{-# LANGUAGE Trustworthy #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE UndecidableInstances #-} -- for compiling instances of (==) {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE PolyKinds #-} {-| This module is an internal GHC module. It declares the constants used in the implementation of type-level natural numbers. The programmer interface for working with type-level naturals should be defined in a separate library. @since 4.10.0.0 -} module GHC.TypeNats ( -- * Nat Kind Nat -- declared in GHC.Types in package ghc-prim -- * Linking type and value level , KnownNat, natVal, natVal' , SomeNat(..) , someNatVal , sameNat -- * Functions on type literals , type (<=), type (<=?), type (+), type (*), type (^), type (-) , CmpNat ) where import GHC.Base(Eq(..), Ord(..), Bool(True,False), Ordering(..), otherwise) import GHC.Types( Nat ) import GHC.Natural(Natural) import GHC.Show(Show(..)) import GHC.Read(Read(..)) import GHC.Prim(magicDict, Proxy#) import Data.Maybe(Maybe(..)) import Data.Proxy (Proxy(..)) import Data.Type.Equality(type (==), (:~:)(Refl)) import Unsafe.Coerce(unsafeCoerce) -------------------------------------------------------------------------------- -- | This class gives the integer associated with a type-level natural. -- There are instances of the class for every concrete literal: 0, 1, 2, etc. -- -- @since 4.7.0.0 class KnownNat (n :: Nat) where natSing :: SNat n -- | @since 4.10.0.0 natVal :: forall n proxy. KnownNat n => proxy n -> Natural natVal _ = case natSing :: SNat n of SNat x -> x -- | @since 4.10.0.0 natVal' :: forall n. KnownNat n => Proxy# n -> Natural natVal' _ = case natSing :: SNat n of SNat x -> x -- | This type represents unknown type-level natural numbers. -- -- @since 4.10.0.0 data SomeNat = forall n. KnownNat n => SomeNat (Proxy n) -- | Convert an integer into an unknown type-level natural. -- -- @since 4.10.0.0 someNatVal :: Natural -> SomeNat someNatVal n = withSNat SomeNat (SNat n) Proxy -- | @since 4.7.0.0 instance Eq SomeNat where SomeNat x == SomeNat y = natVal x == natVal y -- | @since 4.7.0.0 instance Ord SomeNat where compare (SomeNat x) (SomeNat y) = compare (natVal x) (natVal y) -- | @since 4.7.0.0 instance Show SomeNat where showsPrec p (SomeNat x) = showsPrec p (natVal x) -- | @since 4.7.0.0 instance Read SomeNat where readsPrec p xs = do (a,ys) <- readsPrec p xs [(someNatVal a, ys)] type family EqNat (a :: Nat) (b :: Nat) where EqNat a a = 'True EqNat a b = 'False type instance a == b = EqNat a b -------------------------------------------------------------------------------- infix 4 <=?, <= infixl 6 +, - infixl 7 * infixr 8 ^ -- | Comparison of type-level naturals, as a constraint. type x <= y = (x <=? y) ~ 'True -- | Comparison of type-level naturals, as a function. -- -- @since 4.7.0.0 type family CmpNat (m :: Nat) (n :: Nat) :: Ordering {- | Comparison of type-level naturals, as a function. NOTE: The functionality for this function should be subsumed by 'CmpNat', so this might go away in the future. Please let us know, if you encounter discrepancies between the two. -} type family (m :: Nat) <=? (n :: Nat) :: Bool -- | Addition of type-level naturals. type family (m :: Nat) + (n :: Nat) :: Nat -- | Multiplication of type-level naturals. type family (m :: Nat) * (n :: Nat) :: Nat -- | Exponentiation of type-level naturals. type family (m :: Nat) ^ (n :: Nat) :: Nat -- | Subtraction of type-level naturals. -- -- @since 4.7.0.0 type family (m :: Nat) - (n :: Nat) :: Nat -------------------------------------------------------------------------------- -- | We either get evidence that this function was instantiated with the -- same type-level numbers, or 'Nothing'. -- -- @since 4.7.0.0 sameNat :: (KnownNat a, KnownNat b) => Proxy a -> Proxy b -> Maybe (a :~: b) sameNat x y | natVal x == natVal y = Just (unsafeCoerce Refl) | otherwise = Nothing -------------------------------------------------------------------------------- -- PRIVATE: newtype SNat (n :: Nat) = SNat Natural data WrapN a b = WrapN (KnownNat a => Proxy a -> b) -- See Note [magicDictId magic] in "basicType/MkId.hs" withSNat :: (KnownNat a => Proxy a -> b) -> SNat a -> Proxy a -> b withSNat f x y = magicDict (WrapN f) x y