module BooleanFormula (
BooleanFormula(..),
mkFalse, mkTrue, mkAnd, mkOr, mkVar,
isFalse, isTrue,
eval, simplify, isUnsatisfied,
implies, impliesAtom,
pprBooleanFormula, pprBooleanFormulaNice
) where
import Data.List ( nub, intersperse )
import Data.Data
import Data.Foldable ( Foldable )
import Data.Traversable ( Traversable )
import MonadUtils
import Outputable
import Binary
data BooleanFormula a = Var a | And [BooleanFormula a] | Or [BooleanFormula a]
deriving (Eq, Data, Typeable, Functor, Foldable, Traversable)
mkVar :: a -> BooleanFormula a
mkVar = Var
mkFalse, mkTrue :: BooleanFormula a
mkFalse = Or []
mkTrue = And []
mkBool :: Bool -> BooleanFormula a
mkBool False = mkFalse
mkBool True = mkTrue
mkAnd :: Eq a => [BooleanFormula a] -> BooleanFormula a
mkAnd = maybe mkFalse (mkAnd' . nub) . concatMapM fromAnd
where
fromAnd :: BooleanFormula a -> Maybe [BooleanFormula a]
fromAnd (And xs) = Just xs
fromAnd (Or []) = Nothing
fromAnd x = Just [x]
mkAnd' [x] = x
mkAnd' xs = And xs
mkOr :: Eq a => [BooleanFormula a] -> BooleanFormula a
mkOr = maybe mkTrue (mkOr' . nub) . concatMapM fromOr
where
fromOr (Or xs) = Just xs
fromOr (And []) = Nothing
fromOr x = Just [x]
mkOr' [x] = x
mkOr' xs = Or xs
isFalse :: BooleanFormula a -> Bool
isFalse (Or []) = True
isFalse _ = False
isTrue :: BooleanFormula a -> Bool
isTrue (And []) = True
isTrue _ = False
eval :: (a -> Bool) -> BooleanFormula a -> Bool
eval f (Var x) = f x
eval f (And xs) = all (eval f) xs
eval f (Or xs) = any (eval f) xs
simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a
simplify f (Var a) = case f a of
Nothing -> Var a
Just b -> mkBool b
simplify f (And xs) = mkAnd (map (simplify f) xs)
simplify f (Or xs) = mkOr (map (simplify f) xs)
isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a)
isUnsatisfied f bf
| isTrue bf' = Nothing
| otherwise = Just bf'
where
f' x = if f x then Just True else Nothing
bf' = simplify f' bf
impliesAtom :: Eq a => BooleanFormula a -> a -> Bool
Var x `impliesAtom` y = x == y
And xs `impliesAtom` y = any (`impliesAtom` y) xs
Or xs `impliesAtom` y = all (`impliesAtom` y) xs
implies :: Eq a => BooleanFormula a -> BooleanFormula a -> Bool
x `implies` Var y = x `impliesAtom` y
x `implies` And ys = all (x `implies`) ys
x `implies` Or ys = any (x `implies`) ys
pprBooleanFormula' :: (Rational -> a -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula' pprVar pprAnd pprOr = go
where
go p (Var x) = pprVar p x
go p (And []) = cparen (p > 0) $ empty
go p (And xs) = pprAnd p (map (go 3) xs)
go _ (Or []) = keyword $ text "FALSE"
go p (Or xs) = pprOr p (map (go 2) xs)
pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula pprVar = pprBooleanFormula' pprVar pprAnd pprOr
where
pprAnd p = cparen (p > 3) . fsep . punctuate comma
pprOr p = cparen (p > 2) . fsep . intersperse (text "|")
pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc
pprBooleanFormulaNice = pprBooleanFormula' pprVar pprAnd pprOr 0
where
pprVar _ = quotes . ppr
pprAnd p = cparen (p > 1) . pprAnd'
pprAnd' [] = empty
pprAnd' [x,y] = x <+> text "and" <+> y
pprAnd' xs@(_:_) = fsep (punctuate comma (init xs)) <> text ", and" <+> last xs
pprOr p xs = cparen (p > 1) $ text "either" <+> sep (intersperse (text "or") xs)
instance Outputable a => Outputable (BooleanFormula a) where
pprPrec = pprBooleanFormula pprPrec
instance Binary a => Binary (BooleanFormula a) where
put_ bh (Var x) = putByte bh 0 >> put_ bh x
put_ bh (And xs) = putByte bh 1 >> put_ bh xs
put_ bh (Or xs) = putByte bh 2 >> put_ bh xs
get bh = do
h <- getByte bh
case h of
0 -> Var <$> get bh
1 -> And <$> get bh
_ -> Or <$> get bh