\begin{code}
module TcErrors(
reportUnsolved, reportAllUnsolved,
warnDefaulting,
solverDepthErrorTcS
) where
#include "HsVersions.h"
import TcRnTypes
import TcRnMonad
import TcMType
import TcType
import TypeRep
import Type
import Kind ( isKind )
import Unify ( tcMatchTys )
import Module
import Inst
import InstEnv
import TyCon
import DataCon
import TcEvidence
import TysWiredIn ( coercibleClass )
import Name
import RdrName ( lookupGRE_Name )
import Id
import Var
import VarSet
import VarEnv
import Bag
import Maybes
import ErrUtils ( ErrMsg, makeIntoWarning, pprLocErrMsg )
import BasicTypes
import Util
import FastString
import Outputable
import SrcLoc
import DynFlags
import ListSetOps ( equivClasses )
import Data.List ( partition, mapAccumL, zip4 )
\end{code}
%************************************************************************
%* *
\section{Errors and contexts}
%* *
%************************************************************************
ToDo: for these error messages, should we note the location as coming
from the insts, or just whatever seems to be around in the monad just
now?
Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:
module Main where
a :: Int
a = 'a'
main = print "b"
Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.
Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in TcUnify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into
co :: Int ~ Char
co = ...
a :: Int
a = 'a' `cast` co
The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.
It does this by keeping track of which errors correspond to which coercion
in TcErrors. TcErrors.reportTidyWanteds does not print the errors
and does not fail if -fdefer-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.
\begin{code}
reportUnsolved :: WantedConstraints -> TcM (Bag EvBind)
reportUnsolved wanted
= do { binds_var <- newTcEvBinds
; defer <- goptM Opt_DeferTypeErrors
; report_unsolved (Just binds_var) defer wanted
; getTcEvBinds binds_var }
reportAllUnsolved :: WantedConstraints -> TcM ()
reportAllUnsolved wanted = report_unsolved Nothing False wanted
report_unsolved :: Maybe EvBindsVar
-> Bool
-> WantedConstraints -> TcM ()
report_unsolved mb_binds_var defer wanted
| isEmptyWC wanted
= return ()
| otherwise
= do { traceTc "reportUnsolved (before unflattening)" (ppr wanted)
; env0 <- tcInitTidyEnv
; let tidy_env = tidyFreeTyVars env0 free_tvs
free_tvs = tyVarsOfWC wanted
err_ctxt = CEC { cec_encl = []
, cec_tidy = tidy_env
, cec_defer = defer
, cec_suppress = False
, cec_binds = mb_binds_var }
; traceTc "reportUnsolved (after unflattening):" $
vcat [ pprTvBndrs (varSetElems free_tvs)
, ppr wanted ]
; reportWanteds err_ctxt wanted }
data ReportErrCtxt
= CEC { cec_encl :: [Implication]
, cec_tidy :: TidyEnv
, cec_binds :: Maybe EvBindsVar
, cec_defer :: Bool
, cec_suppress :: Bool
}
\end{code}
Note [Suppressing error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The cec_suppress flag says "don't report any errors. Instead, just create
evidence bindings (as usual). It's used when more important errors have occurred.
Specifically (see reportWanteds)
* If there are insoluble Givens, then we are in unreachable code and all bets
are off. So don't report any further errors.
* If there are any insolubles (eg Int~Bool), here or in a nested implication,
then suppress errors from the flat constraints here. Sometimes the
flat-constraint errors are a knock-on effect of the insolubles.
\begin{code}
reportImplic :: ReportErrCtxt -> Implication -> TcM ()
reportImplic ctxt implic@(Implic { ic_skols = tvs, ic_given = given
, ic_wanted = wanted, ic_binds = evb
, ic_insol = ic_insoluble, ic_info = info })
| BracketSkol <- info
, not ic_insoluble
= return ()
| otherwise
= reportWanteds ctxt' wanted
where
(env1, tvs') = mapAccumL tidyTyVarBndr (cec_tidy ctxt) tvs
(env2, info') = tidySkolemInfo env1 info
implic' = implic { ic_skols = tvs'
, ic_given = map (tidyEvVar env2) given
, ic_info = info' }
ctxt' = ctxt { cec_tidy = env2
, cec_encl = implic' : cec_encl ctxt
, cec_binds = case cec_binds ctxt of
Nothing -> Nothing
Just {} -> Just evb }
reportWanteds :: ReportErrCtxt -> WantedConstraints -> TcM ()
reportWanteds ctxt wanted@(WC { wc_flat = flats, wc_insol = insols, wc_impl = implics })
= do { reportFlats ctxt (mapBag (tidyCt env) insol_given)
; reportFlats ctxt1 (mapBag (tidyCt env) insol_wanted)
; reportFlats ctxt2 (mapBag (tidyCt env) flats)
; mapBagM_ (reportImplic ctxt1) implics }
where
(insol_given, insol_wanted) = partitionBag isGivenCt insols
env = cec_tidy ctxt
suppress0 = cec_suppress ctxt
suppress1 = suppress0 || not (isEmptyBag insol_given)
suppress2 = suppress0 || insolubleWC wanted
ctxt1 = ctxt { cec_suppress = suppress1 }
ctxt2 = ctxt { cec_suppress = suppress2 }
reportFlats :: ReportErrCtxt -> Cts -> TcM ()
reportFlats ctxt flats
= traceTc "reportFlats" (vcat [ ptext (sLit "Flats =") <+> ppr flats
, ptext (sLit "Suppress =") <+> ppr (cec_suppress ctxt)])
>> tryReporters
[
("Utterly wrong", utterly_wrong, True, mkGroupReporter mkEqErr)
, ("Holes", is_hole, True, mkUniReporter mkHoleError)
, ("Skolem equalities", skolem_eq, True, mkSkolReporter)
, ("Equalities", is_equality, True, mkGroupReporter mkEqErr)
, ("Implicit params", is_ip, False, mkGroupReporter mkIPErr)
, ("Irreds", is_irred, False, mkGroupReporter mkIrredErr)
, ("Dicts", is_dict, False, mkGroupReporter mkDictErr)
]
panicReporter ctxt (bagToList flats)
where
utterly_wrong, skolem_eq, is_hole, is_dict,
is_equality, is_ip, is_irred :: Ct -> PredTree -> Bool
utterly_wrong _ (EqPred ty1 ty2) = isRigid ty1 && isRigid ty2
utterly_wrong _ _ = False
is_hole ct _ = isHoleCt ct
skolem_eq _ (EqPred ty1 ty2) = isRigidOrSkol ty1 && isRigidOrSkol ty2
skolem_eq _ _ = False
is_equality _ (EqPred {}) = True
is_equality _ _ = False
is_dict _ (ClassPred {}) = True
is_dict _ _ = False
is_ip _ (ClassPred cls _) = isIPClass cls
is_ip _ _ = False
is_irred _ (IrredPred {}) = True
is_irred _ _ = False
isRigid, isRigidOrSkol :: Type -> Bool
isRigid ty
| Just (tc,_) <- tcSplitTyConApp_maybe ty = isDecomposableTyCon tc
| Just {} <- tcSplitAppTy_maybe ty = True
| isForAllTy ty = True
| otherwise = False
isRigidOrSkol ty
| Just tv <- getTyVar_maybe ty = isSkolemTyVar tv
| otherwise = isRigid ty
isTyFun_maybe :: Type -> Maybe TyCon
isTyFun_maybe ty = case tcSplitTyConApp_maybe ty of
Just (tc,_) | isSynFamilyTyCon tc -> Just tc
_ -> Nothing
type Reporter
= ReportErrCtxt -> [Ct] -> TcM ()
type ReporterSpec
= ( String
, Ct -> PredTree -> Bool
, Bool
, Reporter)
panicReporter :: Reporter
panicReporter _ cts
| null cts = return ()
| otherwise = pprPanic "reportFlats" (ppr cts)
mkSkolReporter :: Reporter
mkSkolReporter ctxt cts
= mapM_ (reportGroup mkEqErr ctxt) (equivClasses cmp_lhs_type cts)
where
cmp_lhs_type ct1 ct2
= case (classifyPredType (ctPred ct1), classifyPredType (ctPred ct2)) of
(EqPred ty1 _, EqPred ty2 _) -> ty1 `cmpType` ty2
_ -> pprPanic "mkSkolReporter" (ppr ct1 $$ ppr ct2)
mkUniReporter :: (ReportErrCtxt -> Ct -> TcM ErrMsg) -> Reporter
mkUniReporter mk_err ctxt
= mapM_ $ \ct ->
do { err <- mk_err ctxt ct
; maybeReportError ctxt err
; maybeAddDeferredBinding ctxt err ct }
mkGroupReporter :: (ReportErrCtxt -> [Ct] -> TcM ErrMsg)
-> Reporter
mkGroupReporter mk_err ctxt cts
= mapM_ (reportGroup mk_err ctxt) (equivClasses cmp_loc cts)
where
cmp_loc ct1 ct2 = ctLocSpan (ctLoc ct1) `compare` ctLocSpan (ctLoc ct2)
reportGroup :: (ReportErrCtxt -> [Ct] -> TcM ErrMsg) -> ReportErrCtxt
-> [Ct] -> TcM ()
reportGroup mk_err ctxt cts
= do { err <- mk_err ctxt cts
; maybeReportError ctxt err
; mapM_ (maybeAddDeferredBinding ctxt err) cts }
maybeReportError :: ReportErrCtxt -> ErrMsg -> TcM ()
maybeReportError ctxt err
| cec_defer ctxt
= reportWarning (makeIntoWarning err)
| cec_suppress ctxt
= return ()
| otherwise
= reportError err
maybeAddDeferredBinding :: ReportErrCtxt -> ErrMsg -> Ct -> TcM ()
maybeAddDeferredBinding ctxt err ct
| CtWanted { ctev_pred = pred, ctev_evar = ev_id } <- ctEvidence ct
, isHoleCt ct || cec_defer ctxt
, Just ev_binds_var <- cec_binds ctxt
= do { dflags <- getDynFlags
; let err_msg = pprLocErrMsg err
err_fs = mkFastString $ showSDoc dflags $
err_msg $$ text "(deferred type error)"
; addTcEvBind ev_binds_var ev_id (EvDelayedError pred err_fs) }
| otherwise
= return ()
tryReporters :: [ReporterSpec] -> Reporter -> Reporter
tryReporters reporters deflt ctxt cts
= do { traceTc "tryReporters {" (ppr cts)
; go ctxt reporters cts
; traceTc "tryReporters }" empty }
where
go ctxt [] cts = deflt ctxt cts
go ctxt ((str, pred, suppress_after, reporter) : rs) cts
| null yeses = do { traceTc "tryReporters: no" (text str)
; go ctxt rs cts }
| otherwise = do { traceTc "tryReporters: yes" (text str <+> ppr yeses)
; reporter ctxt yeses :: TcM ()
; let ctxt' = ctxt { cec_suppress = suppress_after || cec_suppress ctxt }
; go ctxt' rs nos }
where
(yeses, nos) = partition keep_me cts
keep_me ct = pred ct (classifyPredType (ctPred ct))
addArising :: CtOrigin -> SDoc -> SDoc
addArising orig msg = hang msg 2 (pprArising orig)
pprWithArising :: [Ct] -> (CtLoc, SDoc)
pprWithArising []
= panic "pprWithArising"
pprWithArising (ct:cts)
| null cts
= (loc, addArising (ctLocOrigin loc)
(pprTheta [ctPred ct]))
| otherwise
= (loc, vcat (map ppr_one (ct:cts)))
where
loc = ctLoc ct
ppr_one ct' = hang (parens (pprType (ctPred ct')))
2 (pprArisingAt (ctLoc ct'))
mkErrorMsg :: ReportErrCtxt -> Ct -> SDoc -> TcM ErrMsg
mkErrorMsg ctxt ct msg
= do { let tcl_env = ctLocEnv (ctLoc ct)
; err_info <- mkErrInfo (cec_tidy ctxt) (tcl_ctxt tcl_env)
; mkLongErrAt (tcl_loc tcl_env) msg err_info }
type UserGiven = ([EvVar], SkolemInfo, SrcSpan)
getUserGivens :: ReportErrCtxt -> [UserGiven]
getUserGivens (CEC {cec_encl = ctxt})
= reverse $
[ (givens, info, tcl_loc env)
| Implic {ic_given = givens, ic_env = env, ic_info = info } <- ctxt
, not (null givens) ]
\end{code}
Note [Always warn with -fdefer-type-errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When -fdefer-type-errors is on we warn about *all* type errors, even
if cec_suppress is on. This can lead to a lot more warnings than you
would get errors without -fdefer-type-errors, but if we suppress any of
them you might get a runtime error that wasn't warned about at compile
time.
This is an easy design choice to change; just flip the order of the
first two equations for maybeReportError
To be consistent, we should also report multiple warnings from a single
location in mkGroupReporter, when -fdefer-type-errors is on. But that
is perhaps a bit *over*-consistent! Again, an easy choice to change.
Note [Do not report derived but soluble errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The wc_flats include Derived constraints that have not been solved, but are
not insoluble (in that case they'd be in wc_insols). We do not want to report
these as errors:
* Superclass constraints. If we have an unsolved [W] Ord a, we'll also have
an unsolved [D] Eq a, and we do not want to report that; it's just noise.
* Functional dependencies. For givens, consider
class C a b | a -> b
data T a where
MkT :: C a d => [d] -> T a
f :: C a b => T a -> F Int
f (MkT xs) = length xs
Then we get a [D] b~d. But there *is* a legitimate call to
f, namely f (MkT [True]) :: T Bool, in which b=d. So we should
not reject the program.
For wanteds, something similar
data T a where
MkT :: C Int b => a -> b -> T a
g :: C Int c => c -> ()
f :: T a -> ()
f (MkT x y) = g x
Here we get [G] C Int b, [W] C Int a, hence [D] a~b.
But again f (MkT True True) is a legitimate call.
(We leave the Deriveds in wc_flat until reportErrors, so that we don't lose
derived superclasses between iterations of the solver.)
For functional dependencies, here is a real example,
stripped off from libraries/utf8-string/Codec/Binary/UTF8/Generic.hs
class C a b | a -> b
g :: C a b => a -> b -> ()
f :: C a b => a -> b -> ()
f xa xb =
let loop = g xa
in loop xb
We will first try to infer a type for loop, and we will succeed:
C a b' => b' -> ()
Subsequently, we will type check (loop xb) and all is good. But,
recall that we have to solve a final implication constraint:
C a b => (C a b' => .... cts from body of loop .... ))
And now we have a problem as we will generate an equality b ~ b' and fail to
solve it.
%************************************************************************
%* *
Irreducible predicate errors
%* *
%************************************************************************
\begin{code}
mkIrredErr :: ReportErrCtxt -> [Ct] -> TcM ErrMsg
mkIrredErr ctxt cts
= do { (ctxt, binds_msg) <- relevantBindings True ctxt ct1
; mkErrorMsg ctxt ct1 (msg $$ binds_msg) }
where
(ct1:_) = cts
orig = ctLocOrigin (ctLoc ct1)
givens = getUserGivens ctxt
msg = couldNotDeduce givens (map ctPred cts, orig)
mkHoleError :: ReportErrCtxt -> Ct -> TcM ErrMsg
mkHoleError ctxt ct@(CHoleCan { cc_occ = occ })
= do { let tyvars = varSetElems (tyVarsOfCt ct)
tyvars_msg = map loc_msg tyvars
msg = vcat [ hang (ptext (sLit "Found hole") <+> quotes (ppr occ))
2 (ptext (sLit "with type:") <+> pprType (ctEvPred (ctEvidence ct)))
, ppUnless (null tyvars_msg) (ptext (sLit "Where:") <+> vcat tyvars_msg) ]
; (ctxt, binds_doc) <- relevantBindings False ctxt ct
; mkErrorMsg ctxt ct (msg $$ binds_doc) }
where
loc_msg tv
= case tcTyVarDetails tv of
SkolemTv {} -> quotes (ppr tv) <+> skol_msg
MetaTv {} -> quotes (ppr tv) <+> ptext (sLit "is an ambiguous type variable")
det -> pprTcTyVarDetails det
where
skol_msg = pprSkol (getSkolemInfo (cec_encl ctxt) tv) (getSrcLoc tv)
mkHoleError _ ct = pprPanic "mkHoleError" (ppr ct)
mkIPErr :: ReportErrCtxt -> [Ct] -> TcM ErrMsg
mkIPErr ctxt cts
= do { (ctxt, bind_msg) <- relevantBindings True ctxt ct1
; mkErrorMsg ctxt ct1 (msg $$ bind_msg) }
where
(ct1:_) = cts
orig = ctLocOrigin (ctLoc ct1)
preds = map ctPred cts
givens = getUserGivens ctxt
msg | null givens
= addArising orig $
sep [ ptext (sLit "Unbound implicit parameter") <> plural cts
, nest 2 (pprTheta preds) ]
| otherwise
= couldNotDeduce givens (preds, orig)
\end{code}
%************************************************************************
%* *
Equality errors
%* *
%************************************************************************
Note [Inaccessible code]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a where
T1 :: T a
T2 :: T Bool
f :: (a ~ Int) => T a -> Int
f T1 = 3
f T2 = 4 -- Unreachable code
Here the second equation is unreachable. The original constraint
(a~Int) from the signature gets rewritten by the pattern-match to
(Bool~Int), so the danger is that we report the error as coming from
the *signature* (Trac #7293). So, for Given errors we replace the
env (and hence src-loc) on its CtLoc with that from the immediately
enclosing implication.
\begin{code}
mkEqErr :: ReportErrCtxt -> [Ct] -> TcM ErrMsg
mkEqErr ctxt (ct:_) = mkEqErr1 ctxt ct
mkEqErr _ [] = panic "mkEqErr"
mkEqErr1 :: ReportErrCtxt -> Ct -> TcM ErrMsg
mkEqErr1 ctxt ct
| isGiven ev
= do { (ctxt, binds_msg) <- relevantBindings True ctxt ct
; let (given_loc, given_msg) = mk_given (cec_encl ctxt)
; dflags <- getDynFlags
; mkEqErr_help dflags ctxt (given_msg $$ binds_msg)
(ct { cc_ev = ev {ctev_loc = given_loc}})
Nothing ty1 ty2 }
| otherwise
= do { (ctxt, binds_msg) <- relevantBindings True ctxt ct
; (ctxt, tidy_orig) <- zonkTidyOrigin ctxt (ctLocOrigin loc)
; let (is_oriented, wanted_msg) = mk_wanted_extra tidy_orig
; dflags <- getDynFlags
; mkEqErr_help dflags ctxt (wanted_msg $$ binds_msg)
ct is_oriented ty1 ty2 }
where
ev = ctEvidence ct
loc = ctev_loc ev
(ty1, ty2) = getEqPredTys (ctEvPred ev)
mk_given :: [Implication] -> (CtLoc, SDoc)
mk_given [] = (loc, empty)
mk_given (implic : _) = (setCtLocEnv loc (ic_env implic)
, hang (ptext (sLit "Inaccessible code in"))
2 (ppr (ic_info implic)))
mk_wanted_extra orig@(TypeEqOrigin {})
= mkExpectedActualMsg ty1 ty2 orig
mk_wanted_extra (KindEqOrigin cty1 cty2 sub_o)
= (Nothing, msg1 $$ msg2)
where
msg1 = hang (ptext (sLit "When matching types"))
2 (vcat [ ppr cty1 <+> dcolon <+> ppr (typeKind cty1)
, ppr cty2 <+> dcolon <+> ppr (typeKind cty2) ])
msg2 = case sub_o of
TypeEqOrigin {} -> snd (mkExpectedActualMsg cty1 cty2 sub_o)
_ -> empty
mk_wanted_extra _ = (Nothing, empty)
mkEqErr_help :: DynFlags -> ReportErrCtxt -> SDoc
-> Ct
-> Maybe SwapFlag
-> TcType -> TcType -> TcM ErrMsg
mkEqErr_help dflags ctxt extra ct oriented ty1 ty2
| Just tv1 <- tcGetTyVar_maybe ty1 = mkTyVarEqErr dflags ctxt extra ct oriented tv1 ty2
| Just tv2 <- tcGetTyVar_maybe ty2 = mkTyVarEqErr dflags ctxt extra ct swapped tv2 ty1
| otherwise = reportEqErr ctxt extra ct oriented ty1 ty2
where
swapped = fmap flipSwap oriented
reportEqErr :: ReportErrCtxt -> SDoc
-> Ct
-> Maybe SwapFlag
-> TcType -> TcType -> TcM ErrMsg
reportEqErr ctxt extra1 ct oriented ty1 ty2
= do { let extra2 = mkEqInfoMsg ct ty1 ty2
; mkErrorMsg ctxt ct (vcat [ misMatchOrCND ctxt ct oriented ty1 ty2
, extra2, extra1]) }
mkTyVarEqErr :: DynFlags -> ReportErrCtxt -> SDoc -> Ct
-> Maybe SwapFlag -> TcTyVar -> TcType -> TcM ErrMsg
mkTyVarEqErr dflags ctxt extra ct oriented tv1 ty2
| isUserSkolem ctxt tv1
|| isSigTyVar tv1 && not (isTyVarTy ty2)
= mkErrorMsg ctxt ct (vcat [ misMatchOrCND ctxt ct oriented ty1 ty2
, extraTyVarInfo ctxt ty1 ty2
, extra ])
| not (k2 `tcIsSubKind` k1)
= mkErrorMsg ctxt ct $ (kindErrorMsg (mkTyVarTy tv1) ty2 $$ extra)
| OC_Occurs <- occ_check_expand
= do { let occCheckMsg = hang (text "Occurs check: cannot construct the infinite type:")
2 (sep [ppr ty1, char '~', ppr ty2])
extra2 = mkEqInfoMsg ct ty1 ty2
; mkErrorMsg ctxt ct (occCheckMsg $$ extra2 $$ extra) }
| OC_Forall <- occ_check_expand
= do { let msg = vcat [ ptext (sLit "Cannot instantiate unification variable")
<+> quotes (ppr tv1)
, hang (ptext (sLit "with a type involving foralls:")) 2 (ppr ty2)
, nest 2 (ptext (sLit "Perhaps you want ImpredicativeTypes")) ]
; mkErrorMsg ctxt ct msg }
| (implic:_) <- cec_encl ctxt
, Implic { ic_skols = skols } <- implic
, tv1 `elem` skols
= mkErrorMsg ctxt ct (vcat [ misMatchMsg oriented ty1 ty2
, extraTyVarInfo ctxt ty1 ty2
, extra ])
| (implic:_) <- cec_encl ctxt
, Implic { ic_env = env, ic_skols = skols, ic_info = skol_info } <- implic
, let esc_skols = filter (`elemVarSet` (tyVarsOfType ty2)) skols
, not (null esc_skols)
= do { let msg = misMatchMsg oriented ty1 ty2
esc_doc = sep [ ptext (sLit "because type variable") <> plural esc_skols
<+> pprQuotedList esc_skols
, ptext (sLit "would escape") <+>
if isSingleton esc_skols then ptext (sLit "its scope")
else ptext (sLit "their scope") ]
tv_extra = vcat [ nest 2 $ esc_doc
, sep [ (if isSingleton esc_skols
then ptext (sLit "This (rigid, skolem) type variable is")
else ptext (sLit "These (rigid, skolem) type variables are"))
<+> ptext (sLit "bound by")
, nest 2 $ ppr skol_info
, nest 2 $ ptext (sLit "at") <+> ppr (tcl_loc env) ] ]
; mkErrorMsg ctxt ct (msg $$ tv_extra $$ extra) }
| (implic:_) <- cec_encl ctxt
, Implic { ic_env = env, ic_given = given, ic_info = skol_info } <- implic
= do { let msg = misMatchMsg oriented ty1 ty2
untch_extra
= nest 2 $
sep [ quotes (ppr tv1) <+> ptext (sLit "is untouchable")
, nest 2 $ ptext (sLit "inside the constraints") <+> pprEvVarTheta given
, nest 2 $ ptext (sLit "bound by") <+> ppr skol_info
, nest 2 $ ptext (sLit "at") <+> ppr (tcl_loc env) ]
tv_extra = extraTyVarInfo ctxt ty1 ty2
; mkErrorMsg ctxt ct (vcat [msg, untch_extra, tv_extra, extra]) }
| otherwise
= reportEqErr ctxt extra ct oriented (mkTyVarTy tv1) ty2
where
occ_check_expand = occurCheckExpand dflags tv1 ty2
k1 = tyVarKind tv1
k2 = typeKind ty2
ty1 = mkTyVarTy tv1
mkEqInfoMsg :: Ct -> TcType -> TcType -> SDoc
mkEqInfoMsg ct ty1 ty2
= tyfun_msg $$ ambig_msg
where
mb_fun1 = isTyFun_maybe ty1
mb_fun2 = isTyFun_maybe ty2
ambig_msg | isJust mb_fun1 || isJust mb_fun2
= snd (mkAmbigMsg ct)
| otherwise = empty
tyfun_msg | Just tc1 <- mb_fun1
, Just tc2 <- mb_fun2
, tc1 == tc2
= ptext (sLit "NB:") <+> quotes (ppr tc1)
<+> ptext (sLit "is a type function, and may not be injective")
| otherwise = empty
isUserSkolem :: ReportErrCtxt -> TcTyVar -> Bool
isUserSkolem ctxt tv
= isSkolemTyVar tv && any is_user_skol_tv (cec_encl ctxt)
where
is_user_skol_tv (Implic { ic_skols = sks, ic_info = skol_info })
= tv `elem` sks && is_user_skol_info skol_info
is_user_skol_info (InferSkol {}) = False
is_user_skol_info _ = True
misMatchOrCND :: ReportErrCtxt -> Ct -> Maybe SwapFlag -> TcType -> TcType -> SDoc
misMatchOrCND ctxt ct oriented ty1 ty2
| null givens ||
(isRigid ty1 && isRigid ty2) ||
isGivenCt ct
= misMatchMsg oriented ty1 ty2
| otherwise
= couldNotDeduce givens ([mkEqPred ty1 ty2], orig)
where
givens = getUserGivens ctxt
orig = TypeEqOrigin { uo_actual = ty1, uo_expected = ty2 }
couldNotDeduce :: [UserGiven] -> (ThetaType, CtOrigin) -> SDoc
couldNotDeduce givens (wanteds, orig)
= vcat [ addArising orig (ptext (sLit "Could not deduce") <+> pprTheta wanteds)
, vcat (pp_givens givens)]
pp_givens :: [UserGiven] -> [SDoc]
pp_givens givens
= case givens of
[] -> []
(g:gs) -> ppr_given (ptext (sLit "from the context")) g
: map (ppr_given (ptext (sLit "or from"))) gs
where
ppr_given herald (gs, skol_info, loc)
= hang (herald <+> pprEvVarTheta gs)
2 (sep [ ptext (sLit "bound by") <+> ppr skol_info
, ptext (sLit "at") <+> ppr loc])
extraTyVarInfo :: ReportErrCtxt -> TcType -> TcType -> SDoc
extraTyVarInfo ctxt ty1 ty2
= nest 2 (extra1 $$ extra2)
where
extra1 = tyVarExtraInfoMsg (cec_encl ctxt) ty1
extra2 = tyVarExtraInfoMsg (cec_encl ctxt) ty2
tyVarExtraInfoMsg :: [Implication] -> Type -> SDoc
tyVarExtraInfoMsg implics ty
| Just tv <- tcGetTyVar_maybe ty
, isTcTyVar tv, isSkolemTyVar tv
, let pp_tv = quotes (ppr tv)
= case tcTyVarDetails tv of
SkolemTv {} -> pp_tv <+> pprSkol (getSkolemInfo implics tv) (getSrcLoc tv)
FlatSkol {} -> pp_tv <+> ptext (sLit "is a flattening type variable")
RuntimeUnk {} -> pp_tv <+> ptext (sLit "is an interactive-debugger skolem")
MetaTv {} -> empty
| otherwise
= empty
kindErrorMsg :: TcType -> TcType -> SDoc
kindErrorMsg ty1 ty2
= vcat [ ptext (sLit "Kind incompatibility when matching types:")
, nest 2 (vcat [ ppr ty1 <+> dcolon <+> ppr k1
, ppr ty2 <+> dcolon <+> ppr k2 ]) ]
where
k1 = typeKind ty1
k2 = typeKind ty2
misMatchMsg :: Maybe SwapFlag -> TcType -> TcType -> SDoc
misMatchMsg oriented ty1 ty2
| Just IsSwapped <- oriented
= misMatchMsg (Just NotSwapped) ty2 ty1
| Just NotSwapped <- oriented
= sep [ ptext (sLit "Couldn't match expected") <+> what <+> quotes (ppr ty2)
, nest 12 $ ptext (sLit "with actual") <+> what <+> quotes (ppr ty1)
, sameOccExtra ty2 ty1 ]
| otherwise
= sep [ ptext (sLit "Couldn't match") <+> what <+> quotes (ppr ty1)
, nest 14 $ ptext (sLit "with") <+> quotes (ppr ty2)
, sameOccExtra ty1 ty2 ]
where
what | isKind ty1 = ptext (sLit "kind")
| otherwise = ptext (sLit "type")
mkExpectedActualMsg :: Type -> Type -> CtOrigin -> (Maybe SwapFlag, SDoc)
mkExpectedActualMsg ty1 ty2 (TypeEqOrigin { uo_actual = act, uo_expected = exp })
| act `pickyEqType` ty1, exp `pickyEqType` ty2 = (Just NotSwapped, empty)
| exp `pickyEqType` ty1, act `pickyEqType` ty2 = (Just IsSwapped, empty)
| otherwise = (Nothing, msg)
where
msg = vcat [ text "Expected type:" <+> ppr exp
, text " Actual type:" <+> ppr act ]
mkExpectedActualMsg _ _ _ = panic "mkExprectedAcutalMsg"
sameOccExtra :: TcType -> TcType -> SDoc
sameOccExtra ty1 ty2
| Just (tc1, _) <- tcSplitTyConApp_maybe ty1
, Just (tc2, _) <- tcSplitTyConApp_maybe ty2
, let n1 = tyConName tc1
n2 = tyConName tc2
same_occ = nameOccName n1 == nameOccName n2
same_pkg = modulePackageId (nameModule n1) == modulePackageId (nameModule n2)
, n1 /= n2
, same_occ
= ptext (sLit "NB:") <+> (ppr_from same_pkg n1 $$ ppr_from same_pkg n2)
| otherwise
= empty
where
ppr_from same_pkg nm
| isGoodSrcSpan loc
= hang (quotes (ppr nm) <+> ptext (sLit "is defined at"))
2 (ppr loc)
| otherwise
= hang (quotes (ppr nm))
2 (sep [ ptext (sLit "is defined in") <+> quotes (ppr (moduleName mod))
, ppUnless (same_pkg || pkg == mainPackageId) $
nest 4 $ ptext (sLit "in package") <+> quotes (ppr pkg) ])
where
pkg = modulePackageId mod
mod = nameModule nm
loc = nameSrcSpan nm
\end{code}
Note [Disambiguating (X ~ X) errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See Trac #8278
Note [Reporting occurs-check errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (a ~ [a]), if 'a' is a rigid type variable bound by a user-supplied
type signature, then the best thing is to report that we can't unify
a with [a], because a is a skolem variable. That avoids the confusing
"occur-check" error message.
But nowadays when inferring the type of a function with no type signature,
even if there are errors inside, we still generalise its signature and
carry on. For example
f x = x:x
Here we will infer somethiing like
f :: forall a. a -> [a]
with a suspended error of (a ~ [a]). So 'a' is now a skolem, but not
one bound by the programmer! Here we really should report an occurs check.
So isUserSkolem distinguishes the two.
Note [Non-injective type functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very confusing to get a message like
Couldn't match expected type `Depend s'
against inferred type `Depend s1'
so mkTyFunInfoMsg adds:
NB: `Depend' is type function, and hence may not be injective
Warn of loopy local equalities that were dropped.
%************************************************************************
%* *
Type-class errors
%* *
%************************************************************************
\begin{code}
mkDictErr :: ReportErrCtxt -> [Ct] -> TcM ErrMsg
mkDictErr ctxt cts
= ASSERT( not (null cts) )
do { inst_envs <- tcGetInstEnvs
; lookups <- mapM (lookup_cls_inst inst_envs) cts
; let (no_inst_cts, overlap_cts) = partition is_no_inst lookups
; (ctxt, err) <- mk_dict_err ctxt (head (no_inst_cts ++ overlap_cts))
; mkErrorMsg ctxt ct1 err }
where
ct1:_ = elim_superclasses cts
no_givens = null (getUserGivens ctxt)
is_no_inst (ct, (matches, unifiers, _))
= no_givens
&& null matches
&& (null unifiers || all (not . isAmbiguousTyVar) (varSetElems (tyVarsOfCt ct)))
lookup_cls_inst inst_envs ct
= do { tys_flat <- mapM quickFlattenTy tys
; return (ct, lookupInstEnv inst_envs clas tys_flat) }
where
(clas, tys) = getClassPredTys (ctPred ct)
elim_superclasses cts
= filter (\ct -> any (eqPred (ctPred ct)) min_preds) cts
where
min_preds = mkMinimalBySCs (map ctPred cts)
mk_dict_err :: ReportErrCtxt -> (Ct, ClsInstLookupResult)
-> TcM (ReportErrCtxt, SDoc)
mk_dict_err ctxt (ct, (matches, unifiers, safe_haskell))
| null matches
= do { let (is_ambig, ambig_msg) = mkAmbigMsg ct
; (ctxt, binds_msg) <- relevantBindings True ctxt ct
; traceTc "mk_dict_err" (ppr ct $$ ppr is_ambig $$ ambig_msg)
; rdr_env <- getGlobalRdrEnv
; return (ctxt, cannot_resolve_msg rdr_env is_ambig binds_msg ambig_msg) }
| not safe_haskell
= return (ctxt, overlap_msg)
| otherwise
= return (ctxt, safe_haskell_msg)
where
orig = ctLocOrigin (ctLoc ct)
pred = ctPred ct
(clas, tys) = getClassPredTys pred
ispecs = [ispec | (ispec, _) <- matches]
givens = getUserGivens ctxt
all_tyvars = all isTyVarTy tys
cannot_resolve_msg rdr_env has_ambig_tvs binds_msg ambig_msg
= vcat [ addArising orig (no_inst_msg $$ coercible_explanation rdr_env)
, vcat (pp_givens givens)
, ppWhen (has_ambig_tvs && not (null unifiers && null givens))
(vcat [ ambig_msg, binds_msg, potential_msg ])
, show_fixes (add_to_ctxt_fixes has_ambig_tvs ++ drv_fixes) ]
potential_msg
= ppWhen (not (null unifiers) && want_potential orig) $
hang (if isSingleton unifiers
then ptext (sLit "Note: there is a potential instance available:")
else ptext (sLit "Note: there are several potential instances:"))
2 (ppr_insts unifiers)
want_potential (AmbigOrigin {}) = False
want_potential _ = True
add_to_ctxt_fixes has_ambig_tvs
| not has_ambig_tvs && all_tyvars
, (orig:origs) <- mapCatMaybes get_good_orig (cec_encl ctxt)
= [sep [ ptext (sLit "add") <+> pprParendType pred
<+> ptext (sLit "to the context of")
, nest 2 $ ppr_skol orig $$
vcat [ ptext (sLit "or") <+> ppr_skol orig
| orig <- origs ] ] ]
| otherwise = []
ppr_skol (PatSkol dc _) = ptext (sLit "the data constructor") <+> quotes (ppr dc)
ppr_skol skol_info = ppr skol_info
get_good_orig ic = case ic_info ic of
SigSkol (InfSigCtxt {}) _ -> Nothing
origin -> Just origin
no_inst_msg
| clas == coercibleClass
= let (ty1, ty2) = getEqPredTys pred
in ptext (sLit "Could not coerce from") <+> quotes (ppr ty1) <+>
ptext (sLit "to") <+> quotes (ppr ty2)
| null givens && null matches
= ptext (sLit "No instance for") <+> pprParendType pred
| otherwise
= ptext (sLit "Could not deduce") <+> pprParendType pred
drv_fixes = case orig of
DerivOrigin -> [drv_fix]
DerivOriginDC {} -> [drv_fix]
DerivOriginCoerce {} -> [drv_fix]
_ -> []
drv_fix = hang (ptext (sLit "use a standalone 'deriving instance' declaration,"))
2 (ptext (sLit "so you can specify the instance context yourself"))
overlap_msg
= ASSERT( not (null matches) )
vcat [ addArising orig (ptext (sLit "Overlapping instances for")
<+> pprType (mkClassPred clas tys))
, ppUnless (null matching_givens) $
sep [ptext (sLit "Matching givens (or their superclasses):")
, nest 2 (vcat matching_givens)]
, sep [ptext (sLit "Matching instances:"),
nest 2 (vcat [pprInstances ispecs, pprInstances unifiers])]
, ppWhen (null matching_givens && isSingleton matches && null unifiers) $
sep [ ptext (sLit "There exists a (perhaps superclass) match:")
, nest 2 (vcat (pp_givens givens))]
, ppWhen (isSingleton matches) $
parens (vcat [ ptext (sLit "The choice depends on the instantiation of") <+>
quotes (pprWithCommas ppr (varSetElems (tyVarsOfTypes tys)))
, ppWhen (null (matching_givens)) $
vcat [ ptext (sLit "To pick the first instance above, use IncoherentInstances")
, ptext (sLit "when compiling the other instance declarations")]
])]
where
ispecs = [ispec | (ispec, _) <- matches]
givens = getUserGivens ctxt
matching_givens = mapCatMaybes matchable givens
matchable (evvars,skol_info,loc)
= case ev_vars_matching of
[] -> Nothing
_ -> Just $ hang (pprTheta ev_vars_matching)
2 (sep [ ptext (sLit "bound by") <+> ppr skol_info
, ptext (sLit "at") <+> ppr loc])
where ev_vars_matching = filter ev_var_matches (map evVarPred evvars)
ev_var_matches ty = case getClassPredTys_maybe ty of
Just (clas', tys')
| clas' == clas
, Just _ <- tcMatchTys (tyVarsOfTypes tys) tys tys'
-> True
| otherwise
-> any ev_var_matches (immSuperClasses clas' tys')
Nothing -> False
safe_haskell_msg
= ASSERT( length matches > 1 )
vcat [ addArising orig (ptext (sLit "Unsafe overlapping instances for")
<+> pprType (mkClassPred clas tys))
, sep [ptext (sLit "The matching instance is:"),
nest 2 (pprInstance $ head ispecs)]
, vcat [ ptext $ sLit "It is compiled in a Safe module and as such can only"
, ptext $ sLit "overlap instances from the same module, however it"
, ptext $ sLit "overlaps the following instances from different modules:"
, nest 2 (vcat [pprInstances $ tail ispecs])
]
]
coercible_explanation rdr_env
| clas /= coercibleClass = empty
| Just (tc1,tyArgs1) <- splitTyConApp_maybe ty1,
Just (tc2,tyArgs2) <- splitTyConApp_maybe ty2,
tc1 == tc2
= nest 2 $ vcat $
[ fsep [ hsep [ ptext $ sLit "because the", speakNth n, ptext $ sLit "type argument"]
, hsep [ ptext $ sLit "of", quotes (ppr tc1), ptext $ sLit "has role Nominal,"]
, ptext $ sLit "but the arguments"
, quotes (ppr t1)
, ptext $ sLit "and"
, quotes (ppr t2)
, ptext $ sLit "differ" ]
| (n,Nominal,t1,t2) <- zip4 [1..] (tyConRoles tc1) tyArgs1 tyArgs2
, not (t1 `eqType` t2)
]
| Just (tc,_) <- splitTyConApp_maybe ty1,
Just msg <- coercible_msg_for_tycon rdr_env tc
= msg
| Just (tc,_) <- splitTyConApp_maybe ty2,
Just msg <- coercible_msg_for_tycon rdr_env tc
= msg
| otherwise
= nest 2 $ hsep [ ptext $ sLit "because", quotes (ppr ty1),
ptext $ sLit "and", quotes (ppr ty2),
ptext $ sLit "are different types." ]
where
(ty1, ty2) = getEqPredTys pred
dataConMissing rdr_env tc =
all (null . lookupGRE_Name rdr_env) (map dataConName (tyConDataCons tc))
coercible_msg_for_tycon rdr_env tc
| isNewTyCon tc
= tyConAbstractMsg rdr_env tc empty
| otherwise
= Nothing
tyConAbstractMsg rdr_env tc occExpl
| isAbstractTyCon tc || dataConMissing rdr_env tc = Just $ vcat $
[ fsep [ ptext $ sLit "because the type constructor", quotes (ppr tc) <+> occExpl
, ptext $ sLit "is abstract" ]
| isAbstractTyCon tc
] ++
[ fsep [ ptext (sLit "because the constructor") <> plural (tyConDataCons tc)
, ptext (sLit "of") <+> quotes (ppr tc) <+> occExpl
, isOrAre (tyConDataCons tc) <+> ptext (sLit "not imported") ]
| dataConMissing rdr_env tc
]
| otherwise = Nothing
show_fixes :: [SDoc] -> SDoc
show_fixes [] = empty
show_fixes (f:fs) = sep [ ptext (sLit "Possible fix:")
, nest 2 (vcat (f : map (ptext (sLit "or") <+>) fs))]
ppr_insts :: [ClsInst] -> SDoc
ppr_insts insts
= pprInstances (take 3 insts) $$ dot_dot_message
where
n_extra = length insts 3
dot_dot_message
| n_extra <= 0 = empty
| otherwise = ptext (sLit "...plus")
<+> speakNOf n_extra (ptext (sLit "other"))
quickFlattenTy :: TcType -> TcM TcType
quickFlattenTy ty | Just ty' <- tcView ty = quickFlattenTy ty'
quickFlattenTy ty@(TyVarTy {}) = return ty
quickFlattenTy ty@(ForAllTy {}) = return ty
quickFlattenTy ty@(LitTy {}) = return ty
quickFlattenTy (AppTy ty1 ty2) = do { fy1 <- quickFlattenTy ty1
; fy2 <- quickFlattenTy ty2
; return (AppTy fy1 fy2) }
quickFlattenTy (FunTy ty1 ty2) = do { fy1 <- quickFlattenTy ty1
; fy2 <- quickFlattenTy ty2
; return (FunTy fy1 fy2) }
quickFlattenTy (TyConApp tc tys)
| not (isSynFamilyTyCon tc)
= do { fys <- mapM quickFlattenTy tys
; return (TyConApp tc fys) }
| otherwise
= do { let (funtys,resttys) = splitAt (tyConArity tc) tys
; v <- newMetaTyVar TauTv (typeKind (TyConApp tc funtys))
; flat_resttys <- mapM quickFlattenTy resttys
; return (foldl AppTy (mkTyVarTy v) flat_resttys) }
\end{code}
Note [Flattening in error message generation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (C (Maybe (F x))), where F is a type function, and we have
instances
C (Maybe Int) and C (Maybe a)
Since (F x) might turn into Int, this is an overlap situation, and
indeed (because of flattening) the main solver will have refrained
from solving. But by the time we get to error message generation, we've
un-flattened the constraint. So we must *re*-flatten it before looking
up in the instance environment, lest we only report one matching
instance when in fact there are two.
Re-flattening is pretty easy, because we don't need to keep track of
evidence. We don't re-use the code in TcCanonical because that's in
the TcS monad, and we are in TcM here.
Note [Quick-flatten polytypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see C (Ix a => blah) or C (forall a. blah) we simply refrain from
flattening any further. After all, there can be no instance declarations
that match such things. And flattening under a for-all is problematic
anyway; consider C (forall a. F a)
\begin{code}
mkAmbigMsg :: Ct -> (Bool, SDoc)
mkAmbigMsg ct
| isEmptyVarSet ambig_tv_set = (False, empty)
| otherwise = (True, msg)
where
ambig_tv_set = filterVarSet isAmbiguousTyVar (tyVarsOfCt ct)
ambig_tvs = varSetElems ambig_tv_set
is_or_are | isSingleton ambig_tvs = text "is"
| otherwise = text "are"
msg | any isRuntimeUnkSkol ambig_tvs
= vcat [ ptext (sLit "Cannot resolve unknown runtime type") <> plural ambig_tvs
<+> pprQuotedList ambig_tvs
, ptext (sLit "Use :print or :force to determine these types")]
| otherwise
= vcat [ text "The type variable" <> plural ambig_tvs
<+> pprQuotedList ambig_tvs
<+> is_or_are <+> text "ambiguous" ]
pprSkol :: SkolemInfo -> SrcLoc -> SDoc
pprSkol UnkSkol _
= ptext (sLit "is an unknown type variable")
pprSkol skol_info tv_loc
= sep [ ptext (sLit "is a rigid type variable bound by"),
sep [ppr skol_info, ptext (sLit "at") <+> ppr tv_loc]]
getSkolemInfo :: [Implication] -> TcTyVar -> SkolemInfo
getSkolemInfo [] tv
= pprPanic "No skolem info:" (ppr tv)
getSkolemInfo (implic:implics) tv
| tv `elem` ic_skols implic = ic_info implic
| otherwise = getSkolemInfo implics tv
relevantBindings :: Bool
-> ReportErrCtxt -> Ct
-> TcM (ReportErrCtxt, SDoc)
relevantBindings want_filtering ctxt ct
= do { dflags <- getDynFlags
; (tidy_env', docs, discards)
<- go (cec_tidy ctxt) (maxRelevantBinds dflags)
emptyVarSet [] False
(tcl_bndrs lcl_env)
; traceTc "relevantBindings" (ppr [id | TcIdBndr id _ <- tcl_bndrs lcl_env])
; let doc = hang (ptext (sLit "Relevant bindings include"))
2 (vcat docs $$ max_msg)
max_msg | discards
= ptext (sLit "(Some bindings suppressed; use -fmax-relevant-binds=N or -fno-max-relevant-binds)")
| otherwise = empty
; if null docs
then return (ctxt, empty)
else do { traceTc "rb" doc
; return (ctxt { cec_tidy = tidy_env' }, doc) } }
where
lcl_env = ctLocEnv (ctLoc ct)
ct_tvs = tyVarsOfCt ct
run_out :: Maybe Int -> Bool
run_out Nothing = False
run_out (Just n) = n <= 0
dec_max :: Maybe Int -> Maybe Int
dec_max = fmap (\n -> n 1)
go :: TidyEnv -> Maybe Int -> TcTyVarSet -> [SDoc]
-> Bool
-> [TcIdBinder]
-> TcM (TidyEnv, [SDoc], Bool)
go tidy_env _ _ docs discards []
= return (tidy_env, reverse docs, discards)
go tidy_env n_left tvs_seen docs discards (TcIdBndr id top_lvl : tc_bndrs)
= do { (tidy_env', tidy_ty) <- zonkTidyTcType tidy_env (idType id)
; let id_tvs = tyVarsOfType tidy_ty
doc = sep [ pprPrefixOcc id <+> dcolon <+> ppr tidy_ty
, nest 2 (parens (ptext (sLit "bound at")
<+> ppr (getSrcLoc id)))]
new_seen = tvs_seen `unionVarSet` id_tvs
; if (want_filtering && id_tvs `disjointVarSet` ct_tvs)
then go tidy_env n_left tvs_seen docs discards tc_bndrs
else if isTopLevel top_lvl && not (isNothing n_left)
then go tidy_env n_left tvs_seen docs discards tc_bndrs
else if run_out n_left && id_tvs `subVarSet` tvs_seen
then go tidy_env n_left tvs_seen docs True tc_bndrs
else go tidy_env' (dec_max n_left) new_seen (doc:docs) discards tc_bndrs }
warnDefaulting :: Cts -> Type -> TcM ()
warnDefaulting wanteds default_ty
= do { warn_default <- woptM Opt_WarnTypeDefaults
; env0 <- tcInitTidyEnv
; let tidy_env = tidyFreeTyVars env0 $
tyVarsOfCts wanteds
tidy_wanteds = mapBag (tidyCt tidy_env) wanteds
(loc, ppr_wanteds) = pprWithArising (bagToList tidy_wanteds)
warn_msg = hang (ptext (sLit "Defaulting the following constraint(s) to type")
<+> quotes (ppr default_ty))
2 ppr_wanteds
; setCtLoc loc $ warnTc warn_default warn_msg }
\end{code}
Note [Runtime skolems]
~~~~~~~~~~~~~~~~~~~~~~
We want to give a reasonably helpful error message for ambiguity
arising from *runtime* skolems in the debugger. These
are created by in RtClosureInspect.zonkRTTIType.
%************************************************************************
%* *
Error from the canonicaliser
These ones are called *during* constraint simplification
%* *
%************************************************************************
\begin{code}
solverDepthErrorTcS :: SubGoalCounter -> CtEvidence -> TcM a
solverDepthErrorTcS cnt ev
= setCtLoc loc $
do { pred <- zonkTcType (ctEvPred ev)
; env0 <- tcInitTidyEnv
; let tidy_env = tidyFreeTyVars env0 (tyVarsOfType pred)
tidy_pred = tidyType tidy_env pred
; failWithTcM (tidy_env, hang (msg cnt) 2 (ppr tidy_pred)) }
where
loc = ctev_loc ev
depth = ctLocDepth loc
value = subGoalCounterValue cnt depth
msg CountConstraints =
vcat [ ptext (sLit "Context reduction stack overflow; size =") <+> int value
, ptext (sLit "Use -fcontext-stack=N to increase stack size to N") ]
msg CountTyFunApps =
vcat [ ptext (sLit "Type function application stack overflow; size =") <+> int value
, ptext (sLit "Use -ftype-function-depth=N to increase stack size to N") ]
\end{code}
%************************************************************************
%* *
Tidying
%* *
%************************************************************************
\begin{code}
zonkTidyTcType :: TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType env ty = do { ty' <- zonkTcType ty
; return (tidyOpenType env ty') }
zonkTidyOrigin :: ReportErrCtxt -> CtOrigin -> TcM (ReportErrCtxt, CtOrigin)
zonkTidyOrigin ctxt (GivenOrigin skol_info)
= do { skol_info1 <- zonkSkolemInfo skol_info
; let (env1, skol_info2) = tidySkolemInfo (cec_tidy ctxt) skol_info1
; return (ctxt { cec_tidy = env1 }, GivenOrigin skol_info2) }
zonkTidyOrigin ctxt (TypeEqOrigin { uo_actual = act, uo_expected = exp })
= do { (env1, act') <- zonkTidyTcType (cec_tidy ctxt) act
; (env2, exp') <- zonkTidyTcType env1 exp
; return ( ctxt { cec_tidy = env2 }
, TypeEqOrigin { uo_actual = act', uo_expected = exp' }) }
zonkTidyOrigin ctxt (KindEqOrigin ty1 ty2 orig)
= do { (env1, ty1') <- zonkTidyTcType (cec_tidy ctxt) ty1
; (env2, ty2') <- zonkTidyTcType env1 ty2
; (ctxt2, orig') <- zonkTidyOrigin (ctxt { cec_tidy = env2 }) orig
; return (ctxt2, KindEqOrigin ty1' ty2' orig') }
zonkTidyOrigin ctxt orig = return (ctxt, orig)
\end{code}