%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnNames]{Extracting imported and top-level names in scope}
\begin{code}
module RnNames (
rnImports, getLocalNonValBinders,
rnExports, extendGlobalRdrEnvRn,
gresFromAvails,
reportUnusedNames,
checkConName
) where
#include "HsVersions.h"
import DynFlags
import HsSyn
import TcEnv ( isBrackStage )
import RnEnv
import RnHsDoc ( rnHsDoc )
import LoadIface ( loadSrcInterface )
import TcRnMonad
import PrelNames
import Module
import Name
import NameEnv
import NameSet
import Avail
import HscTypes
import RdrName
import Outputable
import Maybes
import SrcLoc
import BasicTypes ( TopLevelFlag(..) )
import ErrUtils
import Util
import FastString
import ListSetOps
import Control.Monad
import Data.Map ( Map )
import qualified Data.Map as Map
import Data.List ( partition, (\\), find )
import qualified Data.Set as Set
import System.FilePath ((</>))
import System.IO
\end{code}
%************************************************************************
%* *
\subsection{rnImports}
%* *
%************************************************************************
Note [Tracking Trust Transitively]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we import a package as well as checking that the direct imports are safe
according to the rules outlined in the Note [HscMain . Safe Haskell Trust Check]
we must also check that these rules hold transitively for all dependent modules
and packages. Doing this without caching any trust information would be very
slow as we would need to touch all packages and interface files a module depends
on. To avoid this we make use of the property that if a modules Safe Haskell
mode changes, this triggers a recompilation from that module in the dependcy
graph. So we can just worry mostly about direct imports.
There is one trust property that can change for a package though without
recompliation being triggered: package trust. So we must check that all
packages a module tranitively depends on to be trusted are still trusted when
we are compiling this module (as due to recompilation avoidance some modules
below may not be considered trusted any more without recompilation being
triggered).
We handle this by augmenting the existing transitive list of packages a module M
depends on with a bool for each package that says if it must be trusted when the
module M is being checked for trust. This list of trust required packages for a
single import is gathered in the rnImportDecl function and stored in an
ImportAvails data structure. The union of these trust required packages for all
imports is done by the rnImports function using the combine function which calls
the plusImportAvails function that is a union operation for the ImportAvails
type. This gives us in an ImportAvails structure all packages required to be
trusted for the module we are currently compiling. Checking that these packages
are still trusted (and that direct imports are trusted) is done in
HscMain.checkSafeImports.
See the note below, [Trust Own Package] for a corner case in this method and
how its handled.
Note [Trust Own Package]
~~~~~~~~~~~~~~~~~~~~~~~~
There is a corner case of package trust checking that the usual transitive check
doesn't cover. (For how the usual check operates see the Note [Tracking Trust
Transitively] below). The case is when you import a -XSafe module M and M
imports a -XTrustworthy module N. If N resides in a different package than M,
then the usual check works as M will record a package dependency on N's package
and mark it as required to be trusted. If N resides in the same package as M
though, then importing M should require its own package be trusted due to N
(since M is -XSafe so doesn't create this requirement by itself). The usual
check fails as a module doesn't record a package dependency of its own package.
So instead we now have a bool field in a modules interface file that simply
states if the module requires its own package to be trusted. This field avoids
us having to load all interface files that the module depends on to see if one
is trustworthy.
Note [Trust Transitive Property]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So there is an interesting design question in regards to transitive trust
checking. Say I have a module B compiled with -XSafe. B is dependent on a bunch
of modules and packages, some packages it requires to be trusted as its using
-XTrustworthy modules from them. Now if I have a module A that doesn't use safe
haskell at all and simply imports B, should A inherit all the the trust
requirements from B? Should A now also require that a package p is trusted since
B required it?
We currently say no but saying yes also makes sense. The difference is, if a
module M that doesn't use Safe Haskell imports a module N that does, should all
the trusted package requirements be dropped since M didn't declare that it cares
about Safe Haskell (so -XSafe is more strongly associated with the module doing
the importing) or should it be done still since the author of the module N that
uses Safe Haskell said they cared (so -XSafe is more strongly associated with
the module that was compiled that used it).
Going with yes is a simpler semantics we think and harder for the user to stuff
up but it does mean that Safe Haskell will affect users who don't care about
Safe Haskell as they might grab a package from Cabal which uses safe haskell (say
network) and that packages imports -XTrustworthy modules from another package
(say bytestring), so requires that package is trusted. The user may now get
compilation errors in code that doesn't do anything with Safe Haskell simply
because they are using the network package. They will have to call 'ghc-pkg
trust network' to get everything working. Due to this invasive nature of going
with yes we have gone with no for now.
\begin{code}
rnImports :: [LImportDecl RdrName]
-> RnM ([LImportDecl Name], GlobalRdrEnv, ImportAvails, AnyHpcUsage)
rnImports imports = do
this_mod <- getModule
let (source, ordinary) = partition is_source_import imports
is_source_import d = ideclSource (unLoc d)
stuff1 <- mapAndReportM (rnImportDecl this_mod) ordinary
stuff2 <- mapAndReportM (rnImportDecl this_mod) source
let (decls, rdr_env, imp_avails, hpc_usage) = combine (stuff1 ++ stuff2)
return (decls, rdr_env, imp_avails, hpc_usage)
where
combine :: [(LImportDecl Name, GlobalRdrEnv, ImportAvails, AnyHpcUsage)]
-> ([LImportDecl Name], GlobalRdrEnv, ImportAvails, AnyHpcUsage)
combine = foldr plus ([], emptyGlobalRdrEnv, emptyImportAvails, False)
plus (decl, gbl_env1, imp_avails1,hpc_usage1)
(decls, gbl_env2, imp_avails2,hpc_usage2)
= ( decl:decls,
gbl_env1 `plusGlobalRdrEnv` gbl_env2,
imp_avails1 `plusImportAvails` imp_avails2,
hpc_usage1 || hpc_usage2 )
rnImportDecl :: Module -> LImportDecl RdrName
-> RnM (LImportDecl Name, GlobalRdrEnv, ImportAvails, AnyHpcUsage)
rnImportDecl this_mod
(L loc decl@(ImportDecl { ideclName = loc_imp_mod_name, ideclPkgQual = mb_pkg
, ideclSource = want_boot, ideclSafe = mod_safe
, ideclQualified = qual_only, ideclImplicit = implicit
, ideclAs = as_mod, ideclHiding = imp_details }))
= setSrcSpan loc $ do
when (isJust mb_pkg) $ do
pkg_imports <- xoptM Opt_PackageImports
when (not pkg_imports) $ addErr packageImportErr
let imp_mod_name = unLoc loc_imp_mod_name
doc = ppr imp_mod_name <+> ptext (sLit "is directly imported")
case imp_details of
Just (False, _) -> return ()
_ | implicit -> return ()
| qual_only -> return ()
| otherwise -> whenWOptM Opt_WarnMissingImportList $
addWarn (missingImportListWarn imp_mod_name)
iface <- loadSrcInterface doc imp_mod_name want_boot mb_pkg
WARN( not want_boot && mi_boot iface, ppr imp_mod_name ) do
dflags <- getDynFlags
warnIf (want_boot && not (mi_boot iface) && isOneShot (ghcMode dflags))
(warnRedundantSourceImport imp_mod_name)
when (mod_safe && not (safeImportsOn dflags)) $
addErrAt loc (ptext (sLit "safe import can't be used as Safe Haskell isn't on!")
$+$ ptext (sLit $ "please enable Safe Haskell through either "
++ "Safe, Trustworthy or Unsafe"))
let imp_mod = mi_module iface
warns = mi_warns iface
orph_iface = mi_orphan iface
has_finsts = mi_finsts iface
deps = mi_deps iface
trust = getSafeMode $ mi_trust iface
trust_pkg = mi_trust_pkg iface
qual_mod_name = as_mod `orElse` imp_mod_name
imp_spec = ImpDeclSpec { is_mod = imp_mod_name, is_qual = qual_only,
is_dloc = loc, is_as = qual_mod_name }
(new_imp_details, gres) <- filterImports iface imp_spec imp_details
let gbl_env = mkGlobalRdrEnv (filterOut from_this_mod gres)
from_this_mod gre = nameModule (gre_name gre) == this_mod
orphans | orph_iface = ASSERT( not (imp_mod `elem` dep_orphs deps) )
imp_mod : dep_orphs deps
| otherwise = dep_orphs deps
finsts | has_finsts = ASSERT( not (imp_mod `elem` dep_finsts deps) )
imp_mod : dep_finsts deps
| otherwise = dep_finsts deps
pkg = modulePackageId (mi_module iface)
ptrust = trust == Sf_Trustworthy || trust_pkg
(dependent_mods, dependent_pkgs, pkg_trust_req)
| pkg == thisPackage dflags =
((imp_mod_name, want_boot) : dep_mods deps, dep_pkgs deps, ptrust)
| otherwise =
ASSERT2( not (pkg `elem` (map fst $ dep_pkgs deps))
, ppr pkg <+> ppr (dep_pkgs deps) )
([], (pkg, False) : dep_pkgs deps, False)
import_all = case imp_details of
Just (is_hiding, ls) -> not is_hiding && null ls
_ -> False
mod_safe' = mod_safe
|| (not implicit && safeDirectImpsReq dflags)
|| (implicit && safeImplicitImpsReq dflags)
imports = ImportAvails {
imp_mods = unitModuleEnv imp_mod
[(qual_mod_name, import_all, loc, mod_safe')],
imp_orphs = orphans,
imp_finsts = finsts,
imp_dep_mods = mkModDeps dependent_mods,
imp_dep_pkgs = map fst $ dependent_pkgs,
imp_trust_pkgs = if mod_safe'
then map fst $ filter snd dependent_pkgs
else [],
imp_trust_own_pkg = pkg_trust_req
}
whenWOptM Opt_WarnWarningsDeprecations (
case warns of
WarnAll txt -> addWarn $ moduleWarn imp_mod_name txt
_ -> return ()
)
let new_imp_decl = L loc (decl { ideclSafe = mod_safe'
, ideclHiding = new_imp_details })
return (new_imp_decl, gbl_env, imports, mi_hpc iface)
warnRedundantSourceImport :: ModuleName -> SDoc
warnRedundantSourceImport mod_name
= ptext (sLit "Unnecessary {-# SOURCE #-} in the import of module")
<+> quotes (ppr mod_name)
\end{code}
%************************************************************************
%* *
\subsection{importsFromLocalDecls}
%* *
%************************************************************************
From the top-level declarations of this module produce
* the lexical environment
* the ImportAvails
created by its bindings.
Note [Top-level Names in Template Haskell decl quotes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: Note [Interactively-bound Ids in GHCi] in HscTypes
Consider a Template Haskell declaration quotation like this:
module M where
f x = h [d| f = 3 |]
When renaming the declarations inside [d| ...|], we treat the
top level binders specially in two ways
1. We give them an Internal name, not (as usual) an External one.
Otherwise the NameCache gets confused by a second allocation of
M.f. (We used to invent a fake module ThFake to avoid this, but
that had other problems, notably in getting the correct answer for
nameIsLocalOrFrom in lookupFixity. So we now leave tcg_module
unaffected.)
2. We make them *shadow* the outer bindings. If we don't do that,
we'll get a complaint when extending the GlobalRdrEnv, saying that
there are two bindings for 'f'. There are several tricky points:
* This shadowing applies even if the binding for 'f' is in a
where-clause, and hence is in the *local* RdrEnv not the *global*
RdrEnv.
* The *qualified* name M.f from the enclosing module must certainly
still be available. So we don't nuke it entirely; we just make
it seem like qualified import.
* We only shadow *External* names (which come from the main module)
Do not shadow *Inernal* names because in the bracket
[d| class C a where f :: a
f = 4 |]
rnSrcDecls will first call extendGlobalRdrEnvRn with C[f] from the
class decl, and *separately* extend the envt with the value binding.
3. We find out whether we are inside a [d| ... |] by testing the TH
stage. This is a slight hack, because the stage field was really
meant for the type checker, and here we are not interested in the
fields of Brack, hence the error thunks in thRnBrack.
\begin{code}
extendGlobalRdrEnvRn :: [AvailInfo]
-> MiniFixityEnv
-> RnM (TcGblEnv, TcLclEnv)
extendGlobalRdrEnvRn avails new_fixities
= do { (gbl_env, lcl_env) <- getEnvs
; stage <- getStage
; isGHCi <- getIsGHCi
; let rdr_env = tcg_rdr_env gbl_env
fix_env = tcg_fix_env gbl_env
th_bndrs = tcl_th_bndrs lcl_env
th_lvl = thLevel stage
inBracket = isBrackStage stage
lcl_env_TH = lcl_env { tcl_rdr = delLocalRdrEnvList (tcl_rdr lcl_env) new_occs }
lcl_env2 | inBracket = lcl_env_TH
| otherwise = lcl_env
rdr_env2 = extendGlobalRdrEnv (isGHCi && not inBracket) rdr_env avails
lcl_env3 = lcl_env2 { tcl_th_bndrs = extendNameEnvList th_bndrs
[ (n, (TopLevel, th_lvl))
| n <- new_names ] }
fix_env' = foldl extend_fix_env fix_env new_names
dups = findLocalDupsRdrEnv rdr_env2 new_names
gbl_env' = gbl_env { tcg_rdr_env = rdr_env2, tcg_fix_env = fix_env' }
; traceRn (text "extendGlobalRdrEnvRn 1" <+> (ppr avails $$ (ppr dups)))
; mapM_ (addDupDeclErr . map gre_name) dups
; traceRn (text "extendGlobalRdrEnvRn 2" <+> (pprGlobalRdrEnv True rdr_env2))
; return (gbl_env', lcl_env3) }
where
new_names = concatMap availNames avails
new_occs = map nameOccName new_names
extend_fix_env fix_env name
| Just (L _ fi) <- lookupFsEnv new_fixities (occNameFS occ)
= extendNameEnv fix_env name (FixItem occ fi)
| otherwise
= fix_env
where
occ = nameOccName name
\end{code}
@getLocalDeclBinders@ returns the names for an @HsDecl@. It's
used for source code.
*** See "THE NAMING STORY" in HsDecls ****
\begin{code}
getLocalNonValBinders :: MiniFixityEnv -> HsGroup RdrName
-> RnM ((TcGblEnv, TcLclEnv), NameSet)
getLocalNonValBinders fixity_env
(HsGroup { hs_valds = val_binds,
hs_tyclds = tycl_decls,
hs_instds = inst_decls,
hs_fords = foreign_decls })
= do {
; tc_avails <- mapM new_tc (tyClGroupConcat tycl_decls)
; traceRn (text "getLocalNonValBinders 1" <+> ppr tc_avails)
; envs <- extendGlobalRdrEnvRn tc_avails fixity_env
; setEnvs envs $ do {
; nti_avails <- concatMapM new_assoc inst_decls
; is_boot <- tcIsHsBoot
; let val_bndrs | is_boot = hs_boot_sig_bndrs
| otherwise = for_hs_bndrs
; val_avails <- mapM new_simple val_bndrs
; let avails = nti_avails ++ val_avails
new_bndrs = availsToNameSet avails `unionNameSets`
availsToNameSet tc_avails
; traceRn (text "getLocalNonValBinders 2" <+> ppr avails)
; envs <- extendGlobalRdrEnvRn avails fixity_env
; return (envs, new_bndrs) } }
where
for_hs_bndrs :: [Located RdrName]
for_hs_bndrs = [ L decl_loc (unLoc nm)
| L decl_loc (ForeignImport nm _ _ _) <- foreign_decls]
hs_boot_sig_bndrs = [ L decl_loc (unLoc n)
| L decl_loc (TypeSig ns _) <- val_sigs, n <- ns]
ValBindsIn _ val_sigs = val_binds
new_simple :: Located RdrName -> RnM AvailInfo
new_simple rdr_name = do{ nm <- newTopSrcBinder rdr_name
; return (Avail nm) }
new_tc tc_decl
= do { let bndrs = hsLTyClDeclBinders tc_decl
; names@(main_name : _) <- mapM newTopSrcBinder bndrs
; return (AvailTC main_name names) }
new_assoc :: LInstDecl RdrName -> RnM [AvailInfo]
new_assoc (L _ (TyFamInstD {})) = return []
new_assoc (L _ (DataFamInstD { dfid_inst = d }))
= do { avail <- new_di Nothing d
; return [avail] }
new_assoc (L _ (ClsInstD { cid_inst = ClsInstDecl
{ cid_poly_ty = inst_ty
, cid_datafam_insts = adts } }))
| Just (_, _, L loc cls_rdr, _) <- splitLHsInstDeclTy_maybe inst_ty
= do { cls_nm <- setSrcSpan loc $ lookupGlobalOccRn cls_rdr
; mapM (new_di (Just cls_nm) . unLoc) adts }
| otherwise
= return []
new_di :: Maybe Name -> DataFamInstDecl RdrName -> RnM AvailInfo
new_di mb_cls ti_decl
= do { main_name <- lookupFamInstName mb_cls (dfid_tycon ti_decl)
; sub_names <- mapM newTopSrcBinder (hsDataFamInstBinders ti_decl)
; return (AvailTC (unLoc main_name) sub_names) }
\end{code}
Note [Looking up family names in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
module M where
type family T a :: *
type instance M.T Int = Bool
We might think that we can simply use 'lookupOccRn' when processing the type
instance to look up 'M.T'. Alas, we can't! The type family declaration is in
the *same* HsGroup as the type instance declaration. Hence, as we are
currently collecting the binders declared in that HsGroup, these binders will
not have been added to the global environment yet.
Solution is simple: process the type family declarations first, extend
the environment, and then process the type instances.
%************************************************************************
%* *
\subsection{Filtering imports}
%* *
%************************************************************************
@filterImports@ takes the @ExportEnv@ telling what the imported module makes
available, and filters it through the import spec (if any).
Note [Dealing with imports]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
For import M( ies ), we take the mi_exports of M, and make
imp_occ_env :: OccEnv (Name, AvailInfo, Maybe Name)
One entry for each Name that M exports; the AvailInfo describes just
that Name.
The situation is made more complicated by associated types. E.g.
module M where
class C a where { data T a }
instance C Int where { data T Int = T1 | T2 }
instance C Bool where { data T Int = T3 }
Then M's export_avails are (recall the AvailTC invariant from Avails.hs)
C(C,T), T(T,T1,T2,T3)
Notice that T appears *twice*, once as a child and once as a parent.
From this we construct the imp_occ_env
C -> (C, C(C,T), Nothing
T -> (T, T(T,T1,T2,T3), Just C)
T1 -> (T1, T(T1,T2,T3), Nothing) -- similarly T2,T3
Note that the imp_occ_env will have entries for data constructors too,
although we never look up data constructors.
\begin{code}
filterImports :: ModIface
-> ImpDeclSpec
-> Maybe (Bool, [LIE RdrName])
-> RnM (Maybe (Bool, [LIE Name]),
[GlobalRdrElt])
filterImports iface decl_spec Nothing
= return (Nothing, gresFromAvails prov (mi_exports iface))
where
prov = Imported [ImpSpec { is_decl = decl_spec, is_item = ImpAll }]
filterImports iface decl_spec (Just (want_hiding, import_items))
= do
items1 <- mapM lookup_lie import_items
let items2 :: [(LIE Name, AvailInfo)]
items2 = concat items1
names = availsToNameSet (map snd items2)
keep n = not (n `elemNameSet` names)
pruned_avails = filterAvails keep all_avails
hiding_prov = Imported [ImpSpec { is_decl = decl_spec, is_item = ImpAll }]
gres | want_hiding = gresFromAvails hiding_prov pruned_avails
| otherwise = concatMap (gresFromIE decl_spec) items2
return (Just (want_hiding, map fst items2), gres)
where
all_avails = mi_exports iface
imp_occ_env :: OccEnv (Name,
AvailInfo,
Maybe Name)
imp_occ_env = mkOccEnv_C combine [ (nameOccName n, (n, a, Nothing))
| a <- all_avails, n <- availNames a]
where
combine (name1, a1@(AvailTC p1 _), mp1)
(name2, a2@(AvailTC p2 _), mp2)
= ASSERT( name1 == name2 && isNothing mp1 && isNothing mp2 )
if p1 == name1 then (name1, a1, Just p2)
else (name1, a2, Just p1)
combine x y = pprPanic "filterImports/combine" (ppr x $$ ppr y)
lookup_name :: RdrName -> IELookupM (Name, AvailInfo, Maybe Name)
lookup_name rdr | isQual rdr = failLookupWith (QualImportError rdr)
| Just succ <- mb_success = return succ
| otherwise = failLookupWith BadImport
where
mb_success = lookupOccEnv imp_occ_env (rdrNameOcc rdr)
lookup_lie :: LIE RdrName -> TcRn [(LIE Name, AvailInfo)]
lookup_lie (L loc ieRdr)
= do (stuff, warns) <- setSrcSpan loc $
liftM (fromMaybe ([],[])) $
run_lookup (lookup_ie ieRdr)
mapM_ emit_warning warns
return [ (L loc ie, avail) | (ie,avail) <- stuff ]
where
emit_warning (DodgyImport n) = whenWOptM Opt_WarnDodgyImports $
addWarn (dodgyImportWarn n)
emit_warning MissingImportList = whenWOptM Opt_WarnMissingImportList $
addWarn (missingImportListItem ieRdr)
emit_warning BadImportW = whenWOptM Opt_WarnDodgyImports $
addWarn (lookup_err_msg BadImport)
run_lookup :: IELookupM a -> TcRn (Maybe a)
run_lookup m = case m of
Failed err -> addErr (lookup_err_msg err) >> return Nothing
Succeeded a -> return (Just a)
lookup_err_msg err = case err of
BadImport -> badImportItemErr iface decl_spec ieRdr all_avails
IllegalImport -> illegalImportItemErr
QualImportError rdr -> qualImportItemErr rdr
lookup_ie :: IE RdrName -> IELookupM ([(IE Name, AvailInfo)], [IELookupWarning])
lookup_ie ie = handle_bad_import $ do
case ie of
IEVar n -> do
(name, avail, _) <- lookup_name n
return ([(IEVar name, trimAvail avail name)], [])
IEThingAll tc -> do
(name, avail@(AvailTC name2 subs), mb_parent) <- lookup_name tc
let warns | null (drop 1 subs) = [DodgyImport tc]
| not (is_qual decl_spec) = [MissingImportList]
| otherwise = []
case mb_parent of
Nothing -> return ([(IEThingAll name, avail)], warns)
Just parent -> return ([(IEThingAll name,
AvailTC name2 (subs \\ [name])),
(IEThingAll name, AvailTC parent [name])],
warns)
IEThingAbs tc
| want_hiding
-> let tc_name = lookup_name tc
dc_name = lookup_name (setRdrNameSpace tc srcDataName)
in
case catIELookupM [ tc_name, dc_name ] of
[] -> failLookupWith BadImport
names -> return ([mkIEThingAbs name | name <- names], [])
| otherwise
-> do nameAvail <- lookup_name tc
return ([mkIEThingAbs nameAvail], [])
IEThingWith rdr_tc rdr_ns -> do
(name, AvailTC _ ns, mb_parent) <- lookup_name rdr_tc
let subnames = case ns of
[] -> []
(n1:ns1) | n1 == name -> ns1
| otherwise -> ns
mb_children = lookupChildren subnames rdr_ns
children <- if any isNothing mb_children
then failLookupWith BadImport
else return (catMaybes mb_children)
case mb_parent of
Nothing -> return ([(IEThingWith name children,
AvailTC name (name:children))],
[])
Just parent -> return ([(IEThingWith name children,
AvailTC name children),
(IEThingWith name children,
AvailTC parent [name])],
[])
_other -> failLookupWith IllegalImport
where
mkIEThingAbs (n, av, Nothing ) = (IEThingAbs n, trimAvail av n)
mkIEThingAbs (n, _, Just parent) = (IEThingAbs n, AvailTC parent [n])
handle_bad_import m = catchIELookup m $ \err -> case err of
BadImport | want_hiding -> return ([], [BadImportW])
_ -> failLookupWith err
type IELookupM = MaybeErr IELookupError
data IELookupWarning
= BadImportW
| MissingImportList
| DodgyImport RdrName
data IELookupError
= QualImportError RdrName
| BadImport
| IllegalImport
failLookupWith :: IELookupError -> IELookupM a
failLookupWith err = Failed err
catchIELookup :: IELookupM a -> (IELookupError -> IELookupM a) -> IELookupM a
catchIELookup m h = case m of
Succeeded r -> return r
Failed err -> h err
catIELookupM :: [IELookupM a] -> [a]
catIELookupM ms = [ a | Succeeded a <- ms ]
\end{code}
%************************************************************************
%* *
\subsection{Import/Export Utils}
%* *
%************************************************************************
\begin{code}
greExportAvail :: GlobalRdrElt -> AvailInfo
greExportAvail gre
= case gre_par gre of
ParentIs p -> AvailTC p [me]
NoParent | isTyConName me -> AvailTC me [me]
| otherwise -> Avail me
where
me = gre_name gre
plusAvail :: AvailInfo -> AvailInfo -> AvailInfo
plusAvail a1 a2
| debugIsOn && availName a1 /= availName a2
= pprPanic "RnEnv.plusAvail names differ" (hsep [ppr a1,ppr a2])
plusAvail a1@(Avail {}) (Avail {}) = a1
plusAvail (AvailTC _ []) a2@(AvailTC {}) = a2
plusAvail a1@(AvailTC {}) (AvailTC _ []) = a1
plusAvail (AvailTC n1 (s1:ss1)) (AvailTC n2 (s2:ss2))
= case (n1==s1, n2==s2) of
(True,True) -> AvailTC n1 (s1 : (ss1 `unionLists` ss2))
(True,False) -> AvailTC n1 (s1 : (ss1 `unionLists` (s2:ss2)))
(False,True) -> AvailTC n1 (s2 : ((s1:ss1) `unionLists` ss2))
(False,False) -> AvailTC n1 ((s1:ss1) `unionLists` (s2:ss2))
plusAvail a1 a2 = pprPanic "RnEnv.plusAvail" (hsep [ppr a1,ppr a2])
trimAvail :: AvailInfo -> Name -> AvailInfo
trimAvail (Avail n) _ = Avail n
trimAvail (AvailTC n ns) m = ASSERT( m `elem` ns) AvailTC n [m]
filterAvails :: (Name -> Bool) -> [AvailInfo] -> [AvailInfo]
filterAvails keep avails = foldr (filterAvail keep) [] avails
filterAvail :: (Name -> Bool) -> AvailInfo -> [AvailInfo] -> [AvailInfo]
filterAvail keep ie rest =
case ie of
Avail n | keep n -> ie : rest
| otherwise -> rest
AvailTC tc ns ->
let left = filter keep ns in
if null left then rest else AvailTC tc left : rest
gresFromIE :: ImpDeclSpec -> (LIE Name, AvailInfo) -> [GlobalRdrElt]
gresFromIE decl_spec (L loc ie, avail)
= gresFromAvail prov_fn avail
where
is_explicit = case ie of
IEThingAll name -> \n -> n == name
_ -> \_ -> True
prov_fn name = Imported [imp_spec]
where
imp_spec = ImpSpec { is_decl = decl_spec, is_item = item_spec }
item_spec = ImpSome { is_explicit = is_explicit name, is_iloc = loc }
mkChildEnv :: [GlobalRdrElt] -> NameEnv [Name]
mkChildEnv gres = foldr add emptyNameEnv gres
where
add (GRE { gre_name = n, gre_par = ParentIs p }) env = extendNameEnv_Acc (:) singleton env p n
add _ env = env
findChildren :: NameEnv [Name] -> Name -> [Name]
findChildren env n = lookupNameEnv env n `orElse` []
lookupChildren :: [Name] -> [RdrName] -> [Maybe Name]
lookupChildren all_kids rdr_items
= map (lookupFsEnv kid_env . occNameFS . rdrNameOcc) rdr_items
where
kid_env = mkFsEnv [(occNameFS (nameOccName n), n) | n <- all_kids]
nubAvails :: [AvailInfo] -> [AvailInfo]
nubAvails avails = nameEnvElts (foldl add emptyNameEnv avails)
where
add env avail = extendNameEnv_C plusAvail env (availName avail) avail
\end{code}
%************************************************************************
%* *
\subsection{Export list processing}
%* *
%************************************************************************
Processing the export list.
You might think that we should record things that appear in the export
list as ``occurrences'' (using @addOccurrenceName@), but you'd be
wrong. We do check (here) that they are in scope, but there is no
need to slurp in their actual declaration (which is what
@addOccurrenceName@ forces).
Indeed, doing so would big trouble when compiling @PrelBase@, because
it re-exports @GHC@, which includes @takeMVar#@, whose type includes
@ConcBase.StateAndSynchVar#@, and so on...
Note [Exports of data families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose you see (Trac #5306)
module M where
import X( F )
data instance F Int = FInt
What does M export? AvailTC F [FInt]
or AvailTC F [F,FInt]?
The former is strictly right because F isn't defined in this module.
But then you can never do an explicit import of M, thus
import M( F( FInt ) )
because F isn't exported by M. Nor can you import FInt alone from here
import M( FInt )
because we don't have syntax to support that. (It looks like an import of
the type FInt.)
At one point I implemented a compromise:
* When constructing exports with no export list, or with module M(
module M ), we add the parent to the exports as well.
* But not when you see module M( f ), even if f is a
class method with a parent.
* Nor when you see module M( module N ), with N /= M.
But the compromise seemed too much of a hack, so we backed it out.
You just have to use an explicit export list:
module M( F(..) ) where ...
\begin{code}
type ExportAccum
= ([LIE Name],
ExportOccMap,
[AvailInfo])
emptyExportAccum :: ExportAccum
emptyExportAccum = ([], emptyOccEnv, [])
type ExportOccMap = OccEnv (Name, IE RdrName)
rnExports :: Bool
-> Maybe [LIE RdrName]
-> TcGblEnv
-> RnM TcGblEnv
rnExports explicit_mod exports
tcg_env@(TcGblEnv { tcg_mod = this_mod,
tcg_rdr_env = rdr_env,
tcg_imports = imports })
= unsetWOptM Opt_WarnWarningsDeprecations $
do {
; dflags <- getDynFlags
; let real_exports
| explicit_mod = exports
| ghcLink dflags == LinkInMemory = Nothing
| otherwise = Just [noLoc (IEVar main_RDR_Unqual)]
; (rn_exports, avails) <- exports_from_avail real_exports rdr_env imports this_mod
; let final_avails = nubAvails avails
; traceRn (text "rnExports: Exports:" <+> ppr final_avails)
; return (tcg_env { tcg_exports = final_avails,
tcg_rn_exports = case tcg_rn_exports tcg_env of
Nothing -> Nothing
Just _ -> rn_exports,
tcg_dus = tcg_dus tcg_env `plusDU`
usesOnly (availsToNameSet final_avails) }) }
exports_from_avail :: Maybe [LIE RdrName]
-> GlobalRdrEnv
-> ImportAvails
-> Module
-> RnM (Maybe [LIE Name], [AvailInfo])
exports_from_avail Nothing rdr_env _imports _this_mod
=
let
avails = [ greExportAvail gre
| gre <- globalRdrEnvElts rdr_env
, isLocalGRE gre ]
in
return (Nothing, avails)
exports_from_avail (Just rdr_items) rdr_env imports this_mod
= do (ie_names, _, exports) <- foldlM do_litem emptyExportAccum rdr_items
return (Just ie_names, exports)
where
do_litem :: ExportAccum -> LIE RdrName -> RnM ExportAccum
do_litem acc lie = setSrcSpan (getLoc lie) (exports_from_item acc lie)
kids_env :: NameEnv [Name]
kids_env = mkChildEnv (globalRdrEnvElts rdr_env)
imported_modules = [ qual_name
| xs <- moduleEnvElts $ imp_mods imports,
(qual_name, _, _, _) <- xs ]
exports_from_item :: ExportAccum -> LIE RdrName -> RnM ExportAccum
exports_from_item acc@(ie_names, occs, exports)
(L loc (IEModuleContents mod))
| let earlier_mods = [ mod | (L _ (IEModuleContents mod)) <- ie_names ]
, mod `elem` earlier_mods
= do { warn_dup_exports <- woptM Opt_WarnDuplicateExports ;
warnIf warn_dup_exports (dupModuleExport mod) ;
return acc }
| otherwise
= do { implicit_prelude <- xoptM Opt_ImplicitPrelude
; warnDodgyExports <- woptM Opt_WarnDodgyExports
; let { exportValid = (mod `elem` imported_modules)
|| (moduleName this_mod == mod)
; gres = filter (isModuleExported implicit_prelude mod)
(globalRdrEnvElts rdr_env)
; new_exports = map greExportAvail gres
; names = map gre_name gres }
; checkErr exportValid (moduleNotImported mod)
; warnIf (warnDodgyExports && exportValid && null names)
(nullModuleExport mod)
; addUsedRdrNames (concat [ [mkRdrQual mod occ, mkRdrUnqual occ]
| occ <- map nameOccName names ])
; occs' <- check_occs (IEModuleContents mod) occs names
; traceRn (vcat [ text "export mod" <+> ppr mod
, ppr new_exports ])
; return (L loc (IEModuleContents mod) : ie_names,
occs', new_exports ++ exports) }
exports_from_item acc@(lie_names, occs, exports) (L loc ie)
| isDoc ie
= do new_ie <- lookup_doc_ie ie
return (L loc new_ie : lie_names, occs, exports)
| otherwise
= do (new_ie, avail) <- lookup_ie ie
if isUnboundName (ieName new_ie)
then return acc
else do
occs' <- check_occs ie occs (availNames avail)
return (L loc new_ie : lie_names, occs', avail : exports)
lookup_ie :: IE RdrName -> RnM (IE Name, AvailInfo)
lookup_ie (IEVar rdr)
= do gre <- lookupGreRn rdr
return (IEVar (gre_name gre), greExportAvail gre)
lookup_ie (IEThingAbs rdr)
= do gre <- lookupGreRn rdr
let name = gre_name gre
avail = greExportAvail gre
return (IEThingAbs name, avail)
lookup_ie ie@(IEThingAll rdr)
= do name <- lookupGlobalOccRn rdr
let kids = findChildren kids_env name
addUsedKids rdr kids
warnDodgyExports <- woptM Opt_WarnDodgyExports
when (null kids) $
if isTyConName name
then when warnDodgyExports $ addWarn (dodgyExportWarn name)
else
addErr (exportItemErr ie)
return (IEThingAll name, AvailTC name (name:kids))
lookup_ie ie@(IEThingWith rdr sub_rdrs)
= do name <- lookupGlobalOccRn rdr
if isUnboundName name
then return (IEThingWith name [], AvailTC name [name])
else do
let mb_names = lookupChildren (findChildren kids_env name) sub_rdrs
if any isNothing mb_names
then do addErr (exportItemErr ie)
return (IEThingWith name [], AvailTC name [name])
else do let names = catMaybes mb_names
addUsedKids rdr names
return (IEThingWith name names, AvailTC name (name:names))
lookup_ie _ = panic "lookup_ie"
lookup_doc_ie :: IE RdrName -> RnM (IE Name)
lookup_doc_ie (IEGroup lev doc) = do rn_doc <- rnHsDoc doc
return (IEGroup lev rn_doc)
lookup_doc_ie (IEDoc doc) = do rn_doc <- rnHsDoc doc
return (IEDoc rn_doc)
lookup_doc_ie (IEDocNamed str) = return (IEDocNamed str)
lookup_doc_ie _ = panic "lookup_doc_ie"
addUsedKids parent_rdr kid_names
= addUsedRdrNames $ map (mk_kid_rdr . nameOccName) kid_names
where
mk_kid_rdr = case isQual_maybe parent_rdr of
Nothing -> mkRdrUnqual
Just (modName, _) -> mkRdrQual modName
isDoc :: IE RdrName -> Bool
isDoc (IEDoc _) = True
isDoc (IEDocNamed _) = True
isDoc (IEGroup _ _) = True
isDoc _ = False
isModuleExported :: Bool -> ModuleName -> GlobalRdrElt -> Bool
isModuleExported implicit_prelude mod (GRE { gre_name = name, gre_prov = prov })
| implicit_prelude && isBuiltInSyntax name = False
| otherwise
= case prov of
LocalDef | Just name_mod <- nameModule_maybe name
-> moduleName name_mod == mod
| otherwise -> False
Imported is -> any unQualSpecOK is && any (qualSpecOK mod) is
check_occs :: IE RdrName -> ExportOccMap -> [Name] -> RnM ExportOccMap
check_occs ie occs names
= foldlM check occs names
where
check occs name
= case lookupOccEnv occs name_occ of
Nothing -> return (extendOccEnv occs name_occ (name, ie))
Just (name', ie')
| name == name'
-> do unless (dupExport_ok name ie ie') $ do
warn_dup_exports <- woptM Opt_WarnDuplicateExports
warnIf warn_dup_exports (dupExportWarn name_occ ie ie')
return occs
| otherwise
-> do { global_env <- getGlobalRdrEnv ;
addErr (exportClashErr global_env name' name ie' ie) ;
return occs }
where
name_occ = nameOccName name
dupExport_ok :: Name -> IE RdrName -> IE RdrName -> Bool
dupExport_ok n ie1 ie2
= not ( single ie1 || single ie2
|| (explicit_in ie1 && explicit_in ie2) )
where
explicit_in (IEModuleContents _) = False
explicit_in (IEThingAll r) = nameOccName n == rdrNameOcc r
explicit_in _ = True
single (IEVar {}) = True
single (IEThingAbs {}) = True
single _ = False
\end{code}
%*********************************************************
%* *
\subsection{Unused names}
%* *
%*********************************************************
\begin{code}
reportUnusedNames :: Maybe [LIE RdrName]
-> TcGblEnv -> RnM ()
reportUnusedNames _export_decls gbl_env
= do { traceRn ((text "RUN") <+> (ppr (tcg_dus gbl_env)))
; warnUnusedImportDecls gbl_env
; warnUnusedTopBinds unused_locals }
where
used_names :: NameSet
used_names = findUses (tcg_dus gbl_env) emptyNameSet
defined_names :: [GlobalRdrElt]
defined_names = globalRdrEnvElts (tcg_rdr_env gbl_env)
_defined_and_used, defined_but_not_used :: [GlobalRdrElt]
(_defined_and_used, defined_but_not_used)
= partition (gre_is_used used_names) defined_names
kids_env = mkChildEnv defined_names
gre_is_used :: NameSet -> GlobalRdrElt -> Bool
gre_is_used used_names (GRE {gre_name = name})
= name `elemNameSet` used_names
|| any (`elemNameSet` used_names) (findChildren kids_env name)
unused_locals :: [GlobalRdrElt]
unused_locals = filter is_unused_local defined_but_not_used
is_unused_local :: GlobalRdrElt -> Bool
is_unused_local gre = isLocalGRE gre && isExternalName (gre_name gre)
\end{code}
%*********************************************************
%* *
\subsection{Unused imports}
%* *
%*********************************************************
This code finds which import declarations are unused. The
specification and implementation notes are here:
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/UnusedImports
\begin{code}
type ImportDeclUsage
= ( LImportDecl Name
, [AvailInfo]
, [Name] )
\end{code}
\begin{code}
warnUnusedImportDecls :: TcGblEnv -> RnM ()
warnUnusedImportDecls gbl_env
= do { uses <- readMutVar (tcg_used_rdrnames gbl_env)
; let user_imports = filterOut (ideclImplicit . unLoc) (tcg_rn_imports gbl_env)
rdr_env = tcg_rdr_env gbl_env
; let usage :: [ImportDeclUsage]
usage = findImportUsage user_imports rdr_env (Set.elems uses)
; traceRn (vcat [ ptext (sLit "Uses:") <+> ppr (Set.elems uses)
, ptext (sLit "Import usage") <+> ppr usage])
; whenWOptM Opt_WarnUnusedImports $
mapM_ warnUnusedImport usage
; whenGOptM Opt_D_dump_minimal_imports $
printMinimalImports usage }
\end{code}
Note [The ImportMap]
~~~~~~~~~~~~~~~~~~~~
The ImportMap is a short-lived intermediate data struture records, for
each import declaration, what stuff brought into scope by that
declaration is actually used in the module.
The SrcLoc is the location of the END of a particular 'import'
declaration. Why *END*? Because we don't want to get confused
by the implicit Prelude import. Consider (Trac #7476) the module
import Foo( foo )
main = print foo
There is an implicit 'import Prelude(print)', and it gets a SrcSpan
of line 1:1 (just the point, not a span). If we use the *START* of
the SrcSpan to identify the import decl, we'll confuse the implicit
import Prelude with the explicit 'import Foo'. So we use the END.
It's just a cheap hack; we could equally well use the Span too.
The AvailInfos are the things imported from that decl (just a list,
not normalised).
\begin{code}
type ImportMap = Map SrcLoc [AvailInfo]
findImportUsage :: [LImportDecl Name]
-> GlobalRdrEnv
-> [RdrName]
-> [ImportDeclUsage]
findImportUsage imports rdr_env rdrs
= map unused_decl imports
where
import_usage :: ImportMap
import_usage = foldr (extendImportMap rdr_env) Map.empty rdrs
unused_decl decl@(L loc (ImportDecl { ideclHiding = imps }))
= (decl, nubAvails used_avails, nameSetToList unused_imps)
where
used_avails = Map.lookup (srcSpanEnd loc) import_usage `orElse` []
used_names = availsToNameSet used_avails
used_parents = mkNameSet [n | AvailTC n _ <- used_avails]
unused_imps
= case imps of
Just (False, imp_ies) -> foldr (add_unused . unLoc) emptyNameSet imp_ies
_other -> emptyNameSet
add_unused :: IE Name -> NameSet -> NameSet
add_unused (IEVar n) acc = add_unused_name n acc
add_unused (IEThingAbs n) acc = add_unused_name n acc
add_unused (IEThingAll n) acc = add_unused_all n acc
add_unused (IEThingWith p ns) acc = add_unused_with p ns acc
add_unused _ acc = acc
add_unused_name n acc
| n `elemNameSet` used_names = acc
| otherwise = acc `addOneToNameSet` n
add_unused_all n acc
| n `elemNameSet` used_names = acc
| n `elemNameSet` used_parents = acc
| otherwise = acc `addOneToNameSet` n
add_unused_with p ns acc
| all (`elemNameSet` acc1) ns = add_unused_name p acc1
| otherwise = acc1
where
acc1 = foldr add_unused_name acc ns
extendImportMap :: GlobalRdrEnv -> RdrName -> ImportMap -> ImportMap
extendImportMap rdr_env rdr imp_map
| [gre] <- lookupGRE_RdrName rdr rdr_env
, Imported imps <- gre_prov gre
= add_imp gre (bestImport imps) imp_map
| otherwise
= imp_map
where
add_imp :: GlobalRdrElt -> ImportSpec -> ImportMap -> ImportMap
add_imp gre (ImpSpec { is_decl = imp_decl_spec }) imp_map
= Map.insertWith add decl_loc [avail] imp_map
where
add _ avails = avail : avails
decl_loc = srcSpanEnd (is_dloc imp_decl_spec)
avail = greExportAvail gre
bestImport :: [ImportSpec] -> ImportSpec
bestImport iss
= case partition isImpAll iss of
([], imp_somes) -> textuallyFirst imp_somes
(imp_alls, _) -> textuallyFirst imp_alls
textuallyFirst :: [ImportSpec] -> ImportSpec
textuallyFirst iss = case sortWith (is_dloc . is_decl) iss of
[] -> pprPanic "textuallyFirst" (ppr iss)
(is:_) -> is
isImpAll :: ImportSpec -> Bool
isImpAll (ImpSpec { is_item = ImpAll }) = True
isImpAll _other = False
\end{code}
\begin{code}
warnUnusedImport :: ImportDeclUsage -> RnM ()
warnUnusedImport (L loc decl, used, unused)
| Just (False,[]) <- ideclHiding decl
= return ()
| Just (True, hides) <- ideclHiding decl
, not (null hides)
, pRELUDE_NAME == unLoc (ideclName decl)
= return ()
| null used = addWarnAt loc msg1
| null unused = return ()
| otherwise = addWarnAt loc msg2
where
msg1 = vcat [pp_herald <+> quotes pp_mod <+> pp_not_used,
nest 2 (ptext (sLit "except perhaps to import instances from")
<+> quotes pp_mod),
ptext (sLit "To import instances alone, use:")
<+> ptext (sLit "import") <+> pp_mod <> parens empty ]
msg2 = sep [pp_herald <+> quotes (pprWithCommas ppr unused),
text "from module" <+> quotes pp_mod <+> pp_not_used]
pp_herald = text "The" <+> pp_qual <+> text "import of"
pp_qual
| ideclQualified decl = text "qualified"
| otherwise = empty
pp_mod = ppr (unLoc (ideclName decl))
pp_not_used = text "is redundant"
\end{code}
Note [Do not warn about Prelude hiding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not warn about
import Prelude hiding( x, y )
because even if nothing else from Prelude is used, it may be essential to hide
x,y to avoid name-shadowing warnings. Example (Trac #9061)
import Prelude hiding( log )
f x = log where log = ()
Note [Printing minimal imports]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To print the minimal imports we walk over the user-supplied import
decls, and simply trim their import lists. NB that
* We do *not* change the 'qualified' or 'as' parts!
* We do not disard a decl altogether; we might need instances
from it. Instead we just trim to an empty import list
\begin{code}
printMinimalImports :: [ImportDeclUsage] -> RnM ()
printMinimalImports imports_w_usage
= do { imports' <- mapM mk_minimal imports_w_usage
; this_mod <- getModule
; dflags <- getDynFlags
; liftIO $
do { h <- openFile (mkFilename dflags this_mod) WriteMode
; printForUser dflags h neverQualify (vcat (map ppr imports')) }
}
where
mkFilename dflags this_mod
| Just d <- dumpDir dflags = d </> basefn
| otherwise = basefn
where
basefn = moduleNameString (moduleName this_mod) ++ ".imports"
mk_minimal (L l decl, used, unused)
| null unused
, Just (False, _) <- ideclHiding decl
= return (L l decl)
| otherwise
= do { let ImportDecl { ideclName = L _ mod_name
, ideclSource = is_boot
, ideclPkgQual = mb_pkg } = decl
; iface <- loadSrcInterface doc mod_name is_boot mb_pkg
; let lies = map (L l) (concatMap (to_ie iface) used)
; return (L l (decl { ideclHiding = Just (False, lies) })) }
where
doc = text "Compute minimal imports for" <+> ppr decl
to_ie :: ModIface -> AvailInfo -> [IE Name]
to_ie _ (Avail n)
= [IEVar n]
to_ie _ (AvailTC n [m])
| n==m = [IEThingAbs n]
to_ie iface (AvailTC n ns)
= case [xs | AvailTC x xs <- mi_exports iface
, x == n
, x `elem` xs
] of
[xs] | all_used xs -> [IEThingAll n]
| otherwise -> [IEThingWith n (filter (/= n) ns)]
_other -> map IEVar ns
where
all_used avail_occs = all (`elem` ns) avail_occs
\end{code}
Note [Partial export]
~~~~~~~~~~~~~~~~~~~~~
Suppose we have
module A( op ) where
class C a where
op :: a -> a
module B where
import A
f = ..op...
Then the minimal import for module B is
import A( op )
not
import A( C( op ) )
which we would usually generate if C was exported from B. Hence
the (x `elem` xs) test when deciding what to generate.
%************************************************************************
%* *
\subsection{Errors}
%* *
%************************************************************************
\begin{code}
qualImportItemErr :: RdrName -> SDoc
qualImportItemErr rdr
= hang (ptext (sLit "Illegal qualified name in import item:"))
2 (ppr rdr)
badImportItemErrStd :: ModIface -> ImpDeclSpec -> IE RdrName -> SDoc
badImportItemErrStd iface decl_spec ie
= sep [ptext (sLit "Module"), quotes (ppr (is_mod decl_spec)), source_import,
ptext (sLit "does not export"), quotes (ppr ie)]
where
source_import | mi_boot iface = ptext (sLit "(hi-boot interface)")
| otherwise = empty
badImportItemErrDataCon :: OccName -> ModIface -> ImpDeclSpec -> IE RdrName -> SDoc
badImportItemErrDataCon dataType iface decl_spec ie
= vcat [ ptext (sLit "In module")
<+> quotes (ppr (is_mod decl_spec))
<+> source_import <> colon
, nest 2 $ quotes datacon
<+> ptext (sLit "is a data constructor of")
<+> quotes (ppr dataType)
, ptext (sLit "To import it use")
, nest 2 $ quotes (ptext (sLit "import"))
<+> ppr (is_mod decl_spec)
<> parens_sp (ppr dataType <> parens_sp datacon)
, ptext (sLit "or")
, nest 2 $ quotes (ptext (sLit "import"))
<+> ppr (is_mod decl_spec)
<> parens_sp (ppr dataType <> ptext (sLit "(..)"))
]
where
datacon_occ = rdrNameOcc $ ieName ie
datacon = parenSymOcc datacon_occ (ppr datacon_occ)
source_import | mi_boot iface = ptext (sLit "(hi-boot interface)")
| otherwise = empty
parens_sp d = parens (space <> d <> space)
badImportItemErr :: ModIface -> ImpDeclSpec -> IE RdrName -> [AvailInfo] -> SDoc
badImportItemErr iface decl_spec ie avails
= case find checkIfDataCon avails of
Just con -> badImportItemErrDataCon (availOccName con) iface decl_spec ie
Nothing -> badImportItemErrStd iface decl_spec ie
where
checkIfDataCon (AvailTC _ ns) =
case find (\n -> importedFS == nameOccNameFS n) ns of
Just n -> isDataConName n
Nothing -> False
checkIfDataCon _ = False
availOccName = nameOccName . availName
nameOccNameFS = occNameFS . nameOccName
importedFS = occNameFS . rdrNameOcc $ ieName ie
illegalImportItemErr :: SDoc
illegalImportItemErr = ptext (sLit "Illegal import item")
dodgyImportWarn :: RdrName -> SDoc
dodgyImportWarn item = dodgyMsg (ptext (sLit "import")) item
dodgyExportWarn :: Name -> SDoc
dodgyExportWarn item = dodgyMsg (ptext (sLit "export")) item
dodgyMsg :: (OutputableBndr n, HasOccName n) => SDoc -> n -> SDoc
dodgyMsg kind tc
= sep [ ptext (sLit "The") <+> kind <+> ptext (sLit "item") <+> quotes (ppr (IEThingAll tc))
<+> ptext (sLit "suggests that"),
quotes (ppr tc) <+> ptext (sLit "has (in-scope) constructors or class methods,"),
ptext (sLit "but it has none") ]
exportItemErr :: IE RdrName -> SDoc
exportItemErr export_item
= sep [ ptext (sLit "The export item") <+> quotes (ppr export_item),
ptext (sLit "attempts to export constructors or class methods that are not visible here") ]
exportClashErr :: GlobalRdrEnv -> Name -> Name -> IE RdrName -> IE RdrName
-> MsgDoc
exportClashErr global_env name1 name2 ie1 ie2
= vcat [ ptext (sLit "Conflicting exports for") <+> quotes (ppr occ) <> colon
, ppr_export ie1' name1'
, ppr_export ie2' name2' ]
where
occ = nameOccName name1
ppr_export ie name = nest 3 (hang (quotes (ppr ie) <+> ptext (sLit "exports") <+>
quotes (ppr name))
2 (pprNameProvenance (get_gre name)))
get_gre name
= case lookupGRE_Name global_env name of
(gre:_) -> gre
[] -> pprPanic "exportClashErr" (ppr name)
get_loc name = greSrcSpan (get_gre name)
(name1', ie1', name2', ie2') = if get_loc name1 < get_loc name2
then (name1, ie1, name2, ie2)
else (name2, ie2, name1, ie1)
greSrcSpan :: GlobalRdrElt -> SrcSpan
greSrcSpan gre
| Imported (is:_) <- gre_prov gre = is_dloc (is_decl is)
| otherwise = name_span
where
name_span = nameSrcSpan (gre_name gre)
addDupDeclErr :: [Name] -> TcRn ()
addDupDeclErr []
= panic "addDupDeclErr: empty list"
addDupDeclErr names@(name : _)
= addErrAt (getSrcSpan (last sorted_names)) $
vcat [ptext (sLit "Multiple declarations of") <+>
quotes (ppr (nameOccName name)),
ptext (sLit "Declared at:") <+>
vcat (map (ppr . nameSrcLoc) sorted_names)]
where
sorted_names = sortWith nameSrcLoc names
dupExportWarn :: OccName -> IE RdrName -> IE RdrName -> SDoc
dupExportWarn occ_name ie1 ie2
= hsep [quotes (ppr occ_name),
ptext (sLit "is exported by"), quotes (ppr ie1),
ptext (sLit "and"), quotes (ppr ie2)]
dupModuleExport :: ModuleName -> SDoc
dupModuleExport mod
= hsep [ptext (sLit "Duplicate"),
quotes (ptext (sLit "Module") <+> ppr mod),
ptext (sLit "in export list")]
moduleNotImported :: ModuleName -> SDoc
moduleNotImported mod
= ptext (sLit "The export item `module") <+> ppr mod <>
ptext (sLit "' is not imported")
nullModuleExport :: ModuleName -> SDoc
nullModuleExport mod
= ptext (sLit "The export item `module") <+> ppr mod <> ptext (sLit "' exports nothing")
missingImportListWarn :: ModuleName -> SDoc
missingImportListWarn mod
= ptext (sLit "The module") <+> quotes (ppr mod) <+> ptext (sLit "does not have an explicit import list")
missingImportListItem :: IE RdrName -> SDoc
missingImportListItem ie
= ptext (sLit "The import item") <+> quotes (ppr ie) <+> ptext (sLit "does not have an explicit import list")
moduleWarn :: ModuleName -> WarningTxt -> SDoc
moduleWarn mod (WarningTxt txt)
= sep [ ptext (sLit "Module") <+> quotes (ppr mod) <> ptext (sLit ":"),
nest 2 (vcat (map ppr txt)) ]
moduleWarn mod (DeprecatedTxt txt)
= sep [ ptext (sLit "Module") <+> quotes (ppr mod)
<+> ptext (sLit "is deprecated:"),
nest 2 (vcat (map ppr txt)) ]
packageImportErr :: SDoc
packageImportErr
= ptext (sLit "Package-qualified imports are not enabled; use PackageImports")
checkConName :: RdrName -> TcRn ()
checkConName name = checkErr (isRdrDataCon name) (badDataCon name)
badDataCon :: RdrName -> SDoc
badDataCon name
= hsep [ptext (sLit "Illegal data constructor name"), quotes (ppr name)]
\end{code}