%
% (c) The University of Glasgow 2006
%
\begin{code}
module TcEvidence (
HsWrapper(..),
(<.>), mkWpTyApps, mkWpEvApps, mkWpEvVarApps, mkWpTyLams, mkWpLams, mkWpLet, mkWpCast,
idHsWrapper, isIdHsWrapper, pprHsWrapper,
TcEvBinds(..), EvBindsVar(..),
EvBindMap(..), emptyEvBindMap, extendEvBinds, lookupEvBind, evBindMapBinds,
EvBind(..), emptyTcEvBinds, isEmptyTcEvBinds,
EvTerm(..), mkEvCast, evVarsOfTerm,
EvLit(..), evTermCoercion,
TcCoercion(..), LeftOrRight(..), pickLR,
mkTcReflCo, mkTcNomReflCo,
mkTcTyConAppCo, mkTcAppCo, mkTcAppCos, mkTcFunCo,
mkTcAxInstCo, mkTcUnbranchedAxInstCo, mkTcForAllCo, mkTcForAllCos,
mkTcSymCo, mkTcTransCo, mkTcNthCo, mkTcLRCo, mkTcSubCo,
mkTcAxiomRuleCo,
tcCoercionKind, coVarsOfTcCo, isEqVar, mkTcCoVarCo,
isTcReflCo, isTcReflCo_maybe, getTcCoVar_maybe,
tcCoercionRole, eqVarRole,
coercionToTcCoercion
) where
#include "HsVersions.h"
import Var
import Coercion( LeftOrRight(..), pickLR, nthRole )
import qualified Coercion as C
import PprCore ()
import TypeRep
import TcType
import Type( tyConAppArgN, tyConAppTyCon_maybe, getEqPredTys, getEqPredRole, coAxNthLHS )
import TysPrim( funTyCon )
import TyCon
import CoAxiom
import PrelNames
import VarEnv
import VarSet
import Name
import Util
import Bag
import Pair
import Control.Applicative
import Data.Traversable (traverse, sequenceA)
import qualified Data.Data as Data
import Outputable
import FastString
import Data.IORef( IORef )
\end{code}
Note [TcCoercions]
~~~~~~~~~~~~~~~~~~
| TcCoercions are a hack used by the typechecker. Normally,
Coercions have free variables of type (a ~# b): we call these
CoVars. However, the type checker passes around equality evidence
(boxed up) at type (a ~ b).
An TcCoercion is simply a Coercion whose free variables have the
boxed type (a ~ b). After we are done with typechecking the
desugarer finds the free variables, unboxes them, and creates a
resulting real Coercion with kosher free variables.
We can use most of the Coercion "smart constructors" to build TcCoercions.
However, mkCoVarCo will not work! The equivalent is mkTcCoVarCo.
The data type is similar to Coercion.Coercion, with the following
differences
* Most important, TcLetCo adds let-bindings for coercions.
This is what lets us unify two for-all types and generate
equality constraints underneath
* The kind of a TcCoercion is t1 ~ t2 (resp. Coercible t1 t2)
of a Coercion is t1 ~# t2 (resp. t1 ~#R t2)
* UnsafeCo aren't required, but we do have TcPhandomCo
* Representation invariants are weaker:
- we are allowed to have type synonyms in TcTyConAppCo
- the first arg of a TcAppCo can be a TcTyConAppCo
- TcSubCo is not applied as deep as done with mkSubCo
Reason: they'll get established when we desugar to Coercion
* TcAxiomInstCo has a [TcCoercion] parameter, and not a [Type] parameter.
This differs from the formalism, but corresponds to AxiomInstCo (see
[Coercion axioms applied to coercions]).
Why can't we use [TcType] here, in code not relevant for the simplifier?
Because of coercionToTcCoercion.
\begin{code}
data TcCoercion
= TcRefl Role TcType
| TcTyConAppCo Role TyCon [TcCoercion]
| TcAppCo TcCoercion TcCoercion
| TcForAllCo TyVar TcCoercion
| TcCoVarCo EqVar
| TcAxiomInstCo (CoAxiom Branched) Int [TcCoercion]
| TcAxiomRuleCo CoAxiomRule [TcType] [TcCoercion]
| TcPhantomCo TcType TcType
| TcSymCo TcCoercion
| TcTransCo TcCoercion TcCoercion
| TcNthCo Int TcCoercion
| TcLRCo LeftOrRight TcCoercion
| TcSubCo TcCoercion
| TcCastCo TcCoercion TcCoercion
| TcLetCo TcEvBinds TcCoercion
deriving (Data.Data, Data.Typeable)
isEqVar :: Var -> Bool
isEqVar v = case tyConAppTyCon_maybe (varType v) of
Just tc -> tc `hasKey` eqTyConKey
Nothing -> False
isTcReflCo_maybe :: TcCoercion -> Maybe TcType
isTcReflCo_maybe (TcRefl _ ty) = Just ty
isTcReflCo_maybe _ = Nothing
isTcReflCo :: TcCoercion -> Bool
isTcReflCo (TcRefl {}) = True
isTcReflCo _ = False
getTcCoVar_maybe :: TcCoercion -> Maybe CoVar
getTcCoVar_maybe (TcCoVarCo v) = Just v
getTcCoVar_maybe _ = Nothing
mkTcReflCo :: Role -> TcType -> TcCoercion
mkTcReflCo = TcRefl
mkTcNomReflCo :: TcType -> TcCoercion
mkTcNomReflCo = TcRefl Nominal
mkTcFunCo :: Role -> TcCoercion -> TcCoercion -> TcCoercion
mkTcFunCo role co1 co2 = mkTcTyConAppCo role funTyCon [co1, co2]
mkTcTyConAppCo :: Role -> TyCon -> [TcCoercion] -> TcCoercion
mkTcTyConAppCo role tc cos
| Just tys <- traverse isTcReflCo_maybe cos
= TcRefl role (mkTyConApp tc tys)
| otherwise = TcTyConAppCo role tc cos
mkTcSubCo :: TcCoercion -> TcCoercion
mkTcSubCo co = ASSERT2( tcCoercionRole co == Nominal, ppr co)
TcSubCo co
maybeTcSubCo2_maybe :: Role
-> Role
-> TcCoercion -> Maybe TcCoercion
maybeTcSubCo2_maybe Representational Nominal = Just . mkTcSubCo
maybeTcSubCo2_maybe Nominal Representational = const Nothing
maybeTcSubCo2_maybe Phantom _ = panic "maybeTcSubCo2_maybe Phantom"
maybeTcSubCo2_maybe _ Phantom = const Nothing
maybeTcSubCo2_maybe _ _ = Just
maybeTcSubCo2 :: Role
-> Role
-> TcCoercion -> TcCoercion
maybeTcSubCo2 r1 r2 co
= case maybeTcSubCo2_maybe r1 r2 co of
Just co' -> co'
Nothing -> pprPanic "maybeTcSubCo2" (ppr r1 <+> ppr r2 <+> ppr co)
mkTcAxInstCo :: Role -> CoAxiom br -> Int -> [TcType] -> TcCoercion
mkTcAxInstCo role ax index tys
| ASSERT2( not (role == Nominal && ax_role == Representational) , ppr (ax, tys) )
arity == n_tys = maybeTcSubCo2 role ax_role $ TcAxiomInstCo ax_br index rtys
| otherwise = ASSERT( arity < n_tys )
maybeTcSubCo2 role ax_role $
foldl TcAppCo (TcAxiomInstCo ax_br index (take arity rtys))
(drop arity rtys)
where
n_tys = length tys
ax_br = toBranchedAxiom ax
branch = coAxiomNthBranch ax_br index
arity = length $ coAxBranchTyVars branch
ax_role = coAxiomRole ax
arg_roles = coAxBranchRoles branch
rtys = zipWith mkTcReflCo (arg_roles ++ repeat Nominal) tys
mkTcAxiomRuleCo :: CoAxiomRule -> [TcType] -> [TcCoercion] -> TcCoercion
mkTcAxiomRuleCo = TcAxiomRuleCo
mkTcUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [TcType] -> TcCoercion
mkTcUnbranchedAxInstCo role ax tys
= mkTcAxInstCo role ax 0 tys
mkTcAppCo :: TcCoercion -> TcCoercion -> TcCoercion
mkTcAppCo (TcRefl r ty1) (TcRefl _ ty2) = TcRefl r (mkAppTy ty1 ty2)
mkTcAppCo co1 co2 = TcAppCo co1 co2
mkTcSymCo :: TcCoercion -> TcCoercion
mkTcSymCo co@(TcRefl {}) = co
mkTcSymCo (TcSymCo co) = co
mkTcSymCo co = TcSymCo co
mkTcTransCo :: TcCoercion -> TcCoercion -> TcCoercion
mkTcTransCo (TcRefl {}) co = co
mkTcTransCo co (TcRefl {}) = co
mkTcTransCo co1 co2 = TcTransCo co1 co2
mkTcNthCo :: Int -> TcCoercion -> TcCoercion
mkTcNthCo n (TcRefl r ty) = TcRefl r (tyConAppArgN n ty)
mkTcNthCo n co = TcNthCo n co
mkTcLRCo :: LeftOrRight -> TcCoercion -> TcCoercion
mkTcLRCo lr (TcRefl r ty) = TcRefl r (pickLR lr (tcSplitAppTy ty))
mkTcLRCo lr co = TcLRCo lr co
mkTcAppCos :: TcCoercion -> [TcCoercion] -> TcCoercion
mkTcAppCos co1 tys = foldl mkTcAppCo co1 tys
mkTcForAllCo :: Var -> TcCoercion -> TcCoercion
mkTcForAllCo tv (TcRefl r ty) = ASSERT( isTyVar tv ) TcRefl r (mkForAllTy tv ty)
mkTcForAllCo tv co = ASSERT( isTyVar tv ) TcForAllCo tv co
mkTcForAllCos :: [Var] -> TcCoercion -> TcCoercion
mkTcForAllCos tvs (TcRefl r ty) = ASSERT( all isTyVar tvs ) TcRefl r (mkForAllTys tvs ty)
mkTcForAllCos tvs co = ASSERT( all isTyVar tvs ) foldr TcForAllCo co tvs
mkTcCoVarCo :: EqVar -> TcCoercion
mkTcCoVarCo ipv = TcCoVarCo ipv
\end{code}
\begin{code}
tcCoercionKind :: TcCoercion -> Pair Type
tcCoercionKind co = go co
where
go (TcRefl _ ty) = Pair ty ty
go (TcLetCo _ co) = go co
go (TcCastCo _ co) = case getEqPredTys (pSnd (go co)) of
(ty1,ty2) -> Pair ty1 ty2
go (TcTyConAppCo _ tc cos)= mkTyConApp tc <$> (sequenceA $ map go cos)
go (TcAppCo co1 co2) = mkAppTy <$> go co1 <*> go co2
go (TcForAllCo tv co) = mkForAllTy tv <$> go co
go (TcCoVarCo cv) = eqVarKind cv
go (TcAxiomInstCo ax ind cos)
= let branch = coAxiomNthBranch ax ind
tvs = coAxBranchTyVars branch
Pair tys1 tys2 = sequenceA (map go cos)
in ASSERT( cos `equalLength` tvs )
Pair (substTyWith tvs tys1 (coAxNthLHS ax ind))
(substTyWith tvs tys2 (coAxBranchRHS branch))
go (TcPhantomCo ty1 ty2) = Pair ty1 ty2
go (TcSymCo co) = swap (go co)
go (TcTransCo co1 co2) = Pair (pFst (go co1)) (pSnd (go co2))
go (TcNthCo d co) = tyConAppArgN d <$> go co
go (TcLRCo lr co) = (pickLR lr . tcSplitAppTy) <$> go co
go (TcSubCo co) = go co
go (TcAxiomRuleCo ax ts cs) =
case coaxrProves ax ts (map tcCoercionKind cs) of
Just res -> res
Nothing -> panic "tcCoercionKind: malformed TcAxiomRuleCo"
eqVarRole :: EqVar -> Role
eqVarRole cv = getEqPredRole (varType cv)
eqVarKind :: EqVar -> Pair Type
eqVarKind cv
| Just (tc, [_kind,ty1,ty2]) <- tcSplitTyConApp_maybe (varType cv)
= ASSERT(tc `hasKey` eqTyConKey)
Pair ty1 ty2
| otherwise = pprPanic "eqVarKind, non coercion variable" (ppr cv <+> dcolon <+> ppr (varType cv))
tcCoercionRole :: TcCoercion -> Role
tcCoercionRole = go
where
go (TcRefl r _) = r
go (TcTyConAppCo r _ _) = r
go (TcAppCo co _) = go co
go (TcForAllCo _ co) = go co
go (TcCoVarCo cv) = eqVarRole cv
go (TcAxiomInstCo ax _ _) = coAxiomRole ax
go (TcPhantomCo _ _) = Phantom
go (TcSymCo co) = go co
go (TcTransCo co1 _) = go co1
go (TcNthCo n co) = let Pair ty1 _ = tcCoercionKind co
(tc, _) = tcSplitTyConApp ty1
in nthRole (go co) tc n
go (TcLRCo _ _) = Nominal
go (TcSubCo _) = Representational
go (TcAxiomRuleCo c _ _) = coaxrRole c
go (TcCastCo c _) = go c
go (TcLetCo _ c) = go c
coVarsOfTcCo :: TcCoercion -> VarSet
coVarsOfTcCo tc_co
= go tc_co
where
go (TcRefl _ _) = emptyVarSet
go (TcTyConAppCo _ _ cos) = foldr (unionVarSet . go) emptyVarSet cos
go (TcAppCo co1 co2) = go co1 `unionVarSet` go co2
go (TcCastCo co1 co2) = go co1 `unionVarSet` go co2
go (TcForAllCo _ co) = go co
go (TcCoVarCo v) = unitVarSet v
go (TcAxiomInstCo _ _ cos) = foldr (unionVarSet . go) emptyVarSet cos
go (TcPhantomCo _ _) = emptyVarSet
go (TcSymCo co) = go co
go (TcTransCo co1 co2) = go co1 `unionVarSet` go co2
go (TcNthCo _ co) = go co
go (TcLRCo _ co) = go co
go (TcSubCo co) = go co
go (TcLetCo (EvBinds bs) co) = foldrBag (unionVarSet . go_bind) (go co) bs
`minusVarSet` get_bndrs bs
go (TcLetCo {}) = emptyVarSet
go (TcAxiomRuleCo _ _ cos) = foldr (unionVarSet . go) emptyVarSet cos
go_bind :: EvBind -> VarSet
go_bind (EvBind _ tm) = go (evTermCoercion tm)
get_bndrs :: Bag EvBind -> VarSet
get_bndrs = foldrBag (\ (EvBind b _) bs -> extendVarSet bs b) emptyVarSet
\end{code}
Pretty printing
\begin{code}
instance Outputable TcCoercion where
ppr = pprTcCo
pprTcCo, pprParendTcCo :: TcCoercion -> SDoc
pprTcCo co = ppr_co TopPrec co
pprParendTcCo co = ppr_co TyConPrec co
ppr_co :: Prec -> TcCoercion -> SDoc
ppr_co _ (TcRefl r ty) = angleBrackets (ppr ty) <> ppr_role r
ppr_co p co@(TcTyConAppCo _ tc [_,_])
| tc `hasKey` funTyConKey = ppr_fun_co p co
ppr_co p (TcTyConAppCo r tc cos) = pprTcApp p ppr_co tc cos <> ppr_role r
ppr_co p (TcLetCo bs co) = maybeParen p TopPrec $
sep [ptext (sLit "let") <+> braces (ppr bs), ppr co]
ppr_co p (TcAppCo co1 co2) = maybeParen p TyConPrec $
pprTcCo co1 <+> ppr_co TyConPrec co2
ppr_co p (TcCastCo co1 co2) = maybeParen p FunPrec $
ppr_co FunPrec co1 <+> ptext (sLit "|>") <+> ppr_co FunPrec co2
ppr_co p co@(TcForAllCo {}) = ppr_forall_co p co
ppr_co _ (TcCoVarCo cv) = parenSymOcc (getOccName cv) (ppr cv)
ppr_co p (TcAxiomInstCo con ind cos)
= pprPrefixApp p (ppr (getName con) <> brackets (ppr ind)) (map pprParendTcCo cos)
ppr_co p (TcTransCo co1 co2) = maybeParen p FunPrec $
ppr_co FunPrec co1
<+> ptext (sLit ";")
<+> ppr_co FunPrec co2
ppr_co p (TcPhantomCo t1 t2) = pprPrefixApp p (ptext (sLit "PhantomCo")) [pprParendType t1, pprParendType t2]
ppr_co p (TcSymCo co) = pprPrefixApp p (ptext (sLit "Sym")) [pprParendTcCo co]
ppr_co p (TcNthCo n co) = pprPrefixApp p (ptext (sLit "Nth:") <+> int n) [pprParendTcCo co]
ppr_co p (TcLRCo lr co) = pprPrefixApp p (ppr lr) [pprParendTcCo co]
ppr_co p (TcSubCo co) = pprPrefixApp p (ptext (sLit "Sub")) [pprParendTcCo co]
ppr_co p (TcAxiomRuleCo co ts ps) = maybeParen p TopPrec
$ ppr_tc_axiom_rule_co co ts ps
ppr_tc_axiom_rule_co :: CoAxiomRule -> [TcType] -> [TcCoercion] -> SDoc
ppr_tc_axiom_rule_co co ts ps = ppr (coaxrName co) <> ppTs ts $$ nest 2 (ppPs ps)
where
ppTs [] = Outputable.empty
ppTs [t] = ptext (sLit "@") <> ppr_type TopPrec t
ppTs ts = ptext (sLit "@") <>
parens (hsep $ punctuate comma $ map pprType ts)
ppPs [] = Outputable.empty
ppPs [p] = pprParendTcCo p
ppPs (p : ps) = ptext (sLit "(") <+> pprTcCo p $$
vcat [ ptext (sLit ",") <+> pprTcCo q | q <- ps ] $$
ptext (sLit ")")
ppr_role :: Role -> SDoc
ppr_role r = underscore <> pp_role
where pp_role = case r of
Nominal -> char 'N'
Representational -> char 'R'
Phantom -> char 'P'
ppr_fun_co :: Prec -> TcCoercion -> SDoc
ppr_fun_co p co = pprArrowChain p (split co)
where
split :: TcCoercion -> [SDoc]
split (TcTyConAppCo _ f [arg,res])
| f `hasKey` funTyConKey
= ppr_co FunPrec arg : split res
split co = [ppr_co TopPrec co]
ppr_forall_co :: Prec -> TcCoercion -> SDoc
ppr_forall_co p ty
= maybeParen p FunPrec $
sep [pprForAll tvs, ppr_co TopPrec rho]
where
(tvs, rho) = split1 [] ty
split1 tvs (TcForAllCo tv ty) = split1 (tv:tvs) ty
split1 tvs ty = (reverse tvs, ty)
\end{code}
Conversion from Coercion to TcCoercion
(at the moment, this is only needed to convert the result of
instNewTyConTF_maybe, so all unused cases are panics for now).
\begin{code}
coercionToTcCoercion :: C.Coercion -> TcCoercion
coercionToTcCoercion = go
where
go (C.Refl r t) = TcRefl r t
go (C.TransCo c1 c2) = TcTransCo (go c1) (go c2)
go (C.AxiomInstCo coa ind cos) = TcAxiomInstCo coa ind (map go cos)
go (C.SubCo c) = TcSubCo (go c)
go (C.AppCo c1 c2) = TcAppCo (go c1) (go c2)
go co = pprPanic "coercionToTcCoercion" (ppr co)
\end{code}
%************************************************************************
%* *
HsWrapper
%* *
%************************************************************************
\begin{code}
data HsWrapper
= WpHole
| WpCompose HsWrapper HsWrapper
| WpCast TcCoercion
| WpEvLam EvVar
| WpEvApp EvTerm
| WpTyLam TyVar
| WpTyApp KindOrType
| WpLet TcEvBinds
deriving (Data.Data, Data.Typeable)
(<.>) :: HsWrapper -> HsWrapper -> HsWrapper
WpHole <.> c = c
c <.> WpHole = c
c1 <.> c2 = c1 `WpCompose` c2
mkWpCast :: TcCoercion -> HsWrapper
mkWpCast co = ASSERT2(tcCoercionRole co == Representational, ppr co)
WpCast co
mkWpTyApps :: [Type] -> HsWrapper
mkWpTyApps tys = mk_co_app_fn WpTyApp tys
mkWpEvApps :: [EvTerm] -> HsWrapper
mkWpEvApps args = mk_co_app_fn WpEvApp args
mkWpEvVarApps :: [EvVar] -> HsWrapper
mkWpEvVarApps vs = mkWpEvApps (map EvId vs)
mkWpTyLams :: [TyVar] -> HsWrapper
mkWpTyLams ids = mk_co_lam_fn WpTyLam ids
mkWpLams :: [Var] -> HsWrapper
mkWpLams ids = mk_co_lam_fn WpEvLam ids
mkWpLet :: TcEvBinds -> HsWrapper
mkWpLet (EvBinds b) | isEmptyBag b = WpHole
mkWpLet ev_binds = WpLet ev_binds
mk_co_lam_fn :: (a -> HsWrapper) -> [a] -> HsWrapper
mk_co_lam_fn f as = foldr (\x wrap -> f x <.> wrap) WpHole as
mk_co_app_fn :: (a -> HsWrapper) -> [a] -> HsWrapper
mk_co_app_fn f as = foldr (\x wrap -> wrap <.> f x) WpHole as
idHsWrapper :: HsWrapper
idHsWrapper = WpHole
isIdHsWrapper :: HsWrapper -> Bool
isIdHsWrapper WpHole = True
isIdHsWrapper _ = False
\end{code}
%************************************************************************
%* *
Evidence bindings
%* *
%************************************************************************
\begin{code}
data TcEvBinds
= TcEvBinds
EvBindsVar
| EvBinds
(Bag EvBind)
deriving( Data.Typeable )
data EvBindsVar = EvBindsVar (IORef EvBindMap) Unique
instance Data.Data TcEvBinds where
toConstr _ = abstractConstr "TcEvBinds"
gunfold _ _ = error "gunfold"
dataTypeOf _ = Data.mkNoRepType "TcEvBinds"
newtype EvBindMap
= EvBindMap {
ev_bind_varenv :: VarEnv EvBind
}
emptyEvBindMap :: EvBindMap
emptyEvBindMap = EvBindMap { ev_bind_varenv = emptyVarEnv }
extendEvBinds :: EvBindMap -> EvVar -> EvTerm -> EvBindMap
extendEvBinds bs v t
= EvBindMap { ev_bind_varenv = extendVarEnv (ev_bind_varenv bs) v (EvBind v t) }
lookupEvBind :: EvBindMap -> EvVar -> Maybe EvBind
lookupEvBind bs = lookupVarEnv (ev_bind_varenv bs)
evBindMapBinds :: EvBindMap -> Bag EvBind
evBindMapBinds bs
= foldVarEnv consBag emptyBag (ev_bind_varenv bs)
data EvBind = EvBind EvVar EvTerm
data EvTerm
= EvId EvId
| EvCoercion TcCoercion
| EvCast EvTerm TcCoercion
| EvDFunApp DFunId
[Type] [EvTerm]
| EvTupleSel EvTerm Int
| EvTupleMk [EvTerm]
| EvDelayedError Type FastString
| EvSuperClass EvTerm Int
| EvLit EvLit
deriving( Data.Data, Data.Typeable)
data EvLit
= EvNum Integer
| EvStr FastString
deriving( Data.Data, Data.Typeable)
\end{code}
Note [Coercion evidence terms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A "coercion evidence term" takes one of these forms
co_tm ::= EvId v where v :: t1 ~ t2
| EvCoercion co
| EvCast co_tm co
We do quite often need to get a TcCoercion from an EvTerm; see
'evTermCoercion'.
INVARIANT: The evidence for any constraint with type (t1~t2) is
a coercion evidence term. Consider for example
[G] d :: F Int a
If we have
ax7 a :: F Int a ~ (a ~ Bool)
then we do NOT generate the constraint
[G] (d |> ax7 a) :: a ~ Bool
because that does not satisfy the invariant (d is not a coercion variable).
Instead we make a binding
g1 :: a~Bool = g |> ax7 a
and the constraint
[G] g1 :: a~Bool
See Trac [7238] and Note [Bind new Givens immediately] in TcSMonad
Note [EvBinds/EvTerm]
~~~~~~~~~~~~~~~~~~~~~
How evidence is created and updated. Bindings for dictionaries,
and coercions and implicit parameters are carried around in TcEvBinds
which during constraint generation and simplification is always of the
form (TcEvBinds ref). After constraint simplification is finished it
will be transformed to t an (EvBinds ev_bag).
Evidence for coercions *SHOULD* be filled in using the TcEvBinds
However, all EvVars that correspond to *wanted* coercion terms in
an EvBind must be mutable variables so that they can be readily
inlined (by zonking) after constraint simplification is finished.
Conclusion: a new wanted coercion variable should be made mutable.
[Notice though that evidence variables that bind coercion terms
from super classes will be "given" and hence rigid]
Note [KnownNat & KnownSymbol and EvLit]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A part of the type-level literals implementation are the classes
"KnownNat" and "KnownLit", which provide a "smart" constructor for
defining singleton values. Here is the key stuff from GHC.TypeLits
class KnownNat (n :: Nat) where
natSing :: SNat n
newtype SNat (n :: Nat) = SNat Integer
Conceptually, this class has infinitely many instances:
instance KnownNat 0 where natSing = SNat 0
instance KnownNat 1 where natSing = SNat 1
instance KnownNat 2 where natSing = SNat 2
...
In practice, we solve `KnownNat` predicates in the type-checker
(see typecheck/TcInteract.hs) because we can't have infinately many instances.
The evidence (aka "dictionary") for `KnownNat` is of the form `EvLit (EvNum n)`.
We make the following assumptions about dictionaries in GHC:
1. The "dictionary" for classes with a single method---like `KnownNat`---is
a newtype for the type of the method, so using a evidence amounts
to a coercion, and
2. Newtypes use the same representation as their definition types.
So, the evidence for `KnownNat` is just a value of the representation type,
wrapped in two newtype constructors: one to make it into a `SNat` value,
and another to make it into a `KnownNat` dictionary.
Also note that `natSing` and `SNat` are never actually exposed from the
library---they are just an implementation detail. Instead, users see
a more convenient function, defined in terms of `natSing`:
natVal :: KnownNat n => proxy n -> Integer
The reason we don't use this directly in the class is that it is simpler
and more efficient to pass around an integer rather than an entier function,
especialy when the `KnowNat` evidence is packaged up in an existential.
The story for kind `Symbol` is analogous:
* class KnownSymbol
* newypte SSymbol
* Evidence: EvLit (EvStr n)
\begin{code}
mkEvCast :: EvTerm -> TcCoercion -> EvTerm
mkEvCast ev lco
| ASSERT2(tcCoercionRole lco == Representational, (vcat [ptext (sLit "Coercion of wrong role passed to mkEvCast:"), ppr ev, ppr lco]))
isTcReflCo lco = ev
| otherwise = EvCast ev lco
emptyTcEvBinds :: TcEvBinds
emptyTcEvBinds = EvBinds emptyBag
isEmptyTcEvBinds :: TcEvBinds -> Bool
isEmptyTcEvBinds (EvBinds b) = isEmptyBag b
isEmptyTcEvBinds (TcEvBinds {}) = panic "isEmptyTcEvBinds"
evTermCoercion :: EvTerm -> TcCoercion
evTermCoercion (EvId v) = mkTcCoVarCo v
evTermCoercion (EvCoercion co) = co
evTermCoercion (EvCast tm co) = TcCastCo (evTermCoercion tm) co
evTermCoercion tm = pprPanic "evTermCoercion" (ppr tm)
evVarsOfTerm :: EvTerm -> VarSet
evVarsOfTerm (EvId v) = unitVarSet v
evVarsOfTerm (EvCoercion co) = coVarsOfTcCo co
evVarsOfTerm (EvDFunApp _ _ evs) = evVarsOfTerms evs
evVarsOfTerm (EvTupleSel v _) = evVarsOfTerm v
evVarsOfTerm (EvSuperClass v _) = evVarsOfTerm v
evVarsOfTerm (EvCast tm co) = evVarsOfTerm tm `unionVarSet` coVarsOfTcCo co
evVarsOfTerm (EvTupleMk evs) = evVarsOfTerms evs
evVarsOfTerm (EvDelayedError _ _) = emptyVarSet
evVarsOfTerm (EvLit _) = emptyVarSet
evVarsOfTerms :: [EvTerm] -> VarSet
evVarsOfTerms = foldr (unionVarSet . evVarsOfTerm) emptyVarSet
\end{code}
%************************************************************************
%* *
Pretty printing
%* *
%************************************************************************
\begin{code}
instance Outputable HsWrapper where
ppr co_fn = pprHsWrapper (ptext (sLit "<>")) co_fn
pprHsWrapper :: SDoc -> HsWrapper -> SDoc
pprHsWrapper doc wrap
= getPprStyle (\ s -> if debugStyle s then (help (add_parens doc) wrap False) else doc)
where
help :: (Bool -> SDoc) -> HsWrapper -> Bool -> SDoc
help it WpHole = it
help it (WpCompose f1 f2) = help (help it f2) f1
help it (WpCast co) = add_parens $ sep [it False, nest 2 (ptext (sLit "|>")
<+> pprParendTcCo co)]
help it (WpEvApp id) = no_parens $ sep [it True, nest 2 (ppr id)]
help it (WpTyApp ty) = no_parens $ sep [it True, ptext (sLit "@") <+> pprParendType ty]
help it (WpEvLam id) = add_parens $ sep [ ptext (sLit "\\") <> pp_bndr id, it False]
help it (WpTyLam tv) = add_parens $ sep [ptext (sLit "/\\") <> pp_bndr tv, it False]
help it (WpLet binds) = add_parens $ sep [ptext (sLit "let") <+> braces (ppr binds), it False]
pp_bndr v = pprBndr LambdaBind v <> dot
add_parens, no_parens :: SDoc -> Bool -> SDoc
add_parens d True = parens d
add_parens d False = d
no_parens d _ = d
instance Outputable TcEvBinds where
ppr (TcEvBinds v) = ppr v
ppr (EvBinds bs) = ptext (sLit "EvBinds") <> braces (vcat (map ppr (bagToList bs)))
instance Outputable EvBindsVar where
ppr (EvBindsVar _ u) = ptext (sLit "EvBindsVar") <> angleBrackets (ppr u)
instance Outputable EvBind where
ppr (EvBind v e) = sep [ ppr v, nest 2 $ equals <+> ppr e ]
instance Outputable EvTerm where
ppr (EvId v) = ppr v
ppr (EvCast v co) = ppr v <+> (ptext (sLit "`cast`")) <+> pprParendTcCo co
ppr (EvCoercion co) = ptext (sLit "CO") <+> ppr co
ppr (EvTupleSel v n) = ptext (sLit "tupsel") <> parens (ppr (v,n))
ppr (EvTupleMk vs) = ptext (sLit "tupmk") <+> ppr vs
ppr (EvSuperClass d n) = ptext (sLit "sc") <> parens (ppr (d,n))
ppr (EvDFunApp df tys ts) = ppr df <+> sep [ char '@' <> ppr tys, ppr ts ]
ppr (EvLit l) = ppr l
ppr (EvDelayedError ty msg) = ptext (sLit "error")
<+> sep [ char '@' <> ppr ty, ppr msg ]
instance Outputable EvLit where
ppr (EvNum n) = integer n
ppr (EvStr s) = text (show s)
\end{code}