%
% (c) The University of Glasgow 2006
%
\begin{code}
module Coercion (
Coercion(..), Var, CoVar,
LeftOrRight(..), pickLR,
Role(..), ltRole,
coVarKind, coVarRole,
coercionType, coercionKind, coercionKinds, isReflCo,
isReflCo_maybe, coercionRole,
mkCoercionType,
mkReflCo, mkCoVarCo,
mkAxInstCo, mkUnbranchedAxInstCo, mkAxInstLHS, mkAxInstRHS,
mkUnbranchedAxInstRHS,
mkPiCo, mkPiCos, mkCoCast,
mkSymCo, mkTransCo, mkNthCo, mkNthCoRole, mkLRCo,
mkInstCo, mkAppCo, mkAppCoFlexible, mkTyConAppCo, mkFunCo,
mkForAllCo, mkUnsafeCo, mkUnivCo, mkSubCo, mkPhantomCo,
mkNewTypeCo, maybeSubCo, maybeSubCo2,
mkAxiomRuleCo,
instNewTyCon_maybe,
topNormaliseNewType_maybe,
decomposeCo, getCoVar_maybe,
splitAppCo_maybe,
splitForAllCo_maybe,
nthRole, tyConRolesX,
nextRole,
mkCoVar, isCoVar, isCoVarType, coVarName, setCoVarName, setCoVarUnique,
tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo, coercionSize,
CvSubstEnv, emptyCvSubstEnv,
CvSubst(..), emptyCvSubst, Coercion.lookupTyVar, lookupCoVar,
isEmptyCvSubst, zapCvSubstEnv, getCvInScope,
substCo, substCos, substCoVar, substCoVars,
substCoWithTy, substCoWithTys,
cvTvSubst, tvCvSubst, mkCvSubst, zipOpenCvSubst,
substTy, extendTvSubst,
extendCvSubstAndInScope, extendTvSubstAndInScope,
substTyVarBndr, substCoVarBndr,
liftCoMatch, liftCoSubstTyVar, liftCoSubstWith,
coreEqCoercion, coreEqCoercion2,
seqCo,
pprCo, pprParendCo,
pprCoAxiom, pprCoAxBranch, pprCoAxBranchHdr,
tidyCo, tidyCos,
applyCo
) where
#include "HsVersions.h"
import Unify ( MatchEnv(..), matchList )
import TypeRep
import qualified Type
import Type hiding( substTy, substTyVarBndr, extendTvSubst )
import TyCon
import CoAxiom
import Var
import VarEnv
import VarSet
import Binary
import Maybes ( orElse )
import Name ( Name, NamedThing(..), nameUnique, nameModule, getSrcSpan )
import OccName ( parenSymOcc )
import Util
import BasicTypes
import Outputable
import Unique
import Pair
import SrcLoc
import PrelNames ( funTyConKey, eqPrimTyConKey, eqReprPrimTyConKey )
import Control.Applicative
import Data.Traversable (traverse, sequenceA)
import FastString
import qualified Data.Data as Data hiding ( TyCon )
\end{code}
%************************************************************************
%* *
Coercions
%* *
%************************************************************************
\begin{code}
data Coercion
=
Refl Role Type
| TyConAppCo Role TyCon [Coercion]
| AppCo Coercion Coercion
| ForAllCo TyVar Coercion
| CoVarCo CoVar
| AxiomInstCo (CoAxiom Branched) BranchIndex [Coercion]
| UnivCo Role Type Type
| SymCo Coercion
| TransCo Coercion Coercion
| AxiomRuleCo CoAxiomRule [Type] [Coercion]
| NthCo Int Coercion
| LRCo LeftOrRight Coercion
| InstCo Coercion Type
| SubCo Coercion
deriving (Data.Data, Data.Typeable)
data LeftOrRight = CLeft | CRight
deriving( Eq, Data.Data, Data.Typeable )
instance Binary LeftOrRight where
put_ bh CLeft = putByte bh 0
put_ bh CRight = putByte bh 1
get bh = do { h <- getByte bh
; case h of
0 -> return CLeft
_ -> return CRight }
pickLR :: LeftOrRight -> (a,a) -> a
pickLR CLeft (l,_) = l
pickLR CRight (_,r) = r
\end{code}
Note [Refl invariant]
~~~~~~~~~~~~~~~~~~~~~
Coercions have the following invariant
Refl is always lifted as far as possible.
You might think that a consequencs is:
Every identity coercions has Refl at the root
But that's not quite true because of coercion variables. Consider
g where g :: Int~Int
Left h where h :: Maybe Int ~ Maybe Int
etc. So the consequence is only true of coercions that
have no coercion variables.
Note [Coercion axioms applied to coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The reason coercion axioms can be applied to coercions and not just
types is to allow for better optimization. There are some cases where
we need to be able to "push transitivity inside" an axiom in order to
expose further opportunities for optimization.
For example, suppose we have
C a : t[a] ~ F a
g : b ~ c
and we want to optimize
sym (C b) ; t[g] ; C c
which has the kind
F b ~ F c
(stopping through t[b] and t[c] along the way).
We'd like to optimize this to just F g -- but how? The key is
that we need to allow axioms to be instantiated by *coercions*,
not just by types. Then we can (in certain cases) push
transitivity inside the axiom instantiations, and then react
opposite-polarity instantiations of the same axiom. In this
case, e.g., we match t[g] against the LHS of (C c)'s kind, to
obtain the substitution a |-> g (note this operation is sort
of the dual of lifting!) and hence end up with
C g : t[b] ~ F c
which indeed has the same kind as t[g] ; C c.
Now we have
sym (C b) ; C g
which can be optimized to F g.
Note [CoAxiom index]
~~~~~~~~~~~~~~~~~~~~
A CoAxiom has 1 or more branches. Each branch has contains a list
of the free type variables in that branch, the LHS type patterns,
and the RHS type for that branch. When we apply an axiom to a list
of coercions, we must choose which branch of the axiom we wish to
use, as the different branches may have different numbers of free
type variables. (The number of type patterns is always the same
among branches, but that doesn't quite concern us here.)
The Int in the AxiomInstCo constructor is the 0-indexed number
of the chosen branch.
Note [Forall coercions]
~~~~~~~~~~~~~~~~~~~~~~~
Constructing coercions between forall-types can be a bit tricky.
Currently, the situation is as follows:
ForAllCo TyVar Coercion
represents a coercion between polymorphic types, with the rule
v : k g : t1 ~ t2
----------------------------------------------
ForAllCo v g : (all v:k . t1) ~ (all v:k . t2)
Note that it's only necessary to coerce between polymorphic types
where the type variables have identical kinds, because equality on
kinds is trivial.
Note [Predicate coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
g :: a~b
How can we coerce between types
([c]~a) => [a] -> c
and
([c]~b) => [b] -> c
where the equality predicate *itself* differs?
Answer: we simply treat (~) as an ordinary type constructor, so these
types really look like
((~) [c] a) -> [a] -> c
((~) [c] b) -> [b] -> c
So the coercion between the two is obviously
((~) [c] g) -> [g] -> c
Another way to see this to say that we simply collapse predicates to
their representation type (see Type.coreView and Type.predTypeRep).
This collapse is done by mkPredCo; there is no PredCo constructor
in Coercion. This is important because we need Nth to work on
predicates too:
Nth 1 ((~) [c] g) = g
See Simplify.simplCoercionF, which generates such selections.
Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Suppose T :: * -> *, and g :: A ~ B
Then the coercion
TyConAppCo T [g] T g : T A ~ T B
Now suppose S :: forall k. k -> *, and g :: A ~ B
Then the coercion
TyConAppCo S [Refl *, g] T <*> g : T * A ~ T * B
Notice that the arguments to TyConAppCo are coercions, but the first
represents a *kind* coercion. Now, we don't allow any non-trivial kind
coercions, so it's an invariant that any such kind coercions are Refl.
Lint checks this.
However it's inconvenient to insist that these kind coercions are always
*structurally* (Refl k), because the key function exprIsConApp_maybe
pushes coercions into constructor arguments, so
C k ty e |> g
may turn into
C (Nth 0 g) ....
Now (Nth 0 g) will optimise to Refl, but perhaps not instantly.
Note [Roles]
~~~~~~~~~~~~
Roles are a solution to the GeneralizedNewtypeDeriving problem, articulated
in Trac #1496. The full story is in docs/core-spec/core-spec.pdf. Also, see
http://ghc.haskell.org/trac/ghc/wiki/RolesImplementation
Here is one way to phrase the problem:
Given:
newtype Age = MkAge Int
type family F x
type instance F Age = Bool
type instance F Int = Char
This compiles down to:
axAge :: Age ~ Int
axF1 :: F Age ~ Bool
axF2 :: F Int ~ Char
Then, we can make:
(sym (axF1) ; F axAge ; axF2) :: Bool ~ Char
Yikes!
The solution is _roles_, as articulated in "Generative Type Abstraction and
Type-level Computation" (POPL 2010), available at
http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf
The specification for roles has evolved somewhat since that paper. For the
current full details, see the documentation in docs/core-spec. Here are some
highlights.
We label every equality with a notion of type equivalence, of which there are
three options: Nominal, Representational, and Phantom. A ground type is
nominally equivalent only with itself. A newtype (which is considered a ground
type in Haskell) is representationally equivalent to its representation.
Anything is "phantomly" equivalent to anything else. We use "N", "R", and "P"
to denote the equivalences.
The axioms above would be:
axAge :: Age ~R Int
axF1 :: F Age ~N Bool
axF2 :: F Age ~N Char
Then, because transitivity applies only to coercions proving the same notion
of equivalence, the above construction is impossible.
However, there is still an escape hatch: we know that any two types that are
nominally equivalent are representationally equivalent as well. This is what
the form SubCo proves -- it "demotes" a nominal equivalence into a
representational equivalence. So, it would seem the following is possible:
sub (sym axF1) ; F axAge ; sub axF2 :: Bool ~R Char -- WRONG
What saves us here is that the arguments to a type function F, lifted into a
coercion, *must* prove nominal equivalence. So, (F axAge) is ill-formed, and
we are safe.
Roles are attached to parameters to TyCons. When lifting a TyCon into a
coercion (through TyConAppCo), we need to ensure that the arguments to the
TyCon respect their roles. For example:
data T a b = MkT a (F b)
If we know that a1 ~R a2, then we know (T a1 b) ~R (T a2 b). But, if we know
that b1 ~R b2, we know nothing about (T a b1) and (T a b2)! This is because
the type function F branches on b's *name*, not representation. So, we say
that 'a' has role Representational and 'b' has role Nominal. The third role,
Phantom, is for parameters not used in the type's definition. Given the
following definition
data Q a = MkQ Int
the Phantom role allows us to say that (Q Bool) ~R (Q Char), because we
can construct the coercion Bool ~P Char (using UnivCo).
See the paper cited above for more examples and information.
Note [UnivCo]
~~~~~~~~~~~~~
The UnivCo ("universal coercion") serves two rather separate functions:
- the implementation for unsafeCoerce#
- placeholder for phantom parameters in a TyConAppCo
At Representational, it asserts that two (possibly unrelated)
types have the same representation and can be casted to one another.
This form is necessary for unsafeCoerce#.
For optimisation purposes, it is convenient to allow UnivCo to appear
at Nominal role. If we have
data Foo a = MkFoo (F a) -- F is a type family
and we want an unsafe coercion from Foo Int to Foo Bool, then it would
be nice to have (TyConAppCo Foo (UnivCo Nominal Int Bool)). So, we allow
Nominal UnivCo's.
At Phantom role, it is used as an argument to TyConAppCo in the place
of a phantom parameter (a type parameter unused in the type definition).
For example:
data Q a = MkQ Int
We want a coercion for (Q Bool) ~R (Q Char).
(TyConAppCo Representational Q [UnivCo Phantom Bool Char]) does the trick.
Note [TyConAppCo roles]
~~~~~~~~~~~~~~~~~~~~~~~
The TyConAppCo constructor has a role parameter, indicating the role at
which the coercion proves equality. The choice of this parameter affects
the required roles of the arguments of the TyConAppCo. To help explain
it, assume the following definition:
newtype Age = MkAge Int
Nominal: All arguments must have role Nominal. Why? So that Foo Age ~N Foo Int
does *not* hold.
Representational: All arguments must have the roles corresponding to the
result of tyConRoles on the TyCon. This is the whole point of having
roles on the TyCon to begin with. So, we can have Foo Age ~R Foo Int,
if Foo's parameter has role R.
If a Representational TyConAppCo is over-saturated (which is otherwise fine),
the spill-over arguments must all be at Nominal. This corresponds to the
behavior for AppCo.
Phantom: All arguments must have role Phantom. This one isn't strictly
necessary for soundness, but this choice removes ambiguity.
The rules here also dictate what the parameters to mkTyConAppCo.
%************************************************************************
%* *
\subsection{Coercion variables}
%* *
%************************************************************************
\begin{code}
coVarName :: CoVar -> Name
coVarName = varName
setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique
setCoVarName :: CoVar -> Name -> CoVar
setCoVarName = setVarName
isCoVar :: Var -> Bool
isCoVar v = isCoVarType (varType v)
isCoVarType :: Type -> Bool
isCoVarType ty
= case splitTyConApp_maybe ty of
Just (tc,tys) -> (tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey)
&& tys `lengthAtLeast` 2
Nothing -> False
\end{code}
\begin{code}
tyCoVarsOfCo :: Coercion -> VarSet
tyCoVarsOfCo (Refl _ ty) = tyVarsOfType ty
tyCoVarsOfCo (TyConAppCo _ _ cos) = tyCoVarsOfCos cos
tyCoVarsOfCo (AppCo co1 co2) = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (ForAllCo tv co) = tyCoVarsOfCo co `delVarSet` tv
tyCoVarsOfCo (CoVarCo v) = unitVarSet v
tyCoVarsOfCo (AxiomInstCo _ _ cos) = tyCoVarsOfCos cos
tyCoVarsOfCo (UnivCo _ ty1 ty2) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
tyCoVarsOfCo (SymCo co) = tyCoVarsOfCo co
tyCoVarsOfCo (TransCo co1 co2) = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (NthCo _ co) = tyCoVarsOfCo co
tyCoVarsOfCo (LRCo _ co) = tyCoVarsOfCo co
tyCoVarsOfCo (InstCo co ty) = tyCoVarsOfCo co `unionVarSet` tyVarsOfType ty
tyCoVarsOfCo (SubCo co) = tyCoVarsOfCo co
tyCoVarsOfCo (AxiomRuleCo _ ts cs) = tyVarsOfTypes ts `unionVarSet` tyCoVarsOfCos cs
tyCoVarsOfCos :: [Coercion] -> VarSet
tyCoVarsOfCos cos = foldr (unionVarSet . tyCoVarsOfCo) emptyVarSet cos
coVarsOfCo :: Coercion -> VarSet
coVarsOfCo (Refl _ _) = emptyVarSet
coVarsOfCo (TyConAppCo _ _ cos) = coVarsOfCos cos
coVarsOfCo (AppCo co1 co2) = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (ForAllCo _ co) = coVarsOfCo co
coVarsOfCo (CoVarCo v) = unitVarSet v
coVarsOfCo (AxiomInstCo _ _ cos) = coVarsOfCos cos
coVarsOfCo (UnivCo _ _ _) = emptyVarSet
coVarsOfCo (SymCo co) = coVarsOfCo co
coVarsOfCo (TransCo co1 co2) = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (NthCo _ co) = coVarsOfCo co
coVarsOfCo (LRCo _ co) = coVarsOfCo co
coVarsOfCo (InstCo co _) = coVarsOfCo co
coVarsOfCo (SubCo co) = coVarsOfCo co
coVarsOfCo (AxiomRuleCo _ _ cos) = coVarsOfCos cos
coVarsOfCos :: [Coercion] -> VarSet
coVarsOfCos cos = foldr (unionVarSet . coVarsOfCo) emptyVarSet cos
coercionSize :: Coercion -> Int
coercionSize (Refl _ ty) = typeSize ty
coercionSize (TyConAppCo _ _ cos) = 1 + sum (map coercionSize cos)
coercionSize (AppCo co1 co2) = coercionSize co1 + coercionSize co2
coercionSize (ForAllCo _ co) = 1 + coercionSize co
coercionSize (CoVarCo _) = 1
coercionSize (AxiomInstCo _ _ cos) = 1 + sum (map coercionSize cos)
coercionSize (UnivCo _ ty1 ty2) = typeSize ty1 + typeSize ty2
coercionSize (SymCo co) = 1 + coercionSize co
coercionSize (TransCo co1 co2) = 1 + coercionSize co1 + coercionSize co2
coercionSize (NthCo _ co) = 1 + coercionSize co
coercionSize (LRCo _ co) = 1 + coercionSize co
coercionSize (InstCo co ty) = 1 + coercionSize co + typeSize ty
coercionSize (SubCo co) = 1 + coercionSize co
coercionSize (AxiomRuleCo _ tys cos) = 1 + sum (map typeSize tys)
+ sum (map coercionSize cos)
\end{code}
%************************************************************************
%* *
Tidying coercions
%* *
%************************************************************************
\begin{code}
tidyCo :: TidyEnv -> Coercion -> Coercion
tidyCo env@(_, subst) co
= go co
where
go (Refl r ty) = Refl r (tidyType env ty)
go (TyConAppCo r tc cos) = let args = map go cos
in args `seqList` TyConAppCo r tc args
go (AppCo co1 co2) = (AppCo $! go co1) $! go co2
go (ForAllCo tv co) = ForAllCo tvp $! (tidyCo envp co)
where
(envp, tvp) = tidyTyVarBndr env tv
go (CoVarCo cv) = case lookupVarEnv subst cv of
Nothing -> CoVarCo cv
Just cv' -> CoVarCo cv'
go (AxiomInstCo con ind cos) = let args = tidyCos env cos
in args `seqList` AxiomInstCo con ind args
go (UnivCo r ty1 ty2) = (UnivCo r $! tidyType env ty1) $! tidyType env ty2
go (SymCo co) = SymCo $! go co
go (TransCo co1 co2) = (TransCo $! go co1) $! go co2
go (NthCo d co) = NthCo d $! go co
go (LRCo lr co) = LRCo lr $! go co
go (InstCo co ty) = (InstCo $! go co) $! tidyType env ty
go (SubCo co) = SubCo $! go co
go (AxiomRuleCo ax tys cos) = let tys1 = map (tidyType env) tys
cos1 = tidyCos env cos
in tys1 `seqList` cos1 `seqList`
AxiomRuleCo ax tys1 cos1
tidyCos :: TidyEnv -> [Coercion] -> [Coercion]
tidyCos env = map (tidyCo env)
\end{code}
%************************************************************************
%* *
Pretty-printing coercions
%* *
%************************************************************************
@pprCo@ is the standard @Coercion@ printer; the overloaded @ppr@
function is defined to use this. @pprParendCo@ is the same, except it
puts parens around the type, except for the atomic cases.
@pprParendCo@ works just by setting the initial context precedence
very high.
\begin{code}
instance Outputable Coercion where
ppr = pprCo
pprCo, pprParendCo :: Coercion -> SDoc
pprCo co = ppr_co TopPrec co
pprParendCo co = ppr_co TyConPrec co
ppr_co :: Prec -> Coercion -> SDoc
ppr_co _ (Refl r ty) = angleBrackets (ppr ty) <> ppr_role r
ppr_co p co@(TyConAppCo _ tc [_,_])
| tc `hasKey` funTyConKey = ppr_fun_co p co
ppr_co _ (TyConAppCo r tc cos) = pprTcApp TyConPrec ppr_co tc cos <> ppr_role r
ppr_co p (AppCo co1 co2) = maybeParen p TyConPrec $
pprCo co1 <+> ppr_co TyConPrec co2
ppr_co p co@(ForAllCo {}) = ppr_forall_co p co
ppr_co _ (CoVarCo cv) = parenSymOcc (getOccName cv) (ppr cv)
ppr_co p (AxiomInstCo con index cos)
= pprPrefixApp p (ppr (getName con) <> brackets (ppr index))
(map (ppr_co TyConPrec) cos)
ppr_co p co@(TransCo {}) = maybeParen p FunPrec $
case trans_co_list co [] of
[] -> panic "ppr_co"
(co:cos) -> sep ( ppr_co FunPrec co
: [ char ';' <+> ppr_co FunPrec co | co <- cos])
ppr_co p (InstCo co ty) = maybeParen p TyConPrec $
pprParendCo co <> ptext (sLit "@") <> pprType ty
ppr_co p (UnivCo r ty1 ty2) = pprPrefixApp p (ptext (sLit "UnivCo") <+> ppr r)
[pprParendType ty1, pprParendType ty2]
ppr_co p (SymCo co) = pprPrefixApp p (ptext (sLit "Sym")) [pprParendCo co]
ppr_co p (NthCo n co) = pprPrefixApp p (ptext (sLit "Nth:") <> int n) [pprParendCo co]
ppr_co p (LRCo sel co) = pprPrefixApp p (ppr sel) [pprParendCo co]
ppr_co p (SubCo co) = pprPrefixApp p (ptext (sLit "Sub")) [pprParendCo co]
ppr_co p (AxiomRuleCo co ts cs) = maybeParen p TopPrec $
ppr_axiom_rule_co co ts cs
ppr_axiom_rule_co :: CoAxiomRule -> [Type] -> [Coercion] -> SDoc
ppr_axiom_rule_co co ts ps = ppr (coaxrName co) <> ppTs ts $$ nest 2 (ppPs ps)
where
ppTs [] = Outputable.empty
ppTs [t] = ptext (sLit "@") <> ppr_type TopPrec t
ppTs ts = ptext (sLit "@") <>
parens (hsep $ punctuate comma $ map pprType ts)
ppPs [] = Outputable.empty
ppPs [p] = pprParendCo p
ppPs (p : ps) = ptext (sLit "(") <+> pprCo p $$
vcat [ ptext (sLit ",") <+> pprCo q | q <- ps ] $$
ptext (sLit ")")
ppr_role :: Role -> SDoc
ppr_role r = underscore <> pp_role
where pp_role = case r of
Nominal -> char 'N'
Representational -> char 'R'
Phantom -> char 'P'
trans_co_list :: Coercion -> [Coercion] -> [Coercion]
trans_co_list (TransCo co1 co2) cos = trans_co_list co1 (trans_co_list co2 cos)
trans_co_list co cos = co : cos
instance Outputable LeftOrRight where
ppr CLeft = ptext (sLit "Left")
ppr CRight = ptext (sLit "Right")
ppr_fun_co :: Prec -> Coercion -> SDoc
ppr_fun_co p co = pprArrowChain p (split co)
where
split :: Coercion -> [SDoc]
split (TyConAppCo _ f [arg,res])
| f `hasKey` funTyConKey
= ppr_co FunPrec arg : split res
split co = [ppr_co TopPrec co]
ppr_forall_co :: Prec -> Coercion -> SDoc
ppr_forall_co p ty
= maybeParen p FunPrec $
sep [pprForAll tvs, ppr_co TopPrec rho]
where
(tvs, rho) = split1 [] ty
split1 tvs (ForAllCo tv ty) = split1 (tv:tvs) ty
split1 tvs ty = (reverse tvs, ty)
\end{code}
\begin{code}
pprCoAxiom :: CoAxiom br -> SDoc
pprCoAxiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
= hang (ptext (sLit "axiom") <+> ppr ax <+> dcolon)
2 (vcat (map (pprCoAxBranch tc) $ fromBranchList branches))
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranch fam_tc (CoAxBranch { cab_tvs = tvs
, cab_lhs = lhs
, cab_rhs = rhs })
= hang (ifPprDebug (pprForAll tvs))
2 (hang (pprTypeApp fam_tc lhs) 2 (equals <+> (ppr rhs)))
pprCoAxBranchHdr :: CoAxiom br -> BranchIndex -> SDoc
pprCoAxBranchHdr ax@(CoAxiom { co_ax_tc = fam_tc, co_ax_name = name }) index
| CoAxBranch { cab_lhs = tys, cab_loc = loc } <- coAxiomNthBranch ax index
= hang (pprTypeApp fam_tc tys)
2 (ptext (sLit "-- Defined") <+> ppr_loc loc)
where
ppr_loc loc
| isGoodSrcSpan loc
= ptext (sLit "at") <+> ppr (srcSpanStart loc)
| otherwise
= ptext (sLit "in") <+>
quotes (ppr (nameModule name))
\end{code}
%************************************************************************
%* *
Functions over Kinds
%* *
%************************************************************************
\begin{code}
decomposeCo :: Arity -> Coercion -> [Coercion]
decomposeCo arity co
= [mkNthCo n co | n <- [0..(arity1)] ]
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo cv) = Just cv
getCoVar_maybe _ = Nothing
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitAppCo_maybe (AppCo co1 co2) = Just (co1, co2)
splitAppCo_maybe (TyConAppCo r tc cos)
| isDecomposableTyCon tc || cos `lengthExceeds` tyConArity tc
, Just (cos', co') <- snocView cos
, Just co'' <- unSubCo_maybe co'
= Just (mkTyConAppCo r tc cos', co'')
splitAppCo_maybe (Refl r ty)
| Just (ty1, ty2) <- splitAppTy_maybe ty
= Just (Refl r ty1, Refl Nominal ty2)
splitAppCo_maybe _ = Nothing
splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion)
splitForAllCo_maybe (ForAllCo tv co) = Just (tv, co)
splitForAllCo_maybe _ = Nothing
coVarKind :: CoVar -> (Type,Type)
coVarKind cv
| Just (tc, [_kind,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
= ASSERT(tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey)
(ty1,ty2)
| otherwise = panic "coVarKind, non coercion variable"
coVarRole :: CoVar -> Role
coVarRole cv
| tc `hasKey` eqPrimTyConKey
= Nominal
| tc `hasKey` eqReprPrimTyConKey
= Representational
| otherwise
= pprPanic "coVarRole: unknown tycon" (ppr cv)
where
tc = case tyConAppTyCon_maybe (varType cv) of
Just tc0 -> tc0
Nothing -> pprPanic "coVarRole: not tyconapp" (ppr cv)
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType Nominal = mkPrimEqPred
mkCoercionType Representational = mkReprPrimEqPred
mkCoercionType Phantom = panic "mkCoercionType"
isReflCo :: Coercion -> Bool
isReflCo (Refl {}) = True
isReflCo _ = False
isReflCo_maybe :: Coercion -> Maybe Type
isReflCo_maybe (Refl _ ty) = Just ty
isReflCo_maybe _ = Nothing
\end{code}
%************************************************************************
%* *
Building coercions
%* *
%************************************************************************
\begin{code}
mkCoVarCo :: CoVar -> Coercion
mkCoVarCo cv
| ty1 `eqType` ty2 = Refl (coVarRole cv) ty1
| otherwise = CoVarCo cv
where
(ty1, ty2) = ASSERT( isCoVar cv ) coVarKind cv
mkReflCo :: Role -> Type -> Coercion
mkReflCo = Refl
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> Coercion
mkAxInstCo role ax index tys
| arity == n_tys = maybeSubCo2 role ax_role $ AxiomInstCo ax_br index rtys
| otherwise = ASSERT( arity < n_tys )
maybeSubCo2 role ax_role $
foldl AppCo (AxiomInstCo ax_br index (take arity rtys))
(drop arity rtys)
where
n_tys = length tys
ax_br = toBranchedAxiom ax
branch = coAxiomNthBranch ax_br index
arity = length $ coAxBranchTyVars branch
arg_roles = coAxBranchRoles branch
rtys = zipWith mkReflCo (arg_roles ++ repeat Nominal) tys
ax_role = coAxiomRole ax
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> Coercion
mkUnbranchedAxInstCo role ax tys
= mkAxInstCo role ax 0 tys
mkAxInstLHS, mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> Type
mkAxInstLHS ax index tys
| CoAxBranch { cab_tvs = tvs, cab_lhs = lhs } <- coAxiomNthBranch ax index
, (tys1, tys2) <- splitAtList tvs tys
= ASSERT( tvs `equalLength` tys1 )
mkTyConApp (coAxiomTyCon ax) (substTysWith tvs tys1 lhs ++ tys2)
mkAxInstRHS ax index tys
| CoAxBranch { cab_tvs = tvs, cab_rhs = rhs } <- coAxiomNthBranch ax index
, (tys1, tys2) <- splitAtList tvs tys
= ASSERT( tvs `equalLength` tys1 )
mkAppTys (substTyWith tvs tys1 rhs) tys2
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> Type
mkUnbranchedAxInstRHS ax = mkAxInstRHS ax 0
mkAppCo :: Coercion -> Coercion -> Coercion
mkAppCo co1 co2 = mkAppCoFlexible co1 Nominal co2
mkAppCoFlexible :: Coercion -> Role -> Coercion -> Coercion
mkAppCoFlexible (Refl r ty1) _ (Refl _ ty2)
= Refl r (mkAppTy ty1 ty2)
mkAppCoFlexible (Refl r ty1) r2 co2
| Just (tc, tys) <- splitTyConApp_maybe ty1
= TyConAppCo r tc (zip_roles (tyConRolesX r tc) tys)
where
zip_roles (r1:_) [] = [maybeSubCo2 r1 r2 co2]
zip_roles (r1:rs) (ty1:tys) = mkReflCo r1 ty1 : zip_roles rs tys
zip_roles _ _ = panic "zip_roles"
mkAppCoFlexible (TyConAppCo r tc cos) r2 co
= case r of
Nominal -> ASSERT( r2 == Nominal )
TyConAppCo Nominal tc (cos ++ [co])
Representational -> TyConAppCo Representational tc (cos ++ [co'])
where new_role = (tyConRolesX Representational tc) !! (length cos)
co' = maybeSubCo2 new_role r2 co
Phantom -> TyConAppCo Phantom tc (cos ++ [mkPhantomCo co])
mkAppCoFlexible co1 _r2 co2 = ASSERT( _r2 == Nominal )
AppCo co1 co2
mkAppCos :: Coercion -> [Coercion] -> Coercion
mkAppCos co1 cos = foldl mkAppCo co1 cos
mkTyConAppCo :: Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo r tc cos
| Just (tv_co_prs, rhs_ty, leftover_cos) <- tcExpandTyCon_maybe tc cos
= mkAppCos (liftCoSubst r tv_co_prs rhs_ty) leftover_cos
| Just tys <- traverse isReflCo_maybe cos
= Refl r (mkTyConApp tc tys)
| otherwise = TyConAppCo r tc cos
mkFunCo :: Role -> Coercion -> Coercion -> Coercion
mkFunCo r co1 co2 = mkTyConAppCo r funTyCon [co1, co2]
mkForAllCo :: Var -> Coercion -> Coercion
mkForAllCo tv (Refl r ty) = ASSERT( isTyVar tv ) Refl r (mkForAllTy tv ty)
mkForAllCo tv co = ASSERT( isTyVar tv ) ForAllCo tv co
mkSymCo :: Coercion -> Coercion
mkSymCo co@(Refl {}) = co
mkSymCo (UnivCo r ty1 ty2) = UnivCo r ty2 ty1
mkSymCo (SymCo co) = co
mkSymCo co = SymCo co
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo (Refl {}) co = co
mkTransCo co (Refl {}) = co
mkTransCo co1 co2 = TransCo co1 co2
mkNthCoRole :: Role -> Int -> Coercion -> Coercion
mkNthCoRole role n co
= maybeSubCo2 role nth_role $ nth_co
where
nth_co = mkNthCo n co
nth_role = coercionRole nth_co
mkNthCo :: Int -> Coercion -> Coercion
mkNthCo n (Refl r ty) = ASSERT( ok_tc_app ty n )
Refl r' (tyConAppArgN n ty)
where tc = tyConAppTyCon ty
r' = nthRole r tc n
mkNthCo n co = ASSERT( ok_tc_app _ty1 n && ok_tc_app _ty2 n )
NthCo n co
where
Pair _ty1 _ty2 = coercionKind co
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo lr (Refl eq ty) = Refl eq (pickLR lr (splitAppTy ty))
mkLRCo lr co = LRCo lr co
ok_tc_app :: Type -> Int -> Bool
ok_tc_app ty n = case splitTyConApp_maybe ty of
Just (_, tys) -> tys `lengthExceeds` n
Nothing -> False
mkInstCo :: Coercion -> Type -> Coercion
mkInstCo co ty = InstCo co ty
mkUnsafeCo :: Type -> Type -> Coercion
mkUnsafeCo = mkUnivCo Representational
mkUnivCo :: Role -> Type -> Type -> Coercion
mkUnivCo role ty1 ty2
| ty1 `eqType` ty2 = Refl role ty1
| otherwise = UnivCo role ty1 ty2
mkAxiomRuleCo :: CoAxiomRule -> [Type] -> [Coercion] -> Coercion
mkAxiomRuleCo = AxiomRuleCo
mkSubCo :: Coercion -> Coercion
mkSubCo (Refl Nominal ty) = Refl Representational ty
mkSubCo (TyConAppCo Nominal tc cos)
= TyConAppCo Representational tc (applyRoles tc cos)
mkSubCo (UnivCo Nominal ty1 ty2) = UnivCo Representational ty1 ty2
mkSubCo co = ASSERT2( coercionRole co == Nominal, ppr co <+> ppr (coercionRole co) )
SubCo co
maybeSubCo :: Role -> Coercion -> Coercion
maybeSubCo Nominal = id
maybeSubCo Representational = mkSubCo
maybeSubCo Phantom = pprPanic "maybeSubCo Phantom" . ppr
maybeSubCo2_maybe :: Role
-> Role
-> Coercion -> Maybe Coercion
maybeSubCo2_maybe Representational Nominal = Just . mkSubCo
maybeSubCo2_maybe Nominal Representational = const Nothing
maybeSubCo2_maybe Phantom Phantom = Just
maybeSubCo2_maybe Phantom _ = Just . mkPhantomCo
maybeSubCo2_maybe _ Phantom = const Nothing
maybeSubCo2_maybe _ _ = Just
maybeSubCo2 :: Role
-> Role
-> Coercion -> Coercion
maybeSubCo2 r1 r2 co
= case maybeSubCo2_maybe r1 r2 co of
Just co' -> co'
Nothing -> pprPanic "maybeSubCo2" (ppr co)
unSubCo_maybe :: Coercion -> Maybe Coercion
unSubCo_maybe (SubCo co) = Just co
unSubCo_maybe (Refl _ ty) = Just $ Refl Nominal ty
unSubCo_maybe (TyConAppCo Representational tc cos)
= do { cos' <- mapM unSubCo_maybe cos
; return $ TyConAppCo Nominal tc cos' }
unSubCo_maybe (UnivCo Representational ty1 ty2) = Just $ UnivCo Nominal ty1 ty2
unSubCo_maybe co
| Nominal <- coercionRole co = Just co
unSubCo_maybe _ = Nothing
mkPhantomCo :: Coercion -> Coercion
mkPhantomCo co
| Just ty <- isReflCo_maybe co = Refl Phantom ty
| Pair ty1 ty2 <- coercionKind co = UnivCo Phantom ty1 ty2
applyRole :: Role -> Coercion -> Coercion
applyRole Nominal = id
applyRole Representational = mkSubCo
applyRole Phantom = mkPhantomCo
applyRoles :: TyCon -> [Coercion] -> [Coercion]
applyRoles tc cos
= zipWith applyRole (tyConRolesX Representational tc) cos
tyConRolesX :: Role -> TyCon -> [Role]
tyConRolesX Representational tc = tyConRoles tc ++ repeat Nominal
tyConRolesX role _ = repeat role
nthRole :: Role -> TyCon -> Int -> Role
nthRole Nominal _ _ = Nominal
nthRole Phantom _ _ = Phantom
nthRole Representational tc n
= (tyConRolesX Representational tc) !! n
ltRole :: Role -> Role -> Bool
ltRole Phantom _ = False
ltRole Representational Phantom = True
ltRole Representational _ = False
ltRole Nominal Nominal = False
ltRole Nominal _ = True
nextRole :: Coercion -> Role
nextRole (Refl r (TyConApp tc tys)) = head $ dropList tys (tyConRolesX r tc)
nextRole (TyConAppCo r tc cos) = head $ dropList cos (tyConRolesX r tc)
nextRole _ = Nominal
mkNewTypeCo :: Name -> TyCon -> [TyVar] -> [Role] -> Type -> CoAxiom Unbranched
mkNewTypeCo name tycon tvs roles rhs_ty
= CoAxiom { co_ax_unique = nameUnique name
, co_ax_name = name
, co_ax_implicit = True
, co_ax_role = Representational
, co_ax_tc = tycon
, co_ax_branches = FirstBranch branch }
where branch = CoAxBranch { cab_loc = getSrcSpan name
, cab_tvs = tvs
, cab_lhs = mkTyVarTys tvs
, cab_roles = roles
, cab_rhs = rhs_ty
, cab_incomps = [] }
mkPiCos :: Role -> [Var] -> Coercion -> Coercion
mkPiCos r vs co = foldr (mkPiCo r) co vs
mkPiCo :: Role -> Var -> Coercion -> Coercion
mkPiCo r v co | isTyVar v = mkForAllCo v co
| otherwise = mkFunCo r (mkReflCo r (varType v)) co
mkCoCast :: Coercion -> Coercion -> Coercion
mkCoCast c g
= mkSymCo g1 `mkTransCo` c `mkTransCo` g2
where
[_reflk, g1, g2] = decomposeCo 3 g
\end{code}
%************************************************************************
%* *
Newtypes
%* *
%************************************************************************
\begin{code}
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe tc tys
| Just (tvs, ty, co_tc) <- unwrapNewTyCon_maybe tc
, tys `lengthIs` tyConArity tc
= Just (substTyWith tvs tys ty, mkUnbranchedAxInstCo Representational co_tc tys)
| otherwise
= Nothing
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
topNormaliseNewType_maybe ty
= go initRecTc Nothing ty
where
go rec_nts mb_co1 ty
| Just (tc, tys) <- splitTyConApp_maybe ty
, Just (ty', co2) <- instNewTyCon_maybe tc tys
, let co' = case mb_co1 of
Nothing -> co2
Just co1 -> mkTransCo co1 co2
= case checkRecTc rec_nts tc of
Just rec_nts' -> go rec_nts' (Just co') ty'
Nothing -> Nothing
| Just co1 <- mb_co1
= Just (co1, ty)
| otherwise
= Nothing
\end{code}
%************************************************************************
%* *
Equality of coercions
%* *
%************************************************************************
\begin{code}
coreEqCoercion :: Coercion -> Coercion -> Bool
coreEqCoercion co1 co2 = coreEqCoercion2 rn_env co1 co2
where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2))
coreEqCoercion2 :: RnEnv2 -> Coercion -> Coercion -> Bool
coreEqCoercion2 env (Refl eq1 ty1) (Refl eq2 ty2) = eq1 == eq2 && eqTypeX env ty1 ty2
coreEqCoercion2 env (TyConAppCo eq1 tc1 cos1) (TyConAppCo eq2 tc2 cos2)
= eq1 == eq2 && tc1 == tc2 && all2 (coreEqCoercion2 env) cos1 cos2
coreEqCoercion2 env (AppCo co11 co12) (AppCo co21 co22)
= coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22
coreEqCoercion2 env (ForAllCo v1 co1) (ForAllCo v2 co2)
= coreEqCoercion2 (rnBndr2 env v1 v2) co1 co2
coreEqCoercion2 env (CoVarCo cv1) (CoVarCo cv2)
= rnOccL env cv1 == rnOccR env cv2
coreEqCoercion2 env (AxiomInstCo con1 ind1 cos1) (AxiomInstCo con2 ind2 cos2)
= con1 == con2
&& ind1 == ind2
&& all2 (coreEqCoercion2 env) cos1 cos2
coreEqCoercion2 env (UnivCo r1 ty11 ty12) (UnivCo r2 ty21 ty22)
= r1 == r2 && eqTypeX env ty11 ty21 && eqTypeX env ty12 ty22
coreEqCoercion2 env (SymCo co1) (SymCo co2)
= coreEqCoercion2 env co1 co2
coreEqCoercion2 env (TransCo co11 co12) (TransCo co21 co22)
= coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22
coreEqCoercion2 env (NthCo d1 co1) (NthCo d2 co2)
= d1 == d2 && coreEqCoercion2 env co1 co2
coreEqCoercion2 env (LRCo d1 co1) (LRCo d2 co2)
= d1 == d2 && coreEqCoercion2 env co1 co2
coreEqCoercion2 env (InstCo co1 ty1) (InstCo co2 ty2)
= coreEqCoercion2 env co1 co2 && eqTypeX env ty1 ty2
coreEqCoercion2 env (SubCo co1) (SubCo co2)
= coreEqCoercion2 env co1 co2
coreEqCoercion2 env (AxiomRuleCo a1 ts1 cs1) (AxiomRuleCo a2 ts2 cs2)
= a1 == a2 && all2 (eqTypeX env) ts1 ts2 && all2 (coreEqCoercion2 env) cs1 cs2
coreEqCoercion2 _ _ _ = False
\end{code}
%************************************************************************
%* *
Substitution of coercions
%* *
%************************************************************************
\begin{code}
type CvSubstEnv = VarEnv Coercion
emptyCvSubstEnv :: CvSubstEnv
emptyCvSubstEnv = emptyVarEnv
data CvSubst
= CvSubst InScopeSet
TvSubstEnv
CvSubstEnv
instance Outputable CvSubst where
ppr (CvSubst ins tenv cenv)
= brackets $ sep[ ptext (sLit "CvSubst"),
nest 2 (ptext (sLit "In scope:") <+> ppr ins),
nest 2 (ptext (sLit "Type env:") <+> ppr tenv),
nest 2 (ptext (sLit "Coercion env:") <+> ppr cenv) ]
emptyCvSubst :: CvSubst
emptyCvSubst = CvSubst emptyInScopeSet emptyVarEnv emptyVarEnv
isEmptyCvSubst :: CvSubst -> Bool
isEmptyCvSubst (CvSubst _ tenv cenv) = isEmptyVarEnv tenv && isEmptyVarEnv cenv
getCvInScope :: CvSubst -> InScopeSet
getCvInScope (CvSubst in_scope _ _) = in_scope
zapCvSubstEnv :: CvSubst -> CvSubst
zapCvSubstEnv (CvSubst in_scope _ _) = CvSubst in_scope emptyVarEnv emptyVarEnv
cvTvSubst :: CvSubst -> TvSubst
cvTvSubst (CvSubst in_scope tvs _) = TvSubst in_scope tvs
tvCvSubst :: TvSubst -> CvSubst
tvCvSubst (TvSubst in_scope tenv) = CvSubst in_scope tenv emptyCvSubstEnv
extendTvSubst :: CvSubst -> TyVar -> Type -> CvSubst
extendTvSubst (CvSubst in_scope tenv cenv) tv ty
= CvSubst in_scope (extendVarEnv tenv tv ty) cenv
extendTvSubstAndInScope :: CvSubst -> TyVar -> Type -> CvSubst
extendTvSubstAndInScope (CvSubst in_scope tenv cenv) tv ty
= CvSubst (in_scope `extendInScopeSetSet` tyVarsOfType ty)
(extendVarEnv tenv tv ty)
cenv
extendCvSubstAndInScope :: CvSubst -> CoVar -> Coercion -> CvSubst
extendCvSubstAndInScope (CvSubst in_scope tenv cenv) cv co
= CvSubst (in_scope `extendInScopeSetSet` tyCoVarsOfCo co)
tenv
(extendVarEnv cenv cv co)
substCoVarBndr :: CvSubst -> CoVar -> (CvSubst, CoVar)
substCoVarBndr subst@(CvSubst in_scope tenv cenv) old_var
= ASSERT( isCoVar old_var )
(CvSubst (in_scope `extendInScopeSet` new_var) tenv new_cenv, new_var)
where
new_co = mkCoVarCo new_var
no_change = new_var == old_var && not (isReflCo new_co)
new_cenv | no_change = delVarEnv cenv old_var
| otherwise = extendVarEnv cenv old_var new_co
new_var = uniqAway in_scope subst_old_var
subst_old_var = mkCoVar (varName old_var) (substTy subst (varType old_var))
substTyVarBndr :: CvSubst -> TyVar -> (CvSubst, TyVar)
substTyVarBndr (CvSubst in_scope tenv cenv) old_var
= case Type.substTyVarBndr (TvSubst in_scope tenv) old_var of
(TvSubst in_scope' tenv', new_var) -> (CvSubst in_scope' tenv' cenv, new_var)
mkCvSubst :: InScopeSet -> [(Var,Coercion)] -> CvSubst
mkCvSubst in_scope prs = CvSubst in_scope Type.emptyTvSubstEnv (mkVarEnv prs)
zipOpenCvSubst :: [Var] -> [Coercion] -> CvSubst
zipOpenCvSubst vs cos
| debugIsOn && (length vs /= length cos)
= pprTrace "zipOpenCvSubst" (ppr vs $$ ppr cos) emptyCvSubst
| otherwise
= CvSubst (mkInScopeSet (tyCoVarsOfCos cos)) emptyTvSubstEnv (zipVarEnv vs cos)
substCoWithTy :: InScopeSet -> TyVar -> Type -> Coercion -> Coercion
substCoWithTy in_scope tv ty = substCoWithTys in_scope [tv] [ty]
substCoWithTys :: InScopeSet -> [TyVar] -> [Type] -> Coercion -> Coercion
substCoWithTys in_scope tvs tys co
| debugIsOn && (length tvs /= length tys)
= pprTrace "substCoWithTys" (ppr tvs $$ ppr tys) co
| otherwise
= ASSERT( length tvs == length tys )
substCo (CvSubst in_scope (zipVarEnv tvs tys) emptyVarEnv) co
substCo :: CvSubst -> Coercion -> Coercion
substCo subst co | isEmptyCvSubst subst = co
| otherwise = subst_co subst co
substCos :: CvSubst -> [Coercion] -> [Coercion]
substCos subst cos | isEmptyCvSubst subst = cos
| otherwise = map (substCo subst) cos
substTy :: CvSubst -> Type -> Type
substTy subst = Type.substTy (cvTvSubst subst)
subst_co :: CvSubst -> Coercion -> Coercion
subst_co subst co
= go co
where
go_ty :: Type -> Type
go_ty = Coercion.substTy subst
go :: Coercion -> Coercion
go (Refl eq ty) = Refl eq $! go_ty ty
go (TyConAppCo eq tc cos) = let args = map go cos
in args `seqList` TyConAppCo eq tc args
go (AppCo co1 co2) = mkAppCo (go co1) $! go co2
go (ForAllCo tv co) = case substTyVarBndr subst tv of
(subst', tv') ->
ForAllCo tv' $! subst_co subst' co
go (CoVarCo cv) = substCoVar subst cv
go (AxiomInstCo con ind cos) = AxiomInstCo con ind $! map go cos
go (UnivCo r ty1 ty2) = (UnivCo r $! go_ty ty1) $! go_ty ty2
go (SymCo co) = mkSymCo (go co)
go (TransCo co1 co2) = mkTransCo (go co1) (go co2)
go (NthCo d co) = mkNthCo d (go co)
go (LRCo lr co) = mkLRCo lr (go co)
go (InstCo co ty) = mkInstCo (go co) $! go_ty ty
go (SubCo co) = mkSubCo (go co)
go (AxiomRuleCo co ts cs) = let ts1 = map go_ty ts
cs1 = map go cs
in ts1 `seqList` cs1 `seqList`
AxiomRuleCo co ts1 cs1
substCoVar :: CvSubst -> CoVar -> Coercion
substCoVar (CvSubst in_scope _ cenv) cv
| Just co <- lookupVarEnv cenv cv = co
| Just cv1 <- lookupInScope in_scope cv = ASSERT( isCoVar cv1 ) CoVarCo cv1
| otherwise = WARN( True, ptext (sLit "substCoVar not in scope") <+> ppr cv $$ ppr in_scope)
ASSERT( isCoVar cv ) CoVarCo cv
substCoVars :: CvSubst -> [CoVar] -> [Coercion]
substCoVars subst cvs = map (substCoVar subst) cvs
lookupTyVar :: CvSubst -> TyVar -> Maybe Type
lookupTyVar (CvSubst _ tenv _) tv = lookupVarEnv tenv tv
lookupCoVar :: CvSubst -> Var -> Maybe Coercion
lookupCoVar (CvSubst _ _ cenv) v = lookupVarEnv cenv v
\end{code}
%************************************************************************
%* *
"Lifting" substitution
[(TyVar,Coercion)] -> Type -> Coercion
%* *
%************************************************************************
Note [Lifting coercions over types: liftCoSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The KPUSH rule deals with this situation
data T a = MkK (a -> Maybe a)
g :: T t1 ~ K t2
x :: t1 -> Maybe t1
case (K @t1 x) |> g of
K (y:t2 -> Maybe t2) -> rhs
We want to push the coercion inside the constructor application.
So we do this
g' :: t1~t2 = Nth 0 g
case K @t2 (x |> g' -> Maybe g') of
K (y:t2 -> Maybe t2) -> rhs
The crucial operation is that we
* take the type of K's argument: a -> Maybe a
* and substitute g' for a
thus giving *coercion*. This is what liftCoSubst does.
Note [Substituting kinds in liftCoSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to take care with kind polymorphism. Suppose
K :: forall k (a:k). (forall b:k. a -> b) -> T k a
Now given (K @kk1 @ty1 v) |> g) where
g :: T kk1 ty1 ~ T kk2 ty2
we want to compute
(forall b:k a->b) [ Nth 0 g/k, Nth 1 g/a ]
Notice that we MUST substitute for 'k'; this happens in
liftCoSubstTyVarBndr. But what should we substitute?
We need to take b's kind 'k' and return a Kind, not a Coercion!
Happily we can do this because we know that all kind coercions
((Nth 0 g) in this case) are Refl. So we need a special purpose
subst_kind: LiftCoSubst -> Kind -> Kind
that expects a Refl coercion (or something equivalent to Refl)
when it looks up a kind variable.
\begin{code}
data LiftCoSubst = LCS InScopeSet LiftCoEnv
type LiftCoEnv = VarEnv Coercion
liftCoSubstWith :: Role -> [TyVar] -> [Coercion] -> Type -> Coercion
liftCoSubstWith r tvs cos ty
= liftCoSubst r (zipEqual "liftCoSubstWith" tvs cos) ty
liftCoSubst :: Role -> [(TyVar,Coercion)] -> Type -> Coercion
liftCoSubst r prs ty
| null prs = Refl r ty
| otherwise = ty_co_subst (LCS (mkInScopeSet (tyCoVarsOfCos (map snd prs)))
(mkVarEnv prs)) r ty
ty_co_subst :: LiftCoSubst -> Role -> Type -> Coercion
ty_co_subst subst role ty
= go role ty
where
go Phantom ty = lift_phantom ty
go role (TyVarTy tv) = liftCoSubstTyVar subst role tv
`orElse` Refl role (TyVarTy tv)
go role (AppTy ty1 ty2) = mkAppCo (go role ty1) (go Nominal ty2)
go role (TyConApp tc tys) = mkTyConAppCo role tc
(zipWith go (tyConRolesX role tc) tys)
go role (FunTy ty1 ty2) = mkFunCo role (go role ty1) (go role ty2)
go role (ForAllTy v ty) = mkForAllCo v' $! (ty_co_subst subst' role ty)
where
(subst', v') = liftCoSubstTyVarBndr subst v
go role ty@(LitTy {}) = ASSERT( role == Nominal )
mkReflCo role ty
lift_phantom ty = mkUnivCo Phantom (liftCoSubstLeft subst ty)
(liftCoSubstRight subst ty)
\end{code}
Note [liftCoSubstTyVar]
~~~~~~~~~~~~~~~~~~~~~~~
This function can fail (i.e., return Nothing) for two separate reasons:
1) The variable is not in the substutition
2) The coercion found is of too low a role
liftCoSubstTyVar is called from two places: in liftCoSubst (naturally), and
also in matchAxiom in OptCoercion. From liftCoSubst, the so-called lifting
lemma guarantees that the roles work out. If we fail for reason 2) in this
case, we really should panic -- something is deeply wrong. But, in matchAxiom,
failing for reason 2) is fine. matchAxiom is trying to find a set of coercions
that match, but it may fail, and this is healthy behavior. Bottom line: if
you find that liftCoSubst is doing weird things (like leaving out-of-scope
variables lying around), disable coercion optimization (bypassing matchAxiom)
and use maybeSubCo2 instead of maybeSubCo2_maybe. The panic will then happen,
and you may learn something useful.
\begin{code}
liftCoSubstTyVar :: LiftCoSubst -> Role -> TyVar -> Maybe Coercion
liftCoSubstTyVar (LCS _ cenv) r tv
= do { co <- lookupVarEnv cenv tv
; let co_role = coercionRole co
; maybeSubCo2_maybe r co_role co }
liftCoSubstTyVarBndr :: LiftCoSubst -> TyVar -> (LiftCoSubst, TyVar)
liftCoSubstTyVarBndr subst@(LCS in_scope cenv) old_var
= (LCS (in_scope `extendInScopeSet` new_var) new_cenv, new_var)
where
new_cenv | no_change = delVarEnv cenv old_var
| otherwise = extendVarEnv cenv old_var (Refl Nominal (TyVarTy new_var))
no_change = no_kind_change && (new_var == old_var)
new_var1 = uniqAway in_scope old_var
old_ki = tyVarKind old_var
no_kind_change = isEmptyVarSet (tyVarsOfType old_ki)
new_var | no_kind_change = new_var1
| otherwise = setTyVarKind new_var1 (subst_kind subst old_ki)
liftCoSubstLeft :: LiftCoSubst -> Type -> Type
liftCoSubstLeft (LCS in_scope cenv) ty
= Type.substTy (mkTvSubst in_scope (mapVarEnv (pFst . coercionKind) cenv)) ty
liftCoSubstRight :: LiftCoSubst -> Type -> Type
liftCoSubstRight (LCS in_scope cenv) ty
= Type.substTy (mkTvSubst in_scope (mapVarEnv (pSnd . coercionKind) cenv)) ty
subst_kind :: LiftCoSubst -> Kind -> Kind
subst_kind subst@(LCS _ cenv) kind
= go kind
where
go (LitTy n) = n `seq` LitTy n
go (TyVarTy kv) = subst_kv kv
go (TyConApp tc tys) = let args = map go tys
in args `seqList` TyConApp tc args
go (FunTy arg res) = (FunTy $! (go arg)) $! (go res)
go (AppTy fun arg) = mkAppTy (go fun) $! (go arg)
go (ForAllTy tv ty) = case liftCoSubstTyVarBndr subst tv of
(subst', tv') ->
ForAllTy tv' $! (subst_kind subst' ty)
subst_kv kv
| Just co <- lookupVarEnv cenv kv
, let co_kind = coercionKind co
= ASSERT2( pFst co_kind `eqKind` pSnd co_kind, ppr kv $$ ppr co )
pFst co_kind
| otherwise
= TyVarTy kv
\end{code}
\begin{code}
liftCoMatch :: TyVarSet -> Type -> Coercion -> Maybe LiftCoSubst
liftCoMatch tmpls ty co
= case ty_co_match menv emptyVarEnv ty co of
Just cenv -> Just (LCS in_scope cenv)
Nothing -> Nothing
where
menv = ME { me_tmpls = tmpls, me_env = mkRnEnv2 in_scope }
in_scope = mkInScopeSet (tmpls `unionVarSet` tyCoVarsOfCo co)
ty_co_match :: MatchEnv -> LiftCoEnv -> Type -> Coercion -> Maybe LiftCoEnv
ty_co_match menv subst ty co
| Just ty' <- coreView ty = ty_co_match menv subst ty' co
ty_co_match menv cenv (TyVarTy tv1) co
| Just co1' <- lookupVarEnv cenv tv1'
= if coreEqCoercion2 (nukeRnEnvL rn_env) co1' co
then Just cenv
else Nothing
| tv1' `elemVarSet` me_tmpls menv
= if any (inRnEnvR rn_env) (varSetElems (tyCoVarsOfCo co))
then Nothing
else return (extendVarEnv cenv tv1' co)
| otherwise
= Nothing
where
rn_env = me_env menv
tv1' = rnOccL rn_env tv1
ty_co_match menv subst (AppTy ty1 ty2) co
| Just (co1, co2) <- splitAppCo_maybe co
= do { subst' <- ty_co_match menv subst ty1 co1
; ty_co_match menv subst' ty2 co2 }
ty_co_match menv subst (TyConApp tc1 tys) (TyConAppCo _ tc2 cos)
| tc1 == tc2 = ty_co_matches menv subst tys cos
ty_co_match menv subst (FunTy ty1 ty2) (TyConAppCo _ tc cos)
| tc == funTyCon = ty_co_matches menv subst [ty1,ty2] cos
ty_co_match menv subst (ForAllTy tv1 ty) (ForAllCo tv2 co)
= ty_co_match menv' subst ty co
where
menv' = menv { me_env = rnBndr2 (me_env menv) tv1 tv2 }
ty_co_match menv subst ty co
| Just co' <- pushRefl co = ty_co_match menv subst ty co'
| otherwise = Nothing
ty_co_matches :: MatchEnv -> LiftCoEnv -> [Type] -> [Coercion] -> Maybe LiftCoEnv
ty_co_matches menv = matchList (ty_co_match menv)
pushRefl :: Coercion -> Maybe Coercion
pushRefl (Refl Nominal (AppTy ty1 ty2))
= Just (AppCo (Refl Nominal ty1) (Refl Nominal ty2))
pushRefl (Refl r (FunTy ty1 ty2))
= Just (TyConAppCo r funTyCon [Refl r ty1, Refl r ty2])
pushRefl (Refl r (TyConApp tc tys))
= Just (TyConAppCo r tc (zipWith mkReflCo (tyConRolesX r tc) tys))
pushRefl (Refl r (ForAllTy tv ty)) = Just (ForAllCo tv (Refl r ty))
pushRefl _ = Nothing
\end{code}
%************************************************************************
%* *
Sequencing on coercions
%* *
%************************************************************************
\begin{code}
seqCo :: Coercion -> ()
seqCo (Refl eq ty) = eq `seq` seqType ty
seqCo (TyConAppCo eq tc cos) = eq `seq` tc `seq` seqCos cos
seqCo (AppCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (ForAllCo tv co) = tv `seq` seqCo co
seqCo (CoVarCo cv) = cv `seq` ()
seqCo (AxiomInstCo con ind cos) = con `seq` ind `seq` seqCos cos
seqCo (UnivCo r ty1 ty2) = r `seq` seqType ty1 `seq` seqType ty2
seqCo (SymCo co) = seqCo co
seqCo (TransCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (NthCo _ co) = seqCo co
seqCo (LRCo _ co) = seqCo co
seqCo (InstCo co ty) = seqCo co `seq` seqType ty
seqCo (SubCo co) = seqCo co
seqCo (AxiomRuleCo _ ts cs) = seqTypes ts `seq` seqCos cs
seqCos :: [Coercion] -> ()
seqCos [] = ()
seqCos (co:cos) = seqCo co `seq` seqCos cos
\end{code}
%************************************************************************
%* *
The kind of a type, and of a coercion
%* *
%************************************************************************
\begin{code}
coercionType :: Coercion -> Type
coercionType co = case coercionKind co of
Pair ty1 ty2 -> mkCoercionType (coercionRole co) ty1 ty2
coercionKind :: Coercion -> Pair Type
coercionKind co = go co
where
go (Refl _ ty) = Pair ty ty
go (TyConAppCo _ tc cos) = mkTyConApp tc <$> (sequenceA $ map go cos)
go (AppCo co1 co2) = mkAppTy <$> go co1 <*> go co2
go (ForAllCo tv co) = mkForAllTy tv <$> go co
go (CoVarCo cv) = toPair $ coVarKind cv
go (AxiomInstCo ax ind cos)
| CoAxBranch { cab_tvs = tvs, cab_lhs = lhs, cab_rhs = rhs } <- coAxiomNthBranch ax ind
, Pair tys1 tys2 <- sequenceA (map go cos)
= ASSERT( cos `equalLength` tvs )
Pair (substTyWith tvs tys1 (mkTyConApp (coAxiomTyCon ax) lhs))
(substTyWith tvs tys2 rhs)
go (UnivCo _ ty1 ty2) = Pair ty1 ty2
go (SymCo co) = swap $ go co
go (TransCo co1 co2) = Pair (pFst $ go co1) (pSnd $ go co2)
go (NthCo d co) = tyConAppArgN d <$> go co
go (LRCo lr co) = (pickLR lr . splitAppTy) <$> go co
go (InstCo aco ty) = go_app aco [ty]
go (SubCo co) = go co
go (AxiomRuleCo ax tys cos) =
case coaxrProves ax tys (map coercionKind cos) of
Just res -> res
Nothing -> panic "coercionKind: Malformed coercion"
go_app :: Coercion -> [Type] -> Pair Type
go_app (InstCo co ty) tys = go_app co (ty:tys)
go_app co tys = (`applyTys` tys) <$> go co
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds tys = sequenceA $ map coercionKind tys
coercionRole :: Coercion -> Role
coercionRole = go
where
go (Refl r _) = r
go (TyConAppCo r _ _) = r
go (AppCo co _) = go co
go (ForAllCo _ co) = go co
go (CoVarCo cv) = coVarRole cv
go (AxiomInstCo ax _ _) = coAxiomRole ax
go (UnivCo r _ _) = r
go (SymCo co) = go co
go (TransCo co1 _) = go co1
go (NthCo n co) = let Pair ty1 _ = coercionKind co
(tc, _) = splitTyConApp ty1
in nthRole (coercionRole co) tc n
go (LRCo _ _) = Nominal
go (InstCo co _) = go co
go (SubCo _) = Representational
go (AxiomRuleCo c _ _) = coaxrRole c
\end{code}
Note [Nested InstCos]
~~~~~~~~~~~~~~~~~~~~~
In Trac #5631 we found that 70% of the entire compilation time was
being spent in coercionKind! The reason was that we had
(g @ ty1 @ ty2 .. @ ty100) -- The "@s" are InstCos
where
g :: forall a1 a2 .. a100. phi
If we deal with the InstCos one at a time, we'll do this:
1. Find the kind of (g @ ty1 .. @ ty99) : forall a100. phi'
2. Substitute phi'[ ty100/a100 ], a single tyvar->type subst
But this is a *quadratic* algorithm, and the blew up Trac #5631.
So it's very important to do the substitution simultaneously.
cf Type.applyTys (which in fact we call here)
\begin{code}
applyCo :: Type -> Coercion -> Type
applyCo ty co | Just ty' <- coreView ty = applyCo ty' co
applyCo (FunTy _ ty) _ = ty
applyCo _ _ = panic "applyCo"
\end{code}
Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Kind coercions are only of the form: Refl kind. They are only used to
instantiate kind polymorphic type constructors in TyConAppCo. Remember
that kind instantiation only happens with TyConApp, not AppTy.