{-# LANGUAGE Trustworthy #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Bitraversable -- Copyright : (C) 2011-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- @since 4.10.0.0 ---------------------------------------------------------------------------- module Data.Bitraversable ( Bitraversable(..) , bisequenceA , bisequence , bimapM , bifor , biforM , bimapAccumL , bimapAccumR , bimapDefault , bifoldMapDefault ) where import Control.Applicative import Data.Bifunctor import Data.Bifoldable import Data.Coerce import Data.Functor.Identity (Identity(..)) import Data.Functor.Utils (StateL(..), StateR(..)) import GHC.Generics (K1(..)) -- | 'Bitraversable' identifies bifunctorial data structures whose elements can -- be traversed in order, performing 'Applicative' or 'Monad' actions at each -- element, and collecting a result structure with the same shape. -- -- As opposed to 'Traversable' data structures, which have one variety of -- element on which an action can be performed, 'Bitraversable' data structures -- have two such varieties of elements. -- -- A definition of 'bitraverse' must satisfy the following laws: -- -- [/naturality/] -- @'bitraverse' (t . f) (t . g) ≡ t . 'bitraverse' f g@ -- for every applicative transformation @t@ -- -- [/identity/] -- @'bitraverse' 'Identity' 'Identity' ≡ 'Identity'@ -- -- [/composition/] -- @'Compose' . 'fmap' ('bitraverse' g1 g2) . 'bitraverse' f1 f2 -- ≡ 'traverse' ('Compose' . 'fmap' g1 . f1) ('Compose' . 'fmap' g2 . f2)@ -- -- where an /applicative transformation/ is a function -- -- @t :: ('Applicative' f, 'Applicative' g) => f a -> g a@ -- -- preserving the 'Applicative' operations: -- -- @ -- t ('pure' x) = 'pure' x -- t (f '<*>' x) = t f '<*>' t x -- @ -- -- and the identity functor 'Identity' and composition functors 'Compose' are -- defined as -- -- > newtype Identity a = Identity { runIdentity :: a } -- > -- > instance Functor Identity where -- > fmap f (Identity x) = Identity (f x) -- > -- > instance Applicative Identity where -- > pure = Identity -- > Identity f <*> Identity x = Identity (f x) -- > -- > newtype Compose f g a = Compose (f (g a)) -- > -- > instance (Functor f, Functor g) => Functor (Compose f g) where -- > fmap f (Compose x) = Compose (fmap (fmap f) x) -- > -- > instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- > pure = Compose . pure . pure -- > Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) -- -- Some simple examples are 'Either' and '(,)': -- -- > instance Bitraversable Either where -- > bitraverse f _ (Left x) = Left <$> f x -- > bitraverse _ g (Right y) = Right <$> g y -- > -- > instance Bitraversable (,) where -- > bitraverse f g (x, y) = (,) <$> f x <*> g y -- -- 'Bitraversable' relates to its superclasses in the following ways: -- -- @ -- 'bimap' f g ≡ 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g) -- 'bifoldMap' f g = 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g) -- @ -- -- These are available as 'bimapDefault' and 'bifoldMapDefault' respectively. -- -- @since 4.10.0.0 class (Bifunctor t, Bifoldable t) => Bitraversable t where -- | Evaluates the relevant functions at each element in the structure, -- running the action, and builds a new structure with the same shape, using -- the results produced from sequencing the actions. -- -- @'bitraverse' f g ≡ 'bisequenceA' . 'bimap' f g@ -- -- For a version that ignores the results, see 'bitraverse_'. -- -- @since 4.10.0.0 bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverse f g = bisequenceA . bimap f g -- | Alias for 'bisequence'. -- -- @since 4.10.0.0 bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) bisequenceA = bisequence -- | Alias for 'bitraverse'. -- -- @since 4.10.0.0 bimapM :: (Bitraversable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bimapM = bitraverse -- | Sequences all the actions in a structure, building a new structure with -- the same shape using the results of the actions. For a version that ignores -- the results, see 'bisequence_'. -- -- @'bisequence' ≡ 'bitraverse' 'id' 'id'@ -- -- @since 4.10.0.0 bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) bisequence = bitraverse id id -- | @since 4.10.0.0 instance Bitraversable (,) where bitraverse f g ~(a, b) = liftA2 (,) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable ((,,) x) where bitraverse f g ~(x, a, b) = liftA2 ((,,) x) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable ((,,,) x y) where bitraverse f g ~(x, y, a, b) = liftA2 ((,,,) x y) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable ((,,,,) x y z) where bitraverse f g ~(x, y, z, a, b) = liftA2 ((,,,,) x y z) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable ((,,,,,) x y z w) where bitraverse f g ~(x, y, z, w, a, b) = liftA2 ((,,,,,) x y z w) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable ((,,,,,,) x y z w v) where bitraverse f g ~(x, y, z, w, v, a, b) = liftA2 ((,,,,,,) x y z w v) (f a) (g b) -- | @since 4.10.0.0 instance Bitraversable Either where bitraverse f _ (Left a) = Left <$> f a bitraverse _ g (Right b) = Right <$> g b -- | @since 4.10.0.0 instance Bitraversable Const where bitraverse f _ (Const a) = Const <$> f a -- | @since 4.10.0.0 instance Bitraversable (K1 i) where bitraverse f _ (K1 c) = K1 <$> f c -- | 'bifor' is 'bitraverse' with the structure as the first argument. For a -- version that ignores the results, see 'bifor_'. -- -- @since 4.10.0.0 bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) bifor t f g = bitraverse f g t -- | Alias for 'bifor'. -- -- @since 4.10.0.0 biforM :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) biforM = bifor -- | The 'bimapAccumL' function behaves like a combination of 'bimap' and -- 'bifoldl'; it traverses a structure from left to right, threading a state -- of type @a@ and using the given actions to compute new elements for the -- structure. -- -- @since 4.10.0.0 bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumL f g s t = runStateL (bitraverse (StateL . flip f) (StateL . flip g) t) s -- | The 'bimapAccumR' function behaves like a combination of 'bimap' and -- 'bifoldl'; it traverses a structure from right to left, threading a state -- of type @a@ and using the given actions to compute new elements for the -- structure. -- -- @since 4.10.0.0 bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumR f g s t = runStateR (bitraverse (StateR . flip f) (StateR . flip g) t) s -- | A default definition of 'bimap' in terms of the 'Bitraversable' -- operations. -- -- @'bimapDefault' f g ≡ -- 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)@ -- -- @since 4.10.0.0 bimapDefault :: forall t a b c d . Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d -- See Note [Function coercion] in Data.Functor.Utils. bimapDefault = coerce (bitraverse :: (a -> Identity b) -> (c -> Identity d) -> t a c -> Identity (t b d)) {-# INLINE bimapDefault #-} -- | A default definition of 'bifoldMap' in terms of the 'Bitraversable' -- operations. -- -- @'bifoldMapDefault' f g ≡ -- 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)@ -- -- @since 4.10.0.0 bifoldMapDefault :: forall t m a b . (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m -- See Note [Function coercion] in Data.Functor.Utils. bifoldMapDefault = coerce (bitraverse :: (a -> Const m ()) -> (b -> Const m ()) -> t a b -> Const m (t () ())) {-# INLINE bifoldMapDefault #-}