% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1998 % \section[DataCon]{@DataCon@: Data Constructors} \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module DataCon (
        -- * Main data types
	DataCon, DataConRep(..), HsBang(..), StrictnessMark(..),
	ConTag,
	
	-- ** Type construction
	mkDataCon, fIRST_TAG,
        buildAlgTyCon, 
	
	-- ** Type deconstruction
	dataConRepType, dataConSig, dataConFullSig,
	dataConName, dataConIdentity, dataConTag, dataConTyCon, 
        dataConOrigTyCon, dataConUserType,
	dataConUnivTyVars, dataConExTyVars, dataConAllTyVars, 
	dataConEqSpec, eqSpecPreds, dataConTheta,
	dataConStupidTheta,  
	dataConInstArgTys, dataConOrigArgTys, dataConOrigResTy,
	dataConInstOrigArgTys, dataConRepArgTys, 
	dataConFieldLabels, dataConFieldType,
	dataConStrictMarks, 
	dataConSourceArity, dataConRepArity, dataConRepRepArity,
	dataConIsInfix,
	dataConWorkId, dataConWrapId, dataConWrapId_maybe, dataConImplicitIds,
	dataConRepStrictness, dataConRepBangs, dataConBoxer,

	splitDataProductType_maybe,

        tyConsOfTyCon,

	-- ** Predicates on DataCons
	isNullarySrcDataCon, isNullaryRepDataCon, isTupleDataCon, isUnboxedTupleCon,
	isVanillaDataCon, classDataCon, dataConCannotMatch,
        isBanged, isMarkedStrict, eqHsBang,

        -- ** Promotion related functions
        promoteKind, promoteDataCon, promoteDataCon_maybe
    ) where

#include "HsVersions.h"

import {-# SOURCE #-} MkId( DataConBoxer )
import Type
import TypeRep( Type(..) )  -- Used in promoteType
import PrelNames( liftedTypeKindTyConKey )
import ForeignCall( CType )
import Coercion
import Kind
import Unify
import TyCon
import Class
import Name
import Var
import Outputable
import Unique
import ListSetOps
import Util
import BasicTypes
import FastString
import Module
import VarEnv
import NameEnv

import qualified Data.Data as Data
import qualified Data.Typeable
import Data.Maybe
import Data.Char
import Data.Word
\end{code} Data constructor representation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the following Haskell data type declaration data T = T !Int ![Int] Using the strictness annotations, GHC will represent this as data T = T Int# [Int] That is, the Int has been unboxed. Furthermore, the Haskell source construction T e1 e2 is translated to case e1 of { I# x -> case e2 of { r -> T x r }} That is, the first argument is unboxed, and the second is evaluated. Finally, pattern matching is translated too: case e of { T a b -> ... } becomes case e of { T a' b -> let a = I# a' in ... } To keep ourselves sane, we name the different versions of the data constructor differently, as follows. Note [Data Constructor Naming] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Each data constructor C has two, and possibly up to four, Names associated with it: OccName Name space Name of Notes --------------------------------------------------------------------------- The "data con itself" C DataName DataCon In dom( GlobalRdrEnv ) The "worker data con" C VarName Id The worker The "wrapper data con" $WC VarName Id The wrapper The "newtype coercion" :CoT TcClsName TyCon EVERY data constructor (incl for newtypes) has the former two (the data con itself, and its worker. But only some data constructors have a wrapper (see Note [The need for a wrapper]). Each of these three has a distinct Unique. The "data con itself" name appears in the output of the renamer, and names the Haskell-source data constructor. The type checker translates it into either the wrapper Id (if it exists) or worker Id (otherwise). The data con has one or two Ids associated with it: The "worker Id", is the actual data constructor. * Every data constructor (newtype or data type) has a worker * The worker is very like a primop, in that it has no binding. * For a *data* type, the worker *is* the data constructor; it has no unfolding * For a *newtype*, the worker has a compulsory unfolding which does a cast, e.g. newtype T = MkT Int The worker for MkT has unfolding \\(x:Int). x `cast` sym CoT Here CoT is the type constructor, witnessing the FC axiom axiom CoT : T = Int The "wrapper Id", \$WC, goes as follows * Its type is exactly what it looks like in the source program. * It is an ordinary function, and it gets a top-level binding like any other function. * The wrapper Id isn't generated for a data type if there is nothing for the wrapper to do. That is, if its defn would be \$wC = C Note [The need for a wrapper] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Why might the wrapper have anything to do? Two reasons: * Unboxing strict fields (with -funbox-strict-fields) data T = MkT !(Int,Int) \$wMkT :: (Int,Int) -> T \$wMkT (x,y) = MkT x y Notice that the worker has two fields where the wapper has just one. That is, the worker has type MkT :: Int -> Int -> T * Equality constraints for GADTs data T a where { MkT :: a -> T [a] } The worker gets a type with explicit equality constraints, thus: MkT :: forall a b. (a=[b]) => b -> T a The wrapper has the programmer-specified type: \$wMkT :: a -> T [a] \$wMkT a x = MkT [a] a [a] x The third argument is a coerion [a] :: [a]~[a] INVARIANT: the dictionary constructor for a class never has a wrapper. A note about the stupid context ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Data types can have a context: data (Eq a, Ord b) => T a b = T1 a b | T2 a and that makes the constructors have a context too (notice that T2's context is "thinned"): T1 :: (Eq a, Ord b) => a -> b -> T a b T2 :: (Eq a) => a -> T a b Furthermore, this context pops up when pattern matching (though GHC hasn't implemented this, but it is in H98, and I've fixed GHC so that it now does): f (T2 x) = x gets inferred type f :: Eq a => T a b -> a I say the context is "stupid" because the dictionaries passed are immediately discarded -- they do nothing and have no benefit. It's a flaw in the language. Up to now [March 2002] I have put this stupid context into the type of the "wrapper" constructors functions, T1 and T2, but that turned out to be jolly inconvenient for generics, and record update, and other functions that build values of type T (because they don't have suitable dictionaries available). So now I've taken the stupid context out. I simply deal with it separately in the type checker on occurrences of a constructor, either in an expression or in a pattern. [May 2003: actually I think this decision could evasily be reversed now, and probably should be. Generics could be disabled for types with a stupid context; record updates now (H98) needs the context too; etc. It's an unforced change, so I'm leaving it for now --- but it does seem odd that the wrapper doesn't include the stupid context.] [July 04] With the advent of generalised data types, it's less obvious what the "stupid context" is. Consider C :: forall a. Ord a => a -> a -> T (Foo a) Does the C constructor in Core contain the Ord dictionary? Yes, it must: f :: T b -> Ordering f = /\b. \x:T b. case x of C a (d:Ord a) (p:a) (q:a) -> compare d p q Note that (Foo a) might not be an instance of Ord. %************************************************************************ %* * \subsection{Data constructors} %* * %************************************************************************ \begin{code}
-- | A data constructor
data DataCon
  = MkData {
	dcName    :: Name,	-- This is the name of the *source data con*
				-- (see "Note [Data Constructor Naming]" above)
	dcUnique :: Unique, 	-- Cached from Name
	dcTag    :: ConTag,     -- ^ Tag, used for ordering 'DataCon's

	-- Running example:
	--
	-- 	*** As declared by the user
	--  data T a where
	--    MkT :: forall x y. (x~y,Ord x) => x -> y -> T (x,y)

	-- 	*** As represented internally
	--  data T a where
	--    MkT :: forall a. forall x y. (a~(x,y),x~y,Ord x) => x -> y -> T a
	-- 
	-- The next six fields express the type of the constructor, in pieces
	-- e.g.
	--
	--	dcUnivTyVars  = [a]
	--	dcExTyVars    = [x,y]
	--	dcEqSpec      = [a~(x,y)]
	--	dcOtherTheta  = [x~y, Ord x]	
	--	dcOrigArgTys  = [x,y]
	--	dcRepTyCon       = T

	dcVanilla :: Bool,	-- True <=> This is a vanilla Haskell 98 data constructor
				--	    Its type is of form
				--	        forall a1..an . t1 -> ... tm -> T a1..an
				-- 	    No existentials, no coercions, nothing.
				-- That is: dcExTyVars = dcEqSpec = dcOtherTheta = []
		-- NB 1: newtypes always have a vanilla data con
		-- NB 2: a vanilla constructor can still be declared in GADT-style 
		--	 syntax, provided its type looks like the above.
		--       The declaration format is held in the TyCon (algTcGadtSyntax)

	dcUnivTyVars :: [TyVar],	-- Universally-quantified type vars [a,b,c]
					-- INVARIANT: length matches arity of the dcRepTyCon
					---           result type of (rep) data con is exactly (T a b c)

	dcExTyVars   :: [TyVar],	-- Existentially-quantified type vars 
		-- In general, the dcUnivTyVars are NOT NECESSARILY THE SAME AS THE TYVARS
		-- FOR THE PARENT TyCon. With GADTs the data con might not even have 
		-- the same number of type variables.
		-- [This is a change (Oct05): previously, vanilla datacons guaranteed to
		--  have the same type variables as their parent TyCon, but that seems ugly.]

	-- INVARIANT: the UnivTyVars and ExTyVars all have distinct OccNames
	-- Reason: less confusing, and easier to generate IfaceSyn

	dcEqSpec :: [(TyVar,Type)],	-- Equalities derived from the result type, 
					-- _as written by the programmer_
		-- This field allows us to move conveniently between the two ways
		-- of representing a GADT constructor's type:
		--	MkT :: forall a b. (a ~ [b]) => b -> T a
		--	MkT :: forall b. b -> T [b]
		-- Each equality is of the form (a ~ ty), where 'a' is one of 
		-- the universally quantified type variables
					
		-- The next two fields give the type context of the data constructor
		-- 	(aside from the GADT constraints, 
		--	 which are given by the dcExpSpec)
		-- In GADT form, this is *exactly* what the programmer writes, even if
		-- the context constrains only universally quantified variables
		--	MkT :: forall a b. (a ~ b, Ord b) => a -> T a b
	dcOtherTheta :: ThetaType,  -- The other constraints in the data con's type
		                    -- other than those in the dcEqSpec

	dcStupidTheta :: ThetaType,	-- The context of the data type declaration 
					--	data Eq a => T a = ...
					-- or, rather, a "thinned" version thereof
		-- "Thinned", because the Report says
		-- to eliminate any constraints that don't mention
		-- tyvars free in the arg types for this constructor
		--
		-- INVARIANT: the free tyvars of dcStupidTheta are a subset of dcUnivTyVars
		-- Reason: dcStupidTeta is gotten by thinning the stupid theta from the tycon
		-- 
		-- "Stupid", because the dictionaries aren't used for anything.  
		-- Indeed, [as of March 02] they are no longer in the type of 
		-- the wrapper Id, because that makes it harder to use the wrap-id 
		-- to rebuild values after record selection or in generics.

	dcOrigArgTys :: [Type],		-- Original argument types
					-- (before unboxing and flattening of strict fields)
	dcOrigResTy :: Type,		-- Original result type, as seen by the user
		-- NB: for a data instance, the original user result type may 
		-- differ from the DataCon's representation TyCon.  Example
		--	data instance T [a] where MkT :: a -> T [a]
		-- The OrigResTy is T [a], but the dcRepTyCon might be :T123

	-- Now the strictness annotations and field labels of the constructor
        -- See Note [Bangs on data constructor arguments]
	dcArgBangs :: [HsBang],
		-- Strictness annotations as decided by the compiler.  
		-- Matches 1-1 with dcOrigArgTys
		-- Hence length = dataConSourceArity dataCon

	dcFields  :: [FieldLabel],
		-- Field labels for this constructor, in the
		-- same order as the dcOrigArgTys; 
		-- length = 0 (if not a record) or dataConSourceArity.

	-- The curried worker function that corresponds to the constructor:
	-- It doesn't have an unfolding; the code generator saturates these Ids
	-- and allocates a real constructor when it finds one.
	dcWorkId :: Id,

	-- Constructor representation
        dcRep      :: DataConRep,

        -- Cached
        dcRepArity    :: Arity,  -- == length dataConRepArgTys
        dcSourceArity :: Arity,  -- == length dcOrigArgTys

	-- Result type of constructor is T t1..tn
	dcRepTyCon  :: TyCon,		-- Result tycon, T

	dcRepType   :: Type,	-- Type of the constructor
				-- 	forall a x y. (a~(x,y), x~y, Ord x) =>
                                --        x -> y -> T a
				-- (this is *not* of the constructor wrapper Id:
				--  see Note [Data con representation] below)
	-- Notice that the existential type parameters come *second*.  
	-- Reason: in a case expression we may find:
	--	case (e :: T t) of
        --        MkT x y co1 co2 (d:Ord x) (v:r) (w:F s) -> ...
	-- It's convenient to apply the rep-type of MkT to 't', to get
	--	forall x y. (t~(x,y), x~y, Ord x) => x -> y -> T t
	-- and use that to check the pattern.  Mind you, this is really only
	-- used in CoreLint.


	dcInfix :: Bool,	-- True <=> declared infix
				-- Used for Template Haskell and 'deriving' only
				-- The actual fixity is stored elsewhere

        dcPromoted :: Maybe TyCon    -- The promoted TyCon if this DataCon is promotable
                                     -- See Note [Promoted data constructors] in TyCon
  }
  deriving Data.Typeable.Typeable

data DataConRep 
  = NoDataConRep              -- No wrapper

  | DCR { dcr_wrap_id :: Id   -- Takes src args, unboxes/flattens, 
                              -- and constructs the representation

        , dcr_boxer   :: DataConBoxer

        , dcr_arg_tys :: [Type]  -- Final, representation argument types, 
                                 -- after unboxing and flattening,
                                 -- and *including* all evidence args

        , dcr_stricts :: [StrictnessMark]  -- 1-1 with dcr_arg_tys
		-- See also Note [Data-con worker strictness] in MkId.lhs

        , dcr_bangs :: [HsBang]  -- The actual decisions made (including failures)
                                 -- 1-1 with orig_arg_tys
                                 -- See Note [Bangs on data constructor arguments]

    }
-- Algebraic data types always have a worker, and
-- may or may not have a wrapper, depending on whether
-- the wrapper does anything.  
--
-- Data types have a worker with no unfolding
-- Newtypes just have a worker, which has a compulsory unfolding (just a cast)

-- _Neither_ the worker _nor_ the wrapper take the dcStupidTheta dicts as arguments

-- The wrapper (if it exists) takes dcOrigArgTys as its arguments
-- The worker takes dataConRepArgTys as its arguments
-- If the worker is absent, dataConRepArgTys is the same as dcOrigArgTys

-- The 'NoDataConRep' case is important
-- Not only is this efficient,
-- but it also ensures that the wrapper is replaced
-- by the worker (because it *is* the worker)
-- even when there are no args. E.g. in
-- 		f (:) x
-- the (:) *is* the worker.
-- This is really important in rule matching,
-- (We could match on the wrappers,
-- but that makes it less likely that rules will match
-- when we bring bits of unfoldings together.)

-------------------------
-- HsBang describes what the *programmer* wrote
-- This info is retained in the DataCon.dcStrictMarks field
data HsBang 
  = HsUserBang   -- The user's source-code request
       (Maybe Bool)       -- Just True    {-# UNPACK #-}
                          -- Just False   {-# NOUNPACK #-}
                          -- Nothing      no pragma
       Bool               -- True <=> '!' specified

  | HsNoBang	          -- Lazy field
                          -- HsUserBang Nothing False means the same as HsNoBang

  | HsUnpack              -- Definite commitment: this field is strict and unboxed
       (Maybe Coercion)   --    co :: arg-ty ~ product-ty

  | HsStrict              -- Definite commitment: this field is strict but not unboxed
  deriving (Data.Data, Data.Typeable)

-------------------------
-- StrictnessMark is internal only, used to indicate strictness 
-- of the DataCon *worker* fields
data StrictnessMark = MarkedStrict | NotMarkedStrict	
\end{code} Note [Data con representation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The dcRepType field contains the type of the representation of a contructor This may differ from the type of the contructor *Id* (built by MkId.mkDataConId) for two reasons: a) the constructor Id may be overloaded, but the dictionary isn't stored e.g. data Eq a => T a = MkT a a b) the constructor may store an unboxed version of a strict field. Here's an example illustrating both: data Ord a => T a = MkT Int! a Here T :: Ord a => Int -> a -> T a but the rep type is Trep :: Int# -> a -> T a Actually, the unboxed part isn't implemented yet! Note [Bangs on data constructor arguments] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T = MkT !Int {-# UNPACK #-} !Int Bool Its dcArgBangs field records the *users* specifications, in this case [ HsUserBang Nothing True , HsUserBang (Just True) True , HsNoBang] See the declaration of HsBang in BasicTypes The dcr_bangs field of the dcRep field records the *actual, decided* representation of the data constructor. Without -O this might be [HsStrict, HsStrict, HsNoBang] With -O it might be [HsStrict, HsUnpack, HsNoBang] With -funbox-small-strict-fields it might be [HsUnpack, HsUnpack, HsNoBang] For imported data types, the dcArgBangs field is just the same as the dcr_bangs field; we don't know what the user originally said. %************************************************************************ %* * \subsection{Instances} %* * %************************************************************************ \begin{code}
instance Eq DataCon where
    a == b = getUnique a == getUnique b
    a /= b = getUnique a /= getUnique b

instance Ord DataCon where
    a <= b = getUnique a <= getUnique b
    a <	 b = getUnique a <  getUnique b
    a >= b = getUnique a >= getUnique b
    a >	 b = getUnique a > getUnique b
    compare a b = getUnique a `compare` getUnique b

instance Uniquable DataCon where
    getUnique = dcUnique

instance NamedThing DataCon where
    getName = dcName

instance Outputable DataCon where
    ppr con = ppr (dataConName con)

instance OutputableBndr DataCon where
    pprInfixOcc con = pprInfixName (dataConName con)
    pprPrefixOcc con = pprPrefixName (dataConName con)

instance Data.Data DataCon where
    -- don't traverse?
    toConstr _   = abstractConstr "DataCon"
    gunfold _ _  = error "gunfold"
    dataTypeOf _ = mkNoRepType "DataCon"

instance Outputable HsBang where
    ppr HsNoBang               = empty
    ppr (HsUserBang prag bang) = pp_unpk prag <+> ppWhen bang (char '!')
    ppr (HsUnpack Nothing)     = ptext (sLit "Unpk")
    ppr (HsUnpack (Just co))   = ptext (sLit "Unpk") <> parens (ppr co)
    ppr HsStrict               = ptext (sLit "SrictNotUnpacked")

pp_unpk :: Maybe Bool -> SDoc
pp_unpk Nothing      = empty
pp_unpk (Just True)  = ptext (sLit "{-# UNPACK #-}")
pp_unpk (Just False) = ptext (sLit "{-# NOUNPACK #-}")

instance Outputable StrictnessMark where
  ppr MarkedStrict     = ptext (sLit "!")
  ppr NotMarkedStrict  = empty


eqHsBang :: HsBang -> HsBang -> Bool
eqHsBang HsNoBang             HsNoBang             = True
eqHsBang HsStrict             HsStrict             = True
eqHsBang (HsUserBang u1 b1)   (HsUserBang u2 b2)   = u1==u2 && b1==b2
eqHsBang (HsUnpack Nothing)   (HsUnpack Nothing)   = True
eqHsBang (HsUnpack (Just c1)) (HsUnpack (Just c2)) = eqType (coercionType c1) (coercionType c2)
eqHsBang _ _ = False

isBanged :: HsBang -> Bool
isBanged HsNoBang                  = False
isBanged (HsUserBang Nothing bang) = bang
isBanged _                         = True

isMarkedStrict :: StrictnessMark -> Bool
isMarkedStrict NotMarkedStrict = False
isMarkedStrict _               = True   -- All others are strict
\end{code} %************************************************************************ %* * \subsection{Construction} %* * %************************************************************************ \begin{code}
-- | Build a new data constructor
mkDataCon :: Name 
	  -> Bool	        -- ^ Is the constructor declared infix?
	  -> [HsBang]           -- ^ Strictness annotations written in the source file
	  -> [FieldLabel]       -- ^ Field labels for the constructor, if it is a record, 
				--   otherwise empty
	  -> [TyVar]            -- ^ Universally quantified type variables
	  -> [TyVar]            -- ^ Existentially quantified type variables
	  -> [(TyVar,Type)]     -- ^ GADT equalities
	  -> ThetaType          -- ^ Theta-type occuring before the arguments proper
	  -> [Type]             -- ^ Original argument types
	  -> Type		-- ^ Original result type
	  -> TyCon              -- ^ Representation type constructor
	  -> ThetaType          -- ^ The "stupid theta", context of the data declaration 
				--   e.g. @data Eq a => T a ...@
          -> Id                 -- ^ Worker Id
	  -> DataConRep         -- ^ Representation
	  -> DataCon
  -- Can get the tag from the TyCon

mkDataCon name declared_infix
	  arg_stricts	-- Must match orig_arg_tys 1-1
	  fields
	  univ_tvs ex_tvs 
	  eq_spec theta
	  orig_arg_tys orig_res_ty rep_tycon
	  stupid_theta work_id rep
-- Warning: mkDataCon is not a good place to check invariants. 
-- If the programmer writes the wrong result type in the decl, thus:
--	data T a where { MkT :: S }
-- then it's possible that the univ_tvs may hit an assertion failure
-- if you pull on univ_tvs.  This case is checked by checkValidDataCon,
-- so the error is detected properly... it's just that asaertions here
-- are a little dodgy.

  = con
  where
    is_vanilla = null ex_tvs && null eq_spec && null theta
    con = MkData {dcName = name, dcUnique = nameUnique name, 
		  dcVanilla = is_vanilla, dcInfix = declared_infix,
	  	  dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs, 
		  dcEqSpec = eq_spec, 
		  dcOtherTheta = theta,
		  dcStupidTheta = stupid_theta, 
		  dcOrigArgTys = orig_arg_tys, dcOrigResTy = orig_res_ty,
		  dcRepTyCon = rep_tycon, 
		  dcArgBangs = arg_stricts, 
		  dcFields = fields, dcTag = tag, dcRepType = rep_ty,
		  dcWorkId = work_id,
                  dcRep = rep, 
                  dcSourceArity = length orig_arg_tys,
                  dcRepArity = length rep_arg_tys,
                  dcPromoted = mb_promoted }

	-- The 'arg_stricts' passed to mkDataCon are simply those for the
	-- source-language arguments.  We add extra ones for the
	-- dictionary arguments right here.

    tag = assoc "mkDataCon" (tyConDataCons rep_tycon `zip` [fIRST_TAG..]) con
    rep_arg_tys = dataConRepArgTys con
    rep_ty = mkForAllTys univ_tvs $ mkForAllTys ex_tvs $ 
	     mkFunTys rep_arg_tys $
	     mkTyConApp rep_tycon (mkTyVarTys univ_tvs)

    mb_promoted   -- See Note [Promoted data constructors] in TyCon
      | isJust (promotableTyCon_maybe rep_tycon)
          -- The TyCon is promotable only if all its datacons
          -- are, so the promoteType for prom_kind should succeed
      = Just (mkPromotedDataCon con name (getUnique name) prom_kind roles)
      | otherwise 
      = Nothing          
    prom_kind = promoteType (dataConUserType con)
    roles = map (const Nominal)          (univ_tvs ++ ex_tvs) ++
            map (const Representational) orig_arg_tys

eqSpecPreds :: [(TyVar,Type)] -> ThetaType
eqSpecPreds spec = [ mkEqPred (mkTyVarTy tv) ty | (tv,ty) <- spec ]
\end{code} Note [Unpack equality predicates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we have a GADT with a contructor C :: (a~[b]) => b -> T a we definitely want that equality predicate *unboxed* so that it takes no space at all. This is easily done: just give it an UNPACK pragma. The rest of the unpack/repack code does the heavy lifting. This one line makes every GADT take a word less space for each equality predicate, so it's pretty important! \begin{code}
-- | The 'Name' of the 'DataCon', giving it a unique, rooted identification
dataConName :: DataCon -> Name
dataConName = dcName

-- | The tag used for ordering 'DataCon's
dataConTag :: DataCon -> ConTag
dataConTag  = dcTag

-- | The type constructor that we are building via this data constructor
dataConTyCon :: DataCon -> TyCon
dataConTyCon = dcRepTyCon

-- | The original type constructor used in the definition of this data
-- constructor.  In case of a data family instance, that will be the family
-- type constructor.
dataConOrigTyCon :: DataCon -> TyCon
dataConOrigTyCon dc 
  | Just (tc, _) <- tyConFamInst_maybe (dcRepTyCon dc) = tc
  | otherwise                                          = dcRepTyCon dc

-- | The representation type of the data constructor, i.e. the sort
-- type that will represent values of this type at runtime
dataConRepType :: DataCon -> Type
dataConRepType = dcRepType

-- | Should the 'DataCon' be presented infix?
dataConIsInfix :: DataCon -> Bool
dataConIsInfix = dcInfix

-- | The universally-quantified type variables of the constructor
dataConUnivTyVars :: DataCon -> [TyVar]
dataConUnivTyVars = dcUnivTyVars

-- | The existentially-quantified type variables of the constructor
dataConExTyVars :: DataCon -> [TyVar]
dataConExTyVars = dcExTyVars

-- | Both the universal and existentiatial type variables of the constructor
dataConAllTyVars :: DataCon -> [TyVar]
dataConAllTyVars (MkData { dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs })
  = univ_tvs ++ ex_tvs

-- | Equalities derived from the result type of the data constructor, as written
-- by the programmer in any GADT declaration
dataConEqSpec :: DataCon -> [(TyVar,Type)]
dataConEqSpec = dcEqSpec

-- | The *full* constraints on the constructor type
dataConTheta :: DataCon -> ThetaType
dataConTheta (MkData { dcEqSpec = eq_spec, dcOtherTheta = theta }) 
  = eqSpecPreds eq_spec ++ theta

-- | Get the Id of the 'DataCon' worker: a function that is the "actual"
-- constructor and has no top level binding in the program. The type may
-- be different from the obvious one written in the source program. Panics
-- if there is no such 'Id' for this 'DataCon'
dataConWorkId :: DataCon -> Id
dataConWorkId dc = dcWorkId dc

-- | Get the Id of the 'DataCon' wrapper: a function that wraps the "actual"
-- constructor so it has the type visible in the source program: c.f. 'dataConWorkId'.
-- Returns Nothing if there is no wrapper, which occurs for an algebraic data constructor 
-- and also for a newtype (whose constructor is inlined compulsorily)
dataConWrapId_maybe :: DataCon -> Maybe Id
dataConWrapId_maybe dc = case dcRep dc of
                           NoDataConRep -> Nothing
                           DCR { dcr_wrap_id = wrap_id } -> Just wrap_id

-- | Returns an Id which looks like the Haskell-source constructor by using
-- the wrapper if it exists (see 'dataConWrapId_maybe') and failing over to
-- the worker (see 'dataConWorkId')
dataConWrapId :: DataCon -> Id
dataConWrapId dc = case dcRep dc of
                     NoDataConRep-> dcWorkId dc    -- worker=wrapper
                     DCR { dcr_wrap_id = wrap_id } -> wrap_id

-- | Find all the 'Id's implicitly brought into scope by the data constructor. Currently,
-- the union of the 'dataConWorkId' and the 'dataConWrapId'
dataConImplicitIds :: DataCon -> [Id]
dataConImplicitIds (MkData { dcWorkId = work, dcRep = rep})
  = case rep of
       NoDataConRep               -> [work]
       DCR { dcr_wrap_id = wrap } -> [wrap,work]

-- | The labels for the fields of this particular 'DataCon'
dataConFieldLabels :: DataCon -> [FieldLabel]
dataConFieldLabels = dcFields

-- | Extract the type for any given labelled field of the 'DataCon'
dataConFieldType :: DataCon -> FieldLabel -> Type
dataConFieldType con label
  = case lookup label (dcFields con `zip` dcOrigArgTys con) of
      Just ty -> ty
      Nothing -> pprPanic "dataConFieldType" (ppr con <+> ppr label)

-- | The strictness markings decided on by the compiler.  Does not include those for
-- existential dictionaries.  The list is in one-to-one correspondence with the arity of the 'DataCon'
dataConStrictMarks :: DataCon -> [HsBang]
dataConStrictMarks = dcArgBangs

-- | Source-level arity of the data constructor
dataConSourceArity :: DataCon -> Arity
dataConSourceArity (MkData { dcSourceArity = arity }) = arity

-- | Gives the number of actual fields in the /representation/ of the 
-- data constructor. This may be more than appear in the source code;
-- the extra ones are the existentially quantified dictionaries
dataConRepArity :: DataCon -> Arity
dataConRepArity (MkData { dcRepArity = arity }) = arity


-- | The number of fields in the /representation/ of the constructor
-- AFTER taking into account the unpacking of any unboxed tuple fields
dataConRepRepArity :: DataCon -> RepArity
dataConRepRepArity dc = typeRepArity (dataConRepArity dc) (dataConRepType dc)

-- | Return whether there are any argument types for this 'DataCon's original source type
isNullarySrcDataCon :: DataCon -> Bool
isNullarySrcDataCon dc = null (dcOrigArgTys dc)

-- | Return whether there are any argument types for this 'DataCon's runtime representation type
isNullaryRepDataCon :: DataCon -> Bool
isNullaryRepDataCon dc = dataConRepArity dc == 0

dataConRepStrictness :: DataCon -> [StrictnessMark]
-- ^ Give the demands on the arguments of a
-- Core constructor application (Con dc args)
dataConRepStrictness dc = case dcRep dc of
                            NoDataConRep -> [NotMarkedStrict | _ <- dataConRepArgTys dc]
                            DCR { dcr_stricts = strs } -> strs

dataConRepBangs :: DataCon -> [HsBang]
dataConRepBangs dc = case dcRep dc of
                       NoDataConRep -> dcArgBangs dc
                       DCR { dcr_bangs = bangs } -> bangs

dataConBoxer :: DataCon -> Maybe DataConBoxer
dataConBoxer (MkData { dcRep = DCR { dcr_boxer = boxer } }) = Just boxer
dataConBoxer _ = Nothing 

-- | The \"signature\" of the 'DataCon' returns, in order:
--
-- 1) The result of 'dataConAllTyVars',
--
-- 2) All the 'ThetaType's relating to the 'DataCon' (coercion, dictionary, implicit
--    parameter - whatever)
--
-- 3) The type arguments to the constructor
--
-- 4) The /original/ result type of the 'DataCon'
dataConSig :: DataCon -> ([TyVar], ThetaType, [Type], Type)
dataConSig (MkData {dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs, 
		    dcEqSpec = eq_spec, dcOtherTheta  = theta, 
		    dcOrigArgTys = arg_tys, dcOrigResTy = res_ty})
  = (univ_tvs ++ ex_tvs, eqSpecPreds eq_spec ++ theta, arg_tys, res_ty)

-- | The \"full signature\" of the 'DataCon' returns, in order:
--
-- 1) The result of 'dataConUnivTyVars'
--
-- 2) The result of 'dataConExTyVars'
--
-- 3) The result of 'dataConEqSpec'
--
-- 4) The result of 'dataConDictTheta'
--
-- 5) The original argument types to the 'DataCon' (i.e. before 
--    any change of the representation of the type)
--
-- 6) The original result type of the 'DataCon'
dataConFullSig :: DataCon 
	       -> ([TyVar], [TyVar], [(TyVar,Type)], ThetaType, [Type], Type)
dataConFullSig (MkData {dcUnivTyVars = univ_tvs, dcExTyVars = ex_tvs, 
			dcEqSpec = eq_spec, dcOtherTheta = theta,
			dcOrigArgTys = arg_tys, dcOrigResTy = res_ty})
  = (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, res_ty)

dataConOrigResTy :: DataCon -> Type
dataConOrigResTy dc = dcOrigResTy dc

-- | The \"stupid theta\" of the 'DataCon', such as @data Eq a@ in:
--
-- > data Eq a => T a = ...
dataConStupidTheta :: DataCon -> ThetaType
dataConStupidTheta dc = dcStupidTheta dc

dataConUserType :: DataCon -> Type
-- ^ The user-declared type of the data constructor
-- in the nice-to-read form:
--
-- > T :: forall a b. a -> b -> T [a]
--
-- rather than:
--
-- > T :: forall a c. forall b. (c~[a]) => a -> b -> T c
--
-- NB: If the constructor is part of a data instance, the result type
-- mentions the family tycon, not the internal one.
dataConUserType  (MkData { dcUnivTyVars = univ_tvs, 
			   dcExTyVars = ex_tvs, dcEqSpec = eq_spec,
			   dcOtherTheta = theta, dcOrigArgTys = arg_tys,
			   dcOrigResTy = res_ty })
  = mkForAllTys ((univ_tvs `minusList` map fst eq_spec) ++ ex_tvs) $
    mkFunTys theta $
    mkFunTys arg_tys $
    res_ty

-- | Finds the instantiated types of the arguments required to construct a 'DataCon' representation
-- NB: these INCLUDE any dictionary args
--     but EXCLUDE the data-declaration context, which is discarded
-- It's all post-flattening etc; this is a representation type
dataConInstArgTys :: DataCon	-- ^ A datacon with no existentials or equality constraints
				-- However, it can have a dcTheta (notably it can be a 
				-- class dictionary, with superclasses)
	      	  -> [Type] 	-- ^ Instantiated at these types
	      	  -> [Type]
dataConInstArgTys dc@(MkData {dcUnivTyVars = univ_tvs, dcEqSpec = eq_spec,
			      dcExTyVars = ex_tvs}) inst_tys
 = ASSERT2( length univ_tvs == length inst_tys
          , ptext (sLit "dataConInstArgTys") <+> ppr dc $$ ppr univ_tvs $$ ppr inst_tys)
   ASSERT2( null ex_tvs && null eq_spec, ppr dc )
   map (substTyWith univ_tvs inst_tys) (dataConRepArgTys dc)

-- | Returns just the instantiated /value/ argument types of a 'DataCon',
-- (excluding dictionary args)
dataConInstOrigArgTys 
	:: DataCon	-- Works for any DataCon
	-> [Type]	-- Includes existential tyvar args, but NOT
			-- equality constraints or dicts
	-> [Type]
-- For vanilla datacons, it's all quite straightforward
-- But for the call in MatchCon, we really do want just the value args
dataConInstOrigArgTys dc@(MkData {dcOrigArgTys = arg_tys,
			          dcUnivTyVars = univ_tvs, 
			          dcExTyVars = ex_tvs}) inst_tys
  = ASSERT2( length tyvars == length inst_tys
          , ptext (sLit "dataConInstOrigArgTys") <+> ppr dc $$ ppr tyvars $$ ppr inst_tys )
    map (substTyWith tyvars inst_tys) arg_tys
  where
    tyvars = univ_tvs ++ ex_tvs
\end{code} \begin{code}
-- | Returns the argument types of the wrapper, excluding all dictionary arguments
-- and without substituting for any type variables
dataConOrigArgTys :: DataCon -> [Type]
dataConOrigArgTys dc = dcOrigArgTys dc

-- | Returns the arg types of the worker, including *all* evidence, after any 
-- flattening has been done and without substituting for any type variables
dataConRepArgTys :: DataCon -> [Type]
dataConRepArgTys (MkData { dcRep = rep 
                         , dcEqSpec = eq_spec
                         , dcOtherTheta = theta
		         , dcOrigArgTys = orig_arg_tys })
  = case rep of
      NoDataConRep -> ASSERT( null eq_spec ) theta ++ orig_arg_tys
      DCR { dcr_arg_tys = arg_tys } -> arg_tys
\end{code} \begin{code}
-- | The string @package:module.name@ identifying a constructor, which is attached
-- to its info table and used by the GHCi debugger and the heap profiler
dataConIdentity :: DataCon -> [Word8]
-- We want this string to be UTF-8, so we get the bytes directly from the FastStrings.
dataConIdentity dc = bytesFS (packageIdFS (modulePackageId mod)) ++ 
                  fromIntegral (ord ':') : bytesFS (moduleNameFS (moduleName mod)) ++
                  fromIntegral (ord '.') : bytesFS (occNameFS (nameOccName name))
  where name = dataConName dc
        mod  = ASSERT( isExternalName name ) nameModule name
\end{code} \begin{code}
isTupleDataCon :: DataCon -> Bool
isTupleDataCon (MkData {dcRepTyCon = tc}) = isTupleTyCon tc
	
isUnboxedTupleCon :: DataCon -> Bool
isUnboxedTupleCon (MkData {dcRepTyCon = tc}) = isUnboxedTupleTyCon tc

-- | Vanilla 'DataCon's are those that are nice boring Haskell 98 constructors
isVanillaDataCon :: DataCon -> Bool
isVanillaDataCon dc = dcVanilla dc
\end{code} \begin{code}
classDataCon :: Class -> DataCon
classDataCon clas = case tyConDataCons (classTyCon clas) of
		      (dict_constr:no_more) -> ASSERT( null no_more ) dict_constr 
		      [] -> panic "classDataCon"
\end{code} \begin{code}
dataConCannotMatch :: [Type] -> DataCon -> Bool
-- Returns True iff the data con *definitely cannot* match a 
--		    scrutinee of type (T tys)
--		    where T is the dcRepTyCon for the data con
-- NB: look at *all* equality constraints, not only those
--     in dataConEqSpec; see Trac #5168
dataConCannotMatch tys con
  | null theta        = False	-- Common
  | all isTyVarTy tys = False	-- Also common
  | otherwise
  = typesCantMatch [(Type.substTy subst ty1, Type.substTy subst ty2)
                   | (ty1, ty2) <- concatMap predEqs theta ]
  where
    dc_tvs  = dataConUnivTyVars con
    theta   = dataConTheta con
    subst   = ASSERT2( length dc_tvs == length tys, ppr con $$ ppr dc_tvs $$ ppr tys ) 
              zipTopTvSubst dc_tvs tys

    -- TODO: could gather equalities from superclasses too
    predEqs pred = case classifyPredType pred of
                     EqPred ty1 ty2 -> [(ty1, ty2)]
                     TuplePred ts   -> concatMap predEqs ts
                     _              -> []
\end{code} %************************************************************************ %* * Building an algebraic data type %* * %************************************************************************ buildAlgTyCon is here because it is called from TysWiredIn, which in turn depends on DataCon, but not on BuildTyCl. \begin{code}
buildAlgTyCon :: Name 
              -> [TyVar]               -- ^ Kind variables and type variables
              -> [Role]
	      -> Maybe CType
	      -> ThetaType	       -- ^ Stupid theta
	      -> AlgTyConRhs
	      -> RecFlag
	      -> Bool		       -- ^ True <=> this TyCon is promotable
	      -> Bool		       -- ^ True <=> was declared in GADT syntax
              -> TyConParent
	      -> TyCon

buildAlgTyCon tc_name ktvs roles cType stupid_theta rhs 
              is_rec is_promotable gadt_syn parent
  = tc
  where 
    kind = mkPiKinds ktvs liftedTypeKind

    -- tc and mb_promoted_tc are mutually recursive
    tc = mkAlgTyCon tc_name kind ktvs roles cType stupid_theta 
                    rhs parent is_rec gadt_syn 
                    mb_promoted_tc

    mb_promoted_tc
      | is_promotable = Just (mkPromotedTyCon tc (promoteKind kind))
      | otherwise     = Nothing
\end{code} %************************************************************************ %* * Promoting of data types to the kind level %* * %************************************************************************ These two 'promoted..' functions are here because * They belong together * 'promoteDataCon' depends on DataCon stuff \begin{code}
promoteDataCon :: DataCon -> TyCon
promoteDataCon (MkData { dcPromoted = Just tc }) = tc
promoteDataCon dc = pprPanic "promoteDataCon" (ppr dc)

promoteDataCon_maybe :: DataCon -> Maybe TyCon
promoteDataCon_maybe (MkData { dcPromoted = mb_tc }) = mb_tc
\end{code} Note [Promoting a Type to a Kind] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppsoe we have a data constructor D D :: forall (a:*). Maybe a -> T a We promote this to be a type constructor 'D: 'D :: forall (k:BOX). 'Maybe k -> 'T k The transformation from type to kind is done by promoteType * Convert forall (a:*) to forall (k:BOX), and substitute * Ensure all foralls are at the top (no higher rank stuff) * Ensure that all type constructors mentioned (Maybe and T in the example) are promotable; that is, they have kind * -> ... -> * -> * \begin{code}
-- | Promotes a type to a kind. 
-- Assumes the argument satisfies 'isPromotableType'
promoteType :: Type -> Kind
promoteType ty
  = mkForAllTys kvs (go rho)
  where
    (tvs, rho) = splitForAllTys ty
    kvs = [ mkKindVar (tyVarName tv) superKind | tv <- tvs ]
    env = zipVarEnv tvs kvs

    go (TyConApp tc tys) | Just prom_tc <- promotableTyCon_maybe tc
                         = mkTyConApp prom_tc (map go tys)
    go (FunTy arg res)   = mkArrowKind (go arg) (go res)
    go (TyVarTy tv)      | Just kv <- lookupVarEnv env tv 
                         = TyVarTy kv
    go _ = panic "promoteType"  -- Argument did not satisfy isPromotableType

promoteKind :: Kind -> SuperKind
-- Promote the kind of a type constructor
-- from (* -> * -> *) to (BOX -> BOX -> BOX) 
promoteKind (TyConApp tc []) 
  | tc `hasKey` liftedTypeKindTyConKey = superKind
promoteKind (FunTy arg res) = FunTy (promoteKind arg) (promoteKind res)
promoteKind k = pprPanic "promoteKind" (ppr k)
\end{code} %************************************************************************ %* * \subsection{Splitting products} %* * %************************************************************************ \begin{code}
-- | Extract the type constructor, type argument, data constructor and it's
-- /representation/ argument types from a type if it is a product type.
--
-- Precisely, we return @Just@ for any type that is all of:
--
--  * Concrete (i.e. constructors visible)
--
--  * Single-constructor
--
--  * Not existentially quantified
--
-- Whether the type is a @data@ type or a @newtype@
splitDataProductType_maybe
	:: Type 			-- ^ A product type, perhaps
	-> Maybe (TyCon, 		-- The type constructor
		  [Type],		-- Type args of the tycon
		  DataCon,		-- The data constructor
		  [Type])		-- Its /representation/ arg types

	-- Rejecing existentials is conservative.  Maybe some things
	-- could be made to work with them, but I'm not going to sweat
	-- it through till someone finds it's important.

splitDataProductType_maybe ty
  | Just (tycon, ty_args) <- splitTyConApp_maybe ty
  , Just con <- isDataProductTyCon_maybe tycon
  = Just (tycon, ty_args, con, dataConInstArgTys con ty_args)
  | otherwise
  = Nothing

-- | All type constructors used in the definition of this type constructor,
--   recursively. This is used to find out all the type constructors whose data
--   constructors need to be in scope to be allowed to safely coerce under this
--   type constructor in Safe Haskell mode.
tyConsOfTyCon :: TyCon -> [TyCon]
tyConsOfTyCon tc = nameEnvElts (add tc emptyNameEnv)
  where
     go env tc = foldr add env (tyConDataCons tc >>= dataConOrigArgTys >>= tyConsOfType)
     add tc env | tyConName tc `elemNameEnv` env = env
                | otherwise = go (extendNameEnv env (tyConName tc) tc) tc
\end{code}