%
% (c) The University of Glasgow 2006
% (c) The AQUA Project, Glasgow University, 1998
%
\section[TcForeign]{Typechecking \tr{foreign} declarations}
A foreign declaration is used to either give an externally
implemented function a Haskell type (and calling interface) or
give a Haskell function an external calling interface. Either way,
the range of argument and result types these functions can accommodate
is restricted to what the outside world understands (read C), and this
module checks to see if a foreign declaration has got a legal type.
\begin{code}
module TcForeign
( tcForeignImports
, tcForeignExports
, isForeignImport, isForeignExport
, tcFImport, tcFExport
, tcForeignImports'
, tcCheckFIType, checkCTarget, checkForeignArgs, checkForeignRes
, normaliseFfiType
, nonIOok, mustBeIO
, checkSafe, noCheckSafe
, tcForeignExports'
, tcCheckFEType
) where
#include "HsVersions.h"
import HsSyn
import TcRnMonad
import TcHsType
import TcExpr
import TcEnv
import FamInst
import FamInstEnv
import Coercion
import Type
import TypeRep
import ForeignCall
import ErrUtils
import Id
import Name
import RdrName
import DataCon
import TyCon
import TcType
import PrelNames
import DynFlags
import Outputable
import Platform
import SrcLoc
import Bag
import FastString
import Hooks
import Control.Monad
\end{code}
\begin{code}
isForeignImport :: LForeignDecl name -> Bool
isForeignImport (L _ (ForeignImport _ _ _ _)) = True
isForeignImport _ = False
isForeignExport :: LForeignDecl name -> Bool
isForeignExport (L _ (ForeignExport _ _ _ _)) = True
isForeignExport _ = False
\end{code}
Note [Don't recur in normaliseFfiType']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
normaliseFfiType' is the workhorse for normalising a type used in a foreign
declaration. If we have
newtype Age = MkAge Int
we want to see that Age -> IO () is the same as Int -> IO (). But, we don't
need to recur on any type parameters, because no paramaterized types (with
interesting parameters) are marshalable! The full list of marshalable types
is in the body of boxedMarshalableTyCon in TcType. The only members of that
list not at kind * are Ptr, FunPtr, and StablePtr, all of which get marshaled
the same way regardless of type parameter. So, no need to recur into
parameters.
Similarly, we don't need to look in AppTy's, because nothing headed by
an AppTy will be marshalable.
\begin{code}
normaliseFfiType :: Type -> TcM (Coercion, Type, Bag GlobalRdrElt)
normaliseFfiType ty
= do fam_envs <- tcGetFamInstEnvs
normaliseFfiType' fam_envs ty
normaliseFfiType' :: FamInstEnvs -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt)
normaliseFfiType' env ty0 = go initRecTc ty0
where
go :: RecTcChecker -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt)
go rec_nts ty | Just ty' <- coreView ty
= go rec_nts ty'
go rec_nts ty@(TyConApp tc tys)
| tc_key `elem` [ioTyConKey, funPtrTyConKey]
= children_only
| isNewTyCon tc
, Just rec_nts' <- checkRecTc rec_nts tc
= do { rdr_env <- getGlobalRdrEnv
; case checkNewtypeFFI rdr_env tc of
Nothing -> nothing
Just gre -> do { (co', ty', gres) <- go rec_nts' nt_rhs
; return (mkTransCo nt_co co', ty', gre `consBag` gres) } }
| isFamilyTyCon tc
, (co, ty) <- normaliseTcApp env Representational tc tys
, not (isReflCo co)
= do (co', ty', gres) <- go rec_nts ty
return (mkTransCo co co', ty', gres)
| otherwise
= nothing
where
tc_key = getUnique tc
children_only
= do xs <- mapM (go rec_nts) tys
let (cos, tys', gres) = unzip3 xs
return ( mkTyConAppCo Representational tc cos
, mkTyConApp tc tys', unionManyBags gres)
nt_co = mkUnbranchedAxInstCo Representational (newTyConCo tc) tys
nt_rhs = newTyConInstRhs tc tys
nothing = return (Refl Representational ty, ty, emptyBag)
go rec_nts (FunTy ty1 ty2)
= do (coi1,nty1,gres1) <- go rec_nts ty1
(coi2,nty2,gres2) <- go rec_nts ty2
return (mkFunCo Representational coi1 coi2, mkFunTy nty1 nty2, gres1 `unionBags` gres2)
go rec_nts (ForAllTy tyvar ty1)
= do (coi,nty1,gres1) <- go rec_nts ty1
return (mkForAllCo tyvar coi, ForAllTy tyvar nty1, gres1)
go _ ty@(TyVarTy {}) = return (Refl Representational ty, ty, emptyBag)
go _ ty@(LitTy {}) = return (Refl Representational ty, ty, emptyBag)
go _ ty@(AppTy {}) = return (Refl Representational ty, ty, emptyBag)
checkNewtypeFFI :: GlobalRdrEnv -> TyCon -> Maybe GlobalRdrElt
checkNewtypeFFI rdr_env tc
| Just con <- tyConSingleDataCon_maybe tc
, [gre] <- lookupGRE_Name rdr_env (dataConName con)
= Just gre
| otherwise
= Nothing
\end{code}
Note [Newtype constructor usage in foreign declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC automatically "unwraps" newtype constructors in foreign import/export
declarations. In effect that means that a newtype data constructor is
used even though it is not mentioned expclitly in the source, so we don't
want to report it as "defined but not used" or "imported but not used".
eg newtype D = MkD Int
foreign import foo :: D -> IO ()
Here 'MkD' us used. See Trac #7408.
GHC also expands type functions during this process, so it's not enough
just to look at the free variables of the declaration.
eg type instance F Bool = D
foreign import bar :: F Bool -> IO ()
Here again 'MkD' is used.
So we really have wait until the type checker to decide what is used.
That's why tcForeignImports and tecForeignExports return a (Bag GRE)
for the newtype constructors they see. Then TcRnDriver can add them
to the module's usages.
%************************************************************************
%* *
\subsection{Imports}
%* *
%************************************************************************
\begin{code}
tcForeignImports :: [LForeignDecl Name] -> TcM ([Id], [LForeignDecl Id], Bag GlobalRdrElt)
tcForeignImports decls
= getHooked tcForeignImportsHook tcForeignImports' >>= ($ decls)
tcForeignImports' :: [LForeignDecl Name] -> TcM ([Id], [LForeignDecl Id], Bag GlobalRdrElt)
tcForeignImports' decls
= do { (ids, decls, gres) <- mapAndUnzip3M tcFImport $
filter isForeignImport decls
; return (ids, decls, unionManyBags gres) }
tcFImport :: LForeignDecl Name -> TcM (Id, LForeignDecl Id, Bag GlobalRdrElt)
tcFImport (L dloc fo@(ForeignImport (L nloc nm) hs_ty _ imp_decl))
= setSrcSpan dloc $ addErrCtxt (foreignDeclCtxt fo) $
do { sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty
; (norm_co, norm_sig_ty, gres) <- normaliseFfiType sig_ty
; let
(_, t_ty) = tcSplitForAllTys norm_sig_ty
(arg_tys, res_ty) = tcSplitFunTys t_ty
id = mkLocalId nm sig_ty
; imp_decl' <- tcCheckFIType sig_ty arg_tys res_ty imp_decl
; let fi_decl = ForeignImport (L nloc id) undefined (mkSymCo norm_co) imp_decl'
; return (id, L dloc fi_decl, gres) }
tcFImport d = pprPanic "tcFImport" (ppr d)
\end{code}
------------ Checking types for foreign import ----------------------
\begin{code}
tcCheckFIType :: Type -> [Type] -> Type -> ForeignImport -> TcM ForeignImport
tcCheckFIType sig_ty arg_tys res_ty (CImport cconv safety mh l@(CLabel _))
= do checkCg checkCOrAsmOrLlvmOrInterp
check (null arg_tys && isFFILabelTy res_ty) (illegalForeignLabelErr sig_ty)
cconv' <- checkCConv cconv
return (CImport cconv' safety mh l)
tcCheckFIType sig_ty arg_tys res_ty (CImport cconv safety mh CWrapper) = do
checkCg checkCOrAsmOrLlvmOrInterp
cconv' <- checkCConv cconv
case arg_tys of
[arg1_ty] -> do checkForeignArgs isFFIExternalTy arg1_tys
checkForeignRes nonIOok checkSafe isFFIExportResultTy res1_ty
checkForeignRes mustBeIO checkSafe (isFFIDynTy arg1_ty) res_ty
where
(arg1_tys, res1_ty) = tcSplitFunTys arg1_ty
_ -> addErrTc (illegalForeignTyErr empty sig_ty)
return (CImport cconv' safety mh CWrapper)
tcCheckFIType sig_ty arg_tys res_ty idecl@(CImport cconv safety mh (CFunction target))
| isDynamicTarget target = do
checkCg checkCOrAsmOrLlvmOrInterp
cconv' <- checkCConv cconv
case arg_tys of
[] -> do
check False (illegalForeignTyErr empty sig_ty)
(arg1_ty:arg_tys) -> do
dflags <- getDynFlags
let curried_res_ty = foldr FunTy res_ty arg_tys
check (isFFIDynTy curried_res_ty arg1_ty)
(illegalForeignTyErr argument arg1_ty)
checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys
checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty
return $ CImport cconv' safety mh (CFunction target)
| cconv == PrimCallConv = do
dflags <- getDynFlags
check (xopt Opt_GHCForeignImportPrim dflags)
(text "Use GHCForeignImportPrim to allow `foreign import prim'.")
checkCg checkCOrAsmOrLlvmOrInterp
checkCTarget target
check (playSafe safety)
(text "The safe/unsafe annotation should not be used with `foreign import prim'.")
checkForeignArgs (isFFIPrimArgumentTy dflags) arg_tys
checkForeignRes nonIOok checkSafe (isFFIPrimResultTy dflags) res_ty
return idecl
| otherwise = do
checkCg checkCOrAsmOrLlvmOrInterp
cconv' <- checkCConv cconv
checkCTarget target
dflags <- getDynFlags
checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys
checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty
checkMissingAmpersand dflags arg_tys res_ty
case target of
StaticTarget _ _ False
| not (null arg_tys) ->
addErrTc (text "`value' imports cannot have function types")
_ -> return ()
return $ CImport cconv' safety mh (CFunction target)
checkCTarget :: CCallTarget -> TcM ()
checkCTarget (StaticTarget str _ _) = do
checkCg checkCOrAsmOrLlvmOrInterp
check (isCLabelString str) (badCName str)
checkCTarget DynamicTarget = panic "checkCTarget DynamicTarget"
checkMissingAmpersand :: DynFlags -> [Type] -> Type -> TcM ()
checkMissingAmpersand dflags arg_tys res_ty
| null arg_tys && isFunPtrTy res_ty &&
wopt Opt_WarnDodgyForeignImports dflags
= addWarn (ptext (sLit "possible missing & in foreign import of FunPtr"))
| otherwise
= return ()
\end{code}
%************************************************************************
%* *
\subsection{Exports}
%* *
%************************************************************************
\begin{code}
tcForeignExports :: [LForeignDecl Name]
-> TcM (LHsBinds TcId, [LForeignDecl TcId], Bag GlobalRdrElt)
tcForeignExports decls =
getHooked tcForeignExportsHook tcForeignExports' >>= ($ decls)
tcForeignExports' :: [LForeignDecl Name]
-> TcM (LHsBinds TcId, [LForeignDecl TcId], Bag GlobalRdrElt)
tcForeignExports' decls
= foldlM combine (emptyLHsBinds, [], emptyBag) (filter isForeignExport decls)
where
combine (binds, fs, gres1) (L loc fe) = do
(b, f, gres2) <- setSrcSpan loc (tcFExport fe)
return (b `consBag` binds, L loc f : fs, gres1 `unionBags` gres2)
tcFExport :: ForeignDecl Name -> TcM (LHsBind Id, ForeignDecl Id, Bag GlobalRdrElt)
tcFExport fo@(ForeignExport (L loc nm) hs_ty _ spec)
= addErrCtxt (foreignDeclCtxt fo) $ do
sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty
rhs <- tcPolyExpr (nlHsVar nm) sig_ty
(norm_co, norm_sig_ty, gres) <- normaliseFfiType sig_ty
spec' <- tcCheckFEType norm_sig_ty spec
id <- mkStableIdFromName nm sig_ty loc mkForeignExportOcc
return (mkVarBind id rhs, ForeignExport (L loc id) undefined norm_co spec', gres)
tcFExport d = pprPanic "tcFExport" (ppr d)
\end{code}
------------ Checking argument types for foreign export ----------------------
\begin{code}
tcCheckFEType :: Type -> ForeignExport -> TcM ForeignExport
tcCheckFEType sig_ty (CExport (CExportStatic str cconv)) = do
checkCg checkCOrAsmOrLlvm
check (isCLabelString str) (badCName str)
cconv' <- checkCConv cconv
checkForeignArgs isFFIExternalTy arg_tys
checkForeignRes nonIOok noCheckSafe isFFIExportResultTy res_ty
return (CExport (CExportStatic str cconv'))
where
(_, t_ty) = tcSplitForAllTys sig_ty
(arg_tys, res_ty) = tcSplitFunTys t_ty
\end{code}
%************************************************************************
%* *
\subsection{Miscellaneous}
%* *
%************************************************************************
\begin{code}
checkForeignArgs :: (Type -> Bool) -> [Type] -> TcM ()
checkForeignArgs pred tys = mapM_ go tys
where go ty = check (pred ty) (illegalForeignTyErr argument ty)
checkForeignRes :: Bool -> Bool -> (Type -> Bool) -> Type -> TcM ()
checkForeignRes non_io_result_ok check_safe pred_res_ty ty
= case tcSplitIOType_maybe ty of
Just (_, res_ty) | pred_res_ty res_ty -> return ()
_ -> do
dflags <- getDynFlags
case (pred_res_ty ty && non_io_result_ok) of
False -> addErrTc $ illegalForeignTyErr result ty
_ | check_safe && safeInferOn dflags
-> recordUnsafeInfer
_ | check_safe && safeLanguageOn dflags
-> addErrTc $ illegalForeignTyErr result ty $+$ safeHsErr
_ -> return ()
where
safeHsErr = ptext $ sLit "Safe Haskell is on, all FFI imports must be in the IO monad"
nonIOok, mustBeIO :: Bool
nonIOok = True
mustBeIO = False
checkSafe, noCheckSafe :: Bool
checkSafe = True
noCheckSafe = False
\end{code}
Checking a supported backend is in use
\begin{code}
checkCOrAsmOrLlvm :: HscTarget -> Maybe SDoc
checkCOrAsmOrLlvm HscC = Nothing
checkCOrAsmOrLlvm HscAsm = Nothing
checkCOrAsmOrLlvm HscLlvm = Nothing
checkCOrAsmOrLlvm _
= Just (text "requires unregisterised, llvm (-fllvm) or native code generation (-fasm)")
checkCOrAsmOrLlvmOrInterp :: HscTarget -> Maybe SDoc
checkCOrAsmOrLlvmOrInterp HscC = Nothing
checkCOrAsmOrLlvmOrInterp HscAsm = Nothing
checkCOrAsmOrLlvmOrInterp HscLlvm = Nothing
checkCOrAsmOrLlvmOrInterp HscInterpreted = Nothing
checkCOrAsmOrLlvmOrInterp _
= Just (text "requires interpreted, unregisterised, llvm or native code generation")
checkCg :: (HscTarget -> Maybe SDoc) -> TcM ()
checkCg check = do
dflags <- getDynFlags
let target = hscTarget dflags
case target of
HscNothing -> return ()
_ ->
case check target of
Nothing -> return ()
Just err -> addErrTc (text "Illegal foreign declaration:" <+> err)
\end{code}
Calling conventions
\begin{code}
checkCConv :: CCallConv -> TcM CCallConv
checkCConv CCallConv = return CCallConv
checkCConv CApiConv = return CApiConv
checkCConv StdCallConv = do dflags <- getDynFlags
let platform = targetPlatform dflags
if platformArch platform == ArchX86
then return StdCallConv
else do
when (wopt Opt_WarnUnsupportedCallingConventions dflags) $
addWarnTc (text "the 'stdcall' calling convention is unsupported on this platform," $$ text "treating as ccall")
return CCallConv
checkCConv PrimCallConv = do addErrTc (text "The `prim' calling convention can only be used with `foreign import'")
return PrimCallConv
checkCConv JavaScriptCallConv = do dflags <- getDynFlags
if platformArch (targetPlatform dflags) == ArchJavaScript
then return JavaScriptCallConv
else do addErrTc (text "The `javascript' calling convention is unsupported on this platform")
return JavaScriptCallConv
\end{code}
Warnings
\begin{code}
check :: Bool -> MsgDoc -> TcM ()
check True _ = return ()
check _ the_err = addErrTc the_err
illegalForeignLabelErr :: Type -> SDoc
illegalForeignLabelErr ty
= vcat [ illegalForeignTyErr empty ty
, ptext (sLit "A foreign-imported address (via &foo) must have type (Ptr a) or (FunPtr a)") ]
illegalForeignTyErr :: SDoc -> Type -> SDoc
illegalForeignTyErr arg_or_res ty
= hang (hsep [ptext (sLit "Unacceptable"), arg_or_res,
ptext (sLit "type in foreign declaration:")])
2 (hsep [ppr ty])
argument, result :: SDoc
argument = text "argument"
result = text "result"
badCName :: CLabelString -> MsgDoc
badCName target
= sep [quotes (ppr target) <+> ptext (sLit "is not a valid C identifier")]
foreignDeclCtxt :: ForeignDecl Name -> SDoc
foreignDeclCtxt fo
= hang (ptext (sLit "When checking declaration:"))
2 (ppr fo)
\end{code}