check before you start ... 3
3. Installing pre-supposed utilities .. 3

3.1. Tools for building parallel GHC (GPH) ... 5
4. Building from source .. 5
5. Quick start for GHC developers .. 5
6. Working with the build system ... 6

6.1. History .. 7
6.2. Build trees ... 7
6.3. Getting the build you want .. 8
6.4. The story so far ... 10
6.5. Making things .. 11
6.6. Bootstrapping GHC ... 12
6.7. Standard Targets ... 12
6.8. Using GHC from the build tree .. 14
6.9. Fast Making ... 14

7. The Makefile architecture .. 14
7.1. Debugging ... 14
7.2. A small example ... 15
7.3. Boilerplate architecture .. 16
7.4. The mk/boilerplate.mk file ... 17
7.5. Platform settings ... 18
7.6. Pattern rules and options ... 19
7.7. The main mk/target.mk file ... 20
7.8. Recursion .. 21
7.9. Way management .. 21
7.10. When the canned rule isn't right .. 22

8. Building the documentation ... 22
8.1. Tools for building the Documentation ... 22
8.2. Installing the DocBook tools ... 23

8.2.1. Installing the DocBook tools on Linux .. 23
8.2.2. Installing DocBook on FreeBSD .. 23
8.2.3. Installing from binaries on Windows .. 23

8.3. Configuring the DocBook tools .. 23
8.4. Building the documentation ... 23
8.5. Installing the documentation .. 24

1

9. Porting GHC ... 24
9.1. Booting/porting from C (.hc) files ... 24
9.2. Porting GHC to a new platform .. 25

9.2.1. Cross-compiling to produce an unregisterised GHC ... 26
9.2.2. Porting the RTS .. 28
9.2.3. The mangler .. 29
9.2.4. The splitter .. 29
9.2.5. The native code generator ... 29
9.2.6. GHCi ... 29
10. Known pitfalls in building Glasgow Haskell .. 30
11. Platforms, scripts, and file names .. 31

11.1. Windows platforms: Cygwin, MSYS, and MinGW .. 31
11.1.1. MinGW ... 31
11.1.2. Cygwin and MSYS .. 31
11.1.3. Targeting MinGW ... 32
11.1.4. File names ... 32
11.1.5. Crippled ld .. 33
11.1.6. Host System vs Target System ... 33

11.2. Wrapper scripts ... 33
12. Instructions for building under Windows .. 34

12.1. Installing and configuring MSYS .. 34
12.2. Installing and configuring Cygwin .. 35
12.3. Configuring SSH ... 36
12.4. Other things you need to install .. 37
12.5. Building GHC ... 38
12.6. A Windows build log using Cygwin .. 39

Index .. 40

1. Getting the sources
You can get your hands on the GHC sources in two ways:

Source distributions You have a supported platform, but (a) you like the warm fuzzy feel-
ing of compiling things yourself; (b) you want to build something
``extra”—e.g., a set of libraries with strictness-analysis turned off; or
(c) you want to hack on GHC yourself.

A source distribution contains complete sources for GHC. Not only
that, but the more awkward machine-independent steps are done for
you. For example, if you don't have happy you'll find it convenient
that the source distribution contains the result of running happy on the
parser specifications. If you don't want to alter the parser then this
saves you having to find and install happy. You will still need a work-
ing version of GHC (version 5.x or later) on your machine in order to
compile (most of) the sources, however.

The darcs repository. We make releases infrequently. If you want more up-to-the minute
(but less tested) source code then you need to get access to our darcs
repository.

Information on accessing the darcs repository is on the wiki: ht-
tp://hackage.haskell.org/trac/ghc/wiki/GhcDarcs.

The repository holds source code only. It holds no mechanically gen-
erated files at all. So if you check out a source tree from darcs you will
need to install every utility so that you can build all the derived files

Building and developing GHC

2

http://hackage.haskell.org/trac/ghc/wiki/GhcDarcs
http://hackage.haskell.org/trac/ghc/wiki/GhcDarcs

from scratch.

2. Things to check before you start
Here's a list of things to check before you get started.

1. Disk space needed: from about 100Mb for a basic GHC build, up to probably 500Mb for a GHC
build with everything included (libraries built several different ways, etc.).

2. Use an appropriate machine / operating system. GHC Platform Support
[http://hackage.haskell.org/trac/ghc/wiki/Platforms] lists the currently supported platforms; if yours
isn't amongst these then you can try porting GHC (see Section 9, “Porting GHC”).

3. Be sure that the “pre-supposed” utilities are installed. Section 3, “Installing pre-supposed utilities”
elaborates.

4. If you have any problem when building or installing the Glasgow tools, please check the “known
pitfalls” (Section 10, “Known pitfalls in building Glasgow Haskell ”). Also check the FAQ for the
version you're building, which is part of the User's Guide and available on the GHC web site
[http://www.haskell.org/ghc/].

If you feel there is still some shortcoming in our procedure or instructions, please report it.

For GHC, please see the bug-reporting section of the GHC Users' Guide
[http://www.haskell.org/ghc/docs/latest/set/bug-reporting.html], to maximise the usefulness of your
report.

If in doubt, please send a message to <glasgow-haskell-bugs@haskell.org>.

3. Installing pre-supposed utilities
Here are the gory details about some utility programs you may need; perl, gcc and happy are the only
important ones. (PVM is important if you're going for Parallel Haskell.) The configure script will tell
you if you are missing something.

GHC GHC is required to build GHC, because GHC itself is written in Haskell,
and uses GHC extensions. It is possible to build GHC using just a C com-
piler, and indeed some distributions of GHC do just that, but it isn't the
best supported method, and you may encounter difficulties. Full instruc-
tions are in Section 9, “Porting GHC”.

GHC can be built using either an earlier released version of GHC
(currently 5.04 and later are supported), or bootstrapped using a GHC
built from exactly the same sources. Note that this means you cannot in
general build GHC using an arbitrary development snapshot, or a build
from say last week. It might work, it might not - we don't guarantee any-
thing. To be on the safe side, start your build using the most recently re-
leased stable version of GHC.

Perl You have to have Perl to proceed! Perl version 5 at least is required.
GHC has been known to tickle bugs in Perl, so if you find that Perl
crashes when running GHC try updating (or downgrading) your Perl in-

Building and developing GHC

3

http://hackage.haskell.org/trac/ghc/wiki/Platforms
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/docs/latest/set/bug-reporting.html

stallation. Versions of Perl before 5.6 have been known to have various
bugs tickled by GHC, so the configure script will look for version 5.6 or
later.

For Win32 platforms, you should use the binary supplied in the Install-
Shield (copy it to /bin). The Cygwin-supplied Perl seems not to work.

Perl should be put somewhere so that it can be invoked by the #! script-
invoking mechanism. The full pathname may need to be less than 32
characters long on some systems.

GNU C (gcc) Most GCC versions should work with the most recent GHC sources. Ex-
pect trouble if you use a recent GCC with an older GHC, though (trouble
in the form of mis-compiled code, link errors, and errors from the ghc-
asm script).

If your GCC dies with “internal error” on some GHC source file, please
let us know, so we can report it and get things improved. (Exception: on
x86 boxes—you may need to fiddle with GHC's -monly-N-regs op-
tion; see the User's Guide)

GNU Make The GHC build system makes heavy use of features specific to GNU
make, so you must have this installed in order to build GHC.

NB. it has been reported that version 3.79 no longer works to build GHC,
and 3.80 is required.

Happy
[http://www.haskell.org/hap
py]

Happy is a parser generator tool for Haskell, and is used to generate
GHC's parsers.

If you start from a source tarball of GHC (i.e. not a darcs checkout), then
you don't need Happy, because we supply the pre-processed versions of
the Happy parsers. If you intend to modify the compiler and/or you're us-
ing a darcs checkout, then you need Happy.

Happy version 1.15 is currently required to build GHC. Grab a copy from
Happy's Web Page [http://www.haskell.org/happy/].

Alex Alex is a lexical-analyser generator for Haskell, which GHC uses to gen-
erate its lexer.

Like Happy, you don't need Alex if you're building GHC from a source
tarball, but you do need it if you're modifying GHC and/or building a
darcs checkout.

Alex is written in Haskell and is a project in the darcs repository. Alex
distributions are available from Alex's Web Page
[http://www.haskell.org/alex/].

autoconf GNU autoconf is needed if you intend to build from the darcs sources, it
is not needed if you just intend to build a standard source distribution.

Version 2.52 or later of the autoconf package is required. NB. version
2.13 will no longer work, as of GHC version 6.1.

autoreconf (from the autoconf package) recursively builds configure
scripts from the corresponding configure.ac and aclocal.m4
files. If you modify one of the latter files, you'll need autoreconf to re-
build the corresponding configure.

Building and developing GHC

4

http://www.haskell.org/happy
http://www.haskell.org/happy/
http://www.haskell.org/alex/

1not necessary if you started from a source tarball

sed You need a working sed if you are going to build from sources. The
build-configuration stuff needs it. GNU sed version 2.0.4 is no good! It
has a bug in it that is tickled by the build-configuration. 2.0.5 is OK. Oth-
ers are probably OK too (assuming we don't create too elaborate config-
ure scripts.)

3.1. Tools for building parallel GHC (GPH)

PVM version 3: PVM is the Parallel Virtual Machine on which Parallel Haskell programs
run. (You only need this if you plan to run Parallel Haskell. Concurrent
Haskell, which runs concurrent threads on a uniprocessor doesn't need it.)
Underneath PVM, you can have (for example) a network of workstations
(slow) or a multiprocessor box (faster).

The current version of PVM is 3.3.11; we use 3.3.7. It is readily available
on the net; I think I got it from research.att.com, in netlib.

A PVM installation is slightly quirky, but easy to do. Just follow the
Readme instructions.

bash: Sadly, the gr2ps script, used to convert “parallelism profiles” to Post-
Script, is written in Bash (GNU's Bourne Again shell). This bug will be
fixed (someday).

More tools are required if you want to format the documentation that comes with GHC. See Section 8,
“Building the documentation”.

4. Building from source
“I just want to build it!”

No problem. This recipe should build and install a working GHC with all the default settings. (unless
you're on Windows, in which case go to Section 12, “Instructions for building under Windows”).

$ autoreconf1

$./configure
$ make
$ make install

For GHC, this will do a 2-stage bootstrap build of the compiler, with profiling libraries, and install the
results in the default location (under /usr/local on Unix, for example).

The configure script is a standard GNU autoconf script, and accepts the usual options for chan-
ging install locations and the like. Run ./configure --help for a list of options.

If you want to do anything at all non-standard, or you want to do some development, read on...

5. Quick start for GHC developers

Building and developing GHC

5

This section is a copy of the file HACKING from the GHC source tree. It describes how to get started
with setting up your build tree for developing GHC or its libraries, and how to start building.

Getting started with hacking on GHC

So you've decided to hack on GHC, congratulations! We hope you have a
rewarding experience. This file will point you in the direction of
information to help you get started right away.

The GHC Developer's Wiki

The home for GHC Developers, with information on accessing the
latest sources, the bug tracker, and documentation on the
code:

http://hackage.haskell.org/trac/ghc

In particular, the wiki contains the following pages of interest to
new hackers:

Quick Start for developers

http://hackage.haskell.org/trac/ghc/wiki/Building/Hacking

This section on the wiki will get you up and running with a
serviceable build tree in no time:

This is part of the "Building GHC" section of the wiki, which
has more detailed information on GHC's build system should you
need it.

The GHC Commentary

http://hackage.haskell.org/trac/wiki/Commentary

Notes on the internals and architecture of GHC.

Mailing lists

Ask on glasgow-haskell-users@haskell.org if you have difficulties.
If you're working with the current CVS sources of GHC, then
cvs-ghc@haskell.org might be a more appropriate (developers hang
out here). See http://www.haskell.org/mailman/listinfo for
subscription.

Happy Hacking! --The GHC Team

6. Working with the build system
This rest of this guide is intended for duffers like me, who aren't really interested in Makefiles and sys-
tems configurations, but who need a mental model of the interlocking pieces so that they can make them

Building and developing GHC

6

work, extend them consistently when adding new software, and lay hands on them gently when they
don't work.

6.1. History
First, a historical note. The GHC build system used to be called "fptools": a generic build system used to
build multiple projects (GHC, Happy, GreenCard, H/Direct, etc.). It had a concept of the generic
project-independent parts, and project-specific parts that resided in a project subdirectory.

Nowadays, most of these other projects are using Cabal [http://www.haskell.org/cabal/], or have faded
away, and GHC is the only regular user of the fptools build system. We decided therefore to simplify the
situation for developers, and specialise the build system for GHC. This resulted in a simpler organisation
of the source tree and the build system, which hopefully makes the whole thing easier to understand.

You might find old comments that refer to "projects" or "fptools" in the documentation and/or source;
please let us know if you do.

6.2. Build trees
If you just want to build the software once on a single platform, then your source tree can also be your
build tree, and you can skip the rest of this section.

We often want to build multiple versions of our software for different architectures, or with different op-
tions (e.g. profiling). It's very desirable to share a single copy of the source code among all these builds.

So for every source tree we have zero or more build trees. Each build tree is initially an exact copy of
the source tree, except that each file is a symbolic link to the source file, rather than being a copy of the
source file. There are “standard” Unix utilities that make such copies, so standard that they go by differ-
ent names: lndir, mkshadowdir are two (If you don't have either, the source distribution includes
sources for the X11 lndir—check out utils/lndir). See Section 6.4, “The story so far” for a typical
invocation.

The build tree does not need to be anywhere near the source tree in the file system. Indeed, one advant-
age of separating the build tree from the source is that the build tree can be placed in a non-backed-up
partition, saving your systems support people from backing up untold megabytes of easily-regenerated,
and rapidly-changing, gubbins. The golden rule is that (with a single exception—Section 6.3, “Getting
the build you want”) absolutely everything in the build tree is either a symbolic link to the source tree,
or else is mechanically generated. It should be perfectly OK for your build tree to vanish overnight; an
hour or two compiling and you're on the road again.

You need to be a bit careful, though, that any new files you create (if you do any development work) are
in the source tree, not a build tree!

Remember, that the source files in the build tree are symbolic links to the files in the source tree. (The
build tree soon accumulates lots of built files like Foo.o, as well.) You can delete a source file from the
build tree without affecting the source tree (though it's an odd thing to do). On the other hand, if you edit
a source file from the build tree, you'll edit the source-tree file directly. (You can set up Emacs so that if
you edit a source file from the build tree, Emacs will silently create an edited copy of the source file in
the build tree, leaving the source file unchanged; but the danger is that you think you've edited the
source file whereas actually all you've done is edit the build-tree copy. More commonly you do want to
edit the source file.)

Like the source tree, the top level of your build tree must be (a linked copy of) the root directory of the
GHC source tree.. Inside Makefiles, the root of your build tree is called $(GHC_TOP). In the rest of
this document path names are relative to $(GHC_TOP) unless otherwise stated. For example, the file
mk/target.mk is actually $(GHC_TOP)/mk/target.mk.

Building and developing GHC

7

http://www.haskell.org/cabal/

6.3. Getting the build you want
When you build GHC you will be compiling code on a particular host platform, to run on a particular
target platform (usually the same as the host platform). The difficulty is that there are minor differences
between different platforms; minor, but enough that the code needs to be a bit different for each. There
are some big differences too: for a different architecture we need to build GHC with a different native-
code generator.

There are also knobs you can turn to control how the software is built. For example, you might want to
build GHC optimised (so that it runs fast) or unoptimised (so that you can compile it fast after you've
modified it. Or, you might want to compile it with debugging on (so that extra consistency-checking
code gets included) or off. And so on.

All of this stuff is called the configuration of your build. You set the configuration using a three-step
process.

Step 1: get ready for configuration. NOTE: if you're starting from a source distribution, rather than
darcs sources, you can skip this step.

Change directory to $(GHC_TOP) and issue the command

$ autoreconf

(with no arguments). This GNU program (recursively) converts
$(GHC_TOP)/configure.ac and
$(GHC_TOP)/aclocal.m4 to a shell script called
$(GHC_TOP)/configure. If autoreconf bleats that it can't
write the file configure, then delete the latter and try again.
Note that you must use autoreconf, and not the old autoconf! If
you erroneously use the latter, you'll get a message like "No rule
to make target 'mk/config.h.in'".

Some parts of the source tree, particularly libraries, have their
own configure script. autoreconf takes care of that, too, so all
you have to do is calling autoreconf in the top-level directory
$(GHC_TOP).

These steps are completely platform-independent; they just mean
that the human-written files (configure.ac and acloc-
al.m4) can be short, although the resulting files (the configure
shell scripts and the C header template mk/config.h.in) are
long.

Step 2: system configuration. Runs the newly-created configure script, thus:

$./configure [args]

configure's mission is to scurry round your computer working out
what architecture it has, what operating system, whether it has the
vfork system call, where tar is kept, whether gcc is available,
where various obscure #include files are, whether it's a leap
year, and what the systems manager had for lunch. It communic-
ates these snippets of information in two ways:

• It translates mk/config.mk.in to mk/config.mk, sub-
stituting for things between “@” brackets. So, “@HaveGcc@”

Building and developing GHC

8

will be replaced by “YES” or “NO” depending on what config-
ure finds. mk/config.mk is included by every Makefile
(directly or indirectly), so the configuration information is
thereby communicated to all Makefiles.

• It translates mk/config.h.in to mk/config.h. The lat-
ter is #included by various C programs, which can thereby
make use of configuration information.

configure takes some optional arguments. Use ./configure
--help to get a list of the available arguments. Here are some of
the ones you might need:

--with-ghc=path Specifies the path to an installed GHC
which you would like to use. This com-
piler will be used for compiling GHC-
specific code (eg. GHC itself). This op-
tion cannot be specified using
build.mk (see later), because config-
ure needs to auto-detect the version of
GHC you're using. The default is to look
for a compiler named ghc in your path.

--with-hc=path Specifies the path to any installed
Haskell compiler. This compiler will be
used for compiling generic Haskell code.
The default is to use ghc. (NOTE: I'm
not sure it actually works to specify a
compiler other than GHC here; unless
you really know what you're doing I sug-
gest not using this option at all.)

--with-gcc=path Specifies the path to the installed GCC.
This compiler will be used to compile all
C files, except any generated by the in-
stalled Haskell compiler, which will
have its own idea of which C compiler
(if any) to use. The default is to use gcc.

Step 3: build configuration. Next, you say how this build of GHC is to differ from the stand-
ard defaults by creating a new file mk/build.mk in the build
tree. This file is the one and only file you edit in the build tree,
precisely because it says how this build differs from the source.
(Just in case your build tree does die, you might want to keep a
private directory of build.mk files, and use a symbolic link in
each build tree to point to the appropriate one.) So mk/
build.mk never exists in the source tree—you create one in
each build tree from the template. We'll discuss what to put in it
shortly.

And that's it for configuration. Simple, eh?

What do you put in your build-specific configuration file mk/build.mk? For almost all purposes all
you will do is put make variable definitions that override those in mk/config.mk.in. The whole
point of mk/config.mk.in—and its derived counterpart mk/config.mk—is to define the build
configuration. It is heavily commented, as you will see if you look at it. So generally, what you do is

Building and developing GHC

9

look at mk/config.mk.in, and add definitions in mk/build.mk that override any of the con-
fig.mk definitions that you want to change. (The override occurs because the main boilerplate file,
mk/boilerplate.mk, includes build.mk after config.mk.)

For your convenience, there's a file called build.mk.sample that can serve as a starting point for
your build.mk.

For example, config.mk.in contains the definition:

GhcHcOpts=-Rghc-timing

The accompanying comment explains that this is the list of flags passed to GHC when building GHC it-
self. For doing development, it is wise to add -DDEBUG, to enable debugging code. So you would add
the following to build.mk:

GhcHcOpts += -DDEBUG

GNU make allows existing definitions to have new text appended using the “+=” operator, which is
quite a convenient feature.

Haskell compilations by default have -O turned on, by virtue of this setting from config.mk:

SRC_HC_OPTS += -H16m -O

SRC_HC_OPTS means "options for HC from the source tree", where HC stands for Haskell Compiler.
SRC_HC_OPTS are added to every Haskell compilation. To turn off optimisation, you could add this to
build.mk:

SRC_HC_OPTS = -H16m -O0

Or you could just add -O0 to GhcHcOpts to turn off optimisation for the compiler. See Section 5,
“Quick start for GHC developers” for some more suggestions.

When reading config.mk.in, remember that anything between “@...@” signs is going to be substi-
tuted by configure later. You can override the resulting definition if you want, but you need to be a bit
surer what you are doing. For example, there's a line that says:

TAR = @TarCmd@

This defines the Make variables TAR to the pathname for a tar that configure finds somewhere. If you
have your own pet tar you want to use instead, that's fine. Just add this line to mk/build.mk:

TAR = mytar

You do not have to have a mk/build.mk file at all; if you don't, you'll get all the default settings from
mk/config.mk.in.

You can also use build.mk to override anything that configure got wrong. One place where this hap-
pens often is with the definition of GHC_TOP_ABS: this variable is supposed to be the canonical path to
the top of your source tree, but if your system uses an automounter then the correct directory is hard to
find automatically. If you find that configure has got it wrong, just put the correct definition in
build.mk.

6.4. The story so far

Building and developing GHC

10

Let's summarise the steps you need to carry to get yourself a fully-configured build tree from scratch.

1. Get your source tree from somewhere (darcs repository or source distribution). Say you call the
root directory myghc (it does not have to be called ghc).

2. (Optional) Use lndir or mkshadowdir to create a build tree.

$ cd myghc
$ mkshadowdir . /scratch/joe-bloggs/myghc-x86

(N.B. mkshadowdir's first argument is taken relative to its second.) You probably want to give the
build tree a name that suggests its main defining characteristic (in your mind at least), in case you
later add others.

3. Change directory to the build tree. Everything is going to happen there now.

$ cd /scratch/joe-bloggs/myghc-x86

4. Prepare for system configuration:

$ autoreconf

(You can skip this step if you are starting from a source distribution, and you already have con-
figure and mk/config.h.in.)

5. Do system configuration:

$./configure

Don't forget to check whether you need to add any arguments to configure; for example, a com-
mon requirement is to specify which GHC to use with --with-ghc=ghc.

6. Create the file mk/build.mk, adding definitions for your desired configuration options.

You can make subsequent changes to mk/build.mk as often as you like. You do not have to run any
further configuration programs to make these changes take effect. In theory you should, however, say
make clean; make, because configuration option changes could affect anything—but in practice you are
likely to know what's affected.

6.5. Making things
At this point you have made yourself a fully-configured build tree, so you are ready to start building real
things.

The first thing you need to know is that you must use GNU make. On some systems (eg. FreeBSD) this
is called gmake, whereas on others it is the standard make command. In this document we will always
refer to it as make; please substitute with gmake if your system requires it. If you use a the wrong make
you will get all sorts of error messages (but no damage) because the GHC Makefiles use GNU make's
facilities extensively.

To just build the whole thing, cd to the top of your build tree and type make. This will prepare the tree
and build the various parts in the correct order, resulting in a complete build of GHC that can even be
used directly from the tree, without being installed first.

Building and developing GHC

11

6.6. Bootstrapping GHC
GHC requires a 2-stage bootstrap in order to provide full functionality, including GHCi. By a 2-stage
bootstrap, we mean that the compiler is built once using the installed GHC, and then again using the
compiler built in the first stage. You can also build a stage 3 compiler, but this normally isn't necessary
except to verify that the stage 2 compiler is working properly.

Note that when doing a bootstrap, the stage 1 compiler must be built, followed by the runtime system
and libraries, and then the stage 2 compiler. The correct ordering is implemented by the top-level
Makefile, so if you want everything to work automatically it's best to start make from the top of the
tree. The top-level Makefile is set up to do a 2-stage bootstrap by default (when you say make).
Some other targets it supports are:

stage1 Build everything as normal, including the stage 1 compiler.

stage2 Build the stage 2 compiler only.

stage3 Build the stage 3 compiler only.

bootstrap, boot-
strap2

Build stage 1 followed by stage 2.

bootstrap3 Build stages 1, 2 and 3.

install Install everything, including the compiler built in stage 2. To override the stage, say
make install stage=n where n is the stage to install.

binary-dist make a binary distribution. This is the target we use to build the binary distributions
of GHC.

dist make a source distribution. Note that this target does “make distclean” as part of its
work; don't use it if you want to keep what you've built.

The top-level Makefile also arranges to do the appropriate make boot steps (see below) before ac-
tually building anything.

The stage1, stage2 and stage3 targets also work in the compiler directory, but don't forget that
each stage requires its own make boot step: for example, you must do

$ make boot stage=2

before make stage2 in compiler.

6.7. Standard Targets
In any directory you should be able to make the following:

boot does the one-off preparation required to get ready for the real work. Notably,
it does make depend in all directories that contain programs. It also builds
the necessary tools for compilation to proceed.

Invoking the boot target explicitly is not normally necessary. From the top-
level directory, invoking make causes make boot to be invoked in various
subdirectories first, in the right order. Unless you really know what you are
doing, it is best to always say make from the top level first.

Building and developing GHC

12

If you're working in a subdirectory somewhere and need to update the de-
pendencies, make boot is a good way to do it.

all makes all the final target(s) for this Makefile. Depending on which directory
you are in a “final target” may be an executable program, a library archive, a
shell script, or a Postscript file. Typing make alone is generally the same as
typing make all.

install installs the things built by all (except for the documentation). Where does it
install them? That is specified by mk/config.mk.in; you can override it
in mk/build.mk, or by running configure with command-line arguments
like --bindir=/home/simonpj/bin; see ./configure --help
for the full details.

install-docs installs the documentation. Otherwise behaves just like install.

uninstall reverses the effect of install (WARNING: probably doesn't work).

clean Delete all files from the current directory that are normally created by build-
ing the program. Don't delete the files that record the configuration, or files
generated by make boot. Also preserve files that could be made by building,
but normally aren't because the distribution comes with them.

distclean Delete all files from the current directory that are created by configuring or
building the program. If you have unpacked the source and built the program
without creating any other files, make distclean should leave only the
files that were in the distribution.

mostlyclean Like clean, but may refrain from deleting a few files that people normally
don't want to recompile.

maintainer-clean Delete everything from the current directory that can be reconstructed with
this Makefile. This typically includes everything deleted by distclean,
plus more: C source files produced by Bison, tags tables, Info files, and so on.

One exception, however: make maintainer-clean should not delete
configure even if configure can be remade using a rule in the Make-
file. More generally, make maintainer-clean should not delete any-
thing that needs to exist in order to run configure and then begin to build
the program.

After a maintainer-clean, a configure will be necessary before
building again.

All of these standard targets automatically recurse into sub-directories. Certain other standard targets do
not:

depend make a .depend file in each directory that needs it. This .depend file contains mechanic-
ally-generated dependency information; for example, suppose a directory contains a Haskell
source module Foo.lhs which imports another module Baz. Then the generated
.depend file will contain the dependency:

Foo.o : Baz.hi

which says that the object file Foo.o depends on the interface file Baz.hi generated by

Building and developing GHC

13

compiling module Baz. The .depend file is automatically included by every Makefile.

Some Makefiles have targets other than these. You can discover them by looking in the Makefile
itself.

6.8. Using GHC from the build tree
If you want to build GHC and just use it direct from the build tree without doing make install first,
you can run the in-place driver script. To run the stage 1 compiler, use compiler/
stage1/ghc-inplace, stage 2 is compiler/stage2/ghc-inplace, and so on.

Do NOT use compiler/stage1/ghc, or compiler/stage1/ghc-6.xx, as these are the
scripts intended for installation, and contain hard-wired paths to the installed libraries, rather than the
libraries in the build tree.

6.9. Fast Making
Sometimes the dependencies get in the way: if you've made a small change to one file, and you're abso-
lutely sure that it won't affect anything else, but you know that make is going to rebuild everything any-
way, the following hack may be useful:

$ make FAST=YES

This tells the make system to ignore dependencies and just build what you tell it to. In other words, it's
equivalent to temporarily removing the .depend file in the current directory (where mkdependHS and
friends store their dependency information).

A bit of history: GHC used to come with a fastmake script that did the above job, but GNU make
provides the features we need to do it without resorting to a script. Also, we've found that fastmaking is
less useful since the advent of GHC's recompilation checker (see the User's Guide section on "Separate
Compilation").

7. The Makefile architecture
make is great if everything works—you type make install and lo! the right things get compiled and in-
stalled in the right places. Our goal is to make this happen often, but somehow it often doesn't; instead
some weird error message eventually emerges from the bowels of a directory you didn't know existed.

The purpose of this section is to give you a road-map to help you figure out what is going right and what
is going wrong.

7.1. Debugging
Debugging Makefiles is something of a black art, but here's a couple of tricks that we find particu-
larly useful. The following command allows you to see the contents of any make variable in the context
of the current Makefile:

$ make show VALUE=HS_SRCS

where you can replace HS_SRCS with the name of any variable you wish to see the value of.

GNU make has a -d option which generates a dump of the decision procedure used to arrive at a con-
clusion about which files should be recompiled. Sometimes useful for tracking down problems with su-

Building and developing GHC

14

2 One of the most important features of GNU make that we use is the ability for a Makefile to include another named file, very like cpp's
#include directive.

perfluous or missing recompilations.

7.2. A small example
To get started, let us look at the Makefile for an imaginary small program, small. Each program or
library in the GHC source tree typically has its own directory, in this case we'll use
$(GHC_TOP)/small. Inside the small/ directory there will be a Makefile, looking something
like this:

Makefile for program "small"
TOP = ..
include $(TOP)/mk/boilerplate.mk

HS_PROG = small

include $(TOP)/target.mk

this Makefile has three sections:

1. The first section includes 2 a file of “boilerplate” code from the top level). As its name suggests,
boilerplate.mk consists of a large quantity of standard Makefile code. We discuss this
boilerplate in more detail in Section 7.4, “The mk/boilerplate.mk file”.

Before the include statement, you must define the make variable TOP to be the top-level direct-
ory of the source tree, containing the mk directory in which the boilerplate.mk file is. It is not
OK to simply say

include ../mk/boilerplate.mk # NO NO NO

Why? Because the boilerplate.mk file needs to know where it is, so that it can, in turn, in-
clude other files. (Unfortunately, when an included file does an include, the filename is
treated relative to the directory in which make is being run, not the directory in which the in-
cluded sits.) In general, every file foo.mk assumes that $(TOP)/mk/foo.mk refers to itself.
It is up to the Makefile doing the include to ensure this is the case.

2. The second section defines the standard make variable HS_PROG (the executable binary to be
built). We will discuss in more detail what the “standard variables” are, and how they affect what
happens, in Section 7.7, “The main mk/target.mk file”.

3. The last section includes a second file of standard code, called target.mk. It contains the rules
that tell make how to make the standard targets (Section 6.7, “Standard Targets”). Why, you ask,
can't this standard code be part of boilerplate.mk? Good question. We discuss the reason
later, in Section 7.3, “Boilerplate architecture”.

You do not have to include the target.mk file. Instead, you can write rules of your own for
all the standard targets. Usually, though, you will find quite a big payoff from using the canned
rules in target.mk; the price tag is that you have to understand what canned rules get enabled,
and what they do (Section 7.7, “The main mk/target.mk file”).

In our example Makefile, most of the work is done by the two included files. When you say make
all, the following things happen:

• make looks in the current directory to see what source files it can find (eg. Foo.hs, Baz.c), and
from that it figures out what object files need to be built (eg. Foo.o, Baz.o). Because source files
are found and used automatically, omitting them from a program or library has to be done manually

Building and developing GHC

15

(see EXCLUDED_SRCS in Section 7.4, “The mk/boilerplate.mk file”).

• It uses a boilerplate pattern rule to compile Foo.hs to Foo.o using a Haskell compiler. (Which
one? That is set in the build configuration.)

• It uses another standard pattern rule to compile Baz.c to Baz.o, using a C compiler. (Ditto.)

• It links the resulting .o files together to make small, using the Haskell compiler to do the link
step. (Why not use ld? Because the Haskell compiler knows what standard libraries to link in. How
did make know to use the Haskell compiler to do the link, rather than the C compiler? Because we
set the variable HS_PROG rather than C_PROG.)

All Makefiles should follow the above three-section format.

7.3. Boilerplate architecture
Every Makefile includes a boilerplate.mk file at the top, and target.mk file at the bottom. In
this section we discuss what is in these files, and why there have to be two of them. In general:

• boilerplate.mk consists of:

• Definitions of millions of make variables that collectively specify the build configuration. Ex-
amples: HC_OPTS, the options to feed to the Haskell compiler; NoFibSubDirs, the sub-
directories to enable within the nofib project; GhcWithHc, the name of the Haskell compiler
to use when compiling GHC in the ghc project.

• Standard pattern rules that tell make how to construct one file from another.

boilerplate.mk needs to be included at the top of each Makefile, so that the user can re-
place the boilerplate definitions or pattern rules by simply giving a new definition or pattern rule in
the Makefile. make simply takes the last definition as the definitive one.

Instead of replacing boilerplate definitions, it is also quite common to augment them. For example, a
Makefile might say:

SRC_HC_OPTS += -O

thereby adding “-O” to the end of SRC_HC_OPTS.

• target.mk contains make rules for the standard targets described in Section 6.7, “Standard Tar-
gets”. These rules are selectively included, depending on the setting of certain make variables.
These variables are usually set in the middle section of the Makefile between the two includes.

target.mk must be included at the end (rather than being part of boilerplate.mk) for several
tiresome reasons:

• make commits target and dependency lists earlier than it should. For example, target.mk has
a rule that looks like this:

$(HS_PROG) : $(OBJS)
$(HC) $(LD_OPTS) $< -o $@

If this rule was in boilerplate.mk then $(HS_PROG) and $(OBJS) would not have their
final values at the moment make encountered the rule. Alas, make takes a snapshot of their cur-
rent values, and wires that snapshot into the rule. (In contrast, the commands executed when the

Building and developing GHC

16

rule “fires” are only substituted at the moment of firing.) So, the rule must follow the definitions
given in the Makefile itself.

• Unlike pattern rules, ordinary rules cannot be overriden or replaced by subsequent rules for the
same target (at least, not without an error message). Including ordinary rules in boiler-
plate.mk would prevent the user from writing rules for specific targets in specific cases.

• There are a couple of other reasons I've forgotten, but it doesn't matter too much.

7.4. The mk/boilerplate.mk file
If you look at $(GHC_TOP)/mk/boilerplate.mk you will find that it consists of the following
sections, each held in a separate file:

config.mk is the build configuration file we discussed at length in Section 6.3, “Getting the build
you want”.

paths.mk defines make variables for pathnames and file lists. This file contains code for automat-
ically compiling lists of source files and deriving lists of object files from those. The res-
ults can be overriden in the Makefile, but in most cases the automatic setup should do
the right thing.

The following variables may be set in the Makefile to affect how the automatic
source file search is done:

ALL_DIRS Set to a list of directories to search in addition to the current dir-
ectory for source files.

EXCLUDED_SRCS Set to a list of source files (relative to the current directory) to
omit from the automatic search. The source searching machinery
is clever enough to know that if you exclude a source file from
which other sources are derived, then the derived sources should
also be excluded. For example, if you set EXCLUDED_SRCS to
include Foo.y, then Foo.hs will also be excluded.

EXTRA_SRCS Set to a list of extra source files (perhaps in directories not listed
in ALL_DIRS) that should be considered.

The results of the automatic source file search are placed in the following make vari-
ables:

SRCS All source files found, sorted and without duplicates, including those
which might not exist yet but will be derived from other existing
sources. SRCS can be overriden if necessary, in which case the vari-
ables below will follow suit.

HS_SRCS all Haskell source files in the current directory, including those de-
rived from other source files (eg. Happy sources also give rise to
Haskell sources).

HS_OBJS Object files derived from HS_SRCS.

HS_IFACES Interface files (.hi files) derived from HS_SRCS.

C_SRCS All C source files found.

Building and developing GHC

17

C_OBJS Object files derived from C_SRCS.

SCRIPT_SRCS All script source files found (.lprl files).

SCRIPT_OBJS “object” files derived from SCRIPT_SRCS (.prl files).

HSC_SRCS All hsc2hs source files (.hsc files).

HAPPY_SRCS All happy source files (.y or .hy files).

OBJS the concatenation of $(HS_OBJS), $(C_OBJS), and
$(SCRIPT_OBJS).

Any or all of these definitions can easily be overriden by giving new definitions in your
Makefile.

What, exactly, does paths.mk consider a “source file” to be? It's based on the file's
suffix (e.g. .hs, .lhs, .c, .hy, etc), but this is the kind of detail that changes, so
rather than enumerate the source suffices here the best thing to do is to look in
paths.mk.

opts.mk defines make variables for option strings to pass to each program. For example, it
defines HC_OPTS, the option strings to pass to the Haskell compiler. See Section 7.6,
“Pattern rules and options”.

suffix.mk defines standard pattern rules—see Section 7.6, “Pattern rules and options”.

Any of the variables and pattern rules defined by the boilerplate file can easily be overridden in any par-
ticular Makefile, because the boilerplate include comes first. Definitions after this include dir-
ective simply override the default ones in boilerplate.mk.

7.5. Platform settings
There are three platforms of interest when building GHC:

The
build
plat-
form

The platform on which we are doing this build.

The
host
plat-
form

The platform on which these binaries will run.

The
target
plat-
form

The platform for which this compiler will generate code.

These platforms are set when running the configure script, using the --build, --host, and -
-target options. The mk/config.mk file defines several symbols related to the platform settings
(see mk/config.mk for details).

We don't currently support build & host being different, because the build process creates binaries that
are both run during the build, and also installed.

If host and target are different, then we are building a cross-compiler. For GHC, this means a compiler
which will generate intermediate .hc files to port to the target architecture for bootstrapping. The librar-
ies and stage 2 compiler will be built as HC files for the target system (see Section 9, “Porting GHC” for
details.

More details on when to use BUILD, HOST or TARGET can be found in the comments in
config.mk.

Building and developing GHC

18

7.6. Pattern rules and options
The file suffix.mk defines standard pattern rules that say how to build one kind of file from another,
for example, how to build a .o file from a .c file. (GNU make's pattern rules are more powerful and
easier to use than Unix make's suffix rules.)

Almost all the rules look something like this:

%.o : %.c
$(RM) $@
$(CC) $(CC_OPTS) -c $< -o $@

Here's how to understand the rule. It says that something.o (say Foo.o) can be built from something.c
(Foo.c), by invoking the C compiler (path name held in $(CC)), passing to it the options
$(CC_OPTS) and the rule's dependent file of the rule $< (Foo.c in this case), and putting the result in
the rule's target $@ (Foo.o in this case).

Every program is held in a make variable defined in mk/config.mk—look in mk/config.mk for
the complete list. One important one is the Haskell compiler, which is called $(HC).

Every program's options are are held in a make variables called <prog>_OPTS. the <prog>_OPTS
variables are defined in mk/opts.mk. Almost all of them are defined like this:

CC_OPTS = \
$(SRC_CC_OPTS) $(WAY$(_way)_CC_OPTS) $($*_CC_OPTS) $(EXTRA_CC_OPTS)

The four variables from which CC_OPTS is built have the following meaning:

SRC_CC_OPTS: options passed to all C compilations.

Building and developing GHC

19

: options passed to C compilations for way <way>. For example,
WAY_mp_CC_OPTS gives options to pass to the C compiler when compil-
ing way mp. The variable WAY_CC_OPTS holds options to pass to the C
compiler when compiling the standard way. (Section 7.9, “Way manage-
ment” dicusses multi-way compilation.)

<module>_CC_OPTS: options to pass to the C compiler that are specific to module <module>.
For example, SMap_CC_OPTS gives the specific options to pass to the C
compiler when compiling SMap.c.

EXTRA_CC_OPTS: extra options to pass to all C compilations. This is intended for command
line use, thus:

$ make libHS.a EXTRA_HC_OPTS="-v"

7.7. The main mk/target.mk file
target.mk contains canned rules for all the standard targets described in Section 6.7, “Standard Tar-
gets”. It is complicated by the fact that you don't want all of these rules to be active in every
Makefile. Rather than have a plethora of tiny files which you can include selectively, there is a single
file, target.mk, which selectively includes rules based on whether you have defined certain variables
in your Makefile. This section explains what rules you get, what variables control them, and what the
rules do. Hopefully, you will also get enough of an idea of what is supposed to happen that you can read
and understand any weird special cases yourself.

Building and developing GHC

20

. If HS_PROG is defined, you get rules with the following targets:

HS_PROG itself. This rule links $(OBJS) with the Haskell runtime system to get an ex-
ecutable called $(HS_PROG).

install installs $(HS_PROG) in $(bindir).

C_PROG is similar to HS_PROG, except that the link step links $(C_OBJS) with the C runtime sys-
tem.

LIBRARY is similar to HS_PROG, except that it links $(LIB_OBJS) to make the library archive
$(LIBRARY), and install installs it in $(libdir).

Some rules are “double-colon” rules, thus

install :: $(HS_PROG)
...how to install it...

GNU make treats double-colon rules as separate entities. If there are several double-colon rules for the
same target it takes each in turn and fires it if its dependencies say to do so. This means that you can, for
example, define both HS_PROG and LIBRARY, which will generate two rules for install. When you
type make install both rules will be fired, and both the program and the library will be installed, just as
you wanted.

7.8. Recursion
In leaf Makefiles the variable SUBDIRS is undefined. In non-leaf Makefiles, SUBDIRS is set to
the list of sub-directories that contain subordinate Makefiles. It is up to you to set SUBDIRS in the
Makefile. There is no automation here—SUBDIRS is too important to automate.

When SUBDIRS is defined, target.mk includes a rather neat rule for the standard targets (Sec-
tion 6.7, “Standard Targets” that simply invokes make recursively in each of the sub-directories.

These recursive invocations are guaranteed to occur in the order in which the list of directories is spe-
cified in SUBDIRS. This guarantee can be important. For example, when you say make boot it can be
important that the recursive invocation of make boot is done in one sub-directory (the include files, say)
before another (the source files). Generally, put the most independent sub-directory first, and the most
dependent last.

7.9. Way management
We sometimes want to build essentially the same system in several different “ways”. For example, we
want to build GHC's Prelude libraries with and without profiling, so that there is an appropriately-
built library archive to link with when the user compiles his program. It would be possible to have a
completely separate build tree for each such “way”, but it would be horribly bureaucratic, especially
since often only parts of the build tree need to be constructed in multiple ways.

Instead, the target.mk contains some clever magic to allow you to build several versions of a system;
and to control locally how many versions are built and how they differ. This section explains the magic.

The files for a particular way are distinguished by munging the suffix. The “normal way” is always
built, and its files have the standard suffices .o, .hi, and so on. In addition, you can build one or more
extra ways, each distinguished by a way tag. The object files and interface files for one of these extra
ways are distinguished by their suffix. For example, way mp has files .mp_o and .mp_hi. Library
archives have their way tag the other side of the dot, for boring reasons; thus, libHS_mp.a.

Building and developing GHC

21

A make variable called way holds the current way tag. way is only ever set on the command line of
make (usually in a recursive invocation of make by the system). It is never set inside a Makefile. So
it is a global constant for any one invocation of make. Two other make variables, way_ and _way are
immediately derived from $(way) and never altered. If way is not set, then neither are way_ and
_way, and the invocation of make will build the “normal way”. If way is set, then the other two vari-
ables are set in sympathy. For example, if $(way) is “mp”, then way_ is set to “mp_” and _way is set
to “_mp”. These three variables are then used when constructing file names.

So how does make ever get recursively invoked with way set? There are two ways in which this hap-
pens:

• For some (but not all) of the standard targets, when in a leaf sub-directory, make is recursively in-
voked for each way tag in $(WAYS). You set WAYS in the Makefile to the list of way tags you
want these targets built for. The mechanism here is very much like the recursive invocation of make
in sub-directories (Section 7.8, “Recursion”). It is up to you to set WAYS in your Makefile; this is
how you control what ways will get built.

• For a useful collection of targets (such as libHS_mp.a, Foo.mp_o) there is a rule which recurs-
ively invokes make to make the specified target, setting the way variable. So if you say make
Foo.mp_o you should see a recursive invocation make Foo.mp_o way=mp, and in this recursive
invocation the pattern rule for compiling a Haskell file into a .o file will match. The key pattern
rules (in suffix.mk) look like this:

%.$(way_)o : %.lhs
$(HC) $(HC_OPTS) $< -o $@

Neat, eh?

• You can invoke make with a particular way setting yourself, in order to build files related to a par-
ticular way in the current directory. eg.

$ make way=p

will build files for the profiling way only in the current directory.

7.10. When the canned rule isn't right
Sometimes the canned rule just doesn't do the right thing. For example, in the nofib suite we want the
link step to print out timing information. The thing to do here is not to define HS_PROG or C_PROG,
and instead define a special purpose rule in your own Makefile. By using different variable names
you will avoid the canned rules being included, and conflicting with yours.

8. Building the documentation
8.1. Tools for building the Documentation

The following additional tools are required if you want to format the documentation that comes with
GHC:

DocBook Much of our documentation is written in DocBook XML, instructions
on installing and configuring the DocBook tools are below.

TeX A decent TeX distribution is required if you want to produce printable
documentation. We recomment teTeX, which includes just about

Building and developing GHC

22

everything you need.

Haddock Haddock is a Haskell documentation tool that we use for automatically
generating documentation from the library source code. To build docu-
mentation for the libraries ($(GHC_TOP)/libraries) you should
build and install Haddock. Haddock requires GHC to build.

8.2. Installing the DocBook tools

8.2.1. Installing the DocBook tools on Linux

If you're on a recent RedHat (7.0+) or SuSE (8.1+) system, you probably have working DocBook tools
already installed. The configure script should detect your setup and you're away.

If you don't have DocBook tools installed, and you are using a system that can handle RPM packages,
you can use Rpmfind.net [http://rpmfind.net/] to find suitable packages for your system. Search for the
packages docbook-dtd, docbook-xsl-stylesheets, libxslt, libxml2, fop, xmltex,
and dvips.

8.2.2. Installing DocBook on FreeBSD

On FreeBSD systems, the easiest way to get DocBook up and running is to install it from the ports tree
or a pre-compiled package (packages are available from your local FreeBSD mirror site).

To use the ports tree, do this:

$ cd /usr/ports/textproc/docproj
$ make install

This installs the FreeBSD documentation project tools, which includes everything needed to format the
GHC documentation.

8.2.3. Installing from binaries on Windows

Probably the fastest route to a working DocBook environment on Windows is to install Cygwin
[http://www.cygwin.com/] with the complete Doc category. If you are using MinGW
[http://www.mingw.org/] for compilation, you have to help configure a little bit: Set the environment
variables XmllintCmd and XsltprocCmd to the paths of the Cygwin executables xmllint and xslt-
proc, respectively, and set fp_cv_dir_docbook_xsl to the path of the directory where the XSL
stylesheets are installed, e.g. c:/cygwin/usr/share/docbook-xsl.

If you want to build HTML Help, you have to install the HTML Help SDK
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/hworiHTMLHelpStartP
age.asp], too, and make sure that hhc is in your PATH.

8.3. Configuring the DocBook tools
Once the DocBook tools are installed, the configure script will detect them and set up the build system
accordingly. If you have a system that isn't supported, let us know, and we'll try to help.

8.4. Building the documentation
To build documentation in a certain format, you can say, for example,

$ make html

Building and developing GHC

23

http://rpmfind.net/
http://www.cygwin.com/
http://www.mingw.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/hworiHTMLHelpStartPage.asp

to build HTML documentation below the current directory. The available formats are: dvi, ps, pdf,
html, and rtf. Note that not all documentation can be built in all of these formats: HTML documenta-
tion is generally supported everywhere, and DocBook documentation might support the other formats
(depending on what other tools you have installed).

All of these targets are recursive; that is, saying make html will make HTML docs for all the docu-
ments recursively below the current directory.

Because there are many different formats that the DocBook documentation can be generated in, you
have to select which ones you want by setting the XMLDocWays variable to a list of them. For example,
in build.mk you might have a line:

XMLDocWays = html ps

This will cause the documentation to be built in the requested formats as part of the main build (the de-
fault is not to build any documentation at all).

8.5. Installing the documentation
To install the documentation, use:

$ make install-docs

This will install the documentation into $(datadir) (which defaults to $(prefix)/share). The
exception is HTML documentation, which goes into $(datadir)/html, to keep things tidy.

Note that unless you set $(XMLDocWays) to a list of formats, the install-docs target won't do
anything for DocBook XML documentation.

9. Porting GHC
This section describes how to port GHC to a currenly unsupported platform. To avoid confusion, when
we say “architecture” we are referring to the processor, and we use the term “platform” to refer to the
combination of architecture and operating system.

There are two distinct porting scenarios:

• Your platform is already supported, but you want to compile up GHC using just a C compiler. This
is a straightforward bootstrap from HC files, and is described in Section 9.1, “Booting/porting from
C (.hc) files”.

• Your platform isn't supported by GHC. You will need to do an unregisterised bootstrap, proceed to
Section 9.2, “Porting GHC to a new platform”.

9.1. Booting/porting from C (.hc) files
Bootstrapping GHC on a system without GHC already installed is achieved by taking the intermediate C
files (known as HC files) from another GHC compilation, compiling them using gcc to get a working
GHC.

NOTE: GHC versions 5.xx were hard to bootstrap from C. We recommend using GHC 6.0.1 or later.

HC files are platform-dependent, so you have to get a set that were generated on the same platform.

Building and developing GHC

24

There may be some supplied on the GHC download page, otherwise you'll have to compile some up
yourself.

The following steps should result in a working GHC build with full libraries:

• Make a set of HC files. On an identical system with GHC already installed, get a GHC source tree
and put the following in mk/build.mk:

SRC_HC_OPTS = -H32m -O -fasm -Rghc-timing -keep-hc-files
GhcLibHcOpts = -O
GhcLibWays =
SplitObjs = NO

Build GHC as normal, and then make hc-file-bundle Project=ghc to creates the tar file
containing the hc files.

• On the target system, unpack the HC files on top of a fresh source tree (make sure the source tree
version matches the version of the HC files exactly!). This will place matching .hc files next to the
corresponding Haskell source (.hs or .lhs) in the compiler subdirectory ghc/compiler and in
the libraries (subdirectories of libraries).

• The actual build process is fully automated by the hc-build script located in the distrib direct-
ory. If you eventually want to install GHC into the directory dir, the following command will ex-
ecute the whole build process (it won't install yet):

$ distrib/hc-build --prefix=dir

By default, the installation directory is /usr/local. If that is what you want, you may omit the ar-
gument to hc-build. Generally, any option given to hc-build is passed through to the configur-
ation script configure. If hc-build successfully completes the build process, you can install
the resulting system, as normal, with

$ make install

9.2. Porting GHC to a new platform
The first step in porting to a new platform is to get an unregisterised build working. An unregisterised
build is one that compiles via vanilla C only. By contrast, a registerised build uses the following archi-
tecture-specific hacks for speed:

• Global register variables: certain abstract machine “registers” are mapped to real machine registers,
depending on how many machine registers are available (see ghc/includes/MachRegs.h).

• Assembly-mangling: when compiling via C, we feed the assembly generated by gcc though a Perl
script known as the mangler (see ghc/driver/mangler/ghc-asm.lprl). The mangler re-
arranges the assembly to support tail-calls and various other optimisations.

In an unregisterised build, neither of these hacks are used — the idea is that the C code generated by the
compiler should compile using gcc only. The lack of these optimisations costs about a factor of two in
performance, but since unregisterised compilation is usually just a step on the way to a full registerised
port, we don't mind too much.

Building and developing GHC

25

You should go through this process even if your architecture is already has registerised support in GHC,
but your OS currently isn't supported. In this case you probably won't need to port any of the architec-
ture-specific parts of the code, and you can proceed straight from the unregisterised build to build a re-
gisterised compiler.

Notes on GHC portability in general: we've tried to stick to writing portable code in most parts of the
system, so it should compile on any POSIXish system with gcc, but in our experience most systems dif-
fer from the standards in one way or another. Deal with any problems as they arise - if you get stuck, ask
the experts on <glasgow-haskell-users@haskell.org>.

Lots of useful information about the innards of GHC is available in the GHC Commentary
[http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/], which might be helpful if you run into some
code which needs tweaking for your system.

9.2.1. Cross-compiling to produce an unregisterised GHC

NOTE! These instructions apply to GHC 6.4 and (hopefully) later. If you need instructions for an earlier
version of GHC, try to get hold of the version of this document that was current at the time. It should be
available from the appropriate download page on the GHC homepage [http://www.haskell.org/ghc/].

In this section, we explain how to bootstrap GHC on a new platform, using unregisterised intermediate
C files. We haven't put a great deal of effort into automating this process, for two reasons: it is done very
rarely, and the process usually requires human intervention to cope with minor porting issues anyway.

The following step-by-step instructions should result in a fully working, albeit unregisterised, GHC.
Firstly, you need a machine that already has a working GHC (we'll call this the host machine), in order
to cross-compile the intermediate C files that we will use to bootstrap the compiler on the target ma-
chine.

• On the target machine:

• Unpack a source tree (preferably a released version). We will call the path to the root of this tree
T.

•
$ cd T
$./configure --enable-hc-boot --enable-hc-boot-unregisterised

You might need to update configure.in to recognise the new platform, and re-generate
configure with autoreconf.

•
$ cd T/ghc/includes
$ make

• On the host machine:

• Unpack a source tree (same released version). Call this directory H.

•
$ cd H
$./configure

• Create H/mk/build.mk, with the following contents:

GhcUnregisterised = YES

Building and developing GHC

26

http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/
http://www.haskell.org/ghc/

GhcLibHcOpts = -O -fvia-C -keep-hc-files
GhcRtsHcOpts = -keep-hc-files
GhcLibWays =
SplitObjs = NO
GhcWithNativeCodeGen = NO
GhcWithInterpreter = NO
GhcStage1HcOpts = -O
GhcStage2HcOpts = -O -fvia-C -keep-hc-files
SRC_HC_OPTS += -H32m
GhcBootLibs = YES

• Edit H/mk/config.mk:

• change TARGETPLATFORM appropriately, and set the variables involving TARGET or Tar-
get to the correct values for the target platform. This step is necessary because currently
configure doesn't cope with specifying different values for the --host and --target
flags.

• copy LeadingUnderscore setting from target.

• Copy T/ghc/includes/ghcautoconf.h, T/
ghc/includes/DerivedConstants.h, and T/ghc/includes/GHCConstants.h
to H/ghc/includes. Note that we are building on the host machine, using the target ma-
chine's configuration files. This is so that the intermediate C files generated here will be suitable
for compiling on the target system.

• Touch the generated configuration files, just to make sure they don't get replaced during the
build:

$ cd H/ghc/includes
$ touch ghcautoconf.h DerivedConstants.h GHCConstants.h mkDerivedConstants.c
$ touch mkDerivedConstantsHdr mkDerivedConstants.o mkGHCConstants mkGHCConstants.o

Note: it has been reported that these files still get overwritten during the next stage. We have in-
stalled a fix for this in GHC 6.4.2, but if you are building a version before that you need to watch
out for these files getting overwritte by the Makefile in ghc/includes. If your system sup-
ports it, you might be able to prevent it by making them immutable:

$ chflags uchg ghc/includes/{ghcautoconf.h,DerivedConstants.h,GHCConstants.h}

• Now build the compiler:

$ cd H/glafp-utils && make boot && make
$ cd H/ghc && make boot && make

Don't worry if the build falls over in the RTS, we don't need the RTS yet.

•
$ cd H/libraries
$ make boot && make

•
$ cd H/ghc/compiler
$ make boot stage=2 && make stage=2

Building and developing GHC

27

•
$ cd H/compat
$ make clean
$ rm .depend
$ make boot UseStage1=YES EXTRA_HC_OPTS='-O -fvia-C -keep-hc-files'
$ cd H/utils
$ make clean
$ make -k UseStage1=YES EXTRA_HC_OPTS='-O -fvia-C -keep-hc-files'

•
$ cd H
$ make hc-file-bundle Project=Ghc

• copy H/*-hc.tar.gz to T/...

• On the target machine:

At this stage we simply need to bootstrap a compiler from the intermediate C files we generated
above. The process of bootstrapping from C files is automated by the script in distrib/
hc-build, and is described in Section 9.1, “Booting/porting from C (.hc) files”.

$./distrib/hc-build --enable-hc-boot-unregisterised

However, since this is a bootstrap on a new machine, the automated process might not run to com-
pletion the first time. For that reason, you might want to treat the hc-build script as a list of in-
structions to follow, rather than as a fully automated script. This way you'll be able to restart the pro-
cess part-way through if you need to fix anything on the way.

Don't bother with running make install in the newly bootstrapped tree; just use the compiler in
that tree to build a fresh compiler from scratch, this time without booting from C files. Before doing
this, you might want to check that the bootstrapped compiler is generating working binaries:

$ cat >hello.hs
main = putStrLn "Hello World!\n"
^D
$ T/ghc/compiler/ghc-inplace hello.hs -o hello
$./hello
Hello World!

Once you have the unregisterised compiler up and running, you can use it to start a registerised port.
The following sections describe the various parts of the system that will need architecture-specific
tweaks in order to get a registerised build going.

9.2.2. Porting the RTS

The following files need architecture-specific code for a registerised build:

ghc/includes/MachRegs.h Defines the STG-register to machine-register mapping. You need
to know your platform's C calling convention, and which registers
are generally available for mapping to global register variables.
There are plenty of useful comments in this file.

ghc/includes/TailCalls.h Macros that cooperate with the mangler (see Section 9.2.3, “The
mangler”) to make proper tail-calls work.

Building and developing GHC

28

ghc/rts/Adjustor.c Support for foreign import "wrapper" (aka for-
eign export dynamic). Not essential for getting GHC boot-
strapped, so this file can be deferred until later if necessary.

ghc/rts/StgCRun.c The little assembly layer between the C world and the Haskell
world. See the comments and code for the other architectures in
this file for pointers.

ghc/rts/MBlock.h , ghc/
rts/MBlock.c

These files are really OS-specific rather than architecture-specific.
In MBlock.h is specified the absolute location at which the RTS
should try to allocate memory on your platform (try to find an
area which doesn't conflict with code or dynamic libraries). In
Mblock.c you might need to tweak the call to mmap() for your
OS.

9.2.3. The mangler

The mangler is an evil Perl-script (ghc/driver/mangler/ghc-asm.lprl) that rearranges the as-
sembly code output from gcc to do two main things:

• Remove function prologues and epilogues, and all movement of the C stack pointer. This is to sup-
port tail-calls: every code block in Haskell code ends in an explicit jump, so we don't want the C-
stack overflowing while we're jumping around between code blocks.

• Move the info table for a closure next to the entry code for that closure. In unregisterised code, info
tables contain a pointer to the entry code, but in registerised compilation we arrange that the info ta-
ble is shoved right up against the entry code, and addressed backwards from the entry code pointer
(this saves a word in the info table and an extra indirection when jumping to the closure entry code).

The mangler is abstracted to a certain extent over some architecture-specific things such as the particular
assembler directives used to herald symbols. Take a look at the definitions for other architectures and
use these as a starting point.

9.2.4. The splitter

The splitter is another evil Perl script (ghc/driver/split/ghc-split.lprl). It cooperates
with the mangler to support object splitting. Object splitting is what happens when the -split-objs
option is passed to GHC: the object file is split into many smaller objects. This feature is used when
building libraries, so that a program statically linked against the library will pull in less of the library.

The splitter has some platform-specific stuff; take a look and tweak it for your system.

9.2.5. The native code generator

The native code generator isn't essential to getting a registerised build going, but it's a desirable thing to
have because it can cut compilation times in half. The native code generator is described in some detail
in the GHC commentary [http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/].

9.2.6. GHCi

To support GHCi, you need to port the dynamic linker ($(GHC_TOP)/rts/Linker.c). The linker
currently supports the ELF and PEi386 object file formats - if your platform uses one of these then
things will be significantly easier. The majority of Unix platforms use the ELF format these days. Even
so, there are some machine-specific parts of the ELF linker: for example, the code for resolving particu-

Building and developing GHC

29

http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/

lar relocation types is machine-specific, so some porting of this code to your architecture and/or OS will
probaly be necessary.

If your system uses a different object file format, then you have to write a linker — good luck!

10. Known pitfalls in building Glasgow Haskell
WARNINGS about pitfalls and known “problems”:

1. One difficulty that comes up from time to time is running out of space in TMPDIR. (It is impossible
for the configuration stuff to compensate for the vagaries of different sysadmin approaches to temp
space.) The quickest way around it is setenv TMPDIR /usr/tmp or even setenv TMPDIR . (or the
equivalent incantation with your shell of choice). The best way around it is to say

export TMPDIR=<dir>

in your build.mk file. Then GHC and the other tools will use the appropriate directory in all
cases.

2. In compiling some support-code bits, e.g., in ghc/rts/gmp and even in ghc/lib, you may get
a few C-compiler warnings. We think these are OK.

3. When compiling via C, you'll sometimes get “warning: assignment from incompatible pointer type”
out of GCC. Harmless.

4. Similarly, archiving warning messages like the following are not a problem:

ar: filename GlaIOMonad__1_2s.o truncated to GlaIOMonad_
ar: filename GlaIOMonad__2_2s.o truncated to GlaIOMonad_
...

5. In compiling the compiler proper (in compiler/), you may get an “Out of heap space” error mes-
sage. These can vary with the vagaries of different systems, it seems. The solution is simple:

• If you're compiling with GHC 4.00 or later, then the maximum heap size must have been
reached. This is somewhat unlikely, since the maximum is set to 64M by default. Anyway, you
can raise it with the -optCrts-M<size> flag (add this flag to <module>_HC_OPTS make
variable in the appropriate Makefile).

• For GHC < 4.00, add a suitable -H flag to the Makefile, as above.
and try again: make. (see Section 7.6, “Pattern rules and options” for information about
<module>_HC_OPTS.) Alternatively, just cut to the chase:

$ cd ghc/compiler
$ make EXTRA_HC_OPTS=-optCrts-M128M

6. If you try to compile some Haskell, and you get errors from GCC about lots of things from /
usr/include/math.h, then your GCC was mis-installed. fixincludes wasn't run when it
should've been. As fixincludes is now automagically run as part of GCC installation, this bug also
suggests that you have an old GCC.

7. You may need to re-ranlib your libraries (on Sun4s).

$ cd $(libdir)/ghc-x.xx/sparc-sun-sunos4
$ foreach i (`find . -name '*.a' -print`) # or other-shell equiv...
? ranlib $i

Building and developing GHC

30

? # or, on some machines: ar s $i
? end

We'd be interested to know if this is still necessary.

8. GHC's sources go through cpp before being compiled, and cpp varies a bit from one Unix to anoth-
er. One particular gotcha is macro calls like this:

SLIT("Hello, world")

Some cpps treat the comma inside the string as separating two macro arguments, so you get

:731: macro `SLIT' used with too many (2) args

Alas, cpp doesn't tell you the offending file! Workaround: don't put weird things in string args to
cpp macros.

11. Platforms, scripts, and file names
GHC is designed both to be built, and to run, on both Unix and Windows. This flexibility gives rise to a
good deal of brain-bending detail, which we have tried to collect in this chapter.

11.1. Windows platforms: Cygwin, MSYS, and MinGW
The build system is built around Unix-y makefiles. Because it's not native, the Windows situation for
building GHC is particularly confusing. This section tries to clarify, and to establish terminology.

11.1.1. MinGW

MinGW (Minimalist GNU for Windows) [http://www.mingw.org] is a collection of header files and im-
port libraries that allow one to use gcc and produce native Win32 programs that do not rely on any third-
party DLLs. The current set of tools include GNU Compiler Collection (gcc), GNU Binary Utilities
(Binutils), GNU debugger (Gdb), GNU make, and a assorted other utilities.

The down-side of MinGW is that the MinGW libraries do not support anything like the full Posix inter-
face.

11.1.2. Cygwin and MSYS

You can't use the MinGW to build GHC, because MinGW doesn't have a shell, or the standard Unix
commands such as mv, rm, ls, nor build-system stuff such as make and darcs. For that, there are two
choices: Cygwin [http://www.cygwin.com] and MSYS [http://www.mingw.org/msys.shtml]:

• Cygwin comes with compilation tools (gcc, ld and so on), which compile code that has access to all
of Posix. The price is that the executables must be dynamically linked with the Cygwin DLL, so that
you cannot run a Cywin-compiled program on a machine that doesn't have Cygwin. Worse, Cygwin
is a moving target. The name of the main DLL, cygwin1.dll does not change, but the imple-
mentation certainly does. Even the interfaces to functions it exports seem to change occasionally.

• MSYS is a fork of the Cygwin tree, so they are fundamentally similar. However, MSYS is by design
much smaller and simpler. Access to the file system goes through fewer layers, so MSYS is quite a
bit faster too.

Furthermore, MSYS provides no compilation tools; it relies instead on the MinGW tools. These

Building and developing GHC

31

http://www.mingw.org
http://www.cygwin.com
http://www.mingw.org/msys.shtml

compile binaries that run with no DLL support, on any Win32 system. However, MSYS does come
with all the make-system tools, such as make, autoconf, darcs, ssh etc. To get these, you have to
download the MsysDTK (Developer Tool Kit) package, as well as the base MSYS package.

MSYS does have a DLL, but it's only used by MSYS commands (sh, rm, ssh and so on), not by pro-
grams compiled under MSYS.

11.1.3. Targeting MinGW

We want GHC to compile programs that work on any Win32 system. Hence:

• GHC does invoke a C compiler, assembler, linker and so on, but we ensure that it only invokes the
MinGW tools, not the Cygwin ones. That means that the programs GHC compiles will work on any
system, but it also means that the programs GHC compiles do not have access to all of Posix. In par-
ticular, they cannot import the (Haskell) Posix library; they have to do their input output using stand-
ard Haskell I/O libraries, or native Win32 bindings.

We will call a GHC that targets MinGW in this way GHC-mingw.

• To make the GHC distribution self-contained, the GHC distribution includes the MinGW gcc, as, ld,
and a bunch of input/output libraries.

So GHC targets MinGW, not Cygwin. It is in principle possible to build a version of GHC,
GHC-cygwin, that targets Cygwin instead. The up-side of GHC-cygwin is that Haskell programs com-
piled by GHC-cygwin can import the (Haskell) Posix library. We do not support GHC-cygwin, however;
it is beyond our resources.

While GHC targets MinGW, that says nothing about how GHC is built. We use both MSYS and Cyg-
win as build environments for GHC; both work fine, though MSYS is rather lighter weight.

In your build tree, you build a compiler called ghc-inplace. It uses the gcc that you specify using the -
-with-gcc flag when you run configure (see below). The makefiles are careful to use ghc-inplace
(not gcc) to compile any C files, so that it will in turn invoke the correct gcc rather that whatever one
happens to be in your path. However, the makefiles do use whatever ld and ar happen to be in your
path. This is a bit naughty, but (a) they are only used to glom together .o files into a bigger .o file, or a .a
file, so they don't ever get libraries (which would be bogus; they might be the wrong libraries), and (b)
Cygwin and MinGW use the same .o file format. So its ok.

11.1.4. File names

Cygwin, MSYS, and the underlying Windows file system all understand file paths of form
c:/tmp/foo. However:

• MSYS programs understand /bin, /usr/bin, and map Windows's lettered drives as /
c/tmp/foo etc. The exact mount table is given in the doc subdirectory of the MSYS distribution.

When it invokes a command, the MSYS shell sees whether the invoked binary lives in the MSYS /
bin directory. If so, it just invokes it. If not, it assumes the program is no an MSYS program, and
walks over the command-line arguments changing MSYS paths into native-compatible paths. It does
this inside sub-arguments and inside quotes. For example, if you invoke

foogle -B/c/tmp/baz

the MSYS shell will actually call foogle with argument -Bc:/tmp/baz.

Building and developing GHC

32

• Cygwin programs have a more complicated mount table, and map the lettered drives as /
cygdrive/c/tmp/foo.

The Cygwin shell does no argument processing when invoking non-Cygwin programs.

11.1.5. Crippled ld

It turns out that on both Cygwin and MSYS, the ld has a limit of 32kbytes on its command line. Espe-
cially when using split object files, the make system can emit calls to ld with thousands of files on it.
Then you may see something like this:

(cd Graphics/Rendering/OpenGL/GL/QueryUtils_split && /mingw/bin/ld -r -x -o ../QueryUtils.o *.o)
/bin/sh: /mingw/bin/ld: Invalid argument

The solution is either to switch off object file splitting (set SplitObjs to NO in your build.mk), or
to make the module smaller.

11.1.6. Host System vs Target System

In the source code you'll find various ifdefs looking like:

#ifdef mingw32_HOST_OS
...blah blah...

#endif

and

#ifdef mingw32_TARGET_OS
...blah blah...

#endif

These macros are set by the configure script (via the file config.h). Which is which? The criterion is this.
In the ifdefs in GHC's source code:

• The "host" system is the one on which GHC itself will be run.

• The "target" system is the one for which the program compiled by GHC will be run.

For a stage-2 compiler, in which GHCi is available, the "host" and "target" systems must be the same.
So then it doesn't really matter whether you use the HOST_OS or TARGET_OS cpp macros.

11.2. Wrapper scripts
Many programs, including GHC itself and hsc2hs, need to find associated binaries and libraries. For in-
stalled programs, the strategy depends on the platform. We'll use GHC itself as an example:

• On Unix, the command ghc is a shell script, generated by adding installation paths to the front of the
source file ghc.sh, that invokes the real binary, passing "-Bpath" as an argument to tell ghc where
to find its supporting files.

• On vanilla Windows, it turns out to be much harder to make reliable script to be run by the native
Windows shell cmd (e.g. limits on the length of the command line). So instead we invoke the GHC
binary directly, with no -B flag. GHC uses the Windows getExecDir function to find where the
executable is, and from that figures out where the supporting files are.

Building and developing GHC

33

(You can find the layout of GHC's supporting files in the section "Layout of installed files" of Section 2
of the GHC user guide.)

Things work differently for in-place execution, where you want to execute a program that has just been
built in a build tree. The difference is that the layout of the supporting files is different. In this case,
whether on Windows or Unix, we always use a shell script. This works OK on Windows because the
script is executed by MSYS or Cygwin, which don't have the shortcomings of the native Windows cmd
shell.

12. Instructions for building under Windows
This section gives detailed instructions for how to build GHC from source on your Windows machine.
Similar instructions for installing and running GHC may be found in the user guide. In general,
Win95/Win98 behave the same, and WinNT/Win2k behave the same.

Make sure you read the preceding section on platforms (Section 11, “Platforms, scripts, and file names”)
before reading section. You don't need Cygwin or MSYS to use GHC, but you do need one or the other
to build GHC.

12.1. Installing and configuring MSYS
MSYS is a lightweight alternative to Cygwin. You don't need MSYS to use GHC, but you do need it or
Cygwin to build GHC. Here's how to install MSYS.

• Go to http://www.mingw.org/download.shtml and download the following (of course, the version
numbers will differ):

• The main MSYS package (binary is sufficient): MSYS-1.0.9.exe

• The MSYS developer's toolkit (binary is sufficient): msysDTK-1.0.1.exe. This provides
make, autoconf, ssh and probably more besides.

Run both executables (in the order given above) to install them. I put them in c:/msys

• Set the following environment variables

• PATH: add c:/msys/1.0/bin and c:/msys/1.0/local/bin to your path. (Of course,
the version number may differ.) MSYS mounts the former as both /bin and /usr/bin and
the latter as /usr/local/bin.

• HOME: set to your home directory (e.g. c:/userid). This is where, among other things, ssh
will look for your .ssh directory.

• SHELL: set to c:/msys/1.0/bin/sh.exe

• CVS_RSH: set to c:/msys/1.0/bin/ssh.exe. Only necessary if you are using CVS.

• MAKE_MODE: set to UNIX. (I'm not certain this is necessary for MSYS.)

• Check that the CYGWIN environment variable is not set. It's a bad bug that MSYS is affected by this,
but if you have CYGWIN set to "ntsec ntea", which is right for Cygwin, it causes the MSYS ssh to
bogusly fail complaining that your .ssh/identity file has too-liberal permissinos.

Here are some points to bear in mind when using MSYS:

• MSYS does some kind of special magic to binaries stored in /bin and /usr/bin, which are by

Building and developing GHC

34

http://www.mingw.org/download.shtml

default both mapped to c:/msys/1.0/bin (assuming you installed MSYS in c:/msys). Do not
put any other binaries (such as GHC or Alex) in this directory or its sub-directories: they fail in mys-
terious ways. However, it's fine to put other binaries in /usr/local/bin, which maps to
c:/msys/1.0/local/bin.

• MSYS seems to implement symbolic links by copying, so sharing is lost.

• Win32 has a find command which is not the same as MSYS's find. You will probably discover that
the Win32 find appears in your PATH before the MSYS one, because it's in the system PATH envir-
onment variable, whereas you have probably modified the user PATH variable. You can always in-
voke find with an absolute path, or rename it.

• MSYS comes with bzip, and MSYS's tar's -j will bunzip an archive (e.g. tar xvjf
foo.tar.bz2). Useful when you get a bzip'd dump.

12.2. Installing and configuring Cygwin
Install Cygwin from http://www.cygwin.com/. The installation process is straightforward; we install it in
c:/cygwin.

You must install enough Cygwin packages to support building GHC. If you miss out any of these,
strange things will happen to you. There are two ways to do this:

• The direct, but laborious way is to select all of the following packages in the installation dialogue:
cvs, openssh, autoconf, binutils (includes ld and (I think) ar), gcc, flex, make. To see thse pack-
ages, click on the "View" button in the "Select Packages" stage of Cygwin's installation dialogue,
until the view says "Full". The default view, which is "Category" isn't very helpful, and the "View"
button is rather unobtrousive.

• The clever way is to point the Cygwin installer at the ghc-depends package, which is kept at ht-
tp://haskell.org/ghc/cygwin. When the Cygwin installer asks you to "Choose a Download Site",
choose one of the offered mirror sites; and then type "http://haskell.org/ghc/cygwin" into the "User
URL" box and click "Add"; now two sites are selected. (The Cygwin installer remembers this for
next time.) Click "Next".

In the "Select Packages" dialogue box that follows, click the "+" sign by "Devel", scroll down to the
end of the "Devel" packages, and choose ghc-depends. The package ghc-depends will not actually
install anything itself, but forces additional packages to be added by the Cygwin installer.

Now set the following user environment variables:

• Add c:/cygwin/bin and c:/cygwin/usr/bin to your PATH

• Set MAKE_MODE to UNIX. If you don't do this you get very weird messages when you type make,
such as:

/c: /c: No such file or directory

• Set SHELL to c:/cygwin/bin/bash. When you invoke a shell in Emacs, this SHELL is what
you get.

• Set HOME to point to your home directory. This is where, for example, bash will look for your
.bashrc file. Ditto emacs looking for .emacsrc

Building and developing GHC

35

http://www.cygwin.com/
http://haskell.org/ghc/cygwin
http://haskell.org/ghc/cygwin

Here are some things to be aware of when using Cygwin:

• Cygwin doesn't deal well with filenames that include spaces. "Program Files" and "Local
files" are common gotchas.

• Cygwin implements a symbolic link as a text file with some magical text in it. So other programs
that don't use Cygwin's I/O libraries won't recognise such files as symlinks. In particular, programs
compiled by GHC are meant to be runnable without having Cygwin, so they don't use the Cygwin
library, so they don't recognise symlinks.

• See the notes in Section 12.1, “Installing and configuring MSYS” about find and bzip, which apply
to Cygwin too.

• Some script files used in the make system start with "#!/bin/perl", (and similarly for sh). Notice the
hardwired path! So you need to ensure that your /bin directory has at least sh, perl, and cat in it.
All these come in Cygwin's bin directory, which you probably have installed as
c:/cygwin/bin. By default Cygwin mounts "/" as c:/cygwin, so if you just take the defaults
it'll all work ok. (You can discover where your Cygwin root directory / is by typing mount.)
Provided /bin points to the Cygwin bin directory, there's no need to copy anything. If not, copy
these binaries from the cygwin/bin directory (after fixing the sh.exe stuff mentioned in the
previous bullet).

• By default, cygwin provides the command shell ash as sh.exe. It seems to be fine now, but in the
past we saw build-system problems that turned out to be due to bugs in ash (to do with quoting and
length of command lines). On the other hand bash seems to be rock solid. If this happens to you
(which it shouldn't), in cygwin/bin remove the supplied sh.exe (or rename it as ash.exe),
and copy bash.exe to sh.exe. You'll need to do this in Windows Explorer or the Windows cmd
shell, because you can't rename a running program!

12.3. Configuring SSH
ssh comes with both Cygwin and MSYS. (Cygwin note: you need to ask for package openssh (not ssh)
in the Cygwin list of packages; or use the ghc-depends package -- see Section 12.2, “Installing and con-
figuring Cygwin”.)

There are several strange things about ssh on Windows that you need to know.

• The programs ssh-keygen1, ssh1, and cvs, seem to lock up bash entirely if they try to get user input
(e.g. if they ask for a password). To solve this, start up cmd.exe and run it as follows:

c:\tmp> set CYGWIN32=tty
c:\tmp> c:/user/local/bin/ssh-keygen1

• (Cygwin-only problem, I think.) ssh needs to access your directory .ssh, in your home directory.
To determine your home directory ssh first looks in c:/cygwin/etc/passwd (or wherever you
have Cygwin installed). If there's an entry there with your userid, it'll use that entry to determine
your home directory, ignoring the setting of the environment variable $HOME. If the home directory
is bogus, ssh fails horribly. The best way to see what is going on is to say

ssh -v cvs.haskell.org

which makes ssh print out information about its activity.

You can fix this problem, either by correcting the home-directory field in
c:/cygwin/etc/passwd, or by simply deleting the entire entry for your userid. If you do that,

Building and developing GHC

36

ssh uses the $HOME environment variable instead.

• To protect your .ssh from access by anyone else, right-click your .ssh directory, and select
Properties. If you are not on the access control list, add yourself, and give yourself full permis-
sions (the second panel). Remove everyone else from the access control list. Don't leave them there
but deny them access, because 'they' may be a list that includes you!

• In fact ssh 3.6.1 now seems to require you to have Unix permissions 600 (read/write for owner only)
on the .ssh/identity file, else it bombs out. For your local C drive, it seems that chmod 600
identity works, but on Windows NT/XP, it doesn't work on a network drive (exact dteails ob-
scure). The solution seems to be to set the $CYGWIN environment variable to "ntsec neta".
The $CYGWIN environment variable is discussed in the Cygwin User's Guide
[http://cygwin.com/cygwin-ug-net/using-cygwinenv.html], and there are more details in the Cygwin
FAQ [http://cygwin.com/faq/faq_4.html#SEC44].

12.4. Other things you need to install
You have to install the following other things to build GHC, listed below.

On Windows you often install executables in directories with spaces, such as "Program Files".
However, the make system doesn't deal with this situation (it'd have to do more quoting of binaries), so
you are strongly advised to put binaries for all tools in places with no spaces in their path. On both
MSYS and Cygwin, it's perfectly OK to install such programs in the standard Unixy places, /
usr/local/bin and /usr/local/lib. But it doesn't matter, provided they are in your path.

• Install an executable GHC, from http://www.haskell.org/ghc. This is what you will use to compile
GHC. Add it in your PATH: the installer tells you the path element you need to add upon comple-
tion.

• Install an executable Happy, from http://www.haskell.org/happy. Happy is a parser generator used to
compile the Haskell grammar. Under MSYS or Cygwin you can easily build it from the source dis-
tribution using

$./configure
$ make
$ make install

This should install it in /usr/local/bin (which maps to c:/msys/1.0/local/bin on
MSYS). Make sure the installation directory is in your PATH.

• Install an executable Alex. This can be done by building from the source distribution in the same
way as Happy. Sources are available from http://www.haskell.org/alex.

• GHC uses the mingw C compiler to generate code, so you have to install that (see Section 11.1,
“Windows platforms: Cygwin, MSYS, and MinGW”). Just pick up a mingw bundle at ht-
tp://www.mingw.org/. We install it in c:/mingw.

On MSYS, add c:/mingw/bin to your PATH. MSYS does not provide gcc, ld, ar, and so on, be-
cause it just uses the MinGW ones. So you need them in your path.

On Cygwin, do not add any of the mingw binaries to your path. They are only going to get used by
explicit access (via the --with-gcc flag you give to configure later). If you do add them to your path
you are likely to get into a mess because their names overlap with Cygwin binaries. On the other
hand, you do need ld, ar (and perhaps one or two other things) in your path. The Cygwin ones are
fine, but you must have them; hence needing the Cygwin binutils package.

Building and developing GHC

37

http://cygwin.com/cygwin-ug-net/using-cygwinenv.html
http://cygwin.com/faq/faq_4.html#SEC44
http://cygwin.com/faq/faq_4.html#SEC44
http://www.haskell.org/ghc
http://www.haskell.org/happy
http://www.haskell.org/alex
http://www.mingw.org/
http://www.mingw.org/

• We use emacs a lot, so we install that too. When you are in $(GHC_TOP)/compiler, you can
use "make tags" to make a TAGS file for emacs. That uses the utility
$(GHC_TOP)/ghc/utils/hasktags/hasktags, so you need to make that first. The most
convenient way to do this is by going make boot in $(GHC_TOP)/ghc. The make tags com-
mand also uses etags, which comes with emacs, so you will need to add emacs/bin to your
PATH.

• You might want to install GLUT in your MSYS/Cygwin installation, otherwise the GLUT package
will not be built with GHC.

• Finally, check out a copy of GHC sources from the darcs repository, following the instructions at ht-
tp://hackage.haskell.org/trac/ghc/wiki/GhcDarcs.

12.5. Building GHC
OK! Now go read the documentation above on building from source (Section 4, “Building from
source”); the bullets below only tell you about Windows-specific wrinkles.

• If you used autoconf instead of autoreconf, you'll get an error when you run ./configure:

...lots of stuff...
creating mk/config.h
mk/config.h is unchanged
configuring in ghc
running /bin/sh ./configure --cache-file=.././config.cache --srcdir=.
./configure: ./configure: No such file or directory
configure: error: ./configure failed for ghc

• autoreconf seems to create the file configure read-only. So if you need to run autoreconf again
(which I sometimes do for safety's sake), you get

/usr/bin/autoconf: cannot create configure: permission denied

Solution: delete configure first.

• After autoreconf run ./configure in $(GHC_TOP)/ thus:

$./configure --host=i386-unknown-mingw32 --with-gcc=c:/mingw/bin/gcc

This is the point at which you specify that you are building GHC-mingw (see Section 11.1.1,
“MinGW”).

Both these options are important! It's possible to get into trouble using the wrong C compiler!

Furthermore, it's very important that you specify a full MinGW path for gcc, not a Cygwin path, be-
cause GHC (which uses this path to invoke gcc) is a MinGW program and won't understand a Cyg-
win path. For example, if you say --with-gcc=/mingw/bin/gcc, it'll be interpreted as /
cygdrive/c/mingw/bin/gcc, and GHC will fail the first time it tries to invoke it. Worse, the
failure comes with no error message whatsoever. GHC simply fails silently when first invoked, typ-
ically leaving you with this:

make[4]: Leaving directory `/cygdrive/e/ghc-stage1/ghc/rts/gmp'
../../ghc/compiler/ghc-inplace -optc-mno-cygwin -optc-O
-optc-Wall -optc-W -optc-Wstrict-prototypes -optc-Wmissing-prototypes
-optc-Wmissing-declarations -optc-Winline -optc-Waggregate-return
-optc-Wbad-function-cast -optc-Wcast-align -optc-I../includes

Building and developing GHC

38

http://hackage.haskell.org/trac/ghc/wiki/GhcDarcs
http://hackage.haskell.org/trac/ghc/wiki/GhcDarcs

-optc-I. -optc-Iparallel -optc-DCOMPILING_RTS
-optc-fomit-frame-pointer -O2 -static
-package-name rts -O -dcore-lint -c Adjustor.c -o Adjustor.o

make[2]: *** [Adjustor.o] Error 1
make[1]: *** [all] Error 1
make[1]: Leaving directory `/cygdrive/e/ghc-stage1/ghc'
make: *** [all] Error 1

Be warned!

If you want to build GHC-cygwin (Section 11.1.2, “Cygwin and MSYS”) you'll have to do
something more like:

$./configure --with-gcc=...the Cygwin gcc...

• If you are paranoid, delete config.cache if it exists. This file occasionally remembers out-
of-date configuration information, which can be really confusing.

• You almost certainly want to set

SplitObjs = NO

in your build.mk configuration file (see Section 6.3, “Getting the build you want”). This tells the
build system not to split each library into a myriad of little object files, one for each function. Doing
so reduces binary sizes for statically-linked binaries, but on Windows it dramatically increases the
time taken to build the libraries in the first place.

• Do not attempt to build the documentation. It needs all kinds of wierd Jade stuff that we haven't
worked out for Win32.

12.6. A Windows build log using Cygwin
Here is a complete, from-scratch, log of all you need to build GHC using Cygwin, kindly provided by
Claus Reinke. It does not discuss alternative choices, but it gives a single path that works.

- Install some editor (vim, emacs, whatever)

- Install cygwin (http://www.cygwin.com)
; i used 1.5.16-1, installed in c:\cygwin

- run 'setup.exe'
Choose a Download Source:

select 'download from internet';
Select Root Install Directory:

root dir: c:\cygwin;
install for: all users;
default file type: unix

Select Local Package Directory
choose a spare temporary home

Select Your Internet Connection
Use IE5 settings

Choose a Download Site
Choose your preferred main mirror and
Add 'http://www.haskell.org/ghc/cygwin'

Select Packages
In addition to 'Base' (default install),
select 'Devel->ghc-depends'

- Install mingw (http://www.mingw.org/)

Building and developing GHC

39

; i used MinGW-3.1.0-1.exe
; installed in c:\mingw

- you probably want to add GLUT
; (http://www.xmission.com/~nate/glut.html)
; i used glut-3.7.3-mingw32.tar

- Get recent binary snapshot of ghc-6.4.1 for mingw
; (http://www.haskell.org/ghc/dist/stable/dist/)

- unpack in c:/ghc
- add C:\ghc\ghc-6.4.1\bin to %PATH%
(Start->Control Panel->System->Advanced->Environment Variables)

- Get darcs version of ghc
; also, subscribe to cvs-all@haskell.org, or follow the mailing list
; archive, in case you checkout a version with problems
; http://www.haskell.org//pipermail/cvs-all/

- mkdir c:/ghc-build; cd c:/ghc-build
; (or whereever you want your darcs tree to be)

- darcs get http://darcs.haskell.org/ghc
- cd ghc
- chmod +x darcs-all
- ./darcs-all get

- Build ghc, using cygwin and mingw, targetting mingw
- export PATH=/cygdrive/c/ghc/ghc-6.4.1:$PATH
; for haddock, alex, happy (*)

- export PATH=/cygdrive/c/mingw/bin:$PATH
; without, we pick up some cygwin tools at best!

- cd c:/ghc-build
; (if you aren't there already)

- autoreconf
- ./configure --host=i386-unknown-mingw32 --with-gcc=C:/Mingw/bin/gcc.exe
; we use cygwin, but build for windows

- cp mk/build.mk.sample mk/build.mk
- in mk/build.mk:
add line: SplitObjs = NO

(MSYS seems slow when there are zillions of object files)
uncomment line: BuildFlavour = perf

(or BuildFlavour = devel, if you are doing development)
add line: BIN_DIST=1

- make 2>&1 | tee make.log
; always useful to have a log around

- Package up binary distribution
- make binary-dist Project=Ghc 2>&1 | tee make-bin-dist.log
; always useful to have a log around

- cd ghc-6.5
- chmod +x ../distrib/prep-bin-dist-mingw
; if you're happy with the script's contents (*)

- ../distrib/prep-bin-dist-mingw
; then tar up, unpack where wanted, and enjoy

Index
Symbols

--hc-build, 25
--with-gcc, 9
--with-ghc, 9
--with-hc, 9

Building and developing GHC

40

A
Adjustor.c, 29
Alex, 4
ALL_DIRS, 17
autoconf, pre-supposed, 4
autoreconf, 8

B
bash, presupposed (Parallel Haskell only), 5
boilerplate architecture, 16
boilerplate.mk, 10, 15, 16, 17
booting GHC from .hc files, 24
bugs

known, 3
mailing list, 3
seporting, 3

build trees, 7
build.mk, 9
Building from source, 5
building GHC from .hc files, 24
building pitfalls, 30

C
config.h, 9
config.h.in, 9
config.mk, 8, 17
config.mk.in, 8
configure, 3
C_OBJS, 18
C_PROG, 21
C_SRCS, 17

D
darcs repository, 2
dependencies, omitting, 14
Disk space needed, 3
DocBook, pre-supposed, 22

E
EXCLUDED_SRCS, 17
EXTRA_CC_OPTS, 20
EXTRA_SRCS, 17

F
FAST, makefile variable, 14
fastmake, 14

G
GCC (GNU C compiler), pre-supposed, 4
GHC, pre-supposed, 3
GhcWithHc, 16
GHC_TOP, 7

H

Building and developing GHC

41

Haddock, 23
happy, 2
Happy, 4
HAPPY_SRCS, 18
HC_OPTS, 16, 18
HSC_SRCS, 18
HS_IFACES, 17
HS_OBJS, 17
HS_PROG, 15, 16, 20, 21
HS_SRCS, 17

I
include, directive in Makefiles, 15
install, 21

L
LIBRARY, 21
link trees, for building, 7
lndir, 7

M
MachRegs.h, 28
make

GNU, 4
makefile architecture, 14
Makefile inclusion, 15
makefile targets, 12
Makefile, minimal, 15
Makefile, recursing into subdirectories, 21
MBlock.c, 29
MBlock.h, 29
mkshadowdir, 7

N
NoFibSubDirs, 16

O
OBJS, 16, 18
opts.mk, 18

P
paths.mk, 17
Pattern rules, 19
Perl, pre-supposed, 3
pitfalls, in building, 30
platform, 8
Platform settings, 18
porting GHC, 24
pre-supposed utilities, 3
pre-supposed: autoconf, 4
pre-supposed: DocBook, 22
pre-supposed: GCC (GNU C compiler), 4
pre-supposed: GHC, 3
pre-supposed: Perl, 3
pre-supposed: PVM3 (Parallel Virtual Machine), 5
pre-supposed: sed, 5

Building and developing GHC

42

pre-supposed: TeX, 22
problems, building, 30
PVM, 3
PVM3 (Parallel Virtual Machine), pre-supposed, 5

R
ranlib, 30
recursion, in makefiles, 21

S
SCRIPT_OBJS, 18
SCRIPT_SRCS, 18
sed, pre-supposed, 5
Source distributions, 2
Source, building from, 5
SRCS, 17
SRC_CC_OPTS, 19
SRC_HC_OPTS, 16
StgCRun.c, 29
SUBDIRS, 21
suffix.mk, 18, 19

T
TailCalls.h, 28
target.mk, 15, 16, 20, 21
targets, standard makefile, 12
TeX, pre-supposed, 22
tmp, running out of space in, 30
TMPDIR, 30
TOP, 15

U
utilities, pre-supposed, 3

W
way management, 21

Building and developing GHC

43

	Building and developing GHC
	Table of Contents
	1. Getting the sources
	2. Things to check before you start
	3. Installing pre-supposed utilities
	3.1. Tools for building parallel GHC (GPH)

	4. Building from source
	5. Quick start for GHC developers
	6. Working with the build system
	6.1. History
	6.2. Build trees
	6.3. Getting the build you want
	6.4. The story so far
	6.5. Making things
	6.6. Bootstrapping GHC
	6.7. Standard Targets
	6.8. Using GHC from the build tree
	6.9. Fast Making

	7. The Makefile architecture
	7.1. Debugging
	7.2. A small example
	7.3. Boilerplate architecture
	7.4. The mk/boilerplate.mk file
	7.5. Platform settings
	7.6. Pattern rules and options
	7.7. The main mk/target.mk file
	7.8. Recursion
	7.9. Way management
	7.10. When the canned rule isn't right

	8. Building the documentation
	8.1. Tools for building the Documentation
	8.2. Installing the DocBook tools
	8.2.1. Installing the DocBook tools on Linux
	8.2.2. Installing DocBook on FreeBSD
	8.2.3. Installing from binaries on Windows

	8.3. Configuring the DocBook tools
	8.4. Building the documentation
	8.5. Installing the documentation

	9. Porting GHC
	9.1. Booting/porting from C (.hc) files
	9.2. Porting GHC to a new platform
	9.2.1. Cross-compiling to produce an unregisterised GHC
	9.2.2. Porting the RTS
	9.2.3. The mangler
	9.2.4. The splitter
	9.2.5. The native code generator
	9.2.6. GHCi

	10. Known pitfalls in building Glasgow Haskell
	11. Platforms, scripts, and file names
	11.1. Windows platforms: Cygwin, MSYS, and MinGW
	11.1.1. MinGW
	11.1.2. Cygwin and MSYS
	11.1.3. Targeting MinGW
	11.1.4. File names
	11.1.5. Crippled ld
	11.1.6. Host System vs Target System

	11.2. Wrapper scripts

	12. Instructions for building under Windows
	12.1. Installing and configuring MSYS
	12.2. Installing and configuring Cygwin
	12.3. Configuring SSH
	12.4. Other things you need to install
	12.5. Building GHC
	12.6. A Windows build log using Cygwin

	Index

