%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%
\section[Literal]{@Literal@: Machine literals (unboxed, of course)}
\begin{code}
module Literal
(
Literal(..)
, mkMachInt, mkMachWord
, mkMachInt64, mkMachWord64
, mkMachFloat, mkMachDouble
, mkMachChar, mkMachString
, mkLitInteger
, literalType
, hashLiteral
, absentLiteralOf
, pprLiteral
, litIsDupable, litIsTrivial, litIsLifted
, inIntRange, inWordRange, tARGET_MAX_INT, inCharRange
, isZeroLit
, litFitsInChar
, word2IntLit, int2WordLit
, narrow8IntLit, narrow16IntLit, narrow32IntLit
, narrow8WordLit, narrow16WordLit, narrow32WordLit
, char2IntLit, int2CharLit
, float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit
, nullAddrLit, float2DoubleLit, double2FloatLit
) where
#include "HsVersions.h"
import TysPrim
import PrelNames
import Type
import TyCon
import Outputable
import FastTypes
import FastString
import BasicTypes
import Binary
import Constants
import DynFlags
import UniqFM
import Util
import Data.ByteString (ByteString)
import Data.Int
import Data.Ratio
import Data.Word
import Data.Char
import Data.Data ( Data, Typeable )
import Numeric ( fromRat )
\end{code}
%************************************************************************
%* *
\subsection{Literals}
%* *
%************************************************************************
\begin{code}
data Literal
=
MachChar Char
| MachStr ByteString
| MachNullAddr
| MachInt Integer
| MachInt64 Integer
| MachWord Integer
| MachWord64 Integer
| MachFloat Rational
| MachDouble Rational
| MachLabel FastString
(Maybe Int)
FunctionOrData
| LitInteger Integer Type
deriving (Data, Typeable)
\end{code}
Note [Integer literals]
~~~~~~~~~~~~~~~~~~~~~~~
An Integer literal is represented using, well, an Integer, to make it
easier to write RULEs for them. They also contain the Integer type, so
that e.g. literalType can return the right Type for them.
They only get converted into real Core,
mkInteger [c1, c2, .., cn]
during the CorePrep phase, although TidyPgm looks ahead at what the
core will be, so that it can see whether it involves CAFs.
When we initally build an Integer literal, notably when
deserialising it from an interface file (see the Binary instance
below), we don't have convenient access to the mkInteger Id. So we
just use an error thunk, and fill in the real Id when we do tcIfaceLit
in TcIface.
Binary instance
\begin{code}
instance Binary Literal where
put_ bh (MachChar aa) = do putByte bh 0; put_ bh aa
put_ bh (MachStr ab) = do putByte bh 1; put_ bh ab
put_ bh (MachNullAddr) = do putByte bh 2
put_ bh (MachInt ad) = do putByte bh 3; put_ bh ad
put_ bh (MachInt64 ae) = do putByte bh 4; put_ bh ae
put_ bh (MachWord af) = do putByte bh 5; put_ bh af
put_ bh (MachWord64 ag) = do putByte bh 6; put_ bh ag
put_ bh (MachFloat ah) = do putByte bh 7; put_ bh ah
put_ bh (MachDouble ai) = do putByte bh 8; put_ bh ai
put_ bh (MachLabel aj mb fod)
= do putByte bh 9
put_ bh aj
put_ bh mb
put_ bh fod
put_ bh (LitInteger i _) = do putByte bh 10; put_ bh i
get bh = do
h <- getByte bh
case h of
0 -> do
aa <- get bh
return (MachChar aa)
1 -> do
ab <- get bh
return (MachStr ab)
2 -> do
return (MachNullAddr)
3 -> do
ad <- get bh
return (MachInt ad)
4 -> do
ae <- get bh
return (MachInt64 ae)
5 -> do
af <- get bh
return (MachWord af)
6 -> do
ag <- get bh
return (MachWord64 ag)
7 -> do
ah <- get bh
return (MachFloat ah)
8 -> do
ai <- get bh
return (MachDouble ai)
9 -> do
aj <- get bh
mb <- get bh
fod <- get bh
return (MachLabel aj mb fod)
_ -> do
i <- get bh
return $ mkLitInteger i (panic "Evaluated the place holder for mkInteger")
\end{code}
\begin{code}
instance Outputable Literal where
ppr lit = pprLiteral (\d -> d) lit
instance Eq Literal where
a == b = case (a `compare` b) of { EQ -> True; _ -> False }
a /= b = case (a `compare` b) of { EQ -> False; _ -> True }
instance Ord Literal where
a <= b = case (a `compare` b) of { LT -> True; EQ -> True; GT -> False }
a < b = case (a `compare` b) of { LT -> True; EQ -> False; GT -> False }
a >= b = case (a `compare` b) of { LT -> False; EQ -> True; GT -> True }
a > b = case (a `compare` b) of { LT -> False; EQ -> False; GT -> True }
compare a b = cmpLit a b
\end{code}
Construction
~~~~~~~~~~~~
\begin{code}
mkMachInt :: DynFlags -> Integer -> Literal
mkMachInt dflags x = ASSERT2( inIntRange dflags x, integer x )
MachInt x
mkMachWord :: DynFlags -> Integer -> Literal
mkMachWord dflags x = ASSERT2( inWordRange dflags x, integer x )
MachWord x
mkMachInt64 :: Integer -> Literal
mkMachInt64 x = MachInt64 x
mkMachWord64 :: Integer -> Literal
mkMachWord64 x = MachWord64 x
mkMachFloat :: Rational -> Literal
mkMachFloat = MachFloat
mkMachDouble :: Rational -> Literal
mkMachDouble = MachDouble
mkMachChar :: Char -> Literal
mkMachChar = MachChar
mkMachString :: String -> Literal
mkMachString s = MachStr (fastStringToByteString $ mkFastString s)
mkLitInteger :: Integer -> Type -> Literal
mkLitInteger = LitInteger
inIntRange, inWordRange :: DynFlags -> Integer -> Bool
inIntRange dflags x = x >= tARGET_MIN_INT dflags && x <= tARGET_MAX_INT dflags
inWordRange dflags x = x >= 0 && x <= tARGET_MAX_WORD dflags
inCharRange :: Char -> Bool
inCharRange c = c >= '\0' && c <= chr tARGET_MAX_CHAR
isZeroLit :: Literal -> Bool
isZeroLit (MachInt 0) = True
isZeroLit (MachInt64 0) = True
isZeroLit (MachWord 0) = True
isZeroLit (MachWord64 0) = True
isZeroLit (MachFloat 0) = True
isZeroLit (MachDouble 0) = True
isZeroLit _ = False
\end{code}
Coercions
~~~~~~~~~
\begin{code}
narrow8IntLit, narrow16IntLit, narrow32IntLit,
narrow8WordLit, narrow16WordLit, narrow32WordLit,
char2IntLit, int2CharLit,
float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit,
float2DoubleLit, double2FloatLit
:: Literal -> Literal
word2IntLit, int2WordLit :: DynFlags -> Literal -> Literal
word2IntLit dflags (MachWord w)
| w > tARGET_MAX_INT dflags = MachInt (w tARGET_MAX_WORD dflags 1)
| otherwise = MachInt w
word2IntLit _ l = pprPanic "word2IntLit" (ppr l)
int2WordLit dflags (MachInt i)
| i < 0 = MachWord (1 + tARGET_MAX_WORD dflags + i)
| otherwise = MachWord i
int2WordLit _ l = pprPanic "int2WordLit" (ppr l)
narrow8IntLit (MachInt i) = MachInt (toInteger (fromInteger i :: Int8))
narrow8IntLit l = pprPanic "narrow8IntLit" (ppr l)
narrow16IntLit (MachInt i) = MachInt (toInteger (fromInteger i :: Int16))
narrow16IntLit l = pprPanic "narrow16IntLit" (ppr l)
narrow32IntLit (MachInt i) = MachInt (toInteger (fromInteger i :: Int32))
narrow32IntLit l = pprPanic "narrow32IntLit" (ppr l)
narrow8WordLit (MachWord w) = MachWord (toInteger (fromInteger w :: Word8))
narrow8WordLit l = pprPanic "narrow8WordLit" (ppr l)
narrow16WordLit (MachWord w) = MachWord (toInteger (fromInteger w :: Word16))
narrow16WordLit l = pprPanic "narrow16WordLit" (ppr l)
narrow32WordLit (MachWord w) = MachWord (toInteger (fromInteger w :: Word32))
narrow32WordLit l = pprPanic "narrow32WordLit" (ppr l)
char2IntLit (MachChar c) = MachInt (toInteger (ord c))
char2IntLit l = pprPanic "char2IntLit" (ppr l)
int2CharLit (MachInt i) = MachChar (chr (fromInteger i))
int2CharLit l = pprPanic "int2CharLit" (ppr l)
float2IntLit (MachFloat f) = MachInt (truncate f)
float2IntLit l = pprPanic "float2IntLit" (ppr l)
int2FloatLit (MachInt i) = MachFloat (fromInteger i)
int2FloatLit l = pprPanic "int2FloatLit" (ppr l)
double2IntLit (MachDouble f) = MachInt (truncate f)
double2IntLit l = pprPanic "double2IntLit" (ppr l)
int2DoubleLit (MachInt i) = MachDouble (fromInteger i)
int2DoubleLit l = pprPanic "int2DoubleLit" (ppr l)
float2DoubleLit (MachFloat f) = MachDouble f
float2DoubleLit l = pprPanic "float2DoubleLit" (ppr l)
double2FloatLit (MachDouble d) = MachFloat d
double2FloatLit l = pprPanic "double2FloatLit" (ppr l)
nullAddrLit :: Literal
nullAddrLit = MachNullAddr
\end{code}
Predicates
~~~~~~~~~~
\begin{code}
litIsTrivial :: Literal -> Bool
litIsTrivial (MachStr _) = False
litIsTrivial (LitInteger {}) = False
litIsTrivial _ = True
litIsDupable :: DynFlags -> Literal -> Bool
litIsDupable _ (MachStr _) = False
litIsDupable dflags (LitInteger i _) = inIntRange dflags i
litIsDupable _ _ = True
litFitsInChar :: Literal -> Bool
litFitsInChar (MachInt i) = i >= toInteger (ord minBound)
&& i <= toInteger (ord maxBound)
litFitsInChar _ = False
litIsLifted :: Literal -> Bool
litIsLifted (LitInteger {}) = True
litIsLifted _ = False
\end{code}
Types
~~~~~
\begin{code}
literalType :: Literal -> Type
literalType MachNullAddr = addrPrimTy
literalType (MachChar _) = charPrimTy
literalType (MachStr _) = addrPrimTy
literalType (MachInt _) = intPrimTy
literalType (MachWord _) = wordPrimTy
literalType (MachInt64 _) = int64PrimTy
literalType (MachWord64 _) = word64PrimTy
literalType (MachFloat _) = floatPrimTy
literalType (MachDouble _) = doublePrimTy
literalType (MachLabel _ _ _) = addrPrimTy
literalType (LitInteger _ t) = t
absentLiteralOf :: TyCon -> Maybe Literal
absentLiteralOf tc = lookupUFM absent_lits (tyConName tc)
absent_lits :: UniqFM Literal
absent_lits = listToUFM [ (addrPrimTyConKey, MachNullAddr)
, (charPrimTyConKey, MachChar 'x')
, (intPrimTyConKey, MachInt 0)
, (int64PrimTyConKey, MachInt64 0)
, (floatPrimTyConKey, MachFloat 0)
, (doublePrimTyConKey, MachDouble 0)
, (wordPrimTyConKey, MachWord 0)
, (word64PrimTyConKey, MachWord64 0) ]
\end{code}
Comparison
~~~~~~~~~~
\begin{code}
cmpLit :: Literal -> Literal -> Ordering
cmpLit (MachChar a) (MachChar b) = a `compare` b
cmpLit (MachStr a) (MachStr b) = a `compare` b
cmpLit (MachNullAddr) (MachNullAddr) = EQ
cmpLit (MachInt a) (MachInt b) = a `compare` b
cmpLit (MachWord a) (MachWord b) = a `compare` b
cmpLit (MachInt64 a) (MachInt64 b) = a `compare` b
cmpLit (MachWord64 a) (MachWord64 b) = a `compare` b
cmpLit (MachFloat a) (MachFloat b) = a `compare` b
cmpLit (MachDouble a) (MachDouble b) = a `compare` b
cmpLit (MachLabel a _ _) (MachLabel b _ _) = a `compare` b
cmpLit (LitInteger a _) (LitInteger b _) = a `compare` b
cmpLit lit1 lit2 | litTag lit1 <# litTag lit2 = LT
| otherwise = GT
litTag :: Literal -> FastInt
litTag (MachChar _) = _ILIT(1)
litTag (MachStr _) = _ILIT(2)
litTag (MachNullAddr) = _ILIT(3)
litTag (MachInt _) = _ILIT(4)
litTag (MachWord _) = _ILIT(5)
litTag (MachInt64 _) = _ILIT(6)
litTag (MachWord64 _) = _ILIT(7)
litTag (MachFloat _) = _ILIT(8)
litTag (MachDouble _) = _ILIT(9)
litTag (MachLabel _ _ _) = _ILIT(10)
litTag (LitInteger {}) = _ILIT(11)
\end{code}
Printing
~~~~~~~~
* MachX (i.e. unboxed) things are printed unadornded (e.g. 3, 'a', "foo")
exceptions: MachFloat gets an initial keyword prefix.
\begin{code}
pprLiteral :: (SDoc -> SDoc) -> Literal -> SDoc
pprLiteral _ (MachChar ch) = pprHsChar ch
pprLiteral _ (MachStr s) = pprHsBytes s
pprLiteral _ (MachInt i) = pprIntVal i
pprLiteral _ (MachDouble d) = double (fromRat d)
pprLiteral _ (MachNullAddr) = ptext (sLit "__NULL")
pprLiteral add_par (LitInteger i _) = add_par (ptext (sLit "__integer") <+> integer i)
pprLiteral add_par (MachInt64 i) = add_par (ptext (sLit "__int64") <+> integer i)
pprLiteral add_par (MachWord w) = add_par (ptext (sLit "__word") <+> integer w)
pprLiteral add_par (MachWord64 w) = add_par (ptext (sLit "__word64") <+> integer w)
pprLiteral add_par (MachFloat f) = add_par (ptext (sLit "__float") <+> float (fromRat f))
pprLiteral add_par (MachLabel l mb fod) = add_par (ptext (sLit "__label") <+> b <+> ppr fod)
where b = case mb of
Nothing -> pprHsString l
Just x -> doubleQuotes (text (unpackFS l ++ '@':show x))
pprIntVal :: Integer -> SDoc
pprIntVal i | i < 0 = parens (integer i)
| otherwise = integer i
\end{code}
%************************************************************************
%* *
\subsection{Hashing}
%* *
%************************************************************************
Hash values should be zero or a positive integer. No negatives please.
(They mess up the UniqFM for some reason.)
\begin{code}
hashLiteral :: Literal -> Int
hashLiteral (MachChar c) = ord c + 1000
hashLiteral (MachStr s) = hashByteString s
hashLiteral (MachNullAddr) = 0
hashLiteral (MachInt i) = hashInteger i
hashLiteral (MachInt64 i) = hashInteger i
hashLiteral (MachWord i) = hashInteger i
hashLiteral (MachWord64 i) = hashInteger i
hashLiteral (MachFloat r) = hashRational r
hashLiteral (MachDouble r) = hashRational r
hashLiteral (MachLabel s _ _) = hashFS s
hashLiteral (LitInteger i _) = hashInteger i
hashRational :: Rational -> Int
hashRational r = hashInteger (numerator r)
hashInteger :: Integer -> Int
hashInteger i = 1 + abs (fromInteger (i `rem` 10000))
hashFS :: FastString -> Int
hashFS s = iBox (uniqueOfFS s)
\end{code}