% % (c) The AQUA Project, Glasgow University, 1994-1998 % \section[TysPrim]{Wired-in knowledge about primitive types} \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

-- | This module defines TyCons that can't be expressed in Haskell. 
--   They are all, therefore, wired-in TyCons.  C.f module TysWiredIn
module TysPrim(
	mkPrimTyConName, -- For implicit parameters in TysWiredIn only

        tyVarList, alphaTyVars, betaTyVars, alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar,
	alphaTy, betaTy, gammaTy, deltaTy,
	openAlphaTy, openBetaTy, openAlphaTyVar, openBetaTyVar, openAlphaTyVars,
        kKiVar,

        -- Kind constructors...
        superKindTyCon, superKind, anyKindTyCon, liftedTypeKindTyCon,
        openTypeKindTyCon, unliftedTypeKindTyCon, constraintKindTyCon,

        superKindTyConName, anyKindTyConName, liftedTypeKindTyConName,
        openTypeKindTyConName, unliftedTypeKindTyConName,
        constraintKindTyConName,

        -- Kinds
	anyKind, liftedTypeKind, unliftedTypeKind, openTypeKind, constraintKind,
        mkArrowKind, mkArrowKinds,

        funTyCon, funTyConName,
        primTyCons,

	charPrimTyCon, 		charPrimTy,
	intPrimTyCon,		intPrimTy,
	wordPrimTyCon,		wordPrimTy,
	addrPrimTyCon,		addrPrimTy,
	floatPrimTyCon,		floatPrimTy,
	doublePrimTyCon,	doublePrimTy,

	voidPrimTyCon,		voidPrimTy,
	statePrimTyCon,		mkStatePrimTy,
	realWorldTyCon,		realWorldTy, realWorldStatePrimTy,

	proxyPrimTyCon,		mkProxyPrimTy,

	arrayPrimTyCon,	mkArrayPrimTy, 
	byteArrayPrimTyCon,	byteArrayPrimTy,
	arrayArrayPrimTyCon, mkArrayArrayPrimTy, 
	mutableArrayPrimTyCon, mkMutableArrayPrimTy,
	mutableByteArrayPrimTyCon, mkMutableByteArrayPrimTy,
	mutableArrayArrayPrimTyCon, mkMutableArrayArrayPrimTy,
	mutVarPrimTyCon, mkMutVarPrimTy,

	mVarPrimTyCon,			mkMVarPrimTy,	
        tVarPrimTyCon,                  mkTVarPrimTy,
	stablePtrPrimTyCon,		mkStablePtrPrimTy,
	stableNamePrimTyCon,		mkStableNamePrimTy,
	bcoPrimTyCon,			bcoPrimTy,
	weakPrimTyCon,  		mkWeakPrimTy,
	threadIdPrimTyCon,		threadIdPrimTy,
	
	int32PrimTyCon,		int32PrimTy,
	word32PrimTyCon,	word32PrimTy,

	int64PrimTyCon,		int64PrimTy,
        word64PrimTyCon,        word64PrimTy,

        eqPrimTyCon,            -- ty1 ~# ty2
        eqReprPrimTyCon,        -- ty1 ~R# ty2  (at role Representational)

	-- * Any
	anyTy, anyTyCon, anyTypeOfKind,

	-- * SIMD
#include "primop-vector-tys-exports.hs-incl"
  ) where

#include "HsVersions.h"

import Var		( TyVar, KindVar, mkTyVar )
import Name		( Name, BuiltInSyntax(..), mkInternalName, mkWiredInName )
import OccName          ( mkTyVarOccFS, mkTcOccFS )
import TyCon
import TypeRep
import SrcLoc
import Unique		( mkAlphaTyVarUnique )
import PrelNames
import FastString

import Data.Char
\end{code} %************************************************************************ %* * \subsection{Primitive type constructors} %* * %************************************************************************ \begin{code}
primTyCons :: [TyCon]
primTyCons 
  = [ addrPrimTyCon
    , arrayPrimTyCon
    , byteArrayPrimTyCon
    , arrayArrayPrimTyCon
    , charPrimTyCon
    , doublePrimTyCon
    , floatPrimTyCon
    , intPrimTyCon
    , int32PrimTyCon
    , int64PrimTyCon
    , bcoPrimTyCon
    , weakPrimTyCon
    , mutableArrayPrimTyCon
    , mutableByteArrayPrimTyCon
    , mutableArrayArrayPrimTyCon
    , mVarPrimTyCon
    , tVarPrimTyCon
    , mutVarPrimTyCon
    , realWorldTyCon
    , stablePtrPrimTyCon
    , stableNamePrimTyCon
    , statePrimTyCon
    , voidPrimTyCon
    , proxyPrimTyCon
    , threadIdPrimTyCon
    , wordPrimTyCon
    , word32PrimTyCon
    , word64PrimTyCon
    , anyTyCon
    , eqPrimTyCon
    , eqReprPrimTyCon

    , liftedTypeKindTyCon
    , unliftedTypeKindTyCon
    , openTypeKindTyCon
    , constraintKindTyCon
    , superKindTyCon
    , anyKindTyCon

#include "primop-vector-tycons.hs-incl"
    ]

mkPrimTc :: FastString -> Unique -> TyCon -> Name
mkPrimTc fs unique tycon
  = mkWiredInName gHC_PRIM (mkTcOccFS fs) 
		  unique
		  (ATyCon tycon)	-- Relevant TyCon
		  UserSyntax		-- None are built-in syntax

charPrimTyConName, intPrimTyConName, int32PrimTyConName, int64PrimTyConName, wordPrimTyConName, word32PrimTyConName, word64PrimTyConName, addrPrimTyConName, floatPrimTyConName, doublePrimTyConName, statePrimTyConName, proxyPrimTyConName, realWorldTyConName, arrayPrimTyConName, arrayArrayPrimTyConName, byteArrayPrimTyConName, mutableArrayPrimTyConName, mutableByteArrayPrimTyConName, mutableArrayArrayPrimTyConName, mutVarPrimTyConName, mVarPrimTyConName, tVarPrimTyConName, stablePtrPrimTyConName, stableNamePrimTyConName, bcoPrimTyConName, weakPrimTyConName, threadIdPrimTyConName, eqPrimTyConName, eqReprPrimTyConName, voidPrimTyConName :: Name
charPrimTyConName    	      = mkPrimTc (fsLit "Char#") charPrimTyConKey charPrimTyCon
intPrimTyConName     	      = mkPrimTc (fsLit "Int#") intPrimTyConKey  intPrimTyCon
int32PrimTyConName	      = mkPrimTc (fsLit "Int32#") int32PrimTyConKey int32PrimTyCon
int64PrimTyConName   	      = mkPrimTc (fsLit "Int64#") int64PrimTyConKey int64PrimTyCon
wordPrimTyConName    	      = mkPrimTc (fsLit "Word#") wordPrimTyConKey wordPrimTyCon
word32PrimTyConName  	      = mkPrimTc (fsLit "Word32#") word32PrimTyConKey word32PrimTyCon
word64PrimTyConName  	      = mkPrimTc (fsLit "Word64#") word64PrimTyConKey word64PrimTyCon
addrPrimTyConName    	      = mkPrimTc (fsLit "Addr#") addrPrimTyConKey addrPrimTyCon
floatPrimTyConName   	      = mkPrimTc (fsLit "Float#") floatPrimTyConKey floatPrimTyCon
doublePrimTyConName  	      = mkPrimTc (fsLit "Double#") doublePrimTyConKey doublePrimTyCon
statePrimTyConName            = mkPrimTc (fsLit "State#") statePrimTyConKey statePrimTyCon
voidPrimTyConName             = mkPrimTc (fsLit "Void#") voidPrimTyConKey voidPrimTyCon
proxyPrimTyConName            = mkPrimTc (fsLit "Proxy#") proxyPrimTyConKey proxyPrimTyCon
eqPrimTyConName               = mkPrimTc (fsLit "~#") eqPrimTyConKey eqPrimTyCon
eqReprPrimTyConName           = mkPrimTc (fsLit "~R#") eqReprPrimTyConKey eqReprPrimTyCon
realWorldTyConName            = mkPrimTc (fsLit "RealWorld") realWorldTyConKey realWorldTyCon
arrayPrimTyConName   	      = mkPrimTc (fsLit "Array#") arrayPrimTyConKey arrayPrimTyCon
byteArrayPrimTyConName	      = mkPrimTc (fsLit "ByteArray#") byteArrayPrimTyConKey byteArrayPrimTyCon
arrayArrayPrimTyConName   	  = mkPrimTc (fsLit "ArrayArray#") arrayArrayPrimTyConKey arrayArrayPrimTyCon
mutableArrayPrimTyConName     = mkPrimTc (fsLit "MutableArray#") mutableArrayPrimTyConKey mutableArrayPrimTyCon
mutableByteArrayPrimTyConName = mkPrimTc (fsLit "MutableByteArray#") mutableByteArrayPrimTyConKey mutableByteArrayPrimTyCon
mutableArrayArrayPrimTyConName= mkPrimTc (fsLit "MutableArrayArray#") mutableArrayArrayPrimTyConKey mutableArrayArrayPrimTyCon
mutVarPrimTyConName	      = mkPrimTc (fsLit "MutVar#") mutVarPrimTyConKey mutVarPrimTyCon
mVarPrimTyConName	      = mkPrimTc (fsLit "MVar#") mVarPrimTyConKey mVarPrimTyCon
tVarPrimTyConName	      = mkPrimTc (fsLit "TVar#") tVarPrimTyConKey tVarPrimTyCon
stablePtrPrimTyConName        = mkPrimTc (fsLit "StablePtr#") stablePtrPrimTyConKey stablePtrPrimTyCon
stableNamePrimTyConName       = mkPrimTc (fsLit "StableName#") stableNamePrimTyConKey stableNamePrimTyCon
bcoPrimTyConName 	      = mkPrimTc (fsLit "BCO#") bcoPrimTyConKey bcoPrimTyCon
weakPrimTyConName  	      = mkPrimTc (fsLit "Weak#") weakPrimTyConKey weakPrimTyCon
threadIdPrimTyConName  	      = mkPrimTc (fsLit "ThreadId#") threadIdPrimTyConKey threadIdPrimTyCon
\end{code} %************************************************************************ %* * \subsection{Support code} %* * %************************************************************************ alphaTyVars is a list of type variables for use in templates: ["a", "b", ..., "z", "t1", "t2", ... ] \begin{code}
tyVarList :: Kind -> [TyVar]
tyVarList kind = [ mkTyVar (mkInternalName (mkAlphaTyVarUnique u) 
				(mkTyVarOccFS (mkFastString name))
			 	noSrcSpan) kind
	         | u <- [2..],
		   let name | c <= 'z'  = [c]
		            | otherwise = 't':show u
			    where c = chr (u-2 + ord 'a')
	         ]

alphaTyVars :: [TyVar]
alphaTyVars = tyVarList liftedTypeKind

betaTyVars :: [TyVar]
betaTyVars = tail alphaTyVars

alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar :: TyVar
(alphaTyVar:betaTyVar:gammaTyVar:deltaTyVar:_) = alphaTyVars

alphaTys :: [Type]
alphaTys = mkTyVarTys alphaTyVars
alphaTy, betaTy, gammaTy, deltaTy :: Type
(alphaTy:betaTy:gammaTy:deltaTy:_) = alphaTys

	-- openAlphaTyVar is prepared to be instantiated
	-- to a lifted or unlifted type variable.  It's used for the 
	-- result type for "error", so that we can have (error Int# "Help")
openAlphaTyVars :: [TyVar]
openAlphaTyVar, openBetaTyVar :: TyVar
openAlphaTyVars@(openAlphaTyVar:openBetaTyVar:_) = tyVarList openTypeKind

openAlphaTy, openBetaTy :: Type
openAlphaTy = mkTyVarTy openAlphaTyVar
openBetaTy  = mkTyVarTy openBetaTyVar

kKiVar :: KindVar
kKiVar = (tyVarList superKind) !! 10

\end{code} %************************************************************************ %* * FunTyCon %* * %************************************************************************ \begin{code}
funTyConName :: Name
funTyConName = mkPrimTyConName (fsLit "(->)") funTyConKey funTyCon

funTyCon :: TyCon
funTyCon = mkFunTyCon funTyConName $ 
           mkArrowKinds [liftedTypeKind, liftedTypeKind] liftedTypeKind
        -- You might think that (->) should have type (?? -> ? -> *), and you'd be right
	-- But if we do that we get kind errors when saying
	--	instance Control.Arrow (->)
	-- because the expected kind is (*->*->*).  The trouble is that the
	-- expected/actual stuff in the unifier does not go contra-variant, whereas
	-- the kind sub-typing does.  Sigh.  It really only matters if you use (->) in
	-- a prefix way, thus:  (->) Int# Int#.  And this is unusual.
        -- because they are never in scope in the source

-- One step to remove subkinding.
-- (->) :: * -> * -> *
-- but we should have (and want) the following typing rule for fully applied arrows
--      Gamma |- tau   :: k1    k1 in {*, #}
--      Gamma |- sigma :: k2    k2 in {*, #, (#)}
--      -----------------------------------------
--      Gamma |- tau -> sigma :: *
-- Currently we have the following rule which achieves more or less the same effect
--      Gamma |- tau   :: ??
--      Gamma |- sigma :: ?
--      --------------------------
--      Gamma |- tau -> sigma :: *
-- In the end we don't want subkinding at all.
\end{code} %************************************************************************ %* * Kinds %* * %************************************************************************ Note [SuperKind (BOX)] ~~~~~~~~~~~~~~~~~~~~~~ Kinds are classified by "super-kinds". There is only one super-kind, namely BOX. Perhaps surprisingly we give BOX the kind BOX, thus BOX :: BOX Reason: we want to have kind equalities, thus (without the kind applications) keq :: * ~ * = Eq# Remember that (~) :: forall (k:BOX). k -> k -> Constraint (~#) :: forall (k:BOX). k -> k -> # Eq# :: forall (k:BOX). forall (a:k) (b:k). (~#) k a b -> (~) k a b So the full defn of keq is keq :: (~) BOX * * = Eq# BOX * * So you can see it's convenient to have BOX:BOX \begin{code}
-- | See "Type#kind_subtyping" for details of the distinction between the 'Kind' 'TyCon's
superKindTyCon, anyKindTyCon, liftedTypeKindTyCon,
      openTypeKindTyCon, unliftedTypeKindTyCon,
      constraintKindTyCon
   :: TyCon
superKindTyConName, anyKindTyConName, liftedTypeKindTyConName,
      openTypeKindTyConName, unliftedTypeKindTyConName,
      constraintKindTyConName
   :: Name

superKindTyCon        = mkKindTyCon superKindTyConName        superKind
   -- See Note [SuperKind (BOX)]

anyKindTyCon          = mkKindTyCon anyKindTyConName          superKind
liftedTypeKindTyCon   = mkKindTyCon liftedTypeKindTyConName   superKind
openTypeKindTyCon     = mkKindTyCon openTypeKindTyConName     superKind
unliftedTypeKindTyCon = mkKindTyCon unliftedTypeKindTyConName superKind
constraintKindTyCon   = mkKindTyCon constraintKindTyConName   superKind

--------------------------
-- ... and now their names

-- If you edit these, you may need to update the GHC formalism
-- See Note [GHC Formalism] in coreSyn/CoreLint.lhs
superKindTyConName      = mkPrimTyConName (fsLit "BOX") superKindTyConKey superKindTyCon
anyKindTyConName          = mkPrimTyConName (fsLit "AnyK") anyKindTyConKey anyKindTyCon
liftedTypeKindTyConName   = mkPrimTyConName (fsLit "*") liftedTypeKindTyConKey liftedTypeKindTyCon
openTypeKindTyConName     = mkPrimTyConName (fsLit "OpenKind") openTypeKindTyConKey openTypeKindTyCon
unliftedTypeKindTyConName = mkPrimTyConName (fsLit "#") unliftedTypeKindTyConKey unliftedTypeKindTyCon
constraintKindTyConName   = mkPrimTyConName (fsLit "Constraint") constraintKindTyConKey constraintKindTyCon

mkPrimTyConName :: FastString -> Unique -> TyCon -> Name
mkPrimTyConName occ key tycon = mkWiredInName gHC_PRIM (mkTcOccFS occ) 
					      key 
					      (ATyCon tycon)
					      BuiltInSyntax
	-- All of the super kinds and kinds are defined in Prim and use BuiltInSyntax,
	-- because they are never in scope in the source
\end{code} \begin{code}
kindTyConType :: TyCon -> Type
kindTyConType kind = TyConApp kind []   -- mkTyConApp isn't defined yet

-- | See "Type#kind_subtyping" for details of the distinction between these 'Kind's
anyKind, liftedTypeKind, unliftedTypeKind, openTypeKind, constraintKind, superKind :: Kind

superKind        = kindTyConType superKindTyCon 
anyKind          = kindTyConType anyKindTyCon  -- See Note [Any kinds]
liftedTypeKind   = kindTyConType liftedTypeKindTyCon
unliftedTypeKind = kindTyConType unliftedTypeKindTyCon
openTypeKind     = kindTyConType openTypeKindTyCon
constraintKind   = kindTyConType constraintKindTyCon

-- | Given two kinds @k1@ and @k2@, creates the 'Kind' @k1 -> k2@
mkArrowKind :: Kind -> Kind -> Kind
mkArrowKind k1 k2 = FunTy k1 k2

-- | Iterated application of 'mkArrowKind'
mkArrowKinds :: [Kind] -> Kind -> Kind
mkArrowKinds arg_kinds result_kind = foldr mkArrowKind result_kind arg_kinds
\end{code} %************************************************************************ %* * \subsection[TysPrim-basic]{Basic primitive types (@Char#@, @Int#@, etc.)} %* * %************************************************************************ \begin{code}
-- only used herein
pcPrimTyCon :: Name -> [Role] -> PrimRep -> TyCon
pcPrimTyCon name roles rep
  = mkPrimTyCon name kind roles rep
  where
    kind        = mkArrowKinds (map (const liftedTypeKind) roles) result_kind
    result_kind = unliftedTypeKind

pcPrimTyCon0 :: Name -> PrimRep -> TyCon
pcPrimTyCon0 name rep
  = mkPrimTyCon name result_kind [] rep
  where
    result_kind = unliftedTypeKind

charPrimTy :: Type
charPrimTy	= mkTyConTy charPrimTyCon
charPrimTyCon :: TyCon
charPrimTyCon	= pcPrimTyCon0 charPrimTyConName WordRep

intPrimTy :: Type
intPrimTy	= mkTyConTy intPrimTyCon
intPrimTyCon :: TyCon
intPrimTyCon	= pcPrimTyCon0 intPrimTyConName IntRep

int32PrimTy :: Type
int32PrimTy	= mkTyConTy int32PrimTyCon
int32PrimTyCon :: TyCon
int32PrimTyCon	= pcPrimTyCon0 int32PrimTyConName IntRep

int64PrimTy :: Type
int64PrimTy	= mkTyConTy int64PrimTyCon
int64PrimTyCon :: TyCon
int64PrimTyCon	= pcPrimTyCon0 int64PrimTyConName Int64Rep

wordPrimTy :: Type
wordPrimTy	= mkTyConTy wordPrimTyCon
wordPrimTyCon :: TyCon
wordPrimTyCon	= pcPrimTyCon0 wordPrimTyConName WordRep

word32PrimTy :: Type
word32PrimTy	= mkTyConTy word32PrimTyCon
word32PrimTyCon :: TyCon
word32PrimTyCon	= pcPrimTyCon0 word32PrimTyConName WordRep

word64PrimTy :: Type
word64PrimTy	= mkTyConTy word64PrimTyCon
word64PrimTyCon :: TyCon
word64PrimTyCon	= pcPrimTyCon0 word64PrimTyConName Word64Rep

addrPrimTy :: Type
addrPrimTy	= mkTyConTy addrPrimTyCon
addrPrimTyCon :: TyCon
addrPrimTyCon	= pcPrimTyCon0 addrPrimTyConName AddrRep

floatPrimTy	:: Type
floatPrimTy	= mkTyConTy floatPrimTyCon
floatPrimTyCon :: TyCon
floatPrimTyCon	= pcPrimTyCon0 floatPrimTyConName FloatRep

doublePrimTy :: Type
doublePrimTy	= mkTyConTy doublePrimTyCon
doublePrimTyCon	:: TyCon
doublePrimTyCon	= pcPrimTyCon0 doublePrimTyConName DoubleRep
\end{code} %************************************************************************ %* * \subsection[TysPrim-state]{The @State#@ type (and @_RealWorld@ types)} %* * %************************************************************************ Note [The ~# TyCon) ~~~~~~~~~~~~~~~~~~~~ There is a perfectly ordinary type constructor ~# that represents the type of coercions (which, remember, are values). For example Refl Int :: ~# * Int Int It is a kind-polymorphic type constructor like Any: Refl Maybe :: ~# (* -> *) Maybe Maybe (~) only appears saturated. So we check that in CoreLint (and, in an assertion, in Kind.typeKind). Note [The State# TyCon] ~~~~~~~~~~~~~~~~~~~~~~~ State# is the primitive, unlifted type of states. It has one type parameter, thus State# RealWorld or State# s where s is a type variable. The only purpose of the type parameter is to keep different state threads separate. It is represented by nothing at all. The type parameter to State# is intended to keep separate threads separate. Even though this parameter is not used in the definition of State#, it is given role Nominal to enforce its intended use. \begin{code}
mkStatePrimTy :: Type -> Type
mkStatePrimTy ty = TyConApp statePrimTyCon [ty]

statePrimTyCon :: TyCon   -- See Note [The State# TyCon]
statePrimTyCon	 = pcPrimTyCon statePrimTyConName [Nominal] VoidRep

voidPrimTy :: Type
voidPrimTy = TyConApp voidPrimTyCon []

voidPrimTyCon :: TyCon
voidPrimTyCon	 = pcPrimTyCon voidPrimTyConName [] VoidRep

mkProxyPrimTy :: Type -> Type -> Type
mkProxyPrimTy k ty = TyConApp proxyPrimTyCon [k, ty]

proxyPrimTyCon :: TyCon
proxyPrimTyCon = mkPrimTyCon proxyPrimTyConName kind [Nominal,Nominal] VoidRep
  where kind = ForAllTy kv $ mkArrowKind k unliftedTypeKind
        kv   = kKiVar
        k    = mkTyVarTy kv

eqPrimTyCon :: TyCon  -- The representation type for equality predicates
		      -- See Note [The ~# TyCon]
eqPrimTyCon  = mkPrimTyCon eqPrimTyConName kind [Nominal, Nominal, Nominal] VoidRep
  where kind = ForAllTy kv $ mkArrowKinds [k, k] unliftedTypeKind
        kv = kKiVar
        k = mkTyVarTy kv

-- like eqPrimTyCon, but the type for *Representational* coercions
-- this should only ever appear as the type of a covar. Its role is
-- interpreted in coercionRole
eqReprPrimTyCon :: TyCon
eqReprPrimTyCon = mkPrimTyCon eqReprPrimTyConName kind
                                  -- the roles really should be irrelevant!
                              [Nominal, Representational, Representational] VoidRep
  where kind = ForAllTy kv $ mkArrowKinds [k, k] unliftedTypeKind
        kv = kKiVar
        k  = mkTyVarTy kv
\end{code} RealWorld is deeply magical. It is *primitive*, but it is not *unlifted* (hence ptrArg). We never manipulate values of type RealWorld; it's only used in the type system, to parameterise State#. \begin{code}
realWorldTyCon :: TyCon
realWorldTyCon = mkLiftedPrimTyCon realWorldTyConName liftedTypeKind [] PtrRep
realWorldTy :: Type
realWorldTy	     = mkTyConTy realWorldTyCon
realWorldStatePrimTy :: Type
realWorldStatePrimTy = mkStatePrimTy realWorldTy	-- State# RealWorld
\end{code} Note: the ``state-pairing'' types are not truly primitive, so they are defined in \tr{TysWiredIn.lhs}, not here. %************************************************************************ %* * \subsection[TysPrim-arrays]{The primitive array types} %* * %************************************************************************ \begin{code}
arrayPrimTyCon, mutableArrayPrimTyCon, mutableByteArrayPrimTyCon,
    byteArrayPrimTyCon, arrayArrayPrimTyCon, mutableArrayArrayPrimTyCon :: TyCon
arrayPrimTyCon             = pcPrimTyCon arrayPrimTyConName             [Representational] PtrRep
mutableArrayPrimTyCon      = pcPrimTyCon  mutableArrayPrimTyConName     [Nominal, Representational] PtrRep
mutableByteArrayPrimTyCon  = pcPrimTyCon mutableByteArrayPrimTyConName  [Nominal] PtrRep
byteArrayPrimTyCon         = pcPrimTyCon0 byteArrayPrimTyConName        PtrRep
arrayArrayPrimTyCon        = pcPrimTyCon0 arrayArrayPrimTyConName       PtrRep
mutableArrayArrayPrimTyCon = pcPrimTyCon mutableArrayArrayPrimTyConName [Nominal] PtrRep

mkArrayPrimTy :: Type -> Type
mkArrayPrimTy elt    	    = TyConApp arrayPrimTyCon [elt]
byteArrayPrimTy :: Type
byteArrayPrimTy	    	    = mkTyConTy byteArrayPrimTyCon
mkArrayArrayPrimTy :: Type
mkArrayArrayPrimTy = mkTyConTy arrayArrayPrimTyCon
mkMutableArrayPrimTy :: Type -> Type -> Type
mkMutableArrayPrimTy s elt  = TyConApp mutableArrayPrimTyCon [s, elt]
mkMutableByteArrayPrimTy :: Type -> Type
mkMutableByteArrayPrimTy s  = TyConApp mutableByteArrayPrimTyCon [s]
mkMutableArrayArrayPrimTy :: Type -> Type
mkMutableArrayArrayPrimTy s = TyConApp mutableArrayArrayPrimTyCon [s]
\end{code} %************************************************************************ %* * \subsection[TysPrim-mut-var]{The mutable variable type} %* * %************************************************************************ \begin{code}
mutVarPrimTyCon :: TyCon
mutVarPrimTyCon = pcPrimTyCon mutVarPrimTyConName [Nominal, Representational] PtrRep

mkMutVarPrimTy :: Type -> Type -> Type
mkMutVarPrimTy s elt 	    = TyConApp mutVarPrimTyCon [s, elt]
\end{code} %************************************************************************ %* * \subsection[TysPrim-synch-var]{The synchronizing variable type} %* * %************************************************************************ \begin{code}
mVarPrimTyCon :: TyCon
mVarPrimTyCon = pcPrimTyCon mVarPrimTyConName [Nominal, Representational] PtrRep

mkMVarPrimTy :: Type -> Type -> Type
mkMVarPrimTy s elt 	    = TyConApp mVarPrimTyCon [s, elt]
\end{code} %************************************************************************ %* * \subsection[TysPrim-stm-var]{The transactional variable type} %* * %************************************************************************ \begin{code}
tVarPrimTyCon :: TyCon
tVarPrimTyCon = pcPrimTyCon tVarPrimTyConName [Nominal, Representational] PtrRep

mkTVarPrimTy :: Type -> Type -> Type
mkTVarPrimTy s elt = TyConApp tVarPrimTyCon [s, elt]
\end{code} %************************************************************************ %* * \subsection[TysPrim-stable-ptrs]{The stable-pointer type} %* * %************************************************************************ \begin{code}
stablePtrPrimTyCon :: TyCon
stablePtrPrimTyCon = pcPrimTyCon stablePtrPrimTyConName [Representational] AddrRep

mkStablePtrPrimTy :: Type -> Type
mkStablePtrPrimTy ty = TyConApp stablePtrPrimTyCon [ty]
\end{code} %************************************************************************ %* * \subsection[TysPrim-stable-names]{The stable-name type} %* * %************************************************************************ \begin{code}
stableNamePrimTyCon :: TyCon
stableNamePrimTyCon = pcPrimTyCon stableNamePrimTyConName [Representational] PtrRep

mkStableNamePrimTy :: Type -> Type
mkStableNamePrimTy ty = TyConApp stableNamePrimTyCon [ty]
\end{code} %************************************************************************ %* * \subsection[TysPrim-BCOs]{The ``bytecode object'' type} %* * %************************************************************************ \begin{code}
bcoPrimTy    :: Type
bcoPrimTy    = mkTyConTy bcoPrimTyCon
bcoPrimTyCon :: TyCon
bcoPrimTyCon = pcPrimTyCon0 bcoPrimTyConName PtrRep
\end{code} %************************************************************************ %* * \subsection[TysPrim-Weak]{The ``weak pointer'' type} %* * %************************************************************************ \begin{code}
weakPrimTyCon :: TyCon
weakPrimTyCon = pcPrimTyCon weakPrimTyConName [Representational] PtrRep

mkWeakPrimTy :: Type -> Type
mkWeakPrimTy v = TyConApp weakPrimTyCon [v]
\end{code} %************************************************************************ %* * \subsection[TysPrim-thread-ids]{The ``thread id'' type} %* * %************************************************************************ A thread id is represented by a pointer to the TSO itself, to ensure that they are always unique and we can always find the TSO for a given thread id. However, this has the unfortunate consequence that a ThreadId# for a given thread is treated as a root by the garbage collector and can keep TSOs around for too long. Hence the programmer API for thread manipulation uses a weak pointer to the thread id internally. \begin{code}
threadIdPrimTy :: Type
threadIdPrimTy    = mkTyConTy threadIdPrimTyCon
threadIdPrimTyCon :: TyCon
threadIdPrimTyCon = pcPrimTyCon0 threadIdPrimTyConName PtrRep
\end{code} %************************************************************************ %* * Any %* * %************************************************************************ Note [Any types] ~~~~~~~~~~~~~~~~ The type constructor Any of kind forall k. k -> k has these properties: * It is defined in module GHC.Prim, and exported so that it is available to users. For this reason it's treated like any other primitive type: - has a fixed unique, anyTyConKey, - lives in the global name cache * It is a *closed* type family, with no instances. This means that if ty :: '(k1, k2) we add a given coercion g :: ty ~ (Fst ty, Snd ty) If Any was a *data* type, then we'd get inconsistency because 'ty' could be (Any '(k1,k2)) and then we'd have an equality with Any on one side and '(,) on the other * It is lifted, and hence represented by a pointer * It is inhabited by at least one value, namely bottom * You can unsafely coerce any lifted type to Any, and back. * It does not claim to be a *data* type, and that's important for the code generator, because the code gen may *enter* a data value but never enters a function value. * It is used to instantiate otherwise un-constrained type variables For example length Any [] See Note [Strangely-kinded void TyCons] Note [Any kinds] ~~~~~~~~~~~~~~~~ The type constructor AnyK (of sort BOX) is used internally only to zonk kind variables with no constraints on them. It appears in similar circumstances to Any, but at the kind level. For example: type family Length (l :: [k]) :: Nat type instance Length [] = Zero Length is kind-polymorphic, and when applied to the empty (promoted) list it will have the kind Length AnyK []. Note [Strangely-kinded void TyCons] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See Trac #959 for more examples When the type checker finds a type variable with no binding, which means it can be instantiated with an arbitrary type, it usually instantiates it to Void. Eg. length [] ===> length Any (Nil Any) But in really obscure programs, the type variable might have a kind other than *, so we need to invent a suitably-kinded type. This commit uses Any for kind * Any(*->*) for kind *->* etc \begin{code}
anyTyConName :: Name
anyTyConName = mkPrimTc (fsLit "Any") anyTyConKey anyTyCon

anyTy :: Type
anyTy = mkTyConTy anyTyCon

anyTyCon :: TyCon
anyTyCon = mkLiftedPrimTyCon anyTyConName kind [Nominal] PtrRep
  where kind = ForAllTy kKiVar (mkTyVarTy kKiVar)

{-   Can't do this yet without messing up kind proxies
-- RAE: I think you can now.
anyTyCon :: TyCon
anyTyCon = mkSynTyCon anyTyConName kind [kKiVar] 
                      syn_rhs
                      NoParentTyCon
  where 
    kind = ForAllTy kKiVar (mkTyVarTy kKiVar)
    syn_rhs = SynFamilyTyCon { synf_open = False, synf_injective = True }
                  -- NB Closed, injective
-}

anyTypeOfKind :: Kind -> Type
anyTypeOfKind kind = TyConApp anyTyCon [kind]
\end{code} %************************************************************************ %* * \subsection{SIMD vector types} %* * %************************************************************************ \begin{code}
#include "primop-vector-tys.hs-incl"
\end{code}