%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Pattern-matching literal patterns
\begin{code}
module MatchLit ( dsLit, dsOverLit, hsLitKey, hsOverLitKey
, tidyLitPat, tidyNPat
, matchLiterals, matchNPlusKPats, matchNPats
, warnAboutIdentities, warnAboutEmptyEnumerations
) where
#include "HsVersions.h"
import Match ( match )
import DsExpr ( dsExpr )
import DsMonad
import DsUtils
import HsSyn
import Id
import CoreSyn
import MkCore
import TyCon
import DataCon
import TcHsSyn ( shortCutLit )
import TcType
import Name
import Type
import PrelNames
import TysWiredIn
import Literal
import SrcLoc
import Data.Ratio
import MonadUtils
import Outputable
import BasicTypes
import DynFlags
import Util
import FastString
import Control.Monad
import Data.Int
import Data.Traversable (traverse)
import Data.Word
\end{code}
%************************************************************************
%* *
Desugaring literals
[used to be in DsExpr, but DsMeta needs it,
and it's nice to avoid a loop]
%* *
%************************************************************************
We give int/float literals type @Integer@ and @Rational@, respectively.
The typechecker will (presumably) have put \tr{from{Integer,Rational}s}
around them.
ToDo: put in range checks for when converting ``@i@''
(or should that be in the typechecker?)
For numeric literals, we try to detect there use at a standard type
(@Int@, @Float@, etc.) are directly put in the right constructor.
[NB: down with the @App@ conversion.]
See also below where we look for @DictApps@ for \tr{plusInt}, etc.
\begin{code}
dsLit :: HsLit -> DsM CoreExpr
dsLit (HsStringPrim s) = return (Lit (MachStr s))
dsLit (HsCharPrim c) = return (Lit (MachChar c))
dsLit (HsIntPrim i) = return (Lit (MachInt i))
dsLit (HsWordPrim w) = return (Lit (MachWord w))
dsLit (HsInt64Prim i) = return (Lit (MachInt64 i))
dsLit (HsWord64Prim w) = return (Lit (MachWord64 w))
dsLit (HsFloatPrim f) = return (Lit (MachFloat (fl_value f)))
dsLit (HsDoublePrim d) = return (Lit (MachDouble (fl_value d)))
dsLit (HsChar c) = return (mkCharExpr c)
dsLit (HsString str) = mkStringExprFS str
dsLit (HsInteger i _) = mkIntegerExpr i
dsLit (HsInt i) = do dflags <- getDynFlags
return (mkIntExpr dflags i)
dsLit (HsRat r ty) = do
num <- mkIntegerExpr (numerator (fl_value r))
denom <- mkIntegerExpr (denominator (fl_value r))
return (mkCoreConApps ratio_data_con [Type integer_ty, num, denom])
where
(ratio_data_con, integer_ty)
= case tcSplitTyConApp ty of
(tycon, [i_ty]) -> ASSERT(isIntegerTy i_ty && tycon `hasKey` ratioTyConKey)
(head (tyConDataCons tycon), i_ty)
x -> pprPanic "dsLit" (ppr x)
dsOverLit :: HsOverLit Id -> DsM CoreExpr
dsOverLit lit = do { dflags <- getDynFlags
; warnAboutOverflowedLiterals dflags lit
; dsOverLit' dflags lit }
dsOverLit' :: DynFlags -> HsOverLit Id -> DsM CoreExpr
dsOverLit' dflags (OverLit { ol_val = val, ol_rebindable = rebindable
, ol_witness = witness, ol_type = ty })
| not rebindable
, Just expr <- shortCutLit dflags val ty = dsExpr expr
| otherwise = dsExpr witness
\end{code}
Note [Literal short cut]
~~~~~~~~~~~~~~~~~~~~~~~~
The type checker tries to do this short-cutting as early as possible, but
because of unification etc, more information is available to the desugarer.
And where it's possible to generate the correct literal right away, it's
much better to do so.
%************************************************************************
%* *
Warnings about overflowed literals
%* *
%************************************************************************
Warn about functions like toInteger, fromIntegral, that convert
between one type and another when the to- and from- types are the
same. Then it's probably (albeit not definitely) the identity
\begin{code}
warnAboutIdentities :: DynFlags -> CoreExpr -> Type -> DsM ()
warnAboutIdentities dflags (Var conv_fn) type_of_conv
| wopt Opt_WarnIdentities dflags
, idName conv_fn `elem` conversionNames
, Just (arg_ty, res_ty) <- splitFunTy_maybe type_of_conv
, arg_ty `eqType` res_ty
= warnDs (vcat [ ptext (sLit "Call of") <+> ppr conv_fn <+> dcolon <+> ppr type_of_conv
, nest 2 $ ptext (sLit "can probably be omitted")
, parens (ptext (sLit "Use -fno-warn-identities to suppress this message"))
])
warnAboutIdentities _ _ _ = return ()
conversionNames :: [Name]
conversionNames
= [ toIntegerName, toRationalName
, fromIntegralName, realToFracName ]
\end{code}
\begin{code}
warnAboutOverflowedLiterals :: DynFlags -> HsOverLit Id -> DsM ()
warnAboutOverflowedLiterals dflags lit
| wopt Opt_WarnOverflowedLiterals dflags
, Just (i, tc) <- getIntegralLit lit
= if tc == intTyConName then check i tc (undefined :: Int)
else if tc == int8TyConName then check i tc (undefined :: Int8)
else if tc == int16TyConName then check i tc (undefined :: Int16)
else if tc == int32TyConName then check i tc (undefined :: Int32)
else if tc == int64TyConName then check i tc (undefined :: Int64)
else if tc == wordTyConName then check i tc (undefined :: Word)
else if tc == word8TyConName then check i tc (undefined :: Word8)
else if tc == word16TyConName then check i tc (undefined :: Word16)
else if tc == word32TyConName then check i tc (undefined :: Word32)
else if tc == word64TyConName then check i tc (undefined :: Word64)
else return ()
| otherwise = return ()
where
check :: forall a. (Bounded a, Integral a) => Integer -> Name -> a -> DsM ()
check i tc _proxy
= when (i < minB || i > maxB) $ do
warnDs (vcat [ ptext (sLit "Literal") <+> integer i
<+> ptext (sLit "is out of the") <+> ppr tc <+> ptext (sLit "range")
<+> integer minB <> ptext (sLit "..") <> integer maxB
, sug ])
where
minB = toInteger (minBound :: a)
maxB = toInteger (maxBound :: a)
sug | minB == i
, i > 0
, not (xopt Opt_NegativeLiterals dflags)
= ptext (sLit "If you are trying to write a large negative literal, use NegativeLiterals")
| otherwise = empty
\end{code}
Note [Suggest NegativeLiterals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you write
x :: Int8
x = -128
it'll parse as (negate 128), and overflow. In this case, suggest NegativeLiterals.
We get an erroneous suggestion for
x = 128
but perhaps that does not matter too much.
\begin{code}
warnAboutEmptyEnumerations :: DynFlags -> LHsExpr Id -> Maybe (LHsExpr Id) -> LHsExpr Id -> DsM ()
warnAboutEmptyEnumerations dflags fromExpr mThnExpr toExpr
| wopt Opt_WarnEmptyEnumerations dflags
, Just (from,tc) <- getLHsIntegralLit fromExpr
, Just mThn <- traverse getLHsIntegralLit mThnExpr
, Just (to,_) <- getLHsIntegralLit toExpr
, let check :: forall a. (Enum a, Num a) => a -> DsM ()
check _proxy
= when (null enumeration) $
warnDs (ptext (sLit "Enumeration is empty"))
where
enumeration :: [a]
enumeration = case mThn of
Nothing -> [fromInteger from .. fromInteger to]
Just (thn,_) -> [fromInteger from, fromInteger thn .. fromInteger to]
= if tc == intTyConName then check (undefined :: Int)
else if tc == int8TyConName then check (undefined :: Int8)
else if tc == int16TyConName then check (undefined :: Int16)
else if tc == int32TyConName then check (undefined :: Int32)
else if tc == int64TyConName then check (undefined :: Int64)
else if tc == wordTyConName then check (undefined :: Word)
else if tc == word8TyConName then check (undefined :: Word8)
else if tc == word16TyConName then check (undefined :: Word16)
else if tc == word32TyConName then check (undefined :: Word32)
else if tc == word64TyConName then check (undefined :: Word64)
else return ()
| otherwise = return ()
getLHsIntegralLit :: LHsExpr Id -> Maybe (Integer, Name)
getLHsIntegralLit (L _ (HsPar e)) = getLHsIntegralLit e
getLHsIntegralLit (L _ (HsTick _ e)) = getLHsIntegralLit e
getLHsIntegralLit (L _ (HsBinTick _ _ e)) = getLHsIntegralLit e
getLHsIntegralLit (L _ (HsOverLit over_lit)) = getIntegralLit over_lit
getLHsIntegralLit _ = Nothing
getIntegralLit :: HsOverLit Id -> Maybe (Integer, Name)
getIntegralLit (OverLit { ol_val = HsIntegral i, ol_type = ty })
| Just tc <- tyConAppTyCon_maybe ty
= Just (i, tyConName tc)
getIntegralLit _ = Nothing
\end{code}
%************************************************************************
%* *
Tidying lit pats
%* *
%************************************************************************
\begin{code}
tidyLitPat :: HsLit -> Pat Id
tidyLitPat (HsChar c) = unLoc (mkCharLitPat c)
tidyLitPat (HsString s)
| lengthFS s <= 1
= unLoc $ foldr (\c pat -> mkPrefixConPat consDataCon [mkCharLitPat c, pat] [charTy])
(mkNilPat charTy) (unpackFS s)
tidyLitPat lit = LitPat lit
tidyNPat :: (HsLit -> Pat Id)
-> HsOverLit Id -> Maybe (SyntaxExpr Id) -> SyntaxExpr Id
-> Pat Id
tidyNPat tidy_lit_pat (OverLit val False _ ty) mb_neg _
| isIntTy ty, Just int_lit <- mb_int_lit = mk_con_pat intDataCon (HsIntPrim int_lit)
| isWordTy ty, Just int_lit <- mb_int_lit = mk_con_pat wordDataCon (HsWordPrim int_lit)
| isFloatTy ty, Just rat_lit <- mb_rat_lit = mk_con_pat floatDataCon (HsFloatPrim rat_lit)
| isDoubleTy ty, Just rat_lit <- mb_rat_lit = mk_con_pat doubleDataCon (HsDoublePrim rat_lit)
| isStringTy ty, Just str_lit <- mb_str_lit = tidy_lit_pat (HsString str_lit)
where
mk_con_pat :: DataCon -> HsLit -> Pat Id
mk_con_pat con lit = unLoc (mkPrefixConPat con [noLoc $ LitPat lit] [])
mb_int_lit :: Maybe Integer
mb_int_lit = case (mb_neg, val) of
(Nothing, HsIntegral i) -> Just i
(Just _, HsIntegral i) -> Just (i)
_ -> Nothing
mb_rat_lit :: Maybe FractionalLit
mb_rat_lit = case (mb_neg, val) of
(Nothing, HsIntegral i) -> Just (integralFractionalLit (fromInteger i))
(Just _, HsIntegral i) -> Just (integralFractionalLit (fromInteger (i)))
(Nothing, HsFractional f) -> Just f
(Just _, HsFractional f) -> Just (negateFractionalLit f)
_ -> Nothing
mb_str_lit :: Maybe FastString
mb_str_lit = case (mb_neg, val) of
(Nothing, HsIsString s) -> Just s
_ -> Nothing
tidyNPat _ over_lit mb_neg eq
= NPat over_lit mb_neg eq
\end{code}
%************************************************************************
%* *
Pattern matching on LitPat
%* *
%************************************************************************
\begin{code}
matchLiterals :: [Id]
-> Type
-> [[EquationInfo]]
-> DsM MatchResult
matchLiterals (var:vars) ty sub_groups
= ASSERT( notNull sub_groups && all notNull sub_groups )
do {
; alts <- mapM match_group sub_groups
; if isStringTy (idType var) then
do { eq_str <- dsLookupGlobalId eqStringName
; mrs <- mapM (wrap_str_guard eq_str) alts
; return (foldr1 combineMatchResults mrs) }
else
return (mkCoPrimCaseMatchResult var ty alts)
}
where
match_group :: [EquationInfo] -> DsM (Literal, MatchResult)
match_group eqns
= do dflags <- getDynFlags
let LitPat hs_lit = firstPat (head eqns)
match_result <- match vars ty (shiftEqns eqns)
return (hsLitKey dflags hs_lit, match_result)
wrap_str_guard :: Id -> (Literal,MatchResult) -> DsM MatchResult
wrap_str_guard eq_str (MachStr s, mr)
= do {
s' <- liftIO $ mkFastStringByteString s
; lit <- mkStringExprFS s'
; let pred = mkApps (Var eq_str) [Var var, lit]
; return (mkGuardedMatchResult pred mr) }
wrap_str_guard _ (l, _) = pprPanic "matchLiterals/wrap_str_guard" (ppr l)
matchLiterals [] _ _ = panic "matchLiterals []"
hsLitKey :: DynFlags -> HsLit -> Literal
hsLitKey dflags (HsIntPrim i) = mkMachInt dflags i
hsLitKey dflags (HsWordPrim w) = mkMachWord dflags w
hsLitKey _ (HsInt64Prim i) = mkMachInt64 i
hsLitKey _ (HsWord64Prim w) = mkMachWord64 w
hsLitKey _ (HsCharPrim c) = MachChar c
hsLitKey _ (HsStringPrim s) = MachStr s
hsLitKey _ (HsFloatPrim f) = MachFloat (fl_value f)
hsLitKey _ (HsDoublePrim d) = MachDouble (fl_value d)
hsLitKey _ (HsString s) = MachStr (fastStringToByteString s)
hsLitKey _ l = pprPanic "hsLitKey" (ppr l)
hsOverLitKey :: OutputableBndr a => HsOverLit a -> Bool -> Literal
hsOverLitKey (OverLit { ol_val = l }) neg = litValKey l neg
litValKey :: OverLitVal -> Bool -> Literal
litValKey (HsIntegral i) False = MachInt i
litValKey (HsIntegral i) True = MachInt (i)
litValKey (HsFractional r) False = MachFloat (fl_value r)
litValKey (HsFractional r) True = MachFloat (negate (fl_value r))
litValKey (HsIsString s) neg = ASSERT( not neg) MachStr (fastStringToByteString s)
\end{code}
%************************************************************************
%* *
Pattern matching on NPat
%* *
%************************************************************************
\begin{code}
matchNPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchNPats (var:vars) ty (eqn1:eqns)
= do { let NPat lit mb_neg eq_chk = firstPat eqn1
; lit_expr <- dsOverLit lit
; neg_lit <- case mb_neg of
Nothing -> return lit_expr
Just neg -> do { neg_expr <- dsExpr neg
; return (App neg_expr lit_expr) }
; eq_expr <- dsExpr eq_chk
; let pred_expr = mkApps eq_expr [Var var, neg_lit]
; match_result <- match vars ty (shiftEqns (eqn1:eqns))
; return (mkGuardedMatchResult pred_expr match_result) }
matchNPats vars _ eqns = pprPanic "matchOneNPat" (ppr (vars, eqns))
\end{code}
%************************************************************************
%* *
Pattern matching on n+k patterns
%* *
%************************************************************************
For an n+k pattern, we use the various magic expressions we've been given.
We generate:
\begin{verbatim}
if ge var lit then
let n = sub var lit
in
else
\end{verbatim}
\begin{code}
matchNPlusKPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchNPlusKPats (var:vars) ty (eqn1:eqns)
= do { let NPlusKPat (L _ n1) lit ge minus = firstPat eqn1
; ge_expr <- dsExpr ge
; minus_expr <- dsExpr minus
; lit_expr <- dsOverLit lit
; let pred_expr = mkApps ge_expr [Var var, lit_expr]
minusk_expr = mkApps minus_expr [Var var, lit_expr]
(wraps, eqns') = mapAndUnzip (shift n1) (eqn1:eqns)
; match_result <- match vars ty eqns'
; return (mkGuardedMatchResult pred_expr $
mkCoLetMatchResult (NonRec n1 minusk_expr) $
adjustMatchResult (foldr1 (.) wraps) $
match_result) }
where
shift n1 eqn@(EqnInfo { eqn_pats = NPlusKPat (L _ n) _ _ _ : pats })
= (wrapBind n n1, eqn { eqn_pats = pats })
shift _ e = pprPanic "matchNPlusKPats/shift" (ppr e)
matchNPlusKPats vars _ eqns = pprPanic "matchNPlusKPats" (ppr (vars, eqns))
\end{code}