, because
it is buried in a complex (as-yet-un-desugared) binding group.
Maybe we should say
f@t1/t2 = f* t1 t2 d1 d2
where f* is the Id f with an IdInfo which says "inline me regardless!".
Indeed all the specialisation could be done in this way.
That in turn means that the simplifier has to be prepared to inline absolutely
any in-scope let-bound thing.
Again, the pragma should permit polymorphism in unconstrained variables:
h :: Ord a => [a] -> b -> b
{-# SPECIALIZE h :: [Int] -> b -> b #-}
We *insist* that all overloaded type variables are specialised to ground types,
(and hence there can be no context inside a SPECIALIZE pragma).
We *permit* unconstrained type variables to be specialised to
- a ground type
- or left as a polymorphic type variable
but nothing in between. So
{-# SPECIALIZE h :: [Int] -> [c] -> [c] #-}
is *illegal*. (It can be handled, but it adds complication, and gains the
programmer nothing.)
SPECIALISING INSTANCE DECLARATIONS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
instance Foo a => Foo [a] where
...
{-# SPECIALIZE instance Foo [Int] #-}
The original instance decl creates a dictionary-function
definition:
dfun.Foo.List :: forall a. Foo a -> Foo [a]
The SPECIALIZE pragma just makes a specialised copy, just as for
ordinary function definitions:
dfun.Foo.List@Int :: Foo [Int]
dfun.Foo.List@Int = dfun.Foo.List Int dFooInt
The information about what instance of the dfun exist gets added to
the dfun's IdInfo in the same way as a user-defined function too.
Automatic instance decl specialisation?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Can instance decls be specialised automatically? It's tricky.
We could collect call-instance information for each dfun, but
then when we specialised their bodies we'd get new call-instances
for ordinary functions; and when we specialised their bodies, we might get
new call-instances of the dfuns, and so on. This all arises because of
the unrestricted mutual recursion between instance decls and value decls.
Still, there's no actual problem; it just means that we may not do all
the specialisation we could theoretically do.
Furthermore, instance decls are usually exported and used non-locally,
so we'll want to compile enough to get those specialisations done.
Lastly, there's no such thing as a local instance decl, so we can
survive solely by spitting out *usage* information, and then reading that
back in as a pragma when next compiling the file. So for now,
we only specialise instance decls in response to pragmas.
SPITTING OUT USAGE INFORMATION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To spit out usage information we need to traverse the code collecting
call-instance information for all imported (non-prelude?) functions
and data types. Then we equivalence-class it and spit it out.
This is done at the top-level when all the call instances which escape
must be for imported functions and data types.
*** Not currently done ***
Partial specialisation by pragmas
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What about partial specialisation:
k :: (Ord a, Eq b) => [a] -> b -> b -> [a]
{-# SPECIALIZE k :: Eq b => [Int] -> b -> b -> [a] #-}
or even
{-# SPECIALIZE k :: Eq b => [Int] -> [b] -> [b] -> [a] #-}
Seems quite reasonable. Similar things could be done with instance decls:
instance (Foo a, Foo b) => Foo (a,b) where
...
{-# SPECIALIZE instance Foo a => Foo (a,Int) #-}
{-# SPECIALIZE instance Foo b => Foo (Int,b) #-}
Ho hum. Things are complex enough without this. I pass.
Requirements for the simplifer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The simplifier has to be able to take advantage of the specialisation.
* When the simplifier finds an application of a polymorphic f, it looks in
f's IdInfo in case there is a suitable instance to call instead. This converts
f t1 t2 d1 d2 ===> f_t1_t2
Note that the dictionaries get eaten up too!
* Dictionary selection operations on constant dictionaries must be
short-circuited:
+.sel Int d ===> +Int
The obvious way to do this is in the same way as other specialised
calls: +.sel has inside it some IdInfo which tells that if it's applied
to the type Int then it should eat a dictionary and transform to +Int.
In short, dictionary selectors need IdInfo inside them for constant
methods.
* Exactly the same applies if a superclass dictionary is being
extracted:
Eq.sel Int d ===> dEqInt
* Something similar applies to dictionary construction too. Suppose
dfun.Eq.List is the function taking a dictionary for (Eq a) to
one for (Eq [a]). Then we want
dfun.Eq.List Int d ===> dEq.List_Int
Where does the Eq [Int] dictionary come from? It is built in
response to a SPECIALIZE pragma on the Eq [a] instance decl.
In short, dfun Ids need IdInfo with a specialisation for each
constant instance of their instance declaration.
All this uses a single mechanism: the SpecEnv inside an Id
What does the specialisation IdInfo look like?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The SpecEnv of an Id maps a list of types (the template) to an expression
[Type] |-> Expr
For example, if f has this SpecInfo:
[Int, a] -> \d:Ord Int. f' a
it means that we can replace the call
f Int t ===> (\d. f' t)
This chucks one dictionary away and proceeds with the
specialised version of f, namely f'.
What can't be done this way?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is no way, post-typechecker, to get a dictionary for (say)
Eq a from a dictionary for Eq [a]. So if we find
==.sel [t] d
we can't transform to
eqList (==.sel t d')
where
eqList :: (a->a->Bool) -> [a] -> [a] -> Bool
Of course, we currently have no way to automatically derive
eqList, nor to connect it to the Eq [a] instance decl, but you
can imagine that it might somehow be possible. Taking advantage
of this is permanently ruled out.
Still, this is no great hardship, because we intend to eliminate
overloading altogether anyway!
A note about non-tyvar dictionaries
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Ids have types like
forall a,b,c. Eq a -> Ord [a] -> tau
This seems curious at first, because we usually only have dictionary
args whose types are of the form (C a) where a is a type variable.
But this doesn't hold for the functions arising from instance decls,
which sometimes get arguments with types of form (C (T a)) for some
type constructor T.
Should we specialise wrt this compound-type dictionary? We used to say
"no", saying:
"This is a heuristic judgement, as indeed is the fact that we
specialise wrt only dictionaries. We choose *not* to specialise
wrt compound dictionaries because at the moment the only place
they show up is in instance decls, where they are simply plugged
into a returned dictionary. So nothing is gained by specialising
wrt them."
But it is simpler and more uniform to specialise wrt these dicts too;
and in future GHC is likely to support full fledged type signatures
like
f :: Eq [(a,b)] => ...
%************************************************************************
%* *
\subsubsection{The new specialiser}
%* *
%************************************************************************
Our basic game plan is this. For let(rec) bound function
f :: (C a, D c) => (a,b,c,d) -> Bool
* Find any specialised calls of f, (f ts ds), where
ts are the type arguments t1 .. t4, and
ds are the dictionary arguments d1 .. d2.
* Add a new definition for f1 (say):
f1 = /\ b d -> (..body of f..) t1 b t3 d d1 d2
Note that we abstract over the unconstrained type arguments.
* Add the mapping
[t1,b,t3,d] |-> \d1 d2 -> f1 b d
to the specialisations of f. This will be used by the
simplifier to replace calls
(f t1 t2 t3 t4) da db
by
(\d1 d1 -> f1 t2 t4) da db
All the stuff about how many dictionaries to discard, and what types
to apply the specialised function to, are handled by the fact that the
SpecEnv contains a template for the result of the specialisation.
We don't build *partial* specialisations for f. For example:
f :: Eq a => a -> a -> Bool
{-# SPECIALISE f :: (Eq b, Eq c) => (b,c) -> (b,c) -> Bool #-}
Here, little is gained by making a specialised copy of f.
There's a distinct danger that the specialised version would
first build a dictionary for (Eq b, Eq c), and then select the (==)
method from it! Even if it didn't, not a great deal is saved.
We do, however, generate polymorphic, but not overloaded, specialisations:
f :: Eq a => [a] -> b -> b -> b
{#- SPECIALISE f :: [Int] -> b -> b -> b #-}
Hence, the invariant is this:
*** no specialised version is overloaded ***
%************************************************************************
%* *
\subsubsection{The exported function}
%* *
%************************************************************************
\begin{code}
specProgram :: ModGuts -> CoreM ModGuts
specProgram guts@(ModGuts { mg_rules = rules, mg_binds = binds })
= do { hpt_rules <- getRuleBase
; dflags <- getDynFlags
; let local_rules = mg_rules guts
rule_base = extendRuleBaseList hpt_rules rules
; (binds', uds) <- runSpecM dflags (go binds)
; (new_rules, spec_binds) <- specImports dflags emptyVarSet rule_base uds
; let final_binds | null spec_binds = binds'
| otherwise = Rec (flattenBinds spec_binds) : binds'
; return (guts { mg_binds = final_binds
, mg_rules = new_rules ++ local_rules }) }
where
top_subst = SE { se_subst = CoreSubst.mkEmptySubst $ mkInScopeSet $ mkVarSet $
bindersOfBinds binds
, se_interesting = emptyVarSet }
go [] = return ([], emptyUDs)
go (bind:binds) = do (binds', uds) <- go binds
(bind', uds') <- specBind top_subst bind uds
return (bind' ++ binds', uds')
specImports :: DynFlags
-> VarSet
-> RuleBase
-> UsageDetails
-> CoreM ( [CoreRule]
, [CoreBind] )
specImports dflags done rb uds
= do { let import_calls = varEnvElts (ud_calls uds)
; (rules, spec_binds) <- go rb import_calls
; return (rules, wrapDictBinds (ud_binds uds) spec_binds) }
where
go _ [] = return ([], [])
go rb (CIS fn calls_for_fn : other_calls)
= do { (rules1, spec_binds1) <- specImport dflags done rb fn (Map.toList calls_for_fn)
; (rules2, spec_binds2) <- go (extendRuleBaseList rb rules1) other_calls
; return (rules1 ++ rules2, spec_binds1 ++ spec_binds2) }
specImport :: DynFlags
-> VarSet
-> RuleBase
-> Id -> [CallInfo]
-> CoreM ( [CoreRule]
, [CoreBind] )
specImport dflags done rb fn calls_for_fn
| fn `elemVarSet` done
= return ([], [])
| isInlinablePragma (idInlinePragma fn)
, Just rhs <- maybeUnfoldingTemplate (realIdUnfolding fn)
= do {
; hsc_env <- getHscEnv
; eps <- liftIO $ hscEPS hsc_env
; let full_rb = unionRuleBase rb (eps_rule_base eps)
rules_for_fn = getRules full_rb fn
; (rules1, spec_pairs, uds) <- runSpecM dflags $
specCalls emptySpecEnv rules_for_fn calls_for_fn fn rhs
; let spec_binds1 = [NonRec b r | (b,r) <- spec_pairs]
; (rules2, spec_binds2) <- specImports dflags (extendVarSet done fn)
(extendRuleBaseList rb rules1)
uds
; return (rules2 ++ rules1, spec_binds2 ++ spec_binds1) }
| otherwise
= WARN( True, ptext (sLit "specImport discard") <+> ppr fn <+> ppr calls_for_fn )
return ([], [])
\end{code}
Note [Specialise imported INLINABLE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We specialise INLINABLE things but not INLINE things. The latter
should be inlined bodily, so not much point in specialising them.
Moreover, we risk lots of orphan modules from vigorous specialisation.
Note [Glom the bindings if imported functions are specialised]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have an imported, *recursive*, INLINABLE function
f :: Eq a => a -> a
f = /\a \d x. ...(f a d)...
In the module being compiled we have
g x = f (x::Int)
Now we'll make a specialised function
f_spec :: Int -> Int
f_spec = \x -> ...(f Int dInt)...
{-# RULE f Int _ = f_spec #-}
g = \x. f Int dInt x
Note that f_spec doesn't look recursive
After rewriting with the RULE, we get
f_spec = \x -> ...(f_spec)...
BUT since f_spec was non-recursive before it'll *stay* non-recursive.
The occurrence analyser never turns a NonRec into a Rec. So we must
make sure that f_spec is recursive. Easiest thing is to make all
the specialisations for imported bindings recursive.
Note [Avoiding recursive specialisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we specialise 'f' we may find new overloaded calls to 'g', 'h' in
'f's RHS. So we want to specialise g,h. But we don't want to
specialise f any more! It's possible that f's RHS might have a
recursive yet-more-specialised call, so we'd diverge in that case.
And if the call is to the same type, one specialisation is enough.
Avoiding this recursive specialisation loop is the reason for the
'done' VarSet passed to specImports and specImport.
%************************************************************************
%* *
\subsubsection{@specExpr@: the main function}
%* *
%************************************************************************
\begin{code}
data SpecEnv
= SE { se_subst :: CoreSubst.Subst
, se_interesting :: VarSet
}
emptySpecEnv :: SpecEnv
emptySpecEnv = SE { se_subst = CoreSubst.emptySubst, se_interesting = emptyVarSet}
specVar :: SpecEnv -> Id -> CoreExpr
specVar env v = CoreSubst.lookupIdSubst (text "specVar") (se_subst env) v
specExpr :: SpecEnv -> CoreExpr -> SpecM (CoreExpr, UsageDetails)
specExpr env (Type ty) = return (Type (substTy env ty), emptyUDs)
specExpr env (Coercion co) = return (Coercion (substCo env co), emptyUDs)
specExpr env (Var v) = return (specVar env v, emptyUDs)
specExpr _ (Lit lit) = return (Lit lit, emptyUDs)
specExpr env (Cast e co)
= do { (e', uds) <- specExpr env e
; return ((Cast e' (substCo env co)), uds) }
specExpr env (Tick tickish body)
= do { (body', uds) <- specExpr env body
; return (Tick (specTickish env tickish) body', uds) }
specExpr env expr@(App {})
= go expr []
where
go (App fun arg) args = do (arg', uds_arg) <- specExpr env arg
(fun', uds_app) <- go fun (arg':args)
return (App fun' arg', uds_arg `plusUDs` uds_app)
go (Var f) args = case specVar env f of
Var f' -> return (Var f', mkCallUDs env f' args)
e' -> return (e', emptyUDs)
go other _ = specExpr env other
specExpr env e@(Lam _ _) = do
(body', uds) <- specExpr env' body
let (free_uds, dumped_dbs) = dumpUDs bndrs' uds
return (mkLams bndrs' (wrapDictBindsE dumped_dbs body'), free_uds)
where
(bndrs, body) = collectBinders e
(env', bndrs') = substBndrs env bndrs
specExpr env (Case scrut case_bndr ty alts)
= do { (scrut', scrut_uds) <- specExpr env scrut
; (scrut'', case_bndr', alts', alts_uds)
<- specCase env scrut' case_bndr alts
; return (Case scrut'' case_bndr' (substTy env ty) alts'
, scrut_uds `plusUDs` alts_uds) }
specExpr env (Let bind body)
= do {
(rhs_env, body_env, bind') <- cloneBindSM env bind
; (body', body_uds) <- specExpr body_env body
; (binds', uds) <- specBind rhs_env bind' body_uds
; return (foldr Let body' binds', uds) }
specTickish :: SpecEnv -> Tickish Id -> Tickish Id
specTickish env (Breakpoint ix ids)
= Breakpoint ix [ id' | id <- ids, Var id' <- [specVar env id]]
specTickish _ other_tickish = other_tickish
specCase :: SpecEnv
-> CoreExpr
-> Id -> [CoreAlt]
-> SpecM ( CoreExpr
, Id
, [CoreAlt]
, UsageDetails)
specCase env scrut' case_bndr [(con, args, rhs)]
| isDictId case_bndr
, interestingDict env scrut'
, not (isDeadBinder case_bndr && null sc_args')
= do { (case_bndr_flt : sc_args_flt) <- mapM clone_me (case_bndr' : sc_args')
; let sc_rhss = [ Case (Var case_bndr_flt) case_bndr' (idType sc_arg')
[(con, args', Var sc_arg')]
| sc_arg' <- sc_args' ]
mb_sc_flts :: [Maybe DictId]
mb_sc_flts = map (lookupVarEnv clone_env) args'
clone_env = zipVarEnv sc_args' sc_args_flt
subst_prs = (case_bndr, Var case_bndr_flt)
: [ (arg, Var sc_flt)
| (arg, Just sc_flt) <- args `zip` mb_sc_flts ]
env_rhs' = env_rhs { se_subst = CoreSubst.extendIdSubstList (se_subst env_rhs) subst_prs
, se_interesting = se_interesting env_rhs `extendVarSetList`
(case_bndr_flt : sc_args_flt) }
; (rhs', rhs_uds) <- specExpr env_rhs' rhs
; let scrut_bind = mkDB (NonRec case_bndr_flt scrut')
case_bndr_set = unitVarSet case_bndr_flt
sc_binds = [(NonRec sc_arg_flt sc_rhs, case_bndr_set)
| (sc_arg_flt, sc_rhs) <- sc_args_flt `zip` sc_rhss ]
flt_binds = scrut_bind : sc_binds
(free_uds, dumped_dbs) = dumpUDs (case_bndr':args') rhs_uds
all_uds = flt_binds `addDictBinds` free_uds
alt' = (con, args', wrapDictBindsE dumped_dbs rhs')
; return (Var case_bndr_flt, case_bndr', [alt'], all_uds) }
where
(env_rhs, (case_bndr':args')) = substBndrs env (case_bndr:args)
sc_args' = filter is_flt_sc_arg args'
clone_me bndr = do { uniq <- getUniqueM
; return (mkUserLocal occ uniq ty loc) }
where
name = idName bndr
ty = idType bndr
occ = nameOccName name
loc = getSrcSpan name
arg_set = mkVarSet args'
is_flt_sc_arg var = isId var
&& not (isDeadBinder var)
&& isDictTy var_ty
&& not (tyVarsOfType var_ty `intersectsVarSet` arg_set)
where
var_ty = idType var
specCase env scrut case_bndr alts
= do { (alts', uds_alts) <- mapAndCombineSM spec_alt alts
; return (scrut, case_bndr', alts', uds_alts) }
where
(env_alt, case_bndr') = substBndr env case_bndr
spec_alt (con, args, rhs) = do
(rhs', uds) <- specExpr env_rhs rhs
let (free_uds, dumped_dbs) = dumpUDs (case_bndr' : args') uds
return ((con, args', wrapDictBindsE dumped_dbs rhs'), free_uds)
where
(env_rhs, args') = substBndrs env_alt args
\end{code}
Note [Floating dictionaries out of cases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
g = \d. case d of { MkD sc ... -> ...(f sc)... }
Naively we can't float d2's binding out of the case expression,
because 'sc' is bound by the case, and that in turn means we can't
specialise f, which seems a pity.
So we invert the case, by floating out a binding
for 'sc_flt' thus:
sc_flt = case d of { MkD sc ... -> sc }
Now we can float the call instance for 'f'. Indeed this is just
what'll happen if 'sc' was originally bound with a let binding,
but case is more efficient, and necessary with equalities. So it's
good to work with both.
You might think that this won't make any difference, because the
call instance will only get nuked by the \d. BUT if 'g' itself is
specialised, then transitively we should be able to specialise f.
In general, given
case e of cb { MkD sc ... -> ...(f sc)... }
we transform to
let cb_flt = e
sc_flt = case cb_flt of { MkD sc ... -> sc }
in
case cb_flt of bg { MkD sc ... -> ....(f sc_flt)... }
The "_flt" things are the floated binds; we use the current substitution
to substitute sc -> sc_flt in the RHS
%************************************************************************
%* *
Dealing with a binding
%* *
%************************************************************************
\begin{code}
specBind :: SpecEnv
-> CoreBind
-> UsageDetails
-> SpecM ([CoreBind],
UsageDetails)
specBind rhs_env (NonRec fn rhs) body_uds
= do { (rhs', rhs_uds) <- specExpr rhs_env rhs
; (fn', spec_defns, body_uds1) <- specDefn rhs_env body_uds fn rhs
; let pairs = spec_defns ++ [(fn', rhs')]
combined_uds = body_uds1 `plusUDs` rhs_uds
(free_uds, dump_dbs, float_all) = dumpBindUDs [fn] combined_uds
final_binds | isEmptyBag dump_dbs = [NonRec b r | (b,r) <- pairs]
| otherwise = [Rec (flattenDictBinds dump_dbs pairs)]
; if float_all then
return ([], free_uds `snocDictBinds` final_binds)
else
return (final_binds, free_uds) }
specBind rhs_env (Rec pairs) body_uds
= do { let (bndrs,rhss) = unzip pairs
; (rhss', rhs_uds) <- mapAndCombineSM (specExpr rhs_env) rhss
; let scope_uds = body_uds `plusUDs` rhs_uds
; (bndrs1, spec_defns1, uds1) <- specDefns rhs_env scope_uds pairs
; (bndrs3, spec_defns3, uds3)
<- if null spec_defns1
then return (bndrs1, [], uds1)
else do {
(bndrs2, spec_defns2, uds2)
<- specDefns rhs_env uds1 (bndrs1 `zip` rhss)
; return (bndrs2, spec_defns2 ++ spec_defns1, uds2) }
; let (final_uds, dumped_dbs, float_all) = dumpBindUDs bndrs uds3
bind = Rec (flattenDictBinds dumped_dbs $
spec_defns3 ++ zip bndrs3 rhss')
; if float_all then
return ([], final_uds `snocDictBind` bind)
else
return ([bind], final_uds) }
specDefns :: SpecEnv
-> UsageDetails
-> [(Id,CoreExpr)]
-> SpecM ([Id],
[(Id,CoreExpr)],
UsageDetails)
specDefns _env uds []
= return ([], [], uds)
specDefns env uds ((bndr,rhs):pairs)
= do { (bndrs1, spec_defns1, uds1) <- specDefns env uds pairs
; (bndr1, spec_defns2, uds2) <- specDefn env uds1 bndr rhs
; return (bndr1 : bndrs1, spec_defns1 ++ spec_defns2, uds2) }
specDefn :: SpecEnv
-> UsageDetails
-> Id -> CoreExpr
-> SpecM (Id,
[(Id,CoreExpr)],
UsageDetails)
specDefn env body_uds fn rhs
= do { let (body_uds_without_me, calls_for_me) = callsForMe fn body_uds
rules_for_me = idCoreRules fn
; (rules, spec_defns, spec_uds) <- specCalls env rules_for_me
calls_for_me fn rhs
; return ( fn `addIdSpecialisations` rules
, spec_defns
, body_uds_without_me `plusUDs` spec_uds) }
specCalls :: SpecEnv
-> [CoreRule]
-> [CallInfo]
-> Id -> CoreExpr
-> SpecM ([CoreRule],
[(Id,CoreExpr)],
UsageDetails)
specCalls env rules_for_me calls_for_me fn rhs
| rhs_tyvars `lengthIs` n_tyvars
&& rhs_ids `lengthAtLeast` n_dicts
&& notNull calls_for_me
&& not (isNeverActive (idInlineActivation fn))
=
do { stuff <- mapM spec_call calls_for_me
; let (spec_defns, spec_uds, spec_rules) = unzip3 (catMaybes stuff)
; return (spec_rules, spec_defns, plusUDList spec_uds) }
| otherwise
= WARN( not (exprIsTrivial rhs) && notNull calls_for_me,
ptext (sLit "Missed specialisation opportunity for")
<+> ppr fn $$ _trace_doc )
return ([], [], emptyUDs)
where
_trace_doc = sep [ ppr rhs_tyvars, ppr n_tyvars
, ppr rhs_ids, ppr n_dicts
, ppr (idInlineActivation fn) ]
fn_type = idType fn
fn_arity = idArity fn
fn_unf = realIdUnfolding fn
(tyvars, theta, _) = tcSplitSigmaTy fn_type
n_tyvars = length tyvars
n_dicts = length theta
inl_prag = idInlinePragma fn
inl_act = inlinePragmaActivation inl_prag
is_local = isLocalId fn
spec_arity = unfoldingArity fn_unf n_dicts
(rhs_tyvars, rhs_ids, rhs_body) = collectTyAndValBinders rhs
rhs_dict_ids = take n_dicts rhs_ids
body = mkLams (drop n_dicts rhs_ids) rhs_body
already_covered :: DynFlags -> [CoreExpr] -> Bool
already_covered dflags args
= isJust (lookupRule dflags
(CoreSubst.substInScope (se_subst env), realIdUnfolding)
(const True)
fn args rules_for_me)
mk_ty_args :: [Maybe Type] -> [TyVar] -> [CoreExpr]
mk_ty_args [] poly_tvs
= ASSERT( null poly_tvs ) []
mk_ty_args (Nothing : call_ts) (poly_tv : poly_tvs)
= Type (mkTyVarTy poly_tv) : mk_ty_args call_ts poly_tvs
mk_ty_args (Just ty : call_ts) poly_tvs
= Type ty : mk_ty_args call_ts poly_tvs
mk_ty_args (Nothing : _) [] = panic "mk_ty_args"
spec_call :: CallInfo
-> SpecM (Maybe ((Id,CoreExpr),
UsageDetails,
CoreRule))
spec_call (CallKey call_ts, (call_ds, _))
= ASSERT( call_ts `lengthIs` n_tyvars && call_ds `lengthIs` n_dicts )
do { let
spec_tv_binds = [(tv,ty) | (tv, Just ty) <- rhs_tyvars `zip` call_ts]
spec_ty_args = map snd spec_tv_binds
env1 = extendTvSubstList env spec_tv_binds
(rhs_env, poly_tyvars) = substBndrs env1
[tv | (tv, Nothing) <- rhs_tyvars `zip` call_ts]
; (rhs_env2, inst_dict_ids, dx_binds)
<- bindAuxiliaryDicts rhs_env (zipEqual "bindAux" rhs_dict_ids call_ds)
; let ty_args = mk_ty_args call_ts poly_tyvars
inst_args = ty_args ++ map Var inst_dict_ids
; dflags <- getDynFlags
; if already_covered dflags inst_args then
return Nothing
else do
{
let body_ty = applyTypeToArgs rhs fn_type inst_args
(lam_args, app_args)
| isUnLiftedType body_ty
= (poly_tyvars ++ [voidArgId], poly_tyvars ++ [voidPrimId])
| otherwise = (poly_tyvars, poly_tyvars)
spec_id_ty = mkPiTypes lam_args body_ty
; spec_f <- newSpecIdSM fn spec_id_ty
; (spec_rhs, rhs_uds) <- specExpr rhs_env2 (mkLams lam_args body)
; let
rule_name = mkFastString ("SPEC " ++ showSDocDump dflags (ppr fn <+> ppr spec_ty_args))
spec_env_rule = mkRule True is_local
rule_name
inl_act
(idName fn)
(poly_tyvars ++ inst_dict_ids)
inst_args
(mkVarApps (Var spec_f) app_args)
final_uds = foldr consDictBind rhs_uds dx_binds
spec_inl_prag
| not is_local && isStrongLoopBreaker (idOccInfo fn)
= neverInlinePragma
| otherwise
= case inl_prag of
InlinePragma { inl_inline = Inlinable }
-> inl_prag { inl_inline = EmptyInlineSpec }
_ -> inl_prag
spec_unf
= case inlinePragmaSpec spec_inl_prag of
Inline -> mkInlineUnfolding (Just spec_arity) spec_rhs
Inlinable -> mkInlinableUnfolding dflags spec_rhs
_ -> NoUnfolding
spec_f_w_arity = spec_f `setIdArity` max 0 (fn_arity n_dicts)
`setInlinePragma` spec_inl_prag
`setIdUnfolding` spec_unf
; return (Just ((spec_f_w_arity, spec_rhs), final_uds, spec_env_rule)) } }
bindAuxiliaryDicts
:: SpecEnv
-> [(DictId,CoreExpr)]
-> SpecM (SpecEnv,
[DictId],
[CoreBind])
bindAuxiliaryDicts env@(SE { se_subst = subst, se_interesting = interesting })
dict_binds
= do { inst_dict_ids <- mapM (newDictBndr env . fst) dict_binds
; let triples = inst_dict_ids `zip` dict_binds
(subst', binds) = go subst [] triples
interesting_dicts = mkVarSet [ dx_id | (dx_id, (_, dx)) <- triples
, interestingDict env dx ]
env' = env { se_subst = subst'
, se_interesting = interesting `unionVarSet` interesting_dicts }
; return (env', inst_dict_ids, binds) }
where
go subst binds [] = (subst, binds)
go subst binds ((dx_id, (d, dx)) : triples)
| exprIsTrivial dx = go (CoreSubst.extendIdSubst subst d dx) binds triples
| otherwise = go (CoreSubst.extendIdSubst subst d (Var dx_id))
(NonRec dx_id dx : binds) triples
\end{code}
Note [Make the new dictionaries interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Important! We're going to substitute dx_id1 for d
and we want it to look "interesting", else we won't gather *any*
consequential calls. E.g.
f d = ...g d....
If we specialise f for a call (f (dfun dNumInt)), we'll get
a consequent call (g d') with an auxiliary definition
d' = df dNumInt
We want that consequent call to look interesting
Note [From non-recursive to recursive]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even in the non-recursive case, if any dict-binds depend on 'fn' we might
have built a recursive knot
f a d x =
MkUD { ud_binds = d7 = MkD ..f..
, ud_calls = ...(f T d7)... }
The we generate
Rec { fs x = [T/a, d7/d]
f a d x =
RULE f T _ = fs
d7 = ...f... }
Here the recursion is only through the RULE.
Note [Specialisation of dictionary functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is a nasty example that bit us badly: see Trac #3591
class Eq a => C a
instance Eq [a] => C [a]
---------------
dfun :: Eq [a] -> C [a]
dfun a d = MkD a d (meth d)
d4 :: Eq [T] =
d2 :: C [T] = dfun T d4
d1 :: Eq [T] = $p1 d2
d3 :: C [T] = dfun T d1
None of these definitions is recursive. What happened was that we
generated a specialisation:
RULE forall d. dfun T d = dT :: C [T]
dT = (MkD a d (meth d)) [T/a, d1/d]
= MkD T d1 (meth d1)
But now we use the RULE on the RHS of d2, to get
d2 = dT = MkD d1 (meth d1)
d1 = $p1 d2
and now d1 is bottom! The problem is that when specialising 'dfun' we
should first dump "below" the binding all floated dictionary bindings
that mention 'dfun' itself. So d2 and d3 (and hence d1) must be
placed below 'dfun', and thus unavailable to it when specialising
'dfun'. That in turn means that the call (dfun T d1) must be
discarded. On the other hand, the call (dfun T d4) is fine, assuming
d4 doesn't mention dfun.
But look at this:
class C a where { foo,bar :: [a] -> [a] }
instance C Int where
foo x = r_bar x
bar xs = reverse xs
r_bar :: C a => [a] -> [a]
r_bar xs = bar (xs ++ xs)
That translates to:
r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)
Rec { $fCInt :: C Int = MkC foo_help reverse
foo_help (xs::[Int]) = r_bar Int $fCInt xs }
The call (r_bar $fCInt) mentions $fCInt,
which mentions foo_help,
which mentions r_bar
But we DO want to specialise r_bar at Int:
Rec { $fCInt :: C Int = MkC foo_help reverse
foo_help (xs::[Int]) = r_bar Int $fCInt xs
r_bar a (c::C a) (xs::[a]) = bar a d (xs ++ xs)
RULE r_bar Int _ = r_bar_Int
r_bar_Int xs = bar Int $fCInt (xs ++ xs)
}
Note that, because of its RULE, r_bar joins the recursive
group. (In this case it'll unravel a short moment later.)
Conclusion: we catch the nasty case using filter_dfuns in
callsForMe. To be honest I'm not 100% certain that this is 100%
right, but it works. Sigh.
Note [Specialising a recursive group]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
let rec { f x = ...g x'...
; g y = ...f y'.... }
in f 'a'
Here we specialise 'f' at Char; but that is very likely to lead to
a specialisation of 'g' at Char. We must do the latter, else the
whole point of specialisation is lost.
But we do not want to keep iterating to a fixpoint, because in the
presence of polymorphic recursion we might generate an infinite number
of specialisations.
So we use the following heuristic:
* Arrange the rec block in dependency order, so far as possible
(the occurrence analyser already does this)
* Specialise it much like a sequence of lets
* Then go through the block a second time, feeding call-info from
the RHSs back in the bottom, as it were
In effect, the ordering maxmimises the effectiveness of each sweep,
and we do just two sweeps. This should catch almost every case of
monomorphic recursion -- the exception could be a very knotted-up
recursion with multiple cycles tied up together.
This plan is implemented in the Rec case of specBindItself.
Note [Specialisations already covered]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We obviously don't want to generate two specialisations for the same
argument pattern. There are two wrinkles
1. We do the already-covered test in specDefn, not when we generate
the CallInfo in mkCallUDs. We used to test in the latter place, but
we now iterate the specialiser somewhat, and the Id at the call site
might therefore not have all the RULES that we can see in specDefn
2. What about two specialisations where the second is an *instance*
of the first? If the more specific one shows up first, we'll generate
specialisations for both. If the *less* specific one shows up first,
we *don't* currently generate a specialisation for the more specific
one. (See the call to lookupRule in already_covered.) Reasons:
(a) lookupRule doesn't say which matches are exact (bad reason)
(b) if the earlier specialisation is user-provided, it's
far from clear that we should auto-specialise further
Note [Auto-specialisation and RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
g :: Num a => a -> a
g = ...
f :: (Int -> Int) -> Int
f w = ...
{-# RULE f g = 0 #-}
Suppose that auto-specialisation makes a specialised version of
g::Int->Int That version won't appear in the LHS of the RULE for f.
So if the specialisation rule fires too early, the rule for f may
never fire.
It might be possible to add new rules, to "complete" the rewrite system.
Thus when adding
RULE forall d. g Int d = g_spec
also add
RULE f g_spec = 0
But that's a bit complicated. For now we ask the programmer's help,
by *copying the INLINE activation pragma* to the auto-specialised
rule. So if g says {-# NOINLINE[2] g #-}, then the auto-spec rule
will also not be active until phase 2. And that's what programmers
should jolly well do anyway, even aside from specialisation, to ensure
that g doesn't inline too early.
This in turn means that the RULE would never fire for a NOINLINE
thing so not much point in generating a specialisation at all.
Note [Specialisation shape]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only specialise a function if it has visible top-level lambdas
corresponding to its overloading. E.g. if
f :: forall a. Eq a => ....
then its body must look like
f = /\a. \d. ...
Reason: when specialising the body for a call (f ty dexp), we want to
substitute dexp for d, and pick up specialised calls in the body of f.
This doesn't always work. One example I came across was this:
newtype Gen a = MkGen{ unGen :: Int -> a }
choose :: Eq a => a -> Gen a
choose n = MkGen (\r -> n)
oneof = choose (1::Int)
It's a silly exapmle, but we get
choose = /\a. g `cast` co
where choose doesn't have any dict arguments. Thus far I have not
tried to fix this (wait till there's a real example).
Mind you, then 'choose' will be inlined (since RHS is trivial) so
it doesn't matter. This comes up with single-method classes
class C a where { op :: a -> a }
instance C a => C [a] where ....
==>
$fCList :: C a => C [a]
$fCList = $copList |> (...coercion>...)
....(uses of $fCList at particular types)...
So we suppress the WARN if the rhs is trivial.
Note [Inline specialisations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is what we do with the InlinePragma of the original function
* Activation/RuleMatchInfo: both transferred to the
specialised function
* InlineSpec:
(a) An INLINE pragma is transferred
(b) An INLINABLE pragma is *not* transferred
Why (a)? Previously the idea is that the point of INLINE was
precisely to specialise the function at its call site, and that's not
so important for the specialised copies. But *pragma-directed*
specialisation now takes place in the typechecker/desugarer, with
manually specified INLINEs. The specialiation here is automatic.
It'd be very odd if a function marked INLINE was specialised (because
of some local use), and then forever after (including importing
modules) the specialised version wasn't INLINEd. After all, the
programmer said INLINE!
You might wonder why we don't just not-specialise INLINE functions.
It's because even INLINE functions are sometimes not inlined, when
they aren't applied to interesting arguments. But perhaps the type
arguments alone are enough to specialise (even though the args are too
boring to trigger inlining), and it's certainly better to call the
specialised version.
Why (b)? See Trac #4874 for persuasive examples. Suppose we have
{-# INLINABLE f #-}
f :: Ord a => [a] -> Int
f xs = letrec f' = ...f'... in f'
Then, when f is specialised and optimised we might get
wgo :: [Int] -> Int#
wgo = ...wgo...
f_spec :: [Int] -> Int
f_spec xs = case wgo xs of { r -> I# r }
and we clearly want to inline f_spec at call sites. But if we still
have the big, un-optimised of f (albeit specialised) captured in an
INLINABLE pragma for f_spec, we won't get that optimisation.
So we simply drop INLINABLE pragmas when specialising. It's not really
a complete solution; ignoring specalisation for now, INLINABLE functions
don't get properly strictness analysed, for example. But it works well
for examples involving specialisation, which is the dominant use of
INLINABLE. See Trac #4874.
%************************************************************************
%* *
\subsubsection{UsageDetails and suchlike}
%* *
%************************************************************************
\begin{code}
data UsageDetails
= MkUD {
ud_binds :: !(Bag DictBind),
ud_calls :: !CallDetails
}
instance Outputable UsageDetails where
ppr (MkUD { ud_binds = dbs, ud_calls = calls })
= ptext (sLit "MkUD") <+> braces (sep (punctuate comma
[ptext (sLit "binds") <+> equals <+> ppr dbs,
ptext (sLit "calls") <+> equals <+> ppr calls]))
type DictBind = (CoreBind, VarSet)
type DictExpr = CoreExpr
emptyUDs :: UsageDetails
emptyUDs = MkUD { ud_binds = emptyBag, ud_calls = emptyVarEnv }
type CallDetails = IdEnv CallInfoSet
newtype CallKey = CallKey [Maybe Type]
data CallInfoSet = CIS Id (Map CallKey ([DictExpr], VarSet))
type CallInfo = (CallKey, ([DictExpr], VarSet))
instance Outputable CallInfoSet where
ppr (CIS fn map) = hang (ptext (sLit "CIS") <+> ppr fn)
2 (ppr map)
instance Outputable CallKey where
ppr (CallKey ts) = ppr ts
instance Eq CallKey where
k1 == k2 = case k1 `compare` k2 of { EQ -> True; _ -> False }
instance Ord CallKey where
compare (CallKey k1) (CallKey k2) = cmpList cmp k1 k2
where
cmp Nothing Nothing = EQ
cmp Nothing (Just _) = LT
cmp (Just _) Nothing = GT
cmp (Just t1) (Just t2) = cmpType t1 t2
unionCalls :: CallDetails -> CallDetails -> CallDetails
unionCalls c1 c2 = plusVarEnv_C unionCallInfoSet c1 c2
unionCallInfoSet :: CallInfoSet -> CallInfoSet -> CallInfoSet
unionCallInfoSet (CIS f calls1) (CIS _ calls2) = CIS f (calls1 `Map.union` calls2)
callDetailsFVs :: CallDetails -> VarSet
callDetailsFVs calls = foldVarEnv (unionVarSet . callInfoFVs) emptyVarSet calls
callInfoFVs :: CallInfoSet -> VarSet
callInfoFVs (CIS _ call_info) = Map.foldRight (\(_,fv) vs -> unionVarSet fv vs) emptyVarSet call_info
singleCall :: Id -> [Maybe Type] -> [DictExpr] -> UsageDetails
singleCall id tys dicts
= MkUD {ud_binds = emptyBag,
ud_calls = unitVarEnv id $ CIS id $
Map.singleton (CallKey tys) (dicts, call_fvs) }
where
call_fvs = exprsFreeVars dicts `unionVarSet` tys_fvs
tys_fvs = tyVarsOfTypes (catMaybes tys)
mkCallUDs :: SpecEnv -> Id -> [CoreExpr] -> UsageDetails
mkCallUDs env f args
| not (want_calls_for f)
|| null theta
= emptyUDs
| not (all type_determines_value theta)
|| not (spec_tys `lengthIs` n_tyvars)
|| not ( dicts `lengthIs` n_dicts)
|| not (any (interestingDict env) dicts)
=
emptyUDs
| otherwise
=
singleCall f spec_tys dicts
where
_trace_doc = vcat [ppr f, ppr args, ppr n_tyvars, ppr n_dicts
, ppr (map (interestingDict env) dicts)]
(tyvars, theta, _) = tcSplitSigmaTy (idType f)
constrained_tyvars = closeOverKinds (tyVarsOfTypes theta)
n_tyvars = length tyvars
n_dicts = length theta
spec_tys = [mk_spec_ty tv ty | (tv, Type ty) <- tyvars `zip` args]
dicts = [dict_expr | (_, dict_expr) <- theta `zip` (drop n_tyvars args)]
mk_spec_ty tyvar ty
| tyvar `elemVarSet` constrained_tyvars = Just ty
| otherwise = Nothing
want_calls_for f = isLocalId f || isInlinablePragma (idInlinePragma f)
type_determines_value pred
= case classifyPredType pred of
ClassPred cls _ -> not (isIPClass cls)
TuplePred ps -> all type_determines_value ps
EqPred {} -> True
IrredPred {} -> True
\end{code}
Note [Type determines value]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only specialise if all overloading is on non-IP *class* params,
because these are the ones whose *type* determines their *value*. In
parrticular, with implicit params, the type args *don't* say what the
value of the implicit param is! See Trac #7101
However, consider
type family D (v::*->*) :: Constraint
type instance D [] = ()
f :: D v => v Char -> Int
If we see a call (f "foo"), we'll pass a "dictionary"
() |> (g :: () ~ D [])
and it's good to specialise f at this dictionary.
So the question is: can an implicit parameter "hide inside" a
type-family constraint like (D a). Well, no. We don't allow
type instance D Maybe = ?x:Int
Hence the IrredPred case in type_determines_value.
See Trac #7785.
Note [Interesting dictionary arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
\a.\d:Eq a. let f = ... in ...(f d)...
There really is not much point in specialising f wrt the dictionary d,
because the code for the specialised f is not improved at all, because
d is lambda-bound. We simply get junk specialisations.
What is "interesting"? Just that it has *some* structure. But what about
variables?
* A variable might be imported, in which case its unfolding
will tell us whether it has useful structure
* Local variables are cloned on the way down (to avoid clashes when
we float dictionaries), and cloning drops the unfolding
(cloneIdBndr). Moreover, we make up some new bindings, and it's a
nuisance to give them unfoldings. So we keep track of the
"interesting" dictionaries as a VarSet in SpecEnv.
We have to take care to put any new interesting dictionary
bindings in the set.
We accidentally lost accurate tracking of local variables for a long
time, because cloned variables don't have unfoldings. But makes a
massive difference in a few cases, eg Trac #5113. For nofib as a
whole it's only a small win: 2.2% improvement in allocation for ansi,
1.2% for bspt, but mostly 0.0! Average 0.1% increase in binary size.
\begin{code}
interestingDict :: SpecEnv -> CoreExpr -> Bool
interestingDict env (Var v) = hasSomeUnfolding (idUnfolding v)
|| isDataConWorkId v
|| v `elemVarSet` se_interesting env
interestingDict _ (Type _) = False
interestingDict _ (Coercion _) = False
interestingDict env (App fn (Type _)) = interestingDict env fn
interestingDict env (App fn (Coercion _)) = interestingDict env fn
interestingDict env (Tick _ a) = interestingDict env a
interestingDict env (Cast e _) = interestingDict env e
interestingDict _ _ = True
\end{code}
\begin{code}
plusUDs :: UsageDetails -> UsageDetails -> UsageDetails
plusUDs (MkUD {ud_binds = db1, ud_calls = calls1})
(MkUD {ud_binds = db2, ud_calls = calls2})
= MkUD { ud_binds = db1 `unionBags` db2
, ud_calls = calls1 `unionCalls` calls2 }
plusUDList :: [UsageDetails] -> UsageDetails
plusUDList = foldr plusUDs emptyUDs
_dictBindBndrs :: Bag DictBind -> [Id]
_dictBindBndrs dbs = foldrBag ((++) . bindersOf . fst) [] dbs
mkDB :: CoreBind -> DictBind
mkDB bind = (bind, bind_fvs bind)
bind_fvs :: CoreBind -> VarSet
bind_fvs (NonRec bndr rhs) = pair_fvs (bndr,rhs)
bind_fvs (Rec prs) = foldl delVarSet rhs_fvs bndrs
where
bndrs = map fst prs
rhs_fvs = unionVarSets (map pair_fvs prs)
pair_fvs :: (Id, CoreExpr) -> VarSet
pair_fvs (bndr, rhs) = exprFreeVars rhs `unionVarSet` idFreeVars bndr
flattenDictBinds :: Bag DictBind -> [(Id,CoreExpr)] -> [(Id,CoreExpr)]
flattenDictBinds dbs pairs
= foldrBag add pairs dbs
where
add (NonRec b r,_) pairs = (b,r) : pairs
add (Rec prs1, _) pairs = prs1 ++ pairs
snocDictBinds :: UsageDetails -> [CoreBind] -> UsageDetails
snocDictBinds uds dbs
= uds { ud_binds = ud_binds uds `unionBags`
foldr (consBag . mkDB) emptyBag dbs }
consDictBind :: CoreBind -> UsageDetails -> UsageDetails
consDictBind bind uds = uds { ud_binds = mkDB bind `consBag` ud_binds uds }
addDictBinds :: [DictBind] -> UsageDetails -> UsageDetails
addDictBinds binds uds = uds { ud_binds = listToBag binds `unionBags` ud_binds uds }
snocDictBind :: UsageDetails -> CoreBind -> UsageDetails
snocDictBind uds bind = uds { ud_binds = ud_binds uds `snocBag` mkDB bind }
wrapDictBinds :: Bag DictBind -> [CoreBind] -> [CoreBind]
wrapDictBinds dbs binds
= foldrBag add binds dbs
where
add (bind,_) binds = bind : binds
wrapDictBindsE :: Bag DictBind -> CoreExpr -> CoreExpr
wrapDictBindsE dbs expr
= foldrBag add expr dbs
where
add (bind,_) expr = Let bind expr
dumpUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, Bag DictBind)
dumpUDs bndrs uds@(MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
| null bndrs = (uds, emptyBag)
| otherwise =
(free_uds, dump_dbs)
where
free_uds = MkUD { ud_binds = free_dbs, ud_calls = free_calls }
bndr_set = mkVarSet bndrs
(free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
free_calls = deleteCallsMentioning dump_set $
deleteCallsFor bndrs orig_calls
dumpBindUDs :: [CoreBndr] -> UsageDetails -> (UsageDetails, Bag DictBind, Bool)
dumpBindUDs bndrs (MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
=
(free_uds, dump_dbs, float_all)
where
free_uds = MkUD { ud_binds = free_dbs, ud_calls = free_calls }
bndr_set = mkVarSet bndrs
(free_dbs, dump_dbs, dump_set) = splitDictBinds orig_dbs bndr_set
free_calls = deleteCallsFor bndrs orig_calls
float_all = dump_set `intersectsVarSet` callDetailsFVs free_calls
callsForMe :: Id -> UsageDetails -> (UsageDetails, [CallInfo])
callsForMe fn (MkUD { ud_binds = orig_dbs, ud_calls = orig_calls })
=
(uds_without_me, calls_for_me)
where
uds_without_me = MkUD { ud_binds = orig_dbs, ud_calls = delVarEnv orig_calls fn }
calls_for_me = case lookupVarEnv orig_calls fn of
Nothing -> []
Just (CIS _ calls) -> filter_dfuns (Map.toList calls)
dep_set = foldlBag go (unitVarSet fn) orig_dbs
go dep_set (db,fvs) | fvs `intersectsVarSet` dep_set
= extendVarSetList dep_set (bindersOf db)
| otherwise = dep_set
filter_dfuns | isDFunId fn = filter ok_call
| otherwise = \cs -> cs
ok_call (_, (_,fvs)) = not (fvs `intersectsVarSet` dep_set)
splitDictBinds :: Bag DictBind -> IdSet -> (Bag DictBind, Bag DictBind, IdSet)
splitDictBinds dbs bndr_set
= foldlBag split_db (emptyBag, emptyBag, bndr_set) dbs
where
split_db (free_dbs, dump_dbs, dump_idset) db@(bind, fvs)
| dump_idset `intersectsVarSet` fvs
= (free_dbs, dump_dbs `snocBag` db,
extendVarSetList dump_idset (bindersOf bind))
| otherwise
= (free_dbs `snocBag` db, dump_dbs, dump_idset)
deleteCallsMentioning :: VarSet -> CallDetails -> CallDetails
deleteCallsMentioning bs calls
= mapVarEnv filter_calls calls
where
filter_calls :: CallInfoSet -> CallInfoSet
filter_calls (CIS f calls) = CIS f (Map.filter keep_call calls)
keep_call (_, fvs) = not (fvs `intersectsVarSet` bs)
deleteCallsFor :: [Id] -> CallDetails -> CallDetails
deleteCallsFor bs calls = delVarEnvList calls bs
\end{code}
%************************************************************************
%* *
\subsubsection{Boring helper functions}
%* *
%************************************************************************
\begin{code}
newtype SpecM a = SpecM (State SpecState a)
data SpecState = SpecState {
spec_uniq_supply :: UniqSupply,
spec_dflags :: DynFlags
}
instance Functor SpecM where
fmap = liftM
instance Applicative SpecM where
pure = return
(<*>) = ap
instance Monad SpecM where
SpecM x >>= f = SpecM $ do y <- x
case f y of
SpecM z ->
z
return x = SpecM $ return x
fail str = SpecM $ fail str
instance MonadUnique SpecM where
getUniqueSupplyM
= SpecM $ do st <- get
let (us1, us2) = splitUniqSupply $ spec_uniq_supply st
put $ st { spec_uniq_supply = us2 }
return us1
getUniqueM
= SpecM $ do st <- get
let (u,us') = takeUniqFromSupply $ spec_uniq_supply st
put $ st { spec_uniq_supply = us' }
return u
instance HasDynFlags SpecM where
getDynFlags = SpecM $ liftM spec_dflags get
runSpecM :: DynFlags -> SpecM a -> CoreM a
runSpecM dflags (SpecM spec)
= do us <- getUniqueSupplyM
let initialState = SpecState {
spec_uniq_supply = us,
spec_dflags = dflags
}
return $ evalState spec initialState
mapAndCombineSM :: (a -> SpecM (b, UsageDetails)) -> [a] -> SpecM ([b], UsageDetails)
mapAndCombineSM _ [] = return ([], emptyUDs)
mapAndCombineSM f (x:xs) = do (y, uds1) <- f x
(ys, uds2) <- mapAndCombineSM f xs
return (y:ys, uds1 `plusUDs` uds2)
extendTvSubstList :: SpecEnv -> [(TyVar,Type)] -> SpecEnv
extendTvSubstList env tv_binds
= env { se_subst = CoreSubst.extendTvSubstList (se_subst env) tv_binds }
substTy :: SpecEnv -> Type -> Type
substTy env ty = CoreSubst.substTy (se_subst env) ty
substCo :: SpecEnv -> Coercion -> Coercion
substCo env co = CoreSubst.substCo (se_subst env) co
substBndr :: SpecEnv -> CoreBndr -> (SpecEnv, CoreBndr)
substBndr env bs = case CoreSubst.substBndr (se_subst env) bs of
(subst', bs') -> (env { se_subst = subst' }, bs')
substBndrs :: SpecEnv -> [CoreBndr] -> (SpecEnv, [CoreBndr])
substBndrs env bs = case CoreSubst.substBndrs (se_subst env) bs of
(subst', bs') -> (env { se_subst = subst' }, bs')
cloneBindSM :: SpecEnv -> CoreBind -> SpecM (SpecEnv, SpecEnv, CoreBind)
cloneBindSM env@(SE { se_subst = subst, se_interesting = interesting }) (NonRec bndr rhs)
= do { us <- getUniqueSupplyM
; let (subst', bndr') = CoreSubst.cloneIdBndr subst us bndr
interesting' | interestingDict env rhs
= interesting `extendVarSet` bndr'
| otherwise = interesting
; return (env, env { se_subst = subst', se_interesting = interesting' }
, NonRec bndr' rhs) }
cloneBindSM env@(SE { se_subst = subst, se_interesting = interesting }) (Rec pairs)
= do { us <- getUniqueSupplyM
; let (subst', bndrs') = CoreSubst.cloneRecIdBndrs subst us (map fst pairs)
env' = env { se_subst = subst'
, se_interesting = interesting `extendVarSetList`
[ v | (v,r) <- pairs, interestingDict env r ] }
; return (env', env', Rec (bndrs' `zip` map snd pairs)) }
newDictBndr :: SpecEnv -> CoreBndr -> SpecM CoreBndr
newDictBndr env b = do { uniq <- getUniqueM
; let n = idName b
ty' = substTy env (idType b)
; return (mkUserLocal (nameOccName n) uniq ty' (getSrcSpan n)) }
newSpecIdSM :: Id -> Type -> SpecM Id
newSpecIdSM old_id new_ty
= do { uniq <- getUniqueM
; let name = idName old_id
new_occ = mkSpecOcc (nameOccName name)
new_id = mkUserLocal new_occ uniq new_ty (getSrcSpan name)
; return new_id }
\end{code}
Old (but interesting) stuff about unboxed bindings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What should we do when a value is specialised to a *strict* unboxed value?
map_*_* f (x:xs) = let h = f x
t = map f xs
in h:t
Could convert let to case:
map_*_Int# f (x:xs) = case f x of h# ->
let t = map f xs
in h#:t
This may be undesirable since it forces evaluation here, but the value
may not be used in all branches of the body. In the general case this
transformation is impossible since the mutual recursion in a letrec
cannot be expressed as a case.
There is also a problem with top-level unboxed values, since our
implementation cannot handle unboxed values at the top level.
Solution: Lift the binding of the unboxed value and extract it when it
is used:
map_*_Int# f (x:xs) = let h = case (f x) of h# -> _Lift h#
t = map f xs
in case h of
_Lift h# -> h#:t
Now give it to the simplifier and the _Lifting will be optimised away.
The benfit is that we have given the specialised "unboxed" values a
very simplep lifted semantics and then leave it up to the simplifier to
optimise it --- knowing that the overheads will be removed in nearly
all cases.
In particular, the value will only be evaluted in the branches of the
program which use it, rather than being forced at the point where the
value is bound. For example:
filtermap_*_* p f (x:xs)
= let h = f x
t = ...
in case p x of
True -> h:t
False -> t
==>
filtermap_*_Int# p f (x:xs)
= let h = case (f x) of h# -> _Lift h#
t = ...
in case p x of
True -> case h of _Lift h#
-> h#:t
False -> t
The binding for h can still be inlined in the one branch and the
_Lifting eliminated.
Question: When won't the _Lifting be eliminated?
Answer: When they at the top-level (where it is necessary) or when
inlining would duplicate work (or possibly code depending on
options). However, the _Lifting will still be eliminated if the
strictness analyser deems the lifted binding strict.