\begin{code}
module MkCore (
mkCoreLet, mkCoreLets,
mkCoreApp, mkCoreApps, mkCoreConApps,
mkCoreLams, mkWildCase, mkIfThenElse,
mkWildValBinder, mkWildEvBinder,
sortQuantVars, castBottomExpr,
mkWordExpr, mkWordExprWord,
mkIntExpr, mkIntExprInt,
mkIntegerExpr,
mkFloatExpr, mkDoubleExpr,
mkCharExpr, mkStringExpr, mkStringExprFS,
FloatBind(..), wrapFloat,
mkEqBox,
mkChunkified,
mkCoreVarTup, mkCoreVarTupTy, mkCoreTup,
mkBigCoreVarTup, mkBigCoreVarTupTy,
mkBigCoreTup, mkBigCoreTupTy,
mkSmallTupleSelector, mkSmallTupleCase,
mkTupleSelector, mkTupleCase,
mkNilExpr, mkConsExpr, mkListExpr,
mkFoldrExpr, mkBuildExpr,
mkRuntimeErrorApp, mkImpossibleExpr, errorIds,
rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID, rUNTIME_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID, eRROR_ID, rEC_SEL_ERROR_ID, aBSENT_ERROR_ID,
uNDEFINED_ID, undefinedName
) where
#include "HsVersions.h"
import Id
import Var ( EvVar, setTyVarUnique )
import CoreSyn
import CoreUtils ( exprType, needsCaseBinding, bindNonRec )
import Literal
import HscTypes
import TysWiredIn
import PrelNames
import TcType ( mkSigmaTy )
import Type
import Coercion
import TysPrim
import DataCon ( DataCon, dataConWorkId )
import IdInfo ( vanillaIdInfo, setStrictnessInfo,
setArityInfo )
import Demand
import Name hiding ( varName )
import Outputable
import FastString
import UniqSupply
import BasicTypes
import Util
import Pair
import Constants
import DynFlags
import Data.Char ( ord )
import Data.List
import Data.Ord
import Data.Word
infixl 4 `mkCoreApp`, `mkCoreApps`
\end{code}
%************************************************************************
%* *
\subsection{Basic CoreSyn construction}
%* *
%************************************************************************
\begin{code}
sortQuantVars :: [Var] -> [Var]
sortQuantVars = sortBy (comparing withCategory)
where
withCategory v = (category v, v)
category :: Var -> Int
category v
| isKindVar v = 1
| isTyVar v = 2
| otherwise = 3
mkCoreLet :: CoreBind -> CoreExpr -> CoreExpr
mkCoreLet (NonRec bndr rhs) body
| needsCaseBinding (idType bndr) rhs
= Case rhs bndr (exprType body) [(DEFAULT,[],body)]
mkCoreLet bind body
= Let bind body
mkCoreLets :: [CoreBind] -> CoreExpr -> CoreExpr
mkCoreLets binds body = foldr mkCoreLet body binds
mkCoreApp :: CoreExpr -> CoreExpr -> CoreExpr
mkCoreApp fun (Type ty) = App fun (Type ty)
mkCoreApp fun (Coercion co) = App fun (Coercion co)
mkCoreApp fun arg = ASSERT2( isFunTy fun_ty, ppr fun $$ ppr arg )
mk_val_app fun arg arg_ty res_ty
where
fun_ty = exprType fun
(arg_ty, res_ty) = splitFunTy fun_ty
mkCoreApps :: CoreExpr -> [CoreExpr] -> CoreExpr
mkCoreApps orig_fun orig_args
= go orig_fun (exprType orig_fun) orig_args
where
go fun _ [] = fun
go fun fun_ty (Type ty : args) = go (App fun (Type ty)) (applyTy fun_ty ty) args
go fun fun_ty (Coercion co : args) = go (App fun (Coercion co)) (applyCo fun_ty co) args
go fun fun_ty (arg : args) = ASSERT2( isFunTy fun_ty, ppr fun_ty $$ ppr orig_fun $$ ppr orig_args )
go (mk_val_app fun arg arg_ty res_ty) res_ty args
where
(arg_ty, res_ty) = splitFunTy fun_ty
mkCoreConApps :: DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps con args = mkCoreApps (Var (dataConWorkId con)) args
mk_val_app :: CoreExpr -> CoreExpr -> Type -> Type -> CoreExpr
mk_val_app fun arg arg_ty _
| not (needsCaseBinding arg_ty arg)
= App fun arg
mk_val_app fun arg arg_ty res_ty
= Case arg arg_id res_ty [(DEFAULT,[],App fun (Var arg_id))]
where
arg_id = mkWildValBinder arg_ty
mkWildEvBinder :: PredType -> EvVar
mkWildEvBinder pred = mkWildValBinder pred
mkWildValBinder :: Type -> Id
mkWildValBinder ty = mkLocalId wildCardName ty
mkWildCase :: CoreExpr -> Type -> Type -> [CoreAlt] -> CoreExpr
mkWildCase scrut scrut_ty res_ty alts
= Case scrut (mkWildValBinder scrut_ty) res_ty alts
mkIfThenElse :: CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr
mkIfThenElse guard then_expr else_expr
= mkWildCase guard boolTy (exprType then_expr)
[ (DataAlt falseDataCon, [], else_expr),
(DataAlt trueDataCon, [], then_expr) ]
castBottomExpr :: CoreExpr -> Type -> CoreExpr
castBottomExpr e res_ty
| e_ty `eqType` res_ty = e
| otherwise = Case e (mkWildValBinder e_ty) res_ty []
where
e_ty = exprType e
\end{code}
The functions from this point don't really do anything cleverer than
their counterparts in CoreSyn, but they are here for consistency
\begin{code}
mkCoreLams :: [CoreBndr] -> CoreExpr -> CoreExpr
mkCoreLams = mkLams
\end{code}
%************************************************************************
%* *
\subsection{Making literals}
%* *
%************************************************************************
\begin{code}
mkIntExpr :: DynFlags -> Integer -> CoreExpr
mkIntExpr dflags i = mkConApp intDataCon [mkIntLit dflags i]
mkIntExprInt :: DynFlags -> Int -> CoreExpr
mkIntExprInt dflags i = mkConApp intDataCon [mkIntLitInt dflags i]
mkWordExpr :: DynFlags -> Integer -> CoreExpr
mkWordExpr dflags w = mkConApp wordDataCon [mkWordLit dflags w]
mkWordExprWord :: DynFlags -> Word -> CoreExpr
mkWordExprWord dflags w = mkConApp wordDataCon [mkWordLitWord dflags w]
mkIntegerExpr :: MonadThings m => Integer -> m CoreExpr
mkIntegerExpr i = do t <- lookupTyCon integerTyConName
return (Lit (mkLitInteger i (mkTyConTy t)))
mkFloatExpr :: Float -> CoreExpr
mkFloatExpr f = mkConApp floatDataCon [mkFloatLitFloat f]
mkDoubleExpr :: Double -> CoreExpr
mkDoubleExpr d = mkConApp doubleDataCon [mkDoubleLitDouble d]
mkCharExpr :: Char -> CoreExpr
mkCharExpr c = mkConApp charDataCon [mkCharLit c]
mkStringExpr :: MonadThings m => String -> m CoreExpr
mkStringExprFS :: MonadThings m => FastString -> m CoreExpr
mkStringExpr str = mkStringExprFS (mkFastString str)
mkStringExprFS str
| nullFS str
= return (mkNilExpr charTy)
| lengthFS str == 1
= do let the_char = mkCharExpr (headFS str)
return (mkConsExpr charTy the_char (mkNilExpr charTy))
| all safeChar chars
= do unpack_id <- lookupId unpackCStringName
return (App (Var unpack_id) (Lit (MachStr (fastStringToByteString str))))
| otherwise
= do unpack_id <- lookupId unpackCStringUtf8Name
return (App (Var unpack_id) (Lit (MachStr (fastStringToByteString str))))
where
chars = unpackFS str
safeChar c = ord c >= 1 && ord c <= 0x7F
\end{code}
\begin{code}
mkEqBox :: Coercion -> CoreExpr
mkEqBox co = ASSERT2( typeKind ty2 `eqKind` k, ppr co $$ ppr ty1 $$ ppr ty2 $$ ppr (typeKind ty1) $$ ppr (typeKind ty2) )
Var (dataConWorkId datacon) `mkTyApps` [k, ty1, ty2] `App` Coercion co
where Pair ty1 ty2 = coercionKind co
k = typeKind ty1
datacon = case coercionRole co of
Nominal -> eqBoxDataCon
Representational -> coercibleDataCon
Phantom -> pprPanic "mkEqBox does not support boxing phantom coercions"
(ppr co)
\end{code}
%************************************************************************
%* *
\subsection{Tuple constructors}
%* *
%************************************************************************
\begin{code}
mkChunkified :: ([a] -> a)
-> [a]
-> a
mkChunkified small_tuple as = mk_big_tuple (chunkify as)
where
mk_big_tuple [as] = small_tuple as
mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s))
chunkify :: [a] -> [[a]]
chunkify xs
| n_xs <= mAX_TUPLE_SIZE = [xs]
| otherwise = split xs
where
n_xs = length xs
split [] = []
split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs)
\end{code}
Creating tuples and their types for Core expressions
@mkBigCoreVarTup@ builds a tuple; the inverse to @mkTupleSelector@.
* If it has only one element, it is the identity function.
* If there are more elements than a big tuple can have, it nests
the tuples.
\begin{code}
mkCoreVarTup :: [Id] -> CoreExpr
mkCoreVarTup ids = mkCoreTup (map Var ids)
mkCoreVarTupTy :: [Id] -> Type
mkCoreVarTupTy ids = mkBoxedTupleTy (map idType ids)
mkCoreTup :: [CoreExpr] -> CoreExpr
mkCoreTup [] = Var unitDataConId
mkCoreTup [c] = c
mkCoreTup cs = mkConApp (tupleCon BoxedTuple (length cs))
(map (Type . exprType) cs ++ cs)
mkBigCoreVarTup :: [Id] -> CoreExpr
mkBigCoreVarTup ids = mkBigCoreTup (map Var ids)
mkBigCoreVarTupTy :: [Id] -> Type
mkBigCoreVarTupTy ids = mkBigCoreTupTy (map idType ids)
mkBigCoreTup :: [CoreExpr] -> CoreExpr
mkBigCoreTup = mkChunkified mkCoreTup
mkBigCoreTupTy :: [Type] -> Type
mkBigCoreTupTy = mkChunkified mkBoxedTupleTy
\end{code}
%************************************************************************
%* *
Floats
%* *
%************************************************************************
\begin{code}
data FloatBind
= FloatLet CoreBind
| FloatCase CoreExpr Id AltCon [Var]
wrapFloat :: FloatBind -> CoreExpr -> CoreExpr
wrapFloat (FloatLet defns) body = Let defns body
wrapFloat (FloatCase e b con bs) body = Case e b (exprType body) [(con, bs, body)]
\end{code}
%************************************************************************
%* *
\subsection{Tuple destructors}
%* *
%************************************************************************
\begin{code}
mkTupleSelector :: [Id]
-> Id
-> Id
-> CoreExpr
-> CoreExpr
mkTupleSelector vars the_var scrut_var scrut
= mk_tup_sel (chunkify vars) the_var
where
mk_tup_sel [vars] the_var = mkSmallTupleSelector vars the_var scrut_var scrut
mk_tup_sel vars_s the_var = mkSmallTupleSelector group the_var tpl_v $
mk_tup_sel (chunkify tpl_vs) tpl_v
where
tpl_tys = [mkBoxedTupleTy (map idType gp) | gp <- vars_s]
tpl_vs = mkTemplateLocals tpl_tys
[(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s,
the_var `elem` gp ]
\end{code}
\begin{code}
mkSmallTupleSelector :: [Id]
-> Id
-> Id
-> CoreExpr
-> CoreExpr
mkSmallTupleSelector [var] should_be_the_same_var _ scrut
= ASSERT(var == should_be_the_same_var)
scrut
mkSmallTupleSelector vars the_var scrut_var scrut
= ASSERT( notNull vars )
Case scrut scrut_var (idType the_var)
[(DataAlt (tupleCon BoxedTuple (length vars)), vars, Var the_var)]
\end{code}
\begin{code}
mkTupleCase :: UniqSupply
-> [Id]
-> CoreExpr
-> Id
-> CoreExpr
-> CoreExpr
mkTupleCase uniqs vars body scrut_var scrut
= mk_tuple_case uniqs (chunkify vars) body
where
mk_tuple_case _ [vars] body
= mkSmallTupleCase vars body scrut_var scrut
mk_tuple_case us vars_s body
= let (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
in mk_tuple_case us' (chunkify vars') body'
one_tuple_case chunk_vars (us, vs, body)
= let (uniq, us') = takeUniqFromSupply us
scrut_var = mkSysLocal (fsLit "ds") uniq
(mkBoxedTupleTy (map idType chunk_vars))
body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
in (us', scrut_var:vs, body')
\end{code}
\begin{code}
mkSmallTupleCase
:: [Id]
-> CoreExpr
-> Id
-> CoreExpr
-> CoreExpr
mkSmallTupleCase [var] body _scrut_var scrut
= bindNonRec var scrut body
mkSmallTupleCase vars body scrut_var scrut
= Case scrut scrut_var (exprType body) [(DataAlt (tupleCon BoxedTuple (length vars)), vars, body)]
\end{code}
%************************************************************************
%* *
\subsection{Common list manipulation expressions}
%* *
%************************************************************************
Call the constructor Ids when building explicit lists, so that they
interact well with rules.
\begin{code}
mkNilExpr :: Type -> CoreExpr
mkNilExpr ty = mkConApp nilDataCon [Type ty]
mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
mkConsExpr ty hd tl = mkConApp consDataCon [Type ty, hd, tl]
mkListExpr :: Type -> [CoreExpr] -> CoreExpr
mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
mkFoldrExpr :: MonadThings m
=> Type
-> Type
-> CoreExpr
-> CoreExpr
-> CoreExpr
-> m CoreExpr
mkFoldrExpr elt_ty result_ty c n list = do
foldr_id <- lookupId foldrName
return (Var foldr_id `App` Type elt_ty
`App` Type result_ty
`App` c
`App` n
`App` list)
mkBuildExpr :: (MonadThings m, MonadUnique m)
=> Type
-> ((Id, Type) -> (Id, Type) -> m CoreExpr)
-> m CoreExpr
mkBuildExpr elt_ty mk_build_inside = do
[n_tyvar] <- newTyVars [alphaTyVar]
let n_ty = mkTyVarTy n_tyvar
c_ty = mkFunTys [elt_ty, n_ty] n_ty
[c, n] <- sequence [mkSysLocalM (fsLit "c") c_ty, mkSysLocalM (fsLit "n") n_ty]
build_inside <- mk_build_inside (c, c_ty) (n, n_ty)
build_id <- lookupId buildName
return $ Var build_id `App` Type elt_ty `App` mkLams [n_tyvar, c, n] build_inside
where
newTyVars tyvar_tmpls = do
uniqs <- getUniquesM
return (zipWith setTyVarUnique tyvar_tmpls uniqs)
\end{code}
%************************************************************************
%* *
Error expressions
%* *
%************************************************************************
\begin{code}
mkRuntimeErrorApp
:: Id
-> Type
-> String
-> CoreExpr
mkRuntimeErrorApp err_id res_ty err_msg
= mkApps (Var err_id) [Type res_ty, err_string]
where
err_string = Lit (mkMachString err_msg)
mkImpossibleExpr :: Type -> CoreExpr
mkImpossibleExpr res_ty
= mkRuntimeErrorApp rUNTIME_ERROR_ID res_ty "Impossible case alternative"
\end{code}
%************************************************************************
%* *
Error Ids
%* *
%************************************************************************
GHC randomly injects these into the code.
@patError@ is just a version of @error@ for pattern-matching
failures. It knows various ``codes'' which expand to longer
strings---this saves space!
@absentErr@ is a thing we put in for ``absent'' arguments. They jolly
well shouldn't be yanked on, but if one is, then you will get a
friendly message from @absentErr@ (rather than a totally random
crash).
@parError@ is a special version of @error@ which the compiler does
not know to be a bottoming Id. It is used in the @_par_@ and @_seq_@
templates, but we don't ever expect to generate code for it.
\begin{code}
errorIds :: [Id]
errorIds
= [ eRROR_ID,
uNDEFINED_ID,
rUNTIME_ERROR_ID,
iRREFUT_PAT_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID,
nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID,
rEC_CON_ERROR_ID,
rEC_SEL_ERROR_ID,
aBSENT_ERROR_ID ]
recSelErrorName, runtimeErrorName, absentErrorName :: Name
irrefutPatErrorName, recConErrorName, patErrorName :: Name
nonExhaustiveGuardsErrorName, noMethodBindingErrorName :: Name
recSelErrorName = err_nm "recSelError" recSelErrorIdKey rEC_SEL_ERROR_ID
absentErrorName = err_nm "absentError" absentErrorIdKey aBSENT_ERROR_ID
runtimeErrorName = err_nm "runtimeError" runtimeErrorIdKey rUNTIME_ERROR_ID
irrefutPatErrorName = err_nm "irrefutPatError" irrefutPatErrorIdKey iRREFUT_PAT_ERROR_ID
recConErrorName = err_nm "recConError" recConErrorIdKey rEC_CON_ERROR_ID
patErrorName = err_nm "patError" patErrorIdKey pAT_ERROR_ID
noMethodBindingErrorName = err_nm "noMethodBindingError"
noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
nonExhaustiveGuardsErrorName = err_nm "nonExhaustiveGuardsError"
nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
err_nm :: String -> Unique -> Id -> Name
err_nm str uniq id = mkWiredInIdName cONTROL_EXCEPTION_BASE (fsLit str) uniq id
rEC_SEL_ERROR_ID, rUNTIME_ERROR_ID, iRREFUT_PAT_ERROR_ID, rEC_CON_ERROR_ID :: Id
pAT_ERROR_ID, nO_METHOD_BINDING_ERROR_ID, nON_EXHAUSTIVE_GUARDS_ERROR_ID :: Id
aBSENT_ERROR_ID :: Id
rEC_SEL_ERROR_ID = mkRuntimeErrorId recSelErrorName
rUNTIME_ERROR_ID = mkRuntimeErrorId runtimeErrorName
iRREFUT_PAT_ERROR_ID = mkRuntimeErrorId irrefutPatErrorName
rEC_CON_ERROR_ID = mkRuntimeErrorId recConErrorName
pAT_ERROR_ID = mkRuntimeErrorId patErrorName
nO_METHOD_BINDING_ERROR_ID = mkRuntimeErrorId noMethodBindingErrorName
nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId nonExhaustiveGuardsErrorName
aBSENT_ERROR_ID = mkRuntimeErrorId absentErrorName
mkRuntimeErrorId :: Name -> Id
mkRuntimeErrorId name = pc_bottoming_Id1 name runtimeErrorTy
runtimeErrorTy :: Type
runtimeErrorTy = mkSigmaTy [openAlphaTyVar] [] (mkFunTy addrPrimTy openAlphaTy)
\end{code}
\begin{code}
errorName :: Name
errorName = mkWiredInIdName gHC_ERR (fsLit "error") errorIdKey eRROR_ID
eRROR_ID :: Id
eRROR_ID = pc_bottoming_Id1 errorName errorTy
errorTy :: Type
errorTy = mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkListTy charTy] openAlphaTy)
undefinedName :: Name
undefinedName = mkWiredInIdName gHC_ERR (fsLit "undefined") undefinedKey uNDEFINED_ID
uNDEFINED_ID :: Id
uNDEFINED_ID = pc_bottoming_Id0 undefinedName undefinedTy
undefinedTy :: Type
undefinedTy = mkSigmaTy [openAlphaTyVar] [] openAlphaTy
\end{code}
Note [Error and friends have an "open-tyvar" forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'error' and 'undefined' have types
error :: forall (a::OpenKind). String -> a
undefined :: forall (a::OpenKind). a
Notice the 'OpenKind' (manifested as openAlphaTyVar in the code). This ensures that
"error" can be instantiated at
* unboxed as well as boxed types
* polymorphic types
This is OK because it never returns, so the return type is irrelevant.
See Note [OpenTypeKind accepts foralls] in TcUnify.
%************************************************************************
%* *
\subsection{Utilities}
%* *
%************************************************************************
\begin{code}
pc_bottoming_Id1 :: Name -> Type -> Id
pc_bottoming_Id1 name ty
= mkVanillaGlobalWithInfo name ty bottoming_info
where
bottoming_info = vanillaIdInfo `setStrictnessInfo` strict_sig
`setArityInfo` 1
strict_sig = mkClosedStrictSig [evalDmd] botRes
pc_bottoming_Id0 :: Name -> Type -> Id
pc_bottoming_Id0 name ty
= mkVanillaGlobalWithInfo name ty bottoming_info
where
bottoming_info = vanillaIdInfo `setStrictnessInfo` strict_sig
strict_sig = mkClosedStrictSig [] botRes
\end{code}