
GHC User’s Guide Documentation
Release 8.2.1.20171030

GHC Team

October 30, 2017





CONTENTS

1 The Glasgow Haskell Compiler License 3

2 Introduction to GHC 5
2.1 Obtaining GHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Meta-information: Web sites, mailing lists, etc. . . . . . . . . . . . . . . . . . . . . 5
2.3 Reporting bugs in GHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 GHC version numbering policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Release notes for version 8.2.1 9
3.1 Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Full details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Known bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Using GHCi 19
4.1 Introduction to GHCi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Loading source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Loading compiled code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Interactive evaluation at the prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 The GHCi Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Invoking GHCi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 GHCi commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 The :set and :seti commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.9 The .ghci and .haskeline files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.10 Compiling to object code inside GHCi . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.11 Running the interpreter in a separate process . . . . . . . . . . . . . . . . . . . . . 59
4.12 FAQ and Things To Watch Out For . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Using runghc 63
5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 runghc flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 GHC Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Using GHC 65
6.1 Using GHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Warnings and sanity-checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Optimisation (code improvement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Using Concurrent Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 Using SMP parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6 Flag reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Running a compiled program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

i



6.8 Filenames and separate compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.9 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.10 GHC Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.11 Options related to a particular phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.12 Using shared libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.13 Debugging the compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Profiling 189
7.1 Cost centres and cost-centre stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Compiler options for profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3 Time and allocation profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.4 Profiling memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.5 hp2ps – Rendering heap profiles to PostScript . . . . . . . . . . . . . . . . . . . . . 202
7.6 Profiling Parallel and Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . 205
7.7 Observing Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.8 Using “ticky-ticky” profiling (for implementors) . . . . . . . . . . . . . . . . . . . . 211

8 Advice on: sooner, faster, smaller, thriftier 213
8.1 Sooner: producing a program more quickly . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Faster: producing a program that runs quicker . . . . . . . . . . . . . . . . . . . . 214
8.3 Smaller: producing a program that is smaller . . . . . . . . . . . . . . . . . . . . . 217
8.4 Thriftier: producing a program that gobbles less heap space . . . . . . . . . . . . 217

9 GHC Language Features 219
9.1 Language options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.2 Unboxed types and primitive operations . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.3 Syntactic extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4 Extensions to data types and type synonyms . . . . . . . . . . . . . . . . . . . . . . 246
9.5 Extensions to the record system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9.6 Extensions to the “deriving” mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.7 Pattern synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.8 Class and instances declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.9 Type families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.10 Datatype promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
9.11 Kind polymorphism and Type-in-Type . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.12 Levity polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.13 Type-Level Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.14 Constraints in types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
9.15 Extensions to type signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.16 Lexically scoped type variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
9.17 Bindings and generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
9.18 Visible type application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
9.19 Implicit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.20 Arbitrary-rank polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.21 Impredicative polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
9.22 Typed Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
9.23 Partial Type Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.24 Custom compile-time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.25 Deferring type errors to runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
9.26 Template Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
9.27 Arrow notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
9.28 Bang patterns and Strict Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
9.29 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
9.30 Static pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

ii



9.31 Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
9.32 Rewrite rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9.33 Special built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
9.34 Generic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
9.35 Generic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
9.36 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
9.37 HasCallStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
9.38 Concurrent and Parallel Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
9.39 Safe Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

10Foreign function interface (FFI) 437
10.1 GHC extensions to the FFI Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . 437
10.2 Using the FFI with GHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

11Extending and using GHC as a Library 449
11.1 Source annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
11.2 Using GHC as a Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
11.3 Compiler Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

12What to do when something goes wrong 459
12.1 When the compiler “does the wrong thing” . . . . . . . . . . . . . . . . . . . . . . . 459
12.2 When your program “does the wrong thing” . . . . . . . . . . . . . . . . . . . . . . 460

13Debugging compiled programs 461
13.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
13.2 Requesting a stack trace from Haskell code . . . . . . . . . . . . . . . . . . . . . . 463
13.3 Requesting a stack trace with SIGUSR2 . . . . . . . . . . . . . . . . . . . . . . . . . 463
13.4 Implementor’s notes: DWARF annotations . . . . . . . . . . . . . . . . . . . . . . . 464
13.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

14Other Haskell utility programs 467
14.1 “Yacc for Haskell”: happy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
14.2 Writing Haskell interfaces to C code: hsc2hs . . . . . . . . . . . . . . . . . . . . . . 467

15Running GHC on Win32 systems 471
15.1 Starting GHC on Windows platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
15.2 Running GHCi on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
15.3 Interacting with the terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
15.4 Differences in library behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
15.5 Using GHC (and other GHC-compiled executables) with Cygwin . . . . . . . . . . 472
15.6 Building and using Win32 DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

16Known bugs and infelicities 477
16.1 Haskell standards vs. Glasgow Haskell: language non-compliance . . . . . . . . . 477
16.2 Known bugs or infelicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

17Eventlog encodings 485
17.1 Heap profiler event log output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

18Care and feeding of your GHC User’s Guide 487
18.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
18.2 Citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
18.3 Admonitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
18.4 Documenting command-line options and GHCi commands . . . . . . . . . . . . . . 492
18.5 Style Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

iii



18.6 GHC command-line options reference . . . . . . . . . . . . . . . . . . . . . . . . . . 493
18.7 ReST reference materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

19Indices and tables 495

Bibliography 497

Index 499

iv



GHC User’s Guide Documentation, Release 8.2.1.20171030

Contents:

CONTENTS 1



GHC User’s Guide Documentation, Release 8.2.1.20171030

2 CONTENTS



CHAPTER

ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3



GHC User’s Guide Documentation, Release 8.2.1.20171030

4 Chapter 1. The Glasgow Haskell Compiler License



CHAPTER

TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.
GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 19), and a batch compiler, described throughout Using GHC
(page 65). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.
The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.
GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 219).
GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).
GHC’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 189) for more details.
GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.
Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
• GHC home page

5

http://www.haskell.org/
http://www.haskell.org/ghc/
https://ghc.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/


GHC User’s Guide Documentation, Release 8.2.1.20171030

• GHC Developers Home (developer documentation, wiki, and bug tracker)
We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.
glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a

specific question about GHC, please check the FAQ first.
Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.
Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:
Stable branches are numbered x.y, where ⟨y⟩ is even. Releases on the stable branch
x.y are numbered x.y.z, where ⟨z⟩ (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.
The value of __GLASGOW_HASKELL__ (see Options affecting the C pre-processor
(page 171)) for a major release x.y.z is the integer ⟨xyy⟩ (if ⟨y⟩ is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__GLASGOW_HASKELL__==608).
Wemaymake snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.
Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.
We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.
Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.
The value of __GLASGOW_HASKELL__ for a snapshot release is the integer ⟨xyy⟩. You
should never write any conditional code which tests for this value, however: since

6 Chapter 2. Introduction to GHC

http://ghc.haskell.org/trac/ghc/
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://ghc.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories
http://www.haskell.org/ghc/dist/current/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories


GHC User’s Guide Documentation, Release 8.2.1.20171030

interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of __GLASGOW_HASKELL__, you should only conditionally compile using pred-
icates which test whether __GLASGOW_HASKELL__ is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 71)).
The compiler version can be tested within compiled code with the
MIN_VERSION_GLASGOW_HASKELL CPP macro (defined only when -XCPP is used). See
Standard CPP macros (page 172) for details.

2.4. GHC version numbering policy 7



GHC User’s Guide Documentation, Release 8.2.1.20171030

8 Chapter 2. Introduction to GHC



CHAPTER

THREE

RELEASE NOTES FOR VERSION 8.2.1

The significant changes to the various parts of the compiler are listed in the following sections.
There have also been numerous bug fixes and performance improvements over the 8.0 branch.

3.1 Highlights

The highlights since the 8.0 release include:
• A new, more expressive Typeable mechanism, Type.Reflection
• Colorful error messages with caret diagnostics
• SCC annotations can now be used for declarations.
• Heap overflow throws an exception in certain circumstances.
• Improved code generation of join points
• Deriving strategies
• Compact regions support, allowing efficient garbage collection of large heaps
• More reliable DWARF debug information

3.2 Full details

3.2.1 Package system

• The long awaited Backpack module system is now fully usable. See the GHC Wiki for
details.

3.2.2 Language

• Pattern synonym signatures can now be applied to multiple patterns, just like value-level
binding signatures. See Typing of pattern synonyms (page 288) for details.

• It is now possible to explicitly pick a strategy to use when deriving a class instance us-
ing the -XDerivingStrategies (page 283) language extension (see Deriving strategies
(page 283)).

• The new -XUnboxedSums (page 223) extension allows more efficient representation of
sum data. Some future GHC release will have support for worker/wrapper transforma-
tion of sum arguments and constructor unpacking.

9

https://ghc.haskell.org/trac/ghc/wiki/Backpack


GHC User’s Guide Documentation, Release 8.2.1.20171030

• Support for overloaded record fields via a new HasField class and associated compiler
logic (see Record field selector polymorphism (page 265))

• GHC now recognizes the COMPLETE language pragma, allowing the user to specify sets of
patterns (including pattern synonyms) which constitute a complete pattern match. See
COMPLETE pragmas (page 407) for details.

3.2.3 Compiler

• GHC will now use ld.gold or ld.lld instead of the system’s default ld, if available.
Linker availability will be evaluated at configure time. The user can manually override
which linker to use by passing the LD variable to configure. You can revert to the old
behavior of using the system’s default ld by passing the --disable-ld-override flag to
configure.

• GHC now uses section splitting (i.e. -split-sections (page 176)) instead of object
splitting (i.e. -split-objs (page 176)) as the default mechanism for linker-based dead
code removal. While the effect is the same, split sections tends to produce significantly
smaller objects than split objects and more closely mirrors the approach used by other
compilers. Split objects will be deprecated and eventually removed in a future GHC
release.
Note that some versions of the ubiquitous BFD linker exhibit performance trouble with
large libraries with section splitting enabled (see Trac #13739). It is recommended that
you use either the gold or lld linker if you observe this. This will require that you install
one of these compilers, rerun configure, and reinstall GHC.
Split sections is enabled by default in the official binary distributions for platforms that
support it.

• Old profiling flags -auto-all, -auto, and -caf-all are deprecated and their usage pro-
vokes a compile-time warning.

• Support for adding cost centres to declarations is added. The same SCC syntax can be
used, in addition to a new form for specifying the cost centre name. See Inserting cost
centres by hand (page 191) for examples.

• GHC is nowmuchmore particular about -XDefaultSignatures (page 292). The type sig-
nature for a default method of a type class must now be the same as the corresponding
main method’s type signature modulo differences in the signatures’ contexts. Other-
wise, the typechecker will reject that class’s definition. See Default method signatures
(page 292) for further details.

• -XDeriveAnyClass (page 281) is no longer limited to type classes whose argument is of
kind * or * -> *.

• The means by which -XDeriveAnyClass (page 281) infers instance contexts has been
completely overhauled. The instance context is now inferred using the type signa-
tures (and default type signatures) of the derived class’s methods instead of using the
datatype’s definition, which often led to over-constrained instances or instances that
didn’t typecheck (or worse, triggered GHC panics). See the section on DeriveAnyClass
(page 281) for more details.

• GHC now allows standalone deriving using -XDeriveAnyClass (page 281) on any data
type, even if its data constructors are not in scope. This is consistent with the fact that
this code (in the presence of -XDeriveAnyClass (page 281)):

10 Chapter 3. Release notes for version 8.2.1

https://ghc.haskell.org/trac/ghc/ticket/13739


GHC User’s Guide Documentation, Release 8.2.1.20171030

deriving instance C T

is exactly equivalent to:

instance C T

and the latter code has no restrictions about whether the data constructors of T are in
scope.

• -XGeneralizedNewtypeDeriving (page 276) now supports deriving type classes with as-
sociated type families. See the section on GeneralizedNewtypeDeriving and associated
type families (page 279).

• -XGeneralizedNewtypeDeriving (page 276) will no longer infer constraints when deriv-
ing a class with no methods. That is, this code:

class Throws e
newtype Id a = MkId a
deriving Throws

will now generate this instance:

instance Throws (Id a)

instead of this instance:

instance Throws a => Throws (Id a)

This change was motivated by the fact that the latter code has a strictly redundant
Throws a constraint, so it would emit a warning when compiled with -Wredundant-
constraints (page 81). The latter instance could still be derived if so desired using
-XStandaloneDeriving (page 268):

deriving instance Throws a => Throws (Id a)

• Add warning flag -Wcpp-undef (page 88) which passes -Wundef to the C pre-processor
causing the pre-processor to warn on uses of the #if directive on undefined identifiers.

• GHC will no longer automatically infer the kind of higher-rank type synonyms; you must
explicitly explicitly annotate the synonym with a kind signature. For example, given:

data T :: (forall k. k -> Type) -> Type

to define a synonym of T, you must write:

type TSyn = (T :: (forall k. k -> Type) -> Type)

• The Mingw-w64 toolchain for the Windows version of GHC has been updated. GHC now
uses GCC 6.2.0 and binutils 2.27.

• Previously, -Wmissing-methods (page 83) would not warn whenever a type class method
beginning with an underscore was not implemented in an instance. For instance, this
code would compile without any warnings:

class Foo a where
_Bar :: a -> Int

instance Foo Int

3.2. Full details 11



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wmissing-methods (page 83) will now warn that _Bar is not implemented in the Foo
Int instance.

• A new flag -ddump-json (page 185) has been added. This flag dumps compiler output
as JSON documents. It is experimental and will be refined depending on feedback from
tooling authors for the next release.

• GHC is now able to better optimize polymorphic expressions by using known superclass
dictionaries where possible. Some examples:

-- uses of `Monad IO` or `Applicative IO` here are improved
foo :: MonadBaseControl IO m => ...

-- uses of `Monoid MyMonoid` here are improved
bar :: MonadWriter MyMonoid m => ...

• GHC now derives the definition of <$ when using -XDeriveFunctor (page 269) rather
than using the default definition. This prevents unnecessary allocation and a potential
space leak when deriving Functor for a recursive type.

• The -XExtendedDefaultRules (page 32) extension now defaults multi-parameter type-
classes. See Trac #12923.

• GHC now ignores RULES for data constructors (Trac #13290). Previously, it accepted:

{-# RULES "NotAllowed" forall x. Just x = e #-}

That rule will no longer take effect, and a warning will be issued. RULESmay still mention
data constructors, but not in the outermost position:

{-# RULES "StillWorks" forall x. f (Just x) = e #-}

• Type synonyms can no longer appear in the class position of an instance. This means
something like this is no longer allowed:

type ReadShow a = (Read a, Show a)
instance Read Foo
instance Show Foo
instance ReadShow Foo -- illegal

See Trac #13267.
• Validity checking for associated type family instances has tightened somewhat. Before,
this would be accepted:

class Foo a where
type Bar a

instance Foo (Either a b) where
type Bar (Either c d) = d -> c

This is now disallowed, as the type variables used in the Bar instance do not match those
in the instance head. This instance can be fixed by changing it to:

instance Foo (Either a b) where
type Bar (Either a b) = b -> a

See the section on associated type family instances (page 320) for more information.
• A bug involving the interaction between -XMonoLocalBinds (page 351) and -XPolyKinds
(page 330) has been fixed. This can cause some programs to fail to typecheck in case

12 Chapter 3. Release notes for version 8.2.1

https://ghc.haskell.org/trac/ghc/ticket/12923
https://ghc.haskell.org/trac/ghc/ticket/13290
https://ghc.haskell.org/trac/ghc/ticket/13267


GHC User’s Guide Documentation, Release 8.2.1.20171030

explicit kind signatures are not provided. See Kind generalisation (page 352) for an
example.

3.2.4 GHCi

• Added -flocal-ghci-history (page 44) which uses current directory for .ghci-history.
• Added support for -XStaticPointers (page 395) in interpretedmodules. Note, however,
that static expressions are still not allowed in expressions evaluated in the REPL.

• Added support for :type +d (page 55) and :type +v (page 54). (Trac #11975)

3.2.5 Template Haskell

• Reifying types that contain unboxed tuples now works correctly. (Previously, Template
Haskell reified unboxed tuples as boxed tuples with twice their appropriate arity.)

• Splicing singleton unboxed tuple types (e.g., (# Int #)) now works correctly. Previ-
ously, Template Haskell would implicitly remove the parentheses when splicing, which
would turn (# Int #) into Int.

• Add support for type signatures in patterns. (Trac #12164)
• Make quoting and reification return the same types. (Trac #11629)
• More kind annotations appear in the left-hand sides of reified closed type family equa-
tions, in order to disambiguate types that would otherwise be ambiguous in the presence
of -XPolyKinds (page 330). (Trac #12646)

• Quoted type signatures are more accurate with respect to implicitly quantified type vari-
ables. Before, if you quoted this:

[d| id :: a -> a
id x = x

|]

then the code that Template Haskell would give back to you would actually be this in-
stead:

id :: forall a. a -> a
id x = x

That is, quoting would explicitly quantify all type variables, even ones that were implicitly
quantified in the source. This could be especially harmful if a kind variable was implicitly
quantified. For example, if you took this quoted declaration:

[d| idProxy :: forall proxy (b :: k). proxy b -> proxy b
idProxy x = x

|]

and tried to splice it back in, you’d get this instead:

idProxy :: forall k proxy (b :: k). proxy b -> proxy b
idProxy x = x

Now k is explicitly quantified, and that requires turning on -XTypeInType (page 330),
whereas the original declaration did not!

3.2. Full details 13

https://ghc.haskell.org/trac/ghc/ticket/11975
https://ghc.haskell.org/trac/ghc/ticket/12164
https://ghc.haskell.org/trac/ghc/ticket/11629
https://ghc.haskell.org/trac/ghc/ticket/12646


GHC User’s Guide Documentation, Release 8.2.1.20171030

Template Haskell quoting now respects implicit quantification in type signatures, so the
quoted declarations above now correctly leave the type variables a and k as implicitly
quantified. (Trac #13018 and Trac #13123)

• Looking up type constructors with symbol names (e.g., +) now works as expected (Trac
#11046)

3.2.6 Runtime system

• Heap overflow throws a catchable exception, provided that it was detected by the RTS
during a GC cycle due to the program exceeding a limit set by +RTS -M (see -M ⟨size⟩
(page 127)), and not due to an allocation being refused by the operating system. This
exception is thrown to the same thread that receives UserInterrupt exceptions, and
may be caught by user programs.

• Added support for Compact Regions, which offer a way to manually move long-lived
data outside of the heap so that the garbage collector does not have to trace it repeat-
edly. Compacted data can also be serialized, stored, and deserialized again later by the
same program. For more details see the :ghc-compact-ref:‘GHC.Compact <GHC-
Compact.html>‘ module. Moreover, see the compact library on Hackage for a high-
level interface.

• There is new support for improving performance on machines with a Non-UniformMem-
ory Architecture (NUMA). See --numa (page 128). This is supported on Linux and Win-
dows systems.

• The garbage collector can be told to use fewer threads than the global number of capa-
bilities set by -N ⟨x⟩ (page 100). By default, the garbage collector will use a number of
threads equal to the lesser of the global number of capabilities or the number of physical
cores. See -qn ⟨x⟩ (page 126), and a blog post that describes this.

• The heap profiler (page 197) can now emit heap census data to the GHC event log,
allowing heap profiles to be correlated with other tracing events (see Trac #11094).

• Some bugs have been fixed in the stack-trace implementation in the profiler that some-
times resulted in incorrect stack traces and costs attributed to the wrong cost centre
stack (see Trac #5654).

• Added processor group support for Windows. This allows the runtime to allocate threads
to all cores in systems which have multiple processor groups. (e.g. > 64 cores, see Trac
#11054)

• Output of Event log (page 132) data can now be configured, enabling external tools to
collect and analyze the event log data while the application is still running.

• advapi32, shell32 and user32 are now automatically loaded in GHCi. libGCC is also
loaded when a dependency requires it. See Trac #13189.

3.2.7 hsc2hs

• Version number 0.68.2

14 Chapter 3. Release notes for version 8.2.1

https://ghc.haskell.org/trac/ghc/ticket/13018
https://ghc.haskell.org/trac/ghc/ticket/13123
https://ghc.haskell.org/trac/ghc/ticket/11046
https://ghc.haskell.org/trac/ghc/ticket/11046
https://hackage.haskell.org/package/compact
http://simonmar.github.io/posts/2016-12-08-Haskell-in-the-datacentre.html
https://ghc.haskell.org/trac/ghc/ticket/11094
https://ghc.haskell.org/trac/ghc/ticket/5654
https://ghc.haskell.org/trac/ghc/ticket/11054
https://ghc.haskell.org/trac/ghc/ticket/11054
https://ghc.haskell.org/trac/ghc/ticket/13189


GHC User’s Guide Documentation, Release 8.2.1.20171030

3.3 Libraries

3.3.1 array

• Version number 0.5.2.0 (was 0.5.0.0)

3.3.2 base

See changelog.md in the base package for full release notes.
• Version number 4.10.0.0 (was 4.9.0.0)
• Data.Either now provides fromLeft and fromRight
• Data.Type.Coercion now provides gcoerceWith, which is analogous to gcastWith from
Data.Type.Equality.

• The Read1 and Read2 classes in Data.Functor.Classes have new methods, liftRead-
List(2) and liftReadListPrec(2), that are defined in terms of ReadPrec instead of
ReadS. This matches the interface provided in GHC’s version of the Read class, and al-
lows users to write more efficient Read1 and Read2 instances.

• Add type family AppendSymbol (m :: Symbol) (n :: Symbol) :: Symbol to
GHC.TypeLits

• Add GHC.TypeNats module with Natural-based KnownNat. The Nat operations in
GHC.TypeLits are a thin compatibility layer on top. Note: the KnownNat evidence is
changed from an Integer to a Natural.

• liftA2 is now a method of the Applicative class. Traversable deriving has been mod-
ified to use liftA2 for the first two elements traversed in each constructor. liftA2 is
not yet in the Prelude, and must currently be imported from Control.Applicative. It
is likely to be added to the Prelude in the future.

3.3.3 binary

• Version number 0.8.5.1 (was 0.7.1.0)

3.3.4 bytestring

• Version number 0.10.8.2 (was 0.10.4.0)

3.3.5 Cabal

• Version number 2.0.0.0 (was 1.24.2.0)

3.3.6 containers

• Version number 0.5.10.2 (was 0.5.4.0)

3.3. Libraries 15



GHC User’s Guide Documentation, Release 8.2.1.20171030

3.3.7 deepseq

• Version number 1.4.3.0 (was 1.3.0.2)

3.3.8 directory

• Version number 1.3.0.2 (was 1.2.0.2)

3.3.9 filepath

• Version number 1.4.1.2 (was 1.3.0.2)

3.3.10 ghc

• Version number 8.2.1

3.3.11 ghc-boot

• This is an internal package. Use with caution.

3.3.12 ghc-compact

The ghc-compact library provides an experimental API for placing immutable data structures
into a contiguous memory region. Data in these regions is not traced during garbage collec-
tion and can be serialized to disk or over the network.
• Version number 0.1.0.0 (newly added)

3.3.13 ghc-prim

• Version number 0.5.1.0 (was 0.3.1.0)
• Added new isByteArrayPinned# and isMutableByteArrayPinned# operation.
• New function noinline in GHC.Magic lets you mark that a function should not be inlined.
It is optimized away after the simplifier runs.

3.3.14 hoopl

• Version number 3.10.2.2 (was 3.10.2.1)

3.3.15 hpc

• Version number 0.6.0.3 (was 0.6.0.2)

3.3.16 integer-gmp

• Version number 1.0.0.1 (was 1.0.0.1)

16 Chapter 3. Release notes for version 8.2.1



GHC User’s Guide Documentation, Release 8.2.1.20171030

3.3.17 process

• Version number 1.6.1.0 (was 1.4.3.0)

3.3.18 template-haskell

• Version 2.12.0.0 (was 2.11.1.0)
• Added support for unboxed sums Trac #12478.
• Added support for visible type applications Trac #12530.

3.3.19 time

• Version number 1.8.0.1 (was 1.6.0.1)

3.3.20 unix

• Version number 2.7.2.2 (was 2.7.2.1)

3.3.21 Win32

• Version number 2.5.4.1 (was 2.3.1.1)

3.4 Known bugs

• At least one known program regresses in compile time significantly over 8.0. See Trac
#13535.

• Some uses of type applications may cause GHC to panic. See Trac #13819.
• The compiler may loop during typechecking on some modules using -
XUndecidableInstances (page 300). See Trac #13943.

3.4. Known bugs 17

https://ghc.haskell.org/trac/ghc/ticket/12478
https://ghc.haskell.org/trac/ghc/ticket/12530
https://ghc.haskell.org/trac/ghc/ticket/13535
https://ghc.haskell.org/trac/ghc/ticket/13535
https://ghc.haskell.org/trac/ghc/ticket/13819
https://ghc.haskell.org/trac/ghc/ticket/13943


GHC User’s Guide Documentation, Release 8.2.1.20171030

18 Chapter 3. Release notes for version 8.2.1



CHAPTER

FOUR

USING GHCI

GHCi 1 is GHC’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you’re familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all 2 the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 35)).

4.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type :? (page 49) to see the list of com-
mands available, and a half line description of each of them. We’ll explain most of these
commands as we go along, and there is complete documentation for all the commands in
GHCi commands (page 45).
Haskell expressions can be typed at the prompt:

Prelude> 1+2
3
Prelude> let x = 42 in x / 9
4.666666666666667
Prelude>

GHCi interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.
In Haskell, a let expression is followed by in. However, in GHCi, since the expression can
also be interpreted in the IO monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.
Since GHC 8.0.1, you can bind values and functions to names without let statement:

Prelude> x = 42
Prelude> x
42
Prelude>

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

19

http://www.haskell.org/hugs/


GHC User’s Guide Documentation, Release 8.2.1.20171030

4.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory 3 then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where ⟨dir⟩ is the directory (or folder) in which you saved Main.hs.
To load a Haskell source file into GHCi, use the :load (page 50) command:

Prelude> :load Main
Compiling Main ( Main.hs, interpreted )
Ok, modules loaded: Main.
*Main>

GHCi has loaded the Mainmodule, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 28)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the :load (page 50) command (hint: :load (page 50) can be abbreviated to
:l). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

4.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module ⟨M⟩? Answer: it looks for
the file M.hs, or M.lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won’t be able to find it.
There is one exception to this general rule: when you load a program with :load (page 50),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Mainmodules in the same directory and you can’t call them all
Main.hs.
The search path for finding source files is specified with the -i (page 137) option on the GHCi
command line, like so:

ghci -idir1:...:dirn

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

20 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

or it can be set using the :set (page 52) command from within GHCi (see Setting GHC
command-line options in GHCi (page 56)) 4

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as IO and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

4.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 52) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 140)).

4.3 Loading compiled code

When you load a Haskell source module into GHCi, it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCi starts, it loads up a compiled copy of the base package,
which contains the Prelude.
Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.
When loading up source modules with :load (page 50), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

A
/ \

B C
\ /
D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B ( B.hs, interpreted )
Compiling C ( C.hs, interpreted )
Compiling A ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D (D.o).
*Main>

4 Note that in GHCi, and --make (page 68) mode, the -i (page 137) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -i (page 137) option is used to specify the search path
for interface files, see The search path (page 137).

4.3. Loading compiled code 21



GHC User’s Guide Documentation, Release 8.2.1.20171030

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.
Note the -dynamic (page 176) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.
At any time you can use the command :show modules (page 54) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules
D ( D.hs, D.o )
C ( C.hs, interpreted )
B ( B.hs, interpreted )
A ( A.hs, interpreted )
*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs
*Main> :reload
Compiling D ( D.hs, interpreted )
Ok, modules loaded: A, B, C, D.
*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.
So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs
*Main> :load A
Compiling D ( D.hs, interpreted )
Compiling B ( B.hs, interpreted )
Compiling C ( C.hs, interpreted )
Compiling A ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D.

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C‘s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 52), only :load (page 50):

*Main> :load A
Compiling B ( B.hs, interpreted )
Compiling A ( A.hs, interpreted )
Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when

22 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

the module is interpreted (see What’s really in scope at the prompt? (page 28)). For this
reason, you might sometimes want to force GHCi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using :load (page 50), for
example

Prelude> :load *A
Compiling A ( A.hs, interpreted )
*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).
To always compile everything to object code and never use the interpreter, use the -fobject-
code (page 175) option (see Compiling to object code inside GHCi (page 59)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

4.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"
Prelude> 5+5
10

4.4.1 I/O actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type IO a for some a, then GHCi executes it as an IO-computation.

Prelude> "hello"
"hello"
Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to IO a. For example

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
• The result type is an instance of Show.
• The result type is not ().

4.4. Interactive evaluation at the prompt 23



GHC User’s Guide Documentation, Release 8.2.1.20171030

For example, remembering that putStrLn :: String -> IO ():

Prelude> putStrLn "hello"
hello
Prelude> do { putStrLn "hello"; return "yes" }
hello
"yes"

4.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.
The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the IO monad.

Prelude> x <- return 42
Prelude> print x
42
Prelude>

The statement x <- return 42 means “execute return 42 in the IO monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.
-fprint-bind-result

If -fprint-bind-result (page 24) is set then GHCi will print the result of a statement
if and only if:
•The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.
•The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

Prelude> let x = 42
Prelude> x
42
Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

Prelude> let x = error "help!"
Prelude> print x
*** Exception: help!
Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.
You can also define functions at the prompt:

Prelude> add a b = a + b
Prelude> add 1 2
3
Prelude>

24 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [] = n ; f op n (h:t) = h `op` f op n t
Prelude> f (+) 0 [1..3]
6
Prelude>

:{
:}

Begin or end a multi-line GHCi command block.
To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{
Prelude| g op n [] = n
Prelude| g op n (h:t) = h `op` g op n t
Prelude| :}
Prelude> g (*) 1 [1..3]
6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 58)) more readable
and maintainable.
Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation).
Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

Warning: Temporary bindings introduced at the prompt only last until the next :load
(page 50) or :reload (page 52) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 51): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 53)
command:

Prelude> :show bindings
x :: Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

4.4. Interactive evaluation at the prompt 25



GHC User’s Guide Documentation, Release 8.2.1.20171030

4.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m
Prelude> let x = 42
Prelude| y = 3
Prelude|
Prelude>

Explicit braces and semicolons can be used instead of layout:

Prelude> do {
Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }
hello
world
Prelude>

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.
Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|
"Hello World!"
0
Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do
Prelude| putStrLn "Hello, World!"
Prelude| ^C
Prelude>

4.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

26 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]
[A,B,C]
Prelude> :i T
data T = A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30
instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T = A | B
Prelude> let f A = True; f B = False
Prelude> data T = A | B | C
Prelude> f A

<interactive>:2:3:
Couldn't match expected type `main::Interactive.T'

with actual type `T'
In the first argument of `f', namely `A'
In the expression: f A
In an equation for `it': it = f A

Prelude>

The old, shadowed, version of T is displayed as main::Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.
Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 313).) For example:

Prelude> type family T a b
Prelude> type instance T a b = a
Prelude> let uc :: a -> T a b; uc = id

Prelude> type instance T a b = b

<interactive>:3:15: error:
Conflicting family instance declarations:

T a b = a -- Defined at <interactive>:3:15
T a b = b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

Prelude> type family T a b
-- This is a brand-new T, unrelated to the old one
Prelude> type instance T a b = b
Prelude> uc 'a' :: Int

<interactive>:8:1: error:

4.4. Interactive evaluation at the prompt 27



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Couldn't match type ‘Char’ with ‘Int’
Expected type: Int

Actual type: Ghci1.T Char b0
• In the expression: uc 'a' :: Int

In an equation for ‘it’: it = uc 'a' :: Int

4.4.5 What’s really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:
• The :load (page 50), :add (page 45), and :reload (page 52) commands (The effect of
:load on what is in scope (page 28)).

• The import declaration (Controlling what is in scope with import (page 29)).
• The :module (page 51) command (Controlling what is in scope with the :module com-
mand (page 29)).

The command :show imports (page 54) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

The effect of :load on what is in scope

The :load (page 50), :add (page 45), and :reload (page 52) commands (Loading source files
(page 20) and Loading compiled code (page 21)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.
If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main ( Main.hs, interpreted )
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).
The syntax in the prompt *module indicates that it is the full top-level scope of ⟨module⟩ that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the *when
loading the module, e.g. :load *M.

28 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

In general, after a :load (page 50) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude Bar (GHCi automatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 54):

Prelude> :load hello.hs
[1 of 1] Compiling Main ( hello.hs, interpreted )
Ok, modules loaded: Main.
*Main> :show imports
:module +*Main -- added automatically
*Main>

and the automatically-added import is replaced the next time you use :load (page 50), :add
(page 45), or :reload (page 52). It can also be removed by :module (page 51) as with normal
imports.

Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.
To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO
Prelude System.IO> hPutStrLn stdout "hello\n"
hello
Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 54):

Prelude> import System.IO
Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit
import System.IO
import Data.Map as Map
Prelude System.IO Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.
With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 51) command, whose syntax
is this:

4.4. Interactive evaluation at the prompt 29



GHC User’s Guide Documentation, Release 8.2.1.20171030

:module +|- *mod1 ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.
The :module (page 51) command provides a way to do two things that cannot be done with
ordinary import declarations:
• :module (page 51) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

• Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

:module and :load

It might seem that :module (page 51)/import and :load (page 50)/:add (page 45)/:reload
(page 52) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCi is concerned with two sets of modules:
• The set of modules that are currently loaded. This set is modified by :load (page 50),
:add (page 45) and :reload (page 52), and can be shown with :show modules (page 54).

• The set of modules that are currently in scope at the prompt. This set is modified by im-
port and :module (page 51), and it is also modified automatically after :load (page 50),
:add (page 45), and :reload (page 52), as described above. The set of modules in scope
can be shown with :show imports (page 54).

You can add a module to the scope (via :module (page 51) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 51)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

4.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.
Instead, we can use the :main (page 51) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

30 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 52)
command:

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

4.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

Prelude> 1+2
3
Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an IO
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.
Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))

arising from use of `print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.
If the expression was instead of type IO a for some a, then it will be bound to the result of
the IO computation, which is of type a. eg.:

Prelude> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC

4.4. Interactive evaluation at the prompt 31



GHC User’s Guide Documentation, Release 8.2.1.20171030

Prelude> print it
2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

4.4.8 Type defaulting in GHCi

-XExtendedDefaultRules
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)
""
ghci> reverse ([] :: [Int])
[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if
1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the -XExtendedDefaultRules (page 32) flag is given, the
types are instead resolved with the following method:
Find all the unsolved constraints. Then:
• Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

• Keep only the groups in which at least one of the classes is an interactive class (defined
below).

• Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

• The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

32 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.
The motivation for the change is that it means IO a actions default to IO (), which in turn
means that ghci won’t try to print a result when running them. This is particularly important
for printf, which has an instance that returns IO a. However, it is only able to return unde-
fined (the reason for the instance having this type is so that printf doesn’t require extensions
to the class system), so if the type defaults to Integer then ghci gives an error when running
a printf.
See also I/O actions at the prompt (page 23) for how the monad of a computational expression
defaults to IO if possible.

Interactive classes

The interactive classes (only relevant when -XExtendedDefaultRules (page 32) is in effect)
are: any numeric class, Show, Eq, Ord, Foldable or Traversable.
As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

Extended rules around default declarations

Since the rules for defaulting are relaxed under -XExtendedDefaultRules (page 32), the
rules for default declarations are also relaxed. According to Section 4.3.4 of the Haskell
2010 Report, a default declaration looks like default (t1, ..., tn) where, for each ti,
Num timust hold. This is relaxed to say that for each ti, there must exist an interactive class
C such that C ti holds. This means that type constructors can be allowed in these lists. For
example, the following works if you wish your Foldable constraints to default to Maybe but
your Num constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

4.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> IO (), and it works by converting
the value to String using show.
This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.
The -interactive-print ⟨expr⟩ (page 34) flag allows to specify any function of type C a =>
a -> IO (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides

4.4. Interactive evaluation at the prompt 33



GHC User’s Guide Documentation, Release 8.2.1.20171030

in a registered package will it survive a :cd (page 47), :add (page 45), :load (page 50),
:reload (page 52) or, :set (page 52).
-interactive-print ⟨expr⟩

Set the function used by GHCi to print evaluation results. Expression must be of type C
a => a -> IO ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42
42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.
The -interactive-print ⟨expr⟩ (page 34) flag can also be used when running GHC in -e
mode:

% ghc -e "[1,2,3]" -interactive-print=SpecPrinter.sprint SpecPrinter
[1,2,3]!

4.4.10 Stack Traces in GHCi

[ This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]
GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a separate
process (page 59)) and runs it in profiling mode to collect call stack information. Note that
because we’re running the interpreted code in profiling mode, all packages that you use must
be compiled for profiling. The -prof flag to GHCi only works in conjunction with -fexternal-
interpreter.
There are three ways to get access to the current call stack.
• error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 422)), so both call
stacks are shown.

• Debug.Trace.traceStack is a version of Debug.Trace.trace that also prints the current
call stack.

34 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Functions in the module GHC.Stack can be used to get the current stack and render it.
You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 191)).

4.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger 5.
The debugger provides the following:
• The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

• Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

• Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

• Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 42)).

4.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

qsort [] = []
qsort (a:as) = qsort left ++ [a] ++ qsort right

where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :l qsort.hs
[1 of 1] Compiling Main ( qsort.hs, interpreted )
Ok, modules loaded: Main.
*Main>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

4.5. The GHCi Debugger 35



GHC User’s Guide Documentation, Release 8.2.1.20171030

Now, let’s set a breakpoint on the right-hand-side of the second equation of qsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case qsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
qsort right).
Now, we run the program:

*Main> main
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [qsort.hs:2:15-46]. To further clarify
the location, we can use the :list (page 50) command:

[qsort.hs:2:15-46] *Main> :list
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 50) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.
GHCi has provided bindings for the free variables 6 of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 54), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[qsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable `a' in the constraint:

`Show a' arising from a use of `print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.
Fortunately, the debugger includes a generic printing command, :print (page 51), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

36 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *Main> :print left
left = (_t1::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 51) does not force any evaluation.
The idea is that :print (page 51) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 39)). Rather than forcing thunks, :print (page 51) binds each thunk to a fresh variable
beginning with an underscore, in this case _t1.
The flag -fprint-evld-with-show instructs :print (page 51) to reuse available Show in-
stances when possible. This happens only when the contents of the variable being inspected
are completely evaluated.
If we aren’t concerned about preserving the evaluatedness of a variable, we can use :force
(page 49) instead of :print (page 51). The :force (page 49) command behaves exactly like
:print (page 51), except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since :force (page 49) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[qsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]
a :: Integer
left :: [Integer]
right :: [Integer]
_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with :force (page 49). For example:

[qsort.hs:2:15-46] *Main> :print right
right = (_t1::[Integer])
[qsort.hs:2:15-46] *Main> seq _t1 ()
()
[qsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the _t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to _t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 48) to make a nicer interface (left as an exercise for the reader!).
Finally, we can continue the current execution:

[qsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]

4.5. The GHCi Debugger 37



GHC User’s Guide Documentation, Release 8.2.1.20171030

a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where ⟨identifier⟩ names any top-level function in an interpreted module currently loaded into
GHCi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.
Breakpoints can also be set by line (and optionally column) number:

:break line
:break line column
:break module line
:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.
When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 85) in Warnings
and sanity-checking (page 76)).
If the module is omitted, then the most recently-loaded module is used.
Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using :show breaks (page 53):

*Main> :show breaks
[0] Main qsort.hs:1:11-12
[1] Main qsort.hs:2:15-46

38 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

To delete a breakpoint, use the :delete (page 49) command with the number given in the
output from :show breaks (page 53):

*Main> :delete 0
*Main> :show breaks
[1] Main qsort.hs:2:15-46

To delete all breakpoints at once, use :delete *.

4.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 54) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 54) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 54) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 54) begins the evaluation of ⟨expr⟩ in single-stepping mode.
If ⟨expr⟩ is omitted, then it single-steps from the current breakpoint. :steplocal (page 54)
and :stepmodule (page 54) commands work similarly.
The :list (page 50) command is particularly useful when single-stepping, to see where you
currently are:

[qsort.hs:5:7-47] *Main> :list
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do :list (page 50):

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46
_result :: [Integer]
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:14-46] *Main>

4.5.3 Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

4.5. The GHCi Debugger 39



GHC User’s Guide Documentation, Release 8.2.1.20171030

[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]
... [qsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step qsort [1,3]. This new evaluation stopped after one step (at the definition of qsort).
The prompt has changed, now prefixed with ..., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 54):

... [qsort.hs:(1,0)-(3,55)] *Main> :show context
--> main

Stopped at qsort.hs:2:15-46
--> qsort [1,3]

Stopped at qsort.hs:(1,0)-(3,55)
... [qsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 45):

... [qsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon
*Main>

4.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable _result to the value of
the currently active expression. The value of _result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering _result at the prompt will show it. However, there’s one caveat to doing this:
evaluating _result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 54)). So it will probably be necessary to issue a :continue (page 48) immediately when
evaluating _result. Alternatively, you can use :force (page 49) which ignores breakpoints.

4.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack“ in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 189)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.
To use tracing, evaluate an expression with the :trace (page 54) command. For example, if
we set a breakpoint on the base case of qsort:

40 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

*Main> :list qsort
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)
4
*Main> :b 1
Breakpoint 1 activated at qsort.hs:1:11-12
*Main>

and then run a small qsort with tracing:

*Main> :trace qsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[qsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[qsort.hs:1:11-12] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:3:24-38
-7 : qsort.hs:3:23-55
-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24
-10 : qsort.hs:2:15-46
-11 : qsort.hs:3:24-38
-12 : qsort.hs:3:23-55
-13 : qsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24
-15 : qsort.hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 46):

[qsort.hs:1:11-12] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command :forward (page 49) can be used to
traverse forward in the history.
The :trace (page 54) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like :step (page 54).
The history is only available when using :trace (page 54); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.
-fghci-hist-size=⟨n⟩

Default 50

4.5. The GHCi Debugger 41



GHC User’s Guide Documentation, Release 8.2.1.20171030

Modify the depth of the evaluation history tracked by GHCi.

4.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 133)).
The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a breakpoint on
the location in the source code that throws the exception, and then use :trace (page 54) and
:history (page 49) to establish the context. However, head is in a library and we can’t set
a breakpoint on it directly. For this reason, GHCi provides the flags -fbreak-on-exception
(page 42) which causes the evaluator to stop when an exception is thrown, and -fbreak-
on-error (page 42), which works similarly but stops only on uncaught exceptions. When
stopping at an exception, GHCi will act just as it does when a breakpoint is hit, with the
deviation that it will not show you any source code location. Due to this, these commands are
only really useful in conjunction with :trace (page 54), in order to log the steps leading up
to the exception. For example:

*Main> :set -fbreak-on-exception
*Main> :trace qsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e
[<exception thrown>] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:(1,0)-(3,55)
<end of history>
[<exception thrown>] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined
[-1: qsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c' : (_t1::[Char])

The exception itself is bound to a new variable, _exception.
Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.
-fbreak-on-exception
-fbreak-on-error

Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. While -fbreak-on-exception (page 42) breaks on all exceptions, -fbreak-
on-error (page 42) breaks on only those which would otherwise be uncaught.

42 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

4.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.
The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5
Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]
Stopped at map.hs:(4,0)-(5,12)
_result :: [b]
x :: a
f :: a -> b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.
As we demonstrated earlier (Breakpoints and inspecting variables (page 35)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or _result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*Main> seq x ()
*Main> :print x
x = 1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*Main> :t x
x :: Integer
*Main> :t f
f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:

Ambiguous type variable `b' in the constraint:
`Show b' arising from a use of `print' at <interactive>:1:0

*Main> :p b
b = (_t2::a)

4.5. The GHCi Debugger 43



GHC User’s Guide Documentation, Release 8.2.1.20171030

*Main> seq b ()
()
*Main> :t b
b :: a
*Main> :p b
b = Just 10
*Main> :t b
b :: Maybe Integer
*Main> :t f
f :: Integer -> Maybe Integer
*Main> f 20
Just 20
*Main> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

4.5.8 Limitations

• When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.
The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

• Implicit parameters (see Implicit parameters (page 355)) are only available at the scope
of a breakpoint if there is an explicit type signature.

4.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :load
modules at the GHCi prompt (see GHCi commands (page 45)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 65)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.
-flocal-ghci-history

By default, GHCi keeps global history in ~/.ghc/ghci_history or %APP-
DATA%/<app>/ghci_history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCi is launched.

44 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

4.6.1 Packages

Most packages (see Using Packages (page 152)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.
For hidden packages, however, you need to request the package be loaded by using the -
package ⟨pkg⟩ (page 153) flag:

$ ghci -package readline
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

4.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -llib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 20).) For example, to load the “m” library:

$ ghci -lm

On systems with .so-style shared libraries, the actual library loaded will the liblib.so. GHCi
searches the following places for libraries, in this order:
• Paths specified using the -L ⟨dir⟩ (page 176) command-line option,
• the standard library search path for your system, which on some systems may be over-
ridden by setting the LD_LIBRARY_PATH environment variable.

On systems with .dll-style shared libraries, the actual library loaded will be lib.dll. Again,
GHCi will signal an error if it can’t find the library.
GHCi can also load plain object files (.o or .obj depending on your platform) from the
command-line. Just add the name the object file to the command line.
Ordering of -l options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 175)).

4.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.
:abandon

Abandons the current evaluation (only available when stopped at a breakpoint).

4.7. GHCi commands 45



GHC User’s Guide Documentation, Release 8.2.1.20171030

:add[*] ⟨module⟩
Add ⟨module⟩(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.
⟨module⟩ may be a file path. A “~” symbol at the beginning of ⟨module⟩ will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while :set
+c (page 56) was active) with their respective source-code span, e.g.

GhciTypes> :all-types
GhciTypes.hs:(38,13)-(38,24): Maybe Id
GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable SpanInfo

:back ⟨n⟩
Travel back ⟨n⟩ steps in the history. ⟨n⟩ is one if omitted. See Tracing and history
(page 40) for more about GHCi’s debugging facilities. See also: :trace (page 54), :his-
tory (page 49), :forward (page 49).

:break [⟨identifier⟩ | [⟨module⟩] ⟨line⟩ [⟨column⟩]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 38).

:browse[!] [[*] ⟨module⟩]
Displays the identifiers exported by the module ⟨module⟩, which must be either loaded
into GHCi or be a member of a package. If ⟨module⟩ is omitted, the most recently-loaded
module is used.
Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 28)).
There are two variants of the browse command:
•If the * symbol is placed before the module name, then all the identifiers in scope in
⟨module⟩ (rather that just its exports) are shown.
The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of :browse (page 46) is
available.
•Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the com-
mand, thus :browse!, they are listed individually. The !-form also annotates the
listing with comments giving possible imports for each group of entries. Here is an
example:

Prelude> :browse! Data.Maybe
-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude

46 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (althought they
are available in fully qualified form in the GHCi session - see What’s really in scope
at the prompt? (page 28)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

:cd ⟨dir⟩
Changes the current working directory to ⟨dir⟩. A “~” symbol at the beginning of ⟨dir⟩
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 54) command for showing the current working directory.
Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd ⟨expr⟩
Executes ⟨expr⟩ as a computation of type IO String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 47) command is useful with :def (page 48) and :set stop (page 53).

:complete ⟨type⟩ [⟨n⟩-][⟨m⟩] ⟨string-literal⟩
This command allows to request command completions from GHCi even when inter-
acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.
When called, :complete (page 47) prints the ⟨n⟩th to ⟨m⟩th completion candidates for
the partial input ⟨string-literal⟩ for the completion domain denoted by ⟨type⟩. Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.
If omitted, ⟨n⟩ and ⟨m⟩ default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, ⟨n⟩ and ⟨m⟩
are implicitly capped to the number of available completion candidates.
The output of :complete (page 47) begins with a header line containing three space-
delimited fields:
•An integer denoting the number l of printed completions,
•an integer denoting the total number of completions available, and finally
•a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by ⟨l⟩ lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""
0 470 ""
Prelude> :complete repl 5 "import For"
5 21 "import "
"Foreign"
"Foreign.C"
"Foreign.C.Error"
"Foreign.C.String"

4.7. GHCi commands 47



GHC User’s Guide Documentation, Release 8.2.1.20171030

"Foreign.C.Types"
Prelude> :complete repl 5-10 "import For"
6 21 "import "
"Foreign.C.Types"
"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"
Prelude> :complete repl 20- "import For"
2 21 "import "
"Foreign.StablePtr"
"Foreign.Storable"
Prelude> :complete repl "map"
3 3 ""
"map"
"mapM"
"mapM_"
Prelude> :complete repl 5-10 "map"
0 3 ""

:continue
Continue the current evaluation, when stopped at a breakpoint.

:ctags [⟨filename⟩]
Generates a “tags” file for Vi-style editors (:ctags (page 48)) or Emacs-style editors
(:etags (page 49)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

:def[!] ⟨name⟩ ⟨expr⟩
:def (page 48) is used to define new commands, or macros, in GHCi. The command :def
⟨name⟩ ⟨expr⟩ defines a new GHCi command :name, implemented by the Haskell ex-
pression ⟨expr⟩, whichmust have type String -> IO String. When :name args is typed
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.
That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

Prelude> let date _ = Data.Time.getZonedTime >>= print >> return ""
Prelude> :def date date
Prelude> :date
2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 47):

Prelude> let mycd d = System.Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (\_ -> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for

48 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command :., by analogy with the “.” Unix shell command
that does the same thing.
Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten.

:delete * | ⟨num⟩ ...
Delete one or more breakpoints by number (use :show breaks (page 53) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:edit ⟨file⟩
Opens an editor to edit the file ⟨file⟩, or the most recently loaded module if ⟨file⟩ is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 52).

:etags
See :ctags (page 48).

:force ⟨identifier⟩ ...
Prints the value of ⟨identifier⟩ in the same way as :print (page 51). Unlike :print
(page 51), :force (page 49) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward ⟨n⟩
Move forward ⟨n⟩ steps in the history. ⟨n⟩ is one if omitted. See Tracing and history
(page 40) for more about GHCi’s debugging facilities. See also: :trace (page 54), :his-
tory (page 49), :back (page 46).

:help
:?

Displays a list of the available commands.
:

Repeat the previous command.
:history [num]

Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with :trace (page 54); see Tracing and history (page 40). To set the number
of history entries stored by GHCi, use the -fghci-hist-size=⟨n⟩ (page 41) flag.

:info[!] ⟨name⟩
Displays information about the given name(s). For example, if ⟨name⟩ is a class, then
the class methods and their types will be printed; if ⟨name⟩ is a type constructor, then
its definition will be printed; if ⟨name⟩ is a function, then its type will be printed. If
⟨name⟩ has been loaded from a source file, then GHCi will also display the location of its
definition in the source.
For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its headmentions ⟨name⟩,
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a :load (page 50) or :module (page 51) commands.

4.7. GHCi commands 49



GHC User’s Guide Documentation, Release 8.2.1.20171030

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention ⟨name⟩ in their head.

:issafe [⟨module⟩]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

:kind[!] ⟨type⟩
Infers and prints the kind of ⟨type⟩. The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 50) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool
T Int Bool :: *
ghci> :k T
T :: * -> * -> *
ghci> :k T Int
T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list ⟨identifier⟩
Lists the source code around the definition of ⟨identifier⟩ or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [⟨module⟩] ⟨line⟩
Lists the source code around the given line number of ⟨module⟩. This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*]⟨module⟩
Recursively loads the specified ⟨module⟩s, and all the modules they depend on. Here,
each ⟨module⟩ must be a module name or filename, but may not be the name of a module
in a package.
All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that :load (page 50) can be used without any
arguments to unload all the currently loaded modules and bindings.
Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.
Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 370) for further motivation and details.
After a :load (page 50) command, the current context is set to:
•⟨module⟩, if it was loaded successfully, or
•the most recently successfully loaded module, if any other modules were loaded as
a result of the current :load (page 50), or

50 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

•Prelude otherwise.
:loc-at ⟨module⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]

Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.
The :loc-at command requires :set +c (page 56) to be set.

:main ⟨arg1⟩ ... ⟨argn⟩
When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.
Instead, we can use the :main (page 51) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 52)
command:

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

:module +|- [*]⟨mod1⟩ ...

import ⟨mod⟩
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 28)
for more details.

:print ⟨names⟩
Prints a value without forcing its evaluation. :print (page 51) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 51) attempts to reconstruct the type of the value, and will elaborate the type in

4.7. GHCi commands 51



GHC User’s Guide Documentation, Release 8.2.1.20171030

GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 51) binds a fresh variable with a name beginning with _t to
each thunk. See Breakpoints and inspecting variables (page 35) for more information.
See also the :sprint (page 54) command, which works like :print (page 51) but does
not bind new variables.

:quit
Quits GHCi. You can also quit by typing Control-D at the prompt.

:reload[!]
Attempts to reload the current target set (see :load (page 50)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.
Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 370) for further motivation and details.

:run
See :main (page 51).

:script [⟨n⟩] ⟨filename⟩
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 56)

:set [⟨option⟩ ...]
Sets various options. See The :set and :seti commands (page 56) for a list of available
options and Interactive-mode options (page 106) for a list of GHCi-specific flags. The
:set (page 52) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args ⟨arg⟩
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor ⟨cmd⟩
Sets the command used by :edit (page 49) to ⟨cmd⟩.

:set prog ⟨prog⟩
Sets the string to be returned when the program calls System.getProgName.

:set prompt ⟨prompt⟩
Sets the string to be used as the prompt in GHCi. Inside ⟨prompt⟩, the next sequences
are replaced:
•%s by the names of the modules currently in scope.
•%l by the line number (as referenced in compiler messages) of the current prompt.
•%d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
•%t by the current time in 24-hour HH:MM:SS format.
•%T by the current time in 12-hour HH:MM:SS format.
•%@ by the current time in 12-hour am/pm format.
•%A by the current time in 24-hour HH:MM format.
•%u by the username of the current user.
•%w by the current working directory.

52 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

•%o by the operating system.
•%a by the machine architecture.
•%N by the compiler name.
•%V by the compiler version.
•%call(cmd [args]) by the result of calling cmd args.
•%% by %.

If ⟨prompt⟩ starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont ⟨prompt⟩
Sets the string to be used as the continuation prompt (used when using the :{ (page 25)
command) in GHCi.

:set prompt-function ⟨prompt-function⟩
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 28) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function ⟨prompt-function⟩
Sets the function to be used for the continuation prompt (used when using the :{
(page 25) command) displaying in GHCi.

:set stop ⟨num⟩ ⟨cmd⟩
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 53) is to display the source code at
the current location, e.g. :set stop :list.
If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 48) whenever it is hit
(although GHCi will still emit a message to say the breakpoint was hit). What’s more,
with cunning use of :def (page 48) and :cmd (page 47) you can use :set stop (page 53)
to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar
techniques.

:seti [⟨option⟩ ...]
Like :set (page 52), but options set with :seti (page 53) affect only expressions and
commands typed at the prompt, and not modules loaded with :load (page 50) (in con-
trast, options set with :set (page 52) apply everywhere). See Setting options for inter-
active evaluation only (page 57).
Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

4.7. GHCi commands 53



GHC User’s Guide Documentation, Release 8.2.1.20171030

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 51)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via :cd (page 47) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 53)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 52)).

:sprint ⟨expr⟩
Prints a value without forcing its evaluation. :sprint (page 54) is similar to :print
(page 51), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by _.

:step [⟨expr⟩]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If ⟨expr⟩ is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 39).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint.

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace ⟨expr⟩
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 49).
See Tracing and history (page 40).

:type ⟨expression⟩
Infers and prints the type of ⟨expression⟩, including explicit forall quantifiers for polymor-
phic types. The type reported is the type that would be inferred for a variable assigned
to the expression, but without the monomorphism restriction applied.

*X> :type length
length :: Foldable t => t a -> Int

54 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

:type +v ⟨expression⟩
Infers and prints the type of ⟨expression⟩, but without fiddling with type variables or class
constraints. This is useful when you are using -XTypeApplications (page 353) and care
about the distinction between specified type variables (available for type application) and
inferred type variables (not available). This mode sometimes prints constraints (such as
Show Int) that could readily be solved, but solving these constraints may affect the type
variables, so GHC refrains.

*X> :set -fprint-explicit-foralls
*X> :type +v length
length :: forall (t :: * -> *). Foldable t => forall a. t a -> Int

:type +d ⟨expression⟩
Infers and prints the type of ⟨expression⟩, defaulting type variables if possible. In this
mode, if the inferred type is constrained by any interactive class (Num, Show, Eq, Ord,
Foldable, or Traversable), the constrained type variable(s) are defaulted according to
the rules described under -XExtendedDefaultRules (page 32). This mode is quite useful
when the inferred type is quite general (such as for foldr) and it may be helpful to see
a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at ⟨module⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.
The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case :type-at (page 55) falls back to a general :type
(page 54) like lookup.
The :type-at (page 55) command requires :set +c (page 56) to be set.

:undef ⟨name⟩
Undefines the user-defined command ⟨name⟩ (see :def (page 48) above).

:unset ⟨option⟩
Unsets certain options. See The :set and :seti commands (page 56) for a list of available
options.

:uses ⟨module⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs:(46,25)-(46,29)
GhciFind.hs:(47,37)-(47,41)
GhciFind.hs:(53,66)-(53,70)
GhciFind.hs:(57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.
The :uses (page 55) command requires :set +c (page 56) to be set.

4.7. GHCi commands 55



GHC User’s Guide Documentation, Release 8.2.1.20171030

:! ⟨command⟩
Executes the shell command ⟨command⟩.

4.8 The :set and :seti commands

The :set (page 52) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-”.

Note: At the moment, the :set (page 52) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DFOO='BAR BAZ' will not do what you expect.

4.8.1 GHCi options

GHCi options may be set using :set (page 52) and unset using :unset (page 55).
The available GHCi options are:
:set +c

Collect type and location information after loading modules. The commands :all-types
(page 46), :loc-at (page 51), :type-at (page 55), and :uses (page 55) require +c to be
active.

:set +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 26)).

:set +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).
This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

:set +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

4.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 52). For example, to
turn on -Wmissing-signatures (page 83), you would say:

Prelude> :set -Wmissing-signatures

56 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 102)), may be set using :set (page 52). To unset an option, you can set the reverse
option:

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 102) lists the reverse for each option where applicable.
Certain static options (-package ⟨pkg⟩ (page 153), -I⟨dir⟩ (page 171), -i⟨dir⟩[:⟨dir⟩]*
(page 137), and -l ⟨lib⟩ (page 175) in particular) will also work, but some may not take
effect until the next reload.

4.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options:
• The loading options apply when loading modules
• The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 52) command modifies both, but there is also a :seti (page 53) command
(for “set interactive”) that affects only the interactive options set.
It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonoLocalBinds

It would be undesirable if -XMonoLocalBinds (page 351) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHCwill think that it needs to recompile the module because the flags have changed.
If you are setting language options in your .ghci file, it is good practice to use :seti (page 53)
rather than :set (page 52), unless you really do want them to apply to all modules you load
in GHCi.
The two sets of options can be inspected using the :set (page 52) and :seti (page 53) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti
base language is: Haskell2010
with the following modifiers:

-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:

-fimplicit-import-qualified
warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 58). Then the interactive options are
modified as follows:
• The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 32)).

4.8. The :set and :seti commands 57



GHC User’s Guide Documentation, Release 8.2.1.20171030

• The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 351)).

4.9 The .ghci and .haskeline files

4.9.1 The .ghci files

When it starts, unless the -ignore-dot-ghci (page 58) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:
1. ./.ghci
2. appdata/ghc/ghci.conf, where ⟨appdata⟩ depends on your system, but is usually some-
thing like C:/Documents and Settings/user/Application Data

3. On Unix: $HOME/.ghc/ghci.conf
4. $HOME/.ghci

The ghci.conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use :seti (page 53)
rather than :set (page 52) (see Setting options for interactive evaluation only (page 57)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -i (page 137) flag is a static one, but in fact it works to set it
using :set (page 52) like this. The changes won’t take effect until the next :load (page 50),
though.)
Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your .ghci file, you can use :source file to read GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi
Additionally, any files specified with -ghci-script (page 58) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.
Two command-line options control whether the startup files files are read:
-ignore-dot-ghci

Don’t read either ./.ghci or the other startup files when starting up.
-ghci-script

Read a specific file after the usual startup files. Maybe be specified repeatedly for mul-
tiple inputs.

58 Chapter 4. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi


GHC User’s Guide Documentation, Release 8.2.1.20171030

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.
For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:
1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.
3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.

Here are some examples:
1. You have a macro :time and enter :t 3

You get :type 3

2. You have a macro :type and enter :t 3

You get :type 3 with your defined macro, not the builtin.
3. You have a macro :time and a macro :type, and enter :t 3

You get :type 3 with your defined macro.

4.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

4.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 175) flag either on the command line or with :set (page 52) (the
option -fbyte-code (page 175) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.
Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the :reload (page 52) command typically runs much faster than restart-
ing GHC with --make (page 68) from the command-line, because all the interface files are
already cached in memory.
There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

4.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag -fexternal-interpreter (page 60) is

4.10. Compiling to object code inside GHCi 59

https://hackage.haskell.org/package/haskeline
http://trac.haskell.org/haskeline/wiki/UserPrefs


GHC User’s Guide Documentation, Release 8.2.1.20171030

given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.
-fexternal-interpreter

Since 8.0.1
Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 193) is in
effect, and in dynamically-linked mode if -dynamic (page 176) is in effect.
There are a couple of caveats that will hopefully be removed in the future: this option is
currently not implemented on Windows (it is a no-op), and the external interpreter does
not support the GHCi debugger, so breakpoints and single-stepping don’t work with -
fexternal-interpreter (page 60).
See also the -pgmi ⟨cmd⟩ (page 170) (Replacing the program for one or more phases
(page 170)) and -opti ⟨option⟩ (page 171) (Forcing options to a particular phase
(page 170)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:
• We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 34)).

• When compiling Template Haskell code with -prof (page 193) we don’t need to compile
the modules without -prof (page 193) first (see Using Template Haskell with Profiling
(page 379)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

4.12 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-O (page 89) doesn’t work with GHCi!
For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile amodule that
uses unboxed tuples and load it into GHCi, however. (Incidentally the previous point,
namely that -O (page 89) is incompatible with GHCi, is because the bytecode compiler
can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 178) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 50) or

60 Chapter 4. Using GHCi



GHC User’s Guide Documentation, Release 8.2.1.20171030

:reload (page 52) command.
You can make stdin reset itself after every evaluation by giving GHCi the command :set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 471).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.
If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

4.12. FAQ and Things To Watch Out For 61



GHC User’s Guide Documentation, Release 8.2.1.20171030

62 Chapter 4. Using GHCi



CHAPTER

FIVE

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

5.1 Usage

The runghc command-line looks like:

runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a --
separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option --ghc-arg=<arg> to pass any flag or argument directly to GHC.
module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second -- to indicate the end of flags. Anything
following a second -- will be considered a program file or module name followed by its argu-
ments. For example:
• runghc -- -- -hello.hs

5.2 runghc flags

runghc accepts the following flags:
• -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

• --ghc-arg=<arg>: Pass an option or argument to GHC
• --help: print usage information.
• --version: print version information.

5.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, -f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:
• runghc -- -fliberate-case

63



GHC User’s Guide Documentation, Release 8.2.1.20171030

• runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:
• runghc -package --ghc-arg=foo Main.hs

• runghc --ghc-arg=-package --ghc-arg=foo Main.hs

64 Chapter 5. Using runghc



CHAPTER

SIX

USING GHC

6.1 Using GHC

6.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.
Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.
By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 71) to the
command line.
Then we can run the program like this:

$ ./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

65



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.1.2 Options overview

GHC’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.
Command-line options begin with -. They may not be grouped: -vO is different from -v -O.
Options need not precede filenames: e.g., ghc *.o -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c -O1 Foo.hs -O2 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag impli-
cation. For instance, consider -fno-specialise (page 96) and -O1 (page 89) (which implies
-fspecialise (page 96)). These two command lines mean very different things:
-fno-specialise -O1

-fspecialise will be enabled as the -fno-specialise is overriden by the -O1.
-O1 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the -
fspecialise implied by -O1.

Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS_GHC pragma (page 398)

{-# OPTIONS_GHC -Wno-name-shadowing #-}
module X where
...

OPTIONS_GHC is a file-header pragma (see OPTIONS_GHC pragma (page 398)).
Only dynamic flags can be used in an OPTIONS_GHC pragma (see Static, Dynamic, and Mode
options (page 67)).
Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS_GHC.

Note: The contents of OPTIONS_GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

66 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

It is not recommended to move all the contents of your Makefiles into your source files, but
in some circumstances, the OPTIONS_GHC pragma is the Right Thing. (If you use -keep-hc-
file (page 139) and have OPTION flags in your module, the OPTIONS_GHC will get put into the
generated .hc file).

Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 52) command.

6.1.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:
For example, --make (page 68) or -E (page 68). There may only be a single mode
flag on the command line. The available modes are listed in Modes of operation
(page 68).
Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a OPTIONS_GHC pragma in a source file, or set using :set (page 52)
in GHCi.
A few flags are “static”, which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCi run.

The flag reference tables (Flag reference (page 102)) lists the status of each flag.
There are a few flags that are static except that they can also be used with GHCi’s :set
(page 52) command; these are listed as “static/:set” in the table.

6.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., .lhs or .o) cause the “right thing” to happen to
those files.
.hs A Haskell module.
.lhs A “literate Haskell” module.
.hspp A file created by the preprocessor.
.hi A Haskell interface file, probably compiler-generated.
.hc Intermediate C file produced by the Haskell compiler.
.c A C file not produced by the Haskell compiler.
.ll An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.s An assembly-language source file, usually produced by the compiler.
.o An object file, produced by an assembler.
Files with other suffixes (or without suffixes) are passed straight to the linker.

6.1. Using GHC 67



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.1.5 Modes of operation

GHC’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 68) mode (Using ghc –make
(page 69)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.
The available mode flags are:
--interactive

Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 19).

--make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc
–make (page 69).
This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the --make (page 68) option can be omitted.

-e ⟨expr⟩
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate (⟨expr⟩) which is given on the command line. See
Expression evaluation mode (page 70) for more details.

-E
-C
-S
-c

This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 70).

-M
Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 149).

--frontend ⟨module⟩
Run GHC using the given frontend plugin. See Frontend plugins (page 456) for details.

--mk-dll
DLL-creation mode (Windows only). See Creating a DLL (page 474).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.
--show-iface ⟨file⟩

Read the interface in ⟨file⟩ and dump it as text to stdout. For example ghc --show-iface
M.hi.

--supported-extensions
--supported-languages

Print the supported language extensions.

68 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V

Print a one-line string including GHC’s version number.
--numeric-version

Print GHC’s numeric version number only.
--print-libdir

Print the path to GHC’s library directory. This is the top of the directory tree
containing GHC’s libraries, interfaces, and include files (usually something like
/usr/local/lib/ghc-5.04 on Unix). This is the value of $libdir in the package con-
figuration file (see Packages (page 152)).

Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

ghc --make Main.hs

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

ghc Main.hs

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.
The main advantages to using ghc --make over traditional Makefiles are:
• GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

• You don’t have to write a Makefile.
• GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

• Using the -j[⟨n⟩] (page 70) flag, you can compile modules in parallel. Specify -j ⟨n⟩ to
compile ⟨n⟩ jobs in parallel. If ⟨n⟩ is omitted, then it defaults to the number of processors.

Any of the command-line options described in the rest of this chapter can be used with --
make, but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS_GHC pragma (see Command line options in source files (page 66)).
If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

6.1. Using GHC 69



GHC User’s Guide Documentation, Release 8.2.1.20171030

For backward compatibility with existing make scripts, when used in combination with -c
(page 68), the linking phase is omitted (same as --make -no-link).
Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.
The source files for the program don’t all need to be in the same directory; the -i (page 137)
option can be used to add directories to the search path (see The search path (page 137)).
-j[⟨n⟩]

Perform compilation in parallel when possible. GHC will use up to ⟨N⟩ threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.
For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.
The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:
Phase of the compilation
system

Suffix saying “start
here”

Flag saying “stop
after”

(suffix of)
output file

literate pre-processor .lhs .hs
C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s
C compiler (opt.) .hc or .c -S .s
assembler .s -c .o
linker ⟨other⟩ a.out

Thus, a common invocation would be:

ghc -c Foo.hs

70 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 168) for more details.

Note: Pre-processing is optional, the -cpp (page 171) flag turns it on. See Options affecting
the C pre-processor (page 171) for more details.

Note: The option -E (page 68) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 68) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 169) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x ⟨suffix⟩ (page 71) option:
-x ⟨suffix⟩

Causes all files following this option on the command line to be processed as if they had
the suffix ⟨suffix⟩. For example, to compile a Haskell module in the file M.my-hs, use ghc
-c -x hs M.my-hs.

6.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Modes
of operation (page 68).
-v

The -v (page 71) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).
Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v ⟨n⟩
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:
-v0 Disable all non-essential messages (this is the default).
-v1 Minimal verbosity: print one line per compilation (this is the default when --make

(page 68) or --interactive (page 68) is on).
-v2 Print the name of each compilation phase as it is executed. (equivalent to -dshow-

passes (page 186)).
-v3 The same as -v2, except that in addition the full command line (if appropriate) for

each compilation phase is also printed.

6.1. Using GHC 71



GHC User’s Guide Documentation, Release 8.2.1.20171030

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 71)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the -
XUnicodeSyntax (page 224) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ∷ Monad m ⇒ ∀ a b. m a → m b → m b

-fprint-explicit-foralls
Using -fprint-explicit-foralls (page 72) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x
ghci> :t f
f :: a -> a
ghci> :set -fprint-explicit-foralls
ghci> :t f
f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:
•For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

•If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::

forall (k :: BOX) (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a

-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using -fprint-explicit-kinds (page 72) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds
ghci> data T a = MkT
ghci> :t MkT
MkT :: forall (k :: BOX) (a :: k). T a
ghci> :set -fprint-explicit-foralls

72 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

ghci> :t MkT
MkT :: forall (k :: BOX) (a :: k). T k a

-fprint-explicit-runtime-reps
When -fprint-explicit-runtime-reps (page 73) is enabled, GHC prints RuntimeRep
type variables for levity-polymorphic types. Otherwise GHC will default these to Ptr-
RepLifted. For example,

ghci> :t ($)
($) :: (a -> b) -> a -> b
ghci> :set -fprint-explicit-runtime-reps
ghci> :t ($)
($)
:: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).

(a -> b) -> a -> b

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 73) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-equality-relations
Using -fprint-equality-relations (page 73) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equality,
the internal equality relation used in GHC’s solver. Generally, users should not need
to worry about the subtleties here; ~ is probably what you want. Without -fprint-
equality-relations (page 73), GHC prints all of these as ~. See also Equality con-
straints (page 342).

-fprint-expanded-synonyms
When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo = Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration
When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

6.1. Using GHC 73



GHC User’s Guide Documentation, Release 8.2.1.20171030

main :: IO ()
main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
‘_ <- ($) return let a = "hello" in a’

or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
‘_ <- ($)

return
let

AbsBinds [] []
{Exports: [a <= a

<>]
Exported types: a :: [Char]

[LclId, Str=DmdType]
Binds: a = "hello"}

in a’
or by using the flag -fno-warn-unused-do-bind

-fdiagnostics-color=⟨always|auto|never⟩
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.
The precise color scheme is controlled by the environment variable GHC_COLORS (or
GHC_COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.
Currently, in the primary message, the following inheritance tree is in place:
•message

–header
*warning
*error
*fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

74 Chapter 6. Using GHC

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics


GHC User’s Guide Documentation, Release 8.2.1.20171030

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-f[no-]diagnostics-show-caret
Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.
For example:

test.hs:3:6: parse error on input `where'

becomes:

test296.hs:3:6-10: parse error on input `where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for `a'
Bound at: test.hs:5:4

test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-H ⟨size⟩
Set the minimum size of the heap to ⟨size⟩. This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 123).

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 123).

6.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.
-msse2

(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 168). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 168) will also use SSE2 if your processor
supports it but detects this automatically so no flag is required.
SSE2 is unconditionally used on x86-64 platforms.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 168). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).

6.1. Using GHC 75



GHC User’s Guide Documentation, Release 8.2.1.20171030

The LLVM backend (page 168) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

6.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. By default, you get a standard set
of warnings which are generally likely to indicate bugs in your program. These are:
• -Woverlapping-patterns (page 84)
• -Wwarnings-deprecations (page 79)
• -Wdeprecations (page 79)
• -Wdeprecated-flags (page 80)
• -Wunrecognised-pragmas (page 78)
• -Wduplicate-constraints (page 81)
• -Wduplicate-exports (page 82)
• -Woverflowed-literals (page 81)
• -Wempty-enumerations (page 81)
• -Wmissing-fields (page 83)
• -Wmissing-methods (page 83)
• -Wwrong-do-bind (page 87)
• -Wunsupported-calling-conventions (page 80)
• -Wdodgy-foreign-imports (page 80)
• -Winline-rule-shadowing (page 87)
• -Wunsupported-llvm-version (page 85)
• -Wtabs (page 85)
• -Wunrecognised-warning-flags (page 77)

The following flags are simple ways to select standard “packages” of warnings:
-W

Provides the standard warnings plus
•-Wunused-binds (page 85)
•-Wunused-matches (page 86)
•-Wunused-foralls (page 87)
•-Wunused-imports (page 86)
•-Wincomplete-patterns (page 82)
•-Wdodgy-exports (page 80)
•-Wdodgy-imports (page 81)
•-Wunbanged-strict-patterns (page 88)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 76) are
•-Wincomplete-uni-patterns (page 82)
•-Wincomplete-record-updates (page 83)
•-Wmonomorphism-restriction (page 85)
•-Wimplicit-prelude (page 82)
•-Wmissing-local-signatures (page 84)
•-Wmissing-exported-signatures (page 84)
•-Wmissing-import-lists (page 83)
•-Wmissing-home-modules (page 88)
•-Widentities (page 82)

76 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

•-Wredundant-constraints (page 81)
-Wcompat

Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.
This currently enables
•-Wmissing-monadfail-instances (page 80)
•-Wsemigroup (page 80)
•-Wnoncanonical-monoid-instances (page 80)

-Wno-compat
Disables all warnings enabled by -Wcompat (page 77).

-w
Turns off all warnings, including the standard ones and those that -Wall (page 76)
doesn’t enable.

These options control which warnings are considered fatal and cause compilation to abort.
-Werror

Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing
batch compilation.

-Werror=⟨wflag⟩
Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 77) flag.

-Wwarn=⟨wflag⟩
Causes a specific warning to be treated as normal warning, not fatal error.
Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.
This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno-... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.
-Wunrecognised-warning-flags

Enables warnings when the compiler encounters a -W... flag that is not recognised.
This warning is on by default.

-Wtyped-holes
Determines whether the compiler reports typed holes warnings. Has no effect unless

6.2. Warnings and sanity-checking 77



GHC User’s Guide Documentation, Release 8.2.1.20171030

typed holes errors are deferred until runtime. See Typed Holes (page 362) and Deferring
type errors to runtime (page 370)
This warning is on by default.

-Wtype-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 370)
This warning is on by default.

-fdefer-type-errors
Implies -fdefer-typed-holes (page 78)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 370)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “_”, “_foo”,
“_bar”)) until runtime. This will turn the errors produced by typed holes (page 362) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as -fdefer-type-errors (page 78) (which implies this option). See Typed Holes
(page 362) and Deferring type errors to runtime (page 370).
Implied by -fdefer-type-errors (page 78). See also -Wtyped-holes (page 77).

-fdefer-out-of-scope-variables
Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a value
that depends on a typed hole produces a runtime error, the same as -fdefer-type-
errors (page 78) (which implies this option). See Typed Holes (page 362) and Deferring
type errors to runtime (page 370).
Implied by -fdefer-type-errors (page 78). See also -Wdeferred-out-of-scope-
variables (page 78).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless -XPartialTypeSignatures (page 365) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 365).
This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.
This option is on by default.

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS_HUGS and DERIVE.
This option is on by default.

78 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wmissed-specialisations
-Wall-missed-specialisations

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. The “all” form reports all such situations whereas
the “non-all” form only reports when the situation arises during specialisation of an im-
ported function.
The “non-all” form is intended to catch cases where an imported function that is marked
as INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.
Note that these warnings will not throw errors if used with -Werror (page 77).
These options are both off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 398) for
more details on the pragmas.
This option is on by default.

-Wdeprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 398) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 79).
This option is on by default.

-Wamp
This option is deprecated.
Caused a warning to be emitted when a definition was in conflict with the AMP
(Applicative-Monad proosal).

-Wnoncanonical-monad-instances
Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
•If return is defined it must be canonical (i.e. return = pure).
•If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:
•Warn if pure is defined backwards (i.e. pure = return).
•Warn if (*>) is defined backwards (i.e. (*>) = (>>)).

This option is off by default.
-Wnoncanonical-monadfail-instances

Warn if noncanonical Monad or MonadFail instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
•If fail is defined it must be canonical (i.e. fail = Control.Monad.Fail.fail).

Moreover, in MonadFail instance declarations:
•Warn if fail is defined backwards (i.e. fail = Control.Monad.fail).

6.2. Warnings and sanity-checking 79



GHC User’s Guide Documentation, Release 8.2.1.20171030

See also -Wmissing-monadfail-instances (page 80).
This option is off by default.

-Wnoncanonical-monoid-instances
Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
•If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).

Moreover, in Semigroup instance declarations:
•Warn if (<>) is defined backwards (i.e. (<>) = mappend).

This warning is off by default. However, it is part of the -Wcompat (page 77) option group.
-Wmissing-monadfail-instances

Warn when a failable pattern is used in a do-block that does not have a MonadFail
instance.
See also -Wnoncanonical-monadfail-instances (page 79).
Being part of the -Wcompat (page 77) option group, this warning is off by default, but
will be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup
Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.
1.Instances of Monoid should also be instances of Semigroup
2.The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 77) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.
This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

foreign import "f" f :: FunPtr t

on the grounds that it probably should be

foreign import "&f" f :: FunPtr t

The first form declares that ‘f‘ is a (pure) C function that takes no arguments and returns
a pointer to a C function with type ‘t‘, whereas the second form declares that ‘f‘ itself is
a C function with type ‘t‘. The first declaration is usually a mistake, and one that is hard
to debug because it results in a crash, hence this warning.

80 Chapter 6. Using GHC

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail


GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wdodgy-exports
Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), but is it just a type synonym.
Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports
Causes a warning to be emitted in the following cases:
•When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.
•When an import statement hides an entity that is not exported.

-Woverflowed-literals
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wduplicate-constraints
Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 81).

-Wredundant-constraints
Since 8.0

Have the compiler warn about redundant constraints in a type signature. In particular:
•A redundant constraint within the type signature itself:

f :: (Eq a, Ord a) => a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.
•A constraint in the type signature is not used in the code it covers:

f :: Eq a => a -> a -> Bool
f x y = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.
This option is on by default. As usual you can suppress it on a per-module basis with -
Wno-redundant-constraints (page 81). Occasionally you may specifically want a func-
tion to have a more constrained signature than necessary, perhaps to leave yourself
wiggle-room for changing the implementation without changing the API. In that case,
you can suppress the warning on a per-function basis, using a call in a dead binding. For
example:

f :: Eq a => a -> a -> Bool
f x y = True

6.2. Warnings and sanity-checking 81



GHC User’s Guide Documentation, Release 8.2.1.20171030

where
_ = x == x -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.
This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or this
implicit import is disabled (either by -XNoImplicitPrelude (page 239) or a LANGUAGE
NoImplicitPrelude pragma).
Note that no warning is given for syntax that implicitly refers to the Prelude, even
if -XNoImplicitPrelude (page 239) would change whether it refers to the Prelude.
For example, no warning is given when 368 means Prelude.fromInteger (368::Pre-
lude.Integer) (where Prelude refers to the actual Prelude module, regardless of the
imports of the module being compiled).
This warning is off by default.

-Wincomplete-patterns
-Wincomplete-uni-patterns

The option -Wincomplete-patterns (page 82) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 82) is enabled.

g [] = 2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 76).
The flag -Wincomplete-uni-patterns (page 82) is similar, except that it applies only to
lambda-expressions and pattern bindings, constructs that only allow a single pattern:

h = \[] -> 2
Just k = f y

-fmax-pmcheck-iterations=⟨n⟩
Default 2000000

82 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Sets how many iterations of the pattern-match checker will perform before giving up.
This limit is to catch cases where pattern-match checking might be excessively costly
(due to the exponential complexity of coverage checking in the general case). It typi-
cally shouldn’t be necessary to set this unless GHC informs you that it has exceeded the
pattern match checker’s iteration limit (in which case you may want to consider refac-
toring your pattern match, for the sake of future readers of your code.

-Wincomplete-record-updates
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 83) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x = 6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-fields
This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-import-lists
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X( f )
import Y
import qualified Z
p x = f x x

The -Wmissing-import-lists (page 83) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z‘s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.
The warning is suppressed if the method name begins with an underscore. Here’s an
example where this is useful:

class C a where
_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... _simpleFn ...

The idea is that: (a) users of the class will only call complexFn; never _simpleFn; and (b)
instance declarations can define either complexFn or _simpleFn.
The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 399).

6.2. Warnings and sanity-checking 83



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 83) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 84).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 84) option. This option takes precedence over -Wmissing-signatures (page 83).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 84).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 84) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 84) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 84) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive call in f = ... let f = id in ... f ....
The warning is suppressed for names beginning with an underscore. For example

f x = do { _ignore <- this; _ignore <- that; return (the other) }

-Worphans
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.
The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 151) for details.
The flag -Worphans (page 84) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2

84 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmermistake/error, so this option
is enabled by default.

-Wsimplifiable-class-constraints
Since 8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a] => a -> a

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f :: Eq a => a -> a

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 85).

-Wtabs
Have the compiler warn if there are tabs in your source file.

-Wtype-defaults
Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.
This warning is off by default.

-Wmonomorphism-restriction
Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.
This warning is off by default.

-Wunsupported-llvm-version
Warn when using -fllvm (page 174) with an unsupported version of LLVM.

-Wunticked-promoted-constructors
Warn if a promoted data constructor is used without a tick preceding its name.
For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.
This warning is enabled by default in -Wall (page 76) mode.

-Wunused-binds
Report any function definitions (and local bindings) which are unused. An alias for

6.2. Warnings and sanity-checking 85



GHC User’s Guide Documentation, Release 8.2.1.20171030

•-Wunused-top-binds (page 86)
•-Wunused-local-binds (page 86)
•-Wunused-pattern-binds (page 86)

-Wunused-top-binds
Report any function definitions which are unused.
More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.
A variable is regarded as “used” if
•It is exported, or
•It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where
f = let (p,q) = rhs1 in t p -- No warning: q is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g = h x -- Warning: g unused
h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding
_w = True -- No warning: _w starts with an underscore

-Wunused-local-binds
Report any local definitions which are unused. For example:

module A (f) where
f = let (p,q) = rhs1 in t p -- Warning: q is unused
g = h x -- No warning: g is unused, but is a top-level binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone, possibly-banged,
wild-card pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding
(_, _) = rhs4 -- Warning: unused pattern binding
_ = rhs3 -- No warning: lone wild-card pattern
!_ = rhs4 -- No warning: banged wild-card pattern; behaves like seq

The motivation for allowing lone wild-card patterns is they are not very different from _v
= rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
_ = x::Int. A lone banged wild-card pattern is useful as an alternative (to seq) way to
force evaluation.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore,
thus:

86 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

f _x = True

Note that -Wunused-matches (page 86) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 87) flag.

-Wunused-do-bind
Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

-Wunused-type-patterns
Report all unused type variables which arise from patterns in type family and data family
instances. For instance:

type instance F x y = []

would report x and y as unused. The warning is suppressed if the type variable name
begins with an underscore, like so:

type instance F _x _y = []

Unlike -Wunused-matches (page 86), -Wunused-type-patterns (page 87) is not implied
by -Wall (page 76). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls
Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and c as unused.
-Wwrong-do-bind

Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

do { popInt 10 ; return 10 }

6.2. Warnings and sanity-checking 87



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 411).

-Wcpp-undef
This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 220) for information about unlifted types.

-Wmissing-home-modules
Since 8.2

When a module provided by the package currently being compiled (i.e. the “home”
package) is imported, but not explicitly listed in command line as a target. Useful for
Cabal to ensure GHC won’t pick up modules, not listed neither in exposed-modules, nor
in other-modules.

If you’re feeling really paranoid, the -dcore-lint (page 187) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

6.3 Optimisation (code improvement)

The -O* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.
Most of these options are boolean and have options to turn them both “on” and “off” (begin-
ning with the prefix no-). For instance, while -fspecialise enables specialisation, -fno-
specialise disables it. When multiple flags for the same option appear in the command-line
they are evaluated from left to right. For instance, -fno-specialise -fspecialise will en-
able specialisation.
It is important to note that the -O* flags are roughly equivalent to combinations of -f* flags.
For this reason, the effect of the -O* and -f* flags is dependent upon the order in which they
occur on the command line.
For instance, take the example of -fno-specialise -O1. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -O1
implies -fspecialise, overriding the previous flag. By contrast, -O1 -fno-specialise will
compile without specialisation, as one would expect.

6.3.1 -O*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.
Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

88 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

No ‘‘-O*‘‘-type option specified: This is taken to mean “Please compile quickly; I’m not
over-bothered about compiled-code quality.” So, for example, ghc -c Foo.hs

-O0
Means “turn off all optimisation”, reverting to the same settings as if no -O options had
been specified. Saying -O0 can be useful if e.g. make has inserted a -O on the command
line already.

-O
-O1

Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -O Main.lhs

-O2
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”
The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-Odph
Enables all -O2 optimisation, sets -fmax-simplifier-iterations=20 and -
fsimplifier-phases=3. Designed for use with Data Parallel Haskell (DPH) (page 426).

We don’t use a -O* flag for day-to-day work. We use -O to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -O2 (and we
go for lots of coffee breaks).
The easiest way to see what -O (etc.) “really mean” is to run with -v (page 71), then stand
back in amazement.

6.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flagsmarked as on by default are enabled
by -O, and as such you shouldn’t need to set any of them explicitly. A flag -fwombat can be
negated by saying -fno-wombat.
-fcase-merge

Default on
Merge immediately-nested case expressions that scrutinise the same variable. For ex-
ample,

case x of
Red -> e1
_ -> case x of

Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> e1
Blue -> e2
Green -> e2

-fcase-folding
Default on

6.3. Optimisation (code improvement) 89



GHC User’s Guide Documentation, Release 8.2.1.20171030

Allow constant folding in case expressions that scrutinise some primops: For example,

case x `minusWord#` 10## of
10## -> e1
20## -> e2
v -> e3

Is transformed to,

case x of
20## -> e1
30## -> e2
_ -> let v = x `minusWord#` 10## in e3

-fcall-arity
Default on

Enable call-arity analysis.
-fcmm-elim-common-blocks

Default on
Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcpr-off
Switch off CPR analysis in the demand analyser.

-fcse
Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.

-fstg-cse
Default on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their represetation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off

Make dictionaries strict.

90 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-fdmd-tx-dict-sel
Default on

Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction

Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.

-fdo-lambda-eta-expansion
Default on

Eta-expand let-bindings to increase their arity.
-feager-blackholing

Default off
Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.
Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 482).

-fexpose-all-unfoldings
Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).
This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.
This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness

6.3. Optimisation (code improvement) 91

http://community.haskell.org/~simonmar/papers/multiproc.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz


GHC User’s Guide Documentation, Release 8.2.1.20171030

Default on
Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full-laziness. When optimisation in on, and
-fno-full-laziness is not given, some transformations that increase sharing are per-
formed, such as extracting repeated computations from a loop. These are the same
transformations that a fully lazy implementation would do, the difference is that GHC
doesn’t consistently apply full-laziness, so don’t rely on it.

-ffun-to-thunk
Default off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 395)).

-fignore-interface-pragmas
Default off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M.hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like -fspec-constr (page 95) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the Trac wiki page.

-fliberate-case
Default off but enabled with -O2 (page 89).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (-fspec-constr (page 95)) but for free variables rather than arguments.

-fliberate-case-threshold=⟨n⟩
Default 2000

Set the size threshold for the liberate-case transformation.
-floopification

Default on

92 Chapter 6. Using GHC

http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
https://ghc.haskell.org/trac/ghc/wiki/LateDmd


GHC User’s Guide Documentation, Release 8.2.1.20171030

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fmax-inline-alloc-size=⟨n⟩
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=⟨n⟩
Default 32

Inline memcpy calls if they would generate no more than ⟨n⟩ pseudo-instructions.
-fmax-inline-memset-insns=⟨n⟩

Default 32
Inline memset calls if they would generate no more than n pseudo instructions.

-fmax-relevant-binds=⟨n⟩
-fno-max-relevant-bindings

Default 6
The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with -fno-
max-relevant-bindings gives an unlimited number. Syntactically top-level bindings are
also usually excluded (since they may be numerous), but -fno-max-relevant-bindings
includes them too.

-fmax-uncovered-patterns=⟨n⟩
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by -
Wincomplete-patterns (page 82) and -Wincomplete-uni-patterns (page 82).

-fmax-simplifier-iterations=⟨n⟩
Default 4

Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=⟨n⟩

Default 10
If a worker has that many arguments, none will be unpacked anymore.

-fno-opt-coercion
Default off

Turn off the coercion optimiser.
-fno-pre-inlining

Default off
Turn off pre-inlining.

-fno-state-hack

6.3. Optimisation (code improvement) 93



GHC User’s Guide Documentation, Release 8.2.1.20171030

Default off
Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Default off

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default on

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms
Make GHC bemore precise about its treatment of bottom (but see also -fno-state-hack
(page 93)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (Trac #7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.
Note that the graph colouring allocator is a bit experimental and may fail when faced
with code with high register pressure Trac #8657.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the -fregs-graph (page 94) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=⟨n⟩
Default 2

Set the number of phases for the simplifier. Ignored with -O0.
-fsimpl-tick-factor=⟨n⟩

Default 100

94 Chapter 6. Using GHC

https://ghc.haskell.org/trac/ghc/ticket/7679
https://ghc.haskell.org/trac/ghc/ticket/8657


GHC User’s Guide Documentation, Release 8.2.1.20171030

GHC’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 409)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 482)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.
If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr
Default off but enabled by -O2 (page 89).

Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.
This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last [] = error "last"
last (x : []) = x
last (x : xs) = last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above
code to:

last :: [a] -> a
last [] = error "last"
last (x : xs) = last' x xs

where
last' x [] = x
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.
It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -> b -> a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl_loop SPEC z s
where

foldl_loop !sPEC z s = case step s of
Yield x s' -> foldl_loop sPEC (f z x) s'
Skip -> foldl_loop sPEC z s'
Done -> z

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl_loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

6.3. Optimisation (code improvement) 95

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/


GHC User’s Guide Documentation, Release 8.2.1.20171030

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)
In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=⟨n⟩
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=⟨n⟩
Default 2000

Set the size threshold for the SpecConstr transformation.
-fspecialise

Default on
Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 96) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 401)) will
be specialised as well.

-fspecialise-aggressively
Default off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with -fexpose-all-unfoldings
(page 91) if you want to ensure all calls are specialised.

-fcross-module-specialise
Default on

Specialise INLINABLE (INLINABLE pragma (page 401)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by -fspecialise) for this to have any effect.

-fsolve-constant-dicts
Default on

When solving constraints, try to eagerly solve super classes using available dictionaries.
For example:

class M a b where m :: a -> b

type C a b = (Num a, M a b)

96 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

f :: C Int b => b -> Int -> Int
f _ x = x + 1

The body of f requires a Num Int instance. We could solve this constraint from the
context because we have C Int b and that provides us a solution for Num Int. However,
we can often produce much better code by directly solving for an available Num Int
dictionary we might have at hand. This removes potentially many layers of indirection
and crucially allows other optimisations to fire as the dictionary will be statically known
and selector functions can be inlined.
The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

-fstrictness
Default on

Switch on the strictness analyser. There is a very old paper about GHC’s strictness
analyser, Measuring the effectiveness of a simple strictness analyser, but the current
one is quite a bit different.
The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This
allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=⟨n⟩
Run an additional strictness analysis before simplifier phase ⟨n⟩.

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 406)) to every
strict constructor field that fulfils the size restriction.
For example, the constructor fields in the following data types

data A = A !Int
data B = B !A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 220)) value with -funbox-small-strict-fields enabled.
This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 407)).

6.3. Optimisation (code improvement) 97

http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/simple-strictnes-analyser.ps.gz


GHC User’s Guide Documentation, Release 8.2.1.20171030

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 406)).
This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 407)).
Alternatively you can use -funbox-small-strict-fields (page 97) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=⟨n⟩
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)
Consequences:
1.nothing larger than this will be inlined (unless it has an INLINE pragma)
2.nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The -funfolding-use-threshold=⟨n⟩ (page 98) is more useful.

-funfolding-dict-discount=⟨n⟩
Default 30

How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=⟨n⟩

Default 60
How eager should the compiler be to inline functions?

-funfolding-keeness-factor=⟨n⟩
Default 1.5

How eager should the compiler be to inline functions?
-funfolding-use-threshold=⟨n⟩

Default 60
This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.
The difference between this and -funfolding-creation-threshold=⟨n⟩ (page 98) is
that this one determines if a function definition will be inlined at a call site. The other

98 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

option determines if a function definition will be kept around at all for potential inlining.
-fvectorisation-avoidance

Default on
Part of Data Parallel Haskell (DPH) (page 426).
Enable the vectorisation avoidance optimisation. This optimisation only works when
used in combination with the -fvectorise transformation.
While vectorisation of code using DPH is often a big win, it can also produce worse results
for some kinds of code. This optimisation modifies the vectorisation transformation to
try to determine if a function would be better of unvectorised and if so, do just that.

-fvectorise
Default off

Part of Data Parallel Haskell (DPH) (page 426).
Enable the vectorisation optimisation transformation. This optimisation transforms the
nested data parallelism code of programs using DPH into flat data parallelism. Flat
data parallel programs should have better load balancing, enable SIMD parallelism and
friendlier cache behaviour.

6.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.
Optionally, the program may be linked with the -threaded (page 178) option (see Options
affecting linking (page 175). This provides two benefits:
• It enables the -N ⟨x⟩ (page 100) to be used, which allows threads to run in parallelism
on a multi-processor or multi-core machine. See Using SMP parallelism (page 99).

• If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 444).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C ⟨s⟩

Default 20 milliseconds
Sets the context switch interval to ⟨s⟩ seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0 or -C, context switches will occur as often as possible (at every
heap block allocation).

6.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

6.4. Using Concurrent Haskell 99



GHC User’s Guide Documentation, Release 8.2.1.20171030

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.
However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 424) we describe the
language features that affect parallelism.

6.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 178) option (see Options affecting linking (page 175)). Additionally, the following com-
piler options affect parallelism:
-feager-blackholing

Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly
it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.
The option -feager-blackholing (page 91) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), becausemost thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.
We recommend compiling any code that is intended to be run in parallel with the -
feager-blackholing (page 91) flag.

6.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N ⟨x⟩ (page 100)
options.
-N ⟨x⟩
-maxN ⟨x⟩

Use ⟨x⟩ simultaneous threads when running the program.
The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 444)) another OS thread can take
over that capability.

100 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Normally ⟨x⟩ should be chosen to match the number of CPU cores on the machine 1. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.
Omitting ⟨x⟩, i.e. +RTS -N -RTS, lets the runtime choose the value of ⟨x⟩ itself based on
how many processors are in your machine.
With -maxN⟨x⟩, i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.
Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.
Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 123)).
The current value of the -N option is available to the Haskell program via Con-
trol.Concurrent.getNumCapabilities, and it may be changed while the program is
running by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:
-qa

Use the OS’s affinity facilities to try to pin OS threads to CPU cores.
When this option is enabled, the OS threads for a capability i are bound to the CPU core
i using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched_setaffinity().
Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.
This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

6.5.3 Hints for using SMP parallelism

Add the -s [⟨file⟩] (page 129) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N ⟨x⟩ (page 100) for comparison.
The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 123)), which will
give you an idea how well your par annotations are working.
GHC’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

6.5. Using SMP parallelism 101



GHC User’s Guide Documentation, Release 8.2.1.20171030

we’re also interested in collecting parallel programs to add to our benchmarking suite.

6.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list
its static/dynamic status (see Static, Dynamic, and Mode options (page 67)), and the flag’s
opposite (if available).

6.6.1 Verbosity options

More details in Verbosity options (page 71)

102 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Reverse
-v (page 71) verbose mode (equivalent to -v3) dy-

namic
-v ⟨n⟩ set verbosity level dy-

namic
-fhide-source-
paths
(page 72)

hide module source and object paths dy-
namic

-fprint-
potential-
instances
(page 72)

display all available instances in type error
messages

dy-
namic

-fno-print-
potential-
instances

-fprint-
explicit-foralls
(page 72)

Print explicit forall quantification in
types. See also -XExplicitForAll
(page 344)

dy-
namic

-fno-print-
explicit-
foralls

-fprint-
explicit-kinds
(page 72)

Print explicit kind foralls and kind
arguments in types. See also
-XKindSignatures (page 347)

dy-
namic

-fno-print-
explicit-kinds

-fprint-
explicit-
runtime-reps
(page 73)

Print RuntimeRep variables in types which
are runtime-representation polymorphic.

dy-
namic

-fno-print-
explicit-
runtime-reps

-fprint-unicode-
syntax
(page 72)

Use unicode syntax when printing
expressions, types and kinds. See also
-XUnicodeSyntax (page 224)

dy-
namic

-fno-print-
unicode-syntax

-fprint-
expanded-
synonyms
(page 73)

In type errors, also print
type-synonym-expanded types.

dy-
namic

-fno-print-
expanded-
synonyms

-fprint-
typechecker-
elaboration
(page 73)

Print extra information from typechecker. dy-
namic

-fno-print-
typechecker-
elaboration

-fdiagnostics-
color=(always|auto|never)

Use colors in error messages dy-
namic

-f[no-
]diagnostics-
show-caret
(page 75)

Whether to show snippets of original
source code

dy-
namic

-ferror-spans
(page 75)

Output full span in error messages dy-
namic

-Rghc-timing
(page 75)

Summarise timing stats for GHC (same as
+RTS -tstderr).

dy-
namic

-fshow-hole-
constraints
(page 364)

Show constraints when reporting typed
holes

dy-
namic

6.6.2 Alternative modes of operation

More details in Modes of operation (page 68)

6.6. Flag reference 103



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description TypeRe-
verse

--help (page 68), -?
(page 68)

Display help mode

--interactive (page 68) Interactive mode - normally used by just running
ghci; see Using GHCi (page 19) for details.

mode

--make (page 68) Build a multi-module Haskell program,
automatically figuring out dependencies. Likely
to be much easier, and faster, than using make;
see Using ghc –make (page 69) for details.

mode

-e ⟨expr⟩ (page 68) Evaluate expr; see Expression evaluation mode
(page 70) for details.

mode

--show-iface ⟨file⟩
(page 68)

display the contents of an interface file. mode

-M (page 68) generate dependency information suitable for use
in a Makefile; see Dependency generation
(page 149) for details.

mode

--frontend ⟨module⟩
(page 68)

run GHC with the given frontend plugin; see
Frontend plugins (page 456) for details.

mode

--supported-extensions
(page 68),
--supported-languages
(page 68)

display the supported language extensions mode

--show-options (page 68) display the supported command line options mode
--info (page 69) display information about the compiler mode
--version (page 69), -V
(page 69)

display GHC version mode

--numeric-version
(page 69)

display GHC version (numeric only) mode

--print-libdir (page 69) display GHC library directory mode

6.6.3 Which phases to run

More details in Batch compiler mode (page 70)
Flag Description Type Re-

verse
-F (page 174) Enable the use of a pre-processor (page 174) (set with

-pgmF ⟨cmd⟩ (page 170))
dy-
namic

-E (page 68) Stop after preprocessing (.hspp file) mode
-C (page 68) Stop after generating C (.hc file) mode
-S (page 68) Stop after generating assembly (.s file) mode
-c (page 68) Stop after generating object (.o) file mode
-x ⟨suffix⟩
(page 71)

Override default behaviour for source files dy-
namic

6.6.4 Redirecting output

More details in Redirecting the compilation output(s) (page 137)

104 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Re-
verse

-hcsuf ⟨suffix⟩
(page 139)

set the suffix to use for intermediate C files dy-
namic

-hidir ⟨dir⟩
(page 138)

set directory for interface files dy-
namic

-hisuf ⟨suffix⟩
(page 139)

set the suffix to use for interface files dy-
namic

-o ⟨file⟩ (page 137) set output filename dy-
namic

-odir ⟨dir⟩
(page 138)

set directory for object files dy-
namic

-ohi ⟨file⟩
(page 138)

set the filename in which to put the interface dy-
namic

-osuf ⟨suffix⟩
(page 138)

set the output file suffix dy-
namic

-stubdir ⟨dir⟩
(page 138)

redirect FFI stub files dy-
namic

-dumpdir ⟨dir⟩
(page 138)

redirect dump files dy-
namic

-outputdir ⟨dir⟩
(page 138)

set output directory dy-
namic

-dyno ⟨file⟩ Set the output filename for dynamic object files
(see -dynamic-too)

dy-
namic

-dynosuf ⟨suffix⟩ Set the object suffix for dynamic object files (see
-dynamic-too)

dy-
namic

-dynhisuf ⟨suffix⟩ Set the hi suffix for dynamic object files (see
-dynamic-too)

dy-
namic

6.6.5 Keeping intermediate files

More details in Keeping Intermediate Files (page 139)
Flag Description Type Reverse
-keep-hc-file (page 139),
-keep-hc-files (page 139)

Retain intermediate .hc files. dy-
namic

-keep-hi-files (page 139) Retain intermediate .hi files (the
default).

dy-
namic

-no-keep-
hi-files

-keep-llvm-file (page 139),
-keep-llvm-files (page 139)

Retain intermediate LLVM .ll
files. Implies -fllvm (page 174).

dy-
namic

-keep-o-files (page 139) Retain intermediate .o files (the
default).

dy-
namic

-no-keep-
o-files

-keep-s-file (page 139),
-keep-s-files (page 139)

Retain intermediate .s files. dy-
namic

-keep-tmp-files (page 139) Retain all intermediate temporary
files.

dy-
namic

6.6.6 Temporary files

More details in Redirecting temporary files (page 140)
Flag Description Type Reverse
-tmpdir ⟨dir⟩ (page 140) set the directory for temporary files dynamic

6.6. Flag reference 105



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.6.7 Finding imports

More details in The search path (page 137)
Flag Description Type Re-

verse
-i⟨dir⟩[:⟨dir⟩]*
(page 137)

add ⟨dir⟩, ⟨dir2⟩, etc. to import
path

dy-
namic/:set

-i (page 137) Empty the import directory list dy-
namic/:set

6.6.8 Interface file options

More details in Other options related to interface files (page 140)
Flag Description Type Re-

verse
-ddump-hi (page 140) Dump the new interface to stdout dy-

namic
-ddump-hi-diffs (page 140) Show the differences vs. the old

interface
dy-
namic

-ddump-minimal-imports
(page 140)

Dump a minimal set of imports dy-
namic

--show-iface ⟨file⟩
(page 68)

See Modes of operation (page 68). mode

6.6.9 Recompilation checking

More details in The recompilation checker (page 140)
Flag Description Type Reverse
-fforce-
recomp
(page 140)

Turn off recompilation checking. This is implied by any
-ddump-X option when compiling a single file (i.e. when
using -c (page 68)).

dy-
namic

-fno-
force-
recomp

6.6.10 Interactive-mode options

More details in The .ghci and .haskeline files (page 58)

106 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Reverse
-ignore-dot-ghci
(page 58)

Disable reading of .ghci files dy-
namic

-ghci-script
(page 58)

Read additional .ghci files dy-
namic

-fbreak-on-error
(page 42)

Break on uncaught exceptions and errors
(page 42)

dy-
namic

-fno-break-
on-error

-fbreak-on-
exception
(page 42)

Break on any exception thrown (page 42) dy-
namic

-fno-break-
on-
exception

-fghci-hist-
size=⟨n⟩
(page 41)

Set the number of entries GHCi keeps for
:history. See The GHCi Debugger
(page 35).

dy-
namic

-fprint-evld-
with-show

Enable usage of Show instances in :print.
See Breakpoints and inspecting variables
(page 35).

dy-
namic

-fno-print-
evld-with-
show

-fprint-bind-
result
(page 24)

Turn on printing of binding results in GHCi
(page 24)

dy-
namic

-fno-print-
bind-result

-fno-print-bind-
contents

Turn off printing of binding contents in GHCi
(page 35)

dy-
namic

-fno-implicit-
import-qualified

Turn off implicit qualified import of
everything in GHCi (page 30)

dy-
namic

-interactive-
print ⟨expr⟩
(page 34)

Select the function to use for printing
evaluated expressions in GHCi (page 33)

dy-
namic

6.6.11 Packages

More details in Packages (page 152)

6.6. Flag reference 107



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Re-
verse

-this-unit-id ⟨unit-id⟩
(page 155)

Compile to be part of unit (i.e.
package) ⟨unit-id⟩

dynamic

-package ⟨pkg⟩ (page 153) Expose package ⟨pkg⟩ dy-
namic/:set

-hide-all-packages
(page 154)

Hide all packages by default dynamic

-hide-package ⟨pkg⟩
(page 154)

Hide package ⟨pkg⟩ dy-
namic/:set

-ignore-package ⟨pkg⟩
(page 155)

Ignore package ⟨pkg⟩ dy-
namic/:set

-package-db ⟨file⟩
(page 157)

Add ⟨file⟩ to the package db stack. dynamic

-clear-package-db
(page 157)

Clear the package db stack. dynamic

-no-global-package-db
(page 157)

Remove the global package db from
the stack.

dynamic

-global-package-db
(page 157)

Add the global package db to the
stack.

dynamic

-no-user-package-db
(page 157)

Remove the user’s package db from
the stack.

dynamic

-user-package-db
(page 157)

Add the user’s package db to the
stack.

dynamic

-no-auto-link-packages
(page 155)

Don’t automatically link in the base
and rts packages.

dynamic

-trust ⟨pkg⟩ (page 434) Expose package ⟨pkg⟩ and set it to be
trusted

dy-
namic/:set

-distrust ⟨pkg⟩ (page 434) Expose package ⟨pkg⟩ and set it to be
distrusted

dy-
namic/:set

-distrust-all (page 155) Distrust all packages by default dy-
namic/:set

-package-env
⟨file⟩|⟨name⟩ (page 159)

Use the specified package
environment.

dynamic

6.6.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-# LAN-
GUAGE blah #-} pragma in the file itself. See Language options (page 219). Some options
are enabled using -f* flags.

Flag Description Type Reverse
-fconstraint-solver-iterations=⟨n⟩ default: 4. Set the iteration limit for the type-constraint solver. Typically one iteration suffices; so please yell if you find you need to set it higher than the default. Zero means infinity. dynamic
-freduction-depth=⟨n⟩ default: 200. Set the limit for type simplification (page 301). Zero means infinity. dynamic
-fcontext-stack=⟨n⟩ Deprecated. Use -freduction-depth=⟨n⟩ instead. dynamic
-fglasgow-exts (page 219) Deprecated. Enable most language extensions; see Language options (page 219) for exactly which ones. dynamic -fno-glasgow-exts
-firrefutable-tuples Make tuple pattern matching irrefutable dynamic -fno-irrefutable-tuples
-fpackage-trust (page 435) Enable Safe Haskell (page 426) trusted package requirement for trustworthy modules. dynamic
-ftype-function-depth=⟨n⟩ Deprecated. Use -freduction-depth=⟨n⟩ instead. dynamic
-XAllowAmbiguousTypes (page 345) Allow the user to write ambiguous types (page 345), and the type inference engine to infer them. dynamic -XNoAllowAmbiguousTypes
-XArrows (page 382) Enable arrow notation (page 382) extension dynamic -XNoArrows

Continued on next page

108 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.1 – continued from previous page
Flag Description Type Reverse
-XApplicativeDo (page 231) Enable Applicative do-notation desugaring (page 231) dynamic -XNoApplicativeDo
-XAutoDeriveTypeable As of GHC 7.10, this option is not needed, and should not be used. Previously this would automatically derive Typeable instances for every datatype and type class declaration (page 275). Implies -XDeriveDataTypeable (page 275). dynamic -XNoAutoDeriveTypeable
-XBangPatterns (page 388) Enable bang patterns (page 388). dynamic -XNoBangPatterns
-XBinaryLiterals (page 226) Enable support for binary literals (page 226). dynamic -XNoBinaryLiterals
-XCApiFFI Enable the CAPI calling convention (page 439). dynamic -XNoCAPIFFI
-XConstrainedClassMethods (page 292) Enable constrained class methods (page 292). dynamic -XNoConstrainedClassMethods
-XConstraintKinds (page 343) Enable a kind of constraints (page 343). dynamic -XNoConstraintKinds
-XCPP Enable the C preprocessor (page 171). dynamic -XNoCPP
-XDataKinds (page 327) Enable datatype promotion (page 327). dynamic -XNoDataKinds
-XDefaultSignatures (page 292) Enable default signatures (page 292). dynamic -XNoDefaultSignatures
-XDeriveAnyClass (page 281) Enable deriving for any class (page 281). dynamic -XNoDeriveAnyClass
-XDeriveDataTypeable (page 275) Enable deriving for the Data class (page 275). Implied by -XAutoDeriveTypeable. dynamic -XNoDeriveDataTypeable
-XDeriveFunctor (page 269) Enable deriving for the Functor class (page 269). Implied by -XDeriveTraversable (page 269). dynamic -XNoDeriveFunctor
-XDeriveFoldable (page 269) Enable deriving for the Foldable class (page 269). Implied by -XDeriveTraversable (page 269). dynamic -XNoDeriveFoldable
-XDeriveGeneric (page 269) Enable deriving for the Generic class (page 275). dynamic -XNoDeriveGeneric
-XDeriveGeneric (page 269) Enable deriving for the Generic class (page 275). dynamic -XNoDeriveGeneric
-XDeriveLift (page 275) Enable deriving for the Lift class (page 275) dynamic -XNoDeriveLift
-XDeriveTraversable (page 269) Enable deriving for the Traversable class (page 269). Implies -XDeriveFunctor (page 269) and -XDeriveFoldable (page 269). dynamic -XNoDeriveTraversable
-XDerivingStrategies (page 283) Enables deriving strategies (page 283). dynamic -XNoDerivingStrategies
-XDisambiguateRecordFields (page 259) Enable record field disambiguation (page 259). Implied by -XRecordWildCards (page 263). dynamic -XNoDisambiguateRecordFields
-XEmptyCase (page 242) Allow empty case alternatives (page 242). dynamic -XNoEmptyCase
-XEmptyDataDecls (page 246) Enable empty data declarations. dynamic -XNoEmptyDataDecls
-XExistentialQuantification (page 249) Enable existential quantification (page 249). dynamic -XNoExistentialQuantification
-XExplicitForAll (page 344) Enable explicit universal quantification (page 344). Implied by -XScopedTypeVariables (page 348), -XLiberalTypeSynonyms (page 248), -XRankNTypes (page 357) and -XExistentialQuantification (page 249). dynamic -XNoExplicitForAll
-XExplicitNamespaces (page 245) Enable using the keyword type to specify the namespace of entries in imports and exports (Explicit namespaces in import/export (page 245)). Implied by -XTypeOperators (page 248) and -XTypeFamilies (page 313). dynamic -XNoExplicitNamespaces
-XExtendedDefaultRules (page 32) Use GHCi’s extended default rules (page 32) in a normal module. dynamic -XNoExtendedDefaultRules
-XFlexibleContexts (page 291) Enable flexible contexts (page 345). Implied by -XImplicitParams (page 355). dynamic -XNoFlexibleContexts
-XFlexibleInstances (page 299) Enable flexible instances (page 300). Implies -XTypeSynonymInstances (page 299). Implied by -XImplicitParams (page 355). dynamic -XNoFlexibleInstances
-XForeignFunctionInterface (page 437) Enable foreign function interface (page 437). dynamic -XNoForeignFunctionInterface
-XFunctionalDependencies (page 294) Enable functional dependencies (page 294). Implies -XMultiParamTypeClasses (page 291). dynamic -XNoFunctionalDependencies
-XGADTs (page 257) Enable generalised algebraic data types (page 257). Implies -XGADTSyntax (page 253) and -XMonoLocalBinds (page 351). dynamic -XNoGADTs
-XGADTSyntax (page 253) Enable generalised algebraic data type syntax (page 253). dynamic -XNoGADTSyntax
-XGeneralizedNewtypeDeriving (page 276) Enable newtype deriving (page 276). dynamic -XNoGeneralizedNewtypeDeriving
-XGenerics Deprecated, does nothing. No longer enables generic classes (page 415). See also GHC’s support for generic programming (page 415). dynamic -XNoGenerics
-XImplicitParams (page 355) Enable Implicit Parameters (page 355). Implies -XFlexibleContexts (page 291) and -XFlexibleInstances (page 299). dynamic -XNoImplicitParams
-XNoImplicitPrelude (page 239) Don’t implicitly import Prelude. Implied by -XRebindableSyntax (page 239). dynamic -XImplicitPrelude
-XImpredicativeTypes (page 361) Enable impredicative types (page 361). Implies -XRankNTypes (page 357). dynamic -XNoImpredicativeTypes
-XIncoherentInstances (page 303) Enable incoherent instances (page 303). Implies -XOverlappingInstances (page 303). dynamic -XNoIncoherentInstances
-XTypeFamilyDependencies (page 325) Enable injective type families (page 325). Implies -XTypeFamilies (page 313). dynamic -XNoTypeFamilyDependencies
-XInstanceSigs (page 306) Enable instance signatures (page 306). dynamic -XNoInstanceSigs
-XInterruptibleFFI Enable interruptible FFI. dynamic -XNoInterruptibleFFI
-XKindSignatures (page 347) Enable kind signatures (page 347). Implied by -XTypeFamilies (page 313) and -XPolyKinds (page 330). dynamic -XNoKindSignatures
-XLambdaCase (page 241) Enable lambda-case expressions (page 241). dynamic -XNoLambdaCase
-XLiberalTypeSynonyms (page 248) Enable liberalised type synonyms (page 248). dynamic -XNoLiberalTypeSynonyms
-XMagicHash (page 224) Allow # as a postfix modifier on identifiers (page 224). dynamic -XNoMagicHash
-XMonadComprehensions (page 236) Enable monad comprehensions (page 236). dynamic -XNoMonadComprehensions
-XMonoLocalBinds (page 351) Enable do not generalise local bindings (page 351). Implied by -XTypeFamilies (page 313) and -XGADTs (page 257). dynamic -XNoMonoLocalBinds
-XNoMonomorphismRestriction (page 351) Disable the monomorphism restriction (page 351). dynamic -XMonomorphismRestriction
-XMultiParamTypeClasses (page 291) Enable multi parameter type classes (page 291). Implied by -XFunctionalDependencies (page 294). dynamic -XNoMultiParamTypeClasses

Continued on next page

6.6. Flag reference 109



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.1 – continued from previous page
Flag Description Type Reverse
-XMultiWayIf (page 242) Enable multi-way if-expressions (page 242). dynamic -XNoMultiWayIf
-XNamedFieldPuns (page 262) Enable record puns (page 262). dynamic -XNoNamedFieldPuns
-XNamedWildCards (page 366) Enable named wildcards (page 366). dynamic -XNoNamedWildCards
-XNegativeLiterals (page 225) Enable support for negative literals (page 225). dynamic -XNoNegativeLiterals
-XNPlusKPatterns (page 228) Enable support for n+k patterns. Implied by -XHaskell98. dynamic -XNoNPlusKPatterns
-XNullaryTypeClasses (page 294) Deprecated, does nothing. nullary (no parameter) type classes (page 294) are now enabled using -XMultiParamTypeClasses (page 291). dynamic -XNoNullaryTypeClasses
-XNumDecimals (page 225) Enable support for ‘fractional’ integer literals. dynamic -XNoNumDecimals
-XOverlappingInstances (page 303) Enable overlapping instances (page 303). dynamic -XNoOverlappingInstances
-XOverloadedLabels (page 308) Enable overloaded labels (page 308). dynamic -XNoOverloadedLabels
-XOverloadedLists (page 310) Enable overloaded lists (page 310). dynamic -XNoOverloadedLists
-XOverloadedStrings (page 307) Enable overloaded string literals (page 307). dynamic -XNoOverloadedStrings
-XPackageImports (page 244) Enable package-qualified imports (page 244). dynamic -XNoPackageImports
-XParallelArrays Enable parallel arrays. Implies -XParallelListComp (page 234). dynamic -XNoParallelArrays
-XParallelListComp (page 234) Enable parallel list comprehensions (page 234). Implied by -XParallelArrays. dynamic -XNoParallelListComp
-XPartialTypeSignatures (page 365) Enable partial type signatures (page 365). dynamic -XNoPartialTypeSignatures
-XNoPatternGuards (page 226) Disable pattern guards (page 226). Implied by -XHaskell98. dynamic -XPatternGuards
-XPatternSynonyms (page 284) Enable pattern synonyms (page 284). dynamic -XNoPatternSynonyms
-XPolyKinds (page 330) Enable kind polymorphism (page 330). Implies -XKindSignatures (page 347). dynamic -XNoPolyKinds
-XPolymorphicComponents Enable polymorphic components for data constructors (page 348). Synonym for -XRankNTypes (page 357). dynamic -XNoPolymorphicComponents
-XPostfixOperators (page 240) Enable postfix operators (page 240). dynamic -XNoPostfixOperators
-XQuasiQuotes (page 379) Enable quasiquotation (page 379). dynamic -XNoQuasiQuotes
-XRank2Types (page 358) Enable rank-2 types (page 348). Synonym for -XRankNTypes (page 357). dynamic -XNoRank2Types
-XRankNTypes (page 357) Enable rank-N types (page 348). Implied by -XImpredicativeTypes (page 361). dynamic -XNoRankNTypes
-XRebindableSyntax (page 239) Employ rebindable syntax (page 239). Implies -XNoImplicitPrelude (page 239). dynamic -XNoRebindableSyntax
-XRecordWildCards (page 263) Enable record wildcards (page 263). Implies -XDisambiguateRecordFields (page 259). dynamic -XNoRecordWildCards
-XRecursiveDo (page 228) Enable recursive do (mdo) notation (page 228). dynamic -XNoRecursiveDo
-XRoleAnnotations (page 421) Enable role annotations (page 421). dynamic -XNoRoleAnnotations
-XSafe (page 434) Enable the Safe Haskell (page 426) Safe mode. dynamic
-XScopedTypeVariables (page 348) Enable lexically-scoped type variables (page 348). dynamic -XNoScopedTypeVariables
-XStandaloneDeriving (page 268) Enable standalone deriving (page 268). dynamic -XNoStandaloneDeriving
-XStaticPointers (page 395) Enable static pointers (page 395). dynamic -XNoStaticPointers
-XStrictData (page 390) Enable default strict datatype fields (page 390). dynamic -XNoStrictData
-XTemplateHaskell (page 372) Enable Template Haskell (page 372). dynamic -XNoTemplateHaskell
-XTemplateHaskellQuotes (page 372) Enable quotation subset of Template Haskell (page 372). dynamic -XNoTemplateHaskellQuotes
-XNoTraditionalRecordSyntax (page 259) Disable support for traditional record syntax (as supported by Haskell 98) C {f = x} dynamic -XTraditionalRecordSyntax
-XTransformListComp (page 234) Enable generalised list comprehensions (page 234). dynamic -XNoTransformListComp
-XTrustworthy (page 435) Enable the Safe Haskell (page 426) Trustworthy mode. dynamic
-XTupleSections (page 241) Enable tuple sections (page 241). dynamic -XNoTupleSections
-XTypeFamilies (page 313) Enable type families (page 313). Implies -XExplicitNamespaces (page 245), -XKindSignatures (page 347), and -XMonoLocalBinds (page 351). dynamic -XNoTypeFamilies
-XTypeInType (page 330) Allow kinds to be used as types (page 330), including explicit kind variable quantification, higher-rank kinds, kind synonyms, and kind families. Implies -XDataKinds (page 327), -XKindSignatures (page 347), and -XPolyKinds (page 330). dynamic -XNoTypeInType
-XTypeOperators (page 248) Enable type operators (page 248). Implies -XExplicitNamespaces (page 245). dynamic -XNoTypeOperators
-XTypeSynonymInstances (page 299) Enable type synonyms in instance heads (page 299). Implied by -XFlexibleInstances (page 299). dynamic -XNoTypeSynonymInstances
-XUnboxedTuples (page 222) Enable unboxed tuples (page 222). dynamic -XNoUnboxedTuples
-XUnboxedSums (page 223) Enable :ref: unboxed sums <unboxed-sums>. dynamic -XNoUnboxedSums
-XUndecidableInstances (page 300) Enable undecidable instances (page 301). dynamic -XNoUndecidableInstances
-XUnicodeSyntax (page 224) Enable unicode syntax (page 224). dynamic -XNoUnicodeSyntax
-XUnliftedFFITypes Enable unlifted FFI types. dynamic -XNoUnliftedFFITypes
-XUnsafe (page 435) Enable Safe Haskell (page 426) Unsafe mode. dynamic
-XViewPatterns (page 226) Enable view patterns (page 226). dynamic -XNoViewPatterns

110 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.6.13 Warnings

More details in Warnings and sanity-checking (page 76)

Flag Description Type Reverse
-W (page 76) enable normal warnings dynamic -w (page 77)
-w (page 77) disable all warnings dynamic
-Wall (page 76) enable almost all warnings (details in Warnings and sanity-checking (page 76)) dynamic -w (page 77)
-Wcompat (page 77) enable future compatibility warnings (details in Warnings and sanity-checking (page 76)) dynamic -Wno-compat (page 77)
-Werror (page 77) make warnings fatal dynamic -Wwarn (page 77)
-Werror=⟨wflag⟩ make a specific warning fatal dynamic -Wwarn=⟨wflag⟩
-Wwarn (page 77) make warnings non-fatal dynamic -Werror (page 77)
-Wwarn=⟨wflag⟩ make a specific warning non-fatal dynamic -Werror=⟨wflag⟩
-Wunrecognised-warning-flags (page 77) throw a warning when an unreconised -W... flag is encountered on the command line. dynamic -Wno-unrecognised-warning-flags
-fshow-warning-groups (page 77) show which group an emitted warning belongs to. dynamic -fno-show-warning-groups
-fdefer-type-errors (page 78) Turn type errors into warnings, deferring the error until runtime (page 370). Implies -fdefer-typed-holes (page 78) and -fdefer-out-of-scope-variables (page 78). See also -Wdeferred-type-errors dynamic -fno-defer-type-errors
-fdefer-typed-holes (page 78) Convert typed hole (page 362) errors into warnings, deferring the error until runtime (page 370). Implied by -fdefer-type-errors (page 78). See also -Wtyped-holes (page 77). dynamic -fno-defer-typed-holes
-fdefer-out-of-scope-variables (page 78) Convert variable out of scope variables errors into warnings. Implied by -fdefer-type-errors (page 78). See also -Wdeferred-out-of-scope-variables (page 78). dynamic -fno-defer-out-of-scope-variables
-fhelpful-errors (page 78) Make suggestions for mis-spelled names. dynamic -fno-helpful-errors
-freverse-errors Display errors in GHC/GHCi sorted by reverse order of source code line numbers. dynamic -fno-reverse-errors
-fmax-errors Limit the number of errors displayed in GHC/GHCi. dynamic -fno-max-errors
-Wdeprecated-flags (page 80) warn about uses of commandline flags that are deprecated dynamic -Wno-deprecated-flags
-Wduplicate-constraints (page 81) warn when a constraint appears duplicated in a type signature dynamic -Wno-duplicate-constraints
-Wduplicate-exports (page 82) warn when an entity is exported multiple times dynamic -Wno-duplicate-exports
-Whi-shadowing (page 82) warn when a .hi file in the current directory shadows a library dynamic -Wno-hi-shadowing
-Widentities (page 82) warn about uses of Prelude numeric conversions that are probably the identity (and hence could be omitted) dynamic -Wno-identities
-Wimplicit-prelude (page 82) warn when the Prelude is implicitly imported dynamic -Wno-implicit-prelude
-Wincomplete-patterns (page 82) warn when a pattern match could fail dynamic -Wno-incomplete-patterns
-Wincomplete-uni-patterns (page 82) warn when a pattern match in a lambda expression or pattern binding could fail dynamic -Wno-incomplete-uni-patterns
-fmax-pmcheck-iterations=⟨n⟩ (page 82) the iteration limit for the pattern match checker dynamic
-Wincomplete-record-updates (page 83) warn when a record update could fail dynamic -Wno-incomplete-record-updates
-Wmissing-fields (page 83) warn when fields of a record are uninitialised dynamic -Wno-missing-fields
-Wmissing-import-lists (page 83) warn when an import declaration does not explicitly list all thenames brought into scope dynamic -fnowarn-missing-import-lists
-Wmissing-methods (page 83) warn when class methods are undefined dynamic -Wno-missing-methods
-Wmissing-signatures (page 83) warn about top-level functions without signatures dynamic -Wno-missing-signatures
-Wmissing-exported-sigs (page 84) (deprecated) warn about top-level functions without signatures, only if they are exported. takes precedence over -Wmissing-signatures dynamic -Wno-missing-exported-sigs
-Wmissing-exported-signatures (page 84) warn about top-level functions without signatures, only if they are exported. takes precedence over -Wmissing-signatures dynamic -Wno-missing-exported-signatures
-Wmissing-local-sigs (page 84) (deprecated) warn about polymorphic local bindings without signatures dynamic -Wno-missing-local-sigs
-Wmissing-local-signatures (page 84) warn about polymorphic local bindings without signatures dynamic -Wno-missing-local-signatures
-Wmissing-monadfail-instances (page 80) warn when a failable pattern is used in a do-block that does not have a MonadFail instance. dynamic -Wno-missing-monadfail-instances
-Wsemigroup (page 80) warn when a Monoid is not Semigroup, and on non-Semigroup definitions of (<>)? dynamic -Wno-semigroup
-Wmissed-specialisations (page 78) warn when specialisation of an imported, overloaded function fails. dynamic -Wno-missed-specialisations
-Wall-missed-specialisations (page 79) warn when specialisation of any overloaded function fails. dynamic -Wno-all-missed-specialisations
-Wmonomorphism-restriction (page 85) warn when the Monomorphism Restriction is applied dynamic -Wno-monomorphism-restriction
-Wname-shadowing (page 84) warn when names are shadowed dynamic -Wno-name-shadowing
-Wnoncanonical-monad-instances (page 79) warn when Applicative or Monad instances have noncanonical definitions of return, pure, (>>), or (*>). See flag description in Warnings and sanity-checking (page 76) for more details. dynamic -Wno-noncanonical-monad-instances
-Wnoncanonical-monadfail-instances (page 79) warn when Monad or MonadFail instances have noncanonical definitions of fail.See flag description in Warnings and sanity-checking (page 76) for more details. dynamic -Wno-noncanonical-monadfail-instances
-Wnoncanonical-monoid-instances (page 80) warn when Semigroup or Monoid instances have noncanonical definitions of (<>) or mappend. See flag description in Warnings and sanity-checking (page 76) for more details. dynamic -Wno-noncanonical-monoid-instances
-Worphans (page 84) warn when the module contains orphan instance declarations or rewrite rules (page 151) dynamic -Wno-orphans
-Woverlapping-patterns (page 84) warn about overlapping patterns dynamic -Wno-overlapping-patterns
-Wtabs (page 85) warn if there are tabs in the source file dynamic -Wno-tabs

Continued on next page

6.6. Flag reference 111



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.2 – continued from previous page
Flag Description Type Reverse
-Wtype-defaults (page 85) warn when defaulting happens dynamic -Wno-type-defaults
-Wunrecognised-pragmas (page 78) warn about uses of pragmas that GHC doesn’t recognise dynamic -Wno-unrecognised-pragmas
-Wunticked-promoted-constructors (page 85) warn if promoted constructors are not ticked dynamic -Wno-unticked-promoted-constructors
-Wunused-binds (page 85) warn about bindings that are unused. Alias for -Wunused-top-binds (page 86), -Wunused-local-binds (page 86) and -Wunused-pattern-binds (page 86) dynamic -Wno-unused-binds
-Wunused-top-binds (page 86) warn about top-level bindings that are unused dynamic -Wno-unused-top-binds
-Wunused-local-binds (page 86) warn about local bindings that are unused dynamic -Wno-unused-local-binds
-Wunused-pattern-binds (page 86) warn about pattern match bindings that are unused dynamic -Wno-unused-pattern-binds
-Wunused-imports (page 86) warn about unnecessary imports dynamic -Wno-unused-imports
-Wunused-matches (page 86) warn about variables in patterns that aren’t used dynamic -Wno-unused-matches
-Wunused-foralls (page 87) warn about type variables in user-written foralls that are unused dynamic -Wno-unused-foralls
-Wunused-type-variables warn about variables in type family or data family instances that are unused dynamic -Wno-unused-type-variables
-Wunused-do-bind (page 87) warn about do bindings that appear to throw away values of types other than () dynamic -Wno-unused-do-bind
-Wwrong-do-bind (page 87) warn about do bindings that appear to throw away monadic values that you should have bound instead dynamic -Wno-wrong-do-bind
-Wunsafe (page 435) warn if the module being compiled is regarded to be unsafe. Should be used to check the safety status of modules when using safe inference. Works on all module types, even those using explicit Safe Haskell (page 426) modes (such as -XTrustworthy (page 435)) and so can be used to have the compiler check any assumptions made. dynamic -Wno-unsafe
-Wsafe (page 435) warn if the module being compiled is regarded to be safe. Should be used to check the safety status of modules when using safe inference. Works on all module types, even those using explicit Safe Haskell (page 426) modes (such as -XTrustworthy (page 435)) and so can be used to have the compiler check any assumptions made. dynamic -Wno-safe
-Wtrustworthy-safe (page 435) warn if the module being compiled is marked as -XTrustworthy (page 435) but it could instead be marked as -XSafe (page 434), a more informative bound. Can be used to detectonce a Safe Haskell bound can be improved as dependencies are updated. dynamic -Wno-safe
-Wwarnings-deprecations (page 79) warn about uses of functions & types that have warnings or deprecated pragmas dynamic -Wno-warnings-deprecations
-Wdeprecations (page 79) warn about uses of functions & types that have warnings or deprecated pragmas. Alias for -Wwarnings-deprecations (page 79) dynamic -Wno-deprecations
-Wamp (page 79) (deprecated) warn on definitions conflicting with the Applicative-Monad Proposal (AMP) dynamic -Wno-amp
-Wredundant-constraints (page 81) Have the compiler warn about redundant constraints in typesignatures. dynamic -Wno-redundant-constraints
-Wdeferred-type-errors Report warnings when deferred type errors (page 370) are enabled. This option is enabled by default. See -fdefer-type-errors (page 78). dynamic -Wno-deferred-type-errors
-Wtyped-holes (page 77) Report warnings when typed hole (page 362) errors are deferred until runtime (page 370). See -fdefer-typed-holes (page 78). dynamic -Wno-typed-holes
-Wdeferred-out-of-scope-variables (page 78) Report warnings when variable out-of-scope errors are deferred until runtime. See :ghc-flag:-fdefer-out-of-scope-variables‘. dynamic -Wno-deferred-out-of-scope-variables
-Wpartial-type-signatures (page 78) warn about holes in partial type signatures when -XPartialTypeSignatures (page 365) is enabled. Not applicable when -XPartialTypesignatures is not enabled, in which case errors are generated for such holes. See Partial Type Signatures (page 365). dynamic -Wno-partial-type-signatures
-Wderiving-typeable warn when encountering a request to derive an instance of class Typeable. As of GHC 7.10, such declarations are unnecessary and are ignored by the compiler because GHC has a custom solver for discharging this type of constraint. dynamic -Wno-deriving-typeable
-Wmissing-home-modules (page 88) warn when encountering a home module imported, but not listed on the command line. Useful for cabal to ensure GHC won’t pick up modules, not listed neither in exposed-modules, nor in other-modules. dynamic -Wno-missing-home-modules

6.6.14 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 88).
See Individual optimisations (page 112) for a list of optimisations enabled on level 1 and level
2.
Flag Description Type Re-

verse
-O0 (page 89) Disable optimisations (default) dy-

namic
-O
(page 89)

-O (page 89),
-O1 (page 89)

Enable level 1 optimisations dy-
namic

-O0
(page 89)

-O2 (page 89) Enable level 2 optimisations dy-
namic

-O0
(page 89)

-Odph
(page 89)

Enable level 2 optimisations, set
-fmax-simplifier-iterations=20 and
-fsimplifier-phases=3.

dy-
namic

6.6.15 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 89). If
a flag is implied by -O then it is also implied by -O2 (unless flag description explicitly says

112 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

otherwise). If a flag is implied by -O0 only then the flag is not implied by -O and -O2.

Flag Description Type Reverse
-fcall-arity (page 90) Enable call-arity optimisation. Implied by -O (page 89). dynamic -fno-call-arity
-fcase-merge (page 89) Enable case-merging. Implied by -O (page 89). dynamic -fno-case-merge
-fcase-folding (page 89) Enable constant folding in case expressions. Implied by -O (page 89). dynamic -fno-case-folding
-fcmm-elim-common-blocks (page 90) Enable Cmm common block elimination. Implied by -O (page 89). dynamic -fno-cmm-elim-common-blocks
-fcmm-sink (page 90) Enable Cmm sinking. Implied by -O (page 89). dynamic -fno-cmm-sink
-fcpr-anal Turn on CPR analysis in the demand analyser. Implied by -O (page 89). dynamic -fno-cpr-anal
-fcse (page 90) Enable common sub-expression elimination. Implied by -O (page 89). dynamic -fno-cse
-fdicts-cheap (page 90) Make dictionary-valued expressions seem cheap to the optimiser. dynamic -fno-dicts-cheap
-fdicts-strict (page 90) Make dictionaries strict dynamic -fno-dicts-strict
-fdmd-tx-dict-sel (page 90) Use a special demand transformer for dictionary selectors. Always enabled by default. dynamic -fno-dmd-tx-dict-sel
-fdo-eta-reduction (page 91) Enable eta-reduction. Implied by -O (page 89). dynamic -fno-do-eta-reduction
-fdo-lambda-eta-expansion (page 91) Enable lambda eta-expansion. Always enabled by default. dynamic -fno-do-lambda-eta-expansion
-feager-blackholing (page 91) Turn on eager blackholing (page 100) dynamic
-fenable-rewrite-rules (page 409) Switch on all rewrite rules (including rules generated by automatic specialisation of overloaded functions). Implied by -O (page 89). dynamic -fno-enable-rewrite-rules
-fexcess-precision (page 91) Enable excess intermediate precision dynamic -fno-excess-precision
-fexpose-all-unfoldings (page 91) Expose all unfoldings, even for very large or recursive functions. dynamic -fno-expose-all-unfoldings
-ffloat-in (page 91) Turn on the float-in transformation. Implied by -O (page 89). dynamic -fno-float-in
-ffull-laziness (page 91) Turn on full laziness (floating bindings outwards). Implied by -O (page 89). dynamic -fno-full-laziness
-ffun-to-thunk (page 92) Allow worker-wrapper to convert a function closure into a thunk if the function does not use any of its arguments. Off by default. dynamic -fno-fun-to-thunk
-fignore-asserts (page 92) Ignore assertions in the source. Implied by -O (page 89). dynamic -fno-ignore-asserts
-fignore-interface-pragmas (page 92) Ignore pragmas in interface files. Implied by -O0 (page 89) only. dynamic -fno-ignore-interface-pragmas
-flate-dmd-anal (page 92) Run demand analysis again, at the end of the simplification pipeline dynamic -fno-late-dmd-anal
-fliberate-case (page 92) Turn on the liberate-case transformation. Implied by -O2 (page 89). dynamic -fno-liberate-case
-fliberate-case-threshold=⟨n⟩ (page 92) default: 2000. Set the size threshold for the liberate-case transformation to ⟨n⟩ dynamic -fno-liberate-case-threshold
-floopification (page 92) Turn saturated self-recursive tail-calls into local jumps in the generated assembly. Implied by -O (page 89). dynamic -fno-loopification
-fmax-inline-alloc-size=⟨n⟩ (page 93) default: 128. Set the maximum size of inline array allocations to ⟨n⟩ bytes (default: 128). GHC will allocate non-pinned arrays of statically known size in the current nursery block if they’re no bigger than ⟨n⟩ bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size (typically: 4096). dynamic
-fmax-inline-memcpy-insns=⟨n⟩ (page 93) default: 32. Inline memcpy calls if they would generate no more than ⟨n⟩ pseudo instructions. dynamic
-fmax-inline-memset-insns=⟨n⟩ (page 93) default: 32. Inline memset calls if they would generate no more than ⟨n⟩ pseudo instructions dynamic
-fmax-relevant-binds=⟨n⟩ (page 93) default: 6. Set the maximum number of bindings to display in type error messages. dynamic -fno-max-relevant-bindings (page 93)
-fmax-uncovered-patterns=⟨n⟩ (page 93) default: 4. Set the maximum number of patterns to display in warnings about non-exhaustive ones. dynamic
-fmax-simplifier-iterations=⟨n⟩ (page 93) default: 4. Set the max iterations for the simplifier. dynamic
-fmax-worker-args=⟨n⟩ (page 93) default: 10. If a worker has that many arguments, none will be unpacked anymore. dynamic
-fno-opt-coercion (page 93) Turn off the coercion optimiser dynamic
-fno-pre-inlining (page 93) Turn off pre-inlining dynamic
-fno-state-hack (page 93) Turn off the “state hack” whereby any lambda with a real-world state token as argument is considered to be single-entry. Hence OK to inline things inside it. dynamic
-fomit-interface-pragmas (page 94) Don’t generate interface pragmas. Implied by -O0 (page 89) only. dynamic -fno-omit-interface-pragmas
-fomit-yields (page 94) Omit heap checks when no allocation is being performed. dynamic -fno-omit-yields
-foptimal-applicative-do (page 232) Use a slower but better algorithm for ApplicativeDo dynamic -fno-optimal-applicative-do
-fpedantic-bottoms (page 94) Make GHC be more precise about its treatment of bottom (but see also -fno-state-hack (page 93)). In particular, GHC will not eta-expand through a case expression. dynamic -fno-pedantic-bottoms
-fregs-graph (page 94) Use the graph colouring register allocator for register allocation in the native code generator. Implied by -O2 (page 89). dynamic -fno-regs-graph
-fregs-iterative (page 94) Use the iterative coalescing graph colouring register allocator in the native code generator. dynamic -fno-regs-iterative
-fsimplifier-phases=⟨n⟩ (page 94) default: 2. Set the number of phases for the simplifier. Ignored with -O0 (page 89). dynamic
-fsimpl-tick-factor=⟨n⟩ (page 94) default: 100. Set the percentage factor for simplifier ticks. dynamic
-fspec-constr (page 95) Turn on the SpecConstr transformation. Implied by -O2 (page 89). dynamic -fno-spec-constr
-fspec-constr-count=⟨n⟩ (page 96) default: 3.* Set to ⟨n⟩ the maximum number of specialisations that will be created for any one function by the SpecConstr transformation. dynamic -fno-spec-constr-count
-fspec-constr-threshold=⟨n⟩ (page 96) default: 2000. Set the size threshold for the SpecConstr transformation to ⟨n⟩. dynamic -fno-spec-constr-threshold
-fspecialise (page 96) Turn on specialisation of overloaded functions. Implied by -O (page 89). dynamic -fno-specialise
-fcross-module-specialise (page 96) Turn on specialisation of overloaded functions imported from other modules. dynamic -fno-cross-module-specialise

Continued on next page

6.6. Flag reference 113



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.3 – continued from previous page
Flag Description Type Reverse
-fstatic-argument-transformation (page 97) Turn on the static argument transformation. dynamic -fno-static-argument-transformation
-fstrictness (page 97) Turn on strictness analysis. Implied by -O (page 89). Implies -fworker-wrapper dynamic -fno-strictness
-fstrictness-before=⟨n⟩ (page 97) Run an additional strictness analysis before simplifier phase ⟨n⟩ dynamic
-funbox-small-strict-fields (page 97) Flatten strict constructor fields with a pointer-sized representation. Implied by -O (page 89). dynamic -fno-unbox-small-strict-fields
-funbox-strict-fields (page 98) Flatten strict constructor fields dynamic -fno-unbox-strict-fields
-funfolding-creation-threshold=⟨n⟩ (page 98) default: 750. Tweak unfolding settings. dynamic
-funfolding-dict-discount=⟨n⟩ (page 98) default: 30. Tweak unfolding settings. dynamic
-funfolding-fun-discount=⟨n⟩ (page 98) default: 60. Tweak unfolding settings. dynamic
-funfolding-keeness-factor=⟨n⟩ (page 98) default: 1.5. Tweak unfolding settings. dynamic
-funfolding-use-threshold=⟨n⟩ (page 98) default: 60. Tweak unfolding settings. dynamic
-fvectorisation-avoidance (page 99) Enable vectorisation avoidance. Always enabled by default. dynamic -fno-vectorisation-avoidance
-fvectorise (page 99) Enable vectorisation of nested data parallelism dynamic -fno-vectorise
-fworker-wrapper Enable the worker-wrapper transformation after a strictness analysis pass. Implied by -O (page 89), and by -fstrictness (page 97). Disabled by -fno-strictness. Enabling -fworker-wrapper while strictness analysis is disabled (by -fno-strictness) has no effect. dynamic -fno-worker-wrapper

6.6.16 Profiling options

More details in Profiling (page 189)
Flag Description Type Reverse
-prof (page 193) Turn on profiling dy-

namic
-fprof-auto
(page 193)

Auto-add SCCs to all bindings not
marked INLINE

dy-
namic

-fno-prof-auto
(page 194)

-fprof-auto-top
(page 193)

Auto-add SCCs to all top-level
bindings not marked INLINE

dy-
namic

-fno-prof-auto
(page 194)

-fprof-auto-exported
(page 193)

Auto-add SCCs to all exported
bindings not marked INLINE

dy-
namic

-fno-prof-auto
(page 194)

-fprof-cafs
(page 193)

Auto-add SCCs to all CAFs dy-
namic

-fno-prof-cafs
(page 194)

-fno-prof-count-
entries
(page 194)

Do not collect entry counts dy-
namic

-fprof-count-
entries

-ticky (page 211) Turn on ticky-ticky profiling
(page 211)

dy-
namic

6.6.17 Program coverage options

More details in Observing Code Coverage (page 206)
Flag Description Type Re-

verse
-fhpc
(page 207)

Turn on Haskell program coverage instrumentation dy-
namic

-hpcdir
⟨dir⟩

Directory to deposit .mix files during compilation
(default is .hpc)

dy-
namic

6.6.18 C pre-processor options

More details in Options affecting the C pre-processor (page 171)

114 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Reverse
-cpp (page 171) Run the C pre-processor on Haskell

source files
dy-
namic

-D⟨symbol⟩[=⟨value⟩]
(page 171)

Define a symbol in the C
pre-processor

dy-
namic

-U⟨symbol⟩
(page 171)

-U⟨symbol⟩ (page 171) Undefine a symbol in the C
pre-processor

dy-
namic

-I⟨dir⟩ (page 171) Add ⟨dir⟩ to the directory search list
for #include files

dy-
namic

6.6.19 Code generation options

More details in Options affecting code generation (page 174)
Flag Description Type Reverse
-fasm
(page 174)

Use the native code generator (page 168) dy-
namic

-fllvm
(page 174)

-fllvm
(page 174)

Compile using the LLVM code generator (page 168) dy-
namic

-fasm
(page 174)

-fno-code
(page 174)

Omit code generation dy-
namic

-fwrite-
interface
(page 174)

Always write interface files dy-
namic

-fbyte-code
(page 175)

Generate byte-code dy-
namic

-fobject-
code
(page 175)

Generate object code dy-
namic

-g⟨n⟩
(page 461)

Produce DWARF debug information in compiled object
files.⟨n⟩ can be 0, 1, or 2, with higher numbers producing
richer output. If ⟨n⟩ is omitted level 2 is assumed.

dy-
namic

-dynamic
(page 176)

Build dynamically-linked object files and executables dy-
namic

-dynamic-
too
(page 175)

Build dynamic object files as well as static object files
during compilation

dy-
namic

6.6.20 Linking options

More details in Options affecting linking (page 175)

6.6. Flag reference 115



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Re-
verse

-shared
(page 176)

Generate a shared library (as opposed to an executable) dy-
namic

-staticlib
(page 176)

On Darwin/OS X/iOS only, generate a standalone static
library (as opposed to an executable). This is the usual
way to compile for iOS.

dy-
namic

-fPIC (page 175) Generate position-independent code (where available) dy-
namic

-dynload
(page 177)

Selects one of a number of modes for finding shared
libraries at runtime.

dy-
namic

-framework
⟨name⟩
(page 176)

On Darwin/OS X/iOS only, link in the framework ⟨name⟩.
This option corresponds to the -framework option for
Apple’s Linker.

dy-
namic

-framework-path
⟨dir⟩ (page 176)

On Darwin/OS X/iOS only, add ⟨dir⟩ to the list of
directories searched for frameworks. This option
corresponds to the -F option for Apple’s Linker.

dy-
namic

-l ⟨lib⟩
(page 175)

Link in library ⟨lib⟩ dy-
namic

-L ⟨dir⟩
(page 176)

Add ⟨dir⟩ to the list of directories searched for libraries dy-
namic

-main-is
⟨thing⟩
(page 177)

Set main module and function dy-
namic

--mk-dll
(page 68)

DLL-creation mode (Windows only) dy-
namic

-no-hs-main
(page 177)

Don’t assume this program contains main dy-
namic

-
rtsopts[=⟨none|some|all⟩]
(page 178)

Control whether the RTS behaviour can be tweaked via
command-lineflags and the GHCRTS environment variable.
Using none means no RTS flags can be given; some
means only a minimum of safe options can be given (the
default), and all (or no argument at all) means that all
RTS flags are permitted.

dy-
namic

-with-
rtsopts=⟨opts⟩
(page 178)

Set the default RTS options to ⟨opts⟩. dy-
namic

-no-rtsopts-
suggestions
(page 179)

Don’t print RTS suggestions about linking with
-rtsopts[=⟨none|some|all⟩] (page 178).

dy-
namic

-no-link Omit linking dy-
namic

-split-objs
(page 176)

Split objects (for libraries) dy-
namic

-split-sections
(page 176)

Split sections for link-time dead-code stripping dy-
namic

-static
(page 176)

Use static Haskell libraries dy-
namic

-threaded
(page 178)

Use the threaded runtime dy-
namic

-debug
(page 177)

Use the debugging runtime dy-
namic

-ticky
(page 211)

For linking, this simply implies -debug (page 177); see
Using “ticky-ticky” profiling (for implementors)
(page 211).

dy-
namic

-eventlog
(page 178)

Enable runtime event tracing dy-
namic

-fno-gen-
manifest
(page 179)

Do not generate a manifest file (Windows only) dy-
namic

-fno-embed-
manifest
(page 179)

Do not embed the manifest in the executable (Windows
only)

dy-
namic

-fno-shared-
implib
(page 179)

Don’t generate an import library for a DLL (Windows
only)

dy-
namic

-dylib-install-
name ⟨path⟩
(page 180)

Set the install name (via -install_name passed to
Apple’s linker), specifying the full install path of the
library file. Any libraries or executables that link with it
later will pick up that path as their runtime search
location for it. (Darwin/OS X only)

dy-
namic

-rdynamic
(page 180)

This instructs the linker to add all symbols, not only used
ones, to the dynamic symbol table. Currently Linux and
Windows/MinGW32 only. This is equivalent to using
-optl -rdynamic on Linux, and -optl
-export-all-symbols on Windows.

dy-
namic

116 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.6.21 Plugin options

More details in Compiler Plugins (page 451)
Flag Description Type Re-

verse
-fplugin=⟨module⟩
(page 451)

Load a plugin exported by a given module dy-
namic

-fplugin-
opt=⟨module⟩:⟨args⟩
(page 451)

Give arguments to a plugin module; module
must be specified with -fplugin

dy-
namic

6.6.22 Replacing phases

More details in Replacing the program for one or more phases (page 170)
Flag Description Type Re-

verse
-pgmL ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the literate pre-processor dy-
namic

-pgmP ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the C pre-processor (with -cpp
only)

dy-
namic

-pgmc ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the C compiler dy-
namic

-pgmlo ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the LLVM optimiser dy-
namic

-pgmlc ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the LLVM compiler dy-
namic

-pgms ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the splitter dy-
namic

-pgma ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the assembler dy-
namic

-pgml ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the linker dy-
namic

-pgmdll ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the DLL generator dy-
namic

-pgmF ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the pre-processor (with -F only) dy-
namic

-pgmwindres ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the program for embedding
manifests on Windows.

dy-
namic

-pgmlibtool ⟨cmd⟩
(page 170)

Use ⟨cmd⟩ as the command for libtool (with
-staticlib only).

dy-
namic

6.6.23 Forcing options to particular phases

More details in Forcing options to a particular phase (page 170)

6.6. Flag reference 117



GHC User’s Guide Documentation, Release 8.2.1.20171030

Flag Description Type Re-
verse

-optL ⟨option⟩ (page 170) pass ⟨option⟩ to the literate
pre-processor

dy-
namic

-optP ⟨option⟩ (page 170) pass ⟨option⟩ to cpp (with -cpp only) dy-
namic

-optF ⟨option⟩ (page 171) pass ⟨option⟩ to the custom
pre-processor

dy-
namic

-optc ⟨option⟩ (page 171) pass ⟨option⟩ to the C compiler dy-
namic

-optlo ⟨option⟩ (page 171) pass ⟨option⟩ to the LLVM optimiser dy-
namic

-optlc ⟨option⟩ (page 171) pass ⟨option⟩ to the LLVM compiler dy-
namic

-opta ⟨option⟩ (page 171) pass ⟨option⟩ to the assembler dy-
namic

-optl ⟨option⟩ (page 171) pass ⟨option⟩ to the linker dy-
namic

-optdll ⟨option⟩ (page 171) pass ⟨option⟩ to the DLL generator dy-
namic

-optwindres ⟨option⟩
(page 171)

pass ⟨option⟩ to windres. dy-
namic

6.6.24 Platform-specific options

More details in Platform-specific Flags (page 75)
Flag Description Type Re-

verse
-msse2 (page 75) (x86 only) Use SSE2 for floating-point

operations
dy-
namic

-msse4.2
(page 75)

(x86 only) Use SSE4.2 for floating-point
operations

dy-
namic

6.6.25 Compiler debugging options

More details in Debugging the compiler (page 183)

Flag Description Type Reverse
-dcore-lint (page 187) Turn on internal sanity checking dynamic
-ddump-to-file (page 183) Dump to files instead of stdout dynamic
-ddump-asm (page 185) Dump assembly dynamic
-ddump-bcos (page 185) Dump interpreter byte code dynamic
-ddump-cmm-from-stg (page 185) Dump STG-to-C– output dynamic
-ddump-cmm-verbose (page 185) Show output from each C– pipeline pass dynamic
-ddump-cmm (page 185) Dump the final C– output dynamic
-ddump-core-stats (page 186) Print a one-line summary of the size of the Core program at the end of the optimisation pipeline dynamic
-ddump-cse (page 184) Dump CSE output dynamic
-ddump-deriv (page 184) Dump deriving output dynamic
-ddump-ds (page 184) Dump desugarer output dynamic
-ddump-foreign (page 185) Dump foreign export stubs dynamic

Continued on next page

118 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.4 – continued from previous page
Flag Description Type Reverse
-ddump-hpc Dump after instrumentation for program coverage dynamic
-ddump-inlinings (page 184) Dump inlining info dynamic
-ddump-llvm (page 185) Dump LLVM intermediate code. Implies -fllvm (page 174). dynamic
-ddump-occur-anal (page 185) Dump occurrence analysis output dynamic
-ddump-opt-cmm (page 185) Dump the results of C– to C– optimising passes dynamic
-ddump-parsed (page 183) Dump parse tree dynamic
-ddump-prep (page 185) Dump prepared core dynamic
-ddump-rn (page 184) Dump renamer output dynamic
-ddump-rule-firings (page 184) Dump rule firing info dynamic
-ddump-rule-rewrites (page 184) Dump detailed rule firing info dynamic
-ddump-rules (page 184) Dump rules dynamic
-ddump-vect (page 184) Dump vectoriser input and output dynamic
-ddump-simpl (page 184) Dump final simplifier output dynamic
-ddump-simpl-iterations (page 185) Dump output from each simplifier iteration dynamic
-ddump-spec (page 184) Dump specialiser output dynamic
-ddump-splices (page 184) Dump TH spliced expressions, and what they evaluate to dynamic
-ddump-stg (page 185) Dump final STG dynamic
-ddump-stranal (page 184) Dump strictness analyser output dynamic
-ddump-str-signatures (page 184) Dump strictness signatures dynamic
-ddump-tc (page 184) Dump typechecker output dynamic
-dth-dec-file=⟨file⟩ (page 184) Show evaluated TH declarations in a .th.hs file dynamic
-ddump-types (page 184) Dump type signatures dynamic
-ddump-worker-wrapper (page 185) Dump worker-wrapper output dynamic
-ddump-if-trace (page 185) Trace interface files dynamic
-ddump-tc-trace (page 185) Trace typechecker dynamic
-ddump-vt-trace (page 185) Trace vectoriser dynamic
-ddump-rn-trace (page 185) Trace renamer dynamic
-ddump-rn-stats (page 186) Renamer stats dynamic
-ddump-simpl-stats (page 185) Dump simplifier stats dynamic
-dno-debug-output (page 186) Suppress unsolicited debugging output dynamic
-dppr-debug (page 186) Turn on debug printing (more verbose) dynamic
-dppr-user-length (page 186) Set the depth for printing expressions in error msgs dynamic
-dppr-cols=⟨n⟩ (page 186) Set the width of debugging output. For example -dppr-cols200 dynamic
-dppr-case-as-let (page 186) Print single alternative case expressions as strict lets. dynamic
-dsuppress-all (page 187) In core dumps, suppress everything (except for uniques) that is suppressible. dynamic
-dsuppress-uniques (page 187) Suppress the printing of uniques in debug output (easier to use diff) dynamic
-dsuppress-idinfo (page 187) Suppress extended information about identifiers where they are bound dynamic
-dsuppress-unfoldings (page 187) Suppress the printing of the stable unfolding of a variable at its binding site dynamic
-dsuppress-module-prefixes (page 187) Suppress the printing of module qualification prefixes dynamic
-dsuppress-type-signatures (page 187) Suppress type signatures dynamic
-dsuppress-type-applications (page 187) Suppress type applications dynamic
-dsuppress-coercions (page 187) Suppress the printing of coercions in Core dumps to make them shorter dynamic
-dsource-stats Dump haskell source stats dynamic
-dcmm-lint (page 187) C– pass sanity checking dynamic
-dstg-lint (page 187) STG pass sanity checking dynamic
-dstg-stats Dump STG stats dynamic
-dverbose-core2core (page 186) Show output from each core-to-core pass dynamic
-dverbose-stg2stg (page 186) Show output from each STG-to-STG pass dynamic
-dshow-passes (page 186) Print out each pass name as it happens dynamic

Continued on next page

6.6. Flag reference 119



GHC User’s Guide Documentation, Release 8.2.1.20171030

Table 6.4 – continued from previous page
Flag Description Type Reverse
-dfaststring-stats (page 186) Show statistics for fast string usage when finished dynamic
-frule-check Report sites with rules that could have fired but didn’t. Takes a string argument. dynamic

6.6.26 Miscellaneous compiler options

Flag Description Type Reverse
-j[⟨n⟩]
(page 70)

When compiling with --make (page 68), compile
⟨n⟩ modules in parallel.

dy-
namic

-fno-hi-
version-check

Don’t complain about .hi file mismatches dy-
namic

-fhistory-
size

Set simplification history size dy-
namic

-fno-ghci-
history

Do not use the load/store the GHCi command
history from/to ghci_history.

dy-
namic

-fno-ghci-
sandbox

Turn off the GHCi sandbox. Means computations
are run in the main thread, rather than a forked
thread.

dy-
namic

-flocal-ghci-
history
(page 44)

Use current directory for the GHCi command
history file .ghci-history.

dy-
namic

-fno-
local-
ghci-
history

6.7 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with
a non-trivial runtime system (RTS), which handles storage management, thread scheduling,
profiling, and so on.
The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 120)) describes the various methods, and the following sections describe the
RTS options themselves.

6.7.1 Setting RTS options

There are four ways to set RTS options:
• on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 121))

• at compile-time, using -with-rtsopts=⟨opts⟩ (page 178) (Setting RTS options at com-
pile time (page 121))

• with the environment variable GHCRTS (page 121) (Setting RTS options with the GHCRTS
environment variable (page 121))

• by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 122))

120 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Setting RTS options on the command line

If you set the -rtsopts[=⟨none|some|all⟩] (page 178) flag appropriately when linking (see
Options affecting linking (page 175)), you can give RTS options on the command line when
running your program.
When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts
[1 of 1] Compiling Main ( prog.hs, prog.o )
Linking prog ...
$ ./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.
No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

% hls -ltr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a --RTS.
As always, for RTS options that take ⟨size⟩s: If the last character of ⟨size⟩ is a K or k, multiply
by 1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in
the counters is your fault!)
Giving a +RTS -? RTS option option will print out the RTS options actually available in your
program (which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the -
with-rtsopts flag (Options affecting linking (page 175)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

Setting RTS options with the GHCRTS environment variable

GHCRTS
If the -rtsopts flag is set to something other than none when linking, RTS options are
also taken from the environment variable GHCRTS (page 121). For example, to set the
maximum heap size to 2G for all GHC-compiled programs (using an sh-like shell):

GHCRTS='-M2G'
export GHCRTS

RTS options taken from the GHCRTS (page 121) environment variable can be overridden
by options given on the command line.

6.7. Running a compiled program 121



GHC User’s Guide Documentation, Release 8.2.1.20171030

Tip: Setting something like GHCRTS=-M2G in your environment is a handyway to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

“Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defi-
nitions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.
Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

You can change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:
void OutOfHeapHook(unsigned long, unsigned long)

The heap-overflow message.
void StackOverflowHook(long int)

The stack-overflow message.
void MallocFailHook(long int)

The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -l (page 199)) is written
through a custom EventLogWriter (page 122):
EventLogWriter

A sink of event-log data.
void initEventLogWriter(void)

Initializes your EventLogWriter (page 122). This is optional.
bool writeEventLog(void *eventlog, size_t eventlog_size)

Hands buffered event log data to your event log writer. Required for a custom
EventLogWriter (page 122).

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 122). This can be NULL.

void stopEventLogWriter(void)
Called when event logging is about to stop. This can be NULL.

6.7.2 Miscellaneous RTS options

--install-signal-handlers=⟨yes|no⟩
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This

122 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.
Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see above).

-xm ⟨address⟩
Warning: This option is for working aroundmemory allocation problems only. Do not
use unless GHCi fails with a message like “failed to mmap() memory below 2Gb”.
If you need to use this option to get GHCi working on your machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to
use the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

-xq ⟨size⟩

Default 100k
This option relates to allocation limits; for more about this see enableAllocationLimit.
When a thread hits its allocation limit, the RTS throws an exception to the thread, and
the thread gets an additional quota of allocation before the exception is raised again, the
idea being so that the thread can execute its exception handlers. The -xq controls the
size of this additional quota.

6.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.
-A ⟨size⟩

Default 1MB
Set the allocation area size used by the garbage collector. The allocation area (actually
generation 0 step 0) is fixed and is never resized (unless you use -H [⟨size⟩] (page 126),
below).
Increasing the allocation area size may or may not give better performance (a bigger
allocation area means worse cache behaviour but fewer garbage collections and less
promotion).
With only 1 generation (e.g. -G1, see -G ⟨generations⟩ (page 125)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be
resized according to the amount of data in the heap (see -F ⟨factor⟩ (page 125), be-
low).

-AL ⟨size⟩

Default -A (page 123) value
Since 8.2.1

6.7. Running a compiled program 123



GHC User’s Guide Documentation, Release 8.2.1.20171030

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 123) value.
Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.
To see whether you’re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-O ⟨size⟩

Default 1m
Set the minimum size of the old generation. The old generation is collected whenever it
grows to this size or the value of the -F ⟨factor⟩ (page 125) option multiplied by the
size of the live data at the previous major collection, whichever is larger.

-n ⟨size⟩

Default 4m with -A16m (page 123) or larger, otherwise 0.
[Example: -n4m ] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.
This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.
This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

-c
Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.
For a given heap size (using the -H ⟨size⟩ (page 75) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the
ratio of live data to heap size is high, say greater than 30%.

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c ⟨n⟩

124 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Default 30
Automatically enable compacting collection when the live data exceeds ⟨n⟩% of the max-
imum heap size (see the -M ⟨size⟩ (page 127) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M ⟨size⟩ (page 127).

-F ⟨factor⟩

Default 2
This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.
The default seems to work well here. If you have plenty of memory, it is usually better to
use -H ⟨size⟩ (see -H [⟨size⟩] (page 126)) than to increase -F ⟨factor⟩ (page 125).
The -F ⟨factor⟩ (page 125) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M ⟨size⟩ (page 127) setting) is approaching.

-G ⟨generations⟩

Default 2
Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.
Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A ⟨size⟩ (page 123) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [⟨size⟩] (page 126) option).

-qg ⟨gen⟩

Default 0
Since 6.12.1

Use parallel GC in generation ⟨gen⟩ and higher. Omitting ⟨gen⟩ turns off the parallel GC
completely, reverting to sequential GC.
The default parallel GC settings are usually suitable for parallel programs (i.e. those
using par, Strategies, or with multiple threads). However, it is sometimes beneficial to
enable the parallel GC for a single-threaded sequential program too, especially if the
program has a large amount of heap data and GC is a significant fraction of runtime. To
use the parallel GC in a sequential program, enable the parallel runtime with a suitable
-N ⟨x⟩ (page 100) option, and additionally it might be beneficial to restrict parallel GC
to the old generation with -qg1.

-qb ⟨gen⟩

Default 1 for -A (page 123) < 32M, 0 otherwise
Since 6.12.1

Use load-balancing in the parallel GC in generation ⟨gen⟩ and higher. Omitting ⟨gen⟩
disables load-balancing entirely.

6.7. Running a compiled program 125



GHC User’s Guide Documentation, Release 8.2.1.20171030

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used to
the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qb.

-qn ⟨x⟩

Default the value of -N (page 100) or the number of CPU cores, whichever is
smaller.

Since 8.2.1
By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.
The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [⟨size⟩]

Default 0
This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A ⟨size⟩ (page 123) option. It says: I want to use at least ⟨size⟩ bytes, so
use whatever is left over to increase the -A value.
This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.
If ⟨size⟩ is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the ⟨size⟩. This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I ⟨seconds⟩

Default 0.3 seconds
In the threaded and SMP versions of the RTS (see -threaded (page 178), Options af-
fecting linking (page 175)), a major GC is automatically performed if the runtime has
been idle (no Haskell computation has been running) for a period of time. The amount of
idle time which must pass before a GC is performed is set by the -I ⟨seconds⟩ option.
Specifying -I0 disables the idle GC.
For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

126 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-ki ⟨size⟩

Default 1k
Set the initial stack size for new threads.
Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

-kc ⟨size⟩

Default 32k
Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K ⟨size⟩
(page 127) is reached.
The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

-kb ⟨size⟩

Default 1k
Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.
Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc ⟨size⟩ (page 127)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K ⟨size⟩

Default 80% of physical memory
Set the maximum stack size for an individual thread to ⟨size⟩ bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.
This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m ⟨n⟩

Default 3%
Minimum % ⟨n⟩ of heap which must be available for allocation.

6.7. Running a compiled program 127



GHC User’s Guide Documentation, Release 8.2.1.20171030

-M ⟨size⟩

Default unlimited
Set the maximum heap size to ⟨size⟩ bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.
The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=⟨size⟩
Default 1M

If the program’s heap exceeds the value set by -M ⟨size⟩ (page 127), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa
--numa=<mask>

Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux currently).
Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.
The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:
•Determine the number of NUMA nodes (N) by querying the OS.
•Manage separate memory pools for each node.
•Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
•Bind worker threads on a capability to the appropriate node.
•Allocate the nursery from node-local memory.
•Perform other memory allocation, including in the GC, from node-local memory.
•When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The --numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.
Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts_setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is

128 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

running on and the memory it is using while running Haskell code, which will negate
any benefits of --numa.
If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, --numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

6.7.4 RTS options to produce runtime statistics

-T
-t [⟨file⟩]
-s [⟨file⟩]
-S [⟨file⟩]
--machine-readable

These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection.
The output is placed in ⟨file⟩. If ⟨file⟩ is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.
If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples), 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07 elapsed) :ghc>>

This tells you:
•The total number of bytes allocated by the program over the whole run.
•The total number of garbage collections performed.
•The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 131) RTS option (RTS options for profiling (page 131)).
•The peak memory the RTS has allocated from the OS.
•The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t --
machine-readable:

[("bytes allocated", "36169392")
,("num_GCs", "69")
,("average_bytes_used", "603392")
,("max_bytes_used", "1065272")
,("num_byte_usage_samples", "2")
,("peak_megabytes_allocated", "3")
,("init_cpu_seconds", "0.00")
,("init_wall_seconds", "0.00")

6.7. Running a compiled program 129



GHC User’s Guide Documentation, Release 8.2.1.20171030

,("mutator_cpu_seconds", "0.02")
,("mutator_wall_seconds", "0.02")
,("GC_cpu_seconds", "0.07")
,("GC_wall_seconds", "0.07")
]

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))

54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s ( 0.00s elapsed)
MUT time 0.01s ( 0.02s elapsed)
GC time 0.07s ( 0.07s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.08s ( 0.09s elapsed)

%GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

•The “bytes allocated in the heap” is the total bytes allocated by the program over
the whole run.
•GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.
•The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.
•The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.
•The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.
•Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.
•The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already

130 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.
•Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.
%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts
bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)
[...]

524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:
•How many bytes we allocated this garbage collection.
•How many bytes we copied this garbage collection.
•How many bytes are currently live.
•How long this garbage collection took (CPU time and elapsed wall clock time).
•How long the program has been running (CPU time and elapsed wall clock time).
•How many page faults occurred this garbage collection.
•How many page faults occurred since the end of the last garbage collection.
•Which generation is being garbage collected.

6.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell (page 99),
and those for parallelism in RTS options for SMP parallelism (page 100).

6.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 193), and RTS options for heap profiling (page 198)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:
-hT

6.7. Running a compiled program 131



GHC User’s Guide Documentation, Release 8.2.1.20171030

-h
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hp2ps – Rendering heap profiles to PostScript (page 202)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 189)). Can be shortened to -h
(page 131).

-L ⟨n⟩

Default 25 characters
Sets the maximum length of the cost-centre names listed in the heap profile.

6.7.7 Tracing

When the program is linked with the -eventlog (page 178) option (Options affecting linking
(page 175)), runtime events can be logged in several ways:
• In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

• In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

• As text to standard output, for debugging purposes.
-l ⟨flags⟩

Log events in binary format. Without any ⟨flags⟩ specified, this logs a default set of
events, suitable for use with tools like ThreadScope.
Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overriden with a custom EventLogWriter.
For some special use cases you may want more control over which events are included.
The ⟨flags⟩ is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:
•s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.
•g — GC events, including GC start/stop. Enabled by default.
•p — parallel sparks (sampled). Enabled by default.
•f — parallel sparks (fully accurate). Disabled by default.
•u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
•a — enable all event classes listed above
•-⟨x⟩ — disable the given class of events, for any event class listed above
•-a — disable all classes

For example, -l-ag would disable all event classes (-a) except for GC events (g).
For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are

132 Chapter 6. Using GHC

http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope


GHC User’s Guide Documentation, Release 8.2.1.20171030

some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.
The format of the log file is described by the header EventLogFormat.h that comes with
GHC, and it can be parsed in Haskell using the ghc-events library. To dump the contents
of a .eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

-v [⟨flags⟩]
Log events as text to standard output, instead of to the .eventlog file. The ⟨flags⟩ are the
same as for -l, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -l option.

6.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!
-B

Sound the bell at the start of each (major) garbage collection.
Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office…”

-D ⟨x⟩
An RTS debugging flag; only available if the program was linked with the -debug
(page 177) option. Various values of ⟨x⟩ are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -? to find out which
debug flags are supported.
Debug messages will be sent to the binary event log file instead of stdout if the -l
(page 199) option is added. This might be useful for reducing the overhead of debug
tracing.

-r ⟨file⟩
Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 177)). The ⟨file⟩ business works just like on the -S
[⟨file⟩] (page 129) RTS option, above.
For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for im-
plementors) (page 211).

-xc
(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.
This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with

6.7. Running a compiled program 133

http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events


GHC User’s Guide Documentation, Release 8.2.1.20171030

-prof -fprof-auto (see -prof (page 193)) and running with +RTS -xc -RTS will tell
you exactly the call stack at the point the error was raised.
The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table_search,
called from Main.polynomial.theta_index,
called from Main.polynomial,
called from Main.zonal_pressure,
called from Main.make_pressure.p,
called from Main.make_pressure,
called from Main.compute_initial_state.p,
called from Main.compute_initial_state,
called from Main.CAF
...

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].
Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.
See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

-Z
Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly
good reason to turn it off, except to ensure the accuracy of certain data collected regard-
ing thunk entry counts.)

6.7.9 Getting information about the RTS

--info
It is possible to ask the RTS to give some information about itself. To do this, use the
--info (page 134) flag, e.g.

$ ./a.out +RTS --info
[("GHC RTS", "YES")
,("GHC version", "6.7")
,("RTS way", "rts_p")
,("Host platform", "x86_64-unknown-linux")
,("Host architecture", "x86_64")
,("Host OS", "linux")
,("Host vendor", "unknown")
,("Build platform", "x86_64-unknown-linux")
,("Build architecture", "x86_64")
,("Build OS", "linux")
,("Build vendor", "unknown")
,("Target platform", "x86_64-unknown-linux")

134 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

,("Target architecture", "x86_64")
,("Target OS", "linux")
,("Target vendor", "unknown")
,("Word size", "64")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
]

The information is formatted such that it can be read as a of type [(String, String)].
Currently the following fields are present:
GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.
RTS way The variant (“way”) of the runtime. The most common values are rts_v

(vanilla), rts_thr (threaded runtime, i.e. linked using the -threaded (page 178)
option) and rts_p (profiling runtime, i.e. linked using the -prof (page 193) option).
Other variants include debug (linked using -debug (page 177)), and dyn (the RTS
is linked in dynamically, i.e. a shared library, rather than statically linked into the
executable itself). These can be combined, e.g. you might have rts_thr_debug_p.

Target platformTarget architectureTarget OSTarget vendor These are the plat-
form the program is compiled to run on.

Build platformBuild architectureBuild OSBuild vendor These are the platform
where the program was built on. (That is, the target platform of GHC itself.) Or-
dinarily this is identical to the target platform. (It could potentially be different if
cross-compiling.)

Host platformHost architectureHost OSHost vendor These are the platform where
GHC itself was compiled. Again, this would normally be identical to the build and
target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.
Compiler unregistered Was this program compiled with an “unregistered” (page 169)

version of GHC? (I.e., a version of GHC that has no platform-specific optimisations
compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful perfor-
mance optimisation that is not available on all platforms. This field tells you whether
the program has been compiled with this optimisation. (Usually yes, except on un-
usual platforms.)

6.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.
Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

6.8. Filenames and separate compilation 135



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.8.1 Haskell source files

Each Haskell source module should be placed in a file on its own.
Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C.hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.
GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

6.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.
The object file, which normally ends in a .o suffix, contains the compiled code for the module.
The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the --show-iface ⟨file⟩ (page 68) option instead (see
Other options related to interface files (page 140)).
You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).
Every module has a module name defined in its source code (module A.B.C where ...).
The name of the object file generated by GHC is derived according to the following rules,
where ⟨osuf⟩ is the object-file suffix (this can be changed with the -osuf option).
• If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with ⟨osuf⟩.

• If -odir ⟨dir⟩ has been specified, then the object filename is ⟨dir⟩/⟨mod⟩.⟨osuf⟩, where
⟨mod⟩ is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath ⟨dir⟩, if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is ⟨hisuf⟩
(.hi by default) instead of ⟨osuf⟩, and the relevant options are -hidir ⟨dir⟩ (page 138)
and -hisuf ⟨suffix⟩ (page 139) instead of -odir ⟨dir⟩ (page 138) and -osuf ⟨suffix⟩
(page 138) respectively.
For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.
For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 137). This means that for most modules,
the source file name should match the module name.
However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it

136 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.
In batch compilation mode, the name of the object file can also be overridden using the -o
⟨file⟩ (page 137) option, and the name of the interface file can be specified directly using
the -ohi ⟨file⟩ (page 138) option.

6.8.3 The search path

In your program, you import a module Foo by saying import Foo. In --make (page 68) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without --make
(page 68), GHC will look for the interface file for Foo, which should have been created by an
earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the
appropriate file.
This strategy is as follows: GHC keeps a list of directories called the search path. For each
of these directories, it tries appending ⟨basename⟩.⟨extension⟩ to the directory, and checks
whether the file exists. The value of ⟨basename⟩ is the module name with dots replaced by
the directory separator (“/” or “\\", depending on the system), and ⟨extension⟩ is a source
extension (hs, lhs) if we are in --make (page 68) mode or GHCi, or ⟨hisuf⟩ otherwise.
For example, suppose the search path contains directories d1, d2, and d3, and we are in
--make (page 68) mode looking for the source file for a module A.B.C. GHC will look in
d1/A/B/C.hs, d1/A/B/C.lhs, d2/A/B/C.hs, and so on.
The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:
-i⟨dir⟩[:⟨dir⟩]*

This flag appends a colon-separated list of dirs to the search path.
-i
resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as
packages. See the section on packages (Packages (page 152)) for details.

6.8.4 Redirecting the compilation output(s)

-o ⟨file⟩
GHC’s compiled output normally goes into a .hc, .o, etc., file, depending on the last-run
compilation phase. The option -o file re-directs the output of that last-run phase to
⟨file⟩.

Note: This “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the
intermediate C code in the file foo.o, name notwithstanding!

This option is most often used when creating an executable file, to set the filename of
the executable. For example:

ghc -o prog --make Main

will compile the program starting with module Main and put the executable in the file
prog.
Note: on Windows, if the result is an executable file, the extension “.exe” is added if the
specified filename does not already have an extension. Thus

6.8. Filenames and separate compilation 137



GHC User’s Guide Documentation, Release 8.2.1.20171030

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe
(not foo).
If you use ghc --make and you don’t use the -o, the name GHC will choose for the
executable will be based on the name of the file containing the module Main. Note that
with GHC the Main module doesn’t have to be put in file Main.hs. Thus both

ghc --make Prog

and

ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).
-odir ⟨dir⟩

Redirects object files to directory ⟨dir⟩. For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir `uname -m`

The object files, Foo.o, Bar.o, and Bumble.o would be put into a subdirectory named
after the architecture of the executing machine (x86, mips, etc).
Note that the -odir option does not affect where the interface files are put; use the -
hidir option for that. In the above example, they would still be put in parse/Foo.hi,
parse/Bar.hi, and gurgle/Bumble.hi.

-ohi ⟨file⟩
The interface output may be directed to another file bar2/Wurble.iface with the option
-ohi bar2/Wurble.iface (not recommended).

Warning: If you redirect the interface file somewhere that GHC can’t find it, then
the recompilation checker may get confused (at the least, you won’t get any recompi-
lation avoidance). We recommend using a combination of -hidir and -hisuf options
instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface
into the bit bucket: -ohi /dev/null, for example.

-hidir ⟨dir⟩
Redirects all generated interface files into ⟨dir⟩, instead of the default.

-stubdir ⟨dir⟩
Redirects all generated FFI stub files into ⟨dir⟩. Stub files are generated when the
Haskell source contains a foreign export or foreign import "&wrapper" declaration
(see Using foreign export and foreign import ccall “wrapper” with GHC (page 440)). The
-stubdir option behaves in exactly the same way as -odir and -hidir with respect to
hierarchical modules.

-dumpdir ⟨dir⟩
Redirects all dump files into ⟨dir⟩. Dump files are generated when -ddump-to-file is
used with other -ddump-* flags.

-outputdir ⟨dir⟩
The -outputdir option is shorthand for the combination of -odir ⟨dir⟩ (page 138),
-hidir ⟨dir⟩ (page 138), -stubdir ⟨dir⟩ (page 138) and -dumpdir ⟨dir⟩ (page 138).

138 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-osuf ⟨suffix⟩
-hisuf ⟨suffix⟩
-hcsuf ⟨suffix⟩

The -osuf ⟨suffix⟩ will change the .o file suffix for object files to whatever you specify.
We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.
Similarly, the -hisuf ⟨suffix⟩ will change the .hi file suffix for non-system interface files
(see Other options related to interface files (page 140)).
Finally, the option -hcsuf ⟨suffix⟩ will change the .hc file suffix for compiler-generated
intermediate C files.
The -hisuf/-osuf game is particularly useful if you want to compile a program both with
and without profiling, in the same directory. You can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -fprof-auto

to get the profiled version.

6.8.5 Keeping Intermediate Files

The following options are useful for keeping (or not keeping) certain intermediate files around,
when normally GHC would throw these away after compilation:
-keep-hc-file
-keep-hc-files

Keep intermediate .hc files when doing .hs-to-.o compilations via C (page 169) (Note:
.hc files are only generated by unregisterised (page 169) compilers).

-keep-hi-files

Keep intermediate .hi files. This is the default. You may use -no-keep-hi-files if you
are not interested in the .hi files.

-keep-llvm-file
-keep-llvm-files

Implies -fllvm (page 174)
Keep intermediate .ll files when doing .hs-to-.o compilations via LLVM (page 168)
(Note: .ll files aren’t generated when using the native code generator, you may need
to use -fllvm (page 174) to force them to be produced).

-keep-o-files

Keep intermediate .o files. This is the default. You may use -no-keep-o-files if you
are not interested in the .o files.

-keep-s-file
-keep-s-files

Keep intermediate .s files.

6.8. Filenames and separate compilation 139



GHC User’s Guide Documentation, Release 8.2.1.20171030

-keep-tmp-files
Instructs the GHC driver not to delete any of its temporary files, which it normally keeps
in /tmp (or possibly elsewhere; see Redirecting temporary files (page 140)). Running
GHC with -v will show you what temporary files were generated along the way.

6.8.6 Redirecting temporary files

-tmpdir ⟨dir⟩
If you have trouble because of running out of space in /tmp (or wherever your installation
thinks temporary files should go), you may use the -tmpdir ⟨dir⟩ (page 140) option
option to specify an alternate directory. For example, -tmpdir . says to put temporary
files in the current working directory.
Alternatively, use your TMPDIR environment variable. Set it to the name of the directory
where temporary files should be put. GCC and other programs will honour the TMPDIR
variable as well.

6.8.7 Other options related to interface files

-ddump-hi
Dumps the new interface to standard output.

-ddump-hi-diffs
The compiler does not overwrite an existing .hi interface file if the new one is the same
as the old one; this is friendly to make. When an interface does change, it is often
enlightening to be informed. The -ddump-hi-diffs (page 140) option will make GHC
report the differences between the old and new .hi files.

-ddump-minimal-imports
Dump to the file M.imports (where ⟨M⟩ is the name of the module being compiled) a
“minimal” set of import declarations. The directory where the .imports files are created
can be controlled via the -dumpdir ⟨dir⟩ (page 138) option.
You can safely replace all the import declarations in M.hs with those found in its respec-
tive .imports file. Why would you want to do that? Because the “minimal” imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can
be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface ⟨file⟩
where ⟨file⟩ is the name of an interface file, dumps the contents of that interface in a
human-readable format. See Modes of operation (page 68).

6.8.8 The recompilation checker

-fforce-recomp
Turn off recompilation checking (which is on by default). Recompilation checking nor-
mally stops compilation early, leaving an existing .o file in place, if it can be determined
that the module does not need to be recompiled.

In the olden days, GHC compared the newly-generated .hi file with the previous version;
if they were identical, it left the old one alone and didn’t change its modification date. In
consequence, importers of a module with an unchanged output .hi file were not recompiled.

140 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So
changes to module Amight require module C to be recompiled, and hence when A.hi changes
we should check whether C should be recompiled. However, the dependencies of C will only
list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So
now…
GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each decla-
ration within the interface file. It also keeps in every interface file a list of the fingerprints
of everything it used when it last compiled the file. If the source file’s modification date is
earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled),
and the recompilation checking is on, GHC will be clever. It compares the fingerprints on the
things it needs this time with the fingerprints on the things it needed last time (gleaned from
the interface file of the module being compiled); if they are all the same it stops compiling
early in the process saying “Compilation IS NOT required”. What a beautiful sight!
You can read about how all this works in the GHC commentary.

6.8.9 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.
Every cycle in the module import graph must be broken by a hs-boot file. Suppose that
modules A.hs and B.hs are Haskell source files, thus:

module A where
import B( TB(..) )

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where
import {-# SOURCE #-} A( TA(..) )

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

hs-boot files importing, hi-boot files Here A imports B, but B imports A with a {-# SOURCE
#-} pragma, which breaks the circular dependency. Every loop in the module import graph
must be broken by a {-# SOURCE #-} import; or, equivalently, the module import graph must
be acyclic if {-# SOURCE #-} imports are ignored.
For every module A.hs that is {-# SOURCE #-}-imported in this way there must exist a source
file A.hs-boot. This file contains an abbreviated version of A.hs, thus:

module A where
newtype TA = MkTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot
ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o
ghc -o foo A.o B.o -- Linking the program

6.8. Filenames and separate compilation 141

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance


GHC User’s Guide Documentation, Release 8.2.1.20171030

There are several points to note here:
• The file A.hs-boot is a programmer-written source file. It must live in the same directory
as its parent source file A.hs. Currently, if you use a literate source file A.lhs you must
also use a literate boot file, A.lhs-boot; and vice versa.

• A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When
its parent module A.hs is compiled, the two are compared, and an error is reported if
the two are inconsistent.

• Just as compiling A.hs produces an interface file A.hi, and an object file A.o, so compil-
ing A.hs-boot produces an interface file A.hi-boot, and an pseudo-object file A.o-boot:
– The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when
using a Makefile, to record when the A.hi-boot was last brought up to date (see
Using make (page 148)).

– The hi-boot generated by compiling a hs-boot file is in the same machine-
generated binary format as any other GHC-generated interface file (e.g. B.hi). You
can display its contents with ghc --show-iface. If you specify a directory for inter-
face files, the -ohidir flag, then that affects hi-boot files too.

• If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE
#-} import is considered to refer to the hs-boot file, then the module import graph must
have no cycles. The command ghc -M will report an error if a cycle is found.

• A module M that is {-# SOURCE #-}-imported in a program will usually also be ordinarily
imported elsewhere. If not, ghc --make automatically adds M to the set of modules it tries
to compile and link, to ensure that M‘s implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrap-
ping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module(s) that import A recursively.
A hs-boot file is written in a subset of Haskell:
• The module header (including the export list), and import statements, are exactly as in
Haskell, and so are the scoping rules. Hence, to mention a non-Prelude type or class,
you must import it.

• There must be no value declarations, but there can be type signatures for values. For
example:

double :: Int -> Int

• Fixity declarations are exactly as in Haskell.
• Vanilla type synonym declarations are exactly as in Haskell.
• Open type and data family declarations are exactly as in Haskell.
• A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where ..

The .. is meant literally – you should write two dots in your file. Note that the where
clause is still necessary to distinguish closed families from open ones. If you give any
equations of a closed family, you must give all of them, in the same order as they appear
in the accompanying Haskell file.

142 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

• A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension:
see Data types with no constructors (page 246)), but in an hi-boot file it means “I don’t
know or care what the constructors are”. This is the most common form of data type
declaration, because it’s easy to get right. You can also write out the constructors but,
if you do so, you must write it out precisely as in its real definition.
If you do not write out the constructors, you may need to give a kind annotation
(Explicitly-kinded quantification (page 347)), to tell GHC the kind of the type variable, if
it is not “*”. (In source files, this is worked out from the way the type variable is used in
the constructors.) For example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration in-
stead.

• Class declarations is exactly as in Haskell, except that you may not put default method
declarations. You can also omit all the superclasses and class methods entirely; but you
must either omit them all or put them all in.

• You can include instance declarations just as in Haskell; but omit the “where” part.
• The default role for abstract datatype parameters is now representational. (An abstract
datatype is one with no constructors listed.) To get another role, use a role annotation.
(See Roles (page 419).)

6.8.10 Module signatures

GHC 8.2 supports module signatures (hsig files), which allow you to write a signature in
place of a module implementation, deferring the choice of implementation until a later point
in time. This feature is not intended to be used without Cabal; this manual entry will focus
on the syntax and semantics of signatures.
To start with an example, suppose you had a module A which made use of some string oper-
ations. Using normal module imports, you would only be able to pick a particular implemen-
tation of strings:

module Str where
type Str = String

empty :: Str
empty = ""

toString :: Str -> String
toString s = s

module A where
import Text
z = toString empty

By replacing Str.hs with a signature Str.hsig, A (and any other modules in this package)
are now parametrized by a string implementation:

6.8. Filenames and separate compilation 143

http://www.haskell.org/cabal/


GHC User’s Guide Documentation, Release 8.2.1.20171030

signature Str where
data Str
empty :: Str
toString :: Str -> String

We can typecheck A against this signature, or we can instantiate Str with a module that
provides the following declarations. Refer to Cabal’s documentation for a more in-depth dis-
cussion on how to instantiate signatures.
Module signatures actually consist of two closely related features:
• The ability to define an hsig file, containing type definitions and type signature for values
which can be used by modules that import the signature, and must be provided by the
eventual implementing module, and

• The ability to inherit required signatures from packages we depend upon, combining the
signatures into a single merged signature which reflects the requirements of any locally
defined signature, as well as the requirements of our dependencies.

A signature file is denoted by an hsig file; every required signature must have an hsig file
(even if it is an empty one), including required signatures inherited from dependencies. Sig-
natures can be imported using an ordinary import Sig declaration.
hsig files are written in a variant of Haskell similar to hs-boot files, but with some slight
changes:
• The header of a signature is signature A where ... (instead of the usual module A
where ...).

• Import statements and scoping rules are exactly as in Haskell. To mention a non-Prelude
type or class, you must import it.

• Unlike regular modules, the defined entities of a signature include not only those written
in the local hsig file, but also those from inherited signatures (as inferred from the -
package-id ⟨unit-id⟩ (page 154) flags). These entities are not considered in scope
when typechecking the local hsig file, but are available for import by any module or
signature which imports the signature. The one exception to this rule is the export list,
described below.
If a declaration occurs in multiple inherited signatures, they will be merged together.
For values, we require that the types from both signatures match exactly; however, other
declarations may merge in more interesting ways. The merging operation in these cases
has the effect of textually replacing all occurrences of the old name with a reference to
the new, merged declaration. For example, if we have the following two signatures:

signature A where
data T
f :: T -> T

signature A where
data T = MkT
g :: T

the resulting merged signature would be:

signature A where
data T = MkT
f :: T -> T
g :: T

144 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

• If no export list is provided for a signature, the exports of a signature are all of its defined
entities merged with the exports of all inherited signatures.
If you want to reexport an entity from a signature, you must also include a module Sig-
Name export, so that all of the entities defined in the signature are exported. For example,
the following module exports both f and Int from Prelude:

signature A(module A, Int) where
import Prelude (Int)
f :: Int

Reexports merge with local declarations; thus, the signature above would successfully
merge with:

signature A where
data Int

The only permissible implementation of such a signature is a module which reexports
precisely the same entity:

module A (f, Int) where
import Prelude (Int)
f = 2 :: Int

Conversely, any entity requested by a signature can be provided by a reexport from the
implementing module. This is different from hs-boot files, which require every entity to
be defined locally in the implementing module.

• GHC has experimental support for signature thinning, which is used when a signature
has an explicit export list without a module export of the signature itself. In this case,
the export list applies to the final export list after merging, in particular, you may refer
to entities which are not declared in the body of the local hsig file.
The semantics in this case is that the set of required entities is defined exclusively by its
exports; if an entity is not mentioned in the export list, it is not required. The motivation
behind this feature is to allow a library author to provide an omnibus signature contain-
ing the type of every function someone might want to use, while a client thins down the
exports to the ones they actually require. For example, supposing that you have inher-
ited a signature for strings, you might write a local signature of this form, listing only
the entities that you need:

signature Str (Str, empty, append, concat) where
-- empty

A few caveats apply here. First, it is illegal to export an entity which refers to a locally
defined type which itself is not exported (GHC will report an error in this case). Second,
signatures which come from dependencies which expose modules cannot be thinned in
this way (after all, the dependency itself may need the entity); these requirements are
unconditionally exported. Finally, any module reexports must refer to modules imported
by the local signature (even if an inherited signature exported the module).
We may change the syntax and semantics of this feature in the future.

• The declarations and types from signatures of dependencies that will be merged in are
not in scope when type checking an hsig file. To refer to any such type, you must declare
it yourself:

-- OK, assuming we inherited an A that defines T
signature A (T) where

-- empty

6.8. Filenames and separate compilation 145



GHC User’s Guide Documentation, Release 8.2.1.20171030

-- Not OK
signature A (T, f) where

f :: T -> T

-- OK
signature A (T, f) where

data T
f :: T -> T

• There must be no value declarations, but there can be type signatures for values. For
example, we might define the signature:

signature A where
double :: Int -> Int

A module implementing A would have to export the function double with a type defini-
tionally equal to the signature. Note that this means you can’t implement double using
a polymorphic function double :: Num a => a -> a.
Note that signature matching does check if fixity matches, so be sure specify fixity of
ordinary identifiers if you intend to use them with backticks.

• Fixity, type synonym, open type/data family declarations are permitted as in normal
Haskell.

• Closed type family declarations are permitted as in normal Haskell. They can also be
given abstractly, as in the following example:

type family ClosedFam a where ..

The .. is meant literally – you should write two dots in your file. The where clause
distinguishes closed families from open ones.

• A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

signature A where
data T a b

Abstract data types can be implemented not only with data declarations, but also new-
types and type synonyms (with the restriction that a type synonym must be fully eta-
reduced, e.g., type T = ... to be accepted.) For example, the following are all valid
implementations of the T above:

-- Algebraic data type
data T a b = MkT a b

-- Newtype
newtype T a b = MkT (a, b)

-- Type synonym
data T2 a b = MkT2 a a b b
type T = T2

Data type declarationsmerge only with other data type declarations whichmatch exactly,
except abstract data, which can merge with data, newtype or type declarations. Merges
with type synonyms are especially useful: suppose you are using a package of strings
which has left the type of characters in the string unspecified:

146 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

signature Str where
data Str
data Elem
head :: Str -> Elem

If you locally define a signature which specifies type Elem = Char, you can now use
head from the inherited signature as if it returned a Char.
If you do not write out the constructors, you may need to give a kind to tell GHC what
the kinds of the type variables are, if they are not the default *.
Roles of type parameters are subject to the subtyping relation phantom < representa-
tional < nominal: for example, an abstract type with a nominal type parameter can
be implemented using a concrete type with a representational type parameter. Merging
respects this subtyping relation (e.g., nominalmerged with representational is repre-
sentational.) Roles in signatures default to nominal, which gives maximum flexibility
on the implementor’s side. You should only need to give an explicit role annotation if
a client of the signature would like to coerce the abstract type in a type parameter (in
which case you should specify representational explicitly.) Unlike regular data types,
we do not assume that abstract data types are representationally injective: if we have
Coercible (T a) (T b), and T has role nominal, this does not imply that a ~ b.

• A class declarations can either be abstract or concrete. An abstract class is one with no
superclasses or class methods:

signature A where
class Key k

It can be implemented in any way, with any set of superclasses and methods; however,
modules depending on an abstract class are not permitted to define instances (as of
GHC 8.2, this restriction is not checked, see Trac #13086.) These declarations can
be implemented by type synonyms of kind Constraint; this can be useful if you want
to parametrize over a constraint in functions. For example, with the ConstraintKinds
extension, this type synonym is a valid implementation of the signature above:

module A where
type Key = Eq

A concrete class specifies its superclasses, methods, default method signatures (but not
their implementations) and a MINIMAL pragma. Unlike regular Haskell classes, you don’t
have to explicitly declare a default for a method to make it optional vis-a-vis the MINIMAL
pragma.
When merging class declarations, we require that the superclasses and methods match
exactly; however, MINIMAL pragmas are logically ORed together, and a method with a
default signature will merge successfully against one that does not.

• You can include instance declarations as in Haskell; just omit the “where” part. An
instance declaration need not be implemented directly; if an instance can be derived
based on instances in the environment, it is considered implemented. For example, the
following signature:

signature A where
data Str
instance Eq Str

is considered implemented by the following module, since there are instances of Eq for
[] and Char which can be combined to form an instance Eq [Char]:

6.8. Filenames and separate compilation 147

https://ghc.haskell.org/trac/ghc/ticket/13086


GHC User’s Guide Documentation, Release 8.2.1.20171030

module A where
type Str = [Char]

Unlike other declarations, for which only the entities declared in a signature file are
brought into scope, instances from the implementation are always brought into scope,
even if they were not declared in the signature file. This means that a module may
typecheck against a signature, but not against a matching implementation. You can
avoid situations like this by never defining orphan instances inside a package that has
signatures.
Instance declarations are only merged if their heads are exactly the same, so it is possible
to get into a situation where GHC thinks that instances in a signature are overlapping,
even if they are implemented in a non-overlapping way. If this is giving you problems
give us a shout.

• Any orphan instances which are brought into scope by an import from a signature are
unconditionally considered in scope, even if the eventual implementing module doesn’t
actually import the same orphans.

Known limitations:
• Pattern synonyms are not supported.
• Algebraic data types specified in a signature cannot be implemented using pattern syn-
onyms. See Trac #12717

6.8.11 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name
your source files the same as your modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm -f $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

# Standard suffix rules
.o.hi:

@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

.hs.o:
$(HC) -c $< $(HC_OPTS)

.o-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

148 Chapter 6. Using GHC

https://ghc.haskell.org/trac/ghc/ticket/12717


GHC User’s Guide Documentation, Release 8.2.1.20171030

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

# Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

Note: Sophisticatedmake variants may achieve some of the above more elegantly. Notably,
gmake‘s pattern rules let you write the more comprehensible:
%.o : %.lhs

$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with any make.

Note the cheesy .o.hi rule: It records the dependency of the interface (.hi) file on the source.
The rule says a .hi file can be made from a .o file by doing…nothing. Which is true.
Note that the suffix rules are all repeated twice, once for normal Haskell source files, and
once for hs-boot files (see How to compile mutually recursive modules (page 141)).
Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks
for a rule to do so; one of the preceding suffix rules does the job nicely. These dependencies
can be generated automatically by ghc; see Dependency generation (page 149)

6.8.12 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required depen-
dencies. Add the following to your Makefile:

depend :
ghc -dep-suffix '' -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do
make depend before you do make cool_pgm. The command ghc -M will append the needed
dependencies to your Makefile.
In general, ghc -M Foo does the following. For each module M in the set Foo plus all its
imports (transitively), it adds to the Makefile:
• A line recording the dependence of the object file on the source file.

M.o : M.hs

(or M.lhs if that is the filename you used).
• For each import declaration import X in M, a line recording the dependence of M on X:

M.o : X.hi

• For each import declaration import {-# SOURCE #-} X in M, a line recording the depen-
dence of M on X:

6.8. Filenames and separate compilation 149



GHC User’s Guide Documentation, Release 8.2.1.20171030

M.o : X.hi-boot

(See How to compile mutually recursive modules (page 141) for details of hi-boot style
interface files.)

If M imports multiple modules, then there will be multiple lines with M.o as the target.
There is no need to list all of the source files as arguments to the ghc -M command; ghc traces
the dependencies, just like ghc --make (a new feature in GHC 6.4).
Note that ghc -M needs to find a source file for each module in the dependency graph, so that
it can parse the import declarations and follow dependencies. Any pre-compiled modules
without source files must therefore belong to a package 2.
By default, ghc -M generates all the dependencies, and then concatenates them onto the
end of makefile (or Makefile if makefile doesn’t exist) bracketed by the lines “# DO NOT
DELETE: Beginning of Haskell dependencies” and “# DO NOT DELETE: End of Haskell
dependencies”. If these lines already exist in the makefile, then the old dependencies are
deleted first.
Don’t forget to use the same -package options on the ghc -M command line as you would
when compiling; this enables the dependency generator to locate any imported modules that
come from packages. The packagemodules won’t be included in the dependencies generated,
though (but see the -include-pkg-deps option below).
The dependency generation phase of GHC can take some additional options, which you may
find useful. The options which affect dependency generation are:
-ddump-mod-cycles

Display a list of the cycles in the module graph. This is useful when trying to eliminate
such cycles.

-v2
Print a full list of the module dependencies to stdout. (This is the standard verbosity
flag, so the list will also be displayed with -v3 and -v4; see Verbosity options (page 71).)

-dep-makefile ⟨file⟩
Use ⟨file⟩ as the makefile, rather than makefile or Makefile. If ⟨file⟩ doesn’t exist, mkde-
pendHS creates it. We often use -dep-makefile .depend to put the dependencies in
.depend and then include the file .depend into Makefile.

-dep-suffix ⟨suffix⟩
Make dependencies that declare that files with suffix .⟨suf⟩⟨osuf⟩ depend on interface
files with suffix .⟨suf⟩hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multiple -dep-
suffix flags are permitted. For example, -dep-suffix a_ -dep-suffix b_ will make
dependencies for .hs on .hi, .a_hs on .a_hi, and .b_hs on .b_hi. Note that you must
provide at least one suffix; if you do not want a suffix then pass -dep-suffix ''.

--exclude-module=⟨file⟩
Regard ⟨file⟩ as “stable”; i.e., exclude it from having dependencies on it.

-include-pkg-deps
Regard modules imported from packages as unstable, i.e., generate dependencies on
any imported package modules (including Prelude, and all other standard Haskell li-
braries). Dependencies are not traced recursively into packages; dependencies are only
generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system
libraries.

2 This is a change in behaviour relative to 6.2 and earlier.

150 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.8.13 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module “be-
low” M is visible. (Module A is “below” M if A is imported directly by M, or if A is below a
module that M imports directly.) In principle, GHC must therefore read the interface files of
every module below M, just in case they contain an instance declaration that matters to M. This
would be a disaster in practice, so GHC tries to be clever.
In particular, if an instance declaration is in the same module as the definition of any type
or class mentioned in the head of the instance declaration (the part after the “=>”; see Re-
laxed rules for instance contexts (page 300)), then GHC has to visit that interface file anyway.
Example:

module A where
instance C a => D (T a) where ...
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited
A‘s interface file to find T‘s definition.
The only problem comes when a module contains an instance declaration and GHC has no
other reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”.
GHC identifies orphan modules, and visits the interface file of every orphan module below the
module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.
Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But
suppose class E had a functional dependency:

module Lib where
class E x y | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be “improved” by setting
a = T, even though there is no explicit mention of T in M.
These considerations lead to the following definition of an orphan module:
• An orphan module orphan module contains at least one orphan instance or at least one
orphan rule.

• An instance declaration in a module M is an orphan instance if orphan instance
– The class of the instance declaration is not declared in M, and
– Either the class has no functional dependencies, and none of the type constructors
in the instance head is declared in M; or there is a functional dependency for which
none of the type constructors mentioned in the non-determined part of the instance
head is defined in M.

6.8. Filenames and separate compilation 151



GHC User’s Guide Documentation, Release 8.2.1.20171030

Only the instance head counts. In the example above, it is not good enough for C‘s
declaration to be in module A; it must be the declaration of D or T.

• A rewrite rule in a module M is an orphan rule orphan rule if none of the variables, type
constructors, or classes that are free in the left hand side of the rule are declared in M.

If you use the flag -Worphans (page 84), GHC will warn you if you are creating an orphan
module. Like any warning, you can switch the warning off with -Wno-orphans (page 84), and
-Werror (page 77) will make the compilation fail if the warning is issued.
You can identify an orphan module by looking in its interface file, M.hi, using the --show-
iface ⟨file⟩ (page 68) mode (page 68). If there is a [orphan module] on the first line, GHC
considers it an orphan module.

6.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several
packages: see the accompanying library documentation. More packages to install can be
obtained from HackageDB.
Using a package couldn’t be simpler: if you’re using --make or GHCi, then most of the in-
stalled packages will be automatically available to your program without any further options.
The exceptions to this rule are covered below in Using Packages (page 152).
Building your own packages is also quite straightforward: we provide the Cabal infrastructure
which automates the process of configuring, building, installing and distributing a package.
All you need to do is write a simple configuration file, put a few files in the right places, and
you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

6.9.1 Using Packages

GHC only knows about packages that are installed. Installed packages live in package
databases. For details on package databases and how to control which package databases or
specific set of packages are visible to GHC, see Package Databases (page 156).
To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:

Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
(dph-par-0.4.0)
(dph-prim-interface-0.4.0)
(dph-prim-par-0.4.0)
(dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0

152 Chapter 6. Using GHC

http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
http://www.haskell.org/cabal/users-guide/


GHC User’s Guide Documentation, Release 8.2.1.20171030

ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)
ghc-prim-0.1.0.0
haskeline-0.6.2
haskell98-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.0.1
old-time-1.0.0.1
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4
unix-2.3.1.0
utf8-string-0.3.4

An installed package is either exposed or hidden by default. Packages hidden by default are
listed in parentheses (e.g. (lang-1.0)), or possibly in blue if your terminal supports colour,
in the output of ghc-pkg list. Command-line flags, described below, allow you to expose
a hidden package or hide an exposed one. Only modules from exposed packages may be
imported by your Haskell code; if you try to import a module from a hidden package, GHC
will emit an error message. It should be noted that a hidden package might still get linked
with your program as a dependency of an exposed package, it is only restricted from direct
imports.
If there are multiple exposed versions of a package, GHC will prefer the latest one. Addi-
tionally, some packages may be broken: that is, they are missing from the package database,
or one of their dependencies are broken; in this case; these packages are excluded from the
default set of packages.

Note: If you’re using Cabal, then the exposed or hidden status of a package is irrelevant:
the available packages are instead determined by the dependencies listed in your .cabal
specification. The exposed/hidden status of packages is only relevant when using ghc or ghci
directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either
trusted or not trusted (distrusted). By default packages are distrusted. This property of a
package only plays a role when compiling code using GHC’s Safe Haskell feature (see Safe
Haskell (page 426)) with the -fpackage-trust flag enabled.
To see which modules are provided by a package use the ghc-pkg command (see Package
management (the ghc-pkg command) (page 161)):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,

Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

6.9. Packages 153



GHC User’s Guide Documentation, Release 8.2.1.20171030

-package ⟨pkg⟩
This option causes the installed package ⟨pkg⟩ to be exposed. The package ⟨pkg⟩ can be
specified in full with its version number (e.g. network-1.0) or the version number can
be omitted in which case GHC will automatically expose the latest non-broken version
from the installed versions of the package.
By default (when -hide-all-packages (page 154) is not specified), GHC exposes only
one version of a package, all other versions become hidden. If -package option is spec-
ified multiple times for the same package the last one overrides the previous ones. On
the other hand, if -hide-all-packages (page 154) is used, GHC allows you to expose
multiple versions of a package by using the -package option multiple times with different
versions of the same package.
-package supports thinning and renaming described in Thinning and renaming modules
(page 156).
The -package ⟨pkg⟩ option also causes package ⟨pkg⟩ to be linked into the resulting ex-
ecutable or shared object. Whether a packages’ library is linked statically or dynamically
is controlled by the flag pair -static (page 176)/ -dynamic (page 176).
In --make (page 68) mode and --interactive (page 68) mode (see Modes of operation
(page 68)), the compiler normally determines which packages are required by the cur-
rent Haskell modules, and links only those. In batch mode however, the dependency
information isn’t available, and explicit -package options must be given when linking.
The one other time you might need to use -package to force linking a package is when
the package does not contain any Haskell modules (it might contain a C library only,
for example). In that case, GHC will never discover a dependency on it, so it has to be
mentioned explicitly.
For example, to link a program consisting of objects Foo.o and Main.o, where we made
use of the network package, we need to give GHC the -package flag thus:

$ ghc -o myprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source, because GHC
still reckons it’s in batch mode:

$ ghc -o myprog Foo.hs Main.hs -package network

-package-id ⟨unit-id⟩
Exposes a package like -package ⟨pkg⟩ (page 153), but the package is named by its
unit ID (i.e. the value of id in its entry in the installed package database, also previously
known as an installed package ID) rather than by name. This is a more robust way to
name packages, and can be used to select packages that would otherwise be shadowed.
Cabal passes -package-id flags to GHC. -package-id supports thinning and renaming
described in Thinning and renaming modules (page 156).

-hide-all-packages
Ignore the exposed flag on installed packages, and hide them all by default. If you use
this flag, then any packages you require (including base) need to be explicitly exposed
using -package ⟨pkg⟩ (page 153) options.
This is a good way to insulate your program from differences in the globally exposed
packages, and being explicit about package dependencies is a Good Thing. Cabal always
passes the -hide-all-packages flag to GHC, for exactly this reason.

-hide-package ⟨pkg⟩
This option does the opposite of -package ⟨pkg⟩ (page 153): it causes the specified

154 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

package to be hidden, which means that none of its modules will be available for import
by Haskell import directives.
Note that the package might still end up being linked into the final program, if it is a
dependency (direct or indirect) of another exposed package.

-ignore-package ⟨pkg⟩
Causes the compiler to behave as if package ⟨pkg⟩, and any packages that depend on
⟨pkg⟩, are not installed at all.
Saying -ignore-package ⟨pkg⟩ is the same as giving -hide-package ⟨pkg⟩ (page 154)
flags for ⟨pkg⟩ and all the packages that depend on ⟨pkg⟩. Sometimes we don’t know
ahead of time which packages will be installed that depend on ⟨pkg⟩, which is when the
-ignore-package ⟨pkg⟩ (page 155) flag can be useful.

-no-auto-link-packages
By default, GHC will automatically link in the base and rts packages. This flag disables
that behaviour.

-this-unit-id ⟨unit-id⟩
Tells GHC that the module being compiled forms part of unit ID ⟨unit-id⟩; internally, these
keys are used to determine type equality and linker symbols. As of GHC 8.0, unit IDs
must consist solely of alphanumeric characters, dashes, underscores and periods. GHC
reserves the right to interpret other characters in a special way in later releases.

-trust ⟨pkg⟩
This option causes the install package ⟨pkg⟩ to be both exposed and trusted by GHC.
This command functions in a very similar way to the -package ⟨pkg⟩ (page 153) com-
mand but in addition sets the selected packages to be trusted by GHC, regardless of the
contents of the package database. (see Safe Haskell (page 426)).

-distrust ⟨pkg⟩
This option causes the install package ⟨pkg⟩ to be both exposed and distrusted by GHC.
This command functions in a very similar way to the -package ⟨pkg⟩ (page 153) com-
mand but in addition sets the selected packages to be distrusted by GHC, regardless of
the contents of the package database. (see Safe Haskell (page 426)).

-distrust-all
Ignore the trusted flag on installed packages, and distrust them by default. If you use
this flag and Safe Haskell then any packages you require to be trusted (including base)
need to be explicitly trusted using -trust ⟨pkg⟩ (page 434) options. This option does
not change the exposed/hidden status of a package, so it isn’t equivalent to applying -
distrust ⟨pkg⟩ (page 434) to all packages on the system. (see Safe Haskell (page 426)).

6.9.2 The main package

Every complete Haskell program must define main in module Main in package main. Omitting
the -this-unit-id ⟨unit-id⟩ (page 155) flag compiles code for package main. Failure to
do so leads to a somewhat obscure link-time error of the form:

/usr/bin/ld: Undefined symbols:
_ZCMain_main_closure

6.9. Packages 155



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two
modules with the same name: perhaps you used a package P that has a hidden module M,
and there is also a module M in your program. Or perhaps the dependencies of packages that
you used contain some overlapping modules. Perhaps the program even contains multiple
versions of a certain package, due to dependencies from other packages.
None of these scenarios gives rise to an error on its own 3, but they may have some interesting
consequences. For instance, if you have a type M.T from version 1 of package P, then this is
not the same as the type M.T from version 2 of package P, and GHC will report an error if you
try to use one where the other is expected.
Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely
identified by the pair of the module name in which it is defined and its name. In GHC, an
entity is uniquely defined by a triple: package, module, and name.

6.9.4 Thinning and renaming modules

When incorporating packages frommultiple sources, youmay end up in a situation wheremul-
tiple packages publish modules with the same name. Previously, the only way to distinguish
between these modules was to use Package-qualified imports (page 244). However, since
GHC 7.10, the -package ⟨pkg⟩ (page 153) flags (and their variants) have been extended to
allow a user to explicitly control what modules a package brings into scope, by analogy to the
import lists that users can attach to module imports.
The basic syntax is that instead of specifying a package name P to the package flag -package,
instead we specify both a package name and a parenthesized, comma-separated list of mod-
ule names to import. For example, -package "base (Data.List, Data.Bool)" makes only
Data.List and Data.Bool visible from package base. We also support renaming of modules,
in case you need to refer to both modules simultaneously; this is supporting by writing Old-
ModName as NewModName, e.g. -package "base (Data.Bool as Bool). You can also write
-package "base with (Data.Bool as Bool) to include all of the original bindings (e.g. the
renaming is strictly additive). It’s important to specify quotes so that your shell passes the
package name and thinning/renaming list as a single argument to GHC.
Package imports with thinning/renaming do not hide other versions of the package: e.g.
if containers-0.9 is already exposed, -package "containers-0.8 (Data.List as ListV8)"
will only add an additional binding to the environment. Similarly, -package "base
(Data.Bool as Bool)" -package "base (Data.List as List)" is equivalent to -package
"base (Data.Bool as Bool, Data.List as List)". Literal names must refer to modules
defined by the original package, so for example -package "base (Data.Bool as Bool,
Bool as Baz)" is invalid unless there was a Bool module defined in the original package.
Hiding a package also clears all of its renamings.
You can use renaming to provide an alternate prelude, e.g. -hide-all-packages -package
"basic-prelude (BasicPrelude as Prelude)", in lieu of the Rebindable syntax and the im-
plicit Prelude import (page 239) extension.

6.9.5 Package Databases

A package database is where the details about installed packages are stored. It is a directory,
usually called package.conf.d, that contains a file for each package, together with a binary

3 it used to in GHC 6.4, but not since 6.6

156 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

cache of the package data in the file package.cache. Normally you won’t need to look at or
modify the contents of a package database directly; all management of package databases
can be done through the ghc-pkg tool (see Package management (the ghc-pkg command)
(page 161)).
GHC knows about two package databases in particular:
• The global package database, which comes with your GHC installation, e.g.
/usr/lib/ghc-6.12.1/package.conf.d.

• The user package database private to each user. On Unix systems this will be
$HOME/.ghc/arch-os-version/package.conf.d, and on Windows it will be something
like C:\Documents And Settings\user\ghc\package.conf.d. The ghc-pkg tool knows
where this file should be located, and will create it if it doesn’t exist (see Package man-
agement (the ghc-pkg command) (page 161)).

Package database stack: Package databases are arranged in a stack structure. When GHC
starts up it adds the global and the user package databases to the stack, in that order, unless
GHC_PACKAGE_PATH (page 158) is specified. When GHC_PACKAGE_PATH is specified then it
will determine the initial database stack. Several command line options described below can
further manipulate this initial stack. You can see GHC’s effective package database stack by
running GHC with the -v (page 71) flag.
This stack structure means that the order of -package-db ⟨file⟩ (page 157) flags or
GHC_PACKAGE_PATH (page 158) is important. Each substack of the stack must be well formed
(packages in databases on top of the stack can refer to packages below, but not vice versa).
Package shadowing: When multiple package databases are in use it is possible, though rarely,
that the same installed package id is present in more than one database. In that case, pack-
ages closer to the top of the stack will override (shadow) those below them. If the conflicting
packages are found to be equivalent (by ABI hash comparison) then one of them replaces all
references to the other, otherwise the overridden package and all those depending on it will
be removed.
Package version selection: When selecting a package, GHC will search for packages in all
available databases. If multiple versions of the same package are available the latest non-
broken version will be chosen.
Version conflict resolution: If multiple instances of a package version chosen by GHC are
available then GHC will choose an unspecified instance.
You can control GHC’s package database stack using the following options:
-package-db ⟨file⟩

Add the package database ⟨file⟩ on top of the current stack.
-no-global-package-db

Remove the global package database from the package database stack.
-no-user-package-db

Prevent loading of the user’s local package database in the initial stack.
-clear-package-db

Reset the current package database stack. This option removes every previously spec-
ified package database (including those read from the GHC_PACKAGE_PATH (page 158)
environment variable) from the package database stack.

-global-package-db
Add the global package database on top of the current stack. This option can be used
after -no-global-package-db (page 157) to specify the position in the stack where the
global package database should be loaded.

6.9. Packages 157



GHC User’s Guide Documentation, Release 8.2.1.20171030

-user-package-db
Add the user’s package database on top of the current stack. This option can be used
after -no-user-package-db (page 157) to specify the position in the stack where the
user’s package database should be loaded.

The GHC_PACKAGE_PATH environment variable

GHC_PACKAGE_PATH
The GHC_PACKAGE_PATH environment variable may be set to a :-separated (;-
separated on Windows) list of files containing package databases. This list of package
databases, used by GHC and ghc-pkg, specifies a stack of package databases from top to
bottom. This order was chosen to match the behaviour of the PATH environment variable
where entries earlier in the PATH override ones that come later. See Package Databases
(page 156) for details on how the package database stack is used.
Normally GHC_PACKAGE_PATH replaces the default package stack. For example, all of
the following commands are equivalent, creating a stack with db1 at the top followed by
db2 (use ; instead of : on Windows):

$ ghc -clear-package-db -package-db db2.conf -package-db db1.conf
$ env GHC_PACKAGE_PATH=db1.conf:db2.conf ghc
$ env GHC_PACKAGE_PATH=db2.conf ghc -package-db db1.conf

However, if GHC_PACKAGE_PATH ends in a separator, the default databases (i.e. the
user and global package databases, in that order) are appended to the path. For example,
to augment the usual set of packages with a database of your own, you could say (on
Unix):

$ export GHC_PACKAGE_PATH=$HOME/.my-ghc-packages.conf:

To check whether your GHC_PACKAGE_PATH setting is doing the right thing, ghc-pkg
list will list all the databases in use, in the reverse order they are searched.

Package environments

A package environment file is a file that tells ghc precisely which packages should be visible.
It can be used to create environments for ghc or ghci that are local to a shell session or to
some file system location. They are intended to be managed by build/package tools, to enable
ghc and ghci to automatically use an environment created by the tool.
The file contains package IDs and optionally package databases, one directive per line:

clear-package-db
global-package-db
user-package-db
package-db db.d/
package-id id_1
package-id id_2
...
package-id id_n

If such a package environment is found, it is equivalent to passing these command line argu-
ments to ghc:

158 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-hide-all-packages
-clear-package-db
-global-package-db
-user-package-db
-package-db db.d/
-package-id id_1
-package-id id_2
...
-package-id id_n

Note the implicit -hide-all-packages (page 154) and the fact that it is -package-id ⟨unit-
id⟩ (page 154), not -package ⟨pkg⟩ (page 153). This is because the environment specifies
precisely which packages should be visible.
Note that for the package-db directive, if a relative path is given it must be relative to the
location of the package environment file.
-package-env ⟨file⟩|⟨name⟩

Use the package environment in ⟨file⟩, or in $HOME/.ghc/arch-os-
version/environments/⟨name⟩

In order, ghc will look for the package environment in the following locations:
• File ⟨file⟩ if you pass the option -package-env ⟨file⟩|⟨name⟩ (page 159).
• File $HOME/.ghc/arch-os-version/environments/name if you pass the option -
package-env ⟨name⟩.

• File ⟨file⟩ if the environment variable GHC_ENVIRONMENT is set to ⟨file⟩.
• File $HOME/.ghc/arch-os-version/environments/name if the environment variable
GHC_ENVIRONMENT is set to ⟨name⟩.

Additionally, unless -hide-all-packages is specified ghc will also look for the package envi-
ronment in the following locations:
• File .ghc.environment.arch-os-version if it exists in the current directory or any par-
ent directory (but not the user’s home directory).

• File $HOME/.ghc/arch-os-version/environments/default if it exists.
Package environments can be modified by further command line arguments; for example, if
you specify -package foo on the command line, then package ⟨foo⟩ will be visible even if it’s
not listed in the currently active package environment.

6.9.6 Installed package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”), which distin-
guishes it from all other installed packages on the system. To see the installed package IDs
associated with each installed package, use ghc-pkg list -v:

$ ghc-pkg list -v
using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache
/usr/lib/ghc-6.12.1/package.conf.d

Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853af93593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbb157b9ae852096266e113b8fac4a2)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c)
...

6.9. Packages 159



GHC User’s Guide Documentation, Release 8.2.1.20171030

The string in parentheses after the package name is the installed package ID: it normally be-
gins with the package name and version, and ends in a hash string derived from the compiled
package. Dependencies between packages are expressed in terms of installed package IDs,
rather than just packages and versions. For example, take a look at the dependencies of the
haskell98 package:

$ ghc-pkg field haskell98 depends
depends: array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d

base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
directory-1.0.0.2-f51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e27f2b8e9
old-time-1.0.0.1-1c0d8ea38056e5087ef1e75cb0d139d1
process-1.0.1.1-d8fc6d3baf44678a29b9d59ca0ad5780
random-1.0.0.1-423d08c90f004795fd10e60384ce6561

The purpose of the installed package ID is to detect problems caused by re-installing a pack-
age without also recompiling the packages that depend on it. Recompiling dependencies is
necessary, because the newly compiled package may have a different ABI (Application Binary
Interface) than the previous version, even if both packages were built from the same source
code using the same compiler. With installed package IDs, a recompiled package will have a
different installed package ID from the previous version, so packages that depended on the
previous version are now orphaned - one of their dependencies is not satisfied. Packages that
are broken in this way are shown in the ghc-pkg list output either in red (if possible) or oth-
erwise surrounded by braces. In the following example, we have recompiled and reinstalled
the filepath package, and this has caused various dependencies including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run 'ghc-pkg check' for more details.
/usr/lib/ghc-6.12.1/package.conf.d:

{Cabal-1.7.4}
array-0.2.0.1
base-3.0.3.0
... etc ...

Additionally, ghc-pkg list reminds you that there are broken packages and suggests ghc-
pkg check, which displays more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package haskeline-0.6.2:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package Cabal-1.7.4:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package process-1.0.1.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package directory-1.0.0.2:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.
ghc-6.12.1
haskeline-0.6.2
Cabal-1.7.4
process-1.0.1.1
directory-1.0.0.2
bin-package-db-0.0.0.0
hpc-0.5.0.2

160 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

haskell98-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependen-
cies. The easiest way to do this is to use cabal-install, or download the packages from
HackageDB and build and install them as normal.
Be careful not to recompile any packages that GHC itself depends on, as this may render the
ghc package itself broken, and ghc cannot be simply recompiled. The only way to recover
from this would be to re-install GHC.

6.9.7 Package management (the ghc-pkg command)

The ghc-pkg tool is for querying and modifying package databases. To see what pack-
age databases are in use, use ghc-pkg list. The stack of databases that ghc-pkg knows
about can be modified using the GHC_PACKAGE_PATH (page 158) environment variable (see
The GHC_PACKAGE_PATH environment variable (page 158), and using -package-db ⟨file⟩
(page 157) options on the ghc-pkg command line.
When asked to modify a database, ghc-pkg modifies the global database by default. Speci-
fying --user causes it to act on the user database, or --package-db can be used to act on
another database entirely. When multiple of these options are given, the rightmost one is
used as the database to act upon.
Commands that query the package database (list, latest, describe, field, dot) operate on the
list of databases specified by the flags --user, --global, and --package-db. If none of these
flags are given, the default is --global --user.
If the environment variable GHC_PACKAGE_PATH (page 158) is set, and its value does not end
in a separator (: on Unix, ; on Windows), then the last database is considered to be the
global database, and will be modified by default by ghc-pkg. The intention here is that
GHC_PACKAGE_PATH can be used to create a virtual package environment into which Cabal
packages can be installed without setting anything other than GHC_PACKAGE_PATH.
The ghc-pkg programmay be run in the ways listed below. Where a package name is required,
the package can be named in full including the version number (e.g. network-1.0), or without
the version number. Naming a package without the version number matches all versions of
the package; the specified action will be applied to all the matching packages. A package
specifier that matches all version of the package can also be written ⟨pkg⟩ -*, to make it
clearer that multiple packages are being matched. To match against the installed package ID
instead of just package name and version, pass the --ipid flag.
ghc-pkg init path Creates a new, empty, package database at ⟨path⟩, which must not al-

ready exist.
ghc-pkg register ⟨file⟩ Reads a package specification from ⟨file⟩ (which may be “-” to

indicate standard input), and adds it to the database of installed packages. The syntax
of ⟨file⟩ is given in InstalledPackageInfo: a package specification (page 165).
The package specification must be a package that isn’t already installed.

ghc-pkg update ⟨file⟩ The same as register, except that if a package of the same name
is already installed, it is replaced by the new one.

ghc-pkg unregister ⟨P⟩ Remove the specified package from the database.
ghc-pkg check Check consistency of dependencies in the package database, and report

packages that have missing dependencies.
ghc-pkg expose ⟨P⟩ Sets the exposed flag for package ⟨P⟩ to True.

6.9. Packages 161

http://hackage.haskell.org/packages/hackage.html


GHC User’s Guide Documentation, Release 8.2.1.20171030

ghc-pkg hide ⟨P⟩ Sets the exposed flag for package ⟨P⟩ to False.
ghc-pkg trust ⟨P⟩ Sets the trusted flag for package ⟨P⟩ to True.
ghc-pkg distrust ⟨P⟩ Sets the trusted flag for package ⟨P⟩ to False.
ghc-pkg list [⟨P⟩] [--simple-output] This option displays the currently installed pack-

ages, for each of the databases known to ghc-pkg. That includes the global database, the
user’s local database, and any further files specified using the -f option on the command
line.
Hidden packages (those for which the exposed flag is False) are shown in parentheses
in the list of packages.
If an optional package identifier ⟨P⟩ is given, then only packages matching that identifier
are shown.
If the option --simple-output is given, then the packages are listed on a single line
separated by spaces, and the database names are not included. This is intended to make
it easier to parse the output of ghc-pkg list using a script.

ghc-pkg find-module ⟨M⟩ [--simple-output] This option lists registered packages expos-
ing module ⟨M⟩. Examples:

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:

(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:

containers-0.1

Otherwise, it behaves like ghc-pkg list, including options.
ghc-pkg latest ⟨P⟩ Prints the latest available version of package ⟨P⟩.
ghc-pkg describe ⟨P⟩ Emit the full description of the specified package. The description is

in the form of an InstalledPackageInfo, the same as the input file format for ghc-pkg
register. See InstalledPackageInfo: a package specification (page 165) for details.
If the pattern matches multiple packages, the description for each package is emitted,
separated by the string --- on a line by itself.

ghc-pkg field ⟨P⟩ ⟨field⟩[,⟨field⟩]* Show just a single field of the installed package
description for P. Multiple fields can be selected by separating them with commas

ghc-pkg dot Generate a graph of the package dependencies in a form suitable for input for
the graphviz tools. For example, to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc-pkg dump Emit the full description of every package, in the form of an InstalledPack-
ageInfo. Multiple package descriptions are separated by the string --- on a line by
itself.
This is almost the same as ghc-pkg describe '*', except that ghc-pkg dump is intended
for use by tools that parse the results, so for example where ghc-pkg describe '*' will
emit an error if it can’t find any packages that match the pattern, ghc-pkg dump will
simply emit nothing.

ghc-pkg recache Re-creates the binary cache file package.cache for the selected database.
This may be necessary if the cache has somehow become out-of-sync with the contents
of the database (ghc-pkg will warn you if this might be the case).

162 Chapter 6. Using GHC

http://www.graphviz.org/


GHC User’s Guide Documentation, Release 8.2.1.20171030

The other time when ghc-pkg recache is useful is for registering packages manually:
it is possible to register a package by simply putting the appropriate file in the package
database directory and invoking ghc-pkg recache to update the cache. This method of
registering packages may be more convenient for automated packaging systems.

Substring matching is supported for ⟨M⟩ in find-module and for ⟨P⟩ in list, describe, and
field, where a '*' indicates open substring ends (prefix*, *suffix, *infix*). Examples
(output omitted):

-- list all regex-related packages
ghc-pkg list '*regex*' --ignore-case
-- list all string-related packages
ghc-pkg list '*string*' --ignore-case
-- list OpenGL-related packages
ghc-pkg list '*gl*' --ignore-case
-- list packages exporting modules in the Data hierarchy
ghc-pkg find-module 'Data.*'
-- list packages exporting Monad modules
ghc-pkg find-module '*Monad*'
-- list names and maintainers for all packages
ghc-pkg field '*' name,maintainer
-- list location of haddock htmls for all packages
ghc-pkg field '*' haddock-html
-- dump the whole database
ghc-pkg describe '*'

Additionally, the following flags are accepted by ghc-pkg:
-f ⟨file⟩, -package-db ⟨file⟩ Adds ⟨file⟩ to the stack of package databases. Additionally,

⟨file⟩ will also be the database modified by a register, unregister, expose or hide
command, unless it is overridden by a later --package-db, --user or --global option.

--force Causes ghc-pkg to ignore missing dependencies, directories and libraries when
registering a package, and just go ahead and add it anyway. This might be useful if
your package installation system needs to add the package to GHC before building and
installing the files.

--global Operate on the global package database (this is the default). This flag affects the
register, update, unregister, expose, and hide commands.

--help, -? Outputs the command-line syntax.
--user Operate on the current user’s local package database. This flag affects the register,

update, unregister, expose, and hide commands.
-v [⟨n⟩], --verbose [=⟨n⟩] Control verbosity. Verbosity levels range from 0-2, where the

default is 1, and -v alone selects level 2.
-V; --version Output the ghc-pkg version number.
--ipid Causes ghc-pkg to interpret arguments as installed package IDs (e.g., an identifier

like unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240). This is useful if providing
just the package name and version are ambiguous (in old versions of GHC, this was
guaranteed to be unique, but this invariant no longer necessarily holds).

--package-key Causes ghc-pkg to interpret arguments as unit
IDs (e.g., an identifier like I5BErHzyOm07EBNpKBEeUv). Pack-
age keys are used to prefix symbol names GHC produces (e.g.,
6VWy06pWzzJq9evDvK2d4w6_DataziByteStringziInternal_unsafePackLenChars_info),
so if you need to figure out what package a symbol belongs to, use ghc-pkg with this
flag.

6.9. Packages 163



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.9.8 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure
if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so a few hints for those brave souls
follow.
You need to build an “installed package info” file for passing to ghc-pkg when installing your
package. The contents of this file are described in InstalledPackageInfo: a package specifi-
cation (page 165).
The Haskell code in a package may be built into one or more archive libraries (e.g. libHS-
foo.a), or a single shared object (e.g. libHSfoo.dll/.so/.dylib). The restriction to a sin-
gle shared object is because the package system is used to tell the compiler when it should
make an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-
object calls require an extra indirection).
• Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo-1.0.a A.o B.o C.o ...

where A.o, B.o and so on are the compiled Haskell modules, and libHSfoo.a is the
library you wish to create. The syntax may differ slightly on your system, so check the
documentation if you run into difficulties.

• To load a package foo, GHCi can load its libHSfoo.a library directly, but it can also
load a package in the form of a single HSfoo.o file that has been pre-linked. Loading
the .o file is slightly quicker, but at the expense of having another copy of the compiled
package. The rule of thumb is that if the modules of the package were compiled with
-split-objs (page 176) then building the HSfoo.o is worthwhile because it saves time
when loading the package into GHCi. Without -split-objs (page 176), there is not
much difference in load time between the .o and .a libraries, so it is better to save the
disk space and only keep the .a around. In a GHC distribution we provide .o files for
most packages except the GHC package itself.
The HSfoo.o file is built by Cabal automatically; use --disable-library-for-ghci to
disable it. To build one manually, the following GNU ld command can be used:

ld -r --whole-archive -o HSfoo.o libHSfoo.a

(replace --whole-archive with -all_load on MacOS X)
• When building the package as shared library, GHC can be used to perform the link step.
This hides some of the details out the underlying linker and provides a common interface
to all shared object variants that are supported by GHC (DLLs, ELF DSOs, and Mac OS
dylibs). The shared object must be named in specific way for two reasons: (1) the name
must contain the GHC compiler version, so that two library variants don’t collide that
are compiled by different versions of GHC and that therefore are most likely incompat-
ible with respect to calling conventions, (2) it must be different from the static name
otherwise we would not be able to control the linker as precisely as necessary to make
the -static (page 176)/-dynamic (page 176) flags work, see Options affecting linking
(page 175).

ghc -shared libHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC’s version number in the shared object name allows different library versions
compiled by different GHC versions to be installed in standard system locations, e.g.

164 Chapter 6. Using GHC

http://www.haskell.org/cabal/users-guide/


GHC User’s Guide Documentation, Release 8.2.1.20171030

under *nix /usr/lib. To obtain the version number of GHC invoke ghc --numeric-
version and use its output in place of ⟨GHCVersion⟩. See also Options affecting code
generation (page 174) on how object files must be prepared for shared object linking.

To compile a module which is to be part of a new package, use the -package-name (to identify
the name of the package) and -library-name (to identify the version and the version hashes
of its identities.) options (Using Packages (page 152)). Failure to use these options when
compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the
package name it was expecting the module to come from is not the same as the package name
stored in the .hi file.
It is worth noting with shared objects, when each package is built as a single shared object
file, since a reference to a shared object costs an extra indirection, intra-package references
are cheaper than inter-package references. Of course, this applies to the main package as
well.

6.9.9 InstalledPackageInfo: a package specification

A package specification is a Haskell record; in particular, it is the record InstalledPackage-
Info in the module Distribution.InstalledPackageInfo, which is part of the Cabal package dis-
tributed with GHC.
An InstalledPackageInfo has a human readable/writable syntax. The functions parse-
InstalledPackageInfo and showInstalledPackageInfo read and write this syntax respec-
tively. Here’s an example of the InstalledPackageInfo for the unix package:

$ ghc-pkg describe unix
name: unix
version: 2.3.1.0
id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240
license: BSD3
copyright:
maintainer: libraries@haskell.org
stability:
homepage:
package-url:
description: This package gives you access to the set of operating system

services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).
.
The package is not supported under Windows (except under Cygwin).

category: System
author:
exposed: True
exposed-modules: System.Posix System.Posix.DynamicLinker.Module

System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.IO System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:
trusted: False

6.9. Packages 165



GHC User’s Guide Documentation, Release 8.2.1.20171030

import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
hs-libraries: HSunix-2.3.1.0
extra-libraries: rt util dl
extra-ghci-libraries:
include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include
includes: HsUnix.h execvpe.h
depends: base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
hugs-options:
cc-options:
ld-options:
framework-dirs:
frameworks:
haddock-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock
haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:
A package description consists of a number of field/value pairs. A field starts with the field
name in the left-hand column followed by a “:”, and the value continues until the next line
that begins in the left-hand column, or the end of file.
The syntax of the value depends on the field. The various field types are:
freeform Any arbitrary string, no interpretation or parsing is done.
string A sequence of non-space characters, or a sequence of arbitrary characters surrounded

by quotes "....".
string list A sequence of strings, separated by commas. The sequence may be empty.
In addition, there are some fields with special syntax (e.g. package names, version, depen-
dencies).
The allowed fields, with their types, are:
name (string) The package’s name (without the version).
id (string) The installed package ID. It is up to you to choose a suitable one.
version (string) The package’s version, usually in the form A.B (any number of components

are allowed).
license (string) The type of license under which this package is distributed. This field is a

value of the License type.
license-file (optional string) The name of a file giving detailed license information for this

package.
copyright (optional freeform) The copyright string.
maintainer (optional freeform) The email address of the package’s maintainer.
stability (optional freeform) A string describing the stability of the package (e.g. stable,

provisional or experimental).
homepage (optional freeform) URL of the package’s home page.
package-url (optional freeform) URL of a downloadable distribution for this package. The

distribution should be a Cabal package.
description (optional freeform) Description of the package.

166 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

category (optional freeform) Which category the package belongs to. This field is for use in
conjunction with a future centralised package distribution framework, tentatively titled
Hackage.

author (optional freeform) Author of the package.
exposed (bool) Whether the package is exposed or not.
exposed-modules (string list) modules exposed by this package.
hidden-modules (string list) modules provided by this package, but not exposed to the pro-

grammer. These modules cannot be imported, but they are still subject to the overlap-
ping constraint: no other package in the same program may provide a module of the
same name.

reexported-modules Modules reexported by this package. This list takes the form of
pkg:OldName as NewName (A@orig-pkg-0.1-HASH): the first portion of the string is the
user-written reexport specification (possibly omitting the package qualifier and the re-
naming), while the parenthetical is the original package which exposed themodule under
are particular name. Reexported modules have a relaxed overlap constraint: it’s permis-
sible for two packages to reexport the same module as the same name if the reexported
moduleis identical.

trusted (bool) Whether the package is trusted or not.
import-dirs (string list) A list of directories containing interface files (.hi files) for this

package.
If the package contains profiling libraries, then the interface files for those library mod-
ules should have the suffix .p_hi. So the package can contain both normal and profiling
versions of the same library without conflict (see also library_dirs below).

library-dirs (string list) A list of directories containing libraries for this package.
hs-libraries (string list) A list of libraries containing Haskell code for this package, with

the .a or .dll suffix omitted. When packages are built as libraries, the lib prefix is also
omitted.
For use with GHCi, each library should have an object file too. The name of the object
file does not have a lib prefix, and has the normal object suffix for your platform.
For example, if we specify a Haskell library as HSfoo in the package spec, then the various
flavours of library that GHC actually uses will be called:
libHSfoo.a The name of the library on Unix and Windows (mingw) systems. Note that

we don’t support building dynamic libraries of Haskell code on Unix systems.
HSfoo.dll The name of the dynamic library on Windows systems (optional).
HSfoo.o; HSfoo.obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference be-
tween hs-libraries and extra-libraries is that hs-libraries normally have several
versions, to support profiling, parallel and other build options. The various versions
are given different suffixes to distinguish them, for example the profiling version of the
standard prelude library is named libHSbase_p.a, with the _p indicating that this is a
profiling version. The suffix is added automatically by GHC for hs-libraries only, no
suffix is added for libraries in extra-libraries.
The libraries listed in extra-librariesmay be any libraries supported by your system’s
linker, including dynamic libraries (.so on Unix, .DLL on Windows).

6.9. Packages 167



GHC User’s Guide Documentation, Release 8.2.1.20171030

Also, extra-libraries are placed on the linker command line after the hs-libraries
for the same package. If your package has dependencies in the other direction (i.e.
extra-libraries depends on hs-libraries), and the libraries are static, you might
need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.
includes (string list) A list of files to include for via-C compilations using this package.

Typically the include file(s) will contain function prototypes for any C functions used in
the package, in case they end up being called as a result of Haskell functions from the
package being inlined.

depends (package id list) Packages on which this package depends.
hugs-options (string list) Options to pass to Hugs for this package.
cc-options (string list) Extra arguments to be added to the gcc command line when this

package is being used (only for via-C compilations).
ld-options (string list) Extra arguments to be added to the gcc command line (for linking)

when this package is being used.
framework-dirs (string list) On Darwin/MacOS X, a list of directories containing frameworks

for this package. This corresponds to the -framework-path option. It is ignored on all
other platforms.

frameworks (string list) OnDarwin/MacOS X, a list of frameworks to link to. This corresponds
to the -framework option. Take a look at Apple’s developer documentation to find out
what frameworks actually are. This entry is ignored on all other platforms.

haddock-interfaces (string list) A list of filenames containing Haddock interface files
(.haddock files) for this package.

haddock-html (optional string) The directory containing the Haddock-generated HTML for
this package.

6.10 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible
for taking the last intermediate representation that GHC uses (a form called Cmm that is a
simple, C like language) and compiling it to executable code. The backends that GHC support
are described below.

6.10.1 Native code Generator (-fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to
assembly code. It is the fastest backend and generally produces good performance code. It
has the best support for compiling shared libraries. Select it with the -fasm flag.

6.10.2 LLVM Code Generator (-fllvm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It
generally produces code as with performance as good as the native code generator but for
some cases can produce much faster code. This is especially true for numeric, array heavy

168 Chapter 6. Using GHC

http://www.haskell.org/haddock/
http://llvm.org


GHC User’s Guide Documentation, Release 8.2.1.20171030

code using packages like vector. The penalty is a significant increase in compilation times.
Select the LLVM backend with the -fllvm flag. Currently LLVM 2.8 and later are supported.
You must install and have LLVM available on your PATH for the LLVM code generator to work.
Specifically GHC needs to be able to call the opt and llc tools. Secondly, if you are running
Mac OS Xwith LLVM3.0 or greater then you also need the Clang c compiler compiler available
on your PATH.
To install LLVM and Clang:
• Linux: Use your package management tool.
• Mac OS X: Clang is included by default on recent OS X machines when XCode is installed
(from 10.6 and later). LLVM is not included. In order to use the LLVM based code
generator, you should install the Homebrew package manager for OS X. Alternatively
you can download binaries for LLVM and Clang from here.

• Windows: You should download binaries for LLVM and clang from here.

6.10.3 C Code Generator (-fvia-C)

This is the oldest code generator in GHC and is generally not included any more having been
deprecated around GHC 7.0. Select it with the -fvia-C flag.
The C code generator is only supported when GHC is built in unregisterised mode, a mode
where GHC produces “portable” C code as output to facilitate porting GHC itself to a new
platform. This mode produces much slower code though so it’s unlikely your version of GHC
was built this way. If it has then the native code generator probably won’t be available. You
can check this information by calling ghc --info (see Getting information about the RTS
(page 134)).

6.10.4 Unregisterised compilation

The term “unregisterised” really means “compile via vanilla C”, disabling some of the
platform-specific tricks that GHC normally uses to make programs go faster. When compiling
unregisterised, GHC simply generates a C file which is compiled via gcc.
When GHC is build in unregisterised mode only the LLVM and C code generators will be
available. The native code generator won’t be. LLVM usually offers a substantial performance
benefit over the C backend in unregisterised mode.
Unregisterised compilation can be useful when porting GHC to a new machine, since it re-
duces the prerequisite tools to gcc, as, and ld and nothing more, and furthermore the amount
of platform-specific code that needs to be written in order to get unregisterised compilation
going is usually fairly small.
Unregisterised compilation cannot be selected at compile-time; you have to build GHC with
the appropriate options set. Consult the GHC Building Guide for details.
You can check if your GHC is unregisterised by calling ghc --info (see Getting information
about the RTS (page 134)).

6.10. GHC Backends 169

http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html


GHC User’s Guide Documentation, Release 8.2.1.20171030

6.11 Options related to a particular phase

6.11.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation
system, in place of whatever the ghc has wired into it. For example, you might want to try
a different assembler. The following options allow you to change the external program used
for a given compilation phase:
-pgmL ⟨cmd⟩

Use ⟨cmd⟩ as the literate pre-processor.
-pgmP ⟨cmd⟩

Use ⟨cmd⟩ as the C pre-processor (with -cpp only).
-pgmc ⟨cmd⟩

Use ⟨cmd⟩ as the C compiler.
-pgmlo ⟨cmd⟩

Use ⟨cmd⟩ as the LLVM optimiser.
-pgmlc ⟨cmd⟩

Use ⟨cmd⟩ as the LLVM compiler.
-pgms ⟨cmd⟩

Use ⟨cmd⟩ as the splitter.
-pgma ⟨cmd⟩

Use ⟨cmd⟩ as the assembler.
-pgml ⟨cmd⟩

Use ⟨cmd⟩ as the linker.
-pgmdll ⟨cmd⟩

Use ⟨cmd⟩ as the DLL generator.
-pgmF ⟨cmd⟩

Use ⟨cmd⟩ as the pre-processor (with -F only).
-pgmwindres ⟨cmd⟩

Use ⟨cmd⟩ as the program to use for embedding manifests on Windows. Normally this
is the program windres, which is supplied with a GHC installation. See -fno-embed-
manifest in Options affecting linking (page 175).

-pgmlibtool ⟨cmd⟩
Use ⟨cmd⟩ as the libtool command (when using -staticlib only).

-pgmi ⟨cmd⟩
Use ⟨cmd⟩ as the external interpreter command (see: Running the interpreter in a sep-
arate process (page 59)). Default: ghc-iserv-prof if -prof is enabled, ghc-iserv-dyn
if -dynamic is enabled, or ghc-iserv otherwise.

6.11.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:
-optL ⟨option⟩

Pass ⟨option⟩ to the literate pre-processor

170 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-optP ⟨option⟩
Pass ⟨option⟩ to CPP (makes sense only if -cpp is also on).

-optF ⟨option⟩
Pass ⟨option⟩ to the custom pre-processor (see Options affecting a Haskell pre-processor
(page 174)).

-optc ⟨option⟩
Pass ⟨option⟩ to the C compiler.

-optlo ⟨option⟩
Pass ⟨option⟩ to the LLVM optimiser.

-optlc ⟨option⟩
Pass ⟨option⟩ to the LLVM compiler.

-opta ⟨option⟩
Pass ⟨option⟩ to the assembler.

-optl ⟨option⟩
Pass ⟨option⟩ to the linker.

-optdll ⟨option⟩
Pass ⟨option⟩ to the DLL generator.

-optwindres ⟨option⟩
Pass ⟨option⟩ to windres when embedding manifests on Windows. See -fno-embed-
manifest in Options affecting linking (page 175).

-opti ⟨option⟩
Pass ⟨option⟩ to the interpreter sub-process (see Running the interpreter in a separate
process (page 59)). A common use for this is to pass RTS options e.g., -opti+RTS -opti-
A64m, or to enable verbosity with -opti-v to see what messages are being exchanged by
GHC and the interpreter.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver -
opta-Ewurble (the dash before the E is required).
GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime
system you can enclose them in +RTS ... -RTS (see Running a compiled program (page 120)).

6.11.3 Options affecting the C pre-processor

-cpp
The C pre-processor cpp is run over your Haskell code only if the -cpp option -cpp option
is given. Unless you are building a large system with significant doses of conditional
compilation, you really shouldn’t need it.

-D⟨symbol⟩[=⟨value⟩]
Define macro ⟨symbol⟩ in the usual way. When no value is given, the value is taken to be
1. For instance, -DUSE_MYLIB is equivalent to -DUSE_MYLIB=1.

Note: -D⟨symbol⟩[=⟨value⟩] (page 171) does not affect -D macros passed to the
C compiler when compiling an unregisterised build! In this case use the -optc-Dfoo
hack… (see Forcing options to a particular phase (page 170)).

-U⟨symbol⟩
Undefine macro ⟨symbol⟩ in the usual way.

6.11. Options related to a particular phase 171



GHC User’s Guide Documentation, Release 8.2.1.20171030

-I⟨dir⟩
Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs
files).

Standard CPP macros

The symbols defined by GHC are listed below. To check which symbols are defined by your
local GHC installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn’t actually used).
__GLASGOW_HASKELL__ For version x.y.z of GHC, the value of __GLASGOW_HASKELL__ is the

integer ⟨xyy⟩ (if ⟨y⟩ is a single digit, then a leading zero is added, so for example in version
6.2 of GHC, __GLASGOW_HASKELL__==602). More information in GHC version numbering
policy (page 6).
With any luck, __GLASGOW_HASKELL__ will be undefined in all other implementations that
support C-style pre-processing.

Note: The comparable symbols for other systems are: __HUGS__ for Hugs, __NHC__ for
nhc98, and __HBC__ for hbc).

NB. This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_PATCHLEVEL1__; __GLASGOW_HASKELL_PATCHLEVEL2__ These macros
are available starting with GHC 7.10.1.
For three-part GHC version numbers x.y.z, the value of __GLAS-
GOW_HASKELL_PATCHLEVEL1__ is the integer ⟨z⟩.
For four-part GHC version numbers x.y.z.z', the value of __GLAS-
GOW_HASKELL_PATCHLEVEL1__ is the integer ⟨z⟩ while the value of __GLAS-
GOW_HASKELL_PATCHLEVEL2__ is set to the integer ⟨z’⟩.
These macros are provided for allowing finer granularity than is provided by __GLAS-
GOW_HASKELL__. Usually, this should not be necessary as it’s expected for most APIs to
remain stable between patchlevel releases, but occasionally internal API changes are
necessary to fix bugs. Also conditional compilation on the patchlevel can be useful for
working around bugs in older releases.

Tip: These macros are set when pre-processing both Haskell source and C source,
including the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc
files).

MIN_VERSION_GLASGOW_HASKELL(x,y,z,z') This macro is available starting with GHC
7.10.1.
This macro is provided for convenience to write CPP conditionals testing whether the
GHC version used is version x.y.z.z' or later.
If compatibility with Haskell compilers (including GHC prior to version 7.10.1)
which do not define MIN_VERSION_GLASGOW_HASKELL is required, the presence of the

172 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

MIN_VERSION_GLASGOW_HASKELL macro needs to be ensured before it is called, e.g.:

#ifdef MIN_VERSION_GLASGOW_HASKELL
#if MIN_VERSION_GLASGOW_HASKELL(7,10,2,0)
/* code that applies only to GHC 7.10.2 or later */
#endif
#endif

Tip: This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_TH__ This is set to 1 when the compiler supports Template Haskell, and
to 0 when not. The latter is the case for a stage-1 compiler during bootstrapping, or on
architectures where the interpreter is not available.

__GLASGOW_HASKELL_LLVM__ Only defined when -fllvm is specified. When GHC is using
version x.y.z of LLVM, the value of __GLASGOW_HASKELL_LLVM__ is the integer ⟨xyy⟩ (if
⟨y⟩ is a single digit, then a leading zero is added, so for example when using version 3.7
of LLVM, __GLASGOW_HASKELL_LLVM__==307).

__PARALLEL_HASKELL__ Only defined when -parallel is in use! This symbol is defined when
pre-processing Haskell (input) and pre-processing C (GHC output).

os_HOST_OS=1 This define allows conditional compilation based on the Operating System,
where⟨os⟩ is the name of the current Operating System (eg. linux, mingw32 forWindows,
solaris, etc.).

arch_HOST_ARCH=1 This define allows conditional compilation based on the host architecture,
where⟨arch⟩ is the name of the current architecture (eg. i386, x86_64, powerpc, sparc,
etc.).

VERSION_pkgname This macro is available starting GHC 8.0. It is defined for every exposed
package. This macro expands to a string recording the version of pkgname that is exposed
for module import. It is identical in behavior to the VERSION_pkgnamemacros that Cabal
defines.

MIN_VERSION_pkgname(x,y,z) This macro is available starting GHC 8.0. It is defined for
every exposed package. This macro is provided for convenience to write CPP condi-
tionals testing if a package version is x.y.z or later. It is identical in behavior to the
MIN_VERSION_pkgname macros that Cabal defines.

CPP and string gaps

A small word of warning: -cpp (page 171) is not friendly to “string gaps”. In other words,
strings such as the following:

strmod = "\
\ p \
\ "

don’t work with -cpp (page 171); /usr/bin/cpp elides the backslash-newline pairs.
However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp
and possibly other cpps) leaves the backslash-space pairs alone and the string gap works as
expected.

6.11. Options related to a particular phase 173



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.11.4 Options affecting a Haskell pre-processor

-F
A custom pre-processor is run over your Haskell source file only if the -F option is given.
Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The -F option lets you run a pre-processor as part of the overall GHC compilation
pipeline, which has the advantage over running a Haskell pre-processor separately in
that it works in interpreted mode and you can continue to take reap the benefits of
GHC’s recompilation checker.
The pre-processor is run just before the Haskell compiler proper processes the Haskell
input, but after the literate markup has been stripped away and (possibly) the C pre-
processor has washed the Haskell input.
Use -pgmF ⟨cmd⟩ (page 170) to select the program to use as the preprocessor. When
invoked, the ⟨cmd⟩ pre-processor is given at least three arguments on its command-line:
the first argument is the name of the original source file, the second is the name of the
file holding the input, and the third is the name of the file where ⟨cmd⟩ should write its
output to.
Additional arguments to the pre-processor can be passed in using the -optF ⟨option⟩
(page 171) option. These are fed to ⟨cmd⟩ on the command line after the three standard
input and output arguments.
An example of a pre-processor is to convert your source files to the input encoding that
GHC expects, i.e. create a script convert.sh containing the lines:

#!/bin/sh
( echo "{-# LINE 1 \"$2\" #-}" ; iconv -f l1 -t utf-8 $2 ) > $3

and pass -F -pgmF convert.sh to GHC. The -f l1 option tells iconv to convert your
Latin-1 file, supplied in argument $2, while the “-t utf-8” options tell iconv to return a
UTF-8 encoded file. The result is redirected into argument $3. The echo "{-# LINE 1
\"$2\" #-}" just makes sure that your error positions are reported as in the original
source file.

6.11.5 Options affecting code generation

-fasm
Use GHC’s native code generator (page 168) rather than compiling via LLVM. -fasm is
the default.

-fllvm
Compile via LLVM (page 168) instead of using the native code generator. This will gen-
erally take slightly longer than the native code generator to compile. Produced code is
generally the same speed or faster than the other two code generators. Compiling via
LLVM requires LLVM’s opt and llc executables to be in PATH.

-fno-code
Omit code generation (and all later phases) altogether. This is useful if you’re only in-
terested in type checking code.

-fwrite-interface
Always write interface files. GHC will normally write interface files automatically, but
this flag is useful with -fno-code (page 174), which normally suppresses generation of
interface files. This is useful if you want to type check over multiple runs of GHC without
compiling dependencies.

174 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-fobject-code
Generate object code. This is the default outside of GHCi, and can be used with GHCi to
cause object code to be generated in preference to bytecode.

-fbyte-code
Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can
currently only be used in the interactive interpreter, not saved to disk. This option is
only useful for reversing the effect of -fobject-code (page 175).

-fPIC
Generate position-independent code (code that can be put into shared libraries). This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform.

-dynamic
When generating code, assume that entities imported from a different package will be
dynamically linked. This can reduce code size tremendously, but may slow-down cross-
package calls of non-inlined functions. There can be some complications combining -
shared (page 176) with this flag relating to linking in the RTS under Linux. See Trac
#10352.
Note that using this option when linking causes GHC to link against shared libraries.

-dynamic-too
Generates both dynamic and static object files in a single run of GHC. This option is
functionally equivalent to running GHC twice, the second time adding -dynamic -osuf
dyn_o -hisuf dyn_hi.
Although it is equivalent to running GHC twice, using -dynamic-too is more efficient,
because the earlier phases of the compiler up to code generation are performed just
once.
When using -dynamic-too, the options -dyno, -dynosuf, and -dynhisuf are the coun-
terparts of -o, -osuf, and -hisuf respectively, but applying to the dynamic compilation.

6.11.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-
supplied, and system-supplied (-lm math library, for example).
-l ⟨lib⟩

Link in the ⟨lib⟩ library. On Unix systems, this will be in a file called liblib.a or
liblib.so which resides somewhere on the library directories path.
Because of the sad state of most UNIX linkers, the order of such options does matter.
If library ⟨foo⟩ requires library ⟨bar⟩, then in general -l ⟨foo⟩ should come before -l
⟨bar⟩ on the command line.
There’s one other gotcha to bear in mind when using external libraries: if the library con-
tains a main() function, then this will be a link conflict with GHC’s own main() function
(eg. libf2c and libl have their own main()s).
You can use an external main function if you initialize the RTS manually and pass -no-
hs-main. See also Using your own main() (page 440).

-c
Omits the link step. This option can be used with --make (page 68) to avoid the automatic
linking that takes place if the program contains a Main module.

6.11. Options related to a particular phase 175

https://ghc.haskell.org/trac/ghc/ticket/10352
https://ghc.haskell.org/trac/ghc/ticket/10352


GHC User’s Guide Documentation, Release 8.2.1.20171030

-package ⟨name⟩
If you are using a Haskell “package” (see Packages (page 152)), don’t forget to add the
relevant -package option when linking the program too: it will cause the appropriate
libraries to be linked in with the program. Forgetting the -package option will likely
result in several pages of link errors.

-framework ⟨name⟩
On Darwin/OS X/iOS only, link in the framework ⟨name⟩. This option corresponds to
the -framework option for Apple’s Linker. Please note that frameworks and packages
are two different things - frameworks don’t contain any Haskell code. Rather, they are
Apple’s way of packaging shared libraries. To link to Apple’s “Carbon” API, for example,
you’d use -framework Carbon.

-staticlib
On Darwin/OS X/iOS only, link all passed files into a static library suitable for linking
into an iOS (when using a cross-compiler) or Mac Xcode project. To control the name,
use the -o ⟨file⟩ (page 137) option as usual. The default name is liba.a. This should
nearly always be passed when compiling for iOS with a cross-compiler.

-L ⟨dir⟩
Where to find user-supplied libraries… Prepend the directory ⟨dir⟩ to the library direc-
tories path.

-framework-path ⟨dir⟩
On Darwin/OS X/iOS only, prepend the directory ⟨dir⟩ to the framework directories path.
This option corresponds to the -F option for Apple’s Linker (-F already means something
else for GHC).

-split-objs
Tell the linker to split the single object file that would normally be generated into multiple
object files, one per top-level Haskell function or type in the module. This only makes
sense for libraries, where it means that executables linked against the library are smaller
as they only link against the object files that they need. However, assembling all the
sections separately is expensive, so this is slower than compiling normally. Additionally,
the size of the library itself (the .a file) can be a factor of 2 to 2.5 larger. We use this
feature for building GHC’s libraries.

-split-sections
Place each generated function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of the data
item determines the section’s name in the output file.
When linking, the linker can automatically remove all unreferenced sections and thus
produce smaller executables. The effect is similar to -split-objs (page 176), but some-
what more efficient - the generated library files are about 30% smaller than with -split-
objs (page 176).

-static
Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic
This flag tells GHC to link against shared Haskell libraries. This flag only affects the
selection of dependent libraries, not the form of the current target (see -shared). See
Using shared libraries (page 180) on how to create them.
Note that this option also has an effect on code generation (see above).

-shared
Instead of creating an executable, GHC produces a shared object with this linker flag.

176 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

Depending on the operating system target, this might be an ELF DSO, a Windows DLL,
or a Mac OS dylib. GHC hides the operating system details beneath this uniform flag.
The flags -dynamic (page 176) and -static (page 176) control whether the resulting
shared object links statically or dynamically to Haskell package libraries given as -
package ⟨pkg⟩ (page 153) option. Non-Haskell libraries are linked as gcc would reg-
ularly link it on your system, e.g. on most ELF system the linker uses the dynamic
libraries when found.
Object files linked into shared objects must be compiled with -fPIC (page 175), see
Options affecting code generation (page 174)
When creating shared objects for Haskell packages, the shared object must be named
properly, so that GHC recognizes the shared object when linked against this package.
See shared object name mangling.

-dynload
This flag selects one of a number of modes for finding shared libraries at runtime. See
Finding shared libraries at runtime (page 182) for a description of each mode.

-main-is ⟨thing⟩
The normal rule in Haskell is that your program must supply a main function in module
Main. When testing, it is often convenient to change which function is the “main” one,
and the -main-is flag allows you to do so. The ⟨thing⟩ can be one of:
•A lower-case identifier foo. GHC assumes that the main function is Main.foo.
•A module name A. GHC assumes that the main function is A.main.
•A qualified name A.foo. GHC assumes that the main function is A.foo.

Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the link
step. The flag must be specified when compiling the module containing the specified
main function (e.g. module A in the latter two items above). It has no effect for other
modules, and hence can safely be given to ghc --make. However, if all the modules are
otherwise up to date, you may need to force recompilation both of the module where the
new “main” is, and of the module where the “main” function used to be; ghc is not clever
enough to figure out that they both need recompiling. You can force recompilation by
removing the object file, or by using the -fforce-recomp (page 140) flag.

-no-hs-main
In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of main() at link-time, you will
have to. To signal that to the compiler when linking, use -no-hs-main. See also Using
your own main() (page 440).
Notice that since the command-line passed to the linker is rather involved, you probably
want to use ghc to do the final link of your ‘mixed-language’ application. This is not a
requirement though, just try linking once with -v (page 71) on to see what options the
driver passes through to the linker.
The -no-hs-main flag can also be used to persuade the compiler to do the link step in
--make (page 68) mode when there is no Haskell Main module present (normally the
compiler will not attempt linking when there is no Main).
The flags -rtsopts[=⟨none|some|all⟩] (page 178) and -with-rtsopts=⟨opts⟩
(page 178) have no effect when used with -no-hs-main (page 177), because they are im-
plemented by changing the definition of main that GHC generates. See Using your own
main() (page 440) for how to get the effect of -rtsopts[=⟨none|some|all⟩] (page 178)
and -with-rtsopts=⟨opts⟩ (page 178) when using your own main.

6.11. Options related to a particular phase 177



GHC User’s Guide Documentation, Release 8.2.1.20171030

-debug
Link the program with a debugging version of the runtime system. The debugging run-
time turns on numerous assertions and sanity checks, and provides extra options for
producing debugging output at runtime (run the program with +RTS -? to see a list).

-threaded
Link the program with the “threaded” version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to the
default runtime system which is purely single-threaded.
Note that you do not need -threaded in order to use concurrency; the single-threaded
runtime supports concurrency between Haskell threads just fine.
The threaded runtime system provides the following benefits:
•It enables the -N ⟨x⟩ (page 100) RTS option to be used, which allows threads to run
in parallelparallelism on a multiprocessormultiprocessorSMP or multicoremulticore
machine. See Using SMP parallelism (page 99).
•If a thread makes a foreign call (and the call is not marked unsafe), then other
Haskell threads in the program will continue to run while the foreign call is in
progress. Additionally, foreign exported Haskell functions may be called from
multiple OS threads simultaneously. See Multi-threading and the FFI (page 444).

-eventlog
Link the program with the “eventlog” version of the runtime system. A program linked
in this way can generate a runtime trace of events (such as thread start/stop) to a binary
file program.eventlog, which can then be interpreted later by various tools. See Tracing
(page 132) for more information.
-eventlog (page 178) can be used with -threaded (page 178). It is implied by -debug
(page 177).

-rtsopts[=⟨none|some|all⟩]
Default all

This option affects the processing of RTS control options given either on the command
line or via the GHCRTS (page 121) environment variable. There are three possibilities:
-rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the

command line, then the program will abort with an error message. If the GHCRTS
environment variable is set, then the program will emit a warning message, GHCRTS
will be ignored, and the program will run as normal.

-rtsopts=some [this is the default setting] Enable only the “safe” RTS options: (Cur-
rently only -? and --info.) Any other RTS options on the command line or in the
GHCRTS environment variable causes the program with to abort with an error mes-
sage.

-rtsopts=all or just -rtsopts Enable all RTS option processing, both on the com-
mand line and through the GHCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since
RTS options can be used to write logging data to arbitrary files under the security context
of the running program, there is a potential security problem. For this reason, GHC 7.0.1
and later default to -rtsopts=some.
Note that -rtsopts has no effect when used with -no-hs-main (page 177); see Using
your own main() (page 440) for details.

178 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-with-rtsopts=⟨opts⟩
This option allows you to set the default RTS options at link-time. For example, -with-
rtsopts="-H128m" sets the default heap size to 128MB. This will always be the default
heap size for this program, unless the user overrides it. (Depending on the setting of the
-rtsopts option, the user might not have the ability to change RTS options at run-time,
in which case -with-rtsopts would be the only way to set them.)
Note that -with-rtsopts has no effect when used with -no-hs-main; see Using your
own main() (page 440) for details.

-no-rtsopts-suggestions
This option disables RTS suggestions about linking with -rtsopts[=⟨none|some|all⟩]
(page 178) when they are not available. These suggestions would be unhelpful if the
users have installed Haskell programs through their package managers. With this option
enabled, these suggestions will not appear. It is recommended for people distributing
binaries to build with either -rtsopts or -no-rtsopts-suggestions.

-fno-gen-manifest
On Windows, GHC normally generates a manifestmanifest file when linking a binary.
The manifest is placed in the file prog.exe.manifest` where ⟨prog.exe⟩ is the name
of the executable. The manifest file currently serves just one purpose: it disables the
“installer detection” in Windows Vista that attempts to elevate privileges for executables
with certain names (e.g. names containing “install”, “setup” or “patch”). Without the
manifest file to turn off installer detection, attempting to run an executable that Windows
deems to be an installer will return a permission error code to the invoker. Depending
on the invoker, the result might be a dialog box asking the user for elevated permissions,
or it might simply be a permission denied error.
Installer detection can be also turned off globally for the system using the security con-
trol panel, but GHC by default generates binaries that don’t depend on the user having
disabled installer detection.
The -fno-gen-manifest disables generation of the manifest file. One reason to do this
would be if you had a manifest file of your own, for example.
In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.
-fno-gen-manifest (page 179) also implies -fno-embed-manifest (page 179), see be-
low.

-fno-embed-manifest
Themanifest file that GHC generates when linking a binary onWindows is also embedded
in the executable itself, by default. This means that the binary can be distributed without
having to supply the manifest file too. The embedding is done by running windres; to
see exactly what GHC does to embed the manifest, use the -v (page 71) flag. A GHC
installation comes with its own copy of windres for this reason.
See also -pgmwindres ⟨cmd⟩ (page 170) (Replacing the program for one or more phases
(page 170)) and -optwindres ⟨option⟩ (page 171) (Forcing options to a particular
phase (page 170)).

-fno-shared-implib
DLLs on Windows are typically linked to by linking to a corresponding .lib or .dll.a
— the so-called import library. GHC will typically generate such a file for every DLL you
create by compiling in -shared (page 176) mode. However, sometimes you don’t want
to pay the disk-space cost of creating this import library, which can be substantial — it
might require as much space as the code itself, as Haskell DLLs tend to export lots of
symbols.

6.11. Options related to a particular phase 179



GHC User’s Guide Documentation, Release 8.2.1.20171030

As long as you are happy to only be able to link to the DLL using GetProcAddress and
friends, you can supply the -fno-shared-implib (page 179) flag to disable the creation
of the import library entirely.

-dylib-install-name ⟨path⟩
On Darwin/OS X, dynamic libraries are stamped at build time with an “install name”,
which is the ultimate install path of the library file. Any libraries or executables that
subsequently link against it will pick up that path as their runtime search location for
it. By default, ghc sets the install name to the location where the library is built. This
option allows you to override it with the specified file path. (It passes -install_name to
Apple’s linker.) Ignored on other platforms.

-rdynamic
This instructs the linker to add all symbols, not only used ones, to the dynamic symbol
table. Currently Linux and Windows/MinGW32 only. This is equivalent to using -optl
-rdynamic on Linux, and -optl -export-all-symbols on Windows.

-fwhole-archive-hs-libs
When linking a binary executable, this inserts the flag -Wl,--whole-archive before any
-l flags for Haskell libraries, and -Wl,--no-whole-archive afterwards (on OS X, the
flag is -Wl,-all_load, there is no equivalent for -Wl,--no-whole-archive). This flag
also disables the use of -Wl,--gc-sections (-Wl,-dead_strip on OS X).
This is for specialist applications that may require symbols defined in these Haskell li-
braries at runtime even though they aren’t referenced by any other code linked into
the executable. If you’re using -fwhole-archive-hs-libs, you probably also want -
rdynamic.

6.12 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries
are also sometimes known as dynamic libraries, in particular on Windows they are referred
to as dynamic link libraries (DLLs).
Shared libraries allow a single instance of some pre-compiled code to be shared between sev-
eral programs. In contrast, with static linking the code is copied into each program. Using
shared libraries can thus save disk space. They also allow a single copy of code to be shared
in memory between several programs that use it. Shared libraries are often used as a way of
structuring large projects, especially where different parts are written in different program-
ming languages. Shared libraries are also commonly used as a plugin mechanism by various
applications. This is particularly common on Windows using COM.
In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64
architectures). GHC version 7.0 adds support on Windows (see Building and using Win32
DLLs (page 473)), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86
and PowerPC).
Building and using shared libraries is slightly more complicated than building and using static
libraries. When using Cabal much of the detail is hidden, just use --enable-shared when
configuring a package to build it into a shared library, or to link it against other packages built
as shared libraries. The additional complexity when building code is to distinguish whether
the code will be used in a shared library or will use shared library versions of other packages
it depends on. There is additional complexity when installing and distributing shared libraries
or programs that use shared libraries, to ensure that all shared libraries that are required at
runtime are present in suitable locations.

180 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.12.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the
base libraries use the -dynamic (page 176) flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against
shared library versions of Haskell packages (such as base). The second is when linking, to
link against the shared versions of the packages’ libraries rather than the static versions.
Obviously this requires that the packages were built with shared libraries. On supported
platforms GHC comes with shared libraries for all the core packages, but if you install extra
packages (e.g. with Cabal) then they would also have to be built with shared libraries (--
enable-shared for Cabal).

6.12.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other
Haskell programs. The easiest way is using Cabal, simply configure the Cabal package with
the --enable-shared flag.
If you want to do the steps manually or are writing your own build system then there are
certain conventions that must be followed. Building a shared library that exports Haskell
code, to be used by other Haskell code is a bit more complicated than it is for one that exports
a C API and will be used by C code. If you get it wrong you will usually end up with linker
errors.
In particular Haskell shared libraries must be made into packages. You cannot freely assign
which modules go in which shared libraries. The Haskell shared libraries must match the
package boundaries. The reason for this is that GHC handles references to symbols within
the same shared library (or main executable binary) differently from references to symbols
between different shared libraries. GHC needs to know for each imported module if that
module lives locally in the same shared lib or in a separate shared lib. The way it does this is
by using packages. When using -dynamic (page 176), a module from a separate package is
assumed to come from a separate shared lib, while modules from the same package (or the
default “main” package) are assumed to be within the same shared lib (or main executable
binary).
Most of the conventions GHC expects when using packages are described in Building a pack-
age from Haskell source (page 164). In addition note that GHC expects the .hi files to use the
extension .dyn_hi. The other requirements are the same as for C libraries and are described
below, in particular the use of the flags -dynamic (page 176), -fPIC (page 175) and -shared
(page 176).

6.12.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger
mixed-language project. While with static linking it is recommended to use GHC to perform
the final link step, with shared libraries a Haskell library can be treated just like any other
shared library. The linking can be done using the normal system C compiler or linker.
It is possible to load shared libraries generated by GHC in other programs not written in
Haskell, so they are suitable for using as plugins. Of course to construct a plugin you will
have to use the FFI to export C functions and follow the rules about initialising the RTS. See
Making a Haskell library that can be called from foreign code (page 442). In particular you

6.12. Using shared libraries 181



GHC User’s Guide Documentation, Release 8.2.1.20171030

will probably want to export a C function from your shared library to initialise the plugin
before any Haskell functions are called.
To build Haskell modules that export a C API into a shared library use the -dynamic
(page 176), -fPIC (page 175) and -shared (page 176) flags:

ghc --make -dynamic -shared -fPIC Foo.hs -o libfoo.so

As before, the -dynamic (page 176) flag specifies that this library links against the shared
library versions of the rts and base package. The -fPIC (page 175) flag is required for all
code that will end up in a shared library. The -shared (page 176) flag specifies to make a
shared library rather than a program. To make this clearer we can break this down into
separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc -dynamic -shared Foo.o -o libfoo.so

In principle you can use -shared (page 176) without -dynamic (page 176) in the link step.
That means to statically link the runtime system and all of the base libraries into your new
shared library. This would make a very big, but standalone shared library. On most platforms
however that would require all the static libraries to have been built with -fPIC (page 175) so
that the code is suitable to include into a shared library and we do not do that at the moment.

Warning: If your shared library exports a Haskell API then you cannot directly link it into
another Haskell program and use that Haskell API. You will get linker errors. You must
instead make it into a package as described in the section above.

6.12.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs
can find the libraries they need at runtime. The details of how this works varies between
platforms, in particular the three major systems: Unix ELF platforms, Windows and Mac OS
X.

Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations
that the dynamic linker knows about. For example /usr/lib or /usr/local/lib on most
systems. The other mechanism is to use a “runtime path” or “rpath” embedded into programs
and libraries themselves. These paths can either be absolute paths or on at least Linux and
Solaris they can be paths relative to the program or library itself. In principle this makes it
possible to construct fully relocatable sets of programs and libraries.
GHC has a -dynload linking flag to select the method that is used to find shared libraries at
runtime. There are currently two modes:
sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this

embeds RPATH/RUNPATH entries into the shared library or executable. In particular it uses
absolute paths to where the shared libraries for the rts and each package can be found.
This means the program can immediately be run and it will be able to find the libraries
it needs. However it may not be suitable for deployment if the libraries are installed in
a different location on another machine.

182 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

deploy This does not embed any runtime paths. It relies on the shared libraries being avail-
able in a standard location or in a directory given by the LD_LIBRARY_PATH environment
variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable
-rpath flag to the linker:

ghc -dynamic Main.hs -o main -lfoo -L. -optl-Wl,-rpath,'$ORIGIN'

This assumes that the library libfoo.so is in the current directory and will be able to be
found in the same directory as the executable main once the program is deployed. Simi-
larly it would be possible to use a subdirectory relative to the executable e.g. -optl-Wl,-
rpath,'$ORIGIN/lib'.
This relative path technique can be used with either of the two -dynload modes, though it
makes most sense with the deploy mode. The difference is that with the deploy mode, the
above example will end up with an ELF RUNPATH of just $ORIGIN while with the sysdep mode
the RUNPATH will be $ORIGIN followed by all the library directories of all the packages that the
program depends on (e.g. base and rts packages etc.) which are typically absolute paths.
The unix tool readelf --dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF
shared libraries and executables.
On most UNIX platforms it is also possible to build executables that can be dlopen‘d like
shared libraries using the -pie flag during linking.

Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at
build time with an “install name”, which is the full ultimate install path of the library file.
Any libraries or executables that subsequently link against it (even if it hasn’t been installed
yet) will pick up that path as their runtime search location for it. When compiling with ghc
directly, the install name is set by default to the location where it is built. You can override this
with the -dylib-install-name ⟨path⟩ (page 180) option (which passes -install_name to
the Apple linker). Cabal does this for you. It automatically sets the install name for dynamic
libraries to the absolute path of the ultimate install location.

6.13 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

6.13.1 Dumping out compiler intermediate structures

-ddump- ⟨pass⟩ Make a debugging dump after pass <pass> (may be common enough to need
a short form…). You can get all of these at once (lots of output) by using -v5, or most of
them with -v4. You can prevent them from clogging up your standard output by passing
-ddump-to-file (page 183). Some of the most useful ones are:
-ddump-to-file

Causes the output from all of the flags listed below to be dumped to a file. The file
name depends upon the output produced; for instance, output from -ddump-simpl
(page 184) will end up in module.dump-simpl.

-ddump-parsed
Dump parser output

6.13. Debugging the compiler 183



GHC User’s Guide Documentation, Release 8.2.1.20171030

-ddump-parsed-ast
Dump parser output as a syntax tree

-ddump-rn
Dump renamer output

-ddump-rn-ast
Dump renamer output as a syntax tree

-ddump-tc
Dump typechecker output

-ddump-tc-ast
Dump typechecker output as a syntax tree

-ddump-splices
Dump Template Haskell expressions that we splice in, and what Haskell code the
expression evaluates to.

-dth-dec-file=⟨file⟩
Dump expansions of all top-level Template Haskell splices into ⟨file⟩.

-ddump-types
Dump a type signature for each value defined at the top level of the module. The
list is sorted alphabetically. Using -dppr-debug (page 186) dumps a type signature
for all the imported and system-defined things as well; useful for debugging the
compiler.

-ddump-deriv
Dump derived instances

-ddump-ds
Dump desugarer output

-ddump-spec
Dump output of specialisation pass

-ddump-rules
Dumps all rewrite rules specified in this module; see Controlling what’s going on in
rewrite rules (page 414).

-ddump-rule-firings
Dumps the names of all rules that fired in this module

-ddump-rule-rewrites
Dumps detailed information about all rules that fired in this module

-ddump-vect
Dumps the output of the vectoriser.

-ddump-simpl
Dump simplifier output (Core-to-Core passes)

-ddump-inlinings
Dumps inlining info from the simplifier. Note that if used in conjunction with -
dverbose-core2core (page 186) the compiler will also dump the inlinings that it
considers but passes up, along with its rationale.

-ddump-stranal
Dump strictness analyser output

-ddump-str-signatures
Dump strictness signatures

184 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

-ddump-cse
Dump common subexpression elimination (CSE) pass output

-ddump-worker-wrapper
Dump worker/wrapper split output

-ddump-occur-anal
Dump “occurrence analysis” output

-ddump-prep
Dump output of Core preparation pass

-ddump-stg
Dump output of STG-to-STG passes

-ddump-cmm
Dump the result of the C– pipeline processing

-ddump-cmm-from-stg
Dump the result of STG-to-C– conversion

-ddump-cmm-verbose
Dump output from all C– pipeline stages. In case of .cmm compilation this also dumps
the result of file parsing.

-ddump-opt-cmm
Dump the results of C– to C– optimising passes.

-ddump-asm
Dump assembly language produced by the native code generator (page 168)

-ddump-llvm
Implies -fllvm (page 174)

LLVM code from the LLVM code generator (page 168)
-ddump-bcos

Dump byte-code compiler output
-ddump-foreign

dump foreign export stubs
-ddump-json

Dump errormessages as JSONdocuments. This is intended to be consumed by exter-
nal tooling. A good way to use it is in conjunction with -ddump-to-file (page 183).

-ddump-simpl-iterations
Show the output of each iteration of the simplifier (each run of the simplifier has a max-
imum number of iterations, normally 4). This outputs even more information than -
ddump-simpl-phases.

-ddump-simpl-stats
Dump statistics about how many of each kind of transformation too place. If you add
-dppr-debug you get more detailed information.

-ddump-if-trace
Make the interface loader be real chatty about what it is up to.

-ddump-tc-trace
Make the type checker be real chatty about what it is up to.

-ddump-vt-trace
Make the vectoriser be real chatty about what it is up to.

6.13. Debugging the compiler 185



GHC User’s Guide Documentation, Release 8.2.1.20171030

-ddump-rn-trace
Make the renamer be real chatty about what it is up to.

-ddump-ec-trace
Make the pattern match exhaustiveness checker be real chatty about what it is up to.

-ddump-rn-stats
Print out summary of what kind of information the renamer had to bring in.

-dverbose-core2core
-dverbose-stg2stg

Show the output of the intermediate Core-to-Core and STG-to-STG passes, respectively.
(lots of output!) So: when we’re really desperate:

% ghc -noC -O -ddump-simpl -dverbose-core2core -dcore-lint Foo.hs

-dshow-passes
Print out each pass name, its runtime and heap allocations as it happens. Note that this
may come at a slight performance cost as the compiler will be a bit more eager in forcing
pass results to more accurately account for their costs.
Two types of messages are produced: Those beginning with *** are denote the beginning
of a compilation phase whereas those starting with !!! mark the end of a pass and are
accompanied by allocation and runtime statistics.

-ddump-core-stats
Print a one-line summary of the size of the Core program at the end of the optimisation
pipeline.

-dfaststring-stats
Show statistics on the usage of fast strings by the compiler.

-dppr-debug
Debugging output is in one of several “styles.” Take the printing of types, for example. In
the “user” style (the default), the compiler’s internal ideas about types are presented in
Haskell source-level syntax, insofar as possible. In the “debug” style (which is the default
for debugging output), the types are printed in with explicit foralls, and variables have
their unique-id attached (so you can check for things that look the same but aren’t). This
flag makes debugging output appear in the more verbose debug style.

6.13.2 Formatting dumps

-dppr-user-length
In error messages, expressions are printed to a certain “depth”, with subexpressions
beyond the depth replaced by ellipses. This flag sets the depth. Its default value is 5.

-dppr-cols=⟨n⟩
Set the width of debugging output. Use this if your code is wrapping too much. For
example: -dppr-cols=200.

-dppr-case-as-let
Print single alternative case expressions as though they were strict let expressions. This
is helpful when your code does a lot of unboxing.

-dno-debug-output
Suppress any unsolicited debugging output. When GHC has been built with the DEBUG
option it occasionally emits debug output of interest to developers. The extra output can
confuse the testing framework and cause bogus test failures, so this flag is provided to
turn it off.

186 Chapter 6. Using GHC



GHC User’s Guide Documentation, Release 8.2.1.20171030

6.13.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all
of it will be useful. Use these flags to suppress the parts that you are not interested in.
-dsuppress-all

Suppress everything that can be suppressed, except for unique ids as this often makes
the printout ambiguous. If you just want to see the overall structure of the code, then
start here.

-dsuppress-ticks
Suppress “ticks” in the pretty-printer output.

-dsuppress-uniques
Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear
where an occurrence of ‘x’ is bound), but it makes the output of two compiler runs have
many fewer gratuitous differences, so you can realistically apply diff. Once diff has
shown you where to look, you can try again without -dsuppress-uniques (page 187)

-dsuppress-idinfo
Suppress extended information about identifiers where they are bound. This includes
strictness information and inliner templates. Using this flag can cut the size of the core
dump in half, due to the lack of inliner templates

-dsuppress-unfoldings
Suppress the printing of the stable unfolding of a variable at its binding site.

-dsuppress-module-prefixes
Suppress the printing of module qualification prefixes. This is the Data.List in
Data.List.length.

-dsuppress-type-signatures
Suppress the printing of type signatures.

-dsuppress-type-applications
Suppress the printing of type applications.

-dsuppress-coercions
Suppress the printing of type coercions.

6.13.4 Checking for consistency

-dcore-lint
Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks
GHC’s sanity, not yours.)

-dstg-lint
Ditto for STG level. (note: currently doesn’t work).

-dcmm-lint
Ditto for C– level.

-fllvm-fill-undef-with-garbage
Instructs the LLVM code generator to fill dead STG registers with garbage instead of
undef in calls. This makes it easier to catch subtle code generator and runtime system
bugs (e.g. see Trac #11487).

6.13. Debugging the compiler 187

https://ghc.haskell.org/trac/ghc/ticket/11487


GHC User’s Guide Documentation, Release 8.2.1.20171030

6.13.5 Checking for determinism

-dinitial-unique=⟨s⟩
Start UniqSupply allocation from ⟨s⟩.

-dunique-increment=⟨i⟩
Set the increment for the generated Unique‘s to ⟨i⟩.
This is useful in combination with -dinitial-unique=⟨s⟩ (page 188) to test if the gen-
erated files depend on the order of Unique‘s.
Some interesting values:
•-dinitial-unique=0 -dunique-increment=1 - current sequential UniqSupply
•-dinitial-unique=16777215 -dunique-increment=-1 - UniqSupply that gener-
ates in decreasing order
•-dinitial-unique=1 -dunique-increment=PRIME - where PRIME big enough to
overflow often - nonsequential order

188 Chapter 6. Using GHC



CHAPTER

SEVEN

PROFILING

GHC comes with a time and space profiling system, so that you can answer questions like
“why is my program so slow?”, or “why is my program using so much memory?”.
Profiling a program is a three-step process:
1. Re-compile your program for profiling with the -prof (page 193) option, and probably
one of the options for adding automatic annotations: -fprof-auto (page 193) is the most
common 1.
If you are using external packages with cabal, you may need to reinstall these pack-
ages with profiling support; typically this is done with cabal install -p package --
reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile.
For example, a simple time profile can be generated by running the program with +RTS
-p (see -p (page 194)), which generates a file named prog.prof where ⟨prog⟩ is the
name of your program (without the .exe extension, if you are on Windows).
There are many different kinds of profile that can be generated, selected by different
RTS options. We will be describing the various kinds of profile throughout the rest of this
chapter. Some profiles require further processing using additional tools after running
the program.

3. Examine the generated profiling information, use the information to optimise your pro-
gram, and repeat as necessary.

7.1 Cost centres and cost-centre stacks

GHC’s profiling system assigns costs to cost centres. A cost is simply the time or space
(memory) required to evaluate an expression. Cost centres are program annotations around
expressions; all costs incurred by the annotated expression are assigned to the enclosing cost
centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given
expression at run-time and generate a call-tree of cost attributions.
Let’s take a look at an example:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

1 -fprof-auto (page 193) was known as -auto-all prior to GHC 7.4.1.

189



GHC User’s Guide Documentation, Release 8.2.1.20171030

$ ghc -prof -fprof-auto -rtsopts Main.hs
$ ./Main +RTS -p
121393
$

When a GHC-compiled program is run with the -p (page 194) RTS option, it generates a file
called prog.prof. In this case, the file will contain something like this:

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.68 secs (34 ticks @ 20 ms)
total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total
memory allocation measured during the run of the program (note that the total memory al-
location figure isn’t the same as the amount of live memory needed by the program at any
one time; the latter can be determined using heap profiling, which we will describe later in
Profiling memory usage (page 197)).
The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namely fib,
and it was responsible for 100% of both the time and allocation costs of the program.
The third and final section of the file gives a profile break-down by cost-centre stack. This is
roughly a call-tree profile of the program. In the example above, it is clear that the costly call
to fib came from main.
The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone,
and “inherited”, which includes the costs incurred by all the children of this node.
The usefulness of cost-centre stacks is better demonstrated bymodifying the example slightly:

main = print (f 30 + g 30)
where
f n = fib n
g n = fib (n `div` 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

190 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1

main.f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

Now although we had two calls to fib in the program, it is immediately clear that it was the
call from f which took all the time. The functions f and g which are defined in the where
clause in main are given their own cost centres, main.f and main.g respectively.
The actual meaning of the various columns in the output is:

The number of times this particular point in the call tree was entered.
The percentage of the total run time of the program spent at this point in the call
tree.
The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call.
The percentage of the total run time of the program spent below this point in the
call tree.
The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call and all of its sub-calls.

In addition you can use the -P (page 194) RTS option to get the following additional informa-
tion:
ticks The raw number of time “ticks” which were attributed to this cost-centre; from this,

we get the %time figure mentioned above.
bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw

number from which we get the %alloc figure mentioned above.
What about recursive functions, and mutually recursive groups of functions? Where are the
costs attributed? Well, although GHC does keep information about which groups of functions
called each other recursively, this information isn’t displayed in the basic time and allocation
profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs
elsewhere on the current stack does not push another entry on the stack, instead the costs
for this call are aggregated into the caller 2.

7.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say -fprof-auto to the compiler, it
automatically inserts a cost centre annotation around every binding not marked INLINE in
your program, but you are entirely free to add cost centre annotations yourself.
The syntax of a cost centre annotation for expressions is

2 Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further,
feedback is welcome.

7.1. Cost centres and cost-centre stacks 191



GHC User’s Guide Documentation, Release 8.2.1.20171030

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it ap-
pears in the profiling output, and <expression> is any Haskell expression. An SCC annotation
extends as far to the right as possible when parsing. (SCC stands for “Set Cost Centre”). The
double quotes can be omitted if name is a Haskell identifier, for example:

{-# SCC id #-} <expression>

Cost centre annotations can also appear in the top-level or in a declaration context. In that
case you need to pass a function name defined in the same module or scope with the annota-
tion. Example:

f x y = ...
where
g z = ...
{-# SCC g #-}

{-# SCC f #-}

If you want to give a cost centre different name than the function name, you can pass a string
to the annotation

f x y = ...
{-# SCC f "cost_centre_name" #-}

Here is an example of a program with a couple of SCCs:

main :: IO ()
main = do let xs = [1..1000000]

let ys = [1..2000000]
print $ {-# SCC last_xs #-} last xs
print $ {-# SCC last_init_xs #-} last $ init xs
print $ {-# SCC last_ys #-} last ys
print $ {-# SCC last_init_ys #-} last $ init ys

which gives this profile when run:

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last_init_ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last_init_xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

7.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind
the scenes, and attributes any costs (memory allocation and time) to whatever the current

192 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

cost-centre stack is at the time the cost is incurred.
The mechanism is simple: whenever the program evaluates an expression with an SCC an-
notation, {-# SCC c -#} E, the cost centre c is pushed on the current stack, and the entry
count for this stack is incremented by one. The stack also sometimes has to be saved and
restored; in particular when the program creates a thunk (a lazy suspension), the current
cost-centre stack is stored in the thunk, and restored when the thunk is evaluated. In this
way, the cost-centre stack is independent of the actual evaluation order used by GHC at run-
time.
At a function call, GHC takes the stack stored in the function being called (which for a top-
level function will be empty), and appends it to the current stack, ignoring any prefix that is
identical to a prefix of the current stack.
Wementioned earlier that lazy computations, i.e. thunks, capture the current stack when they
are created, and restore this stack when they are evaluated. What about top-level thunks?
They are “created” when the program is compiled, so what stack should we give them? The
technical name for a top-level thunk is a CAF (“Constant Applicative Form”). GHC assigns
every CAF in a module a stack consisting of the single cost centre M.CAF, where M is the name
of the module. It is also possible to give each CAF a different stack, using the option -fprof-
cafs (page 193). This is especially useful when compiling with -ffull-laziness (page 91)
(as is default with -O (page 89) and higher), as constants in function bodies will be lifted to
the top-level and become CAFs. You will probably need to consult the Core (-ddump-simpl
(page 184)) in order to determine what these CAFs correspond to.

7.2 Compiler options for profiling

-prof
To make use of the profiling system all modules must be compiled and linked with the
-prof (page 193) option. Any SCC annotations you’ve put in your source will spring to
life.
Without a -prof (page 193) option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

There are a few other profiling-related compilation options. Use them in addition to -prof
(page 193). These do not have to be used consistently for all modules in a program.
-fprof-auto

All bindings not marked INLINE, whether exported or not, top level or nested, will be
given automatic SCC annotations. Functions marked INLINE must be given a cost centre
manually.

-fprof-auto-top
GHC will automatically add SCC annotations for all top-level bindings not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-exported
GHC will automatically add SCC annotations for all exported functions not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-calls
Adds an automatic SCC annotation to all call sites. This is particularly useful when us-
ing profiling for the purposes of generating stack traces; see the function traceStack
in the module Debug.Trace, or the -xc (page 133) RTS flag (RTS options for hackers,
debuggers, and over-interested souls (page 133)) for more details.

7.2. Compiler options for profiling 193



GHC User’s Guide Documentation, Release 8.2.1.20171030

-fprof-cafs
The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre.
With this option, all CAFs get their own cost-centre. An “if all else fails” option…

-fno-prof-auto
Disables any previous -fprof-auto (page 193), -fprof-auto-top (page 193), or -
fprof-auto-exported (page 193) options.

-fno-prof-cafs
Disables any previous -fprof-cafs (page 193) option.

-fno-prof-count-entries
Tells GHC not to collect information about how often functions are entered at runtime
(the “entries” column of the time profile), for this module. This tends to make the profiled
code run faster, and hence closer to the speed of the unprofiled code, because GHC is
able to optimise more aggressively if it doesn’t have to maintain correct entry counts.
This option can be useful if you aren’t interested in the entry counts (for example, if you
only intend to do heap profiling).

7.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled
program when you run it (RTS options should be enclosed between +RTS ... -RTS as usual):

-p
-P
-pa

The -p (page 194) option produces a standard time profile report. It is written into
the file <stem>.prof; the stem is taken to be the program name by default, but can be
overridden by the -po ⟨stem⟩ (page 194) flag.
The -P (page 194) option produces a more detailed report containing the actual time and
allocation data as well. (Not used much.)
The -pa (page 194) option produces the most detailed report containing all cost centres
in addition to the actual time and allocation data.

-pj
The -pj (page 194) option produces a time/allocation profile report in JSON format writ-
ten into the file <program>.prof.

-po ⟨stem⟩
The -po ⟨stem⟩ (page 194) option overrides the stem used to form the output file paths
for the cost-centre profiler (see -p (page 194) and -pj (page 194) flags above) and heap
profiler (see -h (page 131)).
For instance, running a program with +RTS -h -p -pohello-world would produce a
heap profile named hello-world.hp and a cost-centre profile named hello-world.prof.

-V ⟨secs⟩

Default 0.02
Sets the interval that the RTS clock ticks at, which is also the sampling interval of the
time and allocation profile. The default is 0.02 seconds. The runtime uses a single timer
signal to count ticks; this timer signal is used to control the context switch timer (Using
Concurrent Haskell (page 99)) and the heap profiling timer RTS options for heap profiling

194 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

(page 198). Also, the time profiler uses the RTS timer signal directly to record time
profiling samples.
Normally, setting the -V ⟨secs⟩ (page 194) option directly is not necessary: the resolu-
tion of the RTS timer is adjusted automatically if a short interval is requested with the -C
⟨s⟩ (page 99) or -i ⟨secs⟩ (page 200) options. However, setting -V ⟨secs⟩ (page 194)
is required in order to increase the resolution of the time profiler.
Using a value of zero disables the RTS clock completely, and has the effect of disabling
timers that depend on it: the context switch timer and the heap profiling timer. Context
switches will still happen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it eliminates a source of
non-determinism at runtime.

-xc
This option causes the runtime to print out the current cost-centre stack whenever an
exception is raised. This can be particularly useful for debugging the location of ex-
ceptions, such as the notorious Prelude.head: empty list error. See RTS options for
hackers, debuggers, and over-interested souls (page 133).

7.3.1 JSON profile format

When invoked with the -pj (page 194) flag the runtime will emit the cost-centre profile in a
machine-readable JSON format. The top-level object of this format has the following proper-
ties,
program (string) The name of the program
arguments (list of strings) The command line arguments passed to the program
rts_arguments (list of strings) The command line arguments passed to the runtime system
initial_capabilities (integral number) Howmany capabilities the programwas started

with (e.g. using the -N ⟨x⟩ (page 100) option). Note that the number of capabilities may
change during execution due to the setNumCapabilities function.

total_time (number) The total wall time of the program’s execution in seconds.
total_ticks (integral number) How many profiler “ticks” elapsed over the course of the

program’s execution.
end_time (number) The approximate time when the program finished execution as a UNIX

epoch timestamp.
tick_interval (float) How much time between profiler ticks.
total_alloc (integer) The cumulative allocations of the program in bytes.
cost_centres (list of objects) A list of the program’s cost centres
profile (object) The profile tree itself
Each entry in cost_centres is an object describing a cost-centre of the program having the
following properies,
id (integral number) A unique identifier used to refer to the cost-centre
is_caf (boolean) Whether the cost-centre is a Constant Applicative Form (CAF)
label (string) A descriptive string roughly identifying the cost-centre.
src_loc (string) A string describing the source span enclosing the cost-centre.

7.3. Time and allocation profiling 195



GHC User’s Guide Documentation, Release 8.2.1.20171030

The profile data itself is described by the profile field, which contains a tree-like object
(which we’ll call a “cost-centre stack” here) with the following properties,
id (integral number) The id of a cost-centre listed in the cost_centres list.
entries (integral number) How many times was this cost-centre entered?
ticks (integral number) How many ticks was the program’s execution inside of this cost-

centre? This does not include child cost-centres.
alloc (integral number) Howmany bytes did the program allocate while inside of this cost-

centre? This does not include allocations while in child cost-centres.
children (list) A list containing child cost-centre stacks.
For instance, a simple profile might look like this,

{
"program": "Main",
"arguments": [
"nofib/shootout/n-body/Main",
"50000"

],
"rts_arguments": [
"-pj",
"-hy"

],
"end_time": "Thu Feb 23 17:15 2017",
"initial_capabilities": 0,
"total_time": 1.7,
"total_ticks": 1700,
"tick_interval": 1000,
"total_alloc": 3770785728,
"cost_centres": [
{

"id": 168,
"label": "IDLE",
"module": "IDLE",
"src_loc": "<built-in>",
"is_caf": false

},
{

"id": 156,
"label": "CAF",
"module": "GHC.Integer.Logarithms.Internals",
"src_loc": "<entire-module>",
"is_caf": true

},
{

"id": 155,
"label": "CAF",
"module": "GHC.Integer.Logarithms",
"src_loc": "<entire-module>",
"is_caf": true

},
{

"id": 154,
"label": "CAF",
"module": "GHC.Event.Array",
"src_loc": "<entire-module>",
"is_caf": true

196 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

}
],
"profile": {
"id": 162,
"entries": 0,
"alloc": 688,
"ticks": 0,
"children": [

{
"id": 1,
"entries": 0,
"alloc": 208,
"ticks": 0,
"children": [
{

"id": 22,
"entries": 1,
"alloc": 80,
"ticks": 0,
"children": []

}
]

},
{

"id": 42,
"entries": 1,
"alloc": 1632,
"ticks": 0,
"children": []

}
]

}
}

7.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also gen-
erate a graph of its memory usage over time. This is useful for detecting the causes of space
leaks, when your program holds on to more memory at run-time that it needs to. Space leaks
lead to slower execution due to heavy garbage collector activity, and may even cause the
program to run out of memory altogether.
To generate a heap profile from your program:
1. Compile the program for profiling (Compiler options for profiling (page 193)).
2. Run it with one of the heap profiling options described below (eg. -h (page 131) for a
basic producer profile). This generates the file prog.hp.
If the event log (page 132) is enabled (with the -l (page 199) runtime system flag) heap
samples will additionally be emitted to the GHC event log (see Heap profiler event log
output (page 485) for details about event format).

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail
in hp2ps – Rendering heap profiles to PostScript (page 202).

7.4. Profiling memory usage 197



GHC User’s Guide Documentation, Release 8.2.1.20171030

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a
Postscript-capable printer.

For example, here is a heap profile produced for the sphere program from GHC’s nofib
benchmark suite,

Main 100 +RTS -hc 9,661 bytes x seconds Fri Oct 2 15:01 2015

seconds0.0 0.1 0.1 0.2 0.2 0.2

by
te

s

0k

5k

10k

15k

20k

25k

30k

OTHER

(112)tracepixel/ray.f/ray/...

(122)sphereintersect/trace...

(183)rbg.eight_bit/rbg/pix...

(108)pixels/ppm/run/main.\...

(221)vecadd/vecsum/shade.d...

(147)vecscale/camparams.sc...

(157)vecscale/camparams.sc...

(140)vecsub/camparams.firs...

(110)rbg/pixels/ppm/run/ma...

(80)GHC.IO.Encoding.Iconv.CAF

(217)vecsum/Main.CAF

(119)testspheres/Main.CAF

(185)shade/tracepixel/ray....

(109)ray/run/main.\/main/M...

(103)Main.CAF

(84)GHC.Conc.Signal.CAF

(77)GHC.IO.Handle.FD.CAF

(92)GHC.IO.Encoding.CAF

(54)PINNED

You might also want to take a look at hp2any, a more advanced suite of tools (not distributed
with GHC) for displaying heap profiles.

7.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile
types yield a graph of live heap against time, but they differ in how the live heap is broken
down into bands. The following RTS options select which break-down to use:
-hT

Breaks down the graph by heap closure type.
-hc
-h

Requires :ghc-flag:‘-prof‘. Breaks down the graph by the cost-centre stack which pro-
duced the data.

-hm
Requires :ghc-flag:‘-prof‘. Break down the live heap by the module containing the code
which produced the data.

-hd
Requires :ghc-flag:‘-prof‘. Breaks down the graph by closure description. For actual

198 Chapter 7. Profiling

http://www.haskell.org/haskellwiki/Hp2any


GHC User’s Guide Documentation, Release 8.2.1.20171030

data, the description is just the constructor name, for other closures it is a compiler-
generated string identifying the closure.

-hy
Requires :ghc-flag:‘-prof‘. Breaks down the graph by type. For closures which have
function type or unknown/polymorphic type, the string will represent an approximation
to the actual type.

-hr
Requires :ghc-flag:‘-prof‘. Break down the graph by retainer set. Retainer profiling is
described in more detail below (Retainer Profiling (page 200)).

-hb
Requires :ghc-flag:‘-prof‘. Break down the graph by biography. Biographical profiling is
described in more detail below (Biographical Profiling (page 201)).

-l
Noindex

Emit profile samples to the GHC event log (page 132). This format is both more expres-
sive than the old .hp format and can be correlated with other events over the program’s
runtime. See Heap profiler event log output (page 485) for details on the produced event
structure.

In addition, the profile can be restricted to heap data which satisfies certain criteria - for
example, you might want to display a profile by type but only for data produced by a certain
module, or a profile by retainer for a certain type of data. Restrictions are specified as follows:
-hc ⟨name⟩

Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres at the top.

-hC ⟨name⟩
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres anywhere in the stack.

-hm ⟨module⟩
Restrict the profile to closures produced by the specified modules.

-hd ⟨desc⟩
Restrict the profile to closures with the specified description strings.

-hy ⟨type⟩
Restrict the profile to closures with the specified types.

-hr ⟨cc⟩
Restrict the profile to closures with retainer sets containing cost-centre stacks with one
of the specified cost centres at the top.

-hb ⟨bio⟩
Restrict the profile to closures with one of the specified biographies, where ⟨bio⟩ is one
of lag, drag, void, or use.

For example, the following options will generate a retainer profile restricted to Branch and
Leaf constructors:

prog +RTS -hr -hdBranch,Leaf

There can only be one “break-down” option (eg. -hr (page 199) in the example above), but
there is no limit on the number of further restrictions that may be applied. All the options may

7.4. Profiling memory usage 199



GHC User’s Guide Documentation, Release 8.2.1.20171030

be combined, with one exception: GHC doesn’t currently support mixing the -hr (page 199)
and -hb (page 199) options.
There are three more options which relate to heap profiling:
-i ⟨secs⟩

Set the profiling (sampling) interval to ⟨secs⟩ seconds (the default is 0.1 second). Frac-
tions are allowed: for example -i0.2 will get 5 samples per second. This only affects
heap profiling; time profiles are always sampled with the frequency of the RTS clock.
See Time and allocation profiling (page 194) for changing that.

-xt
Include the memory occupied by threads in a heap profile. Each thread takes up a small
area for its thread state in addition to the space allocated for its stack (stacks normally
start small and then grow as necessary).
This includes the main thread, so using -xt (page 200) is a good way to see how much
stack space the program is using.
Memory occupied by threads and their stacks is labelled as “TSO” and “STACK” respec-
tively when displaying the profile by closure description or type description.

-L ⟨num⟩
Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

7.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?”.
We start by defining what we mean by a retainer:

A retainer is either the system stack, an unevaluated closure (thunk), or an explicitly
mutable object.

In particular, constructors are not retainers.
An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by re-
cursively following pointers starting from object B, but not meeting any other retainer objects
on the way. Each live object is retained by one or more retainer objects, collectively called
its retainer set, or its retainer set, or its retainers.
When retainer profiling is requested by giving the program the -hr option, a graph is gener-
ated which is broken down by retainer set. A retainer set is displayed as a set of cost-centre
stacks; because this is usually too large to fit on the profile graph, each retainer set is num-
bered and shown abbreviated on the graph along with its number, and the full list of retainer
sets is dumped into the file prog.prof.
Retainer profiling requires multiple passes over the live heap in order to discover the full
retainer set for each object, which can be quite slow. So we set a limit on the maximum
size of a retainer set, where all retainer sets larger than the maximum retainer set size are
replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with
the -R ⟨size⟩ (page 200) RTS option:
-R ⟨size⟩

Restrict the number of elements in a retainer set to ⟨size⟩ (default 8).

200 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large struc-
ture is retained by an unevaluated computation, and will be released once the computation
is forced. A good example is looking up a value in a finite map, where unless the lookup is
forced in a timelymanner the unevaluated lookupwill cause thewholemapping to be retained.
These kind of space leaks can often be eliminated by forcing the relevant computations to be
performed eagerly, using seq or strictness annotations on data constructor fields.
Often a particular data structure is being retained by a chain of unevaluated closures, only
the nearest of which will be reported by retainer profiling - for example A retains B, B retains
C, and C retains a large structure. There might be a large number of Bs but only a single A,
so A is really the one we’re interested in eliminating. However, retainer profiling will in this
case report B as the retainer of the large structure. To move further up the chain of retainers,
we can ask for another retainer profile but this time restrict the profile to B objects, so we get
a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the
retainers we are interested in, but we’ve found this to be a useful technique in most cases.

7.4.3 Biographical Profiling

A typical heap object may be in one of the following four states at each point in its lifetime:
• The lag stage, which is the time between creation and the first use of the object,
• the use stage, which lasts from the first use until the last use of the object, and
• The drag stage, which lasts from the final use until the last reference to the object is
dropped.

• An object which is never used is said to be in the void state for its whole lifetime.
A biographical heap profile displays the portion of the live heap in each of the four states
listed above. Usually the most interesting states are the void and drag states: live heap in
these states is more likely to be wasted space than heap in the lag or use states.
It is also possible to break down the heap in one or more of these states by a different criteria,
by restricting a profile by biography. For example, to show the portion of the heap in the drag
or void state by producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step
is usually to find the retainer(s):

prog +RTS -hr -hccc...

Note: This two stage process is required because GHC cannot currently profile using both
biographical and retainer information simultaneously.

7.4. Profiling memory usage 201



GHC User’s Guide Documentation, Release 8.2.1.20171030

7.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory res-
idency of your program when you run it? You might see a large discrepancy between the
residency reported by the heap profiler, and the residency reported by tools on your system
(eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:
• There is an overhead of profiling itself, which is subtracted from the residency figures
by the profiler. This overhead goes away when compiling without profiling support, of
course. The space overhead is currently 2 extra words per heap object, which probably
results in about a 30% overhead.

• Garbage collection requires more memory than the actual residency. The factor depends
on the kind of garbage collection algorithm in use: a major GC in the standard generation
copying collector will usually require 3L bytes of memory, where L is the amount of live
data. This is because by default (see the RTS -F ⟨factor⟩ (page 125) option) we allow
the old generation to grow to twice its size (2L) before collecting it, and we require
additionally L bytes to copy the live data into. When using compacting collection (see
the -c (page 124) option), this is reduced to 2L, and can further be reduced by tweaking
the -F ⟨factor⟩ (page 125) option. Also add the size of the allocation area (see -A
⟨size⟩ (page 123)).

• The stack isn’t counted in the heap profile by default. See the RTS -xt (page 200) option.
• The program text itself, the C stack, any non-heap data (e.g. data allocated by foreign
libraries, and data allocated by the RTS), and mmap()‘d memory are not counted in the
heap profile.

7.5 hp2ps – Rendering heap profiles to PostScript

Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps program converts a .hp file produced by the -h<break-down> runtime
option into a PostScript graph of the heap profile. By convention, the file to be processed
by hp2ps has a .hp extension. The PostScript output is written to file@.ps. If <file> is
omitted entirely, then the program behaves as a filter.
hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally
developed by Dave Wakeling as part of the HBC/LML heap profiler.
The flags are:
-d

In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier.
The default sort ordering is for the bands with the largest area to be stacked on top of the
smaller ones. The -d option causes rougher bands (those representing series of values
with the largest standard deviations) to be stacked on top of smoother ones.

-b
Normally, hp2ps puts the title of the graph in a small box at the top of the page. However,
if the JOB string is too long to fit in a small box (more than 35 characters), then hp2ps
will choose to use a big box instead. The -b option forces hp2ps to use a big box.

-e⟨float⟩[in|mm|pt]
Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually,

202 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

the PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches
high, and hp2ps arranges for this area to be approximately centred on a sheet of a4 paper.
This format is convenient of studying the graph in detail, but it is unsuitable for inclusion
in LaTeX documents. The -e option causes the graph to be drawn in portrait mode, with
float specifying the width in inches, millimetres or points (the default). The resulting
PostScript file conforms to the Encapsulated PostScript (EPS) convention, and it can be
included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

-g
Create output suitable for the gs PostScript previewer (or similar). In this case the graph
is printed in portrait mode without scaling. The output is unsuitable for a laser printer.

-l
Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -l flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with
many bands.

-m⟨int⟩
Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -m flag specifies an alternative band limit (the maximum is 20).
-m0 requests the band limit to be removed. As many bands as necessary are produced.
However no key is produced as it won’t fit! It is useful for displaying creation time
profiles with many bands.

-p
Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series
of graphs for use in a presentation, it is often useful to draw a new graph using the
same scale, shading and ordering as a previous one. The -p flag causes the graph to be
drawn using the parameters determined by a previous run of hp2ps on file. These are
extracted from file@.aux.

-s
Use a small box for the title.

-t⟨float⟩
Normally trace elements which sum to a total of less than 1% of the profile are removed
from the profile. The -t option allows this percentage to be modified (maximum 5%).
-t0 requests no trace elements to be removed from the profile, ensuring that all the data
will be displayed.

-c
Generate colour output.

-y
Ignore marks.

-?
Print out usage information.

7.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)
The FOO.hp file produced when you ask for the heap profile of a program FOO is a text file with
a particularly simple structure. Here’s a representative example, with much of the actual data

7.5. hp2ps – Rendering heap profiles to PostScript 203



GHC User’s Guide Documentation, Release 8.2.1.20171030

omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07

... sample data ...
END_SAMPLE 15.07
BEGIN_SAMPLE 30.23

... sample data ...
END_SAMPLE 30.23
... etc.
BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE_UNIT, VALUE_UNIT) form a header. Each block of lines
starting with BEGIN_SAMPLE and ending with END_SAMPLE forms a single sample (you can think
of this as a vertical slice of your heap profile). The hp2ps utility should accept any input with
a properly-formatted header followed by a series of complete samples.

7.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the .hp file into
a text editor and deleting the unwanted samples. The resulting .hp file can be run through
hp2ps and viewed or printed.

7.5.3 Viewing the heap profile of a running program

The .hp file is generated incrementally as your program runs. In principle, running hp2ps
on the incomplete file should produce a snapshot of your program’s heap usage. However,
the last sample in the file may be incomplete, causing hp2ps to fail. If you are using a ma-
chine with UNIX utilities installed, it’s not too hard to work around this problem (though the
resulting command line looks rather Byzantine):

head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in
FOO.hp, and labels each sample with its ending line number. We then select the line number of
the last complete sample using tail and cut. This is used as a parameter to head; the result is
as if we deleted the final incomplete sample from FOO.hp. This results in a properly-formatted
.hp file which we feed directly to hp2ps.

7.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a “watch file” option can be used to view an up-to-
date heap profile of your program as it runs. Simply generate an incremental heap profile as
described in the previous section. Run gv on your profile:

gv -watch -orientation=seascape FOO.ps

204 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

If you forget the -watch flag you can still select “Watch file” from the “State” menu. Now
each time you generate a new profile FOO.ps the view will update automatically.
This can all be encapsulated in a little script:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \

| hp2ps > FOO.ps
gv -watch -orientation=seascape FOO.ps &
while [ 1 ] ; do

sleep 10 # We generate a new profile every 10 seconds.
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

done

Occasionally gv will choke as it tries to read an incomplete copy of FOO.ps (because hp2ps
is still running as an update occurs). A slightly more complicated script works around this
problem, by using the fact that sending a SIGHUP to gv will cause it to re-read its input file:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \

| hp2ps > FOO.ps
gv FOO.ps &
gvpsnum=$!
while [ 1 ] ; do

sleep 10
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

kill -HUP $gvpsnum
done

7.6 Profiling Parallel and Concurrent Programs

Combining -threaded (page 178) and -prof (page 193) is perfectly fine, and indeed it is
possible to profile a program running on multiple processors with the RTS -N ⟨x⟩ (page 100)
option. 3

Some caveats apply, however. In the current implementation, a profiled program is likely to
scale much less well than the unprofiled program, because the profiling implementation uses
some shared data structures which require locking in the runtime system. Furthermore, the
memory allocation statistics collected by the profiled program are stored in shared memory
but not locked (for speed), which means that these figures might be inaccurate for parallel
programs.
We strongly recommend that you use -fno-prof-count-entries (page 194) when compiling
a program to be profiled on multiple cores, because the entry counts are also stored in shared
memory, and continuously updating them on multiple cores is extremely slow.
We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for
visualising parallel execution, and is complementary to the time and space profiling features
provided with GHC.

3 This feature was added in GHC 7.4.1.

7.6. Profiling Parallel and Concurrent Programs 205

http://www.haskell.org/haskellwiki/ThreadScope


GHC User’s Guide Documentation, Release 8.2.1.20171030

7.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been
actually executed, and which parts have never actually been invoked. GHC has an option
for generating instrumented code that records code coverage as part of the Haskell Program
Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the
generated code coverage information into human understandable format.
Correctly instrumented code provides coverage information of two kinds: source coverage
and boolean-control coverage. Source coverage is the extent to which every part of the pro-
gram was used, measured at three different levels: declarations (both top-level and local),
alternatives (among several equations or case branches) and expressions (at every level).
Boolean coverage is the extent to which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition, qualifier).
HPC displays both kinds of information in two primary ways: textual reports with summary
statistics (hpc report) and sources with color mark-up (hpc markup). For boolean coverage,
there are four possible outcomes for each guard, condition or qualifier: both True and False
values occur; only True; only False; never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the program that was never evaluated; a green
background indicates an always-True expression and a red background indicates an always-
False one.

7.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal repre-
sentations of reciprocals, with recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = ('0' : '.' : digits, recur)

| otherwise = error
"attempting to compute reciprocal of number <= 1"

where
(digits, recur) = divide n 1 []

divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | c `elem` cs = ([], position c cs)

| r == 0 = (show q, 0)
| r /= 0 = (show q ++ digits, recur)

where
(q, r) = (c*10) `quotRem` n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n==x = 1

| otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =

"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p = length d - r
(d, r) = reciprocal n

main = do
number <- readLn

206 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

putStrLn (showRecip number)
main

HPC instrumentation is enabled with the -fhpc (page 207) flag:

$ ghc -fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in
there, one for each module compiled. You don’t need to worry about these files: they contain
information needed by the hpc tool to generate the coverage data for compiled modules after
the program is run.

$ ./Recip
1/3
= 0.(3)

Running the program generates a file with the .tix suffix, in this case Recip.tix, which
contains the coverage data for this run of the program. The program may be run multiple
times (e.g. with different test data), and the coverage data from the separate runs is accumu-
lated in the .tix file. To reset the coverage data and start again, just remove the .tix file.
You can control where the .tix file is generated using the environment variable HPCTIXFILE
(page 207).
HPCTIXFILE

Set the HPC .tix file output path.
Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)

14% guards (1/7), 3 always True,
1 always False,
2 unevaluated

0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)

55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html,
hpc_index_alt.html, hpc_index_exp.html, hpc_index_fun.html.

7.7.2 Options for instrumenting code for coverage

-fhpc
Enable code coverage for the current module or modules being compiled.
Modules compiled with this option can be freely mixed with modules compiled without
it; indeed, most libraries will typically be compiled without -fhpc (page 207). When
the program is run, coverage data will only be generated for those modules that were
compiled with -fhpc (page 207), and the hpc tool will only show information about those
modules.

7.7. Observing Code Coverage 207



GHC User’s Guide Documentation, Release 8.2.1.20171030

7.7.3 The hpc toolkit

The hpc command has several sub-commands:

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command

Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage

Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file

Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage

Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a .tix file after an instrumented binary has generated it.
The hpc tool assumes you are in the top-level directory of the location where you built your
application, and the .tix file is in the same top-level directory. You can use the flag --srcdir
to use hpc for any other directory, and use --srcdir multiple times to analyse programs
compiled from difference locations, as is typical for packages.
We now explain in more details the major modes of hpc.

hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are
considered in generating report, unless include or exclude are used. The report is a summary
unless the --per-module flag is used. The --xml-output option allows for tools to use hpc to
glean coverage.

$ hpc help report
Usage: hpc report [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--per-module show module level detail
--decl-list show unused decls
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--xml-output show output in XML

208 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--fun-entry-count show top-level function entry counts
--highlight-covered highlight covered code, rather that code gaps
--destdir=DIR path to write output to

hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not
change the original .tix file; it generates a new .tix file.

$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX_FILE> [<TIX_FILE> [<TIX_FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--union use the union of the module namespace (default is intersection)

hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between
.tix files, to subtract one .tix file from another, or to add two .tix files. hpc combine does
not change the original .tix file; it generates a new .tix file.

$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX_FILE> <TIX_FILE>
Combine two .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD

FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is intersection)

7.7. Observing Code Coverage 209



GHC User’s Guide Documentation, Release 8.2.1.20171030

hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it
generates a new .tix file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX_FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID

FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is intersection)

hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is
used to generate a draft overlay from a .tix file, and hpc overlay generates a .tix files from an
overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY_FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]

--reset-hpcdirs empty the list of hpcdir's
[rarely used]

--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX_FILE>

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--output=FILE output FILE

7.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the
same directory will exhibit a race condition. At compile time, there is no way to change

210 Chapter 7. Profiling



GHC User’s Guide Documentation, Release 8.2.1.20171030

the name of the .tix file generated; at runtime, the name of the generated .tix file can
be changed using HPCTIXFILE (page 207); the name of the .tix file will also change if you
rename the binary. HPC does not work with GHCi.

7.8 Using “ticky-ticky” profiling (for implementors)

-ticky
Enable ticky-ticky profiling.

Because ticky-ticky profiling requires a certain familiarity with GHC internals, we have moved
the documentation to the GHC developers wiki. Take a look at its overview of the profiling
options, which includeds a link to the ticky-ticky profiling page.

7.8. Using “ticky-ticky” profiling (for implementors) 211

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling


GHC User’s Guide Documentation, Release 8.2.1.20171030

212 Chapter 7. Profiling



CHAPTER

EIGHT

ADVICE ON: SOONER, FASTER, SMALLER, THRIFTIER

Please advise us of other “helpful hints” that should go here!

8.1 Sooner: producing a program more quickly

Don’t use -O (page 89) or (especially) -O2 (page 89): By using them, you are telling
GHC that you are willing to suffer longer compilation times for better-quality code.
GHC is surprisingly zippy for normal compilations without -O (page 89)!

Use more memory: Within reason, more memory for heap space means less garbage collec-
tion for GHC, which means less compilation time. If you use the -Rghc-timing option,
you’ll get a garbage-collector report. (Again, you can use the cheap-and-nasty +RTS -S
-RTS option to send the GC stats straight to standard error.)
If it says you’re using more than 20% of total time in garbage collecting, then more
memory might help: use the -H⟨size⟩ (see -H [⟨size⟩] (page 126)) option. Increasing
the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A⟨size⟩ -RTS option (see -A ⟨size⟩ (page 123)).
If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory! As soon as GHC plus its “fellow citizens” (other processes on
your machine) start using more than the real memory on your machine, and the machine
starts “thrashing,” the party is over. Compile times will be worse than terrible! Use
something like the csh builtin time command to get a report on how many page faults
you’re getting.
If you don’t know what virtual memory, thrashing, and page faults are, or you don’t
know the memory configuration of your machine, don’t try to be clever about memory
use: you’ll just make your life a misery (and for other people, too, probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be
large, it can take many real seconds to slurp the bits to/from a remote filesystem.
It would be quite sensible to compile on a fast machine using remotely-mounted disks;
then link on a slow machine that had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.
GHC compiles some program constructs slowly: We’d rather you reported such be-

haviour as a bug, so that we can try to correct it.
To figure out which part of the compiler is badly behaved, the -v2 option is your friend.

213



GHC User’s Guide Documentation, Release 8.2.1.20171030

8.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately in Profiling (page 189). There is no substitute for finding where your
program’s time/space is really going, as opposed to where you imagine it is going.
Another point to bear in mind: By far the best way to improve a program’s performance
dramatically is to use better algorithms. Once profiling has thrown the spotlight on the guilty
time-consumer(s), it may be better to re-think your program than to try all the tweaks listed
below.
Another extremely efficient way to make your program snappy is to use library code that has
been Seriously Tuned By Someone Else. You might be able to write a better quicksort than
the one in Data.List, but it will take you much longer than typing import Data.List.
Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credi-
ble competition in the performance department these days it’s hard to say what overly-slow
means, so just use your judgement! Of course, if a GHC compiled program runs slower than
the same program compiled with NHC or Hugs, then it’s definitely a bug.
Optimise, using -O or -O2: This is the most basic way to make your program go faster.

Compilation time will be slower, especially with -O2.
At present, -O2 is nearly indistinguishable from -O.

Compile via LLVM: The LLVM code generator (page 168) can sometimes do a far better job
at producing fast code than the native code generator (page 168). This is not universal
and depends on the code. Numeric heavy code seems to show the best improvement
when compiled via LLVM. You can also experiment with passing specific flags to LLVM
with the -optlo ⟨option⟩ (page 171) and -optlc ⟨option⟩ (page 171) flags. Be care-
ful though as setting these flags stops GHC from setting its usual flags for the LLVM
optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is
elegant, neat, etc., etc., but it is death to performance if left to linger in an inner loop.
How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported,
top-level functions is good software-engineering practice, anyway. (Tip: using the -
Wmissing-signatures (page 83) option can help enforce good signature-practice).
The automatic specialisation of overloaded functions (with -O) should take care of over-
loaded local and/or unexported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program.
See SPECIALIZE pragma (page 403) and SPECIALIZE instance pragma (page 406).

“But how do I know where overloading is creeping in?” A low-tech way: grep (search)
your interface files for overloaded type signatures. You can view interface files using
the --show-iface ⟨file⟩ (page 68) option (see Other options related to interface files
(page 140)).

$ ghc --show-iface Foo.hi | egrep '^[a-z].*::.*=>'

Strict functions are your dear friends: And, among other things, lazy pattern-matching is
your enemy.
(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

214 Chapter 8. Advice on: sooner, faster, smaller, thriftier



GHC User’s Guide Documentation, Release 8.2.1.20171030

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.
A less contrived example shows the use of cases instead of lets to get stricter code (a
good thing):

f (Wibble x y) # beautiful but slow
= let

(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y

in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->

case (unpackFoo y) of { (a2, b2, c2) ->
...

}}

GHC loves single-constructor data-types: It’s all the better if a function is strict in a
single-constructor type (a type with only one data-constructor; for example, tuples are
single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a sin-
gle field, use a newtype declaration instead of a data declaration. The newtype will be
optimised away in most cases.

“How do I find out a function’s strictness?” Don’t guess—look it up.
Look for your function in the interface file, then for the third field in the pragma; it
should say Strictness: ⟨string⟩. The ⟨string⟩ gives the strictness of the function’s
arguments: see the GHC Commentary for a description of the strictness notation.
For an “unpackable” U(...) argument, the info inside tells the strictness of its com-
ponents. So, if the argument is a pair, and it says U(AU(LSS)), that means “the first
component of the pair isn’t used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”
If the function isn’t exported, just compile with the extra flag -ddump-simpl (page 184);
next to the signature for any binder, it will print the self-same pragmatic information as
would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain
functions that are used a lot can have a dramatic effect. See INLINE pragma (page 400).

Explicit export list: If you do not have an explicit export list in a module, GHC must assume
that everything in that module will be exported. This has various pessimising effects.
For example, if a bit of code is actually unused (perhaps because of unfolding effects),
GHC will not be able to throw it away, because it is exported and some other module
may be relying on its existence.
GHC can be quite a bit more aggressive with pieces of code if it knows they are not
exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your
compilation with -ddump-simpl (page 184) (don’t forget the -O (page 89)).

8.2. Faster: producing a program that runs quicker 215

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand


GHC User’s Guide Documentation, Release 8.2.1.20171030

If profiling has pointed the finger at particular functions, look at their Core code. lets
are bad, cases are good, dictionaries (d.⟨Class⟩.⟨Unique⟩) [or anything overloading-
ish] are bad, nested lambdas are bad, explicit data constructors are good, primitive op-
erations (e.g., eqInt#) are good, ...

Use strictness annotations: Putting a strictness annotation (!) on a constructor field helps
in two ways: it adds strictness to the program, which gives the strictness analyser more
to work with, and it might help to reduce space leaks.
It can also help in a third way: when used with -funbox-strict-fields (page 98) (see
-f*: platform-independent flags (page 89)), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be removed. Unpacking only
happens for single-constructor datatypes (Int is a good candidate, for example).
Using -funbox-strict-fields (page 98) is only really a good idea in conjunction with -O
(page 89), because otherwise the extra packing and unpacking won’t be optimised away.
In fact, it is possible that -funbox-strict-fields (page 98) may worsen performance
even with -O (page 89), but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you
want to get right down to the “raw bits.” Please see Unboxed types (page 220) for some
information about using unboxed types.
Before resorting to explicit unboxed types, try using strict constructor fields and -
funbox-strict-fields (page 98) first (see above). That way, your code stays portable.

Use foreign import (a GHC extension) to plug into fast libraries: This may take real
work, but… There exist piles of massively-tuned library code, and the best thing is not
to compete with it, but link with it.
Foreign function interface (FFI) (page 437) describes the foreign function interface.

Don’t use Floats: If you’re using Complex, definitely use Complex Double rather than Com-
plex Float (the former is specialised heavily, but the latter isn’t).
Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With Doubles, you are much less
likely to hang yourself with numerical errors.
One time when Float might be a good idea is if you have a lot of them, say a giant array
of Floats. They take up half the space in the heap compared to Doubles. However, this
isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic
arithmetic element types including Int and Char: see the Data.Array.Unboxed library
for details. These arrays are likely to be much faster than using standard Haskell 98
arrays from the Data.Array library.

Use a bigger heap! If your program’s GC stats (-S [⟨file⟩] (page 129) RTS option) in-
dicate that it’s doing lots of garbage-collection (say, more than 20% of execution time),
more memory might help —with the -H⟨size⟩ or -A⟨size⟩ RTS options (see RTS options
to control the garbage collector (page 123)). As a rule of thumb, try setting -H⟨size⟩ to
the amount of memory you’re willing to let your process consume, or perhaps try passing
-H ⟨size⟩ (page 75) without any argument to let GHC calculate a value based on the
amount of live data.

Compact your data: The :ghc-compact-ref:‘GHC.Compact <GHC-Compact.html>‘
module provides a way to make garbage collection more efficient for long-lived data
structures. Compacting a data structure collects the objects together in memory,

216 Chapter 8. Advice on: sooner, faster, smaller, thriftier



GHC User’s Guide Documentation, Release 8.2.1.20171030

where they are treated as a single object by the garbage collector and not traversed
individually.

8.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -funfolding-
use-threshold0 option for the extreme case. (“Only unfoldings with zero cost should pro-
ceed.”) Warning: except in certain specialised cases (like Happy parsers) this is likely to actu-
ally increase the size of your program, because unfolding generally enables extra simplifying
optimisations to be performed.
Avoid Read.
Use strip on your executables.

8.4 Thriftier: producing a program that gobbles less heap
space

“I think I have a space leak...”
Re-run your program with +RTS -S, and remove all doubt! (You’ll see the heap usage get
bigger and bigger...) (Hmmm... this might be even easier with the -G1 RTS option; so...
./a.out +RTS -S -G1)
Once again, the profiling facilities (Profiling (page 189)) are the basic tool for demystifying
the space behaviour of your program.
Strict functions are good for space usage, as they are for time, as discussed in the previous
section. Strict functions get right down to business, rather than filling up the heap with
closures (the system’s notes to itself about how to evaluate something, should it eventually
be required).

8.3. Smaller: producing a program that is smaller 217



GHC User’s Guide Documentation, Release 8.2.1.20171030

218 Chapter 8. Advice on: sooner, faster, smaller, thriftier



CHAPTER

NINE

GHC LANGUAGE FEATURES

As with all known Haskell systems, GHC implements some extensions to the standard Haskell
language. They can all be enabled or disabled by command line flags or language pragmas.
By default GHC understands the most recent Haskell version it supports, plus a handful of
extensions.
Some of the Glasgow extensions serve to give you access to the underlying facilities with
which we implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write
some non-portable code at a more primitive level. You need not be “stuck” on performance
because of the implementation costs of Haskell’s “high-level” features—you can always code
“under” them. In an extreme case, you can write all your time-critical code in C, and then
just glue it together with Haskell!
Before you get too carried away working at the lowest level (e.g., sloshing MutableByteAr-
ray#s around your program), you may wish to check if there are libraries that provide a
“Haskellised veneer” over the features you want. The separate libraries documentation de-
scribes all the libraries that come with GHC.

9.1 Language options

The language option flags control what variation of the language are permitted.
Language options can be controlled in two ways:
• Every language option can switched on by a command-line flag “-X...”
(e.g. -XTemplateHaskell), and switched off by the flag “-XNo...”; (e.g. -
XNoTemplateHaskell).

• Language options recognised by Cabal can also be enabled using the LANGUAGE pragma,
thus {-# LANGUAGE TemplateHaskell #-} (see LANGUAGE pragma (page 398)).

Although not recommended, the deprecated -fglasgow-exts (page 219) flag enables a large
swath of the extensions supported by GHC at once.
-fglasgow-exts

The flag -fglasgow-exts is equivalent to enabling the following extensions:
•-XConstrainedClassMethods
•-XDeriveDataTypeable
•-XDeriveFoldable
•-XDeriveFunctor
•-XDeriveGeneric
•-XDeriveTraversable
•-XEmptyDataDecls

219



GHC User’s Guide Documentation, Release 8.2.1.20171030

•-XExistentialQuantification
•-XExplicitNamespaces
•-XFlexibleContexts
•-XFlexibleInstances
•-XForeignFunctionInterface
•-XFunctionalDependencies
•-XGeneralizedNewtypeDeriving
•-XImplicitParams
•-XKindSignatures
•-XLiberalTypeSynonyms
•-XMagicHash
•-XMultiParamTypeClasses
•-XParallelListComp
•-XPatternGuards
•-XPostfixOperators
•-XRankNTypes
•-XRecursiveDo
•-XScopedTypeVariables
•-XStandaloneDeriving
•-XTypeOperators
•-XTypeSynonymInstances
•-XUnboxedTuples
•-XUnicodeSyntax
•-XUnliftedFFITypes

Enabling these options is the only effect of -fglasgow-exts. We are trying to move away
from this portmanteau flag, and towards enabling features individually.

9.2 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; “primitive” in the sense that
they cannot be defined in Haskell itself. While you really can use this stuff to write fast code,
we generally find it a lot less painful, and more satisfying in the long run, to use higher-level
language features and libraries. With any luck, the code you write will be optimised to the
efficient unboxed version in any case. And if it isn’t, we’d like to know about it.
All these primitive data types and operations are exported by the library GHC.Prim, for which
there is detailed online documentation. (This documentation is generated from the file com-
piler/prelude/primops.txt.pp.)
If you want to mention any of the primitive data types or operations in your program, you
must first import GHC.Prim to bring them into scope. Many of them have names ending in #,
and to mention such names you need the -XMagicHash (page 224) extension (The magic hash
(page 224)).
The primops make extensive use of unboxed types (page 220) and unboxed tuples (page 222),
which we briefly summarise here.

9.2.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a
pointer to a heap object. The representation of a Haskell Int, for example, is a two-word

220 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

heap object. An unboxed type, however, is represented by the value itself, no pointers or
heap allocation are involved.
Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int),
Double# (double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are
what you might expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we
all know and love—usually one instruction.
Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the lan-
guage and compiler. Primitive types are always unlifted; that is, a value of a primitive type
cannot be bottom. (Note: a “boxed” type means that a value is represented by a pointer to a
heap object; a “lifted” type means that terms of that type may be bottom. See the next para-
graph for an example.) We use the convention (but it is only a convention) that primitive types,
values, and operations have a # suffix (see The magic hash (page 224)). For some primitive
types we have special syntax for literals, also described in the same section (page 224).
Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#.
But this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples include Array#, the type of primitive arrays. Thus, Array#
is an unlifted, boxed type. A primitive array is heap-allocated because it is too big a value to
fit in a register, and would be too expensive to copy around; in a sense, it is accidental that it
is represented by a pointer. If a pointer represents a primitive value, then it really does point
to that value: no unevaluated thunks, no indirections. Nothing can be at the other end of the
pointer than the primitive value. A numerically-intensive program using unboxed types can
go a lot faster than its “standard” counterpart—we saw a threefold speedup on one example.

9.2.2 Unboxed type kinds

Because unboxed types are represented without the use of pointers, we cannot store them
in use a polymorphic datatype at an unboxed type. For example, the Just node of Just
42# would have to be different from the Just node of Just 42; the former stores an integer
directly, while the latter stores a pointer. GHC currently does not support this variety of Just
nodes (nor for any other datatype). Accordingly, the kind of an unboxed type is different from
the kind of a boxed type.
The Haskell Report describes that * is the kind of ordinary datatypes, such as Int. Further-
more, type constructors can have kinds with arrows; for example, Maybe has kind * -> *.
Unboxed types have a kind that specifies their runtime representation. For example, the type
Int# has kind TYPE 'IntRep and Double# has kind TYPE 'DoubleRep. These kinds say that
the runtime representation of an Int# is a machine integer, and the runtime representation
of a Double# is a machine double-precision floating point. In contrast, the kind * is actually
just a synonym for TYPE 'PtrRepLifted. More details of the TYPE mechanisms appear in the
section on runtime representation polymorphism (page 338).
Given that Int#‘s kind is not *, it then it follows that Maybe Int# is disallowed. Similarly,
because type variables tend to be of kind * (for example, in (.) :: (b -> c) -> (a -> b)
-> a -> c, all the type variables have kind *), polymorphism tends not to work over primi-
tive types. Stepping back, this makes some sense, because a polymorphic function needs to
manipulate the pointers to its data, and most primitive types are unboxed.
There are some restrictions on the use of primitive types:
• You cannot define a newtype whose representation type (the argument type of the data
constructor) is an unboxed type. Thus, this is illegal:

newtype A = MkA Int#

9.2. Unboxed types and primitive operations 221



GHC User’s Guide Documentation, Release 8.2.1.20171030

• You cannot bind a variable with an unboxed type in a top-level binding.
• You cannot bind a variable with an unboxed type in a recursive binding.
• You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding,
but you must make any such pattern-match strict. (Failing to do so emits a warning
-Wunbanged-strict-patterns (page 88).) For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

9.2.3 Unboxed tuples

-XUnboxedTuples
Enable the use of unboxed tuple syntax.

Unboxed tuples aren’t really exported by GHC.Exts; they are a syntactic extension enabled
by the language flag -XUnboxedTuples (page 222). An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an
unboxed tuple looks the same.
Note that when unboxed tuples are enabled, (# is a single lexeme, so for example when using
operators like # and #- you need to write ( # ) and ( #- ) rather than (#) and (#-).
Unboxed tuples are used for functions that need to return multiple values, but they avoid the
heap allocation normally associated with using fully-fledged tuples. When an unboxed tuple
is returned, the components are put directly into registers or on the stack; the unboxed tuple
itself does not have a composite representation. Many of the primitive operations listed in
primops.txt.pp return unboxed tuples. In particular, the IO and ST monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
There are some restrictions on the use of unboxed tuples:
• The typical use of unboxed tuples is simply to return multiple values, binding those mul-
tiple results with a case expression, thus:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

You can have an unboxed tuple in a pattern binding, thus

f x = let (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell
pattern binding. The above example desugars like this:

222 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f x = let t = case h x of { (# p,q #) -> (p,q) }
p = fst t
q = snd t

in ..body..

Indeed, the bindings can even be recursive.

9.2.4 Unboxed sums

-XUnboxedSums
Enable the use of unboxed sum syntax.

-XUnboxedSums enables new syntax for anonymous, unboxed sum types. The syntax for an
unboxed sum type with N alternatives is

(# t_1 | t_2 | ... | t_N #)

where t_1 ... t_N are types (which can be unlifted, including unboxed tuple and sums).
Unboxed tuples can be used for multi-arity alternatives. For example:

(# (# Int, String #) | Bool #)

Term level syntax is similar. Leading and preceding bars (|) indicate which alternative it is.
Here is two terms of the type shown above:

(# (# 1, "foo" #) | #) -- first alternative

(# | True #) -- second alternative

Pattern syntax reflects the term syntax:

case x of
(# (# i, str #) | #) -> ...
(# | bool #) -> ...

Unboxed sums are “unboxed” in the sense that, instead of allocating sums in the heap and
representing values as pointers, unboxed sums are represented as their components, just like
unboxed tuples. These “components” depend on alternatives of a sum type. Code generator
tries to generate as compact layout as possible. In the best case, size of an unboxed sum is
size of its biggest alternative + one word (for tag). The algorithm for generating memory
layout for a sum type works like this:
• All types are classified as one of these classes: 32bit word, 64bit word, 32bit float, 64bit
float, pointer.

• For each alternative of the sum type, a layout that consists of these fields is generated.
For example, if an alternative has Int, Float# and String fields, the layout will have an
32bit word, 32bit float and pointer fields.

• Layout fields are then overlapped so that the final layout will be as compact as possible.
E.g. say two alternatives have these fields:

Word32, String, Float#
Float#, Float#, Maybe Int

Final layout will be something like

9.2. Unboxed types and primitive operations 223



GHC User’s Guide Documentation, Release 8.2.1.20171030

Int32, Float32, Float32, Word32, Pointer

First Int32 is for the tag. It has two Float32 fields because floating point types can’t
overlap with other types, because of limitations of the code generator that we’re hoping
to overcome in the future, and second alternative needs two Float32 fields. Word32 field
is for the Word32 in the first alternative. Pointer field is shared between String and
Maybe Int values of the alternatives.
In the case of enumeration types (like Bool), the unboxed sum layout only has an Int32
field (i.e. the whole thing is represented by an integer).

In the example above, a value of this type is thus represented as 5 values. As an another
example, this is the layout for unboxed version of Maybe a type:

Int32, Pointer

The Pointer field is not used when tag says that it’s Nothing. Otherwise Pointer points to the
value in Just.

9.3 Syntactic extensions

9.3.1 Unicode syntax

-XUnicodeSyntax
Enable the use of Unicode characters in place of their equivalent ASCII sequences.

The language extension -XUnicodeSyntax (page 224) enables Unicode characters to be used
to stand for certain ASCII character sequences. The following alternatives are provided:
ASCII Unicode

alternative
Code
point

Name

:: 0x2237 PROPORTION
=> ⇒ 0x21D2 RIGHTWARDS DOUBLE ARROW
-> → 0x2192 RIGHTWARDS ARROW
<- ← 0x2190 LEFTWARDS ARROW
>- ⤚ 0x291a RIGHTWARDS ARROW-TAIL
-< ⤙ 0x2919 LEFTWARDS ARROW-TAIL
>>- ⤜ 0x291C RIGHTWARDS DOUBLE ARROW-TAIL
-<< ⤛ 0x291B LEFTWARDS DOUBLE ARROW-TAIL
* 0x2605 BLACK STAR
forall ∀ 0x2200 FOR ALL
(| 0x2987 Z NOTATION LEFT IMAGE BRACKET
|) 0x2988 Z NOTATION RIGHT IMAGE BRACKET
[| 0x27E6 MATHEMATICAL LEFT WHITE SQUARE

BRACKET
|] 0x27E7 MATHEMATICAL RIGHT WHITE SQUARE

BRACKET

9.3.2 The magic hash

-XMagicHash
Enable the use of the hash character (#) as an identifier suffix.

224 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

The language extension -XMagicHash (page 224) allows # as a postfix modifier to identifiers.
Thus, x# is a valid variable, and T# is a valid type constructor or data constructor.
The hash sign does not change semantics at all. We tend to use variable names ending in “#”
for unboxed values or types (e.g. Int#), but there is no requirement to do so; they are just
plain ordinary variables. Nor does the -XMagicHash (page 224) extension bring anything into
scope. For example, to bring Int# into scope you must import GHC.Prim (see Unboxed types
and primitive operations (page 220)); the -XMagicHash (page 224) extension then allows you
to refer to the Int# that is now in scope. Note that with this option, the meaning of x#y = 0
is changed: it defines a function x# taking a single argument y; to define the operator #, put
a space: x # y = 0.
The -XMagicHash (page 224) also enables some new forms of literals (see Unboxed types
(page 220)):
• 'x'# has type Char#
• "foo"# has type Addr#
• 3# has type Int#. In general, any Haskell integer lexeme followed by a # is an Int#
literal, e.g. -0x3A# as well as 32#.

• 3## has type Word#. In general, any non-negative Haskell integer lexeme followed by ##
is a Word#.

• 3.2# has type Float#.
• 3.2## has type Double#

9.3.3 Negative literals

-XNegativeLiterals
Since 7.8.1

Enable the use of un-parenthesized negative numeric literals.
The literal -123 is, according to Haskell98 and Haskell 2010, desugared as negate
(fromInteger 123). The language extension -XNegativeLiterals (page 225) means that
it is instead desugared as fromInteger (-123).
This can make a difference when the positive and negative range of a numeric data type don’t
match up. For example, in 8-bit arithmetic -128 is representable, but +128 is not. So negate
(fromInteger 128) will elicit an unexpected integer-literal-overflow message.

9.3.4 Fractional looking integer literals

-XNumDecimals
Since 7.8.1

Allow the use of floating-point literal syntax for integral types.
Haskell 2010 and Haskell 98 define floating literals with the syntax 1.2e6. These literals have
the type Fractional a => a.
The language extension -XNumDecimals (page 225) allows you to also use the floating literal
syntax for instances of Integral, and have values like (1.2e6 :: Num a => a)

9.3. Syntactic extensions 225



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.3.5 Binary integer literals

-XBinaryLiterals
Since 7.10.1

Allow the use of binary notation in integer literals.
Haskell 2010 and Haskell 98 allows for integer literals to be given in decimal, octal (prefixed
by 0o or 0O), or hexadecimal notation (prefixed by 0x or 0X).
The language extension -XBinaryLiterals (page 226) adds support for expressing integer
literals in binary notation with the prefix 0b or 0B. For instance, the binary integer literal
0b11001001 will be desugared into fromInteger 201 when -XBinaryLiterals (page 226) is
enabled.

9.3.6 Pattern guards

-XNoPatternGuards
Implied by -XHaskell98

Since 6.8.1
Disable pattern guards.

9.3.7 View patterns

-XViewPatterns
Allow use of view pattern syntax.

View patterns are enabled by the flag -XViewPatterns (page 226). More information and
examples of view patterns can be found on the Wiki page.
View patterns are somewhat like pattern guards that can be nested inside of other patterns.
They are a convenient way of pattern-matching against values of abstract types. For example,
in a programming language implementation, we might represent the syntax of the types of
the language as follows:

type Typ

data TypView = Unit
| Arrow Typ Typ

view :: Typ -> TypView

-- additional operations for constructing Typ's ...

The representation of Typ is held abstract, permitting implementations to use a fancy repre-
sentation (e.g., hash-consing to manage sharing). Without view patterns, using this signature
is a little inconvenient:

size :: Typ -> Integer
size t = case view t of

Unit -> 1
Arrow t1 t2 -> size t1 + size t2

226 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-460003.13
https://ghc.haskell.org/trac/ghc/wiki/ViewPatterns


GHC User’s Guide Documentation, Release 8.2.1.20171030

It is necessary to iterate the case, rather than using an equational function definition. And the
situation is even worse when the matching against t is buried deep inside another pattern.
View patterns permit calling the view function inside the pattern and matching against the
result:

size (view -> Unit) = 1
size (view -> Arrow t1 t2) = size t1 + size t2

That is, we add a new form of pattern, written ⟨expression⟩ -> ⟨pattern⟩ that means “apply
the expression to whatever we’re trying to match against, and then match the result of that
application against the pattern”. The expression can be any Haskell expression of function
type, and view patterns can be used wherever patterns are used.
The semantics of a pattern ( ⟨exp⟩ -> ⟨pat⟩ ) are as follows:
• Scoping: The variables bound by the view pattern are the variables bound by ⟨pat⟩.
Any variables in ⟨exp⟩ are bound occurrences, but variables bound “to the left” in a
pattern are in scope. This feature permits, for example, one argument to a function to
be used in the view of another argument. For example, the function clunky from Pattern
guards (page 226) can be written using view patterns as follows:

clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
...other equations for clunky...

More precisely, the scoping rules are:
– In a single pattern, variables bound by patterns to the left of a view pattern expres-
sion are in scope. For example:

example :: Maybe ((String -> Integer,Integer), String) -> Bool
example Just ((f,_), f -> 4) = True

Additionally, in function definitions, variables bound by matching earlier curried
arguments may be used in view pattern expressions in later arguments:

example :: (String -> Integer) -> String -> Bool
example f (f -> 4) = True

That is, the scoping is the same as it would be if the curried arguments were col-
lected into a tuple.

– In mutually recursive bindings, such as let, where, or the top level, view patterns
in one declaration may not mention variables bound by other declarations. That is,
each declaration must be self-contained. For example, the following program is not
allowed:

let {(x -> y) = e1 ;
(y -> x) = e2 } in x

(For some amplification on this design choice see Trac #4061.
• Typing: If ⟨exp⟩ has type ⟨T1⟩ -> ⟨T2⟩ and ⟨pat⟩ matches a ⟨T2⟩, then the whole view
pattern matches a ⟨T1⟩.

• Matching: To the equations in Section 3.17.3 of the Haskell 98 Report, add the following:

case v of { (e -> p) -> e1 ; _ -> e2 }
=
case (e v) of { p -> e1 ; _ -> e2 }

9.3. Syntactic extensions 227

https://ghc.haskell.org/trac/ghc/ticket/4061
http://www.haskell.org/onlinereport/


GHC User’s Guide Documentation, Release 8.2.1.20171030

That is, to match a variable ⟨v⟩ against a pattern ( ⟨exp⟩ -> ⟨pat⟩ ), evaluate ( ⟨exp⟩ ⟨v⟩
) and match the result against ⟨pat⟩.

• Efficiency: When the same view function is applied in multiple branches of a function
definition or a case expression (e.g., in size above), GHC makes an attempt to collect
these applications into a single nested case expression, so that the view function is only
applied once. Pattern compilation in GHC follows the matrix algorithm described in
Chapter 4 of The Implementation of Functional Programming Languages. When the top
rows of the first column of a matrix are all view patterns with the “same” expression,
these patterns are transformed into a single nested case. This includes, for example,
adjacent view patterns that line up in a tuple, as in

f ((view -> A, p1), p2) = e1
f ((view -> B, p3), p4) = e2

The current notion of when two view pattern expressions are “the same” is very re-
stricted: it is not even full syntactic equality. However, it does include variables, literals,
applications, and tuples; e.g., two instances of view ("hi", "there") will be collected.
However, the current implementation does not compare up to alpha-equivalence, so two
instances of (x, view x -> y) will not be coalesced.

9.3.8 n+k patterns

-XNPlusKPatterns
Implied by -XHaskell98

Since 6.12
Enable use of n+k patterns.

9.3.9 The recursive do-notation

-XRecursiveDo
Allow the use of recursive do notation.

The do-notation of Haskell 98 does not allow recursive bindings, that is, the variables bound
in a do-expression are visible only in the textually following code block. Compare this to a
let-expression, where bound variables are visible in the entire binding group.
It turns out that such recursive bindings do indeed make sense for a variety of monads, but
not all. In particular, recursion in this sense requires a fixed-point operator for the underlying
monad, captured by the mfix method of the MonadFix class, defined in Control.Monad.Fix
as follows:

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

Haskell’s Maybe, [] (list), ST (both strict and lazy versions), IO, and many other monads have
MonadFix instances. On the negative side, the continuation monad, with the signature (a ->
r) -> r, does not.
For monads that do belong to the MonadFix class, GHC provides an extended version of the do-
notation that allows recursive bindings. The -XRecursiveDo (page 228) (language pragma:
RecursiveDo) provides the necessary syntactic support, introducing the keywords mdo and

228 Chapter 9. GHC Language Features

http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/


GHC User’s Guide Documentation, Release 8.2.1.20171030

rec for higher and lower levels of the notation respectively. Unlike bindings in a do ex-
pression, those introduced by mdo and rec are recursively defined, much like in an ordinary
let-expression. Due to the new keyword mdo, we also call this notation the mdo-notation.
Here is a simple (albeit contrived) example:

{-# LANGUAGE RecursiveDo #-}
justOnes = mdo { xs <- Just (1:xs)

; return (map negate xs) }

or equivalently

{-# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (1:xs) }

; return (map negate xs) }

As you can guess justOnes will evaluate to Just [-1,-1,-1,....
GHC’s implementation the mdo-notation closely follows the original translation as described
in the paper A recursive do for Haskell, which in turn is based on the work Value Recursion in
Monadic Computations. Furthermore, GHC extends the syntax described in the former paper
with a lower level syntax flagged by the rec keyword, as we describe next.

Recursive binding groups

The flag -XRecursiveDo (page 228) also introduces a new keyword rec, which wraps a
mutually-recursive group of monadic statements inside a do expression, producing a single
statement. Similar to a let statement inside a do, variables bound in the rec are visible
throughout the rec group, and below it. For example, compare

do { a <- getChar do { a <- getChar
; let { r1 = f a r2 ; rec { r1 <- f a r2
; ; r2 = g r1 } ; ; r2 <- g r1 }
; return (r1 ++ r2) } ; return (r1 ++ r2) }

In both cases, r1 and r2 are available both throughout the let or rec block, and in the state-
ments that follow it. The difference is that let is non-monadic, while rec is monadic. (In
Haskell let is really letrec, of course.)
The semantics of rec is fairly straightforward. Whenever GHC finds a rec group, it will
compute its set of bound variables, and will introduce an appropriate call to the underlying
monadic value-recursion operator mfix, belonging to the MonadFix class. Here is an example:

rec { b <- f a c ===> (b,c) <- mfix (\ ~(b,c) -> do { b <- f a c
; c <- f b a } ; c <- f b a

; return (b,c) })

As usual, the meta-variables b, c etc., can be arbitrary patterns. In general, the statement
rec ss is desugared to the statement

vs <- mfix (\ ~vs -> do { ss; return vs })

where vs is a tuple of the variables bound by ss.
Note in particular that the translation for a rec block only involves wrapping a call to mfix: it
performs no other analysis on the bindings. The latter is the task for the mdo notation, which
is described next.

9.3. Syntactic extensions 229

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

The mdo notation

A rec-block tells the compiler where precisely the recursive knot should be tied. It turns out
that the placement of the recursive knots can be rather delicate: in particular, we would like
the knots to be wrapped around as minimal groups as possible. This process is known as
segmentation, and is described in detail in Section 3.2 of A recursive do for Haskell. Seg-
mentation improves polymorphism and reduces the size of the recursive knot. Most impor-
tantly, it avoids unnecessary interference caused by a fundamental issue with the so-called
right-shrinking axiom for monadic recursion. In brief, most monads of interest (IO, strict
state, etc.) do not have recursion operators that satisfy this axiom, and thus not performing
segmentation can cause unnecessary interference, changing the termination behavior of the
resulting translation. (Details can be found in Sections 3.1 and 7.2.2 of Value Recursion in
Monadic Computations.)
The mdo notation removes the burden of placing explicit rec blocks in the code. Unlike an
ordinary do expression, in which variables bound by statements are only in scope for later
statements, variables bound in an mdo expression are in scope for all statements of the ex-
pression. The compiler then automatically identifies minimal mutually recursively dependent
segments of statements, treating them as if the user had wrapped a rec qualifier around
them.
The definition is syntactic:
• A generator ⟨g⟩ depends on a textually following generator ⟨g’⟩, if

– ⟨g’⟩ defines a variable that is used by ⟨g⟩, or
– ⟨g’⟩ textually appears between ⟨g⟩ and ⟨g’‘⟩, where ⟨g⟩ depends on ⟨g’‘⟩.

• A segment of a given mdo-expression is a minimal sequence of generators such that no
generator of the sequence depends on an outside generator. As a special case, although
it is not a generator, the final expression in an mdo-expression is considered to form a
segment by itself.

Segments in this sense are related to strongly-connected components analysis, with the ex-
ception that bindings in a segment cannot be reordered and must be contiguous.
Here is an example mdo-expression, and its translation to rec blocks:

mdo { a <- getChar ===> do { a <- getChar
; b <- f a c ; rec { b <- f a c
; c <- f b a ; ; c <- f b a }
; z <- h a b ; z <- h a b
; d <- g d e ; rec { d <- g d e
; e <- g a z ; ; e <- g a z }
; putChar c } ; putChar c }

Note that a given mdo expression can cause the creation of multiple rec blocks. If there are no
recursive dependencies, mdowill introduce no rec blocks. In this latter case an mdo expression
is precisely the same as a do expression, as one would expect.
In summary, given an mdo expression, GHC first performs segmentation, introducing rec
blocks to wrap over minimal recursive groups. Then, each resulting rec is desugared, using
a call to Control.Monad.Fix.mfix as described in the previous section. The original mdo-
expression typechecks exactly when the desugared version would do so.
Here are some other important points in using the recursive-do notation:
• It is enabled with the flag -XRecursiveDo (page 228), or the LANGUAGE RecursiveDo
pragma. (The same flag enables both mdo-notation, and the use of rec blocks inside do

230 Chapter 9. GHC Language Features

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

expressions.)
• rec blocks can also be used inside mdo-expressions, which will be treated as a single
statement. However, it is good style to either use mdo or rec blocks in a single expression.

• If recursive bindings are required for a monad, then that monad must be declared an
instance of the MonadFix class.

• The following instances of MonadFix are automatically provided: List, Maybe, IO. Fur-
thermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the in-
stances of the MonadFix class for Haskell’s internal state monad (strict and lazy, respec-
tively).

• Like let and where bindings, name shadowing is not allowed within an mdo-expression
or a rec-block; that is, all the names bound in a single rec must be distinct. (GHC will
complain if this is not the case.)

9.3.10 Applicative do-notation

-XApplicativeDo
Since 8.0.1

Allow use of Applicative do notation.
The language option -XApplicativeDo (page 231) enables an alternative translation for the
do-notation, which uses the operators <$>, <*>, along with join as far as possible. There are
two main reasons for wanting to do this:
• We can use do-notation with types that are an instance of Applicative and Functor, but
not Monad

• In some monads, using the applicative operators is more efficient than monadic bind.
For example, it may enable more parallelism.

Applicative do-notation desugaring preserves the original semantics, provided that the Ap-
plicative instance satisfies <*> = ap and pure = return (these are true of all the common
monadic types). Thus, you can normally turn on -XApplicativeDo (page 231) without fear
of breaking your program. There is one pitfall to watch out for; see Things to watch out for
(page 233).
There are no syntactic changes with -XApplicativeDo (page 231). The only way it shows up
at the source level is that you can have a do expression that doesn’t require a Monad constraint.
For example, in GHCi:

Prelude> :set -XApplicativeDo
Prelude> :t \m -> do { x <- m; return (not x) }
\m -> do { x <- m; return (not x) }

:: Functor f => f Bool -> f Bool

This example only requires Functor, because it is translated into (\x -> not x) <$> m. A
more complex example requires Applicative,

Prelude> :t \m -> do { x <- m 'a'; y <- m 'b'; return (x || y) }
\m -> do { x <- m 'a'; y <- m 'b'; return (x || y) }

:: Applicative f => (Char -> f Bool) -> f Bool

Here GHC has translated the expression into

9.3. Syntactic extensions 231



GHC User’s Guide Documentation, Release 8.2.1.20171030

(\x y -> x || y) <$> m 'a' <*> m 'b'

It is possible to see the actual translation by using -ddump-ds (page 184), but be warned, the
output is quite verbose.
Note that if the expression can’t be translated into uses of <$>, <*> only, then it will incur a
Monad constraint as usual. This happens when there is a dependency on a value produced by
an earlier statement in the do-block:

Prelude> :t \m -> do { x <- m True; y <- m x; return (x || y) }
\m -> do { x <- m True; y <- m x; return (x || y) }

:: Monad m => (Bool -> m Bool) -> m Bool

Here, m x depends on the value of x produced by the first statement, so the expression cannot
be translated using <*>.
In general, the rule for when a do statement incurs a Monad constraint is as follows. If the
do-expression has the following form:

do p1 <- E1; ...; pn <- En; return E

where none of the variables defined by p1...pn are mentioned in E1...En, then the expres-
sion will only require Applicative. Otherwise, the expression will require Monad. The block
may return a pure expression E depending upon the results p1...pn with either return or
pure.
Note: the final statement must match one of these patterns exactly:
• return E

• return $ E

• pure E

• pure $ E

otherwise GHC cannot recognise it as a return statement, and the transformation to use <$>
that we saw above does not apply. In particular, slight variations such as return . Just $
x or let x = e in return x would not be recognised.
If the final statement is not of one of these forms, GHC falls back to standard do desugaring,
and the expression will require a Monad constraint.
When the statements of a do expression have dependencies between them, and Applica-
tiveDo cannot infer an Applicative type, it uses a heuristic algorithm to try to use <*> as
much as possible. This algorithm usually finds the best solution, but in rare complex cases it
might miss an opportunity. There is an algorithm that finds the optimal solution, provided as
an option:
-foptimal-applicative-do

Since 8.0.1
Enables an alternative algorithm for choosing where to use <*> in conjunction with the
ApplicativeDo language extension. This algorithm always finds the optimal solution,
but it is expensive: O(n^3), so this option can lead to long compile times when there are
very large do expressions (over 100 statements). The default ApplicativeDo algorithm
is O(n^2).

232 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Existential patterns and GADTs

Note that when the pattern in a statement matches a constructor with existential type vari-
ables and/or constraints, the transformation that ApplicativeDo performs may mean that
the pattern does not scope over the statements that follow it. This is because the rearrange-
ment happens before the expression is typechecked. For example, this program does not
typecheck:

{-# LANGUAGE RankNTypes, GADTs, ApplicativeDo #-}

data T where A :: forall a . Eq a => a -> T

test = do
A x <- undefined
_ <- return True
return (x == x)

The reason is that the Eq constraint that would be brought into scope from the pattern match
A x is not available when typechecking the expression x == x, because ApplicativeDo has
rearranged the expression to look like this:

test =
(\x _ -> x == x)
<$> do A x <- undefined; return x
<*> return True

Turning off ApplicativeDo lets the program typecheck. This is something to bear in mind
when using ApplicativeDo in combination with Existentially quantified data constructors
(page 249) or Generalised Algebraic Data Types (GADTs) (page 257).

Things to watch out for

Your code should just work as before when -XApplicativeDo (page 231) is enabled, provided
you use conventional Applicative instances. However, if you define a Functor or Applica-
tive instance using do-notation, then it will likely get turned into an infinite loop by GHC.
For example, if you do this:

instance Functor MyType where
fmap f m = do x <- m; return (f x)

Then applicative desugaring will turn it into

instance Functor MyType where
fmap f m = fmap (\x -> f x) m

And the program will loop at runtime. Similarly, an Applicative instance like this

instance Applicative MyType where
pure = return
x <*> y = do f <- x; a <- y; return (f a)

will result in an infinte loop when <*> is called.
Just as you wouldn’t define a Monad instance using the do-notation, you shouldn’t define Func-
tor or Applicative instance using do-notation (when using ApplicativeDo) either. The cor-
rect way to define these instances in terms of Monad is to use the Monad operations directly,
e.g.

9.3. Syntactic extensions 233



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance Functor MyType where
fmap f m = m >>= return . f

instance Applicative MyType where
pure = return
(<*>) = ap

9.3.11 Parallel List Comprehensions

-XParallelListComp
Allow parallel list comprehension syntax.

Parallel list comprehensions are a natural extension to list comprehensions. List comprehen-
sions can be thought of as a nice syntax for writing maps and filters. Parallel comprehensions
extend this to include the zipWith family.
A parallel list comprehension has multiple independent branches of qualifier lists, each sep-
arated by a | symbol. For example, the following zips together two lists:

[ (x, y) | x <- xs | y <- ys ]

The behaviour of parallel list comprehensions follows that of zip, in that the resulting list will
have the same length as the shortest branch.
We can define parallel list comprehensions by translation to regular comprehensions. Here’s
the basic idea:
Given a parallel comprehension of the form:

[ e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

where zipN is the appropriate zip for the given number of branches.

9.3.12 Generalised (SQL-like) List Comprehensions

-XTransformListComp
Allow use of generalised list (SQL-like) comprehension syntax. This introduces the
group, by, and using keywords.

Generalised list comprehensions are a further enhancement to the list comprehension syn-
tactic sugar to allow operations such as sorting and grouping which are familiar from SQL.
They are fully described in the paper Comprehensive comprehensions: comprehensions with
“order by” and “group by”, except that the syntax we use differs slightly from the paper.
The extension is enabled with the flag -XTransformListComp (page 234).
Here is an example:

234 Chapter 9. GHC Language Features

https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

employees = [ ("Simon", "MS", 80)
, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60) ]

output = [ (the dept, sum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, then sortWith by (sum salary)
, then take 5 ]

In this example, the list output would take on the value:

[("Yale", 60), ("Ed", 85), ("MS", 180)]

There are three new keywords: group, by, and using. (The functions sortWith and groupWith
are not keywords; they are ordinary functions that are exported by GHC.Exts.)
There are five new forms of comprehension qualifier, all introduced by the (existing) keyword
then:

• then f

This statement requires that f have the type forall a. [a] -> [a] . You can see an example
of its use in the motivating example, as this form is used to apply take 5 .

• then f by e

This form is similar to the previous one, but allows you to create a function which will be
passed as the first argument to f. As a consequence f must have the type forall a. (a
-> t) -> [a] -> [a]. As you can see from the type, this function lets f “project out”
some information from the elements of the list it is transforming.
An example is shown in the opening example, where sortWith is supplied with a function
that lets it find out the sum salary for any item in the list comprehension it transforms.

• then group by e using f

This is the most general of the grouping-type statements. In this form, f is required
to have type forall a. (a -> t) -> [a] -> [[a]]. As with the then f by e case
above, the first argument is a function supplied to f by the compiler which lets it compute
e on every element of the list being transformed. However, unlike the non-grouping case,
f additionally partitions the list into a number of sublists: this means that at every point
after this statement, binders occurring before it in the comprehension refer to lists of
possible values, not single values. To help understand this, let’s look at an example:

-- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y -> f x == f y)

output = [ (the x, y)
| x <- ([1..3] ++ [1..2])
, y <- [4..6]
, then group by x using groupRuns ]

This results in the variable output taking on the value below:

9.3. Syntactic extensions 235



GHC User’s Guide Documentation, Release 8.2.1.20171030

[(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]

Note that we have used the the function to change the type of x from a list to its original
numeric type. The variable y, in contrast, is left unchanged from the list form introduced
by the grouping.

• then group using f

With this form of the group statement, f is required to simply have the type forall a.
[a] -> [[a]], which will be used to group up the comprehension so far directly. An
example of this form is as follows:

output = [ x
| y <- [1..5]
, x <- "hello"
, then group using inits]

This will yield a list containing every prefix of the word “hello” written out 5 times:

["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell","hellohello","hellohelloh",...]

9.3.13 Monad comprehensions

-XMonadComprehensions
Since 7.2

Enable list comprehension syntax for arbitrary monads.
Monad comprehensions generalise the list comprehension notation, including parallel com-
prehensions (Parallel List Comprehensions (page 234)) and transform comprehensions (Gen-
eralised (SQL-like) List Comprehensions (page 234)) to work for any monad.
Monad comprehensions support:
• Bindings:

[ x + y | x <- Just 1, y <- Just 2 ]

Bindings are translated with the (>>=) and return functions to the usual do-notation:

do x <- Just 1
y <- Just 2
return (x+y)

• Guards:

[ x | x <- [1..10], x <= 5 ]

Guards are translated with the guard function, which requires a MonadPlus instance:

do x <- [1..10]
guard (x <= 5)
return x

• Transform statements (as with -XTransformListComp (page 234)):

[ x+y | x <- [1..10], y <- [1..x], then take 2 ]

236 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

This translates to:

do (x,y) <- take 2 (do x <- [1..10]
y <- [1..x]
return (x,y))

return (x+y)

• Group statements (as with -XTransformListComp (page 234)):

[ x | x <- [1,1,2,2,3], then group by x using GHC.Exts.groupWith ]
[ x | x <- [1,1,2,2,3], then group using myGroup ]

• Parallel statements (as with -XParallelListComp (page 234)):

[ (x+y) | x <- [1..10]
| y <- [11..20]
]

Parallel statements are translated using the mzip function, which requires a MonadZip
instance defined in Control.Monad.Zip:

do (x,y) <- mzip (do x <- [1..10]
return x)

(do y <- [11..20]
return y)

return (x+y)

All these features are enabled by default if the -XMonadComprehensions (page 236) exten-
sion is enabled. The types and more detailed examples on how to use comprehensions are
explained in the previous chapters Generalised (SQL-like) List Comprehensions (page 234)
and Parallel List Comprehensions (page 234). In general you just have to replace the type
[a] with the type Monad m => m a for monad comprehensions.

Note: Even though most of these examples are using the list monad, monad comprehensions
work for any monad. The base package offers all necessary instances for lists, which make
-XMonadComprehensions (page 236) backward compatible to built-in, transform and parallel
list comprehensions.

More formally, the desugaring is as follows. We write D[ e | Q] to mean the desugaring of
the monad comprehension [ e | Q]:

Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S

-- Basic forms
D[ e | ] = return e
D[ e | p <- e, Q ] = e >>= \p -> D[ e | Q ]
D[ e | e, Q ] = guard e >> \p -> D[ e | Q ]
D[ e | let d, Q ] = let d in D[ e | Q ]

-- Parallel comprehensions (iterate for multiple parallel branches)
D[ e | (Q | R), S ] = mzip D[ Qv | Q ] D[ Rv | R ] >>= \(Qv,Rv) -> D[ e | S ]

-- Transform comprehensions
D[ e | Q then f, R ] = f D[ Qv | Q ] >>= \Qv -> D[ e | R ]

D[ e | Q then f by b, R ] = f (\Qv -> b) D[ Qv | Q ] >>= \Qv -> D[ e | R ]

9.3. Syntactic extensions 237



GHC User’s Guide Documentation, Release 8.2.1.20171030

D[ e | Q then group using f, R ] = f D[ Qv | Q ] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of
Qv -> D[ e | R ]

D[ e | Q then group by b using f, R ] = f (\Qv -> b) D[ Qv | Q ] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of

Qv -> D[ e | R ]

where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv

Operator Standard binding Expected type
--------------------------------------------------------------------
return GHC.Base t1 -> m t2
(>>=) GHC.Base m1 t1 -> (t2 -> m2 t3) -> m3 t3
(>>) GHC.Base m1 t1 -> m2 t2 -> m3 t3
guard Control.Monad t1 -> m t2
fmap GHC.Base forall a b. (a->b) -> n a -> n b
mzip Control.Monad.Zip forall a b. m a -> m b -> m (a,b)

The comprehension should typecheck when its desugaring would typecheck, except that
(as discussed in Generalised (SQL-like) List Comprehensions (page 234)) in the “then f”
and “then group using f” clauses, when the “by b” qualifier is omitted, argument f should
have a polymorphic type. In particular, “then Data.List.sort” and “then group using
Data.List.group” are insufficiently polymorphic.
Monad comprehensions support rebindable syntax (Rebindable syntax and the implicit Pre-
lude import (page 239)). Without rebindable syntax, the operators from the “standard bind-
ing” module are used; with rebindable syntax, the operators are looked up in the current
lexical scope. For example, parallel comprehensions will be typechecked and desugared us-
ing whatever “mzip” is in scope.
The rebindable operators must have the “Expected type” given in the table above. These
types are surprisingly general. For example, you can use a bind operator with the type

(>>=) :: T x y a -> (a -> T y z b) -> T x z b

In the case of transform comprehensions, notice that the groups are parameterised over some
arbitrary type n (provided it has an fmap, as well as the comprehension being over an arbitrary
monad.

9.3.14 New monadic failure desugaring mechanism

-XMonadFailDesugaring
Since 8.0.1

Use the MonadFail.fail instead of the legacy Monad.fail function when desugaring
refutable patterns in do blocks.

The -XMonadFailDesugaring extension switches the desugaring of do-blocks to use Monad-
Fail.fail instead of Monad.fail. This will eventually be the default behaviour in a future
GHC release, under the MonadFail Proposal (MFP).
This extension is temporary, and will be deprecated in a future release. It is included so that
library authors have a hard check for whether their code will work with future GHC versions.

238 Chapter 9. GHC Language Features

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.3.15 Rebindable syntax and the implicit Prelude import

-XNoImplicitPrelude
Don’t import Prelude by default.

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a -
XNoImplicitPrelude option. The idea is that you can then import a Prelude of your own.
(But don’t call it Prelude; the Haskell module namespace is flat, and you must not conflict
with any Prelude module.)
-XRebindableSyntax

Implies -XNoImplicitPrelude (page 239)
Since 7.0.1

Enable rebinding of a variety of usually-built-in operations.
Suppose you are importing a Prelude of your own in order to define your own numeric class
hierarchy. It completely defeats that purpose if the literal “1” means “Prelude.fromInteger
1”, which is what the Haskell Report specifies. So the -XRebindableSyntax (page 239) flag
causes the following pieces of built-in syntax to refer to whatever is in scope, not the Prelude
versions:
• An integer literal 368 means “fromInteger (368::Integer)”, rather than
“Prelude.fromInteger (368::Integer)”.

• Fractional literals are handed in just the same way, except that the translation is from-
Rational (3.68::Rational).

• The equality test in an overloaded numeric pattern uses whatever (==) is in scope.
• The subtraction operation, and the greater-than-or-equal test, in n+k patterns use what-
ever (-) and (>=) are in scope.

• Negation (e.g. “- (f x)”) means “negate (f x)”, both in numeric patterns, and ex-
pressions.

• Conditionals (e.g. “if e1 then e2 else e3”) means “ifThenElse e1 e2 e3”. However
case expressions are unaffected.

• “Do” notation is translated using whatever functions (>>=), (>>), and fail, are in
scope (not the Prelude versions). List comprehensions, mdo (The recursive do-notation
(page 228)), and parallel array comprehensions, are unaffected.

• Arrow notation (see Arrow notation (page 382)) uses whatever arr, (>>>), first, app,
(|||) and loop functions are in scope. But unlike the other constructs, the types of
these functions must match the Prelude types very closely. Details are in flux; if you
want to use this, ask!

• List notation, such as [x,y] or [m..n] can also be treated via rebindable syntax if you
use -XOverloadedLists; see Overloaded lists (page 310).

• An overloaded label “#foo” means “fromLabel @"foo"”, rather than
“GHC.OverloadedLabels.fromLabel @"foo"” (see Overloaded labels (page 308)).

-XRebindableSyntax (page 239) implies -XNoImplicitPrelude (page 239).
In all cases (apart from arrow notation), the static semantics should be that of the desugared
form, even if that is a little unexpected. For example, the static semantics of the literal 368
is exactly that of fromInteger (368::Integer); it’s fine for fromInteger to have any of the
types:

9.3. Syntactic extensions 239



GHC User’s Guide Documentation, Release 8.2.1.20171030

fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use -dcore-lint
to typecheck the desugared program. If Core Lint is happy you should be all right.

Things unaffected by -XRebindableSyntax

-XRebindableSyntax (page 239) does not apply to any code generated from a deriving clause
or declaration. To see why, consider the following code:

{-# LANGUAGE RebindableSyntax, OverloadedStrings #-}
newtype Text = Text String

fromString :: String -> Text
fromString = Text

data Foo = Foo deriving Show

This will generate code to the effect of:

instance Show Foo where
showsPrec _ Foo = showString "Foo"

But because -XRebindableSyntax (page 239) and -XOverloadedStrings (page 307) are en-
abled, the "Foo" string literal would now be of type Text, not String, which showString
doesn’t accept! This causes the generated Show instance to fail to typecheck. It’s hard to
imagine any scenario where it would be desirable have -XRebindableSyntax (page 239) be-
havior within derived code, so GHC simply ignores -XRebindableSyntax (page 239) entirely
when checking derived code.

9.3.16 Postfix operators

-XPostfixOperators
Allow the use of post-fix operators

The -XPostfixOperators (page 240) flag enables a small extension to the syntax of left op-
erator sections, which allows you to define postfix operators. The extension is this: the left
section

(e !)

is equivalent (from the point of view of both type checking and execution) to the expression

((!) e)

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section
is equivalent to

(\y -> (!) e y)

That is, the operator must be a function of two arguments. GHC allows it to take only one
argument, and that in turn allows you to write the function postfix.

240 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

The extension does not extend to the left-hand side of function definitions; you must define
such a function in prefix form.

9.3.17 Tuple sections

-XTupleSections
Since 6.12

Allow the use of tuple section syntax
The -XTupleSections (page 241) flag enables partially applied tuple constructors. For ex-
ample, the following program

(, True)

is considered to be an alternative notation for the more unwieldy alternative

\x -> (x, True)

You can omit any combination of arguments to the tuple, as in the following

(, "I", , , "Love", , 1337)

which translates to

\a b c d -> (a, "I", b, c, "Love", d, 1337)

If you have unboxed tuples (page 222) enabled, tuple sections will also be available for them,
like so

(# , True #)

Because there is no unboxed unit tuple, the following expression

(# #)

continues to stand for the unboxed singleton tuple data constructor.

9.3.18 Lambda-case

-XLambdaCase
Since 7.6.1

Allow the use of lambda-case syntax.
The -XLambdaCase (page 241) flag enables expressions of the form

\case { p1 -> e1; ...; pN -> eN }

which is equivalent to

\freshName -> case freshName of { p1 -> e1; ...; pN -> eN }

Note that \case starts a layout, so you can write

9.3. Syntactic extensions 241



GHC User’s Guide Documentation, Release 8.2.1.20171030

\case
p1 -> e1
...
pN -> eN

9.3.19 Empty case alternatives

-XEmptyCase
Since 7.8.1

Allow empty case expressions.
The -XEmptyCase (page 242) flag enables case expressions, or lambda-case expressions, that
have no alternatives, thus:

case e of { } -- No alternatives

or

\case { } -- -XLambdaCase is also required

This can be useful when you know that the expression being scrutinised has no non-bottom
values. For example:

data Void
f :: Void -> Int
f x = case x of { }

With dependently-typed features it is more useful (see Trac #2431). For example, consider
these two candidate definitions of absurd:

data a :==: b where
Refl :: a :==: a

absurd :: True :~: False -> a
absurd x = error "absurd" -- (A)
absurd x = case x of {} -- (B)

We much prefer (B). Why? Because GHC can figure out that (True :~: False) is an empty
type. So (B) has no partiality and GHC should be able to compile with -Wincomplete-
patterns (page 82). (Though the pattern match checking is not yet clever enough to do
that.) On the other hand (A) looks dangerous, and GHC doesn’t check to make sure that, in
fact, the function can never get called.

9.3.20 Multi-way if-expressions

-XMultiWayIf
Since 7.6.1

Allow the use of multi-way-if syntax.
With -XMultiWayIf (page 242) flag GHC accepts conditional expressions with multiple
branches:

242 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/2431


GHC User’s Guide Documentation, Release 8.2.1.20171030

if | guard1 -> expr1
| ...
| guardN -> exprN

which is roughly equivalent to

case () of
_ | guard1 -> expr1
...
_ | guardN -> exprN

Multi-way if expressions introduce a new layout context. So the example above is equivalent
to:

if { | guard1 -> expr1
; | ...
; | guardN -> exprN
}

The following behaves as expected:

if | guard1 -> if | guard2 -> expr2
| guard3 -> expr3

| guard4 -> expr4

because layout translates it as

if { | guard1 -> if { | guard2 -> expr2
; | guard3 -> expr3
}

; | guard4 -> expr4
}

Layout with multi-way if works in the same way as other layout contexts, except that the
semi-colons between guards in a multi-way if are optional. So it is not necessary to line up
all the guards at the same column; this is consistent with the way guards work in function
definitions and case expressions.

9.3.21 Local Fixity Declarations

A careful reading of the Haskell 98 Report reveals that fixity declarations (infix, infixl,
and infixr) are permitted to appear inside local bindings such those introduced by let and
where. However, the Haskell Report does not specify the semantics of such bindings very
precisely.
In GHC, a fixity declaration may accompany a local binding:

let f = ...
infixr 3 `f`

in
...

and the fixity declaration applies wherever the binding is in scope. For example, in a let, it
applies in the right-hand sides of other let-bindings and the body of the letC. Or, in recursive
do expressions (The recursive do-notation (page 228)), the local fixity declarations of a let
statement scope over other statements in the group, just as the bound name does.

9.3. Syntactic extensions 243



GHC User’s Guide Documentation, Release 8.2.1.20171030

Moreover, a local fixity declaration must accompany a local binding of that name: it is not
possible to revise the fixity of name bound elsewhere, as in

let infixr 9 $ in ...

Because local fixity declarations are technically Haskell 98, no flag is necessary to enable
them.

9.3.22 Import and export extensions

Hiding things the imported module doesn’t export

Technically in Haskell 2010 this is illegal:

module A( f ) where
f = True

module B where
import A hiding( g ) -- A does not export g
g = f

The import A hiding( g ) in module B is technically an error (Haskell Report, 5.3.1) be-
cause A does not export g. However GHC allows it, in the interests of supporting backward
compatibility; for example, a newer version of A might export g, and you want B to work in
either case.
The warning -Wdodgy-imports (page 81), which is off by default but included with -W
(page 76), warns if you hide something that the imported module does not export.

Package-qualified imports

-XPackageImports
Allow the use of package-qualified import syntax.

With the -XPackageImports (page 244) flag, GHC allows import declarations to be qualified
by the package name that the module is intended to be imported from. For example:

import "network" Network.Socket

would import the module Network.Socket from the package network (any version). This may
be used to disambiguate an import when the samemodule is available frommultiple packages,
or is present in both the current package being built and an external package.
The special package name this can be used to refer to the current package being built.

Note: You probably don’t need to use this feature, it was added mainly so that we can
build backwards-compatible versions of packages when APIs change. It can lead to fragile
dependencies in the common case: modules occasionally move from one package to another,
rendering any package-qualified imports broken. See also Thinning and renaming modules
(page 156) for an alternative way of disambiguating between module names.

Safe imports

-XSafe

244 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-1020005.3.1


GHC User’s Guide Documentation, Release 8.2.1.20171030

-XTrustworthy
-XUnsafe

Since 7.2
Declare the Safe Haskell state of the current module.

With the -XSafe (page 434), -XTrustworthy (page 435) and -XUnsafe (page 435) language
flags, GHC extends the import declaration syntax to take an optional safe keyword after the
import keyword. This feature is part of the Safe Haskell GHC extension. For example:

import safe qualified Network.Socket as NS

would import the module Network.Socket with compilation only succeeding if Net-
work.Socket can be safely imported. For a description of when a import is considered safe
see Safe Haskell (page 426).

Explicit namespaces in import/export

-XExplicitNamespaces
Since 7.6.1

Enable use of explicit namespaces in module export lists.
In an import or export list, such as

module M( f, (++) ) where ...
import N( f, (++) )
...

the entities f and (++) are values. However, with type operators (Type operators (page 248))
it becomes possible to declare (++) as a type constructor. In that case, how would you export
or import it?
The -XExplicitNamespaces (page 245) extension allows you to prefix the name of a type
constructor in an import or export list with “type” to disambiguate this case, thus:

module M( f, type (++) ) where ...
import N( f, type (++) )
...

module N( f, type (++) ) where
data family a ++ b = L a | R b

The extension -XExplicitNamespaces (page 245) is implied by -XTypeOperators (page 248)
and (for some reason) by -XTypeFamilies (page 313).
In addition, with -XPatternSynonyms (page 284) you can prefix the name of a data constructor
in an import or export list with the keyword pattern, to allow the import or export of a data
constructor without its parent type constructor (see Import and export of pattern synonyms
(page 287)).

9.3.23 Summary of stolen syntax

Turning on an option that enables special syntax might cause working Haskell 98 code to
fail to compile, perhaps because it uses a variable name which has become a reserved word.
This section lists the syntax that is “stolen” by language extensions. We use notation and
nonterminal names from the Haskell 98 lexical syntax (see the Haskell 98 Report). We only

9.3. Syntactic extensions 245



GHC User’s Guide Documentation, Release 8.2.1.20171030

list syntax changes here that might affect existing working programs (i.e. “stolen” syntax).
Many of these extensions will also enable new context-free syntax, but in all cases programs
written to use the new syntax would not be compilable without the option enabled.
There are two classes of special syntax:
• New reserved words and symbols: character sequences which are no longer available
for use as identifiers in the program.

• Other special syntax: sequences of characters that have a different meaning when this
particular option is turned on.

The following syntax is stolen:
forall Stolen (in types) by: -XExplicitForAll (page 344), and hence by -

XScopedTypeVariables (page 348), -XLiberalTypeSynonyms (page 248), -XRankNTypes
(page 357), -XExistentialQuantification (page 249)

mdo Stolen by: -XRecursiveDo (page 228)
foreign Stolen by: -XForeignFunctionInterface (page 437)
rec, proc, -<, >-, -<<, >>-, (|, |) Stolen by: -XArrows (page 382)
?varid Stolen by: -XImplicitParams (page 355)
[|, [e|, [p|, [d|, [t|, [||, [e|| Stolen by: -XQuasiQuotes (page 379). Moreover, this in-

troduces an ambiguity with list comprehension syntax. See the discussion on quasi-
quoting (page 380) for details.

$(, $$(, $varid, $$varid Stolen by: -XTemplateHaskell (page 372)
[varid| Stolen by: -XQuasiQuotes (page 379)
⟨varid⟩, #⟨char⟩, #, ⟨string⟩, #, ⟨integer⟩, #, ⟨float⟩, #, ⟨float⟩, ## Stolen by: -XMagicHash

(page 224)
(#, #) Stolen by: -XUnboxedTuples (page 222)
⟨varid⟩, !, ⟨varid⟩ Stolen by: -XBangPatterns (page 388)
pattern Stolen by: -XPatternSynonyms (page 284)

9.4 Extensions to data types and type synonyms

9.4.1 Data types with no constructors

-XEmptyDataDecls
Allow definition of empty data types.

With the -XEmptyDataDecls (page 246) flag (or equivalent LANGUAGE pragma), GHC lets you
declare a data type with no constructors. For example:

data S -- S :: *
data T a -- T :: * -> *

Syntactically, the declaration lacks the “= constrs” part. The type can be parameterised over
types of any kind, but if the kind is not * then an explicit kind annotation must be used (see
Explicitly-kinded quantification (page 347)).
Such data types have only one value, namely bottom. Nevertheless, they can be useful when
defining “phantom types”.

246 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.4.2 Data type contexts

-XDatatypeContexts
Since 7.0.1

Allow contexts on data types.
Haskell allows datatypes to be given contexts, e.g.

data Eq a => Set a = NilSet | ConsSet a (Set a)

give constructors with types:

NilSet :: Set a
ConsSet :: Eq a => a -> Set a -> Set a

This is widely considered a misfeature, and is going to be removed from the language. In
GHC, it is controlled by the deprecated extension DatatypeContexts.

9.4.3 Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written
infix, very much like expressions. More specifically:
• A type constructor or class can be any non-reserved operator. Symbols used in types are
always like capitalized identifiers; they are never variables. Note that this is different
from the lexical syntax of data constructors, which are required to begin with a :.

• Data type and type-synonym declarations can be written infix, parenthesised if you want
further arguments. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) x = Baz a b x
type (a :++: b) y = Either (a,b) y

• Types, and class constraints, can be written infix. For example

x :: Int :*: Bool
f :: (a :=: b) => a -> b

• Back-quotes work as for expressions, both for type constructors and type variables;
e.g. Int `Either` Bool, or Int `a` Bool. Similarly, parentheses work the same; e.g.
(:*:) Int Bool.

• Fixities may be declared for type constructors, or classes, just as for data constructors.
However, one cannot distinguish between the two in a fixity declaration; a fixity decla-
ration sets the fixity for a data constructor and the corresponding type constructor. For
example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for :*:.
Int `a` Bool.

• Function arrow is infixr with fixity 0 (this might change; it’s not clear what it should
be).

9.4. Extensions to data types and type synonyms 247



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.4.4 Type operators

-XTypeOperators
Implies -XExplicitNamespaces (page 245)

Allow the use and definition of types with operator names.
In types, an operator symbol like (+) is normally treated as a type variable, just like a. Thus
in Haskell 98 you can say

type T (+) = ((+), (+))
-- Just like: type T a = (a,a)

f :: T Int -> Int
f (x,y)= x

As you can see, using operators in this way is not very useful, and Haskell 98 does not even
allow you to write them infix.
The language -XTypeOperators (page 248) changes this behaviour:
• Operator symbols become type constructors rather than type variables.
• Operator symbols in types can be written infix, both in definitions and uses. For example:

data a + b = Plus a b
type Foo = Int + Bool

• There is now some potential ambiguity in import and export lists; for example if you
write import M( (+) ) do you mean the function (+) or the type constructor (+)? The
default is the former, but with -XExplicitNamespaces (page 245) (which is implied by
-XTypeOperators (page 248)) GHC allows you to specify the latter by preceding it with
the keyword type, thus:

import M( type (+) )

See Explicit namespaces in import/export (page 245).
• The fixity of a type operator may be set using the usual fixity declarations but, as in
Infix type constructors, classes, and type variables (page 247), the function and type
constructor share a single fixity.

9.4.5 Liberalised type synonyms

-XLiberalTypeSynonyms
Implies -XExplicitForAll (page 344)

Relax many of the Haskell 98 rules on type synonym definitions.
Type synonyms are like macros at the type level, but Haskell 98 imposes many rules on indi-
vidual synonym declarations. With the -XLiberalTypeSynonyms (page 248) extension, GHC
does validity checking on types only after expanding type synonyms. That means that GHC
can be very much more liberal about type synonyms than Haskell 98.
• You can write a forall (including overloading) in a type synonym, thus:

248 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f x y = (x, show y)

g :: Discard Int -> (Int,String) -- A rank-2 type
g f = f 3 True

• If you also use -XUnboxedTuples (page 222), you can write an unboxed tuple in a type
synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

• You can apply a type synonym to a forall type:

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

• You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be
changed).
After expanding type synonyms, GHC does validity checking on types, looking for the follow-
ing malformedness which isn’t detected simply by kind checking:
• Type constructor applied to a type involving for-alls (if -XImpredicativeTypes
(page 361) is off)

• Partially-applied type synonym.
So, for example, this will be rejected:

type Pr = forall a. a

h :: [Pr]
h = ...

because GHC does not allow type constructors applied to for-all types.

9.4.6 Existentially quantified data constructors

-XExistentialQuantification

9.4. Extensions to data types and type synonyms 249



GHC User’s Guide Documentation, Release 8.2.1.20171030

Implies -XExplicitForAll (page 344)
Allow existentially quantified type variables in types.

The idea of using existential quantification in data type declarations was suggested by Perry,
and implemented in Hope+ (Nigel Perry, The Implementation of Practical Functional Pro-
gramming Languages, PhD Thesis, University of London, 1991). It was later formalised by
Laufer and Odersky (Polymorphic type inference and abstract data types, TOPLAS, 16(5), pp.
1411-1430, 1994). It’s been in Lennart Augustsson’s hbc Haskell compiler for several years,
and proved very useful. Here’s the idea. Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself,
which is plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool;
and MkFoo 'c' isUpper packages a character with a compatible function. These two things
are each of type Foo and can be put in a list.
What can we do with a value of type Foo? In particular, what happens when we pattern-match
on MkFoo?

f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, the only (useful) thing we
can do with them is to apply fn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogeneous values together with a bunch of func-
tions that manipulate them, and then treat that collection of packages in a uniform manner.
You can express quite a bit of object-oriented-like programming this way.

Why existential?

What has this to do with existential quantification? Simply that MkFoo has the (nearly) iso-
morphic type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given
above, thereby avoiding adding a new existential quantification construct.

Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

250 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and
when pattern matching on Baz2 the first matched value can be converted to a string (as well
as applying the function to it). So this program is legal:

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz2 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must
store the dictionaries for Eq and Show respectively, and extract it on pattern matching.

Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

Here tag is a public field, with a well-typed selector function tag :: Counter a -> a. The
self type is hidden from the outside; any attempt to apply _this, _inc or _display as func-
tions will raise a compile-time error. In other words, GHC defines a record selector function
only for fields whose type does not mention the existentially-quantified variables. (This exam-
ple used an underscore in the fields for which record selectors will not be defined, but that is
only programming style; GHC ignores them.)
To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter

{ _this = i x, _inc = i, _display = d, tag = t }

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x

Now we can define counters with different underlying implementations:

counterA :: Counter String
counterA = NewCounter

{ _this = 0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counterB = NewCounter

{ _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }

9.4. Extensions to data types and type synonyms 251



GHC User’s Guide Documentation, Release 8.2.1.20171030

main = do
display (inc counterA) -- prints "1"
display (inc (inc counterB)) -- prints "##"

Record update syntax is supported for existentials (and GADTs):

setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }

The rule for record update is this:
the types of the updated fields may mention only the universally-quantified type
variables of the data constructor. For GADTs, the field may mention only types that
appear as a simple type-variable argument in the constructor’s result type.

For example:

data T a b where { T1 { f1::a, f2::b, f3::(b,c) } :: T a b } -- c is existential
upd1 t x = t { f1=x } -- OK: upd1 :: T a b -> a' -> T a' b
upd2 t x = t { f3=x } -- BAD (f3's type mentions c, which is

-- existentially quantified)

data G a b where { G1 { g1::a, g2::c } :: G a [c] }
upd3 g x = g { g1=x } -- OK: upd3 :: G a b -> c -> G c b
upd4 g x = g { g2=x } -- BAD (f2's type mentions c, which is not a simple

-- type-variable argument in G1's result type)

Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can
be used.
• When pattern matching, each pattern match introduces a new, distinct, type for each
existential type variable. These types cannot be unified with any other type, nor can
they escape from the scope of the pattern match. For example, these fragments are
incorrect:

f1 (MkFoo a f) = a

Here, the type bound by MkFoo “escapes”, because a is the result of f1. One way to see
why this is wrong is to ask what type f1 has:

f1 :: Foo -> a -- Weird!

What is this “a” in the result type? Clearly we don’t mean this:

f1 :: forall a. Foo -> a -- Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It’s ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types
arising from the two Baz1 constructors.

• You can’t pattern-match on an existentially quantified constructor in a let or where group
of bindings. So this is illegal:

252 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f3 x = a==b where { Baz1 a b = x }

Instead, use a case expression:

f3 x = case x of Baz1 a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in a
case expression or in the patterns of a function definition. The reason for this restriction
is really an implementation one. Type-checking binding groups is already a nightmare
without existentials complicating the picture. Also an existential pattern binding at the
top level of a module doesn’t make sense, because it’s not clear how to prevent the
existentially-quantified type “escaping”. So for now, there’s a simple-to-state restriction.
We’ll see how annoying it is.

• You can’t use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and
a value of type t. That contradicts the idea that newtype should have no concrete rep-
resentation. You can get just the same efficiency and effect by using data instead of
newtype. If there is no overloading involved, then there is more of a case for allowing
an existentially-quantified newtype, because the data version does carry an implemen-
tation cost, but single-field existentially quantified constructors aren’t much use. So the
simple restriction (no existential stuff on newtype) stands, unless there are convincing
reasons to change it.

• You can’t use deriving to define instances of a data type with existentially quantified
data constructors. Reason: in most cases it would not make sense. For example:;

data T = forall a. MkT [a] deriving( Eq )

To derive Eq in the standard way we would need to have equality between the single
component of two MkT constructors:

instance Eq T where
(MkT a) == (MkT b) = ???

But a and b have distinct types, and so can’t be compared. It’s just about possible to
imagine examples in which the derived instance would make sense, but it seems alto-
gether simpler simply to prohibit such declarations. Define your own instances!

9.4.7 Declaring data types with explicit constructor signatures

-XGADTSyntax
Since 7.2

Allow the use of GADT syntax in data type definitions (but not GADTs themselves; for
this see -XGADTs (page 257))

When the GADTSyntax extension is enabled, GHC allows you to declare an algebraic data type
by giving the type signatures of constructors explicitly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

9.4. Extensions to data types and type synonyms 253



GHC User’s Guide Documentation, Release 8.2.1.20171030

The form is called a “GADT-style declaration” because Generalised Algebraic Data Types,
described in Generalised Algebraic Data Types (GADTs) (page 257), can only be declared
using this form.
Notice that GADT-style syntax generalises existential types (Existentially quantified data con-
structors (page 249)). For example, these two declarations are equivalent:

data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }

Any data type that can be declared in standard Haskell 98 syntax can also be declared using
GADT-style syntax. The choice is largely stylistic, but GADT-style declarations differ in one
important respect: they treat class constraints on the data constructors differently. Specifi-
cally, if the constructor is given a type-class context, that context is made available by pattern
matching. For example:

data Set a where
MkSet :: Eq a => [a] -> Set a

makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a `elem` as = MkSet as

| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a)
constraint, as you would expect. The new feature is that pattern-matching on MkSet (as in the
definition of insert) makes available an (Eq a) context. In implementation terms, the MkSet
constructor has a hidden field that stores the (Eq a) dictionary that is passed to MkSet; so
when pattern-matching that dictionary becomes available for the right-hand side of thematch.
In the example, the equality dictionary is used to satisfy the equality constraint generated by
the call to elem, so that the type of insert itself has no Eq constraint.
For example, one possible application is to reify dictionaries:

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a -> a -> a -> a
plus MkNumInst p q = p + q

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.
All this applies to constructors declared using the syntax of Existentials and type classes
(page 250). For example, the NumInst data type above could equivalently be declared like
this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existential, there is no forall, because the
Num constrains the data type’s universally quantified type variable a. A constructor may have
both universal and existential type variables: for example, the following two declarations are
equivalent:

254 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data T1 a
= forall b. (Num a, Eq b) => MkT1 a b

data T2 a where
MkT2 :: (Num a, Eq b) => a -> b -> T2 a

All this behaviour contrasts with Haskell 98’s peculiar treatment of contexts on a data type
declaration (Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set' a = MkSet' [a]

gives MkSet' the same type as MkSet above. But instead of making available an (Eq a) con-
straint, pattern-matching on MkSet' requires an (Eq a) constraint! GHC faithfully imple-
ments this behaviour, odd though it is. But for GADT-style declarations, GHC’s behaviour is
much more useful, as well as much more intuitive.
The rest of this section gives further details about GADT-style data type declarations.
• The result type of each data constructor must begin with the type constructor being
defined. If the result type of all constructors has the form T a1 ... an, where a1 ...
an are distinct type variables, then the data type is ordinary; otherwise is a generalised
data type (Generalised Algebraic Data Types (GADTs) (page 257)).

• As with other type signatures, you can give a single signature for several data construc-
tors. In this example we give a single signature for T1 and T2:

data T a where
T1,T2 :: a -> T a
T3 :: T a

• The type signature of each constructor is independent, and is implicitly universally quan-
tified as usual. In particular, the type variable(s) in the “data T a where” header have
no scope, and different constructors may have different universally-quantified type vari-
ables:

data T a where -- The 'a' has no scope
T1,T2 :: b -> T b -- Means forall b. b -> T b
T3 :: T a -- Means forall a. T a

• A constructor signaturemaymention type class constraints, which can differ for different
constructors. For example, this is fine:

data T a where
T1 :: Eq b => b -> b -> T b
T2 :: (Show c, Ix c) => c -> [c] -> T c

When pattern matching, these constraints are made available to discharge constraints
in the body of the match. For example:

f :: T a -> String
f (T1 x y) | x==y = "yes"

| otherwise = "no"
f (T2 a b) = show a

Note that f is not overloaded; the Eq constraint arising from the use of == is discharged
by the pattern match on T1 and similarly the Show constraint arising from the use of
show.

• Unlike a Haskell-98-style data type declaration, the type variable(s) in the “data Set a
where” header have no scope. Indeed, one can write a kind signature instead:

9.4. Extensions to data types and type synonyms 255



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Set :: * -> * where ...

or even a mixture of the two:

data Bar a :: (* -> *) -> * where ...

The type variables (if given) may be explicitly kinded, so we could also write the header
for Foo like this:

data Bar a (b :: * -> *) where ...

• You can use strictness annotations, in the obvious places in the constructor type:

data Term a where
Lit :: !Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

• You can use a deriving clause on a GADT-style data type declaration. For example, these
two declarations are equivalent

data Maybe1 a where {
Nothing1 :: Maybe1 a ;
Just1 :: a -> Maybe1 a

} deriving( Eq, Ord )

data Maybe2 a = Nothing2 | Just2 a
deriving( Eq, Ord )

• The type signature may have quantified type variables that do not appear in the result
type:

data Foo where
MkFoo :: a -> (a->Bool) -> Foo
Nil :: Foo

Here the type variable a does not appear in the result type of either constructor. Although
it is universally quantified in the type of the constructor, such a type variable is often
called “existential”. Indeed, the above declaration declares precisely the same type as
the data Foo in Existentially quantified data constructors (page 249).
The type may contain a class context too, of course:

data Showable where
MkShowable :: Show a => a -> Showable

• You can use record syntax on a GADT-style data type declaration:

data Person where
Adult :: { name :: String, children :: [Person] } -> Person
Child :: Show a => { name :: !String, funny :: a } -> Person

As usual, for every constructor that has a field f, the type of field f must be the same
(modulo alpha conversion). The Child constructor above shows that the signature may
have a context, existentially-quantified variables, and strictness annotations, just as in
the non-record case. (NB: the “type” that follows the double-colon is not really a type,
because of the record syntax and strictness annotations. A “type” of this form can appear
only in a constructor signature.)

256 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Record updates are allowed with GADT-style declarations, only fields that have the fol-
lowing property: the type of the field mentions no existential type variables.

• As in the case of existentials declared using the Haskell-98-like record syntax (Record
Constructors (page 251)), record-selector functions are generated only for those fields
that have well-typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where
NewCounter :: { _this :: self

, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
} -> Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you
can still use all the field names in pattern matching and record construction.

• In a GADT-style data type declaration there is no obvious way to specify that a data con-
structor should be infix, which makes a difference if you derive Show for the type. (Data
constructors declared infix are displayed infix by the derived show.) So GHC implements
the following design: a data constructor declared in a GADT-style data type declaration
is displayed infix by Show iff (a) it is an operator symbol, (b) it has two arguments, (c) it
has a programmer-supplied fixity declaration. For example

infix 6 (:--:)
data T a where
(:--:) :: Int -> Bool -> T Int

9.4.8 Generalised Algebraic Data Types (GADTs)

-XGADTs
Implies -XMonoLocalBinds (page 351), -XGADTSyntax (page 253)

Allow use of Generalised Algebraic Data Types (GADTs).
Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing con-
structors to have richer return types. Here is an example:

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with
ordinary data types. This generality allows us to write a well-typed eval function for these
Terms:

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero t) = eval t == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
eval (Pair e1 e2) = (eval e1, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in
the right hand side of the equation

9.4. Extensions to data types and type synonyms 257



GHC User’s Guide Documentation, Release 8.2.1.20171030

eval :: Term a -> a
eval (Lit i) = ...

the type a is refined to Int. That’s the whole point! A precise specification of the type rules is
beyond what this user manual aspires to, but the design closely follows that described in the
paper Simple unification-based type inference for GADTs, (ICFP 2006). The general principle
is this: type refinement is only carried out based on user-supplied type annotations. So if no
type signature is supplied for eval, no type refinement happens, and lots of obscure error
messages will occur. However, the refinement is quite general. For example, if we had:

eval :: Term a -> a -> a
eval (Lit i) j = i+j

the pattern match causes the type a to be refined to Int (because of the type of the construc-
tor Lit), and that refinement also applies to the type of j, and the result type of the case
expression. Hence the addition i+j is legal.
These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is
a longer introduction on the wiki, and Ralf Hinze’s Fun with phantom types also has a number
of examples. Note that papers may use different notation to that implemented in GHC.
The rest of this section outlines the extensions to GHC that support GADTs. The extension
is enabled with -XGADTs (page 257). The -XGADTs (page 257) flag also sets -XGADTSyntax
(page 253) and -XMonoLocalBinds (page 351).
• A GADT can only be declared using GADT-style syntax (Declaring data types with ex-
plicit constructor signatures (page 253)); the old Haskell 98 syntax for data declarations
always declares an ordinary data type. The result type of each constructor must begin
with the type constructor being defined, but for a GADT the arguments to the type con-
structor can be arbitrary monotypes. For example, in the Term data type above, the type
of each constructor must end with Term ty, but the ty need not be a type variable (e.g.
the Lit constructor).

• It is permitted to declare an ordinary algebraic data type using GADT-style syntax. What
makes a GADT into a GADT is not the syntax, but rather the presence of data constructors
whose result type is not just T a b.

• You cannot use a deriving clause for a GADT; only for an ordinary data type.
• As mentioned in Declaring data types with explicit constructor signatures (page 253),
record syntax is supported. For example:

data Term a where
Lit :: { val :: Int } -> Term Int
Succ :: { num :: Term Int } -> Term Int
Pred :: { num :: Term Int } -> Term Int
IsZero :: { arg :: Term Int } -> Term Bool
Pair :: { arg1 :: Term a

, arg2 :: Term b
} -> Term (a,b)

If :: { cnd :: Term Bool
, tru :: Term a
, fls :: Term a
} -> Term a

However, for GADTs there is the following additional constraint: every constructor that
has a field f must have the same result type (modulo alpha conversion) Hence, in the
above example, we cannot merge the num and arg fields above into a single name. Al-

258 Chapter 9. GHC Language Features

http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://www.haskell.org/haskellwiki/GADT
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

though their field types are both Term Int, their selector functions actually have differ-
ent types:

num :: Term Int -> Term Int
arg :: Term Bool -> Term Int

• When pattern-matching against data constructors drawn from a GADT, for example in a
case expression, the following rules apply:
– The type of the scrutinee must be rigid.
– The type of the entire case expression must be rigid.
– The type of any free variable mentioned in any of the case alternatives must be rigid.

A type is “rigid” if it is completely known to the compiler at its binding site. The easiest
way to ensure that a variable a rigid type is to give it a type signature. For more precise
details see Simple unification-based type inference for GADTs. The criteria implemented
by GHC are given in the Appendix.

9.5 Extensions to the record system

9.5.1 Traditional record syntax

-XNoTraditionalRecordSyntax
Since 7.4.1

Disallow use of record syntax.
Traditional record syntax, such as C {f = x}, is enabled by default. To disable it, you can
use the -XNoTraditionalRecordSyntax (page 259) flag.

9.5.2 Record field disambiguation

-XDisambiguateRecordFields
Allow the compiler to automatically choose between identically-named record selectors
based on type (if the choice is unambiguous).

In record construction and record pattern matching it is entirely unambiguous which field is
referred to, even if there are two different data types in scope with a common field name. For
example:

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where
import M

data T = MkT { x :: Int }

ok1 (MkS { x = n }) = n+1 -- Unambiguous
ok2 n = MkT { x = n+1 } -- Unambiguous

bad1 k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous

9.5. Extensions to the record system 259

http://research.microsoft.com/%7Esimonpj/papers/gadt/


GHC User’s Guide Documentation, Release 8.2.1.20171030

Even though there are two x‘s in scope, it is clear that the x in the pattern in the definition
of ok1 can only mean the field x from type S. Similarly for the function ok2. However, in the
record update in bad1 and the record selection in bad2 it is not clear which of the two types
is intended.
Haskell 98 regards all four as ambiguous, but with the -XDisambiguateRecordFields
(page 259) flag, GHC will accept the former two. The rules are precisely the same as those
for instance declarations in Haskell 98, where the method names on the left-hand side of the
method bindings in an instance declaration refer unambiguously to the method of that class
(provided they are in scope at all), even if there are other variables in scope with the same
name. This reduces the clutter of qualified names when you import two records from different
modules that use the same field name.
Some details:
• Field disambiguation can be combined with punning (see Record puns (page 262)). For
example:

module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 -- Uses both disambiguation and punning

• With -XDisambiguateRecordFields (page 259) you can use unqualified field names even
if the corresponding selector is only in scope qualified For example, assuming the same
module M as in our earlier example, this is legal:

module Foo where
import qualified M -- Note qualified

ok4 (M.MkS { x = n }) = n+1 -- Unambiguous

Since the constructor MkS is only in scope qualified, you must name it M.MkS, but the field
x does not need to be qualified even though M.x is in scope but x is not (In effect, it is
qualified by the constructor).

9.5.3 Duplicate record fields

-XDuplicateRecordFields
Implies -XDisambiguateRecordFields (page 259)
Since 8.0.1

Allow definition of record types with identically-named fields.
Going beyond -XDisambiguateRecordFields (page 259) (see Record field disambiguation
(page 259)), the -XDuplicateRecordFields (page 260) extension allows multiple datatypes
to be declared using the same field names in a single module. For example, it allows this:

module M where
data S = MkS { x :: Int }
data T = MkT { x :: Bool }

Uses of fields that are always unambiguous because they mention the constructor, including
construction and pattern-matching, may freely use duplicated field names. For example, the
following are permitted (just as with -XDisambiguateRecordFields (page 259)):

260 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

s = MkS { x = 3 }

f (MkT { x = b }) = b

Field names used as selector functions or in record updates must be unambiguous, either
because there is only one such field in scope, or because a type signature is supplied, as
described in the following sections.

Selector functions

Fields may be used as selector functions only if they are unambiguous, so this is still not
allowed if both S(x) and T(x) are in scope:

bad r = x r

An ambiguous selector may be disambiguated by the type being “pushed down” to the occur-
rence of the selector (see Type inference (page 360) for more details on what “pushed down”
means). For example, the following are permitted:

ok1 = x :: S -> Int

ok2 :: S -> Int
ok2 = x

ok3 = k x -- assuming we already have k :: (S -> Int) -> _

In addition, the datatype that is meant may be given as a type signature on the argument to
the selector:

ok4 s = x (s :: S)

However, we do not infer the type of the argument to determine the datatype, or have any
way of deferring the choice to the constraint solver. Thus the following is ambiguous:

bad :: S -> Int
bad s = x s

Even though a field label is duplicated in its defining module, it may be possible to use the
selector unambiguously elsewhere. For example, another module could import S(x) but not
T(x), and then use x unambiguously.

Record updates

In a record update such as e { x = 1 }, if there are multiple x fields in scope, then the type of
the context must fix which record datatype is intended, or a type annotation must be supplied.
Consider the following definitions:

data S = MkS { foo :: Int }
data T = MkT { foo :: Int, bar :: Int }
data U = MkU { bar :: Int, baz :: Int }

Without -XDuplicateRecordFields (page 260), an update mentioning foo will always be am-
biguous if all these definitions were in scope. When the extension is enabled, there are several
options for disambiguating updates:
• Check for types that have all the fields being updated. For example:

9.5. Extensions to the record system 261



GHC User’s Guide Documentation, Release 8.2.1.20171030

f x = x { foo = 3, bar = 2 }

Here f must be updating T because neither S nor U have both fields.
• Use the type being pushed in to the record update, as in the following:

g1 :: T -> T
g1 x = x { foo = 3 }

g2 x = x { foo = 3 } :: T

g3 = k (x { foo = 3 }) -- assuming we already have k :: T -> _

• Use an explicit type signature on the record expression, as in:

h x = (x :: T) { foo = 3 }

The type of the expression being updated will not be inferred, and no constraint-solving will
be performed, so the following will be rejected as ambiguous:

let x :: T
x = blah

in x { foo = 3 }

\x -> [x { foo = 3 }, blah :: T ]

\ (x :: T) -> x { foo = 3 }

Import and export of record fields

When -XDuplicateRecordFields (page 260) is enabled, an ambiguous field must be exported
as part of its datatype, rather than at the top level. For example, the following is legal:

module M (S(x), T(..)) where
data S = MkS { x :: Int }
data T = MkT { x :: Bool }

However, this would not be permitted, because x is ambiguous:

module M (x) where ...

Similar restrictions apply on import.

9.5.4 Record puns

-XNamedFieldPuns
Allow use of record puns.

Record puns are enabled by the flag -XNamedFieldPuns (page 262).
When using records, it is common to write a pattern that binds a variable with the same name
as a record field, such as:

data C = C {a :: Int}
f (C {a = a}) = a

Record punning permits the variable name to be elided, so one can simply write

262 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f (C {a}) = a

to mean the same pattern as above. That is, in a record pattern, the pattern a expands into
the pattern a = a for the same name a.
Note that:
• Record punning can also be used in an expression, writing, for example,

let a = 1 in C {a}

instead of

let a = 1 in C {a = a}

The expansion is purely syntactic, so the expanded right-hand side expression refers to
the nearest enclosing variable that is spelled the same as the field name.

• Puns and other patterns can be mixed in the same record:

data C = C {a :: Int, b :: Int}
f (C {a, b = 4}) = a

• Puns can be used wherever record patterns occur (e.g. in let bindings or at the top-
level).

• A pun on a qualified field name is expanded by stripping off the module qualifier. For
example:

f (C {M.a}) = a

means

f (M.C {M.a = a}) = a

(This is useful if the field selector a for constructor M.C is only in scope in qualified form.)

9.5.5 Record wildcards

-XRecordWildCards
Implies -XDisambiguateRecordFields (page 259).

Allow the use of wildcards in record construction and pattern matching.
Record wildcards are enabled by the flag -XRecordWildCards (page 263). This flag implies
-XDisambiguateRecordFields (page 259).
For records with many fields, it can be tiresome to write out each field individually in a record
pattern, as in

data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
f (C {a = 1, b = b, c = c, d = d}) = b + c + d

Record wildcard syntax permits a “..” in a record pattern, where each elided field f is re-
placed by the pattern f = f. For example, the above pattern can be written as

f (C {a = 1, ..}) = b + c + d

More details:

9.5. Extensions to the record system 263



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Record wildcards in patterns can be mixed with other patterns, including puns (Record
puns (page 262)); for example, in a pattern (C {a = 1, b, ..}). Additionally, record
wildcards can be used wherever record patterns occur, including in let bindings and at
the top-level. For example, the top-level binding

C {a = 1, ..} = e

defines b, c, and d.
• Record wildcards can also be used in an expression, when constructing a record. For
example,

let {a = 1; b = 2; c = 3; d = 4} in C {..}

in place of

let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}

The expansion is purely syntactic, so the record wildcard expression refers to the nearest
enclosing variables that are spelled the same as the omitted field names.

• Record wildcards may not be used in record updates. For example this is illegal:

f r = r { x = 3, .. }

• For both pattern and expression wildcards, the “..” expands to the missing in-scope
record fields. Specifically the expansion of “C {..}” includes f if and only if:
– f is a record field of constructor C.
– The record field f is in scope somehow (either qualified or unqualified).
– In the case of expressions (but not patterns), the variable f is in scope unqualified,
and is not imported or bound at top level. For example, f can be bound by an en-
closing pattern match or let/where-binding. (The motivation here is that it should
be easy for the reader to figure out what the “..” expands to.)

These rules restrict record wildcards to the situations in which the user could have writ-
ten the expanded version. For example

module M where
data R = R { a,b,c :: Int }

module X where
import M( R(a,c) )
f b = R { .. }

The R{..} expands to R{M.a=a}, omitting b since the record field is not in scope, and
omitting c since the variable c is not in scope (apart from the binding of the record
selector c, of course).

• Record wildcards cannot be used (a) in a record update construct, and (b) for data con-
structors that are not declared with record fields. For example:

f x = x { v=True, .. } -- Illegal (a)

data T = MkT Int Bool
g = MkT { .. } -- Illegal (b)
h (MkT { .. }) = True -- Illegal (b)

264 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.5.6 Record field selector polymorphism

The module GHC.Records defines the following:

class HasField (x :: k) r a | x r -> a where
getField :: r -> a

A HasField x r a constraint represents the fact that x is a field of type a belonging to a
record type r. The getField method gives the record selector function.
This allows definitions that are polymorphic over record types with a specified field. For
example, the following works with any record type that has a field name :: String:

foo :: HasField "name" r String => r -> String
foo r = reverse (getField @"name" r)

HasField is a magic built-in typeclass (similar to Coercible, for example). It is given special
treatment by the constraint solver (see Solving HasField constraints (page 265)). Users may
define their own instances of HasField also (see Virtual record fields (page 266)).

Solving HasField constraints

If the constraint solver encounters a constraint HasField x r a where r is a concrete
datatype with a field x in scope, it will automatically solve the constraint using the field
selector as the dictionary, unifying a with the type of the field if necessary. This happens
irrespective of which extensions are enabled.
For example, if the following datatype is in scope

data Person = Person { name :: String }

the end result is rather like having an instance

instance HasField "name" Person String where
getField = name

except that this instance is not actually generated anywhere, rather the constraint is solved
directly by the constraint solver.
A field must be in scope for the corresponding HasField constraint to be solved. This retains
the existing representation hiding mechanism, whereby a module may choose not to export
a field, preventing client modules from accessing or updating it directly.
Solving HasField constraints depends on the field selector functions that are generated for
each datatype definition:
• If a record field does not have a selector function because its type would allow an exis-
tential variable to escape, the corresponding HasField constraint will not be solved. For
example,

{-# LANGUAGE ExistentialQuantification #-}
data Exists t = forall x . MkExists { unExists :: t x }

does not give rise to a selector unExists :: Exists t -> t x and we will not solve
HasField "unExists" (Exists t) a automatically.

• If a record field has a polymorphic type (and hence the selector function is higher-rank),
the corresponding HasField constraint will not be solved, because doing so would violate
the functional dependency on HasField and/or require impredicativity. For example,

9.5. Extensions to the record system 265



GHC User’s Guide Documentation, Release 8.2.1.20171030

{-# LANGUAGE RankNTypes #-}
data Higher = MkHigher { unHigher :: forall t . t -> t }

gives rise to a selector unHigher :: Higher -> (forall t . t -> t) but does not
lead to solution of the constraint HasField "unHigher" Higher a.

• A record GADT may have a restricted type for a selector function, which may lead to
additional unification when solving HasField constraints. For example,

{-# LANGUAGE GADTs #-}
data Gadt t where
MkGadt :: { unGadt :: Maybe v } -> Gadt [v]

gives rise to a selector unGadt :: Gadt [v] -> Maybe v, so the solver will reduce the
constraint HasField "unGadt" (Gadt t) b by unifying t ~ [v] and b ~ Maybe v for
some fresh metavariable v, rather as if we had an instance

instance (t ~ [v], b ~ Maybe v) => HasField "unGadt" (Gadt t) b

• If a record type has an old-fashioned datatype context, the HasField constraint will be
reduced to solving the constraints from the context. For example,

{-# LANGUAGE DatatypeContexts #-}
data Eq a => Silly a = MkSilly { unSilly :: a }

gives rise to a selector unSilly :: Eq a => Silly a -> a, so the solver will reduce
the constraint HasField "unSilly" (Silly a) b to Eq a (and unify a with b), rather as
if we had an instance

instance (Eq a, a ~ b) => HasField "unSilly" (Silly a) b

Virtual record fields

Users may define their own instances of HasField, provided they do not conflict with the built-
in constraint solving behaviour. This allows “virtual” record fields to be defined for datatypes
that do not otherwise have them.
For example, this instance would make the name field of Person accessible using #fullname
as well:

instance HasField "fullname" Person String where
getField = name

More substantially, an anonymous records library could provide HasField instances for its
anonymous records, and thus be compatible with the polymorphic record selectors introduced
by this proposal. For example, something like this makes it possible to use getField to access
Record values with the appropriate string in the type-level list of fields:

data Record (xs :: [(k, Type)]) where
Nil :: Record '[]
Cons :: Proxy x -> a -> Record xs -> Record ('(x, a) ': xs)

instance HasField x (Record ('(x, a) ': xs)) a where
getField (Cons _ v _) = v

instance HasField x (Record xs) a => HasField x (Record ('(y, b) ': xs)) a where
getField (Cons _ _ r) = getField @x r

266 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

r :: Record '[ '("name", String) ]
r = Cons Proxy "R" Nil)

x = getField @"name" r

Since representations such as this can support field labels with kinds other than Symbol, the
HasField class is poly-kinded (even though the built-in constraint solving works only at kind
Symbol). In particular, this allows users to declare scoped field labels such as in the following
example:

data PersonFields = Name

s :: Record '[ '(Name, String) ]
s = Cons Proxy "S" Nil

y = getField @Name s

In order to avoid conflicting with the built-in constraint solving, the following user-defined
HasField instances are prohibited (in addition to the usual rules, such as the prohibition on
type families appearing in instance heads):
• HasField _ r _ where r is a variable;
• HasField _ (T ...) _ if T is a data family (because it might have fields introduced
later, using data instance declarations);

• HasField x (T ...) _ if x is a variable and T has any fields at all (but this instance is
permitted if T has no fields);

• HasField "foo" (T ...) _ if T has a field foo (but this instance is permitted if it does
not).

If a field has a higher-rank or existential type, the corresponding HasField constraint will
not be solved automatically (as described above), but in the interests of simplicity we do not
permit users to define their own instances either. If a field is not in scope, the corresponding
instance is still prohibited, to avoid conflicts in downstream modules.

9.6 Extensions to the “deriving” mechanism

9.6.1 Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

data T0 f a = MkT0 a deriving( Eq )
data T1 f a = MkT1 (f a) deriving( Eq )
data T2 f a = MkT2 (f (f a)) deriving( Eq )

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is still fine, although less obviously. The third
is not Haskell 98, and risks losing termination of instances.

9.6. Extensions to the “deriving” mechanism 267



GHC User’s Guide Documentation, Release 8.2.1.20171030

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this:
each constraint in the inferred instance context must consist only of type variables, with no
repetitions.
This rule is applied regardless of flags. If you want a more exotic context, you can write it
yourself, using the standalone deriving mechanism (page 268).

9.6.2 Stand-alone deriving declarations

-XStandaloneDeriving
Allow the use of stand-alone deriving declarations.

GHC allows stand-alone deriving declarations, enabled by -XStandaloneDeriving
(page 268):

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
deriving, and (b) the absence of the where part.
However, standalone deriving differs from a deriving clause in a number of important ways:
• The standalone deriving declaration does not need to be in the same module as the data
type declaration. (But be aware of the dangers of orphan instances (Orphan modules
and instance declarations (page 151)).

• You must supply an explicit context (in the example the context is (Eq a)), exactly as you
would in an ordinary instance declaration. (In contrast, in a deriving clause attached
to a data type declaration, the context is inferred.)

• Unlike a deriving declaration attached to a data declaration, the instance can be more
specific than the data type (assuming you also use -XFlexibleInstances (page 299),
Relaxed rules for instance contexts (page 300)). Consider for example

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo [a])
deriving instance Eq a => Eq (Foo (Maybe a))

This will generate a derived instance for (Foo [a]) and (Foo (Maybe a)), but other
types such as (Foo (Int,Bool)) will not be an instance of Eq.

• Unlike a deriving declaration attached to a data declaration, GHC does not restrict the
form of the data type. Instead, GHC simply generates the appropriate boilerplate code
for the specified class, and typechecks it. If there is a type error, it is your problem.
(GHC will show you the offending code if it has a type error.)
The merit of this is that you can derive instances for GADTs and other exotic data types,
providing only that the boilerplate code does indeed typecheck. For example:

data T a where
T1 :: T Int
T2 :: T Bool

deriving instance Show (T a)

268 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

In this example, you cannot say ... deriving( Show ) on the data type declaration for
T, because T is a GADT, but you can generate the instance declaration using stand-alone
deriving.
The down-side is that, if the boilerplate code fails to typecheck, you will get an error
message about that code, which you did not write. Whereas, with a deriving clause the
side-conditions are necessarily more conservative, but any error message may be more
comprehensible.

• Under most circumstances, you cannot use standalone deriving to create an instance for
a data type whose constructors are not all in scope. This is because the derived instance
would generate code that uses the constructors behind the scenes, which would break
abstraction.
The one exception to this rule is -XDeriveAnyClass (page 281), since deriving an in-
stance via -XDeriveAnyClass (page 281) simply generates an empty instance declara-
tion, which does not require the use of any constructors. See the deriving any class
(page 281) section for more details.

In other ways, however, a standalone deriving obeys the same rules as ordinary deriving:
• A deriving instance declaration must obey the same rules concerning form and ter-
mination as ordinary instance declarations, controlled by the same flags; see Instance
declarations (page 299).

• The stand-alone syntax is generalised for newtypes in exactly the same way that or-
dinary deriving clauses are generalised (Generalised derived instances for newtypes
(page 276)). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

GHC always treats the last parameter of the instance (Foo in this example) as the type
whose instance is being derived.

9.6.3 Deriving instances of extra classes (Data, etc.)

-XDeriveGeneric
Since 7.2

Allow automatic deriving of instances for the Generic typeclass.
-XDeriveFunctor

Since 6.12
Allow automatic deriving of instances for the Functor typeclass.

-XDeriveFoldable
Since 6.12

Allow automatic deriving of instances for the Foldable typeclass.
-XDeriveTraversable

Since 6.12
Implies -XDeriveFoldable (page 269), -XDeriveFunctor (page 269)

Allow automatic deriving of instances for the Traversable typeclass.

9.6. Extensions to the “deriving” mechanism 269



GHC User’s Guide Documentation, Release 8.2.1.20171030

Haskell 98 allows the programmer to add “deriving( Eq, Ord )” to a data type declaration,
to generate a standard instance declaration for classes specified in the deriving clause. In
Haskell 98, the only classes that may appear in the deriving clause are the standard classes
Eq, Ord, Enum, Ix, Bounded, Read, and Show.
GHC extends this list with several more classes that may be automatically derived:
• With -XDeriveGeneric (page 269), you can derive instances of the classes Generic and
Generic1, defined in GHC.Generics. You can use these to define generic functions, as
described in Generic programming (page 415).

• With -XDeriveFunctor (page 269), you can derive instances of the class Functor, defined
in GHC.Base. See Deriving Functor instances (page 270).

• With -XDeriveDataTypeable (page 275), you can derive instances of the class Data,
defined in Data.Data. See Deriving Data instances (page 275).

• With -XDeriveFoldable (page 269), you can derive instances of the class Foldable,
defined in Data.Foldable. See Deriving Foldable instances (page 273).

• With -XDeriveTraversable (page 269), you can derive instances of the class
Traversable, defined in Data.Traversable. Since the Traversable instance dic-
tates the instances of Functor and Foldable, you’ll probably want to derive them
too, so -XDeriveTraversable (page 269) implies -XDeriveFunctor (page 269) and -
XDeriveFoldable (page 269). See Deriving Traversable instances (page 274).

• With -XDeriveLift (page 275), you can derive instances of the class Lift, defined in the
Language.Haskell.TH.Syntaxmodule of the template-haskell package. See Deriving
Lift instances (page 275).

You can also use a standalone deriving declaration instead (see Stand-alone deriving decla-
rations (page 268)).
In each case the appropriate classmust be in scope before it can bementioned in the deriving
clause.

9.6.4 Deriving Functor instances

With -XDeriveFunctor (page 269), one can derive Functor instances for data types of kind *
-> *. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving Functor

would generate the following instance:

instance Functor Example where
fmap f (Ex a1 a2 a3 a4) = Ex (f a1) a2 (fmap f a3) a4

The basic algorithm for -XDeriveFunctor (page 269) walks the arguments of each constructor
of a data type, applying a mapping function depending on the type of each argument. If a
plain type variable is found that is syntactically equivalent to the last type parameter of the
data type (a in the above example), then we apply the function f directly to it. If a type is
encountered that is not syntactically equivalent to the last type parameter but does mention
the last type parameter somewhere in it, then a recursive call to fmap is made. If a type is
found which doesn’t mention the last type parameter at all, then it is left alone.
The second of those cases, in which a type is unequal to the type parameter but does contain
the type parameter, can be surprisingly tricky. For example, the following example compiles:

270 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

newtype Right a = Right (Either Int a) deriving Functor

Modifying the code slightly, however, produces code which will not compile:

newtype Wrong a = Wrong (Either a Int) deriving Functor

The difference involves the placement of the last type parameter, a. In the Right case, a
occurs within the type Either Int a, and moreover, it appears as the last type argument of
Either. In the Wrong case, however, a is not the last type argument to Either; rather, Int is.
This distinction is important because of the way -XDeriveFunctor (page 269) works. The
derived Functor Right instance would be:

instance Functor Right where
fmap f (Right a) = Right (fmap f a)

Given a value of type Right a, GHC must produce a value of type Right b. Since the argu-
ment to the Right constructor has type Either Int a, the code recursively calls fmap on it
to produce a value of type Either Int b, which is used in turn to construct a final value of
type Right b.
The generated code for the Functor Wrong instance would look exactly the same, except with
Wrong replacing every occurrence of Right. The problem is now that fmap is being applied
recursively to a value of type Either a Int. This cannot possibly produce a value of type
Either b Int, as fmap can only change the last type parameter! This causes the generated
code to be ill-typed.
As a general rule, if a data type has a derived Functor instance and its last type parameter
occurs on the right-hand side of the data declaration, then either it must (1) occur bare (e.g.,
newtype Id a = a), or (2) occur as the last argument of a type constructor (as in Right
above).
There are two exceptions to this rule:
1. Tuple types. When a non-unit tuple is used on the right-hand side of a data declaration,

-XDeriveFunctor (page 269) treats it as a product of distinct types. In other words, the
following code:

newtype Triple a = Triple (a, Int, [a]) deriving Functor

Would result in a generated Functor instance like so:

instance Functor Triple where
fmap f (Triple a) =

Triple (case a of
(a1, a2, a3) -> (f a1, a2, fmap f a3))

That is, -XDeriveFunctor (page 269) pattern-matches its way into tuples and maps over
each type that constitutes the tuple. The generated code is reminiscient of what would
be generated from data Triple a = Triple a Int [a], except with extra machinery
to handle the tuple.

2. Function types. The last type parameter can appear anywhere in a function type as long
as it occurs in a covariant position. To illustrate what this means, consider the following
three examples:

newtype CovFun1 a = CovFun1 (Int -> a) deriving Functor
newtype CovFun2 a = CovFun2 ((a -> Int) -> a) deriving Functor
newtype CovFun3 a = CovFun3 (((Int -> a) -> Int) -> a) deriving Functor

9.6. Extensions to the “deriving” mechanism 271



GHC User’s Guide Documentation, Release 8.2.1.20171030

All three of these examples would compile without issue. On the other hand:

newtype ContraFun1 a = ContraFun1 (a -> Int) deriving Functor
newtype ContraFun2 a = ContraFun2 ((Int -> a) -> Int) deriving Functor
newtype ContraFun3 a = ContraFun3 (((a -> Int) -> a) -> Int) deriving Functor

While these examples look similar, none of them would successfully compile. This is
because all occurrences of the last type parameter a occur in contravariant positions,
not covariant ones.
Intuitively, a covariant type is produced, and a contravariant type is consumed. Most
types in Haskell are covariant, but the function type is special in that the lefthand side
of a function arrow reverses variance. If a function type a -> b appears in a covariant
position (e.g., CovFun1 above), then a is in a contravariant position and b is in a covariant
position. Similarly, if a -> b appears in a contravariant position (e.g., CovFun2 above),
then a is in a covariant position and b is in a contravariant position.
To see why a data type with a contravariant occurrence of its last type parameter can-
not have a derived Functor instance, let’s suppose that a Functor ContraFun1 instance
exists. The implementation would look something like this:

instance Functor ContraFun1 where
fmap f (ContraFun g) = ContraFun (\x -> _)

We have f :: a -> b, g :: a -> Int, and x :: b. Using these, we must somehow fill
in the hole (denoted with an underscore) with a value of type Int. What are our options?
We could try applying g to x. This won’t work though, as g expects an argument of type
a, and x :: b. Even worse, we can’t turn x into something of type a, since f also needs
an argument of type a! In short, there’s no good way to make this work.
On the other hand, a derived Functor instances for the CovFuns are within the realm of
possibility:

instance Functor CovFun1 where
fmap f (CovFun1 g) = CovFun1 (\x -> f (g x))

instance Functor CovFun2 where
fmap f (CovFun2 g) = CovFun2 (\h -> f (g (\x -> h (f x))))

instance Functor CovFun3 where
fmap f (CovFun3 g) = CovFun3 (\h -> f (g (\k -> h (\x -> f (k x)))))

There are some other scenarios in which a derived Functor instance will fail to compile:
1. A data type has no type parameters (e.g., data Nothing = Nothing).
2. A data type’s last type variable is used in a -XDatatypeContexts (page 247) constraint
(e.g., data Ord a => O a = O a).

3. A data type’s last type variable is used in an -XExistentialQuantification (page 249)
constraint, or is refined in a GADT. For example,

data T a b where
T4 :: Ord b => b -> T a b
T5 :: b -> T b b
T6 :: T a (b,b)

deriving instance Functor (T a)

would not compile successfully due to the way in which b is constrained.

272 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.6.5 Deriving Foldable instances

With -XDeriveFoldable (page 269), one can derive Foldable instances for data types of kind
* -> *. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving Foldable

would generate the following instance:

instance Foldable Example where
foldr f z (Ex a1 a2 a3 a4) = f a1 (foldr f z a3)
foldMap f (Ex a1 a2 a3 a4) = mappend (f a1) (foldMap f a3)

The algorithm for -XDeriveFoldable (page 269) is adapted from the -XDeriveFunctor
(page 269) algorithm, but it generates definitions for foldMap and foldr instead of fmap.
In addition, -XDeriveFoldable (page 269) filters out all constructor arguments on the RHS
expression whose types do not mention the last type parameter, since those arguments do
not need to be folded over.
Here are the differences between the generated code in each extension:
1. When a bare type variable a is encountered, -XDeriveFunctor (page 269) would gener-
ate f a for an fmap definition. -XDeriveFoldable (page 269) would generate f a z for
foldr, and f a for foldMap.

2. When a type that is not syntactically equivalent to a, but which does contain a, is
encountered, -XDeriveFunctor (page 269) recursively calls fmap on it. Similarly, -
XDeriveFoldable (page 269) would recursively call foldr and foldMap.

3. -XDeriveFunctor (page 269) puts everything back together again at the end by invoking
the constructor. -XDeriveFoldable (page 269), however, builds up a value of some type.
For foldr, this is accomplished by chaining applications of f and recursive foldr calls
on the state value z. For foldMap, this happens by combining all values with mappend.

There are some other differences regarding what data types can have derived Foldable in-
stances:
1. Data types containing function types on the right-hand side cannot have derived Fold-

able instances.
2. Foldable instances can be derived for data types in which the last type parameter is
existentially constrained or refined in a GADT. For example, this data type:

data E a where
E1 :: (a ~ Int) => a -> E a
E2 :: Int -> E Int
E3 :: (a ~ Int) => a -> E Int
E4 :: (a ~ Int) => Int -> E a

deriving instance Foldable E

would have the following generated Foldable instance:

instance Foldable E where
foldr f z (E1 e) = f e z
foldr f z (E2 e) = z
foldr f z (E3 e) = z
foldr f z (E4 e) = z

9.6. Extensions to the “deriving” mechanism 273



GHC User’s Guide Documentation, Release 8.2.1.20171030

foldMap f (E1 e) = f e
foldMap f (E2 e) = mempty
foldMap f (E3 e) = mempty
foldMap f (E4 e) = mempty

Notice how every constructor of E utilizes some sort of existential quantification, but
only the argument of E1 is actually “folded over”. This is because we make a deliberate
choice to only fold over universally polymorphic types that are syntactically equivalent
to the last type parameter. In particular:

• We don’t fold over the arguments of E1 or E4 beacause even though (a ~ Int), Int is
not syntactically equivalent to a.

• We don’t fold over the argument of E3 because a is not universally polymorphic. The a in
E3 is (implicitly) existentially quantified, so it is not the same as the last type parameter
of E.

9.6.6 Deriving Traversable instances

With -XDeriveTraversable (page 269), one can derive Traversable instances for data types
of kind * -> *. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving (Functor, Foldable, Traversable)

would generate the following Traversable instance:

instance Traversable Example where
traverse f (Ex a1 a2 a3 a4)
= fmap (\b1 b3 -> Ex b1 a2 b3 a4) (f a1) <*> traverse f a3

The algorithm for -XDeriveTraversable (page 269) is adapted from the -XDeriveFunctor
(page 269) algorithm, but it generates a definition for traverse instead of fmap. In addition,
-XDeriveTraversable (page 269) filters out all constructor arguments on the RHS expression
whose types do not mention the last type parameter, since those arguments do not produce
any effects in a traversal. Here are the differences between the generated code in each
extension:
1. When a bare type variable a is encountered, both -XDeriveFunctor (page 269) and -

XDeriveTraversable (page 269) would generate f a for an fmap and traverse defini-
tion, respectively.

2. When a type that is not syntactically equivalent to a, but which does contain a, is
encountered, -XDeriveFunctor (page 269) recursively calls fmap on it. Similarly, -
XDeriveTraversable (page 269) would recursively call traverse.

3. -XDeriveFunctor (page 269) puts everything back together again at the end by invoking
the constructor. -XDeriveTraversable (page 269) does something similar, but it works
in an Applicative context by chaining everything together with (<*>).

Unlike -XDeriveFunctor (page 269), -XDeriveTraversable (page 269) cannot be used on
data types containing a function type on the right-hand side.
For a full specification of the algorithms used in -XDeriveFunctor (page 269), -
XDeriveFoldable (page 269), and -XDeriveTraversable (page 269), see this wiki page.

274 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/DeriveFunctor


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.6.7 Deriving Data instances

-XDeriveDataTypeable
Enable automatic deriving of instances for the Data typeclass

9.6.8 Deriving Typeable instances

The class Typeable is very special:
• Typeable is kind-polymorphic (see Kind polymorphism and Type-in-Type (page 330)).
• GHC has a custom solver for discharging constraints that involve class Typeable, and
handwritten instances are forbidden. This ensures that the programmer cannot subvert
the type system by writing bogus instances.

• Derived instances of Typeablemay be declared if the -XDeriveDataTypeable (page 275)
extension is enabled, but they are ignored, and they may be reported as an error in a
later version of the compiler.

• The rules for solving ‘Typeable‘ constraints are as follows:
– A concrete type constructor applied to some types.

instance (Typeable t1, .., Typeable t_n) =>
Typeable (T t1 .. t_n)

This rule works for any concrete type constructor, including type constructors with
polymorphic kinds. The only restriction is that if the type constructor has a polymor-
phic kind, then it has to be applied to all of its kinds parameters, and these kinds
need to be concrete (i.e., they cannot mention kind variables).

– A type variable applied to some types.
instance (Typeable f, Typeable t1, .., Typeable t_n) =>

Typeable (f t1 .. t_n)

– A concrete type literal.
instance Typeable 0 -- Type natural literals
instance Typeable "Hello" -- Type-level symbols

9.6.9 Deriving Lift instances

-XDeriveLift
Since 8.0.1

Enable automatic deriving of instances for the Lift typeclass for Template Haskell.
The class Lift, unlike other derivable classes, lives in template-haskell instead of base.
Having a data type be an instance of Lift permits its values to be promoted to Template
Haskell expressions (of type ExpQ), which can then be spliced into Haskell source code.
Here is an example of how one can derive Lift:

{-# LANGUAGE DeriveLift #-}
module Bar where

import Language.Haskell.TH.Syntax

9.6. Extensions to the “deriving” mechanism 275



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Foo a = Foo a | a :^: a deriving Lift

{-
instance (Lift a) => Lift (Foo a) where

lift (Foo a)
= appE

(conE
(mkNameG_d "package-name" "Bar" "Foo"))

(lift a)
lift (u :^: v)
= infixApp

(lift u)
(conE

(mkNameG_d "package-name" "Bar" ":^:"))
(lift v)

-}

-----
{-# LANGUAGE TemplateHaskell #-}
module Baz where

import Bar
import Language.Haskell.TH.Lift

foo :: Foo String
foo = $(lift $ Foo "foo")

fooExp :: Lift a => Foo a -> Q Exp
fooExp f = [| f |]

-XDeriveLift (page 275) also works for certain unboxed types (Addr#, Char#, Double#,
Float#, Int#, and Word#):

{-# LANGUAGE DeriveLift, MagicHash #-}
module Unboxed where

import GHC.Exts
import Language.Haskell.TH.Syntax

data IntHash = IntHash Int# deriving Lift

{-
instance Lift IntHash where

lift (IntHash i)
= appE

(conE
(mkNameG_d "package-name" "Unboxed" "IntHash"))

(litE
(intPrimL (toInteger (I# i))))

-}

9.6.10 Generalised derived instances for newtypes

-XGeneralisedNewtypeDeriving
-XGeneralizedNewtypeDeriving

Enable GHC’s cunning generalised deriving mechanism for newtypes

276 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

When you define an abstract type using newtype, you may want the new type to inherit some
instances from its representation. In Haskell 98, you can inherit instances of Eq, Ord, Enum
and Bounded by deriving them, but for any other classes you have to write an explicit instance
declaration. For example, if you define

newtype Dollars = Dollars Int

and you want to use arithmetic on Dollars, you have to explicitly define an instance of Num:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...

All the instance does is apply and remove the newtype constructor. It is particularly galling
that, since the constructor doesn’t appear at run-time, this instance declaration defines a
dictionary which is wholly equivalent to the Int dictionary, only slower!

Generalising the deriving clause

GHC now permits such instances to be derived instead, using the flag -
XGeneralizedNewtypeDeriving (page 276), so one can write

newtype Dollars = Dollars { getDollars :: Int } deriving (Eq,Show,Num)

and the implementation uses the same Num dictionary for Dollars as for Int. In other words,
GHC will generate something that resembles the following code

instance Num Int => Num Dollars

and then attempt to simplify the Num Int context as much as possible. GHC knows that there
is a Num Int instance in scope, so it is able to discharge the Num Int constraint, leaving the
code that GHC actually generates

instance Num Dollars

One can think of this instance being implemented with the same code as the Num Int instance,
but with Dollars and getDollars added wherever necessary in order to make it typecheck.
(In practice, GHC uses a somewhat different approach to code generation. See the A more
precise specification (page 278) section below for more details.)
We can also derive instances of constructor classes in a similar way. For example, suppose
we have implemented state and failure monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension,
we can make the parser type abstract, without needing to write an instance of class Monad,
via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

9.6. Extensions to the “deriving” mechanism 277



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, since Monad is a constructor class, the instance is a partial application of the new
type, not the entire left hand side. We can imagine that the type declaration is “eta-converted”
to generate the context of the instance declaration.
We can even derive instances of multi-parameter classes, provided the newtype is the last
class parameter. In this case, a “partial application” of the class appears in the deriving
clause. For example, given the class

class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...

then we can derive an instance of StateMonad for Parser by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

As a result of this extension, all derived instances in newtype declarations are treated uni-
formly (and implemented just by reusing the dictionary for the representation type), except
Show and Read, which really behave differently for the newtype and its representation.

A more precise specification

A derived instance is derived only for declarations of these forms (after expansion of any type
synonyms)

newtype T v1..vn = MkT (t vk+1..vn) deriving (C t1..tj)
newtype instance T s1..sk vk+1..vn = MkT (t vk+1..vn) deriving (C t1..tj)

where
• v1..vn are type variables, and t, s1..sk, t1..tj are types.
• The (C t1..tj) is a partial applications of the class C, where the arity of C is exactly
j+1. That is, C lacks exactly one type argument.

• k is chosen so that C t1..tj (T v1...vk) is well-kinded. (Or, in the case of a data
instance, so that C t1..tj (T s1..sk) is well kinded.)

• The type t is an arbitrary type.
• The type variables vk+1...vn do not occur in the types t, s1..sk, or t1..tj.
• C is not Read, Show, Typeable, or Data. These classes should not “look through” the type
or its constructor. You can still derive these classes for a newtype, but it happens in the
usual way, not via this new mechanism.

• It is safe to coerce each of the methods of C. That is, the missing last argument to C is
not used at a nominal role in any of the C‘s methods. (See Roles (page 419).)

• C is allowed to have associated type families, provided they meet the requirements laid
out in the section on GND and associated types (page 279).

Then the derived instance declaration is of the form

278 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance C t1..tj t => C t1..tj (T v1...vk)

Note that if C does not contain any class methods, the instance context is wholly unnecessary,
and as such GHC will instead generate:

instance C t1..tj (T v1..vk)

As an example which does not work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variable s occurs in State s m, and so cannot be “eta-converted” away. It
is a good thing that this deriving clause is rejected, because NonMonad m is not, in fact, a
monad — for the same reason. Try defining >>= with the correct type: you won’t be able to.
Notice also that the order of class parameters becomes important, since we can only derive
instances for the last one. If the StateMonad class above were instead defined as

class StateMonad m s | m -> s where ...

then we would not have been able to derive an instance for the Parser type above. We hy-
pothesise that multi-parameter classes usually have one “main” parameter for which deriving
new instances is most interesting.
Lastly, all of this applies only for classes other than Read, Show, Typeable, and Data, for
which the stock derivation applies (section 4.3.3. of the Haskell Report). (For the standard
classes Eq, Ord, Ix, and Bounded it is immaterial whether the stock method is used or the one
described here.)

Associated type families

-XGeneralizedNewtypeDeriving (page 276) also works for some type classes with associated
type families. Here is an example:

class HasRing a where
type Ring a

newtype L1Norm a = L1Norm a
deriving HasRing

The derived HasRing instance would look like

instance HasRing (L1Norm a) where
type Ring (L1Norm a) = Ring a

To be precise, if the class being derived is of the form

class C c_1 c_2 ... c_m where
type T1 t1_1 t1_2 ... t1_n
...
type Tk tk_1 tk_2 ... tk_p

and the newtype is of the form

9.6. Extensions to the “deriving” mechanism 279



GHC User’s Guide Documentation, Release 8.2.1.20171030

newtype N n_1 n_2 ... n_q = MkN <rep-type>

then you can derive a C c_1 c_2 ... c_(m-1) instance for N n_1 n_2 ... n_q, provided
that:
• The type parameter c_m occurs once in each of the type variables of T1 through Tk.
Imagine a class where this condition didn’t hold. For example:

class Bad a b where
type B a

instance Bad Int a where
type B Int = Char

newtype Foo a = Foo a
deriving (Bad Int)

For the derived Bad Int instance, GHC would need to generate something like this:

instance Bad Int (Foo a) where
type B Int = B ???

Now we’re stuck, since we have no way to refer to a on the right-hand side
of the B family instance, so this instance doesn’t really make sense in a -
XGeneralizedNewtypeDeriving (page 276) setting.

• C does not have any associated data families (only type families). To see why data families
are forbidden, imagine the following scenario:

class Ex a where
data D a

instance Ex Int where
data D Int = DInt Bool

newtype Age = MkAge Int deriving Ex

For the derived Ex instance, GHC would need to generate something like this:

instance Ex Age where
data D Age = ???

But it is not clear what GHC would fill in for ???, as each data family instance must
generate fresh data constructors.

If both of these conditions are met, GHC will generate this instance:

instance C c_1 c_2 ... c_(m-1) <rep-type> =>
C c_1 c_2 ... c_(m-1) (N n_1 n_2 ... n_q) where

type T1 t1_1 t1_2 ... (N n_1 n_2 ... n_q) ... t1_n
= T1 t1_1 t1_2 ... <rep-type> ... t1_n

...
type Tk tk_1 tk_2 ... (N n_1 n_2 ... n_q) ... tk_p

= Tk tk_1 tk_2 ... <rep-type> ... tk_p

Again, if C contains no class methods, the instance context will be redundant, so GHC will
instead generate instance C c_1 c_2 ... c_(m-1) (N n_1 n_2 ... n_q).
Beware that in some cases, you may need to enable the -XUndecidableInstances (page 300)
extension in order to use this feature. Here’s a pathological case that illustrates why this

280 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

might happen:

class C a where
type T a

newtype Loop = MkLoop Loop
deriving C

This will generate the derived instance:

instance C Loop where
type T Loop = T Loop

Here, it is evident that attempting to use the type T Loop will throw the typechecker into an
infinite loop, as its definition recurses endlessly. In other cases, you might need to enable
-XUndecidableInstances (page 300) even if the generated code won’t put the typechecker
into a loop. For example:

instance C Int where
type C Int = Int

newtype MyInt = MyInt Int
deriving C

This will generate the derived instance:

instance C MyInt where
type T MyInt = T Int

Although typechecking T MyIntwill terminate, GHC’s termination checker isn’t sophisticated
enough to determine this, so you’ll need to enable -XUndecidableInstances (page 300) in
order to use this derived instance. If you do go down this route, make sure you can convince
yourself that all of the type family instances you’re deriving will eventually terminate if used!

9.6.11 Deriving any other class

-XDeriveAnyClass
Since 7.10.1

Allow use of any typeclass in deriving clauses.
With -XDeriveAnyClass (page 281) you can derive any other class. The compiler will simply
generate an instance declaration with no explicitly-defined methods. This is mostly useful in
classes whose minimal set (page 399) is empty, and especially when writing generic functions
(page 415).
As an example, consider a simple pretty-printer class SPretty, which outputs pretty strings:

{-# LANGUAGE DefaultSignatures, DeriveAnyClass #-}

class SPretty a where
sPpr :: a -> String
default sPpr :: Show a => a -> String
sPpr = show

If a user does not provide a manual implementation for sPpr, then it will default to show. Now
we can leverage the -XDeriveAnyClass (page 281) extension to easily implement a SPretty
instance for a new data type:

9.6. Extensions to the “deriving” mechanism 281



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Foo = Foo deriving (Show, SPretty)

The above code is equivalent to:

data Foo = Foo deriving Show
instance SPretty Foo

That is, an SPretty Foo instance will be created with empty implementations for all methods.
Since we are using -XDefaultSignatures (page 292) in this example, a default implementa-
tion of sPpr is filled in automatically.
Note the following details
• In case you try to derive some class on a newtype, and -XGeneralizedNewtypeDeriving
(page 276) is also on, -XDeriveAnyClass (page 281) takes precedence.

• The instance context is determined by the type signatures of the derived class’s methods.
For instance, if the class is:

class Foo a where
bar :: a -> String
default bar :: Show a => a -> String
bar = show

baz :: a -> a -> Bool
default baz :: Ord a => a -> a -> Bool
baz x y = compare x y == EQ

And you attempt to derive it using -XDeriveAnyClass (page 281):

instance Eq a => Eq (Option a) where ...
instance Ord a => Ord (Option a) where ...
instance Show a => Show (Option a) where ...

data Option a = None | Some a deriving Foo

Then the derived Foo instance will be:

instance (Show a, Ord a) => Foo (Option a)

Since the default type signatures for bar and baz require Show a and Ord a constraints,
respectively.
Constraints on the non-default type signatures can play a role in inferring the instance
context as well. For example, if you have this class:

class HigherEq f where
(==#) :: f a -> f a -> Bool
default (==#) :: Eq (f a) => f a -> f a -> Bool
x ==# y = (x == y)

And you tried to derive an instance for it:

instance Eq a => Eq (Option a) where ...
data Option a = None | Some a deriving HigherEq

Then it will fail with an error to the effect of:

No instance for (Eq a)
arising from the 'deriving' clause of a data type declaration

282 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

That is because we require an Eq (Option a) instance from the default type signature
for (==#), which in turn requires an Eq a instance, which we don’t have in scope. But if
you tweak the definition of HigherEq slightly:

class HigherEq f where
(==#) :: Eq a => f a -> f a -> Bool
default (==#) :: Eq (f a) => f a -> f a -> Bool
x ==# y = (x == y)

Then it becomes possible to derive a HigherEq Option instance. Note that the only dif-
ference is that now the non-default type signature for (==#) brings in an Eq a constraint.
Constraints from non-default type signatures never appear in the derived instance con-
text itself, but they can be used to discharge obligations that are demanded by the default
type signatures. In the example above, the default type signature demanded an Eq a in-
stance, and the non-default signature was able to satisfy that request, so the derived
instance is simply:

instance HigherEq Option

• -XDeriveAnyClass (page 281) can be used with partially applied classes, such as

data T a = MKT a deriving( D Int )

which generates

instance D Int a => D Int (T a) where {}

• -XDeriveAnyClass (page 281) can be used to fill in default instances for associated type
families:

{-# LANGUAGE DeriveAnyClass, TypeFamilies #-}

class Sizable a where
type Size a
type Size a = Int

data Bar = Bar deriving Sizable

doubleBarSize :: Size Bar -> Size Bar
doubleBarSize s = 2*s

The deriving( Sizable ) is equivalent to saying

instance Sizeable Bar where {}

and then the normal rules for filling in associated types from the default will apply, mak-
ing Size Bar equal to Int.

9.6.12 Deriving strategies

-XDerivingStrategies
Allow multiple deriving, each optionally qualified with a strategy.

In most scenarios, every deriving statement generates a typeclass instance in an unam-
biguous fashion. There is a corner case, however, where simultaneously enabling both the
-XGeneralizedNewtypeDeriving (page 276) and -XDeriveAnyClass (page 281) extensions
can make deriving become ambiguous. Consider the following example

9.6. Extensions to the “deriving” mechanism 283



GHC User’s Guide Documentation, Release 8.2.1.20171030

{-# LANGUAGE DeriveAnyClass, GeneralizedNewtypeDeriving #-}
newtype Foo = MkFoo Bar deriving C

One could either pick the DeriveAnyClass approach to deriving C or the GeneralizedNew-
typeDeriving approach to deriving C, both of which would be equally as valid. GHC defaults
to favoring DeriveAnyClass in such a dispute, but this is not a satisfying solution, since that
leaves users unable to use both language extensions in a single module.
To make this more robust, GHC has a notion of deriving strategies, which allow the user to ex-
plicitly request which approach to use when deriving an instance. To enable this feature, one
must enable the -XDerivingStrategies (page 283) language extension. A deriving strategy
can be specified in a deriving clause

newtype Foo = MkFoo Bar
deriving newtype C

Or in a standalone deriving declaration

deriving anyclass instance C Foo

-XDerivingStrategies (page 283) also allows the use of multiple deriving clauses per data
declaration so that a user can derive some instance with one deriving strategy and other
instances with another deriving strategy. For example

newtype Baz = Baz Quux
deriving (Eq, Ord)
deriving stock (Read, Show)
deriving newtype (Num, Floating)
deriving anyclass C

Currently, the deriving strategies are:
• stock: Have GHC implement a “standard” instance for a data type, if possible (e.g., Eq,
Ord, Generic, Data, Functor, etc.)

• anyclass: Use -XDeriveAnyClass (page 281)
• newtype: Use -XGeneralizedNewtypeDeriving (page 276)

If an explicit deriving strategy is not given, GHC has an algorithm for determining how it will
actually derive an instance. For brevity, the algorithm is omitted here. You can read the full
algorithm on the GHC Wiki.

9.7 Pattern synonyms

-XPatternSynonyms
Since 7.8.1

Allow the definition of pattern synonyms.
Pattern synonyms are enabled by the flag -XPatternSynonyms (page 284), which is required
for defining them, but not for using them. More information and examples of view patterns
can be found on the Wiki page <PatternSynonyms>.
Pattern synonyms enable giving names to parametrized pattern schemes. They can also be
thought of as abstract constructors that don’t have a bearing on data representation. For ex-
ample, in a programming language implementation, wemight represent types of the language

284 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/DerivingStrategies


GHC User’s Guide Documentation, Release 8.2.1.20171030

as follows:

data Type = App String [Type]

Here are some examples of using said representation. Consider a few types of the Type
universe encoded like this:

App "->" [t1, t2] -- t1 -> t2
App "Int" [] -- Int
App "Maybe" [App "Int" []] -- Maybe Int

This representation is very generic in that no types are given special treatment. However,
some functions might need to handle some known types specially, for example the following
two functions collect all argument types of (nested) arrow types, and recognize the Int type,
respectively:

collectArgs :: Type -> [Type]
collectArgs (App "->" [t1, t2]) = t1 : collectArgs t2
collectArgs _ = []

isInt :: Type -> Bool
isInt (App "Int" []) = True
isInt _ = False

Matching on App directly is both hard to read and error prone to write. And the situation is
even worse when the matching is nested:

isIntEndo :: Type -> Bool
isIntEndo (App "->" [App "Int" [], App "Int" []]) = True
isIntEndo _ = False

Pattern synonyms permit abstracting from the representation to expose matchers that be-
have in a constructor-like manner with respect to pattern matching. We can create pattern
synonyms for the known types we care about, without committing the representation to them
(note that these don’t have to be defined in the same module as the Type type):

pattern Arrow t1 t2 = App "->" [t1, t2]
pattern Int = App "Int" []
pattern Maybe t = App "Maybe" [t]

Which enables us to rewrite our functions in a much cleaner style:

collectArgs :: Type -> [Type]
collectArgs (Arrow t1 t2) = t1 : collectArgs t2
collectArgs _ = []

isInt :: Type -> Bool
isInt Int = True
isInt _ = False

isIntEndo :: Type -> Bool
isIntEndo (Arrow Int Int) = True
isIntEndo _ = False

In general there are three kinds of pattern synonyms. Unidirectional, bidirectional and explic-
itly bidirectional. The examples given so far are examples of bidirectional pattern synonyms.
A bidirectional synonym behaves the same as an ordinary data constructor. We can use it in
a pattern context to deconstruct values and in an expression context to construct values. For

9.7. Pattern synonyms 285



GHC User’s Guide Documentation, Release 8.2.1.20171030

example, we can construct the value intEndo using the pattern synonyms Arrow and Int as
defined previously.

intEndo :: Type
intEndo = Arrow Int Int

This example is equivalent to the much more complicated construction if we had directly used
the Type constructors.

intEndo :: Type
intEndo = App "->" [App "Int" [], App "Int" []]

Unidirectional synonyms can only be used in a pattern context and are defined as follows:

pattern Head x <- x:xs

In this case, Head ⟨x⟩ cannot be used in expressions, only patterns, since it wouldn’t specify
a value for the ⟨xs⟩ on the right-hand side. However, we can define an explicitly bidirectional
pattern synonym by separately specifying how to construct and deconstruct a type. The syntax
for doing this is as follows:

pattern HeadC x <- x:xs where
HeadC x = [x]

We can then use HeadC in both expression and pattern contexts. In a pattern context it will
match the head of any list with length at least one. In an expression context it will construct
a singleton list.
The table below summarises where each kind of pattern synonym can be used.
Context Unidirectional Bidirectional Explicitly Bidirectional
Pattern Yes Yes Yes
Expression No Yes (Inferred) Yes (Explicit)

9.7.1 Record Pattern Synonyms

It is also possible to define pattern synonyms which behave just like record constructors. The
syntax for doing this is as follows:

pattern Point :: Int -> Int -> (Int, Int)
pattern Point{x, y} = (x, y)

The idea is that we can then use Point just as if we had defined a new datatype MyPoint with
two fields x and y.

data MyPoint = Point { x :: Int, y :: Int }

Whilst a normal pattern synonym can be used in two ways, there are then seven ways in which
to use Point. Precisely the ways in which a normal record constructor can be used.
Usage Example
As a constructor zero = Point 0 0
As a constructor with record syntax zero = Point { x = 0, y = 0}
In a pattern context isZero (Point 0 0) = True
In a pattern context with record syntax isZero (Point { x = 0, y = 0 }
In a pattern context with field puns getX (Point {x}) = x
In a record update (0, 0) { x = 1 } == (1,0)
Using record selectors x (0,0) == 0

286 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

For a unidirectional record pattern synonym we define record selectors but do not allow
record updates or construction.
The syntax and semantics of pattern synonyms are elaborated in the following subsections.
There are also lots more details in the paper.
See the Wiki page for more details.

9.7.2 Syntax and scoping of pattern synonyms

A pattern synonym declaration can be either unidirectional, bidirectional or explicitly bidi-
rectional. The syntax for unidirectional pattern synonyms is:

pattern pat_lhs <- pat

the syntax for bidirectional pattern synonyms is:

pattern pat_lhs = pat

and the syntax for explicitly bidirectional pattern synonyms is:

pattern pat_lhs <- pat where
pat_lhs = expr

We can define either prefix, infix or record pattern synonyms by modifying the form of pat_lhs.
The syntax for these is as follows:
Prefix Name args
Infix arg1 `Name` arg2 or arg1 op arg2
Record Name{arg1,arg2,...,argn}

Pattern synonym declarations can only occur in the top level of a module. In particular, they
are not allowed as local definitions.
The variables in the left-hand side of the definition are bound by the pattern on the right-
hand side. For bidirectional pattern synonyms, all the variables of the right-hand side must
also occur on the left-hand side; also, wildcard patterns and view patterns are not allowed.
For unidirectional and explicitly bidirectional pattern synonyms, there is no restriction on the
right-hand side pattern.
Pattern synonyms cannot be defined recursively.
COMPLETE pragmas (page 407) can be specified in order to tell the pattern match exhaus-
tiveness checker that a set of pattern synonyms is complete.

9.7.3 Import and export of pattern synonyms

The name of the pattern synonym is in the same namespace as proper data constructors. Like
normal data constructors, pattern synonyms can be imported and exported through associa-
tion with a type constructor or independently.
To export them on their own, in an export or import specification, you must prefix pattern
names with the pattern keyword, e.g.:

module Example (pattern Zero) where

data MyNum = MkNum Int

9.7. Pattern synonyms 287

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/pattern-synonyms-Haskell16.pdf
https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms


GHC User’s Guide Documentation, Release 8.2.1.20171030

pattern Zero :: MyNum
pattern Zero = MkNum 0

Without the pattern prefix, Zero would be interpreted as a type constructor in the export
list.
You may also use the pattern keyword in an import/export specification to import or export
an ordinary data constructor. For example:

import Data.Maybe( pattern Just )

would bring into scope the data constructor Just from the Maybe type, without also bringing
the type constructor Maybe into scope.
To bundle a pattern synonym with a type constructor, we list the pattern synonym in the
export list of a module which exports the type constructor. For example, to bundle Zero with
MyNum we could write the following:

module Example ( MyNum(Zero) ) where

If a module was then to import MyNum from Example, it would also import the pattern synonym
Zero.
It is also possible to use the special token .. in an export list to mean all currently bundled
constructors. For example, we could write:

module Example ( MyNum(.., Zero) ) where

in which case, Example would export the type constructor MyNum with the data constructor
MkNum and also the pattern synonym Zero.
Bundled pattern synonyms are type checked to ensure that they are of the same type as the
type constructor which they are bundled with. A pattern synonym P can not be bundled with
a type constructor T if P‘s type is visibly incompatible with T.
A module which imports MyNum(..) from Example and then re-exports MyNum(..) will also
export any pattern synonyms bundled with MyNum in Example. A more complete specification
can be found on the wiki.

9.7.4 Typing of pattern synonyms

Given a pattern synonym definition of the form

pattern P var1 var2 ... varN <- pat

it is assigned a pattern type of the form

pattern P :: CReq => CProv => t1 -> t2 -> ... -> tN -> t

where ⟨CReq⟩ and ⟨CProv⟩ are type contexts, and ⟨t1⟩, ⟨t2⟩, ..., ⟨tN⟩ and ⟨t⟩ are types. Notice
the unusual form of the type, with two contexts ⟨CReq⟩ and ⟨CProv⟩:
• ⟨CReq⟩ are the constraints required to match the pattern.
• ⟨CProv⟩ are the constraints made available (provided) by a successful pattern match.

For example, consider

288 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms/AssociatingSynonyms


GHC User’s Guide Documentation, Release 8.2.1.20171030

data T a where
MkT :: (Show b) => a -> b -> T a

f1 :: (Num a, Eq a) => T a -> String
f1 (MkT 42 x) = show x

pattern ExNumPat :: (Num a, Eq a) => (Show b) => b -> T a
pattern ExNumPat x = MkT 42 x

f2 :: (Eq a, Num a) => T a -> String
f2 (ExNumPat x) = show x

Here f1 does not use pattern synonyms. To match against the numeric pattern 42 requires
the caller to satisfy the constraints (Num a, Eq a), so they appear in f1‘s type. The call to
show generates a (Show b) constraint, where b is an existentially type variable bound by the
pattern match on MkT. But the same pattern match also provides the constraint (Show b) (see
MkT‘s type), and so all is well.
Exactly the same reasoning applies to ExNumPat: matching against ExNumPat requires the
constraints (Num a, Eq a), and provides the constraint (Show b).
Note also the following points
• In the common case where CProv is empty, (i.e., ()), it can be omitted altogether in the
above pattern type signature for P.

• However, if CProv is non-empty, while CReq is, the above pattern type signature for P
must be specified as

P :: () => CProv => t1 -> t2 -> .. -> tN -> t

• You may specify an explicit pattern signature, as we did for ExNumPat above, to specify
the type of a pattern, just as you can for a function. As usual, the type signature can be
less polymorphic than the inferred type. For example

-- Inferred type would be 'a -> [a]'
pattern SinglePair :: (a, a) -> [(a, a)]
pattern SinglePair x = [x]

Just like signatures on value-level bindings, pattern synonym signatures can apply to
more than one pattern. For instance,

pattern Left', Right' :: a -> Either a a
pattern Left' x = Left x
pattern Right' x = Right x

• The GHCi :info (page 49) command shows pattern types in this format.
• For a bidirectional pattern synonym, a use of the pattern synonym as an expression has
the type

(CReq, CProv) => t1 -> t2 -> ... -> tN -> t

So in the previous example, when used in an expression, ExNumPat has type

ExNumPat :: (Num a, Eq a, Show b) => b -> T t

Notice that this is a tiny bit more restrictive than the expression MkT 42 x which would
not require (Eq a).

9.7. Pattern synonyms 289



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Consider these two pattern synonyms:

data S a where
S1 :: Bool -> S Bool

pattern P1 :: Bool -> Maybe Bool
pattern P1 b = Just b

pattern P2 :: () => (b ~ Bool) => Bool -> S b
pattern P2 b = S1 b

f :: Maybe a -> String
f (P1 x) = "no no no" -- Type-incorrect

g :: S a -> String
g (P2 b) = "yes yes yes" -- Fine

Pattern P1 can only match against a value of type Maybe Bool, so function f is rejected
because the type signature is Maybe a. (To see this, imagine expanding the pattern
synonym.)
On the other hand, function g works fine, because matching against P2 (which wraps the
GADT S) provides the local equality (a~Bool). If you were to give an explicit pattern
signature P2 :: Bool -> S Bool, then P2 would become less polymorphic, and would
behave exactly like P1 so that g would then be rejected.
In short, if you want GADT-like behaviour for pattern synonyms, then (unlike concrete
data constructors like S1) you must write its type with explicit provided equalities. For
a concrete data constructor like S1 you can write its type signature as either S1 ::
Bool -> S Bool or S1 :: (b~Bool) => Bool -> S b; the two are equivalent. Not so
for pattern synonyms: the two forms are different, in order to distinguish the two cases
above. (See Trac #9953 for discussion of this choice.)

9.7.5 Matching of pattern synonyms

A pattern synonym occurrence in a pattern is evaluated by first matching against the pattern
synonym itself, and then on the argument patterns. For example, in the following program, f
and f' are equivalent:

pattern Pair x y <- [x, y]

f (Pair True True) = True
f _ = False

f' [x, y] | True <- x, True <- y = True
f' _ = False

Note that the strictness of f differs from that of g defined below:

g [True, True] = True
g _ = False

*Main> f (False:undefined)
*** Exception: Prelude.undefined
*Main> g (False:undefined)
False

290 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/9953


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.8 Class and instances declarations

9.8.1 Class declarations

This section, and the next one, documents GHC’s type-class extensions. There’s lots of back-
ground in the paper Type classes: exploring the design space (Simon Peyton Jones, Mark
Jones, Erik Meijer).

Multi-parameter type classes

-XMultiParamTypeClasses
Implies -XConstrainedClassMethods (page 292)

Allow the definition of typeclasses with more than one parameter.
Multi-parameter type classes are permitted, with flag -XMultiParamTypeClasses (page 291).
For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

The superclasses of a class declaration

-XFlexibleContexts
Allow the use of complex constraints in class declaration contexts.

In Haskell 98 the context of a class declaration (which introduces superclasses) must be
simple; that is, each predicate must consist of a class applied to type variables. The flag
-XFlexibleContexts (page 291) (The context of a type signature (page 345)) lifts this re-
striction, so that the only restriction on the context in a class declaration is that the class
hierarchy must be acyclic. So these class declarations are OK:

class Functor (m k) => FiniteMap m k where
...

class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a

As in Haskell 98, the class hierarchy must be acyclic. However, the definition of “acyclic”
involves only the superclass relationships. For example, this is okay:

class C a where
op :: D b => a -> b -> b

class C a => D a where ...

Here, C is a superclass of D, but it’s OK for a class operation op of C to mention D. (It would
not be OK for D to be a superclass of C.)
With the extension that adds a kind of constraints (page 343), you can write more exotic
superclass definitions. The superclass cycle check is even more liberal in these case. For
example, this is OK:

9.8. Class and instances declarations 291

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/


GHC User’s Guide Documentation, Release 8.2.1.20171030

class A cls c where
meth :: cls c => c -> c

class A B c => B c where

A superclass context for a class C is allowed if, after expanding type synonyms to their right-
hand-sides, and uses of classes (other than C) to their superclasses, C does not occur syntac-
tically in the context.

Constrained class method types

-XConstrainedClassMethods
Allows the definition of further constraints on individual class methods.

Haskell 98 prohibits class method types to mention constraints on the class type variable,
thus:

class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool

The type of elem is illegal in Haskell 98, because it contains the constraint Eq a, which con-
strains only the class type variable (in this case a). this case a). More precisely, a constraint
in a class method signature is rejected if
• The constraint mentions at least one type variable. So this is allowed:

class C a where
op1 :: HasCallStack => a -> a
op2 :: (?x::Int) => Int -> a

• All of the type variables mentioned are bound by the class declaration, and none is locally
quantified. Examples:

class C a where
op3 :: Eq a => a -> a -- Rejected: constrains class variable only
op4 :: D b => a -> b -- Accepted: constrains a locally-quantified variable `b`
op5 :: D (a,b) => a -> b -- Accepted: constrains a locally-quantified variable `b`

GHC lifts this restriction with language extension -XConstrainedClassMethods (page 292).
The restriction is a pretty stupid one in the first place, so -XConstrainedClassMethods
(page 292) is implied by -XMultiParamTypeClasses (page 291).

Default method signatures

-XDefaultSignatures
Since 7.2

Allows the definition of default method signatures in class definitions.
Haskell 98 allows you to define a default implementation when declaring a class:

class Enum a where
enum :: [a]
enum = []

292 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

The type of the enum method is [a], and this is also the type of the default method.
You can lift this restriction and give another type to the default method using the flag -
XDefaultSignatures (page 292). For instance, if you have written a generic implementation
of enumeration in a class GEnumwith method genum in terms of GHC.Generics, you can specify
a default method that uses that generic implementation:

class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [a]
enum = map to genum

We reuse the keyword default to signal that a signature applies to the default method only;
when defining instances of the Enum class, the original type [a] of enum still applies. When
giving an empty instance, however, the default implementation map to genum is filled-in, and
type-checked with the type (Generic a, GEnum (Rep a)) => [a].
The type signature for a default method of a type class must take on the same form as the
corresponding main method’s type signature. Otherwise, the typechecker will reject that
class’s definition. By “take on the same form”, we mean that the default type signature should
differ from the main type signature only in their contexts. Therefore, if you have a method
bar:

class Foo a where
bar :: forall b. C => a -> b -> b

Then a default method for bar must take on the form:

default bar :: forall b. C' => a -> b -> b

C is allowed to be different from C', but the right-hand sides of the type signatures must
coincide. We require this because when you declare an empty instance for a class that uses
-XDefaultSignatures (page 292), GHC implicitly fills in the default implementation like this:

instance Foo Int where
bar = default_bar @Int

Where @Int utilizes visible type application (Visible type application (page 353)) to instantiate
the b in default bar :: forall b. C' => a -> b -> b. In order for this type application
to work, the default type signature for barmust have the same type variable order as the non-
default signature! But there is no obligation for C and C' to be the same (see, for instance,
the Enum example above, which relies on this).
To further explain this example, the right-hand side of the default type signature for bar
must be something that is alpha-equivalent to forall b. a -> b -> b (where a is bound by
the class itself, and is thus free in the methods’ type signatures). So this would also be an
acceptable default type signature:

default bar :: forall x. C' => a -> x -> x

But not this (since the free variable a is in the wrong place):

default bar :: forall b. C' => b -> a -> b

Nor this, since we can’t match the type variable b with the concrete type Int:

default bar :: C' => a -> Int -> Int

That last one deserves a special mention, however, since a -> Int -> Int is a straightfor-
ward instantiation of forall b. a -> b -> b. You can still write such a default type signa-
ture, but you now must use type equalities to do so:

9.8. Class and instances declarations 293



GHC User’s Guide Documentation, Release 8.2.1.20171030

default bar :: forall b. (C', b ~ Int) => a -> b -> b

We use default signatures to simplify generic programming in GHC (Generic programming
(page 415)).

Nullary type classes

-XNullaryTypeClasses
Since 7.8.1

Allows the use definition of type classes with no parameters. This flag has been replaced
by -XMultiParamTypeClasses (page 291).

Nullary (no parameter) type classes are enabled with -XMultiParamTypeClasses (page 291);
historically, they were enabled with the (now deprecated) -XNullaryTypeClasses (page 294).
Since there are no available parameters, there can be at most one instance of a nullary class.
A nullary type class might be used to document some assumption in a type signature (such as
reliance on the Riemann hypothesis) or add some globally configurable settings in a program.
For example,

class RiemannHypothesis where
assumeRH :: a -> a

-- Deterministic version of the Miller test
-- correctness depends on the generalised Riemann hypothesis
isPrime :: RiemannHypothesis => Integer -> Bool
isPrime n = assumeRH (...)

The type signature of isPrime informs users that its correctness depends on an unproven
conjecture. If the function is used, the user has to acknowledge the dependence with:

instance RiemannHypothesis where
assumeRH = id

9.8.2 Functional dependencies

-XFunctionalDependencies
Implies -XMultiParamTypeClasses (page 291)

Allow use of functional dependencies in class declarations.
Functional dependencies are implemented as described by Mark Jones in [Jones2000]
(page 497).
Functional dependencies are introduced by a vertical bar in the syntax of a class declaration;
e.g.

class (Monad m) => MonadState s m | m -> s where ...

class Foo a b c | a b -> c where ...

There should be more documentation, but there isn’t (yet). Yell if you need it.

294 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Rules for functional dependencies

In a class declaration, all of the class type variables must be reachable (in the sensementioned
in The context of a type signature (page 345)) from the free variables of each method type.
For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type of empty doesn’t mention a. Functional dependencies can make
the type variable reachable:

class Coll s a | s -> a where
empty :: s
insert :: s -> a -> s

Alternatively Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

which makes the connection between the type of a collection of a‘s (namely (s a)) and the
element type a. Occasionally this really doesn’t work, in which case you can split the class
like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from
the Hugs user manual, reproduced here (with minor changes) by kind permission of Mark
Jones.
Consider the following class, intended as part of a library for collection types:

class Collects e ce where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of the container
itself. Within this framework, we might want to define instances of this class for lists or
characteristic functions (both of which can be used to represent collections of any equality
type), bit sets (which can be used to represent collections of characters), or hash tables (which
can be used to represent any collection whose elements have a hash function). Omitting
standard implementation details, this would lead to the following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

9.8. Class and instances declarations 295



GHC User’s Guide Documentation, Release 8.2.1.20171030

All this looks quite promising; we have a class and a range of interesting implementations.
Unfortunately, there are some serious problems with the class declaration. First, the empty
function has an ambiguous type:

empty :: Collects e ce => ce

By “ambiguous” we mean that there is a type variable e that appears on the left of the =>
symbol, but not on the right. The problem with this is that, according to the theoretical
foundations of Haskell overloading, we cannot guarantee a well-defined semantics for any
term with an ambiguous type.
We can sidestep this specific problem by removing the empty member from the class declara-
tion. However, although the remaining members, insert and member, do not have ambiguous
types, we still run into problems when we try to use them. For example, consider the following
two functions:

f x y = insert x . insert y
g = f True 'a'

for which GHC infers the following types:

f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for f allows the two parameters x and y to be assigned different types,
even though it attempts to insert each of the two values, one after the other, into the same
collection. If we’re trying to model collections that contain only one type of value, then this
is clearly an inaccurate type. Worse still, the definition for g is accepted, without causing a
type error. As a result, the error in this code will not be flagged at the point where it appears.
Instead, it will show up only when we try to use g, which might even be in a different module.

An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to
use something like the following version of the class declaration:

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor c that is used to form the
collection type c e, and not over that collection type itself, represented by ce in the original
class declaration. This avoids the immediate problems that we mentioned above: empty has
type Collects e c => c e, which is not ambiguous.
The function f from the previous section has a more accurate type:

f :: (Collects e c) => e -> e -> c e -> c e

The function g from the previous section is now rejected with a type error as we would hope
because the type of f does not allow the two arguments to have different types. This, then,
is an example of a multiple parameter class that does actually work quite well in practice,
without ambiguity problems. There is, however, a catch. This version of the Collects class is
nowhere near as general as the original class seemed to be: only one of the four instances for
Collects given above can be used with this version of Collects because only one of them—
the instance for lists—has a collection type that can be written in the form c e, for some type

296 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

constructor c, and element type e.

Adding functional dependencies

To get a more useful version of the Collects class, GHC provides a mechanism that allows
programmers to specify dependencies between the parameters of a multiple parameter class
(For readers with an interest in theoretical foundations and previous work: The use of depen-
dency information can be seen both as a generalisation of the proposal for “parametric type
classes” that was put forward by Chen, Hudak, and Odersky, or as a special case of Mark
Jones’s later framework for “improvement” of qualified types. The underlying ideas are also
discussed in a more theoretical and abstract setting in a manuscript [implparam], where they
are identified as one point in a general design space for systems of implicit parameterisation).
To start with an abstract example, consider a declaration such as:

class C a b where ...

which tells us simply that C can be thought of as a binary relation on types (or type construc-
tors, depending on the kinds of a and b). Extra clauses can be included in the definition
of classes to add information about dependencies between parameters, as in the following
examples:

class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...

The notation a -> b used here between the | and where symbols — not to be confused with
a function type — indicates that the a parameter uniquely determines the b parameter, and
might be read as “a determines b.” Thus D is not just a relation, but actually a (partial)
function. Similarly, from the two dependencies that are included in the definition of E, we can
see that E represents a (partial) one-to-one mapping between types.
More generally, dependencies take the form x1 ... xn -> y1 ... ym, where x1, ..., xn, and
y1, ..., yn are type variables with n>0 and m>=0, meaning that the y parameters are uniquely
determined by the x parameters. Spaces can be used as separators if more than one variable
appears on any single side of a dependency, as in t -> a b. Note that a class may be anno-
tated with multiple dependencies using commas as separators, as in the definition of E above.
Some dependencies that we can write in this notation are redundant, and will be rejected be-
cause they don’t serve any useful purpose, and may instead indicate an error in the program.
Examples of dependencies like this include a -> a, a -> a a, a ->, etc. There can also be
some redundancy if multiple dependencies are given, as in a->b, b->c, a->c, and in which
some subset implies the remaining dependencies. Examples like this are not treated as er-
rors. Note that dependencies appear only in class declarations, and not in any other part of
the language. In particular, the syntax for instance declarations, class constraints, and types
is completely unchanged.
By including dependencies in a class declaration, we provide a mechanism for the program-
mer to specify each multiple parameter class more precisely. The compiler, on the other
hand, is responsible for ensuring that the set of instances that are in scope at any given point
in the program is consistent with any declared dependencies. For example, the following pair
of instance declarations cannot appear together in the same scope because they violate the
dependency for D, even though either one on its own would be acceptable:

instance D Bool Int where ...
instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

9.8. Class and instances declarations 297



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to be asso-
ciated with more than one choice for b, which contradicts the dependency specified in the
definition of D. More generally, this means that, in any instance of the form:

instance D t s where ...

for some particular types t and s, the only variables that can appear in s are the ones that
appear in t, and hence, if the type t is known, then s will be uniquely determined.
The benefit of including dependency information is that it allows us to define more general
multiple parameter classes, without ambiguity problems, and with the benefit of more ac-
curate types. To illustrate this, we return to the collection class example, and annotate the
original definition of Collects with a simple dependency:

class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The dependency ce -> e here specifies that the type e of elements is uniquely determined
by the type of the collection ce. Note that both parameters of Collects are of kind *; there
are no constructor classes here. Note too that all of the instances of Collects that we gave
earlier can be used together with this new definition.
What about the ambiguity problems that we encountered with the original definition? The
empty function still has type Collects e ce => ce, but it is no longer necessary to regard
that as an ambiguous type: Although the variable e does not appear on the right of the =>
symbol, the dependency for class Collects tells us that it is uniquely determined by ce, which
does appear on the right of the => symbol. Hence the context in which empty is used can
still give enough information to determine types for both ce and e, without ambiguity. More
generally, we need only regard a type as ambiguous if it contains a variable on the left of the
=> that is not uniquely determined (either directly or indirectly) by the variables on the right.
Dependencies also help to produce more accurate types for user defined functions, and hence
to provide earlier detection of errors, and less cluttered types for programmers to work with.
Recall the previous definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a c, Collects b c) => a -> b -> c -> c

Given the dependency information that we have for Collects, however, we can deduce that
a and b must be equal because they both appear as the second parameter in a Collects
constraint with the same first parameter c. Hence we can infer a shorter and more accurate
type for f:

f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of g will now be flagged as a type error.
Although we have given only a few examples here, it should be clear that the addition of
dependency information can help to make multiple parameter classes more useful in practice,
avoiding ambiguity problems, and allowing more general sets of instance declarations.

298 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.8.3 Instance declarations

An instance declaration has the form

instance ( assertion1, ..., assertionn) => class type1 ... typem where ...

The part before the “=>” is the context, while the part after the “=>” is the head of the instance
declaration.

Instance resolution

When GHC tries to resolve, say, the constraint C Int Bool, it tries to match every instance
declaration against the constraint, by instantiating the head of the instance declaration. Con-
sider these declarations:

instance context1 => C Int a where ... -- (A)
instance context2 => C a Bool where ... -- (B)

GHC’s default behaviour is that exactly one instance must match the constraint it is trying to
resolve. For example, the constraint C Int Bool matches instances (A) and (B), and hence
would be rejected; while C Int Char matches only (A) and hence (A) is chosen.
Notice that
• When matching, GHC takes no account of the context of the instance declaration
(context1 etc).

• It is fine for there to be a potential of overlap (by including both declarations (A) and (B),
say); an error is only reported if a particular constraint matches more than one.

See also Overlapping instances (page 303) for flags that loosen the instance resolution rules.

Relaxed rules for the instance head

-XTypeSynonymInstances
Allow definition of type class instances for type synonyms.

-XFlexibleInstances
Implies -XTypeSynonymInstances (page 299)

Allow definition of type class instances with arbitrary nested types in the instance head.
In Haskell 98 the head of an instance declarationmust be of the form C (T a1 ... an), where
C is the class, T is a data type constructor, and the a1 ... an are distinct type variables. In
the case of multi-parameter type classes, this rule applies to each parameter of the instance
head (Arguably it should be okay if just one has this form and the others are type variables,
but that’s the rules at the moment).
GHC relaxes this rule in two ways:
• With the -XTypeSynonymInstances (page 299) flag, instance heads may use type syn-
onyms. As always, using a type synonym is just shorthand for writing the RHS of the
type synonym definition. For example:

type Point a = (a,a)
instance C (Point a) where ...

is legal. The instance declaration is equivalent to

9.8. Class and instances declarations 299



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance C (a,a) where ...

As always, type synonyms must be fully applied. You cannot, for example, write:

instance Monad Point where ...

• The -XFlexibleInstances (page 299) flag allows the head of the instance declaration to
mention arbitrary nested types. For example, this becomes a legal instance declaration

instance C (Maybe Int) where ...

See also the rules on overlap (page 303).
The -XFlexibleInstances (page 299) flag implies -XTypeSynonymInstances (page 299).

However, the instance declaration must still conform to the rules for instance termination:
see Instance termination rules (page 300).

Relaxed rules for instance contexts

In Haskell 98, the class constraints in the context of the instance declaration must be of the
form C a where a is a type variable that occurs in the head.
The -XFlexibleContexts (page 291) flag relaxes this rule, as well as relaxing the correspond-
ing rule for type signatures (see The context of a type signature (page 345)). Specifically,
-XFlexibleContexts (page 291), allows (well-kinded) class constraints of form (C t1 ...
tn) in the context of an instance declaration.
Notice that the flag does not affect equality constraints in an instance context; they are per-
mitted by -XTypeFamilies (page 313) or -XGADTs (page 257).
However, the instance declaration must still conform to the rules for instance termination:
see Instance termination rules (page 300).

Instance termination rules

-XUndecidableInstances
Permit definition of instances which may lead to type-checker non-termination.

Regardless of -XFlexibleInstances (page 299) and -XFlexibleContexts (page 291), in-
stance declarations must conform to some rules that ensure that instance resolution will
terminate. The restrictions can be lifted with -XUndecidableInstances (page 300) (see Un-
decidable instances (page 301)).
The rules are these:
1. The Paterson Conditions: for each class constraint (C t1 ... tn) in the context

(a) No type variable has more occurrences in the constraint than in the head
(b) The constraint has fewer constructors and variables (taken together and counting

repetitions) than the head
(c) The constraint mentions no type functions. A type function application can in prin-

ciple expand to a type of arbitrary size, and so are rejected out of hand

300 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

2. The Coverage Condition. For each functional dependency, ⟨tvs⟩left -> ⟨tvs⟩right, of the
class, every type variable in S(⟨tvs⟩right) must appear in S(⟨tvs⟩left), where S is the substi-
tution mapping each type variable in the class declaration to the corresponding type in
the instance head.

These restrictions ensure that instance resolution terminates: each reduction step makes
the problem smaller by at least one constructor. You can find lots of background material
about the reason for these restrictions in the paper Understanding functional dependencies
via Constraint Handling Rules.
For example, these are okay:

instance C Int [a] -- Multiple parameters
instance Eq (S [a]) -- Structured type in head

-- Repeated type variable in head
instance C4 a a => C4 [a] [a]
instance Stateful (ST s) (MutVar s)

-- Head can consist of type variables only
instance C a
instance (Eq a, Show b) => C2 a b

-- Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b

But these are not:

-- Context assertion no smaller than head
instance C a => C a where ...

-- (C b b) has more occurrences of b than the head
instance C b b => Foo [b] where ...

The same restrictions apply to instances generated by deriving clauses. Thus the following
is accepted:

data MinHeap h a = H a (h a)
deriving (Show)

because the derived instance

instance (Show a, Show (h a)) => Show (MinHeap h a)

conforms to the above rules.
A useful idiom permitted by the above rules is as follows. If one allows overlapping instance
declarations then it’s quite convenient to have a “default instance” declaration that applies if
something more specific does not:

instance C a where
op = ... -- Default

Undecidable instances

Sometimes even the termination rules of Instance termination rules (page 300) are too oner-
ous. So GHC allows you to experiment with more liberal rules: if you use the experimental

9.8. Class and instances declarations 301

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/jfp06.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/jfp06.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

flag -XUndecidableInstances (page 300), both the Paterson Conditions and the Coverage
Condition (described in Instance termination rules (page 300)) are lifted. Termination is still
ensured by having a fixed-depth recursion stack. If you exceed the stack depth you get a sort
of backtrace, and the opportunity to increase the stack depth with -freduction-depth=⟨n⟩.
However, if you should exceed the default reduction depth limit, it is probably best just to
disable depth checking, with -freduction-depth=0. The exact depth your program requires
depends on minutiae of your code, and it may change between minor GHC releases. The
safest bet for released code – if you’re sure that it should compile in finite time – is just to
disable the check.
For example, sometimes you might want to use the following to get the effect of a “class
synonym”:

class (C1 a, C2 a, C3 a) => C a where { }

instance (C1 a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: C a => ...

instead of

f :: (C1 a, C2 a, C3 a) => ...

The restrictions on functional dependencies (Functional dependencies (page 294)) are par-
ticularly troublesome. It is tempting to introduce type variables in the context that do not
appear in the head, something that is excluded by the normal rules. For example:

class HasConverter a b | a -> b where
convert :: a -> b

data Foo a = MkFoo a

instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)

This is dangerous territory, however. Here, for example, is a program that would make the
typechecker loop:

class D a
class F a b | a->b
instance F [a] [[a]]
instance (D c, F a c) => D [a] -- 'c' is not mentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul a b c | a b -> c where
(.*.) :: a -> b -> c

instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v

The third instance declaration does not obey the coverage condition; and indeed the (some-
what strange) definition:

f = \ b x y -> if b then x .*. [y] else y

302 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

makes instance inference go into a loop, because it requires the constraint (Mul a [b] b).
The -XUndecidableInstances (page 300) flag is also used to lift some of the restrictions
imposed on type family instances. See Decidability of type synonym instances (page 319).

Overlapping instances

-XOverlappingInstances
-XIncoherentInstances

Deprecated flags to weaken checks intended to ensure instance resolution termination.
In general, as discussed in Instance resolution (page 299), GHC requires that it be unam-
biguous which instance declaration should be used to resolve a type-class constraint. GHC
also provides a way to to loosen the instance resolution, by allowing more than one instance
to match, provided there is a most specific one. Moreover, it can be loosened further, by al-
lowing more than one instance to match irrespective of whether there is a most specific one.
This section gives the details.
To control the choice of instance, it is possible to specify the overlap behavior for individ-
ual instances with a pragma, written immediately after the instance keyword. The pragma
may be one of: {-# OVERLAPPING #-}, {-# OVERLAPPABLE #-}, {-# OVERLAPS #-}, or {-#
INCOHERENT #-}.
The matching behaviour is also influenced by two module-level language extension flags: -
XOverlappingInstances (page 303) and -XIncoherentInstances (page 303). These flags
are now deprecated (since GHC 7.10) in favour of the fine-grained per-instance pragmas.
A more precise specification is as follows. The willingness to be overlapped or incoherent is
a property of the instance declaration itself, controlled as follows:
• An instance is incoherent if: it has an INCOHERENT pragma; or if the instance has no
pragma and it appears in a module compiled with -XIncoherentInstances (page 303).

• An instance is overlappable if: it has an OVERLAPPABLE or OVERLAPS pragma;
or if the instance has no pragma and it appears in a module compiled with -
XOverlappingInstances (page 303); or if the instance is incoherent.

• An instance is overlapping if: it has an OVERLAPPING or OVERLAPS pragma; or
if the instance has no pragma and it appears in a module compiled with -
XOverlappingInstances (page 303); or if the instance is incoherent.

Now suppose that, in some client module, we are searching for an instance of the target
constraint (C ty1 .. tyn). The search works like this:
• Find all instances I that match the target constraint; that is, the target constraint is a
substitution instance of I. These instance declarations are the candidates.

• Eliminate any candidate IX for which both of the following hold:
– There is another candidate IY that is strictly more specific; that is, IY is a substitution
instance of IX but not vice versa.

– Either IX is overlappable, or IY is overlapping. (This “either/or” design, rather than a
“both/and” design, allow a client to deliberately override an instance from a library,
without requiring a change to the library.)

• If exactly one non-incoherent candidate remains, select it. If all remaining candidates
are incoherent, select an arbitrary one. Otherwise the search fails (i.e. when more than
one surviving candidate is not incoherent).

9.8. Class and instances declarations 303



GHC User’s Guide Documentation, Release 8.2.1.20171030

• If the selected candidate (from the previous step) is incoherent, the search succeeds,
returning that candidate.

• If not, find all instances that unify with the target constraint, but do not match it. Such
non-candidate instances might match when the target constraint is further instantiated.
If all of them are incoherent, the search succeeds, returning the selected candidate; if
not, the search fails.

Notice that these rules are not influenced by flag settings in the client module, where the
instances are used. These rules make it possible for a library author to design a library that
relies on overlapping instances without the client having to know.
Errors are reported lazily (when attempting to solve a constraint), rather than eagerly (when
the instances themselves are defined). Consider, for example

instance C Int b where ..
instance C a Bool where ..

These potentially overlap, but GHC will not complain about the instance declarations them-
selves, regardless of flag settings. If we later try to solve the constraint (C Int Char) then
only the first instance matches, and all is well. Similarly with (C Bool Bool). But if we try
to solve (C Int Bool), both instances match and an error is reported.
As a more substantial example of the rules in action, consider

instance {-# OVERLAPPABLE #-} context1 => C Int b where ... -- (A)
instance {-# OVERLAPPABLE #-} context2 => C a Bool where ... -- (B)
instance {-# OVERLAPPABLE #-} context3 => C a [b] where ... -- (C)
instance {-# OVERLAPPING #-} context4 => C Int [Int] where ... -- (D)

Now suppose that the type inference engine needs to solve the constraint C Int [Int]. This
constraint matches instances (A), (C) and (D), but the last is more specific, and hence is
chosen.
If (D) did not exist then (A) and (C) would still be matched, but neither is most specific. In that
case, the program would be rejected, unless -XIncoherentInstances (page 303) is enabled,
in which case it would be accepted and (A) or (C) would be chosen arbitrarily.
An instance declaration is more specific than another iff the head of former is a substitution
instance of the latter. For example (D) is “more specific” than (C) because you can get from
(C) to (D) by substituting a := Int.
GHC is conservative about committing to an overlapping instance. For example:

f :: [b] -> [b]
f x = ...

Suppose that from the RHS of f we get the constraint C b [b]. But GHC does not commit
to instance (C), because in a particular call of f, b might be instantiate to Int, in which case
instance (D) would be more specific still. So GHC rejects the program.
If, however, you add the flag -XIncoherentInstances (page 303) when compiling the mod-
ule that contains (D), GHC will instead pick (C), without complaining about the problem of
subsequent instantiations.
Notice that we gave a type signature to f, so GHC had to check that f has the specified type.
Suppose instead we do not give a type signature, asking GHC to infer it instead. In this case,
GHC will refrain from simplifying the constraint C Int [b] (for the same reason as before)
but, rather than rejecting the program, it will infer the type

304 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f :: C b [b] => [b] -> [b]

That postpones the question of which instance to pick to the call site for f by which time
more is known about the type b. You can write this type signature yourself if you use the
-XFlexibleContexts (page 291) flag.
Exactly the same situation can arise in instance declarations themselves. Suppose we have

class Foo a where
f :: a -> a

instance Foo [b] where
f x = ...

and, as before, the constraint C Int [b] arises from f‘s right hand side. GHC will reject the
instance, complaining as before that it does not know how to resolve the constraint C Int
[b], because it matches more than one instance declaration. The solution is to postpone the
choice by adding the constraint to the context of the instance declaration, thus:

instance C Int [b] => Foo [b] where
f x = ...

(You need -XFlexibleInstances (page 299) to do this.)

9.8. Class and instances declarations 305



GHC User’s Guide Documentation, Release 8.2.1.20171030

Warning: Overlapping instances must be used with care. They can give rise to inco-
herence (i.e. different instance choices are made in different parts of the program) even
without -XIncoherentInstances (page 303). Consider:

{-# LANGUAGE OverlappingInstances #-}
module Help where

class MyShow a where
myshow :: a -> String

instance MyShow a => MyShow [a] where
myshow xs = concatMap myshow xs

showHelp :: MyShow a => [a] -> String
showHelp xs = myshow xs

{-# LANGUAGE FlexibleInstances, OverlappingInstances #-}
module Main where

import Help

data T = MkT

instance MyShow T where
myshow x = "Used generic instance"

instance MyShow [T] where
myshow xs = "Used more specific instance"

main = do { print (myshow [MkT]); print (showHelp [MkT]) }

In function showHelp GHC sees no overlapping instances, and so uses the MyShow [a]
instance without complaint. In the call to myshow in main, GHC resolves the MyShow [T]
constraint using the overlapping instance declaration in module Main. As a result, the
program prints

"Used more specific instance"
"Used generic instance"

(An alternative possible behaviour, not currently implemented, would be to reject module
Help on the grounds that a later instance declaration might overlap the local one.)

Instance signatures: type signatures in instance declarations

-XInstanceSigs
Since 7.6.1

Allow type signatures for members in instance definitions.
In Haskell, you can’t write a type signature in an instance declaration, but it is sometimes
convenient to do so, and the language extension -XInstanceSigs (page 306) allows you to do
so. For example:

data T a = MkT a a
instance Eq a => Eq (T a) where

(==) :: T a -> T a -> Bool -- The signature
(==) (MkT x1 x2) (MkTy y1 y2) = x1==y1 && x2==y2

306 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Some details
• The type signature in the instance declaration must be more polymorphic than (or the
same as) the one in the class declaration, instantiated with the instance type. For exam-
ple, this is fine:

instance Eq a => Eq (T a) where
(==) :: forall b. b -> b -> Bool
(==) x y = True

Here the signature in the instance declaration is more polymorphic than that required
by the instantiated class method.

• The code for the method in the instance declaration is typechecked against the type
signature supplied in the instance declaration, as you would expect. So if the instance
signature is more polymorphic than required, the code must be too.

• One stylistic reason for wanting to write a type signature is simple documentation. An-
other is that you may want to bring scoped type variables into scope. For example:

class C a where
foo :: b -> a -> (a, [b])

instance C a => C (T a) where
foo :: forall b. b -> T a -> (T a, [b])
foo x (T y) = (T y, xs)

where
xs :: [b]
xs = [x,x,x]

Provided that you also specify -XScopedTypeVariables (page 348) (Lexically scoped
type variables (page 348)), the forall b scopes over the definition of foo, and in par-
ticular over the type signature for xs.

9.8.4 Overloaded string literals

-XOverloadedStrings
Enable overloaded string literals (e.g. string literals desugared via the IsString class).

GHC supports overloaded string literals. Normally a string literal has type String, but with
overloaded string literals enabled (with -XOverloadedStrings (page 307)) a string literal has
type (IsString a) => a.
This means that the usual string syntax can be used, e.g., for ByteString, Text, and other
variations of string like types. String literals behave very much like integer literals, i.e., they
can be used in both expressions and patterns. If used in a pattern the literal will be replaced
by an equality test, in the same way as an integer literal is.
The class IsString is defined as:

class IsString a where
fromString :: String -> a

The only predefined instance is the obvious one to make strings work as usual:

instance IsString [Char] where
fromString cs = cs

9.8. Class and instances declarations 307



GHC User’s Guide Documentation, Release 8.2.1.20171030

The class IsString is not in scope by default. If you want to mention it explicitly (for example,
to give an instance declaration for it), you can import it from module GHC.Exts.
Haskell’s defaulting mechanism (Haskell Report, Section 4.3.4) is extended to cover string
literals, when -XOverloadedStrings (page 307) is specified. Specifically:
• Each type in a default declaration must be an instance of Num or of IsString.
• If no default declaration is given, then it is just as if the module contained the declara-
tion default( Integer, Double, String).

• The standard defaulting rule is extended thus: defaulting applies when all the unresolved
constraints involve standard classes or IsString; and at least one is a numeric class or
IsString.

So, for example, the expression length "foo" will give rise to an ambiguous use of IsString
a0 which, because of the above rules, will default to String.
A small example:

module Main where

import GHC.Exts( IsString(..) )

newtype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where

fromString = MyString

greet :: MyString -> MyString
greet "hello" = "world"
greet other = other

main = do
print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets translated
into an equality comparison.

9.8.5 Overloaded labels

-XOverloadedLabels
Since 8.0.1

Enable use of the #foo overloaded label syntax.
GHC supports overloaded labels, a form of identifier whose interpretation may depend both
on its type and on its literal text. When the -XOverloadedLabels (page 308) extension is
enabled, an overloaded label can written with a prefix hash, for example #foo. The type of
this expression is IsLabel "foo" a => a.
The class IsLabel is defined as:

class IsLabel (x :: Symbol) a where
fromLabel :: a

This is rather similar to the class IsString (see Overloaded string literals (page 307)), but
with an additional type parameter that makes the text of the label available as a type-level
string (see Type-Level Literals (page 340)). Note that fromLabel had an extra Proxy# x

308 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/decls.html#sect4.3.4


GHC User’s Guide Documentation, Release 8.2.1.20171030

argument in GHC 8.0, but this was removed in GHC 8.2 as a type application (see Visible type
application (page 353)) can be used instead.
There are no predefined instances of this class. It is not in scope by default, but can be
brought into scope by importing GHC.OverloadedLabels. Unlike IsString, there are no spe-
cial defaulting rules for IsLabel.
During typechecking, GHC will replace an occurrence of an overloaded label like #foo with
fromLabel @"foo". This will have some type alpha and require the solution of a class con-
straint IsLabel "foo" alpha.
The intention is for IsLabel to be used to support overloaded record fields and perhaps anony-
mous records. Thus, it may be given instances for base datatypes (in particular (->)) in the
future.
If -XRebindableSyntax (page 239) is enabled, overloaded labels will be desug-
ared using whatever fromLabel function is in scope, rather than always using
GHC.OverloadedLabels.fromLabel.
When writing an overloaded label, there must be no space between the hash sign and the
following identifier. The -XMagicHash (page 224) extension makes use of postfix hash signs;
if -XOverloadedLabels (page 308) and -XMagicHash (page 224) are both enabled then x#y
means x# y, but if only -XOverloadedLabels (page 308) is enabled then it means x #y. The
-XUnboxedTuples (page 222) extension makes (# a single lexeme, so when -XUnboxedTuples
(page 222) is enabled you must write a space between an opening parenthesis and an over-
loaded label. To avoid confusion, you are strongly encouraged to put a space before the hash
when using -XOverloadedLabels (page 308).
When using -XOverloadedLabels (page 308) (or other extensions that make use of hash signs)
in a .hsc file (see Writing Haskell interfaces to C code: hsc2hs (page 467)), the hash signs
must be doubled (write ##foo instead of #foo) to avoid them being treated as hsc2hs direc-
tives.
Here is an extension of the record access example in Type-Level Literals (page 340) showing
how an overloaded label can be used as a record selector:

{-# LANGUAGE DataKinds, KindSignatures, MultiParamTypeClasses,
FunctionalDependencies, FlexibleInstances,
OverloadedLabels, ScopedTypeVariables #-}

import GHC.OverloadedLabels (IsLabel(..))
import GHC.TypeLits (Symbol)

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y

instance Has a l b => IsLabel l (a -> b) where
fromLabel x = from x (Get :: Label l)

example = #x (Point 1 2)

9.8. Class and instances declarations 309



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.8.6 Overloaded lists

-XOverloadedLists
Since 7.8.1

Enable overloaded list syntax (e.g. desugaring of lists via the IsList class).
GHC supports overloading of the list notation. Let us recap the notation for constructing lists.
In Haskell, the list notation can be be used in the following seven ways:

[] -- Empty list
[x] -- x : []
[x,y,z] -- x : y : z : []
[x .. ] -- enumFrom x
[x,y ..] -- enumFromThen x y
[x .. y] -- enumFromTo x y
[x,y .. z] -- enumFromThenTo x y z

When the OverloadedLists extension is turned on, the aforementioned seven notations are
desugared as follows:

[] -- fromListN 0 []
[x] -- fromListN 1 (x : [])
[x,y,z] -- fromListN 3 (x : y : z : [])
[x .. ] -- fromList (enumFrom x)
[x,y ..] -- fromList (enumFromThen x y)
[x .. y] -- fromList (enumFromTo x y)
[x,y .. z] -- fromList (enumFromThenTo x y z)

This extension allows programmers to use the list notation for construction of structures like:
Set, Map, IntMap, Vector, Text and Array. The following code listing gives a few examples:

['0' .. '9'] :: Set Char
[1 .. 10] :: Vector Int
[("default",0), (k1,v1)] :: Map String Int
['a' .. 'z'] :: Text

List patterns are also overloaded. When the OverloadedLists extension is turned on, these
definitions are desugared as follows

f [] = ... -- f (toList -> []) = ...
g [x,y,z] = ... -- g (toList -> [x,y,z]) = ...

(Here we are using view-pattern syntax for the translation, see View patterns (page 226).)

The IsList class

In the above desugarings, the functions toList, fromList and fromListN are all methods of
the IsList class, which is itself exported from the GHC.Extsmodule. The type class is defined
as follows:

class IsList l where
type Item l

fromList :: [Item l] -> l
toList :: l -> [Item l]

310 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

fromListN :: Int -> [Item l] -> l
fromListN _ = fromList

The IsList class and its methods are intended to be used in conjunction with the Overload-
edLists extension.
• The type function Item returns the type of items of the structure l.
• The function fromList constructs the structure l from the given list of Item l.
• The function fromListN takes the input list’s length as a hint. Its behaviour should be
equivalent to fromList. The hint can be used for more efficient construction of the
structure l compared to fromList. If the given hint is not equal to the input list’s length
the behaviour of fromListN is not specified.

• The function toList should be the inverse of fromList.
It is perfectly fine to declare new instances of IsList, so that list notation becomes useful for
completely new data types. Here are several example instances:

instance IsList [a] where
type Item [a] = a
fromList = id
toList = id

instance (Ord a) => IsList (Set a) where
type Item (Set a) = a
fromList = Set.fromList
toList = Set.toList

instance (Ord k) => IsList (Map k v) where
type Item (Map k v) = (k,v)
fromList = Map.fromList
toList = Map.toList

instance IsList (IntMap v) where
type Item (IntMap v) = (Int,v)
fromList = IntMap.fromList
toList = IntMap.toList

instance IsList Text where
type Item Text = Char
fromList = Text.pack
toList = Text.unpack

instance IsList (Vector a) where
type Item (Vector a) = a
fromList = Vector.fromList
fromListN = Vector.fromListN
toList = Vector.toList

Rebindable syntax

When desugaring list notation with -XOverloadedLists (page 310) GHC uses the fromList
(etc) methods from module GHC.Exts. You do not need to import GHC.Exts for this to happen.
However if you use -XRebindableSyntax (page 239), then GHC instead uses whatever is
in scope with the names of toList, fromList and fromListN. That is, these functions are
rebindable; c.f. Rebindable syntax and the implicit Prelude import (page 239).

9.8. Class and instances declarations 311



GHC User’s Guide Documentation, Release 8.2.1.20171030

Defaulting

Currently, the IsList class is not accompanied with defaulting rules. Although feasible, not
much thought has gone into how to specify the meaning of the default declarations like:

default ([a])

Speculation about the future

The current implementation of the OverloadedLists extension can be improved by handling
the lists that are only populated with literals in a special way. More specifically, the com-
piler could allocate such lists statically using a compact representation and allow IsList
instances to take advantage of the compact representation. Equipped with this capability the
OverloadedLists extension will be in a good position to subsume the OverloadedStrings ex-
tension (currently, as a special case, string literals benefit from statically allocated compact
representation).

9.8.7 Undecidable (or recursive) superclasses

-XUndecidableSuperClasses
Since 8.0.1

Allow all superclass constraints, including those that may result in non-termination of
the typechecker.

The language extension -XUndecidableSuperClasses (page 312) allows much more flexible
constraints in superclasses.
A class cannot generally have itself as a superclass. So this is illegal

class C a => D a where ...
class D a => C a where ...

GHC implements this test conservatively when type functions, or type variables, are involved.
For example

type family F a :: Constraint
class F a => C a where ...

GHC will complain about this, because you might later add

type instance F Int = C Int

and now we’d be in a superclass loop. Here’s an example involving a type variable

class f (C f) => C f
class c => Id c

If we expanded the superclasses of C Id we’d get first Id (C Id) and thence C Id again.
But superclass constraints like these are sometimes useful, and the conservative check is
annoying where no actual recursion is involved.
Moreover genuninely-recursive superclasses are sometimes useful. Here’s a real-life example
(Trac #10318)

312 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

class (Frac (Frac a) ~ Frac a,
Fractional (Frac a),
IntegralDomain (Frac a))

=> IntegralDomain a where
type Frac a :: *

Here the superclass cycle does terminate but it’s not entirely straightforward to see that it
does.
With the language extension -XUndecidableSuperClasses (page 312) GHC lifts all restric-
tions on superclass constraints. If there really is a loop, GHC will only expand it to finite
depth.

9.9 Type families

-XTypeFamilies
Implies -XMonoLocalBinds (page 351), -XKindSignatures (page 347), -

XExplicitNamespaces (page 245)
Allow use and definition of indexed type and data families.

Indexed type families form an extension to facilitate type-level programming. Type families
are a generalisation of associated data types [AssocDataTypes2005] (page 497) and associ-
ated type synonyms [AssocTypeSyn2005] (page 497) Type families themselves are described
in Schrijvers 2008 [TypeFamilies2008] (page 497). Type families essentially provide type-
indexed data types and named functions on types, which are useful for generic programming
and highly parameterised library interfaces as well as interfaces with enhanced static infor-
mation, much like dependent types. They might also be regarded as an alternative to func-
tional dependencies, but provide a more functional style of type-level programming than the
relational style of functional dependencies.
Indexed type families, or type families for short, are type constructors that represent sets
of types. Set members are denoted by supplying the type family constructor with type pa-
rameters, which are called type indices. The difference between vanilla parametrised type
constructors and family constructors is much like between parametrically polymorphic func-
tions and (ad-hoc polymorphic) methods of type classes. Parametric polymorphic functions
behave the same at all type instances, whereas class methods can change their behaviour
in dependence on the class type parameters. Similarly, vanilla type constructors imply the
same data representation for all type instances, but family constructors can have varying
representation types for varying type indices.
Indexed type families come in three flavours: data families, open type synonym families, and
closed type synonym families. They are the indexed family variants of algebraic data types and
type synonyms, respectively. The instances of data families can be data types and newtypes.
Type families are enabled by the flag -XTypeFamilies (page 313). Additional information on
the use of type families in GHC is available on the Haskell wiki page on type families.

9.9.1 Data families

Data families appear in two flavours: (1) they can be defined on the toplevel or (2) they can
appear inside type classes (in which case they are known as associated types). The former is
the more general variant, as it lacks the requirement for the type-indexes to coincide with the
class parameters. However, the latter can lead to more clearly structured code and compiler

9.9. Type families 313

http://www.haskell.org/haskellwiki/GHC/Indexed_types


GHC User’s Guide Documentation, Release 8.2.1.20171030

warnings if some type instances were - possibly accidentally - omitted. In the following, we
always discuss the general toplevel form first and then cover the additional constraints placed
on associated types.

Data family declarations

Indexed data families are introduced by a signature, such as

data family GMap k :: * -> *

The special family distinguishes family from standard data declarations. The result kind
annotation is optional and, as usual, defaults to * if omitted. An example is

data family Array e

Named arguments can also be given explicit kind signatures if needed. Just as with GADT
declarations (page 257) named arguments are entirely optional, so that we can declare Array
alternatively with

data family Array :: * -> *

Data instance declarations

Instance declarations of data and newtype families are very similar to standard data and new-
type declarations. The only two differences are that the keyword data or newtype is followed
by instance and that some or all of the type arguments can be non-variable types, but may
not contain forall types or type synonym families. However, data families are generally al-
lowed in type parameters, and type synonyms are allowed as long as they are fully applied
and expand to a type that is itself admissible - exactly as this is required for occurrences of
type synonyms in class instance parameters. For example, the Either instance for GMap is

data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)

In this example, the declaration has only one variant. In general, it can be any number.
When the flag -Wunused-type-patterns (page 87) is enabled, type variables that are men-
tioned in the patterns on the left hand side, but not used on the right hand side are reported.
Variables that occur multiple times on the left hand side are also considered used. To suppress
the warnings, unused variables should be either replaced or prefixed with underscores. Type
variables starting with an underscore (_x) are otherwise treated as ordinary type variables.
This resembles the wildcards that can be used in Partial Type Signatures (page 365). How-
ever, there are some differences. No error messages reporting the inferred types are gener-
ated, nor does the flag -XPartialTypeSignatures (page 365) have any effect.
Data and newtype instance declarations are only permitted when an appropriate family dec-
laration is in scope - just as a class instance declaration requires the class declaration to be
visible. Moreover, each instance declaration has to conform to the kind determined by its
family declaration. This implies that the number of parameters of an instance declaration
matches the arity determined by the kind of the family.
A data family instance declaration can use the full expressiveness of ordinary data or newtype
declarations:
• Although, a data family is introduced with the keyword “data”, a data family instance
can use either data or newtype. For example:

314 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data family T a
data instance T Int = T1 Int | T2 Bool
newtype instance T Char = TC Bool

• A data instance can use GADT syntax for the data constructors, and indeed can define
a GADT. For example:

data family G a b
data instance G [a] b where

G1 :: c -> G [Int] b
G2 :: G [a] Bool

• You can use a deriving clause on a data instance or newtype instance declaration.
Even if data families are defined as toplevel declarations, functions that perform different
computations for different family instances may still need to be defined as methods of type
classes. In particular, the following is not possible:

data family T a
data instance T Int = A
data instance T Char = B
foo :: T a -> Int
foo A = 1
foo B = 2

Instead, you would have to write foo as a class operation, thus:

class Foo a where
foo :: T a -> Int

instance Foo Int where
foo A = 1

instance Foo Char where
foo B = 2

Given the functionality provided by GADTs (Generalised Algebraic Data Types), it might seem
as if a definition, such as the above, should be feasible. However, type families - in contrast
to GADTs - are open; i.e., new instances can always be added, possibly in other modules. Sup-
porting pattern matching across different data instances would require a form of extensible
case construct.

Overlap of data instances

The instance declarations of a data family used in a single program may not overlap at all,
independent of whether they are associated or not. In contrast to type class instances, this is
not only a matter of consistency, but one of type safety.

9.9.2 Synonym families

Type families appear in three flavours: (1) they can be defined as open families on the toplevel,
(2) they can be defined as closed families on the toplevel, or (3) they can appear inside type
classes (in which case they are known as associated type synonyms). Toplevel families are
more general, as they lack the requirement for the type-indexes to coincide with the class
parameters. However, associated type synonyms can lead to more clearly structured code
and compiler warnings if some type instances were - possibly accidentally - omitted. In the
following, we always discuss the general toplevel forms first and then cover the additional

9.9. Type families 315



GHC User’s Guide Documentation, Release 8.2.1.20171030

constraints placed on associated types. Note that closed associated type synonyms do not
exist.

Type family declarations

Open indexed type families are introduced by a signature, such as

type family Elem c :: *

The special family distinguishes family from standard type declarations. The result kind
annotation is optional and, as usual, defaults to * if omitted. An example is

type family Elem c

Parameters can also be given explicit kind signatures if needed. We call the number of pa-
rameters in a type family declaration, the family’s arity, and all applications of a type family
must be fully saturated with respect to to that arity. This requirement is unlike ordinary type
synonyms and it implies that the kind of a type family is not sufficient to determine a family’s
arity, and hence in general, also insufficient to determine whether a type family application
is well formed. As an example, consider the following declaration:

type family F a b :: * -> * -- F's arity is 2,
-- although its overall kind is * -> * -> * -> *

Given this declaration the following are examples of well-formed and malformed types:

F Char [Int] -- OK! Kind: * -> *
F Char [Int] Bool -- OK! Kind: *
F IO Bool -- WRONG: kind mismatch in the first argument
F Bool -- WRONG: unsaturated application

The result kind annotation is optional and defaults to * (like argument kinds) if omitted.
Polykinded type families can be declared using a parameter in the kind annotation:

type family F a :: k

In this case the kind parameter k is actually an implicit parameter of the type family.

Type instance declarations

Instance declarations of type families are very similar to standard type synonym declarations.
The only two differences are that the keyword type is followed by instance and that some
or all of the type arguments can be non-variable types, but may not contain forall types or
type synonym families. However, data families are generally allowed, and type synonyms are
allowed as long as they are fully applied and expand to a type that is admissible - these are
the exact same requirements as for data instances. For example, the [e] instance for Elem is

type instance Elem [e] = e

Type arguments can be replaced with underscores (_) if the names of the arguments don’t
matter. This is the same as writing type variables with unique names. Unused type arguments
can be replaced or prefixed with underscores to avoid warnings when the -Wunused-type-
patterns (page 87) flag is enabled. The same rules apply as for Data instance declarations
(page 314).

316 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Type family instance declarations are only legitimate when an appropriate family declaration
is in scope - just like class instances require the class declaration to be visible. Moreover,
each instance declaration has to conform to the kind determined by its family declaration,
and the number of type parameters in an instance declaration must match the number of
type parameters in the family declaration. Finally, the right-hand side of a type instance must
be a monotype (i.e., it may not include foralls) and after the expansion of all saturated vanilla
type synonyms, no synonyms, except family synonyms may remain.

Closed type families

A type family can also be declared with a where clause, defining the full set of equations for
that family. For example:

type family F a where
F Int = Double
F Bool = Char
F a = String

A closed type family’s equations are tried in order, from top to bottom, when simplifying a type
family application. In this example, we declare an instance for F such that F Int simplifies
to Double, F Bool simplifies to Char, and for any other type a that is known not to be Int or
Bool, F a simplifies to String. Note that GHC must be sure that a cannot unify with Int or
Bool in that last case; if a programmer specifies just F a in their code, GHC will not be able
to simplify the type. After all, a might later be instantiated with Int.
A closed type family’s equations have the same restrictions as the equations for open type
family instances.
A closed type family may be declared with no equations. Such closed type families are opaque
type-level definitions that will never reduce, are not necessarily injective (unlike empty data
types), and cannot be given any instances. This is different from omitting the equations of
a closed type family in a hs-boot file, which uses the syntax where .., as in that case there
may or may not be equations given in the hs file.

Type family examples

Here are some examples of admissible and illegal type instances:

type family F a :: *
type instance F [Int] = Int -- OK!
type instance F String = Char -- OK!
type instance F (F a) = a -- WRONG: type parameter mentions a type family
type instance

F (forall a. (a, b)) = b -- WRONG: a forall type appears in a type parameter
type instance

F Float = forall a.a -- WRONG: right-hand side may not be a forall type
type family H a where -- OK!

H Int = Int
H Bool = Bool
H a = String

type instance H Char = Char -- WRONG: cannot have instances of closed family
type family K a where -- OK!

type family G a b :: * -> *
type instance G Int = (,) -- WRONG: must be two type parameters
type instance G Int Char Float = Double -- WRONG: must be two type parameters

9.9. Type families 317



GHC User’s Guide Documentation, Release 8.2.1.20171030

Compatibility and apartness of type family equations

Theremust be some restrictions on the equations of type families, lest we define an ambiguous
rewrite system. So, equations of open type families are restricted to be compatible. Two type
patterns are compatible if
1. all corresponding types and implicit kinds in the patterns are apart, or
2. the two patterns unify producing a substitution, and the right-hand sides are equal under
that substitution.

Two types are considered apart if, for all possible substitutions, the types cannot reduce to a
common reduct.
The first clause of “compatible” is the more straightforward one. It says that the patterns of
two distinct type family instances cannot overlap. For example, the following is disallowed:

type instance F Int = Bool
type instance F Int = Char

The second clause is a little more interesting. It says that two overlapping type family in-
stances are allowed if the right-hand sides coincide in the region of overlap. Some examples
help here:

type instance F (a, Int) = [a]
type instance F (Int, b) = [b] -- overlap permitted

type instance G (a, Int) = [a]
type instance G (Char, a) = [a] -- ILLEGAL overlap, as [Char] /= [Int]

Note that this compatibility condition is independent of whether the type family is associated
or not, and it is not only a matter of consistency, but one of type safety.
For a polykinded type family, the kinds are checked for apartness just like types. For example,
the following is accepted:

type family J a :: k
type instance J Int = Bool
type instance J Int = Maybe

These instances are compatible because they differ in their implicit kind parameter; the first
uses * while the second uses * -> *.
The definition for “compatible” uses a notion of “apart”, whose definition in turn relies on type
family reduction. This condition of “apartness”, as stated, is impossible to check, so we use
this conservative approximation: two types are considered to be apart when the two types
cannot be unified, even by a potentially infinite unifier. Allowing the unifier to be infinite
disallows the following pair of instances:

type instance H x x = Int
type instance H [x] x = Bool

The type patterns in this pair equal if x is replaced by an infinite nesting of lists. Rejecting
instances such as these is necessary for type soundness.
Compatibility also affects closed type families. When simplifying an application of a closed
type family, GHC will select an equation only when it is sure that no incompatible previous
equation will ever apply. Here are some examples:

318 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

type family F a where
F Int = Bool
F a = Char

type family G a where
G Int = Int
G a = a

In the definition for F, the two equations are incompatible – their patterns are not apart, and
yet their right-hand sides do not coincide. Thus, before GHC selects the second equation, it
must be sure that the first can never apply. So, the type F a does not simplify; only a type such
as F Double will simplify to Char. In G, on the other hand, the two equations are compatible.
Thus, GHC can ignore the first equation when looking at the second. So, G a will simplify to
a.
However see Type, class and other declarations (page 26) for the overlap rules in GHCi.

Decidability of type synonym instances

-XUndecidableInstances
Relax restrictions on the decidability of type synonym family instances.

In order to guarantee that type inference in the presence of type families decidable, we need
to place a number of additional restrictions on the formation of type instance declarations (c.f.,
Definition 5 (Relaxed Conditions) of “Type Checking with Open Type Functions”). Instance
declarations have the general form

type instance F t1 .. tn = t

where we require that for every type family application (G s1 .. sm) in t,
1. s1 .. sm do not contain any type family constructors,
2. the total number of symbols (data type constructors and type variables) in s1 .. sm is
strictly smaller than in t1 .. tn, and

3. for every type variable a, a occurs in s1 .. sm at most as often as in t1 .. tn.
These restrictions are easily verified and ensure termination of type inference. However, they
are not sufficient to guarantee completeness of type inference in the presence of, so called,
‘’loopy equalities’‘, such as a ~ [F a], where a recursive occurrence of a type variable is
underneath a family application and data constructor application - see the above mentioned
paper for details.
If the option -XUndecidableInstances (page 300) is passed to the compiler, the above restric-
tions are not enforced and it is on the programmer to ensure termination of the normalisation
of type families during type inference.

9.9.3 Wildcards on the LHS of data and type family instances

When the name of a type argument of a data or type instance declaration doesn’t matter, it
can be replaced with an underscore (_). This is the same as writing a type variable with a
unique name.

data family F a b :: *
data instance F Int _ = Int
-- Equivalent to data instance F Int b = Int

9.9. Type families 319

http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html


GHC User’s Guide Documentation, Release 8.2.1.20171030

type family T a :: *
type instance T (a,_) = a
-- Equivalent to type instance T (a,b) = a

This use of underscore for wildcard in a type pattern is exactly like pattern matching in the
term language, but is rather different to the use of a underscore in a partial type signature
(see Type Wildcards (page 365)).
A type variable beginning with an underscore is not treated specially in a type or data instance
declaration. For example:

data instance F Bool _a = _a -> Int
-- Equivalent to data instance F Bool a = a -> Int

Contrast this with the special treatment of named wildcards in type signatures (Named Wild-
cards (page 366)).

9.9.4 Associated data and type families

A data or type synonym family can be declared as part of a type class, thus:

class GMapKey k where
data GMap k :: * -> *
...

class Collects ce where
type Elem ce :: *
...

When doing so, we (optionally) may drop the “family” keyword.
The type parameters must all be type variables, of course, and some (but not necessarily all)
of then can be the class parameters. Each class parameter may only be used at most once
per associated type, but some may be omitted and they may be in an order other than in the
class head. Hence, the following contrived example is admissible:

class C a b c where
type T c a x :: *

Here c and a are class parameters, but the type is also indexed on a third parameter x.

Associated instances

When an associated data or type synonym family instance is declared within a type class
instance, we (optionally) may drop the instance keyword in the family instance:

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...

instance Eq (Elem [e]) => Collects [e] where
type Elem [e] = e
...

The data or type family instance for an assocated type must follow the rule that the type
indexes corresponding to class parameters must have precisely the same as type given in the

320 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance head. For example:

class Collects ce where
type Elem ce :: *

instance Eq (Elem [e]) => Collects [e] where
-- Choose one of the following alternatives:
type Elem [e] = e -- OK
type Elem [x] = x -- BAD; '[x]' is differnet to '[e]' from head
type Elem x = x -- BAD; 'x' is different to '[e]'
type Elem [Maybe x] = x -- BAD: '[Maybe x]' is different to '[e]'

Note the following points:
• An instance for an associated family can only appear as part of an instance declarations
of the class in which the family was declared, just as with the equations of the methods
of a class.

• The variables on the right hand side of the type family equation must, as usual, be bound
on the left hand side.

• The instance for an associated type can be omitted in class instances. In that case,
unless there is a default instance (see Associated type synonym defaults (page 321)), the
corresponding instance type is not inhabited; i.e., only diverging expressions, such as
undefined, can assume the type.

• Although it is unusual, there (currently) can be multiple instances for an associated fam-
ily in a single instance declaration. For example, this is legitimate:

instance GMapKey Flob where
data GMap Flob [v] = G1 v
data GMap Flob Int = G2 Int
...

Here we give two data instance declarations, one in which the last parameter is [v],
and one for which it is Int. Since you cannot give any subsequent instances for (GMap
Flob ...), this facility is most useful when the free indexed parameter is of a kind with
a finite number of alternatives (unlike *).

Associated type synonym defaults

It is possible for the class defining the associated type to specify a default for associated type
instances. So for example, this is OK:

class IsBoolMap v where
type Key v
type instance Key v = Int

lookupKey :: Key v -> v -> Maybe Bool

instance IsBoolMap [(Int, Bool)] where
lookupKey = lookup

In an instance declaration for the class, if no explicit type instance declaration is given for
the associated type, the default declaration is used instead, just as with default class methods.
Note the following points:
• The instance keyword is optional.

9.9. Type families 321



GHC User’s Guide Documentation, Release 8.2.1.20171030

• There can be at most one default declaration for an associated type synonym.
• A default declaration is not permitted for an associated data type.
• The default declaration must mention only type variables on the left hand side, and the
right hand side must mention only type variables bound on the left hand side. However,
unlike the associated type family declaration itself, the type variables of the default in-
stance are independent of those of the parent class.

Here are some examples:

class C a where
type F1 a :: *
type instance F1 a = [a] -- OK
type instance F1 a = a->a -- BAD; only one default instance is allowed

type F2 b a -- OK; note the family has more type
-- variables than the class

type instance F2 c d = c->d -- OK; you don't have to use 'a' in the type instance

type F3 a
type F3 [b] = b -- BAD; only type variables allowed on the LHS

type F4 a
type F4 b = a -- BAD; 'a' is not in scope in the RHS

Scoping of class parameters

The visibility of class parameters in the right-hand side of associated family instances depends
solely on the parameters of the family. As an example, consider the simple class declaration

class C a b where
data T a

Only one of the two class parameters is a parameter to the data family. Hence, the following
instance declaration is invalid:

instance C [c] d where
data T [c] = MkT (c, d) -- WRONG!! 'd' is not in scope

Here, the right-hand side of the data instance mentions the type variable d that does not occur
in its left-hand side. We cannot admit such data instances as they would compromise type
safety.

Instance contexts and associated type and data instances

Associated type and data instance declarations do not inherit any context specified on the
enclosing instance. For type instance declarations, it is unclear what the context would mean.
For data instance declarations, it is unlikely a user would want the context repeated for every
data constructor. The only place where the context might likely be useful is in a deriving
clause of an associated data instance. However, even here, the role of the outer instance
context is murky. So, for clarity, we just stick to the rule above: the enclosing instance context
is ignored. If you need to use a non-trivial context on a derived instance, use a standalone
deriving (page 268) clause (at the top level).

322 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.9.5 Import and export

The rules for export lists (Haskell Report Section 5.2) needs adjustment for type families:
• The form T(..), where T is a data family, names the family T and all the in-scope con-
structors (whether in scope qualified or unqualified) that are data instances of T.

• The form T(.., ci, .., fj, ..), where T is a data family, names T and the specified
constructors ci and fields fj as usual. The constructors and field names must belong to
some data instance of T, but are not required to belong to the same instance.

• The form C(..), where C is a class, names the class C and all its methods and associated
types.

• The form C(.., mi, .., type Tj, ..), where C is a class, names the class C, and the
specified methods mi and associated types Tj. The types need a keyword “type” to
distinguish them from data constructors.

• Whenever there is no export list and a data instance is defined, the corresponding data
family type constructor is exported along with the new data constructors, regardless of
whether the data family is defined locally or in another module.

Examples

Recall our running GMapKey class example:

class GMapKey k where
data GMap k :: * -> *
insert :: GMap k v -> k -> v -> GMap k v
lookup :: GMap k v -> k -> Maybe v
empty :: GMap k v

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...method declarations...

Here are some export lists and their meaning:

• module GMap( GMapKey )

Exports just the class name.

• module GMap( GMapKey(..) )

Exports the class, the associated type GMap and the member functions empty, lookup,
and insert. The data constructors of GMap (in this case GMapEither) are not exported.

• module GMap( GMapKey( type GMap, empty, lookup, insert ) )

Same as the previous item. Note the “type” keyword.

• module GMap( GMapKey(..), GMap(..) )

Same as previous item, but also exports all the data constructors for GMap, namely
GMapEither.

• module GMap ( GMapKey( empty, lookup, insert), GMap(..) )

Same as previous item.

9.9. Type families 323

http://www.haskell.org/onlinereport/modules.html#sect5.2


GHC User’s Guide Documentation, Release 8.2.1.20171030

• module GMap ( GMapKey, empty, lookup, insert, GMap(..) )

Same as previous item.
Two things to watch out for:
• You cannot write GMapKey(type GMap(..)) — i.e., sub-component specifications cannot
be nested. To specify GMap‘s data constructors, you have to list it separately.

• Consider this example:

module X where
data family D

module Y where
import X
data instance D Int = D1 | D2

Module Y exports all the entities defined in Y, namely the data constructors D1 and D2,
and implicitly the data family D, even though it’s defined in X. This means you can write
import Y( D(D1,D2) ) without giving an explicit export list like this:

module Y( D(..) ) where ...
or module Y( module Y, D ) where ...

Instances

Family instances are implicitly exported, just like class instances. However, this applies only
to the heads of instances, not to the data constructors an instance defines.

9.9.6 Type families and instance declarations

Type families require us to extend the rules for the form of instance heads, which are given
in Relaxed rules for the instance head (page 299). Specifically:
• Data type families may appear in an instance head
• Type synonym families may not appear (at all) in an instance head

The reason for the latter restriction is that there is no way to check for instance matching.
Consider

type family F a
type instance F Bool = Int

class C a

instance C Int
instance C (F a)

Now a constraint (C (F Bool)) would match both instances. The situation is especially bad
because the type instance for F Bool might be in another module, or even in a module that
is not yet written.
However, type class instances of instances of data families can be defined much like any other
data type. For example, we can say

324 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data instance T Int = T1 Int | T2 Bool
instance Eq (T Int) where

(T1 i) == (T1 j) = i==j
(T2 i) == (T2 j) = i==j
_ == _ = False

Note that class instances are always for particular instances of a data family and never for
an entire family as a whole. This is for essentially the same reasons that we cannot define
a toplevel function that performs pattern matching on the data constructors of different in-
stances of a single type family. It would require a form of extensible case construct.
Data instance declarations can also have deriving clauses. For example, we can write

data GMap () v = GMapUnit (Maybe v)
deriving Show

which implicitly defines an instance of the form

instance Show v => Show (GMap () v) where ...

9.9.7 Injective type families

-XTypeFamilyDependencies
Implies -XTypeFamilies (page 313)
Since 8.0.1

Allow functional dependency annotations on type families. This allows one to define
injective type families.

Starting with GHC 8.0 type families can be annotated with injectivity information. This infor-
mation is then used by GHC during type checking to resolve type ambiguities in situations
where a type variable appears only under type family applications. Consider this contrived
example:

type family Id a
type instance Id Int = Int
type instance Id Bool = Bool

id :: Id t -> Id t
id x = x

Here the definition of id will be rejected because type variable t appears only under type
family applications and is thus ambiguous. But this code will be accepted if we tell GHC that
Id is injective, which means it will be possible to infer t at call sites from the type of the
argument:

type family Id a = r | r -> a

Injective type families are enabled with -XTypeFamilyDependencies language extension.
This extension implies -XTypeFamilies.
For full details on injective type families refer to Haskell Symposium 2015 paper Injective
type families for Haskell.

9.9. Type families 325

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

Syntax of injectivity annotation

Injectivity annotation is added after type family head and consists of two parts:
• a type variable that names the result of a type family. Syntax: = tyvar or = (tyvar ::
kind). Type variable must be fresh.

• an injectivity annotation of the form | A -> B, where A is the result type variable (see
previous bullet) and B is a list of argument type and kind variables in which type family
is injective. It is possible to omit some variables if type family is not injective in them.

Examples:

type family Id a = result | result -> a where
type family F a b c = d | d -> a c b
type family G (a :: k) b c = foo | foo -> k b where

For open and closed type families it is OK to name the result but skip the injectivity annotation.
This is not the case for associated type synonyms, where the named result without injectivity
annotation will be interpreted as associated type synonym default.

Verifying injectivity annotation against type family equations

Once the user declares type family to be injective GHC must verify that this declaration is
correct, ie. type family equations don’t violate the injectivity annotation. A general idea is
that if at least one equation (bullets (1), (2) and (3) below) or a pair of equations (bullets (4)
and (5) below) violates the injectivity annotation then a type family is not injective in a way
user claims and an error is reported. In the bullets below RHS refers to the right-hand side
of the type family equation being checked for injectivity. LHS refers to the arguments of that
type family equation. Below are the rules followed when checking injectivity of a type family:
1. If a RHS of a type family equation is a type family application GHC reports that the type
family is not injective.

2. If a RHS of a type family equation is a bare type variable we require that all LHS variables
(including implicit kind variables) are also bare. In other words, this has to be a sole
equation of that type family and it has to cover all possible patterns. If the patterns are
not covering GHC reports that the type family is not injective.

3. If a LHS type variable that is declared as injective is not mentioned on injective position
in the RHS GHC reports that the type family is not injective. Injective position means
either argument to a type constructor or injective argument to a type family.

4. Open type families Open type families are typechecked incrementally. This means that
when a module is imported type family instances contained in that module are checked
against instances present in already imported modules.
A pair of an open type family equations is checked by attempting to unify their RHSs.
If the RHSs don’t unify this pair does not violate injectivity annotation. If unification
succeeds with a substitution then LHSs of unified equations must be identical under
that substitution. If they are not identical then GHC reports that the type family is not
injective.

5. In a closed type family all equations are ordered and in one place. Equations are also
checked pair-wise but this time an equation has to be paired with all the preceeding
equations. Of course a single-equation closed type family is trivially injective (unless
(1), (2) or (3) above holds).

326 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

When checking a pair of closed type family equations GHC tried to unify their RHSs. If
they don’t unify this pair of equations does not violate injectivity annotation. If the RHSs
can be unified under some substitution (possibly empty) then either the LHSs unify under
the same substitution or the LHS of the latter equation is subsumed by earlier equations.
If neither condition is met GHC reports that a type family is not injective.

Note that for the purpose of injectivity check in bullets (4) and (5) GHC uses a special variant
of unification algorithm that treats type family applications as possibly unifying with anything.

9.10 Datatype promotion

-XDataKinds
Since 7.4.1

Allow promotion of data types to kind level.
This section describes data type promotion, an extension to the kind system that complements
kind polymorphism. It is enabled by -XDataKinds (page 327), and described in more detail
in the paper Giving Haskell a Promotion, which appeared at TLDI 2012.

9.10.1 Motivation

Standard Haskell has a rich type language. Types classify terms and serve to avoid many com-
mon programming mistakes. The kind language, however, is relatively simple, distinguishing
only regular types (kind *) and type constructors (e.g. kind * -> * -> *). In particular
when using advanced type system features, such as type families (Type families (page 313))
or GADTs (Generalised Algebraic Data Types (GADTs) (page 257)), this simple kind system
is insufficient, and fails to prevent simple errors. Consider the example of type-level natural
numbers, and length-indexed vectors:

data Ze
data Su n

data Vec :: * -> * -> * where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)

The kind of Vec is * -> * -> *. This means that, e.g., Vec Int Char is a well-kinded type,
even though this is not what we intend when defining length-indexed vectors.
With -XDataKinds (page 327), the example above can then be rewritten to:

data Nat = Ze | Su Nat

data Vec :: * -> Nat -> * where
Nil :: Vec a 'Ze
Cons :: a -> Vec a n -> Vec a ('Su n)

With the improved kind of Vec, things like Vec Int Char are now ill-kinded, and GHC will
report an error.

9.10. Datatype promotion 327

http://dreixel.net/research/pdf/ghp.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.10.2 Overview

With -XDataKinds (page 327), GHC automatically promotes every datatype to be a kind and
its (value) constructors to be type constructors. The following types

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data Pair a b = Pair a b

data Sum a b = L a | R b

give rise to the following kinds and type constructors (where promoted constructors are pre-
fixed by a tick '):

Nat :: *
'Zero :: Nat
'Succ :: Nat -> Nat

List :: * -> *
'Nil :: forall k. List k
'Cons :: forall k. k -> List k -> List k

Pair :: * -> * -> *
'Pair :: forall k1 k2. k1 -> k2 -> Pair k1 k2

Sum :: * -> * -> *
'L :: k1 -> Sum k1 k2
'R :: k2 -> Sum k1 k2

The following restrictions apply to promotion:
• We promote data types and newtypes; type synonyms and type/data families are not
promoted (Type families (page 313)).

• We only promote types whose kinds are of the form * -> ... -> * -> *. In particular,
we do not promote higher-kinded datatypes such as data Fix f = In (f (Fix f)), or
datatypes whose kinds involve promoted types such as Vec :: * -> Nat -> *.

• We do not promote data constructors that are kind polymorphic, involve constraints,
mention type or data families, or involve types that are not promotable.

The flag -XTypeInType (page 330) (which implies -XDataKinds (page 327)) relaxes some of
these restrictions, allowing:
• Promotion of type synonyms and type families, but not data families. GHC’s type theory
just isn’t up to the task of promoting data families, which requires full dependent types.

• All datatypes, even those with rich kinds, get promoted. For example:

data Proxy a = Proxy
data App f a = MkApp (f a) -- App :: forall k. (k -> *) -> k -> *
x = Proxy :: Proxy ('MkApp ('Just 'True))

9.10.3 Distinguishing between types and constructors

In the examples above, all promoted constructors are prefixed with a single quote mark '.
This mark tells GHC to look in the data constructor namespace for a name, not the type

328 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

(constructor) namespace. Consider

data P = MkP -- 1

data Prom = P -- 2

We can thus distinguish the type P (which has a constructor MkP) from the promoted data
constructor 'P (of kind Prom).
As a convenience, GHC allows you to omit the quote mark when the name is unambiguous.
However, our experience has shown that the quote mark helps to make code more readable
and less error-prone. GHC thus supports -Wunticked-promoted-constructors (page 85)
that will warn you if you use a promoted data constructor without a preceding quote mark.
Just as in the case of Template Haskell (Syntax (page 372)), GHC gets confused if you put a
quote mark before a data constructor whose second character is a quote mark. In this case,
just put a space between the promotion quote and the data constructor:

data T = A'
type S = 'A' -- ERROR: looks like a character
type R = ' A' -- OK: promoted `A'`

9.10.4 Promoted list and tuple types

With -XDataKinds (page 327), Haskell’s list and tuple types are natively promoted to kinds,
and enjoy the same convenient syntax at the type level, albeit prefixed with a quote:

data HList :: [*] -> * where
HNil :: HList '[]
HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (*,*) -> * where
Tuple :: a -> b -> Tuple '(a,b)

foo0 :: HList '[]
foo0 = HNil

foo1 :: HList '[Int]
foo1 = HCons (3::Int) HNil

foo2 :: HList [Int, Bool]
foo2 = ...

For type-level lists of two or more elements, such as the signature of foo2 above, the quote
may be omitted because the meaning is unambiguous. But for lists of one or zero elements
(as in foo0 and foo1), the quote is required, because the types [] and [Int] have existing
meanings in Haskell.

Note: The declaration for HCons also requires -XTypeOperators (page 248) because of infix
type operator (:')

9.10.5 Promoting existential data constructors

Note that we do promote existential data constructors that are otherwise suitable. For exam-
ple, consider the following:

9.10. Datatype promotion 329



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Ex :: * where
MkEx :: forall a. a -> Ex

Both the type Ex and the data constructor MkEx get promoted, with the polymorphic kind 'MkEx
:: forall k. k -> Ex. Somewhat surprisingly, you can write a type family to extract the
member of a type-level existential:

type family UnEx (ex :: Ex) :: k
type instance UnEx (MkEx x) = x

At first blush, UnEx seems poorly-kinded. The return kind k is not mentioned in the arguments,
and thus it would seem that an instance would have to return a member of k for any k. How-
ever, this is not the case. The type family UnEx is a kind-indexed type family. The return kind
k is an implicit parameter to UnEx. The elaborated definitions are as follows (where implicit
parameters are denoted by braces):

type family UnEx {k :: *} (ex :: Ex) :: k
type instance UnEx {k} (MkEx @k x) = x

Thus, the instance triggers only when the implicit parameter to UnEx matches the implicit
parameter to MkEx. Because k is actually a parameter to UnEx, the kind is not escaping the
existential, and the above code is valid.
See also Trac #7347.

9.11 Kind polymorphism and Type-in-Type

-XTypeInType
Implies -XPolyKinds (page 330), -XDataKinds (page 327), -XKindSignatures

(page 347)
Since 8.0.1

Allow kinds to be as intricate as types, allowing explicit quantification over kind vari-
ables, higher-rank kinds, and the use of type synonyms and families in kinds, among
other features.

-XPolyKinds
Implies -XKindSignatures (page 347)
Since 7.4.1

Allow kind polymorphic types.
This section describes GHC’s kind system, as it appears in version 8.0 and beyond. The kind
system as described here is always in effect, with or without extensions, although it is a con-
servative extension beyond standard Haskell. The extensions above simply enable syntax and
tweak the inference algorithm to allow users to take advantage of the extra expressiveness
of GHC’s kind system.

9.11.1 The difference between -XTypeInType and -XPolyKinds

It is natural to consider -XTypeInType (page 330) as an extension of -XPolyKinds (page 330).
The latter simply enables fewer features of GHC’s rich kind system than does the former. The

330 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/7347


GHC User’s Guide Documentation, Release 8.2.1.20171030

need for two separate extensions stems from their history: -XPolyKinds (page 330) was in-
troduced for GHC 7.4, when it was experimental and temperamental. The wrinkles were
smoothed out for GHC 7.6. -XTypeInType (page 330) was introduced for GHC 8.0, and is cur-
rently experimental and temperamental, with the wrinkles to be smoothed out in due course.
The intent of having the two extensions is that users can rely on -XPolyKinds (page 330) to
work properly while being duly sceptical of -XTypeInType (page 330). In particular, we rec-
ommend enabling -dcore-lint (page 187) whenever using -XTypeInType (page 330); that
flag turns on a set of internal checks within GHC that will discover bugs in the implementation
of -XTypeInType (page 330). Please report bugs at our bug tracker.
Although we have tried to allow the new behavior only when -XTypeInType (page 330) is
enabled, some particularly thorny cases may have slipped through. It is thus possible that
some construct is available in GHC 8.0 with -XPolyKinds (page 330) that was not possible in
GHC 7.x. If you spot such a case, you are welcome to submit that as a bug as well. We flag
newly-available capabilities below.

9.11.2 Overview of kind polymorphism

Consider inferring the kind for

data App f a = MkApp (f a)

In Haskell 98, the inferred kind for App is (* -> *) -> * -> *. But this is overly specific,
because another suitable Haskell 98 kind for App is ((* -> *) -> *) -> (* -> *) -> *,
where the kind assigned to a is * -> *. Indeed, without kind signatures (-XKindSignatures
(page 347)), it is necessary to use a dummy constructor to get a Haskell compiler to infer the
second kind. With kind polymorphism (-XPolyKinds (page 330)), GHC infers the kind forall
k. (k -> *) -> k -> * for App, which is its most general kind.
Thus, the chief benefit of kind polymorphism is that we can now infer these most general
kinds and use App at a variety of kinds:

App Maybe Int -- `k` is instantiated to *

data T a = MkT (a Int) -- `a` is inferred to have kind (* -> *)
App T Maybe -- `k` is instantiated to (* -> *)

9.11.3 Overview of Type-in-Type

GHC 8 extends the idea of kind polymorphism by declaring that types and kinds are indeed
one and the same. Nothing within GHC distinguishes between types and kinds. Another
way of thinking about this is that the type Bool and the “promoted kind” Bool are actually
identical. (Note that term True and the type 'True are still distinct, because the former can
be used in expressions and the latter in types.) This lack of distinction between types and
kinds is a hallmark of dependently typed languages. Full dependently typed languages also
remove the difference between expressions and types, but doing that in GHC is a story for
another day.
One simplification allowed by combining types and kinds is that the type of * is just *. It is
true that the * :: * axiom can lead to non-termination, but this is not a problem in GHC,
as we already have other means of non-terminating programs in both types and expressions.
This decision (among many, many others) does mean that despite the expressiveness of GHC’s
type system, a “proof” you write in Haskell is not an irrefutable mathematical proof. GHC
promises only partial correctness, that if your programs compile and run to completion, their

9.11. Kind polymorphism and Type-in-Type 331

https://ghc.haskell.org/trac/ghc/wiki/ReportABug


GHC User’s Guide Documentation, Release 8.2.1.20171030

results indeed have the types assigned. It makes no claim about programs that do not finish
in a finite amount of time.
To learn more about this decision and the design of GHC under the hood please see the paper
introducing this kind system to GHC/Haskell.

9.11.4 Principles of kind inference

Generally speaking, when -XPolyKinds (page 330) is on, GHC tries to infer the most gen-
eral kind for a declaration. In this case the definition has a right-hand side to inform kind
inference. But that is not always the case. Consider

type family F a

Type family declarations have no right-hand side, but GHC must still infer a kind for F. Since
there are no constraints, it could infer F :: forall k1 k2. k1 -> k2, but that seems too
polymorphic. So GHC defaults those entirely-unconstrained kind variables to * and we get F
:: * -> *. You can still declare F to be kind-polymorphic using kind signatures:

type family F1 a -- F1 :: * -> *
type family F2 (a :: k) -- F2 :: forall k. k -> *
type family F3 a :: k -- F3 :: forall k. * -> k
type family F4 (a :: k1) :: k2 -- F4 :: forall k1 k2. k1 -> k2

The general principle is this:
• When there is a right-hand side, GHC infers the most polymorphic kind consistent with
the right-hand side. Examples: ordinary data type and GADT declarations, class decla-
rations. In the case of a class declaration the role of “right hand side” is played by the
class method signatures.

• When there is no right hand side, GHC defaults argument and result kinds to ‘‘*‘‘, except
when directed otherwise by a kind signature. Examples: data and open type family
declarations.

This rule has occasionally-surprising consequences (see Trac #10132.

class C a where -- Class declarations are generalised
-- so C :: forall k. k -> Constraint

data D1 a -- No right hand side for these two family
type F1 a -- declarations, but the class forces (a :: k)

-- so D1, F1 :: forall k. k -> *

data D2 a -- No right-hand side so D2 :: * -> *
type F2 a -- No right-hand side so F2 :: * -> *

The kind-polymorphism from the class declaration makes D1 kind-polymorphic, but not so D2;
and similarly F1, F1.

9.11.5 Complete user-supplied kind signatures and polymorphic re-
cursion

Just as in type inference, kind inference for recursive types can only use monomorphic recur-
sion. Consider this (contrived) example:

332 Chapter 9. GHC Language Features

http://www.seas.upenn.edu/~sweirich/papers/fckinds.pdf
https://ghc.haskell.org/trac/ghc/ticket/10132


GHC User’s Guide Documentation, Release 8.2.1.20171030

data T m a = MkT (m a) (T Maybe (m a))
-- GHC infers kind T :: (* -> *) -> * -> *

The recursive use of T forced the second argument to have kind *. However, just as in type
inference, you can achieve polymorphic recursion by giving a complete user-supplied kind
signature (or CUSK) for T. A CUSK is present when all argument kinds and the result kind
are known, without any need for inference. For example:

data T (m :: k -> *) :: k -> * where
MkT :: m a -> T Maybe (m a) -> T m a

The complete user-supplied kind signature specifies the polymorphic kind for T, and this sig-
nature is used for all the calls to T including the recursive ones. In particular, the recursive
use of T is at kind *.
What exactly is considered to be a “complete user-supplied kind signature” for a type con-
structor? These are the forms:
• For a datatype, every type variable must be annotated with a kind. In a GADT-style
declaration, there may also be a kind signature (with a top-level :: in the header), but
the presence or absence of this annotation does not affect whether or not the declaration
has a complete signature.

data T1 :: (k -> *) -> k -> * where ...
-- Yes; T1 :: forall k. (k->*) -> k -> *

data T2 (a :: k -> *) :: k -> * where ...
-- Yes; T2 :: forall k. (k->*) -> k -> *

data T3 (a :: k -> *) (b :: k) :: * where ...
-- Yes; T3 :: forall k. (k->*) -> k -> *

data T4 (a :: k -> *) (b :: k) where ...
-- Yes; T4 :: forall k. (k->*) -> k -> *

data T5 a (b :: k) :: * where ...
-- No; kind is inferred

data T6 a b where ...
-- No; kind is inferred

• For a datatype with a top-level :: when -XTypeInType (page 330) is in effect: all kind
variables introduced after the :: must be explicitly quantified.

-- -XTypeInType is on
data T1 :: k -> * -- No CUSK: `k` is not explicitly quantified
data T2 :: forall k. k -> * -- CUSK: `k` is bound explicitly
data T3 :: forall (k :: *). k -> * -- still a CUSK

Note that the first example would indeed have a CUSKwithout -XTypeInType (page 330).
• For a class, every type variable must be annotated with a kind.
• For a type synonym, every type variable and the result type must all be annotated with
kinds:

type S1 (a :: k) = (a :: k) -- Yes S1 :: forall k. k -> k
type S2 (a :: k) = a -- No kind is inferred
type S3 (a :: k) = Proxy a -- No kind is inferred

9.11. Kind polymorphism and Type-in-Type 333



GHC User’s Guide Documentation, Release 8.2.1.20171030

Note that in S2 and S3, the kind of the right-hand side is rather apparent, but it is still
not considered to have a complete signature – no inference can be done before detecting
the signature.

• An un-associated open type or data family declaration always has a CUSK; un-annotated
type variables default to kind *:

data family D1 a -- D1 :: * -> *
data family D2 (a :: k) -- D2 :: forall k. k -> *
data family D3 (a :: k) :: * -- D3 :: forall k. k -> *
type family S1 a :: k -> * -- S1 :: forall k. * -> k -> *

• An associated type or data family declaration has a CUSK precisely if its enclosing class
has a CUSK.

class C a where -- no CUSK
type AT a b -- no CUSK, b is defaulted

class D (a :: k) where -- yes CUSK
type AT2 a b -- yes CUSK, b is defaulted

• A closed type family has a complete signature when all of its type variables are annotated
and a return kind (with a top-level ::) is supplied.

With -XTypeInType (page 330) enabled, it is possible to write a datatype that syntactically
has a CUSK (according to the rules above) but actually requires some inference. As a very
contrived example, consider

data Proxy a -- Proxy :: forall k. k -> *
data X (a :: Proxy k)

According to the rules above X has a CUSK. Yet, what is the kind of k? It is impossible to
know. This code is thus rejected as masquerading as having a CUSK, but not really. If you
wish k to be polykinded, it is straightforward to specify this:

data X (a :: Proxy (k1 :: k2))

The above definition is indeed fully fixed, with no masquerade.

9.11.6 Kind inference in closed type families

Although all open type families are considered to have a complete user-supplied kind signa-
ture, we can relax this condition for closed type families, where we have equations on which
to perform kind inference. GHC will infer kinds for the arguments and result types of a closed
type family.
GHC supports kind-indexed type families, where the family matches both on the kind and
type. GHC will not infer this behaviour without a complete user-supplied kind signature, as
doing so would sometimes infer non-principal types. Indeed, we can see kind-indexing as a
form of polymorphic recursion, where a type is used at a kind other than its most general in
its own definition.
For example:

type family F1 a where
F1 True = False
F1 False = True
F1 x = x

334 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

-- F1 fails to compile: kind-indexing is not inferred

type family F2 (a :: k) where
F2 True = False
F2 False = True
F2 x = x

-- F2 fails to compile: no complete signature

type family F3 (a :: k) :: k where
F3 True = False
F3 False = True
F3 x = x

-- OK

9.11.7 Kind inference in class instance declarations

Consider the following example of a poly-kinded class and an instance for it:

class C a where
type F a

instance C b where
type F b = b -> b

In the class declaration, nothing constrains the kind of the type a, so it becomes a poly-kinded
type variable (a :: k). Yet, in the instance declaration, the right-hand side of the associated
type instance b -> b says that b must be of kind *. GHC could theoretically propagate this
information back into the instance head, and make that instance declaration apply only to
type of kind *, as opposed to types of any kind. However, GHC does not do this.
In short: GHC does not propagate kind information from the members of a class instance
declaration into the instance declaration head.
This lack of kind inference is simply an engineering problemwithin GHC, but getting it to work
would make a substantial change to the inference infrastructure, and it’s not clear the payoff
is worth it. If you want to restrict b‘s kind in the instance above, just use a kind signature in
the instance head.

9.11.8 Kind inference in type signatures

When kind-checking a type, GHC considers only what is written in that type when figuring
out how to generalise the type’s kind.
For example, consider these definitions (with -XScopedTypeVariables (page 348)):

data Proxy a -- Proxy :: forall k. k -> *
p :: forall a. Proxy a
p = Proxy :: Proxy (a :: *)

GHC reports an error, saying that the kind of a should be a kind variable k, not *. This is
because, by looking at the type signature forall a. Proxy a, GHC assumes a‘s kind should
be generalised, not restricted to be *. The function definition is then rejected for being more
specific than its type signature.

9.11. Kind polymorphism and Type-in-Type 335



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.11.9 Explicit kind quantification

Enabled by -XTypeInType (page 330), GHC now supports explicit kind quantification, as in
these examples:

data Proxy :: forall k. k -> *
f :: (forall k (a :: k). Proxy a -> ()) -> Int

Note that the second example has a forall that binds both a kind k and a type variable a of
kind k. In general, there is no limit to how deeply nested this sort of dependency can work.
However, the dependency must be well-scoped: forall (a :: k) k. ... is an error.
For backward compatibility, kind variables do not need to be bound explicitly, even if the type
starts with forall.
Accordingly, the rule for kind quantification in higher-rank contexts has changed slightly. In
GHC 7, if a kind variable was mentioned for the first time in the kind of a variable bound in
a non-top-level forall, the kind variable was bound there, too. That is, in f :: (forall (a
:: k). ...) -> ..., the k was bound by the same forall as the a. In GHC 8, however, all
kind variables mentioned in a type are bound at the outermost level. If you want one bound
in a higher-rank forall, include it explicitly.

9.11.10 Kind-indexed GADTs

Consider the type

data G (a :: k) where
GInt :: G Int
GMaybe :: G Maybe

This datatype G is GADT-like in both its kind and its type. Suppose you have g :: G a, where
a :: k. Then pattern matching to discover that g is in fact `GMaybe tells you both that k ~
(* -> *) and a ~ Maybe. The definition for G requires that -XTypeInType (page 330) be in
effect, but pattern-matching on G requires no extension beyond -XGADTs (page 257). That this
works is actually a straightforward extension of regular GADTs and a consequence of the fact
that kinds and types are the same.
Note that the datatype G is used at different kinds in its body, and therefore that kind-indexed
GADTs use a form of polymorphic recursion. It is thus only possible to use this feature if
you have provided a complete user-supplied kind signature for the datatype (Complete user-
supplied kind signatures and polymorphic recursion (page 332)).

9.11.11 Constraints in kinds

As kinds and types are the same, kinds can now (with -XTypeInType (page 330)) contain type
constraints. Only equality constraints are currently supported, however. We expect this to
extend to other constraints in the future.
Here is an example of a constrained kind:

type family IsTypeLit a where
IsTypeLit Nat = 'True
IsTypeLit Symbol = 'True
IsTypeLit a = 'False

data T :: forall a. (IsTypeLit a ~ 'True) => a -> * where

336 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

MkNat :: T 42
MkSymbol :: T "Don't panic!"

The declarations above are accepted. However, if we add MkOther :: T Int, we get an
error that the equality constraint is not satisfied; Int is not a type literal. Note that explicitly
quantifying with forall a is not necessary here.

9.11.12 The kind *

The kind * classifies ordinary types. Without -XTypeInType (page 330), this identifier is al-
ways in scope when writing a kind. However, with -XTypeInType (page 330), a user may wish
to use * in a type or a type operator * in a kind. To make this all more manageable, * becomes
an (almost) ordinary name with -XTypeInType (page 330) enabled. So as not to cause naming
collisions, it is not imported by default; you must import Data.Kind to get * (but only with
-XTypeInType (page 330) enabled).
The only way * is unordinary is in its parsing. In order to be backward compatible, * is parsed
as if it were an alphanumeric idenfifier; note that we do not write Int :: (*) but just plain
Int :: *. Due to the bizarreness with which * is parsed–and the fact that it is the only such
operator in GHC–there are some corner cases that are not handled. We are aware of three:
• In a Haskell-98-style data constructor, you must put parentheses around *, like this:

data Universe = Ty (*) | Num Int | ...

• In an import/export list, you must put parentheses around *, like this:

import Data.Kind ( type (*) )

Note that the keyword type there is just to disambiguate the import from a term-level
(*). (Explicit namespaces in import/export (page 245))

• In an instance declaration head (the part after the word instance), you must parenthe-
size *. This applies to all manners of instances, including the left-hand sides of individual
equations of a closed type family.

The Data.Kind module also exports Type as a synonym for *. Now that type synonyms work
in kinds, it is conceivable that we will deprecate * when there is a good migration story for
everyone to use Type. If you like neither of these names, feel free to write your own synonym:

type Set = * -- silly Agda programmers...

All the affordances for * also apply to ★, the Unicode variant of *.

9.11.13 Inferring dependency in datatype declarations

If a type variable a in a datatype, class, or type family declaration depends on another such
variable k in the same declaration, two properties must hold:
• a must appear after k in the declaration, and
• k must appear explicitly in the kind of some type variable in that declaration.

The first bullet simply means that the dependency must be well-scoped. The second bullet
concerns GHC’s ability to infer dependency. Inferring this dependency is difficult, and GHC
currently requires the dependency to be made explicit, meaning that k must appear in the
kind of a type variable, making it obvious to GHC that dependency is intended. For example:

9.11. Kind polymorphism and Type-in-Type 337



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Proxy k (a :: k) -- OK: dependency is "obvious"
data Proxy2 k a = P (Proxy k a) -- ERROR: dependency is unclear

In the second declaration, GHC cannot immediately tell that k should be a dependent variable,
and so the declaration is rejected.
It is conceivable that this restriction will be relaxed in the future, but it is (at the time of writ-
ing) unclear if the difficulties around this scenario are theoretical (inferring this dependency
would mean our type system does not have principal types) or merely practical (inferring
this dependency is hard, given GHC’s implementation). So, GHC takes the easy way out and
requires a little help from the user.

9.11.14 Kind defaulting without -XPolyKinds

Without -XPolyKinds (page 330) or -XTypeInType (page 330) enabled, GHC refuses to gen-
eralise over kind variables. It thus defaults kind variables to * when possible; when this is
not possible, an error is issued.
Here is an example of this in action:

{-# LANGUAGE TypeInType #-}
data Proxy a = P -- inferred kind: Proxy :: k -> *
data Compose f g x = MkCompose (f (g x))

-- inferred kind: Compose :: (b -> *) -> (a -> b) -> a -> *

-- separate module having imported the first
{-# LANGUAGE NoPolyKinds, DataKinds #-}
z = Proxy :: Proxy 'MkCompose

In the last line, we use the promoted constructor 'MkCompose, which has kind

forall (a :: *) (b :: *) (f :: b -> *) (g :: a -> b) (x :: a).
f (g x) -> Compose f g x

Now we must infer a type for z. To do so without generalising over kind variables, we must
default the kind variables of 'MkCompose. We can easily default a and b to *, but f and gwould
be ill-kinded if defaulted. The definition for z is thus an error.

9.11.15 Pretty-printing in the presence of kind polymorphism

With kind polymorphism, there is quite a bit going on behind the scenes that may be invisible
to a Haskell programmer. GHC supports several flags that control how types are printed in
error messages and at the GHCi prompt. See the discussion of type pretty-printing options
(page 72) for further details. If you are using kind polymorphism and are confused as to
why GHC is rejecting (or accepting) your program, we encourage you to turn on these flags,
especially -fprint-explicit-kinds (page 72).

9.12 Levity polymorphism

In order to allow full flexibility in how kinds are used, it is necessary to use the kind system
to differentiate between boxed, lifted types (normal, everyday types like Int and [Bool]) and
unboxed, primitive types (Unboxed types and primitive operations (page 220)) like Int#. We
thus have so-called levity polymorphism.

338 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Here are the key definitions, all available from GHC.Exts:

TYPE :: RuntimeRep -> * -- highly magical, built into GHC

data RuntimeRep = LiftedRep -- for things like `Int`
| UnliftedRep -- for things like `Array#`
| IntRep -- for `Int#`
| TupleRep [RuntimeRep] -- unboxed tuples, indexed by the representations of the elements
| SumRep [RuntimeRep] -- unboxed sums, indexed by the representations of the disjuncts
| ...

type * = TYPE LiftedRep -- * is just an ordinary type synonym

The idea is that we have a new fundamental type constant TYPE, which is parameterised by a
RuntimeRep. We thus get Int# :: TYPE 'IntRep and Bool :: TYPE 'LiftedRep. Anything
with a type of the form TYPE x can appear to either side of a function arrow ->. We can thus
say that -> has type TYPE r1 -> TYPE r2 -> TYPE 'LiftedRep. The result is always lifted
because all functions are lifted in GHC.

9.12.1 No levity-polymorphic variables or arguments

If GHC didn’t have to compile programs that run in the real world, that would be the end of
the story. But representation polymorphism can cause quite a bit of trouble for GHC’s code
generator. Consider

bad :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).

(a -> b) -> a -> b
bad f x = f x

This seems like a generalisation of the standard $ operator. If we think about compiling
this to runnable code, though, problems appear. In particular, when we call bad, we must
somehow pass x into bad. How wide (that is, how many bits) is x? Is it a pointer? What kind
of register (floating-point or integral) should x go in? It’s all impossible to say, because x‘s
type, a :: TYPE r1 is levity polymorphic. We thus forbid such constructions, via the following
straightforward rule:

No variable may have a levity-polymorphic type.
This eliminates bad because the variable x would have a representation-polymorphic type.
However, not all is lost. We can still do this:

($) :: forall r (a :: *) (b :: TYPE r).
(a -> b) -> a -> b

f $ x = f x

Here, only b is levity polymorphic. There are no variables with a levity-polymorphic type. And
the code generator has no trouble with this. Indeed, this is the true type of GHC’s $ operator,
slightly more general than the Haskell 98 version.
Because the code generator must store and move arguments as well as variables, the logic
above applies equally well to function arguments, which may not be levity-polymorphic.

9.12. Levity polymorphism 339



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.12.2 Levity-polymorphic bottoms

We can use levity polymorphism to good effect with error and undefined, whose types are
given here:

undefined :: forall (r :: RuntimeRep) (a :: TYPE r).
HasCallStack => a

error :: forall (r :: RuntimeRep) (a :: TYPE r).
HasCallStack => String -> a

These functions do not bind a levity-polymorphic variable, and so are accepted. Their poly-
morphism allows users to use these to conveniently stub out functions that return unboxed
types.

9.12.3 Printing levity-polymorphic types

-Wprint-explicit-runtime-rep
Print RuntimeRep parameters as they appear; otherwise, they are defaulted to 'Lifte-
dRep.

Most GHC users will not need to worry about levity polymorphism or unboxed types. For these
users, seeing the levity polymorphism in the type of $ is unhelpful. And thus, by default, it
is suppressed, by supposing all type variables of type RuntimeRep to be 'LiftedRep when
printing, and printing TYPE 'LiftedRep as *.
Should you wish to see levity polymorphism in your types, enable the flag -fprint-explicit-
runtime-reps (page 73).

9.13 Type-Level Literals

GHC supports numeric and string literals at the type level, giving convenient access to a large
number of predefined type-level constants. Numeric literals are of kind Nat, while string
literals are of kind Symbol. This feature is enabled by the -XDataKinds (page 327) language
extension.
The kinds of the literals and all other low-level operations for this feature are defined in
module GHC.TypeLits. Note that themodule defines some type-level operators that clash with
their value-level counterparts (e.g. (+)). Import and export declarations referring to these
operators require an explicit namespace annotation (see Explicit namespaces in import/export
(page 245)).
Here is an example of using type-level numeric literals to provide a safe interface to a low-level
function:

import GHC.TypeLits
import Data.Word
import Foreign

newtype ArrPtr (n :: Nat) a = ArrPtr (Ptr a)

clearPage :: ArrPtr 4096 Word8 -> IO ()
clearPage (ArrPtr p) = ...

Here is an example of using type-level string literals to simulate simple record operations:

340 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y

example = from (Point 1 2) (Get :: Label "x")

9.13.1 Runtime Values for Type-Level Literals

Sometimes it is useful to access the value-level literal associated with a type-level literal. This
is done with the functions natVal and symbolVal. For example:

GHC.TypeLits> natVal (Proxy :: Proxy 2)
2

These functions are overloaded because they need to return a different result, depending on
the type at which they are instantiated.

natVal :: KnownNat n => proxy n -> Integer

-- instance KnownNat 0
-- instance KnownNat 1
-- instance KnownNat 2
-- ...

GHC discharges the constraint as soon as it knows what concrete type-level literal is being
used in the program. Note that this works only for literals and not arbitrary type expressions.
For example, a constraint of the form KnownNat (a + b) will not be simplified to (KnownNat
a, KnownNat b); instead, GHC will keep the constraint as is, until it can simplify a + b to a
constant value.
It is also possible to convert a run-time integer or string value to the corresponding type-level
literal. Of course, the resulting type literal will be unknown at compile-time, so it is hidden
in an existential type. The conversion may be performed using someNatVal for integers and
someSymbolVal for strings:

someNatVal :: Integer -> Maybe SomeNat
SomeNat :: KnownNat n => Proxy n -> SomeNat

The operations on strings are similar.

9.13.2 Computing With Type-Level Naturals

GHC 7.8 can evaluate arithmetic expressions involving type-level natural numbers. Such ex-
pressions may be constructed using the type-families (+), (*), (^) for addition, multiplica-
tion, and exponentiation. Numbers may be compared using (<=?), which returns a promoted
boolean value, or (<=), which compares numbers as a constraint. For example:

GHC.TypeLits> natVal (Proxy :: Proxy (2 + 3))
5

9.13. Type-Level Literals 341



GHC User’s Guide Documentation, Release 8.2.1.20171030

At present, GHC is quite limited in its reasoning about arithmetic: it will only evaluate the
arithmetic type functions and compare the results— in the same way that it does for any other
type function. In particular, it does not know more general facts about arithmetic, such as
the commutativity and associativity of (+), for example.
However, it is possible to perform a bit of “backwards” evaluation. For example, here is how
we could get GHC to compute arbitrary logarithms at the type level:

lg :: Proxy base -> Proxy (base ^ pow) -> Proxy pow
lg _ _ = Proxy

GHC.TypeLits> natVal (lg (Proxy :: Proxy 2) (Proxy :: Proxy 8))
3

9.14 Constraints in types

9.14.1 Equality constraints

A type context can include equality constraints of the form t1 ~ t2, which denote that the
types t1 and t2 need to be the same. In the presence of type families, whether two types are
equal cannot generally be decided locally. Hence, the contexts of function signatures may
include equality constraints, as in the following example:

sumCollects :: (Collects c1, Collects c2, Elem c1 ~ Elem c2) => c1 -> c2 -> c2

where we require that the element type of c1 and c2 are the same. In general, the types t1
and t2 of an equality constraint may be arbitrary monotypes; i.e., they may not contain any
quantifiers, independent of whether higher-rank types are otherwise enabled.
Equality constraints can also appear in class and instance contexts. The former enable a
simple translation of programs using functional dependencies into programs using family
synonyms instead. The general idea is to rewrite a class declaration of the form

class C a b | a -> b

to

class (F a ~ b) => C a b where
type F a

That is, we represent every functional dependency (FD) a1 .. an -> b by an FD type family
F a1 .. an and a superclass context equality F a1 .. an ~ b, essentially giving a name to
the functional dependency. In class instances, we define the type instances of FD families in
accordance with the class head. Method signatures are not affected by that process.

9.14.2 Heterogeneous equality

GHC also supports kind-heterogeneous equality, which relates two types of potentially dif-
ferent kinds. Heterogeneous equality is spelled ~~. Here are the kinds of ~ and ~~ to better
understand their difference:

(~) :: forall k. k -> k -> Constraint
(~~) :: forall k1 k2. k1 -> k2 -> Constraint

342 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Users will most likely want ~, but ~~ is available if GHC cannot know, a priori, that the two
types of interest have the same kind. Evidence that (a :: k1) ~~ (b :: k2) tells GHC both
that k1 and k2 are the same and that a and b are the same.
Because ~ is the more common equality relation, GHC prints out ~~ like ~ unless -fprint-
equality-relations (page 73) is set.

9.14.3 Unlifted heterogeneous equality

Internal to GHC is yet a third equality relation (~#). It is heterogeneous (like ~~) and is
used only internally. It may appear in error messages and other output only when -fprint-
equality-relations (page 73) is enabled.

9.14.4 The Coercible constraint

The constraint Coercible t1 t2 is similar to t1 ~ t2, but denotes representational equality
between t1 and t2 in the sense of Roles (Roles (page 419)). It is exported by Data.Coerce,
which also contains the documentation. More details and discussion can be found in the paper
“Safe Coercions”.

9.14.5 The Constraint kind

-XConstraintKinds
Since 7.4.1

Allow types of kind Constraint to be used in contexts.
Normally, constraints (which appear in types to the left of the => arrow) have a very restricted
syntax. They can only be:
• Class constraints, e.g. Show a

• Implicit parameter (page 355) constraints, e.g. ?x::Int (with the -XImplicitParams
(page 355) flag)

• Equality constraints (page 342), e.g. a ~ Int (with the -XTypeFamilies (page 313) or
-XGADTs (page 257) flag)

With the -XConstraintKinds (page 343) flag, GHC becomes more liberal in what it accepts as
constraints in your program. To be precise, with this flag any type of the new kind Constraint
can be used as a constraint. The following things have kind Constraint:
• Anything which is already valid as a constraint without the flag: saturated applications
to type classes, implicit parameter and equality constraints.

• Tuples, all of whose component types have kind Constraint. So for example the type
(Show a, Ord a) is of kind Constraint.

• Anythingwhose form is not yet known, but the user has declared to have kind Constraint
(for which they need to import it from GHC.Exts). So for example type Foo (f :: \* -
> Constraint) = forall b. f b => b -> b is allowed, as well as examples involving
type families:

type family Typ a b :: Constraint
type instance Typ Int b = Show b
type instance Typ Bool b = Num b

9.14. Constraints in types 343

http://www.cis.upenn.edu/~eir/papers/2014/coercible/coercible.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

func :: Typ a b => a -> b -> b
func = ...

Note that because constraints are just handled as types of a particular kind, this extension
allows type constraint synonyms:

type Stringy a = (Read a, Show a)
foo :: Stringy a => a -> (String, String -> a)
foo x = (show x, read)

Presently, only standard constraints, tuples and type synonyms for those two sorts of con-
straint are permitted in instance contexts and superclasses (without extra flags). The reason
is that permitting more general constraints can cause type checking to loop, as it would with
these two programs:

type family Clsish u a
type instance Clsish () a = Cls a
class Clsish () a => Cls a where

class OkCls a where

type family OkClsish u a
type instance OkClsish () a = OkCls a
instance OkClsish () a => OkCls a where

You may write programs that use exotic sorts of constraints in instance contexts and super-
classes, but to do so you must use -XUndecidableInstances (page 300) to signal that you
don’t mind if the type checker fails to terminate.

9.15 Extensions to type signatures

9.15.1 Explicit universal quantification (forall)

-XExplicitForAll
Since 6.12

Allow use of the forall keyword in places where universal quantification is implicit.
Haskell type signatures are implicitly quantified. When the language option -
XExplicitForAll (page 344) is used, the keyword forall allows us to say exactly what this
means. For example:

g :: b -> b

means this:

g :: forall b. (b -> b)

The two are treated identically, except that the latter may bring type variables into scope (see
Lexically scoped type variables (page 348)).
Notes:
• With -XExplicitForAll (page 344), forall becomes a keyword; you can’t use forall
as a type variable any more!

344 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

• As well in type signatures, you can also use an explicit forall in an instance declaration:

instance forall a. Eq a => Eq [a] where ...

• If the -Wunused-foralls (page 87) flag is enabled, a warning will be emitted when you
write a type variable in an explicit forall statement that is otherwise unused. For in-
stance:

g :: forall a b. (b -> b)

would warn about the unused type variable a.

9.15.2 The context of a type signature

The -XFlexibleContexts (page 291) flag lifts the Haskell 98 restriction that the type-class
constraints in a type signaturemust have the form (class type-variable) or (class (type-variable
type1 type2 ... typen)). With -XFlexibleContexts (page 291) these type signatures are
perfectly okay

g :: Eq [a] => ...
g :: Ord (T a ()) => ...

The flag -XFlexibleContexts (page 291) also lifts the corresponding restriction on class
declarations (The superclasses of a class declaration (page 291)) and instance declarations
(Relaxed rules for instance contexts (page 300)).

9.15.3 Ambiguous types and the ambiguity check

-XAllowAmbiguousTypes
Since 7.8.1

Allow type signatures which appear that they would result in an unusable binding.
Each user-written type signature is subjected to an ambiguity check. The ambiguity check
rejects functions that can never be called; for example:

f :: C a => Int

The idea is there can be no legal calls to f because every call will give rise to an ambiguous
constraint. Indeed, the only purpose of the ambiguity check is to report functions that cannot
possibly be called. We could soundly omit the ambiguity check on type signatures entirely,
at the expense of delaying ambiguity errors to call sites. Indeed, the language extension
-XAllowAmbiguousTypes (page 345) switches off the ambiguity check.
Ambiguity can be subtle. Consider this example which uses functional dependencies:

class D a b | a -> b where ..
h :: D Int b => Int

The Intmay well fix b at the call site, so that signature should not be rejected. Moreover, the
dependencies might be hidden. Consider

class X a b where ...
class D a b | a -> b where ...
instance D a b => X [a] b where...
h :: X a b => a -> a

9.15. Extensions to type signatures 345



GHC User’s Guide Documentation, Release 8.2.1.20171030

Here h‘s type looks ambiguous in b, but here’s a legal call:

...(h [True])...

That gives rise to a (X [Bool] beta) constraint, and using the instance means we need (D
Bool beta) and that fixes beta via D‘s fundep!
Behind all these special cases there is a simple guiding principle. Consider

f :: type
f = ...blah...

g :: type
g = f

You would think that the definition of g would surely typecheck! After all f has exactly the
same type, and g=f. But in fact f‘s type is instantiated and the instantiated constraints are
solved against the constraints bound by g‘s signature. So, in the case an ambiguous type,
solving will fail. For example, consider the earlier definition f :: C a => Int:

f :: C a => Int
f = ...blah...

g :: C a => Int
g = f

In g‘s definition, we’ll instantiate to (C alpha) and try to deduce (C alpha) from (C a), and
fail.
So in fact we use this as our definition of ambiguity: a type ty is ambiguous if and only if
((undefined :: ty) :: ty) would fail to typecheck. We use a very similar test for inferred
types, to ensure that they too are unambiguous.
Switching off the ambiguity check. Even if a function has an ambiguous type according the
“guiding principle”, it is possible that the function is callable. For example:

class D a b where ...
instance D Bool b where ...

strange :: D a b => a -> a
strange = ...blah...

foo = strange True

Here strange‘s type is ambiguous, but the call in foo is OK because it gives rise to a constraint
(D Bool beta), which is soluble by the (D Bool b) instance.
Another way of getting rid of the ambiguity at the call site is to use the -XTypeApplications
(page 353) flag to specify the types. For example:

class D a b where
h :: b

instance D Int Int where ...

main = print (h @Int @Int)

Here a is ambiguous in the definition of D but later specified to be Int using type applications.
-XAllowAmbiguousTypes (page 345) allows you to switch off the ambiguity check. However,
even with ambiguity checking switched off, GHCwill complain about a function that can never
be called, such as this one:

346 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f :: (Int ~ Bool) => a -> a

Note: A historical note. GHC used to impose some more restrictive and less principled
conditions on type signatures. For type forall tv1..tvn (c1, ...,cn) => type GHC used
to require
1. that each universally quantified type variable tvi must be “reachable” from type, and
2. that every constraint cimentions at least one of the universally quantified type variables

tvi. These ad-hoc restrictions are completely subsumed by the new ambiguity check.

9.15.4 Explicitly-kinded quantification

-XKindSignatures
Allow explicit kind signatures on type variables.

Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind
explicitly as (machine-checked) documentation, just as it is nice to give a type signature for
a function. On some occasions, it is essential to do so. For example, in his paper “Restricted
Data Types in Haskell” (Haskell Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for the Unused constructor was to force the correct kind for the type variable
cxt.
GHC now instead allows you to specify the kind of a type variable directly, wherever a type
variable is explicitly bound, with the flag -XKindSignatures (page 347).
This flag enables kind signatures in the following places:
• data declarations:

data Set (cxt :: * -> *) a = Set [a]

• type declarations:

type T (f :: * -> *) = f Int

• class declarations:

class (Eq a) => C (f :: * -> *) a where ...

• forall‘s in type signatures:

f :: forall (cxt :: * -> *). Set cxt Int

The parentheses are required. Some of the spaces are required too, to separate the lexemes.
If you write (f::*->*) you will get a parse error, because ::*->* is a single lexeme in Haskell.
As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: *) -> Int
g :: forall a. a -> (a :: *)

The syntax is

9.15. Extensions to type signatures 347



GHC User’s Guide Documentation, Release 8.2.1.20171030

atype ::= '(' ctype '::' kind ')

The parentheses are required.

9.16 Lexically scoped type variables

-XScopedTypeVariables
Implies -XExplicitForAll (page 344)

Enable lexical scoping of type variables explicitly introduced with forall.
GHC supports lexically scoped type variables, without which some type signatures are simply
impossible to write. For example:

f :: forall a. [a] -> [a]
f xs = ys ++ ys

where
ys :: [a]
ys = reverse xs

The type signature for f brings the type variable a into scope, because of the explicit forall
(Declaration type signatures (page 349)). The type variables bound by a forall scope over
the entire definition of the accompanying value declaration. In this example, the type variable
a scopes over the whole definition of f, including over the type signature for ys. In Haskell
98 it is not possible to declare a type for ys; a major benefit of scoped type variables is that
it becomes possible to do so.

9.16.1 Overview

The design follows the following principles
• A scoped type variable stands for a type variable, and not for a type. (This is a change
from GHC’s earlier design.)

• Furthermore, distinct lexical type variables stand for distinct type variables. This means
that every programmer-written type signature (including one that contains free scoped
type variables) denotes a rigid type; that is, the type is fully known to the type checker,
and no inference is involved.

• Lexical type variables may be alpha-renamed freely, without changing the program.
A lexically scoped type variable can be bound by:
• A declaration type signature (Declaration type signatures (page 349))
• An expression type signature (Expression type signatures (page 349))
• A pattern type signature (Pattern type signatures (page 349))
• Class and instance declarations (Class and instance declarations (page 351))

In Haskell, a programmer-written type signature is implicitly quantified over its free type
variables (Section 4.1.2 of the Haskell Report). Lexically scoped type variables affect this
implicit quantification rules as follows: any type variable that is in scope is not universally
quantified. For example, if type variable a is in scope, then

348 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/decls.html#sect4.1.2


GHC User’s Guide Documentation, Release 8.2.1.20171030

(e :: a -> a) means (e :: a -> a)
(e :: b -> b) means (e :: forall b. b->b)
(e :: a -> b) means (e :: forall b. a->b)

9.16.2 Declaration type signatures

A declaration type signature that has explicit quantification (using forall) brings into scope
the explicitly-quantified type variables, in the definition of the named function. For example:

f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [ x :: a ]

The “forall a” brings “a” into scope in the definition of “f”.
This only happens if:
• The quantification in f‘s type signature is explicit. For example:

g :: [a] -> [a]
g (x:xs) = xs ++ [ x :: a ]

This program will be rejected, because “a” does not scope over the definition of “g”, so
“x::a” means “x::forall a. a” by Haskell’s usual implicit quantification rules.

• The signature gives a type for a function binding or a bare variable binding, not a pattern
binding. For example:

f1 :: forall a. [a] -> [a]
f1 (x:xs) = xs ++ [ x :: a ] -- OK

f2 :: forall a. [a] -> [a]
f2 = \(x:xs) -> xs ++ [ x :: a ] -- OK

f3 :: forall a. [a] -> [a]
Just f3 = Just (\(x:xs) -> xs ++ [ x :: a ]) -- Not OK!

The binding for f3 is a pattern binding, and so its type signature does not bring a into
scope. However f1 is a function binding, and f2 binds a bare variable; in both cases the
type signature brings a into scope.

9.16.3 Expression type signatures

An expression type signature that has explicit quantification (using forall) brings into scope
the explicitly-quantified type variables, in the annotated expression. For example:

f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool )

Here, the type signature forall s. ST s Bool brings the type variable s into scope, in the
annotated expression (op >>= \(x :: STRef s Int) -> g x).

9.16.4 Pattern type signatures

A type signature may occur in any pattern; this is a pattern type signature. For example:

9.16. Lexically scoped type variables 349



GHC User’s Guide Documentation, Release 8.2.1.20171030

-- f and g assume that 'a' is already in scope
f = \(x::Int, y::a) -> x

g (x::a) = x

h ((x,y) :: (Int,Bool)) = (y,x)

In the case where all the type variables in the pattern type signature are already in scope
(i.e. bound by the enclosing context), matters are simple: the signature simply constrains the
type of the pattern in the obvious way.
Unlike expression and declaration type signatures, pattern type signatures are not implicitly
generalised. The pattern in a pattern bindingmay onlymention type variables that are already
in scope. For example:

f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)

where
(ys::[a], n) = (reverse xs, length xs) -- OK
zs::[a] = xs ++ ys -- OK

Just (v::b) = ... -- Not OK; b is not in scope

Here, the pattern signatures for ys and zs are fine, but the one for v is not because b is not
in scope.
However, in all patterns other than pattern bindings, a pattern type signature may mention
a type variable that is not in scope; in this case, the signature brings that type variable into
scope. This is particularly important for existential data constructors. For example:

data T = forall a. MkT [a]

k :: T -> T
k (MkT [t::a]) =

MkT t3
where
t3::[a] = [t,t,t]

Here, the pattern type signature (t::a) mentions a lexical type variable that is not already
in scope. Indeed, it cannot already be in scope, because it is bound by the pattern match.
GHC’s rule is that in this situation (and only then), a pattern type signature can mention a
type variable that is not already in scope; the effect is to bring it into scope, standing for the
existentially-bound type variable.
When a pattern type signature binds a type variable in this way, GHC insists that the type
variable is bound to a rigid, or fully-known, type variable. This means that any user-written
type signature always stands for a completely known type.
If all this seems a little odd, we think so too. But we must have some way to bring such type
variables into scope, else we could not name existentially-bound type variables in subsequent
type signatures.
This is (now) the only situation in which a pattern type signature is allowed to mention a
lexical variable that is not already in scope. For example, both f and g would be illegal if a
was not already in scope.

350 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.16.5 Class and instance declarations

The type variables in the head of a class or instance declaration scope over the methods
defined in the where part. You do not even need an explicit forall (although you are allowed
an explicit forall in an instance declaration; see Explicit universal quantification (forall)
(page 344)). For example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

in
head ys

instance C b => C [b] where
op xs = reverse (head (xs :: [[b]]))

9.17 Bindings and generalisation

9.17.1 Switching off the dreaded Monomorphism Restriction

-XNoMonomorphismRestriction
Default on

Prevents the compiler from applying the monomorphism restriction to bindings lacking
explicit type signatures.

Haskell’s monomorphism restriction (see Section 4.5.5 of the Haskell Report) can be com-
pletely switched off by -XNoMonomorphismRestriction (page 351). Since GHC 7.8.1, the
monomorphism restriction is switched off by default in GHCi’s interactive options (see Set-
ting options for interactive evaluation only (page 57)).

9.17.2 Let-generalisation

-XMonoLocalBinds
Since 6.12

Infer less polymorphic types for local bindings by default.
An ML-style language usually generalises the type of any let-bound or where-bound variable,
so that it is as polymorphic as possible. With the flag -XMonoLocalBinds (page 351) GHC
implements a slightly more conservative policy, using the following rules:
• A variable is closed if and only if

– the variable is let-bound
– one of the following holds:

* the variable has an explicit type signature that has no free type variables, or
* its binding group is fully generalised (see next bullet)

• A binding group is fully generalised if and only if

9.17. Bindings and generalisation 351

http://www.haskell.org/onlinereport/decls.html#sect4.5.5


GHC User’s Guide Documentation, Release 8.2.1.20171030

– each of its free variables is either imported or closed, and
– the binding is not affected by themonomorphism restriction (Haskell Report, Section
4.5.5)

For example, consider

f x = x + 1
g x = let h y = f y * 2

k z = z+x
in h x + k x

Here f is generalised because it has no free variables; and its binding group is unaffected
by the monomorphism restriction; and hence f is closed. The same reasoning applies to g,
except that it has one closed free variable, namely f. Similarly h is closed, even though it is
not bound at top level, because its only free variable f is closed. But k is not closed, because
it mentions x which is not closed (because it is not let-bound).
Notice that a top-level binding that is affected by the monomorphism restriction is not closed,
and hence may in turn prevent generalisation of bindings that mention it.
The rationale for this more conservative strategy is given in the papers “Let should not be
generalised” and “Modular type inference with local assumptions”, and a related blog post.
The flag -XMonoLocalBinds (page 351) is implied by -XTypeFamilies (page 313) and -XGADTs
(page 257). You can switch it off again with -XNoMonoLocalBinds (page 351) but type infer-
ence becomes less predicatable if you do so. (Read the papers!)

9.17.3 Kind generalisation

Just as -XMonoLocalBinds (page 351) places limitations on when the type of a term is gen-
eralised (see Let-generalisation (page 351)), it also limits when the kind of a type signa-
ture is generalised. Here is an example involving type signatures on instance declarations
(page 306):

data Proxy a = Proxy
newtype Tagged s b = Tagged b

class C b where
c :: forall (s :: k). Tagged s b

instance C (Proxy a) where
c :: forall s. Tagged s (Proxy a)
c = Tagged Proxy

With -XMonoLocalBinds (page 351) enabled, this C (Proxy a) instance will fail to typecheck.
The reason is that the type signature for c captures a, an outer-scoped type variable, which
means the type signature is not closed. Therefore, the inferred kind for s will not be gener-
alised, and as a result, it will fail to unify with the kind variable k which is specified in the
declaration of c. This can be worked around by specifying an explicit kind variable for s, e.g.,

instance C (Proxy a) where
c :: forall (s :: k). Tagged s (Proxy a)
c = Tagged Proxy

or, alternatively:

352 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/decls.html#sect4.5.5
http://www.haskell.org/onlinereport/decls.html#sect4.5.5
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/jfp-outsidein.pdf
http://ghc.haskell.org/trac/ghc/blog/LetGeneralisationInGhc7


GHC User’s Guide Documentation, Release 8.2.1.20171030

instance C (Proxy a) where
c :: forall k (s :: k). Tagged s (Proxy a)
c = Tagged Proxy

This declarations are equivalent using Haskell’s implicit “add implicit foralls” rules (see Im-
plicit quantification (page 361)). The implicit foralls rules are purely syntactic and are quite
separate from the kind generalisation described here.

9.18 Visible type application

-XTypeApplications
Since 8.0.1

Allow the use of type application syntax.
The -XTypeApplications (page 353) extension allows you to use visible type application in
expressions. Here is an example: show (read @Int "5"). The @Int is the visible type appli-
cation; it specifies the value of the type variable in read‘s type.
A visible type application is preceded with an @ sign. (To disambiguate the syntax, the @must
be preceded with a non-identifier letter, usually a space. For example, read@Int 5 would
not parse.) It can be used whenever the full polymorphic type of the function is known. If
the function is an identifier (the common case), its type is considered known only when the
identifier has been given a type signature. If the identifier does not have a type signature,
visible type application cannot be used.
Here are the details:
• If an identifier’s type signature does not include an explicit forall, the type variable
arguments appear in the left-to-right order in which the variables appear in the type.
So, foo :: Monad m => a b -> m (a c) will have its type variables ordered as m, a,
b, c.

• If any of the variables depend on other variables (that is, if some of the variables are kind
variables), the variables are reordered so that kind variables come before type variables,
preserving the left-to-right order as much as possible. That is, GHC performs a stable
topological sort on the variables.
For example: if we have bar :: Proxy (a :: (j, k)) -> b, then the variables are
ordered j, k, a, b.

• Visible type application is available to instantiate only user-specified type variables. This
means that in data Proxy a = Proxy, the unmentioned kind variable used in a‘s kind is
not available for visible type application.

• Class methods’ type arguments include the class type variables, followed by any vari-
ables an individual method is polymorphic in. So, class Monad m where return :: a
-> m a means that return‘s type arguments are m, a.

• With the -XRankNTypes (page 357) extension (Lexically scoped type variables
(page 348)), it is possible to declare type arguments somewhere other than the begin-
ning of a type. For example, we can have pair :: forall a. a -> forall b. b ->
(a, b) and then say pair @Bool True @Char which would have type Char -> (Bool,
Char).

• Partial type signatures (Partial Type Signatures (page 365)) work nicely with visible type
application. If you want to specify only the second type argument to wurble, then you

9.18. Visible type application 353



GHC User’s Guide Documentation, Release 8.2.1.20171030

can say wurble @_ @Int. The first argument is a wildcard, just like in a partial type
signature. However, if used in a visible type application, it is not necessary to spec-
ify -XPartialTypeSignatures (page 365) and your code will not generate a warning
informing you of the omitted type.

• When printing types with -fprint-explicit-foralls (page 72) enabled, type variables
not available for visible type application are printed in braces. We can observe this
behavior in a GHCi session:

> :set -XTypeApplications -fprint-explicit-foralls
> let myLength1 :: Foldable f => f a -> Int; myLength1 = length
> :type +v myLength1
myLength1 :: forall (f :: * -> *) a. Foldable f => f a -> Int
> let myLength2 = length
> :type +v myLength2
myLength2 :: forall {a} {t :: * -> *}. Foldable t => t a -> Int
> :type +v myLength2 @[]

<interactive>:1:1: error:
• Cannot apply expression of type ‘t0 a0 -> Int’

to a visible type argument ‘[]’
• In the expression: myLength2 @[]

Notice that since myLength1 was defined with an explicit type signature, :type +v
(page 54) reports that all of its type variables are available for type application. On
the other hand, myLength2 was not given a type signature. As a result, all of its type
variables are surrounded with braces, and trying to use visible type application with
myLength2 fails.
Also note the use of :type +v (page 54) in the GHCi session above instead of :type
(page 54). This is because :type (page 54) gives you the type that would be inferred
for a variable assigned to the expression provided (that is, the type of x in let x =
<expr>). As we saw above with myLength2, this type will have no variables available to
visible type application. On the other hand, :type +v (page 54) gives you the actual type
of the expression provided. To illustrate this:

> :type myLength1
myLength1 :: forall {a} {f :: * -> *}. Foldable f => f a -> Int
> :type myLength2
myLength2 :: forall {a} {t :: * -> *}. Foldable t => t a -> Int

Using :type (page 54) might lead one to conclude that none of the type variables in
myLength1‘s type signature are available for type application. This isn’t true, however!
Be sure to use :type +v (page 54) if you want themost accurate information with respect
to visible type application properties.

• Data constructors declared with GADT syntax follow different rules for the time being; it
is expected that these will be brought in line with other declarations in the future. The
rules for GADT data constructors are as follows:
– All kind and type variables are considered specified and available for visible type
application.

– Universal variables always come first, in precisely the order they appear in the type
delcaration. Universal variables that are constrained by a GADT return type are not
included in the data constructor.

– Existential variables come next. Their order is determined by a user- written forall;
or, if there is none, by taking the left-to-right order in the data constructor’s type

354 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

and doing a stable topological sort.

9.19 Implicit parameters

-XImplicitParams
Allow definition of functions expecting implicit parameters.

Implicit parameters are implemented as described in [Lewis2000] (page 497) and enabled
with the option -XImplicitParams (page 355). (Most of the following, still rather incomplete,
documentation is due to Jeff Lewis.)
A variable is called dynamically bound when it is bound by the calling context of a function and
statically bound when bound by the callee’s context. In Haskell, all variables are statically
bound. Dynamic binding of variables is a notion that goes back to Lisp, but was later discarded
in more modern incarnations, such as Scheme. Dynamic binding can be very confusing in an
untyped language, and unfortunately, typed languages, in particular Hindley-Milner typed
languages like Haskell, only support static scoping of variables.
However, by a simple extension to the type class system of Haskell, we can support dynamic
binding. Basically, we express the use of a dynamically bound variable as a constraint on the
type. These constraints lead to types of the form (?x::t') => t, which says “this function
uses a dynamically-bound variable ?x of type t'”. For example, the following expresses the
type of a sort function, implicitly parameterised by a comparison function named cmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.
An implicit parameter occurs in an expression using the special form ?x, where x is any
valid identifier (e.g. ord ?x is a valid expression). Use of this construct also introduces a
new dynamic-binding constraint in the type of the expression. For example, the following
definition shows how we can define an implicitly parameterised sort function in terms of an
explicitly parameterised sortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

9.19.1 Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are
automatically propagated. Thus, when a function is used, its implicit parameters are inherited
by the function that called it. For example, our sort function might be used to pick out the
least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = head (sort xs)

Without lifting a finger, the ?cmp parameter is propagated to become a parameter of least
as well. With explicit parameters, the default is that parameters must always be explicit
propagated. With implicit parameters, the default is to always propagate them.
An implicit-parameter type constraint differs from other type class constraints in the following
way: All uses of a particular implicit parameter must have the same type. This means that

9.19. Implicit parameters 355



GHC User’s Guide Documentation, Release 8.2.1.20171030

the type of (?x, ?x) is (?x::a) => (a,a), and not (?x::a, ?x::b) => (a, b), as would
be the case for type class constraints.
You can’t have an implicit parameter in the context of a class or instance declaration. For
example, both these declarations are illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke
a function. But the “invocation” of instance declarations is done behind the scenes by the
compiler, so it’s hard to figure out exactly where it is done. Easiest thing is to outlaw the
offending types.
Implicit-parameter constraints do not cause ambiguity. For example, consider:

f :: (?x :: [a]) => Int -> Int
f n = n + length ?x

g :: (Read a, Show a) => String -> String
g s = show (read s)

Here, g has an ambiguous type, and is rejected, but f is fine. The binding for ?x at f‘s call
site is quite unambiguous, and fixes the type a.

9.19.2 Implicit-parameter bindings

An implicit parameter is bound using the standard let or where binding forms. For example,
we define the min function by binding cmp.

min :: Ord a => [a] -> a
min = let ?cmp = (<=) in least

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bind-
ings can occur, except at top level. That is, they can occur in a let (including in a list com-
prehension, or do-notation, or pattern guards), or a where clause. Note the following points:
• An implicit-parameter binding group must be a collection of simple bindings to implicit-
style variables (no function-style bindings, and no type signatures); these bindings are
neither polymorphic or recursive.

• You may not mix implicit-parameter bindings with ordinary bindings in a single let ex-
pression; use two nested lets instead. (In the case of where you are stuck, since you
can’t nest where clauses.)

• You may put multiple implicit-parameter bindings in a single binding group; but they are
not treated as a mutually recursive group (as ordinary let bindings are). Instead they
are treated as a non-recursive group, simultaneously binding all the implicit parameter.
The bindings are not nested, and may be re-ordered without changing the meaning of
the program. For example, consider:

f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y

The use of ?x in the binding for ?y does not “see” the binding for ?x, so the type of f is

f :: (?x::Int) => Int -> Int

356 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.19.3 Implicit parameters and polymorphic recursion

Consider these two definitions:

len1 :: [a] -> Int
len1 xs = let ?acc = 0 in len_acc1 xs

len_acc1 [] = ?acc
len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs

------------

len2 :: [a] -> Int
len2 xs = let ?acc = 0 in len_acc2 xs

len_acc2 :: (?acc :: Int) => [a] -> Int
len_acc2 [] = ?acc
len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs

The only difference between the two groups is that in the second group len_acc is given a
type signature. In the former case, len_acc1 is monomorphic in its own right-hand side, so
the implicit parameter ?acc is not passed to the recursive call. In the latter case, because
len_acc2 has a type signature, the recursive call is made to the polymorphic version, which
takes ?acc as an implicit parameter. So we get the following results in GHCi:

Prog> len1 "hello"
0
Prog> len2 "hello"
5

Adding a type signature dramatically changes the result! This is a rather counter-intuitive
phenomenon, worth watching out for.

9.19.4 Implicit parameters and monomorphism

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to
implicit parameters. For example, consider:

f :: Int -> Int
f v = let ?x = 0 in

let y = ?x + v in
let ?x = 5 in
y

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the
type of y is simply Int, not (?x::Int) => Int. Hence, (f 9) returns result 9. If you add a
type signature for y, then y will get type (?x::Int) => Int, so the occurrence of y in the
body of the let will see the inner binding of ?x, so (f 9) will return 14.

9.20 Arbitrary-rank polymorphism

-XRankNTypes
Implies -XExplicitForAll (page 344)

Allow types of arbitrary rank.

9.20. Arbitrary-rank polymorphism 357



GHC User’s Guide Documentation, Release 8.2.1.20171030

-XRank2Types
A deprecated alias of -XRankNTypes (page 357).

GHC’s type system supports arbitrary-rank explicit universal quantification in types. For
example, all the following types are legal:

f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a

f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool

f4 :: Int -> (forall a. a -> a)

Here, f1 and g1 are rank-1 types, and can be written in standard Haskell (e.g. f1 :: a-
>b->a). The forall makes explicit the universal quantification that is implicitly added by
Haskell.
The functions f2 and g2 have rank-2 types; the forall is on the left of a function arrow. As
g2 shows, the polymorphic type on the left of the function arrow can be overloaded.
The function f3 has a rank-3 type; it has rank-2 types on the left of a function arrow.
The language option -XRankNTypes (page 357) (which implies -XExplicitForAll (page 344))
enables higher-rank types. That is, you can nest foralls arbitrarily deep in function arrows.
For example, a forall-type (also called a “type scheme”), including a type-class context, is
legal:
• On the left or right (see f4, for example) of a function arrow
• As the argument of a constructor, or type of a field, in a data type declaration. For
example, any of the f1, f2, f3, g1, g2 above would be valid field type signatures.

• As the type of an implicit parameter
• In a pattern type signature (see Lexically scoped type variables (page 348))

The -XRankNTypes (page 357) option is also required for any type with a forall or context to
the right of an arrow (e.g. f :: Int -> forall a. a->a, or g :: Int -> Ord a => a ->
a). Such types are technically rank 1, but are clearly not Haskell-98, and an extra flag did not
seem worth the bother.
In particular, in data and newtype declarations the constructor arguments may be polymor-
phic types of any rank; see examples in Examples (page 358). Note that the declared types
are nevertheless always monomorphic. This is important because by default GHC will not
instantiate type variables to a polymorphic type (Impredicative polymorphism (page 361)).
The obsolete language options -XPolymorphicComponents and -XRank2Types (page 358) are
synonyms for -XRankNTypes (page 357). They used to specify finer distinctions that GHC no
longer makes. (They should really elicit a deprecation warning, but they don’t, purely to avoid
the need to library authors to change their old flags specifications.)

9.20.1 Examples

These are examples of data and newtype declarations whose data constructors have polymor-
phic argument types:

358 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (forall a. Ord a => [a] -> [a])

The constructors have rank-2 types:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a

MkMonad :: forall m. (forall a. a -> m a)
-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (forall a. Ord a => [a] -> [a]) -> Swizzle

In earlier versions of GHC, it was possible to omit the forall in the type of the constructor if
there was an explicit context. For example:

newtype Swizzle' = MkSwizzle' (Ord a => [a] -> [a])

Since GHC 8.0 declarations such as MkSwizzle' will cause an out-of-scope error.
As for type signatures, implicit quantification happens for non-overloaded types too. So if you
write this:

f :: (a -> a) -> a

it’s just as if you had written this:

f :: forall a. (a -> a) -> a

That is, since the type variable a isn’t in scope, it’s implicitly universally quantified.
You construct values of types T1, MonadT, Swizzle by applying the constructor to suitable
values, just as usual. For example,

a1 :: T Int
a1 = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x

b m k = case m of
Just y -> k y
Nothing -> Nothing

in
MkMonad r b

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

The type of the argument can, as usual, be more general than the type required, as (MkSwiz-
zle reverse) shows. (reverse does not need the Ord constraint.)

9.20. Arbitrary-rank polymorphism 359



GHC User’s Guide Documentation, Release 8.2.1.20171030

When you use pattern matching, the bound variables may now have polymorphic types. For
example:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

In the function hwe use the record selectors return and bind to extract the polymorphic bind
and return functions from the MonadT data structure, rather than using pattern matching.

9.20.2 Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm
proposed by Odersky and Laufer (“Putting type annotations to work”, POPL‘96) to get a de-
cidable algorithm by requiring some help from the programmer. We do not yet have a formal
specification of “some help” but the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an
explicit polymorphic type for x, or GHC’s type inference will assume that x’s type
has no foralls in it.

What does it mean to “provide” an explicit type for x? You can do that by giving a type signa-
ture for x directly, using a pattern type signature (Lexically scoped type variables (page 348)),
thus:

\ f :: (forall a. a->a) -> (f True, f 'c')

Alternatively, you can give a type signature to the enclosing context, which GHC can “push
down” to find the type for the variable:

(\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for
f. Similarly, and more commonly, one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f 'c')

You don’t need to give a type signature if the lambda bound variable is a constructor argument.
Here is an example we saw earlier:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

Here we do not need to give a type signature to w, because it is an argument of constructor
T1 and that tells GHC all it needs to know.

360 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.20.3 Implicit quantification

GHC performs implicit quantification as follows. At the outermost level (only) of user-written
types, if and only if there is no explicit forall, GHC finds all the type variables mentioned
in the type that are not already in scope, and universally quantifies them. For example, the
following pairs are equivalent:

f :: a -> a
f :: forall a. a -> a

g (x::a) = let
h :: a -> b -> b
h x y = y

in ...
g (x::a) = let

h :: forall b. a -> b -> b
h x y = y

in ...

Notice that GHC always adds implicit quantfiers at the outermost level of a user-written type;
it does not find the inner-most possible quantification point. For example:

f :: (a -> a) -> Int
-- MEANS

f :: forall a. (a -> a) -> Int
-- NOT

f :: (forall a. a -> a) -> Int

g :: (Ord a => a -> a) -> Int
-- MEANS

g :: forall a. (Ord a => a -> a) -> Int
-- NOT

g :: (forall a. Ord a => a -> a) -> Int

If you want the latter type, you can write your foralls explicitly. Indeed, doing so is strongly
advised for rank-2 types.
Sometimes there is no “outermost level”, in which case no implicit quantification happens:

data PackMap a b s t = PackMap (Monad f => (a -> f b) -> s -> f t)

This is rejected because there is no “outermost level” for the types on the RHS (it would obvi-
ously be terrible to add extra parameters to PackMap), so no implicit quantification happens,
and the declaration is rejected (with “f is out of scope”). Solution: use an explicit forall:

data PackMap a b s t = PackMap (forall f. Monad f => (a -> f b) -> s -> f t)

9.21 Impredicative polymorphism

-XImpredicativeTypes
Implies -XRankNTypes (page 357)

Allow impredicative polymorphic types.
In general, GHC will only instantiate a polymorphic function at a monomorphic type (one with
no foralls). For example,

9.21. Impredicative polymorphism 361



GHC User’s Guide Documentation, Release 8.2.1.20171030

runST :: (forall s. ST s a) -> a
id :: forall b. b -> b

foo = id runST -- Rejected

The definition of foo is rejected because one would have to instantiate id‘s type with b :=
(forall s. ST s a) -> a, and that is not allowed. Instantiating polymorphic type variables
with polymorphic types is called impredicative polymorphism.
GHC has extremely flaky support for impredicative polymorphism, enabled with -
XImpredicativeTypes (page 361). If it worked, this would mean that you could call a poly-
morphic function at a polymorphic type, and parameterise data structures over polymorphic
types. For example:

f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing

Notice here that the Maybe type is parameterised by the polymorphic type (forall a. [a]
-> [a]). However the extension should be considered highly experimental, and certainly
un-supported. You are welcome to try it, but please don’t rely on it working consistently, or
working the same in subsequent releases. See this wiki page for more details.
If you want impredicative polymorphism, the main workaround is to use a newtype wrapper.
The id runST example can be written using theis workaround like this:

runST :: (forall s. ST s a) -> a
id :: forall b. b -> b

nwetype Wrap a = Wrap { unWrap :: (forall s. ST s a) -> a }

foo :: (forall s. ST s a) -> a
foo = unWrap (id (Wrap runST))

-- Here id is called at monomorphic type (Wrap a)

9.22 Typed Holes

Typed holes are a feature of GHC that allows special placeholders written with a leading
underscore (e.g., “_”, “_foo”, “_bar”), to be used as expressions. During compilation these
holes will generate an error message that describes which type is expected at the hole’s
location, information about the origin of any free type variables, and a list of local bindings
that might help fill the hole with actual code. Typed holes are always enabled in GHC.
The goal of typed holes is to help with writing Haskell code rather than to change the type
system. Typed holes can be used to obtain extra information from the type checker, which
might otherwise be hard to get. Normally, using GHCi, users can inspect the (inferred) type
signatures of all top-level bindings. However, this method is less convenient with terms that
are not defined on top-level or inside complex expressions. Holes allow the user to check the
type of the term they are about to write.
For example, compiling the following module with GHC:

f :: a -> a
f x = _

will fail with the following error:

362 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/ImpredicativePolymorphism


GHC User’s Guide Documentation, Release 8.2.1.20171030

hole.hs:2:7:
Found hole `_' with type: a
Where: `a' is a rigid type variable bound by

the type signature for f :: a -> a at hole.hs:1:6
Relevant bindings include

f :: a -> a (bound at hole.hs:2:1)
x :: a (bound at hole.hs:2:3)

In the expression: _
In an equation for `f': f x = _

Here are some more details:
• A “Found hole” error usually terminates compilation, like any other type error. After all,
you have omitted some code from your program. Nevertheless, you can run and test a
piece of code containing holes, by using the -fdefer-typed-holes (page 78) flag. This
flag defers errors produced by typed holes until runtime, and converts them into compile-
time warnings. These warnings can in turn be suppressed entirely by -Wno-typed-holes
(page 77).
The same behaviour for “Variable out of scope” errors, it terminates compilation by
default. You can defer such errors by using the -fdefer-out-of-scope-variables
(page 78) flag. This flag defers errors produced by out of scope variables until run-
time, and converts them into compile-time warnings. These warnings can in turn be
suppressed entirely by -Wno-deferred-out-of-scope-variables (page 78).
The result is that a hole or a variable will behave like undefined, but with the added
benefits that it shows a warning at compile time, and will show the same message if
it gets evaluated at runtime. This behaviour follows that of the -fdefer-type-errors
(page 78) option, which implies -fdefer-typed-holes (page 78) and -fdefer-out-of-
scope-variables (page 78). See Deferring type errors to runtime (page 370).

• All unbound identifiers are treated as typed holes, whether or not they start with an
underscore. The only difference is in the error message:

cons z = z : True : _x : y

yields the errors

Foo.hs:5:15: error:
Found hole: _x :: Bool
Relevant bindings include

p :: Bool (bound at Foo.hs:3:6)
cons :: Bool -> [Bool] (bound at Foo.hs:3:1)

Foo.hs:5:20: error:
Variable not in scope: y :: [Bool]

More information is given for explicit holes (i.e. ones that start with an underscore),
than for out-of-scope variables, because the latter are often unintended typos, so the
extra information is distracting. If you want the detailed information, use a leading
underscore to make explicit your intent to use a hole.

• Unbound identifiers with the same name are never unified, even within the same func-
tion, but shown individually. For example:
cons = _x : _x

results in the following errors:

9.22. Typed Holes 363



GHC User’s Guide Documentation, Release 8.2.1.20171030

unbound.hs:1:8:
Found hole '_x' with type: a
Where: `a' is a rigid type variable bound by

the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the first argument of `(:)', namely `_x'
In the expression: _x : _x
In an equation for `cons': cons = _x : _x

unbound.hs:1:13:
Found hole '_x' with type: [a]
Arising from: an undeclared identifier `_x' at unbound.hs:1:13-14
Where: `a' is a rigid type variable bound by

the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the second argument of `(:)', namely `_x'
In the expression: _x : _x
In an equation for `cons': cons = _x : _x

Notice the two different types reported for the two different occurrences of _x.
• No language extension is required to use typed holes. The lexeme “_” was previously
illegal in Haskell, but now has a more informative error message. The lexeme “_x” is a
perfectly legal variable, and its behaviour is unchanged when it is in scope. For example

f _x = _x + 1

does not elict any errors. Only a variable that is not in scope (whether or not it starts
with an underscore) is treated as an error (which it always was), albeit now with a more
informative error message.

• Unbound data constructors used in expressions behave exactly as above. However, un-
bound data constructors used in patterns cannot be deferred, and instead bring compi-
lation to a halt. (In implementation terms, they are reported by the renamer rather than
the type checker.)

There’s a flag for controlling the amount of context information shown for typed holes:
-fshow-hole-constraints

When reporting typed holes, also print constraints that are in scope. Example:

f :: Eq a => a -> Bool
f x = _

results in the following message:

show_constraints.hs:4:7: error:
• Found hole: _ :: Bool
• In the expression: _

In an equation for ‘f’: f x = _
• Relevant bindings include

x :: a (bound at show_constraints.hs:4:3)
f :: a -> Bool (bound at show_constraints.hs:4:1)

Constraints include
Eq a (from the type signature for:

f :: Eq a => a -> Bool
at show_constraints.hs:3:1-22)

364 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.23 Partial Type Signatures

-XPartialTypeSignatures
Since 7.10.1

Type checker will allow inferred types for holes.
A partial type signature is a type signature containing special placeholders written with a
leading underscore (e.g., “_”, “_foo”, “_bar”) called wildcards. Partial type signatures are to
type signatures what Typed Holes (page 362) are to expressions. During compilation these
wildcards or holes will generate an error message that describes which type was inferred at
the hole’s location, and information about the origin of any free type variables. GHC reports
such error messages by default.
Unlike Typed Holes (page 362), which make the program incomplete and will generate errors
when they are evaluated, this needn’t be the case for holes in type signatures. The type
checker is capable (in most cases) of type-checking a binding with or without a type signature.
A partial type signature bridges the gap between the two extremes, the programmer can
choose which parts of a type to annotate and which to leave over to the type-checker to infer.
By default, the type-checker will report an error message for each hole in a partial type signa-
ture, informing the programmer of the inferred type. When the -XPartialTypeSignatures
(page 365) flag is enabled, the type-checker will accept the inferred type for each hole, gen-
erating warnings instead of errors. Additionally, these warnings can be silenced with the
-Wno-partial-type-signatures (page 78) flag.
However, because GHC must infer the type when part of a type is left out, it is unable to use
polymorphic recursion. The same restriction takes place when the type signature is omitted
completely.

9.23.1 Syntax

A (partial) type signature has the following form: forall a b .. . (C1, C2, ..) => tau.
It consists of three parts:
• The type variables: a b ..

• The constraints: (C1, C2, ..)

• The (mono)type: tau
We distinguish three kinds of wildcards.

Type Wildcards

Wildcards occurring within the monotype (tau) part of the type signature are type wildcards
(“type” is often omitted as this is the default kind of wildcard). Type wildcards can be instanti-
ated to any monotype like Bool or Maybe [Bool], including functions and higher-kinded types
like (Int -> Bool) or Maybe.

not' :: Bool -> _
not' x = not x
-- Inferred: Bool -> Bool

maybools :: _
maybools = Just [True]

9.23. Partial Type Signatures 365



GHC User’s Guide Documentation, Release 8.2.1.20171030

-- Inferred: Maybe [Bool]

just1 :: _ Int
just1 = Just 1
-- Inferred: Maybe Int

filterInt :: _ -> _ -> [Int]
filterInt = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (Int -> Bool) -> [Int] -> [Int]

For instance, the first wildcard in the type signature not' would produce the following error
message:

Test.hs:4:17: error:
• Found type wildcard ‘_’ standing for ‘Bool’

To use the inferred type, enable PartialTypeSignatures
• In the type signature:

not' :: Bool -> _
• Relevant bindings include

not' :: Bool -> Bool (bound at Test.hs:5:1)

When a wildcard is not instantiated to a monotype, it will be generalised over, i.e. replaced
by a fresh type variable, e.g.

foo :: _ -> _
foo x = x
-- Inferred: forall t. t -> t

filter' :: _
filter' = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (a -> Bool) -> [a] -> [a]

Named Wildcards

-XNamedWildCards
Since 7.10.1

Allow naming of wildcards (e.g. _x) in type signatures.
Type wildcards can also be named by giving the underscore an identifier as suffix, i.e. _a.
These are called named wildcards. All occurrences of the same named wildcard within one
type signature will unify to the same type. For example:

f :: _x -> _x
f ('c', y) = ('d', error "Urk")
-- Inferred: forall t. (Char, t) -> (Char, t)

The namedwildcard forces the argument and result types to be the same. Lacking a signature,
GHC would have inferred forall a b. (Char, a) -> (Char, b). A named wildcard can be
mentioned in constraints, provided it also occurs in the monotype part of the type signature
to make sure that it unifies with something:

somethingShowable :: Show _x => _x -> _
somethingShowable x = show x
-- Inferred type: Show a => a -> String

somethingShowable' :: Show _x => _x -> _

366 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

somethingShowable' x = show (not x)
-- Inferred type: Bool -> String

Besides an extra-constraints wildcard (see Extra-Constraints Wildcard (page 367)), only
named wildcards can occur in the constraints, e.g. the _x in Show _x.
Named wildcards should not be confused with type variables. Even though syntactically sim-
ilar, named wildcards can unify with monotypes as well as be generalised over (and behave
as type variables).
In the first example above, _x is generalised over (and is effectively replaced by a fresh type
variable a). In the second example, _x is unified with the Bool type, and as Bool implements
the Show type class, the constraint Show Bool can be simplified away.
By default, GHC (as the Haskell 2010 standard prescribes) parses identifiers starting with
an underscore in a type as type variables. To treat them as named wildcards, the -
XNamedWildCards (page 366) flag should be enabled. The example below demonstrated the
effect.

foo :: _a -> _a
foo _ = False

Compiling this program without enabling -XNamedWildCards (page 366) produces the follow-
ing error message complaining about the type variable _a no matching the actual type Bool.

Test.hs:5:9: error:
• Couldn't match expected type ‘_a’ with actual type ‘Bool’

‘_a’ is a rigid type variable bound by
the type signature for:
foo :: forall _a. _a -> _a

at Test.hs:4:8
• In the expression: False

In an equation for ‘foo’: foo _ = False
• Relevant bindings include foo :: _a -> _a (bound at Test.hs:5:1)

Compiling this program with -XNamedWildCards (page 366) (as well as -
XPartialTypeSignatures (page 365)) enabled produces the following error message
reporting the inferred type of the named wildcard _a.

Test.hs:4:8: warning: [-Wpartial-type-signatures]
• Found type wildcard ‘_a’ standing for ‘Bool’
• In the type signature:

foo :: _a -> _a
• Relevant bindings include

foo :: Bool -> Bool (bound at Test.hs:5:1)

Extra-Constraints Wildcard

The third kind of wildcard is the extra-constraints wildcard. The presence of an extra-
constraints wildcard indicates that an arbitrary number of extra constraints may be inferred
during type checking and will be added to the type signature. In the example below, the
extra-constraints wildcard is used to infer three extra constraints.

arbitCs :: _ => a -> String
arbitCs x = show (succ x) ++ show (x == x)
-- Inferred:
-- forall a. (Enum a, Eq a, Show a) => a -> String

9.23. Partial Type Signatures 367



GHC User’s Guide Documentation, Release 8.2.1.20171030

-- Error:
Test.hs:5:12: error:

Found constraint wildcard ‘_’ standing for ‘(Show a, Eq a, Enum a)’
To use the inferred type, enable PartialTypeSignatures
In the type signature:

arbitCs :: _ => a -> String

An extra-constraints wildcard shouldn’t prevent the programmer from already listing the con-
straints he knows or wants to annotate, e.g.

-- Also a correct partial type signature:
arbitCs' :: (Enum a, _) => a -> String
arbitCs' x = arbitCs x
-- Inferred:
-- forall a. (Enum a, Show a, Eq a) => a -> String
-- Error:
Test.hs:9:22: error:

Found constraint wildcard ‘_’ standing for ‘()’
To use the inferred type, enable PartialTypeSignatures
In the type signature:

arbitCs' :: (Enum a, _) => a -> String

An extra-constraints wildcard can also lead to zero extra constraints to be inferred, e.g.

noCs :: _ => String
noCs = "noCs"
-- Inferred: String
-- Error:
Test.hs:13:9: error:

Found constraint wildcard ‘_’ standing for ‘()’
To use the inferred type, enable PartialTypeSignatures
In the type signature:

noCs :: _ => String

As a single extra-constraints wildcard is enough to infer any number of constraints, only one
is allowed in a type signature and it should come last in the list of constraints.
Extra-constraints wildcards cannot be named.

9.23.2 Where can they occur?

Partial type signatures are allowed for bindings, pattern and expression signatures, except
that extra-constraints wildcards are not supported in pattern or expression signatures. In the
following example a wildcard is used in each of the three possible contexts.

{-# LANGUAGE ScopedTypeVariables #-}
foo :: _
foo (x :: _) = (x :: _)
-- Inferred: forall w_. w_ -> w_

Anonymous and named wildcards can occur on the left hand side of a type or data instance
declaration; see Wildcards on the LHS of data and type family instances (page 319).
Anonymous wildcards are also allowed in visible type applications (Visible type application
(page 353)). If you want to specify only the second type argument to wurble, then you can
say wurble @_ @Int where the first argument is a wildcard.

368 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

In all other contexts, type wildcards are disallowed, and a named wildcard is treated as an
ordinary type variable. For example:

class C _ where ... -- Illegal
instance Eq (T _) -- Illegal (currently; would actually make sense)
instance Eq _a => Eq (T _a) -- Perfectly fine, same as Eq a => Eq (T a)

Partial type signatures can also be used in Template Haskell (page 372) splices.
• Declaration splices: partial type signature are fully supported.

{-# LANGUAGE TemplateHaskell, NamedWildCards #-}
$( [d| foo :: _ => _a -> _a -> _

foo x y = x == y|] )

• Expression splices: anonymous and named wildcards can be used in expression signa-
tures. Extra-constraints wildcards are not supported, just like in regular expression
signatures.

{-# LANGUAGE TemplateHaskell, NamedWildCards #-}
$( [e| foo = (Just True :: _m _) |] )

• Typed expression splices: the same wildcards as in (untyped) expression splices are
supported.

• Pattern splices: anonymous and named wildcards can be used in pattern signatures.
Note that -XScopedTypeVariables (page 348) has to be enabled to allow pattern signa-
tures. Extra-constraints wildcards are not supported, just like in regular pattern signa-
tures.

{-# LANGUAGE TemplateHaskell, ScopedTypeVariables #-}
foo $( [p| (x :: _) |] ) = x

• Type splices: only anonymous wildcards are supported in type splices. Named and extra-
constraints wildcards are not.

{-# LANGUAGE TemplateHaskell #-}
foo :: $( [t| _ |] ) -> a
foo x = x

9.24 Custom compile-time errors

When designing embedded domain specific languages in Haskell, it is useful to have some-
thing like error at the type level. In this way, the EDSL designer may show a type error that
is specific to the DSL, rather than the standard GHC type error.
For example, consider a type class that is not intended to be used with functions, but the user
accidentally used it at a function type, perhaps because they missed an argument to some
function. Then, instead of getting the standard GHC message about a missing instance, it
would be nicer to emit a more friendly message specific to the EDSL. Similarly, the reduction
of a type-level function may get stuck due to an error, at which point it would be nice to report
an EDSL specific error, rather than a generic error about an ambiguous type.
To solve this, GHC provides a single type-level function,

type family TypeError (msg :: ErrorMessage) :: k

9.24. Custom compile-time errors 369



GHC User’s Guide Documentation, Release 8.2.1.20171030

along with a small type-level language (via -XDataKinds (page 327)) for constructing pretty-
printed error messages,

-- ErrorMessage is intended to be used as a kind
data ErrorMessage =

Text Symbol -- Show this text as is
| forall t. ShowType t -- Pretty print a type
| ErrorMessage :<>: ErrorMessage -- Put two chunks of error message next to each other
| ErrorMessage :$$: ErrorMessage -- Put two chunks of error message above each other

in the GHC.TypeLits module.
For instance, we might use this interface to provide a more useful error message for applica-
tions of show on unsaturated functions like this,

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance TypeError (Text "Cannot 'Show' functions." :$$:
Text "Perhaps there is a missing argument?")

=> Show (a -> b) where
showsPrec = error "unreachable"

main = print negate

Which will produce the following compile-time error,

Test.hs:12:8: error:
• Cannot 'Show' functions.

Perhaps there is a missing argument?
• In the expression: print negate

In an equation for ‘main’: main = print negate

9.25 Deferring type errors to runtime

While developing, sometimes it is desirable to allow compilation to succeed even if there are
type errors in the code. Consider the following case:

module Main where

a :: Int
a = 'a'

main = print "b"

Even though a is ill-typed, it is not used in the end, so if all that we’re interested in is main it
can be useful to be able to ignore the problems in a.
For more motivation and details please refer to the Wiki page or the original paper.

370 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/icfp12.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.25.1 Enabling deferring of type errors

The flag -fdefer-type-errors (page 78) controls whether type errors are deferred to run-
time. Type errors will still be emitted as warnings, but will not prevent compilation. You can
use -Wno-type-errors (page 78) to suppress these warnings.
This flag implies the -fdefer-typed-holes (page 78) and -fdefer-out-of-scope-variables
(page 78) flags, which enables this behaviour for typed holes (page 362) and variables. Should
you so wish, it is possible to enable -fdefer-type-errors (page 78) without enabling -
fdefer-typed-holes (page 78) or -fdefer-out-of-scope-variables (page 78), by explic-
itly specifying -fno-defer-typed-holes (page 78) or -fno-defer-out-of-scope-variables
(page 78) on the command-line after the -fdefer-type-errors (page 78) flag.
At runtime, whenever a term containing a type error would need to be evaluated, the error is
converted into a runtime exception of type TypeError. Note that type errors are deferred as
much as possible during runtime, but invalid coercions are never performed, even when they
would ultimately result in a value of the correct type. For example, given the following code:

x :: Int
x = 0

y :: Char
y = x

z :: Int
z = y

evaluating z will result in a runtime TypeError.

9.25.2 Deferred type errors in GHCi

The flag -fdefer-type-errors (page 78) works in GHCi as well, with one exception: for
“naked” expressions typed at the prompt, type errors don’t get delayed, so for example:

Prelude> fst (True, 1 == 'a')

<interactive>:2:12:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the first argument of `fst', namely `(True, 1 == 'a')'

Otherwise, in the common case of a simple type error such as typing reverse True at the
prompt, you would get a warning and then an immediately-following type error when the
expression is evaluated.
This exception doesn’t apply to statements, as the following example demonstrates:

Prelude> let x = (True, 1 == 'a')

<interactive>:3:16: Warning:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the expression: (True, 1 == 'a')

9.25. Deferring type errors to runtime 371



GHC User’s Guide Documentation, Release 8.2.1.20171030

Prelude> fst x
True

9.26 Template Haskell

Template Haskell allows you to do compile-time meta-programming in Haskell. The back-
ground to the main technical innovations is discussed in “Template Meta-programming for
Haskell” (Proc Haskell Workshop 2002).
The Template Haskell page on the GHCWiki has a wealth of information. Youmay also consult
the Haddock reference documentation. Many changes to the original design are described in
Notes on Template Haskell version 2. Not all of these changes are in GHC, however.
The first example from that paper is set out below (A Template Haskell Worked Example
(page 378)) as a worked example to help get you started.
The documentation here describes the realisation of Template Haskell in GHC. It is not de-
tailed enough to understand Template Haskell; see the Wiki page.

9.26.1 Syntax

-XTemplateHaskell
Since 6.0. Typed splices introduced in GHC 7.8.1.
Implies -XTemplateHaskellQuotes (page 372)

Enable Template Haskell’s splice and quotation syntax.
-XTemplateHaskellQuotes

Since 8.0.1
Enable only Template Haskell’s quotation syntax.

Template Haskell has the following new syntactic constructions. You need to use the flag
-XTemplateHaskell (page 372) to switch these syntactic extensions on. Alternatively, the -
XTemplateHaskellQuotes (page 372) flag can be used to enable the quotation subset of Tem-
plate Haskell (i.e. without splice syntax). The -XTemplateHaskellQuotes (page 372) exten-
sion is considered safe under Safe Haskell (page 426) while -XTemplateHaskell (page 372)
is not.
• A splice is written $x, where x is an identifier, or $(...), where the ”...” is an arbitrary
expression. There must be no space between the “$” and the identifier or parenthesis.
This use of “$” overrides its meaning as an infix operator, just as “M.x” overrides the
meaning of ”.” as an infix operator. If you want the infix operator, put spaces around it.
A splice can occur in place of
– an expression; the spliced expression must have type Q Exp

– a pattern; the spliced pattern must have type Q Pat

– a type; the spliced expression must have type Q Type

– a list of declarations at top level; the spliced expression must have type Q [Dec]

372 Chapter 9. GHC Language Features

http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps
http://haskell.org/haskellwiki/Template_Haskell


GHC User’s Guide Documentation, Release 8.2.1.20171030

Inside a splice you can only call functions defined in imported modules, not functions
defined elsewhere in the same module. Note that declaration splices are not allowed
anywhere except at top level (outside any other declarations).

• A expression quotation is written in Oxford brackets, thus:
– [| ... |], or [e| ... |], where the ”...” is an expression; the quotation has type
Q Exp.

– [d| ... |], where the ”...” is a list of top-level declarations; the quotation has type
Q [Dec].

– [t| ... |], where the ”...” is a type; the quotation has type Q Type.
– [p| ... |], where the ”...” is a pattern; the quotation has type Q Pat.

See Where can they occur? (page 368) for using partial type signatures in quotations.
• A typed expression splice is written $$x, where x is an identifier, or $$(...), where the
”...” is an arbitrary expression.
A typed expression splice can occur in place of an expression; the spliced expression
must have type Q (TExp a)

• A typed expression quotation is written as [|| ... ||], or [e|| ... ||], where the
”...” is an expression; if the ”...” expression has type a, then the quotation has type Q
(TExp a).
Values of type TExp a may be converted to values of type Exp using the function unType
:: TExp a -> Exp.

• A quasi-quotation can appear in a pattern, type, expression, or declaration context and
is also written in Oxford brackets:
– [varid| ... |], where the ”...” is an arbitrary string; a full description of the
quasi-quotation facility is given in Template Haskell Quasi-quotation (page 379).

• A name can be quoted with either one or two prefix single quotes:
– 'f has type Name, and names the function f. Similarly 'C has type Name and names
the data constructor C. In general '⟨thing⟩ interprets ⟨thing⟩ in an expression con-
text.
A name whose second character is a single quote (sadly) cannot be quoted in this
way, because it will be parsed instead as a quoted character. For example, if the
function is called f'7 (which is a legal Haskell identifier), an attempt to quote it as
'f'7 would be parsed as the character literal 'f' followed by the numeric literal 7.
There is no current escape mechanism in this (unusual) situation.

– ''T has type Name, and names the type constructor T. That is, ''⟨thing⟩ interprets
⟨thing⟩ in a type context.

These Names can be used to construct Template Haskell expressions, patterns, declara-
tions etc. They may also be given as an argument to the reify function.

• It is possible for a splice to expand to an expression that contain names which are not in
scope at the site of the splice. As an example, consider the following code:

module Bar where

import Language.Haskell.TH

9.26. Template Haskell 373



GHC User’s Guide Documentation, Release 8.2.1.20171030

add1 :: Int -> Q Exp
add1 x = [| x + 1 |]

Now consider a splice using add1 in a separate module:

module Foo where

import Bar

two :: Int
two = $(add1 1)

Template Haskell cannot know what the argument to add1 will be at the function’s
definition site, so a lifting mechanism is used to promote x into a value of type Q
Exp. This functionality is exposed to the user as the Lift typeclass in the Lan-
guage.Haskell.TH.Syntax module. If a type has a Lift instance, then any of its values
can be lifted to a Template Haskell expression:

class Lift t where
lift :: t -> Q Exp

In general, if GHC sees an expression within Oxford brackets (e.g., [| foo bar |],
then GHC looks up each name within the brackets. If a name is global (e.g., suppose
foo comes from an import or a top-level declaration), then the fully qualified name is
used directly in the quotation. If the name is local (e.g., suppose bar is bound locally
in the function definition mkFoo bar = [| foo bar |]), then GHC uses lift on it (so
GHC pretends [| foo bar |] actually contains [| foo $(lift bar) |]). Local names,
which are not in scope at splice locations, are actually evaluated when the quotation is
processed.
The template-haskell library provides Lift instances for many common data types.
Furthermore, it is possible to derive Lift instances automatically by using the -
XDeriveLift (page 275) language extension. See Deriving Lift instances (page 275)
for more information.

• You may omit the $(...) in a top-level declaration splice. Simply writing an expression
(rather than a declaration) implies a splice. For example, you can write

module Foo where
import Bar

f x = x

$(deriveStuff 'f) -- Uses the $(...) notation

g y = y+1

deriveStuff 'g -- Omits the $(...)

h z = z-1

This abbreviation makes top-level declaration slices quieter and less intimidating.
• Pattern splices introduce variable binders but scoping of variables in expressions inside
the pattern’s scope is only checked when a splice is run. Note that pattern splices that
occur outside of any quotation brackets are run at compile time. Pattern splices oc-
curring inside a quotation bracket are not run at compile time; they are run when the
bracket is spliced in, sometime later. For example,

374 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

mkPat :: Q Pat
mkPat = [p| (x, y) |]

-- in another module:
foo :: (Char, String) -> String
foo $(mkPat) = x : z

bar :: Q Exp
bar = [| \ $(mkPat) -> x : w |]

will fail with z being out of scope in the definition of foo but it will not fail with w being
out of scope in the definition of bar. That will only happen when bar is spliced.

• A pattern quasiquoter may generate binders that scope over the right-hand side of a
definition because these binders are in scope lexically. For example, given a quasiquoter
haskell that parses Haskell, in the following code, the y in the right-hand side of f refers
to the y bound by the haskell pattern quasiquoter, not the top-level y = 7.

y :: Int
y = 7

f :: Int -> Int -> Int
f n = \ [haskell|y|] -> y+n

• Top-level declaration splices break up a source file into declaration groups. A declaration
group is the group of declarations created by a top-level declaration splice, plus those
following it, down to but not including the next top-level declaration splice. N.B. only
top-level splices delimit declaration groups, not expression splices. The first declaration
group in a module includes all top-level definitions down to but not including the first
top-level declaration splice.
Each declaration group is mutually recursive only within the group. Declaration groups
can refer to definitions within previous groups, but not later ones.
Accordingly, the type environment seen by reify includes all the top-level declarations
up to the end of the immediately preceding declaration group, but no more.
Unlike normal declaration splices, declaration quasiquoters do not cause a break. These
quasiquoters are expanded before the rest of the declaration group is processed, and the
declarations they generate are merged into the surrounding declaration group. Conse-
quently, the type environment seen by reify from a declaration quasiquoter will not
include anything from the quasiquoter’s declaration group.
Concretely, consider the following code

module M where

import ...

f x = x

$(th1 4)

h y = k y y $(blah1)

[qq|blah|]

k x y z = x + y + z

9.26. Template Haskell 375



GHC User’s Guide Documentation, Release 8.2.1.20171030

$(th2 10)

w z = $(blah2)

In this example, a reify inside...
1. The splice $(th1 ...) would see the definition of f - the splice is top-level and thus
all definitions in the previous declaration group are visible (that is, all definitions in
the module up-to, but not including, the splice itself).

2. The splice $(blah1) cannot refer to the function w - w is part of a later declaration
group, and thus invisible, similarly, $(blah1) cannot see the definition of h (since it
is part of the same declaration group as $(blah1). However, the splice $(blah1) can
see the definition of f (since it is in the immediately preceding declaration group).

3. The splice $(th2 ...) would see the definition of f, all the bindings created by
$(th1 ...), the definition of h and all bindings created by [qq|blah|] (they are all
in previous declaration groups).

4. The body of h can refer to the function k appearing on the other side of the decla-
ration quasiquoter, as quasiquoters do not cause a declaration group to be broken
up.

5. The qq quasiquoter would be able to see the definition of f from the preceding dec-
laration group, but not the definitions of h or k, or any definitions from subsequent
declaration groups.

6. The splice $(blah2) would see the same definitions as the splice $(th2 ...) (but
not any bindings it creates).

Note that since an expression splice is unable to refer to declarations in the same dec-
laration group, we can introduce a top-level (empty) splice to break up the declaration
group

module M where

data D = C1 | C2

f1 = $(th1 ...)

$(return [])

f2 = $(th2 ...)

Here
1. The splice $(th1 ...) cannot refer to D - it is in the same declaration group.
2. The declaration group containing D is terminated by the empty top-level declaration
splice $(return []) (recall, Q is a Monad, so we may simply return the empty list
of declarations).

3. Since the declaration group containing D is in the previous declaration group, the
splice $(th2 ...) can refer to D.

• Expression quotations accept most Haskell language constructs. However, there are
some GHC-specific extensions which expression quotations currently do not support,
including
– Recursive do-statements (see Trac #1262)
– Type holes in typed splices (see Trac #10945 and Trac #10946)

376 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/1262
https://ghc.haskell.org/trac/ghc/ticket/10945
https://ghc.haskell.org/trac/ghc/ticket/10946


GHC User’s Guide Documentation, Release 8.2.1.20171030

(Compared to the original paper, there are many differences of detail. The syntax for a dec-
laration splice uses “$” not “splice”. The type of the enclosed expression must be Q [Dec],
not [Q Dec]. Typed expression splices and quotations are supported.)

9.26.2 Using Template Haskell

• The data types and monadic constructor functions for Template Haskell are in the library
Language.Haskell.TH.Syntax.

• You can only run a function at compile time if it is imported from another module. That
is, you can’t define a function in a module, and call it from within a splice in the same
module. (It would make sense to do so, but it’s hard to implement.)

• You can only run a function at compile time if it is imported from another module that
is not part of a mutually-recursive group of modules that includes the module currently
being compiled. Furthermore, all of the modules of the mutually-recursive group must
be reachable by non-SOURCE imports from the module where the splice is to be run.
For example, when compiling module A, you can only run Template Haskell functions
imported from B if B does not import A (directly or indirectly). The reason should be
clear: to run B we must compile and run A, but we are currently type-checking A.

• If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
run Template Haskell splices and quasi-quotes. A stage-1 compiler will only accept regu-
lar quotes of Haskell. Reason: TH splices and quasi-quotes compile and run a program,
and then looks at the result. So it’s important that the program it compiles produces
results whose representations are identical to those of the compiler itself.

Template Haskell works in any mode (--make (page 68), --interactive (page 68), or file-
at-a-time). There used to be a restriction to the former two, but that restriction has been
lifted.

9.26.3 Viewing Template Haskell generated code

The flag -ddump-splices (page 184) shows the expansion of all top-level declaration splices,
both typed and untyped, as they happen. As with all dump flags, the default is for this output
to be sent to stdout. For a non-trivial program, you may be interested in combining this
with the -ddump-to-file (page 183) flag (see Dumping out compiler intermediate structures
(page 183). For each file using Template Haskell, this will show the output in a .dump-splices
file.
The flag -dth-dec-file=⟨file⟩ (page 184) shows the expansions of all top-level TH declara-
tion splices, both typed and untyped, in the file M.th.hs where M is the name of the module
being compiled. Note that other types of splices (expressions, types, and patterns) are not
shown. Application developers can check this into their repository so that they can grep for
identifiers that were defined in Template Haskell. This is similar to using -ddump-to-file
(page 183) with -ddump-splices (page 184) but it always generates a file instead of being
coupled to -ddump-to-file (page 183). The format is also different: it does not show code
from the original file, instead it only shows generated code and has a comment for the splice
location of the original file.
Below is a sample output of -ddump-splices (page 184)

TH_pragma.hs:(6,4)-(8,26): Splicing declarations
[d| foo :: Int -> Int

foo x = x + 1 |]

9.26. Template Haskell 377



GHC User’s Guide Documentation, Release 8.2.1.20171030

======>
foo :: Int -> Int
foo x = (x + 1)

Below is the output of the same sample using -dth-dec-file=⟨file⟩ (page 184)

-- TH_pragma.hs:(6,4)-(8,26): Splicing declarations
foo :: Int -> Int
foo x = (x + 1)

9.26.4 A Template Haskell Worked Example

To help you get over the confidence barrier, try out this skeletal worked example. First cut
and paste the two modules below into Main.hs and Printf.hs:

{- Main.hs -}
module Main where

-- Import our template "pr"
import Printf ( pr )

-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ( $(pr "Hello") )

{- Printf.hs -}
module Printf where

-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.

-- Import some Template Haskell syntax
import Language.Haskell.TH

-- Describe a format string
data Format = D | S | L String

-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s = [ L s ]

-- Generate Haskell source code from a parsed representation
-- of the format string. This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: [Format] -> Q Exp
gen [D] = [| \n -> show n |]
gen [S] = [| \s -> s |]
gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- from an input format string.

378 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

pr :: String -> Q Exp
pr s = gen (parse s)

Now run the compiler,

$ ghc --make -XTemplateHaskell main.hs -o main

Run main and here is your output:

$ ./main
Hello

9.26.5 Using Template Haskell with Profiling

Template Haskell relies on GHC’s built-in bytecode compiler and interpreter to run the splice
expressions. The bytecode interpreter runs the compiled expression on top of the same run-
time on which GHC itself is running; this means that the compiled code referred to by the
interpreted expression must be compatible with this runtime, and in particular this means
that object code that is compiled for profiling cannot be loaded and used by a splice expres-
sion, because profiled object code is only compatible with the profiling version of the runtime.
This causes difficulties if you have a multi-module program containing Template Haskell code
and you need to compile it for profiling, because GHC cannot load the profiled object code
and use it when executing the splices.
Fortunately GHC provides two workarounds.
The first option is to compile the program twice:
1. Compile the program or library first the normal way, without -prof (page 193).
2. Then compile it again with -prof (page 193), and additionally use -osuf p_o to name
the object files differently (you can choose any suffix that isn’t the normal object suffix
here). GHC will automatically load the object files built in the first step when executing
splice expressions. If you omit the -osuf ⟨suffix⟩ (page 138) flag when building with
-prof (page 193) and Template Haskell is used, GHC will emit an error message.

The second option is to add the flag -fexternal-interpreter (page 60) (see Running the
interpreter in a separate process (page 59)), which runs the interpreter in a separate process,
wherein it can load and run the profiled code directly. There’s no need to compile the code
twice, just add -fexternal-interpreter (page 60) and it should just work. (this option is
experimental in GHC 8.0.x, but it may become the default in future releases).

9.26.6 Template Haskell Quasi-quotation

-XQuasiQuotes
Enable Template Haskell Quasi-quotation syntax.

Quasi-quotation allows patterns and expressions to be written using programmer-defined con-
crete syntax; the motivation behind the extension and several examples are documented in
“Why It’s Nice to be Quoted: Quasiquoting for Haskell” (Proc Haskell Workshop 2007). The
example below shows how to write a quasiquoter for a simple expression language.
Here are the salient features
• A quasi-quote has the form [quoter| string |].

9.26. Template Haskell 379

http://www.cs.tufts.edu/comp/150FP/archive/geoff-mainland/quasiquoting.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

– The ⟨quoter⟩ must be the name of an imported quoter, either qualified or unqualified;
it cannot be an arbitrary expression.

– The ⟨quoter⟩ cannot be “e”, “t”, “d”, or “p”, since those overlap with Template
Haskell quotations.

– There must be no spaces in the token [quoter|.
– The quoted ⟨string⟩ can be arbitrary, and may contain newlines.
– The quoted ⟨string⟩ finishes at the first occurrence of the two-character sequence
"|]". Absolutely no escaping is performed. If you want to embed that character
sequence in the string, you must invent your own escape convention (such as, say,
using the string "|~]" instead), and make your quoter function interpret "|~]" as
"|]". One way to implement this is to compose your quoter with a pre-processing
pass to perform your escape conversion. See the discussion in Trac #5348 for de-
tails.

• A quasiquote may appear in place of
– An expression
– A pattern
– A type
– A top-level declaration

(Only the first two are described in the paper.)
• A quoter is a value of type Language.Haskell.TH.Quote.QuasiQuoter, which is defined
thus:

data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp,
quotePat :: String -> Q Pat,
quoteType :: String -> Q Type,
quoteDec :: String -> Q [Dec] }

That is, a quoter is a tuple of four parsers, one for each of the contexts in which a quasi-
quote can occur.

• A quasi-quote is expanded by applying the appropriate parser to the string enclosed by
the Oxford brackets. The context of the quasi-quote (expression, pattern, type, declara-
tion) determines which of the parsers is called.

• Unlike normal declaration splices of the form $(...), declaration quasi-quotes do not
cause a declaration group break. See Syntax (page 372) for more information.

Warning: -XQuasiQuotes (page 379) introduces an unfortunate ambiguity with list
comprehension syntax. Consider the following,

let x = [v| v <- [0..10]]

Without -XQuasiQuotes (page 379) this is parsed as a list comprehension. With -
XQuasiQuotes (page 379) this is parsed as a quasi-quote; however, this parse will fail due
to the lack of a closing |]. See Trac #11679.

The example below shows quasi-quotation in action. The quoter expr is bound to a value of
type QuasiQuoter defined in module Expr. The example makes use of an antiquoted variable
n, indicated by the syntax 'int:n (this syntax for anti-quotation was defined by the parser’s
author, not by GHC). This binds n to the integer value argument of the constructor IntExpr

380 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/5348
https://ghc.haskell.org/trac/ghc/ticket/11679


GHC User’s Guide Documentation, Release 8.2.1.20171030

when pattern matching. Please see the referenced paper for further details regarding anti-
quotation as well as the description of a technique that uses SYB to leverage a single parser
of type String -> a to generate both an expression parser that returns a value of type Q Exp
and a pattern parser that returns a value of type Q Pat.
Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in the example,
expr cannot be defined in Main.hs where it is used, but must be imported.

{- ------------- file Main.hs --------------- -}
module Main where

import Expr

main :: IO ()
main = do { print $ eval [expr|1 + 2|]

; case IntExpr 1 of
{ [expr|'int:n|] -> print n
; _ -> return ()
}

}

{- ------------- file Expr.hs --------------- -}
module Expr where

import qualified Language.Haskell.TH as TH
import Language.Haskell.TH.Quote

data Expr = IntExpr Integer
| AntiIntExpr String
| BinopExpr BinOp Expr Expr
| AntiExpr String

deriving(Show, Typeable, Data)

data BinOp = AddOp
| SubOp
| MulOp
| DivOp

deriving(Show, Typeable, Data)

eval :: Expr -> Integer
eval (IntExpr n) = n
eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)

where
opToFun AddOp = (+)
opToFun SubOp = (-)
opToFun MulOp = (*)
opToFun DivOp = div

expr = QuasiQuoter { quoteExp = parseExprExp, quotePat = parseExprPat }

-- Parse an Expr, returning its representation as
-- either a Q Exp or a Q Pat. See the referenced paper
-- for how to use SYB to do this by writing a single
-- parser of type String -> Expr instead of two
-- separate parsers.

parseExprExp :: String -> Q Exp
parseExprExp ...

9.26. Template Haskell 381



GHC User’s Guide Documentation, Release 8.2.1.20171030

parseExprPat :: String -> Q Pat
parseExprPat ...

Now run the compiler:

$ ghc --make -XQuasiQuotes Main.hs -o main

Run “main” and here is your output:

$ ./main
3
1

9.27 Arrow notation

-XArrows
Enable arrow notation.

Arrows are a generalisation of monads introduced by John Hughes. For more details, see
• “Generalising Monads to Arrows”, John Hughes, in Science of Computer Programming
37, pp. 67–111, May 2000. The paper that introduced arrows: a friendly introduction,
motivated with programming examples.

• “A New Notation for Arrows”, Ross Paterson, in ICFP, Sep 2001. Introduced the notation
described here.

• “Arrows and Computation”, Ross Paterson, in The Fun of Programming, Palgrave, 2003.
• “Programming with Arrows”, John Hughes, in 5th International Summer School on
Advanced Functional Programming, Lecture Notes in Computer Science vol. 3622,
Springer, 2004. This paper includes another introduction to the notation, with practical
examples.

• “Type and Translation Rules for Arrow Notation in GHC”, Ross Paterson and Simon Pey-
ton Jones, September 16, 2004. A terse enumeration of the formal rules used (extracted
from comments in the source code).

• The arrows web page at http://www.haskell.org/arrows/
<http://www.haskell.org/arrows/>‘__.

With the -XArrows (page 382) flag, GHC supports the arrow notation described in the sec-
ond of these papers, translating it using combinators from the Control.Arrow module. What
follows is a brief introduction to the notation; it won’t make much sense unless you’ve read
Hughes’s paper.
The extension adds a new kind of expression for defining arrows:

exp10 ::= ...
| proc apat -> cmd

where proc is a new keyword. The variables of the pattern are bound in the body of the proc-
expression, which is a new sort of thing called a command. The syntax of commands is as
follows:

cmd ::= exp10 -< exp
| exp10 -<< exp
| cmd0

382 Chapter 9. GHC Language Features

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html
http://www.cse.chalmers.se/~rjmh/afp-arrows.pdf
http://www.haskell.org/ghc/docs/papers/arrow-rules.pdf
http://www.haskell.org/arrows/


GHC User’s Guide Documentation, Release 8.2.1.20171030

with ⟨cmd⟩0 up to ⟨cmd⟩9 defined using infix operators as for expressions, and

cmd10 ::= \ apat ... apat -> cmd
| let decls in cmd
| if exp then cmd else cmd
| case exp of { calts }
| do { cstmt ; ... cstmt ; cmd }
| fcmd

fcmd ::= fcmd aexp
| ( cmd )
| (| aexp cmd ... cmd |)

cstmt ::= let decls
| pat <- cmd
| rec { cstmt ; ... cstmt [;] }
| cmd

where ⟨calts⟩ are like ⟨alts⟩ except that the bodies are commands instead of expressions.
Commands produce values, but (like monadic computations) may yield more than one value,
or none, and may do other things as well. For the most part, familiarity with monadic notation
is a good guide to using commands. However the values of expressions, even monadic ones,
are determined by the values of the variables they contain; this is not necessarily the case for
commands.
A simple example of the new notation is the expression

proc x -> f -< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable
x is a new variable bound within the proc-expression. It refers to the input to the arrow.
In the above example, -< is not an identifier but an new reserved symbol used for building
commands from an expression of arrow type and an expression to be fed as input to that
arrow. (The weird look will make more sense later.) It may be read as analogue of application
for arrows. The above example is equivalent to the Haskell expression

arr (\ x -> x+1) >>> f

That would make no sense if the expression to the left of -< involves the bound variable x.
More generally, the expression to the left of -< may not involve any local variable, i.e. a
variable bound in the current arrow abstraction. For such a situation there is a variant -<<,
as in

proc x -> f x -<< x+1

which is equivalent to

arr (\ x -> (f x, x+1)) >>> app

so in this case the arrow must belong to the ArrowApply class. Such an arrow is equivalent
to a monad, so if you’re using this form you may find a monadic formulation more convenient.

9.27.1 do-notation for commands

Another form of command is a form of do-notation. For example, you can write

9.27. Arrow notation 383



GHC User’s Guide Documentation, Release 8.2.1.20171030

proc x -> do
y <- f -< x+1
g -< 2*y
let z = x+y
t <- h -< x*z
returnA -< t+z

You can read this much like ordinary do-notation, but with commands in place of monadic
expressions. The first line sends the value of x+1 as an input to the arrow f, and matches its
output against y. In the next line, the output is discarded. The arrow returnA is defined in
the Control.Arrow module as arr id. The above example is treated as an abbreviation for

arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y, x) -> (y, (x, y))) >>>
first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA

Note that variables not used later in the composition are projected out. After simplification
using rewrite rules (see Rewrite rules (page 409)) defined in the Control.Arrow module, this
reduces to

arr (\ x -> (x+1, x)) >>>
first f >>>
arr (\ (y, x) -> (2*y, (x, y))) >>>
first g >>>
arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
first h >>>
arr (\ (t, z) -> t+z)

which is what you might have written by hand. With arrow notation, GHC keeps track of all
those tuples of variables for you.
Note that although the above translation suggests that let-bound variables like z must be
monomorphic, the actual translation produces Core, so polymorphic variables are allowed.
It’s also possible to have mutually recursive bindings, using the new rec keyword, as in the
following example:

counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do

rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1

returnA -< output

The translation of such forms uses the loop combinator, so the arrow concerned must belong
to the ArrowLoop class.

9.27.2 Conditional commands

In the previous example, we used a conditional expression to construct the input for an arrow.
Sometimes we want to conditionally execute different commands, as in

384 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

proc (x,y) ->
if f x y
then g -< x+1
else h -< y+2

which is translated to

arr (\ (x,y) -> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> g) ||| (arr (\y -> y+2) >>> h)

Since the translation uses |||, the arrow concerned must belong to the ArrowChoice class.
There are also case commands, like

case input of
[] -> f -< ()
[x] -> g -< x+1
x1:x2:xs -> do

y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys

The syntax is the same as for case expressions, except that the bodies of the alternatives are
commands rather than expressions. The translation is similar to that of if commands.

9.27.3 Defining your own control structures

As we’re seen, arrow notation provides constructs, modelled on those for expressions, for
sequencing, value recursion and conditionals. But suitable combinators, which you can define
in ordinary Haskell, may also be used to build new commands out of existing ones. The basic
idea is that a command defines an arrow from environments to values. These environments
assign values to the free local variables of the command. Thus combinators that produce
arrows from arrows may also be used to build commands from commands. For example, the
ArrowPlus class includes a combinator

ArrowPlus a => (<+>) :: a b c -> a b c -> a b c

so we can use it to build commands:

expr' = proc x -> do
returnA -< x

<+> do
symbol Plus -< ()
y <- term -< ()
expr' -< x + y

<+> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y

(The do on the first line is needed to prevent the first <+> ... from being interpreted as part
of the expression on the previous line.) This is equivalent to

expr' = (proc x -> returnA -< x)
<+> (proc x -> do

symbol Plus -< ()
y <- term -< ()

9.27. Arrow notation 385



GHC User’s Guide Documentation, Release 8.2.1.20171030

expr' -< x + y)
<+> (proc x -> do

symbol Minus -< ()
y <- term -< ()
expr' -< x - y)

We are actually using <+> here with the more specific type

ArrowPlus a => (<+>) :: a (e,()) c -> a (e,()) c -> a (e,()) c

It is essential that this operator be polymorphic in e (representing the environment input
to the command and thence to its subcommands) and satisfy the corresponding naturality
property

arr (first k) >>> (f <+> g) = (arr (first k) >>> f) <+> (arr (first k) >>> g)

at least for strict k. (This should be automatic if you’re not using seq.) This ensures that
environments seen by the subcommands are environments of the whole command, and also
allows the translation to safely trim these environments. (The second component of the input
pairs can contain unnamed input values, as described in the next section.) The operator must
also not use any variable defined within the current arrow abstraction.
We could define our own operator

untilA :: ArrowChoice a => a (e,s) () -> a (e,s) Bool -> a (e,s) ()
untilA body cond = proc x ->

b <- cond -< x
if b then returnA -< ()
else do

body -< x
untilA body cond -< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators;
there is also a more general syntax involving special brackets:

proc x -> do
y <- f -< x+1
(|untilA (increment -< x+y) (within 0.5 -< x)|)

9.27.4 Primitive constructs

Some operators will need to pass additional inputs to their subcommands. For example, in an
arrow type supporting exceptions, the operator that attaches an exception handler will wish
to pass the exception that occurred to the handler. Such an operator might have a type

handleA :: ... => a (e,s) c -> a (e,(Ex,s)) c -> a (e,s) c

where Ex is the type of exceptions handled. You could then use this with arrow notation by
writing a command

body `handleA` \ ex -> handler

so that if an exception is raised in the command body, the variable ex is bound to the value of
the exception and the command handler, which typically refers to ex, is entered. Though the
syntax here looks like a functional lambda, we are talking about commands, and something
different is going on. The input to the arrow represented by a command consists of values
for the free local variables in the command, plus a stack of anonymous values. In all the prior

386 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

examples, we made no assumptions about this stack. In the second argument to handleA, the
value of the exception has been added to the stack input to the handler. The command form
of lambda merely gives this value a name.
More concretely, the input to a command consists of a pair of an environment and a stack.
Each value on the stack is paired with the remainder of the stack, with an empty stack being
(). So operators like handleA that pass extra inputs to their subcommands can be designed
for use with the notation by placing the values on the stack paired with the environment in
this way. More precisely, the type of each argument of the operator (and its result) should
have the form

a (e, (t1, ... (tn, ())...)) t

where ⟨e⟩ is a polymorphic variable (representing the environment) and ⟨ti⟩ are the types of
the values on the stack, with ⟨t1⟩ being the “top”. The polymorphic variable ⟨e⟩ must not
occur in ⟨a⟩, ⟨ti⟩ or ⟨t⟩. However the arrows involved need not be the same. Here are some
more examples of suitable operators:

bracketA :: ... => a (e,s) b -> a (e,(b,s)) c -> a (e,(c,s)) d -> a (e,s) d
runReader :: ... => a (e,s) c -> a' (e,(State,s)) c
runState :: ... => a (e,s) c -> a' (e,(State,s)) (c,State)

We can supply the extra input required by commands built with the last two by applying them
to ordinary expressions, as in

proc x -> do
s <- ...
(|runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using runReader.
The command versions of lambda abstraction and application are analogous to the expression
versions. In particular, the beta and eta rules describe equivalences of commands. These
three features (operators, lambda abstraction and application) are the core of the notation;
everything else can be built using them, though the results would be somewhat clumsy. For
example, we could simulate do-notation by defining

bind :: Arrow a => a (e,s) b -> a (e,(b,s)) c -> a (e,s) c
u `bind` f = returnA &&& u >>> f

bind_ :: Arrow a => a (e,s) b -> a (e,s) c -> a (e,s) c
u `bind_` f = u `bind` (arr fst >>> f)

We could simulate if by defining

cond :: ArrowChoice a => a (e,s) b -> a (e,s) b -> a (e,(Bool,s)) b
cond f g = arr (\ (e,(b,s)) -> if b then Left (e,s) else Right (e,s)) >>> f ||| g

9.27.5 Differences with the paper

• Instead of a single form of arrow application (arrow tail) with two translations, the im-
plementation provides two forms -< (first-order) and -<< (higher-order).

• User-defined operators are flagged with banana brackets instead of a new form keyword.
• In the paper and the previous implementation, values on the stack were paired to the
right of the environment in a single argument, but now the environment and stack are
separate arguments.

9.27. Arrow notation 387



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.27.6 Portability

Although only GHC implements arrow notation directly, there is also a preprocessor (available
from the arrows web page) that translates arrow notation into Haskell 98 for use with other
Haskell systems. You would still want to check arrow programs with GHC; tracing type errors
in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor
must observe some additional restrictions:
• The module must import Control.Arrow.
• The preprocessor cannot cope with other Haskell extensions. These would have to go in
separate modules.

• Because the preprocessor targets Haskell (rather than Core), let-bound variables are
monomorphic.

9.28 Bang patterns and Strict Haskell

In high-performance Haskell code (e.g. numeric code) eliminating thunks from an inner loop
can be a huge win. GHC supports three extensions to allow the programmer to specify use of
strict (call-by-value) evalution rather than lazy (call-by-need) evaluation.
• Bang patterns (-XBangPatterns (page 388)) makes pattern matching and let bindings
stricter.

• Strict data types (-XStrictData (page 390)) makes constructor fields strict by default,
on a per-module basis.

• Strict pattern (-XStrict (page 390)) makes all patterns and let bindings strict by default,
on a per-module basis.

The latter two extensions are simply a way to avoid littering high-performance code with bang
patterns, making it harder to read.
Bang patterns and strict matching do not affect the type system in any way.

9.28.1 Bang patterns

-XBangPatterns
Allow use of bang pattern syntax.

GHC supports an extension of pattern matching called bang patterns, written !pat. Bang
patterns are under consideration for Haskell Prime. The Haskell prime feature description
contains more discussion and examples than the material below.
The main idea is to add a single new production to the syntax of patterns:

pat ::= !pat

Matching an expression e against a pattern !p is done by first evaluating e (to WHNF) and
then matching the result against p. Example:

f1 !x = True

This definition makes f1 is strict in x, whereas without the bang it would be lazy. Bang
patterns can be nested of course:

388 Chapter 9. GHC Language Features

http://www.haskell.org/arrows/
http://ghc.haskell.org/trac/haskell-prime/wiki/BangPatterns


GHC User’s Guide Documentation, Release 8.2.1.20171030

f2 (!x, y) = [x,y]

Here, f2 is strict in x but not in y.
Note the following points:
• A bang only really has an effect if it precedes a variable or wild-card pattern:

f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]

Here, f3 and f4 are identical; putting a bang before a pattern that forces evaluation
anyway does nothing.

• A bang pattern is allowed in a let or where clause, and makes the binding strict. For
example:

let !x = e in body
let !(p,q) = e in body

In both cases e is evaluated before starting to evaluate body.
However, nested bangs in a let/where pattern binding behave uniformly with all other
forms of pattern matching. For example

let (!x,[y]) = e in b

is equivalent to this:

let { t = case e of (x,[y]) -> x `seq` (x,y)
x = fst t
y = snd t }

in b

The binding is lazy, but when either x or y is evaluated by b the entire pattern is matched,
including forcing the evaluation of x.
See Semantics of let bindings with bang patterns (page 392) for the detailed semantics.

• A pattern with a bang at the outermost level is not allowed at the top level of a module.
• Bang patterns work in case expressions too, of course:

g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (f x), binds y
to the result, and then evaluates body.

• There is one problem with syntactic ambiguity. Consider:

f !x = 3

Is this a definition of the infix function “(!)”, or of the “f” with a bang pattern? GHC
resolves this ambiguity in favour of the latter. If you want to define (!) with bang-
patterns enabled, you have to do so using prefix notation:

(!) f x = 3

9.28. Bang patterns and Strict Haskell 389



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.28.2 Strict-by-default data types

-XStrictData
Since 8.0.1

Make fields of data types defined in the current module strict by default.
Informally the StrictData language extension switches data type declarations to be strict by
default allowing fields to be lazy by adding a ~ in front of the field.
When the user writes

data T = C a
data T' = C' ~a

we interpret it as if they had written

data T = C !a
data T' = C' a

The extension only affects definitions in this module.

9.28.3 Strict-by-default pattern bindings

-XStrict
Implies -XStrictData (page 390)
Since 8.0.1

Make bindings in the current module strict by default.
Informally the Strict language extension switches functions, data types, and bindings to be
strict by default, allowing optional laziness by adding ~ in front of a variable. This essentially
reverses the present situation where laziness is default and strictness can be optionally had
by adding ! in front of a variable.
Strict implies StrictData (page 390).
• Function definitions
When the user writes

f x = ...

we interpret it as if they had written

f !x = ...

Adding ~ in front of x gives the regular lazy behavior.
• Let/where bindings
When the user writes

let x = ...
let pat = ...

we interpret it as if they had written

let !x = ...
let !pat = ...

390 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Adding ~ in front of x gives the regular lazy behavior. The general rule is that we add an
implicit bang on the outermost pattern, unless disabled with ~.

• Pattern matching in case expressions, lambdas, do-notation, etc
The outermost pattern of all pattern matches gets an implicit bang, unless disabled with
~. This applies to case expressions, patterns in lambda, do-notation, list comprehension,
and so on. For example

case x of (a,b) -> rhs

is interpreted as

case x of !(a,b) -> rhs

Since the semantics of pattern matching in case expressions is strict, this usually has no
effect whatsoever. But it does make a difference in the degenerate case of variables and
newtypes. So

case x of y -> rhs

is lazy in Haskell, but with Strict is interpreted as

case x of !y -> rhs

which evaluates x. Similarly, if newtype Age = MkAge Int, then

case x of MkAge i -> rhs

is lazy in Haskell; but with Strict the added bang makes it strict.
Similarly

\ x -> body
do { x <- rhs; blah }
[ e | x <- rhs; blah }

all get implicit bangs on the x pattern.
• Nested patterns
Notice that we do not put bangs on nested patterns. For example

let (p,q) = if flob then (undefined, undefined) else (True, False)
in ...

will behave like

let !(p,q) = if flob then (undefined, undefined) else (True,False)
in ...

which will strictly evaluate the right hand side, and bind p and q to the components of
the pair. But the pair itself is lazy (unless we also compile the Prelude with Strict; see
Modularity (page 392) below). So p and q may end up bound to undefined. See also
Dynamic semantics of bang patterns (page 392) below.

• Top level bindings
are unaffected by Strict. For example:

x = factorial 20
(y,z) = if x > 10 then True else False

9.28. Bang patterns and Strict Haskell 391



GHC User’s Guide Documentation, Release 8.2.1.20171030

Here x and the pattern binding (y,z) remain lazy. Reason: there is no good moment to
force them, until first use.

• Newtypes
There is no effect on newtypes, which simply rename existing types. For example:

newtype T = C a
f (C x) = rhs1
g !(C x) = rhs2

In ordinary Haskell, f is lazy in its argument and hence in x; and g is strict in its argument
and hence also strict in x. With Strict, both become strict because f‘s argument gets
an implicit bang.

9.28.4 Modularity

Strict and StrictData only affects definitions in the module they are used in. Functions
and data types imported from other modules are unaffected. For example, we won’t evaluate
the argument to Just before applying the constructor. Similarly we won’t evaluate the first
argument to Data.Map.findWithDefault before applying the function.
This is crucial to preserve correctness. Entities defined in other modules might rely on lazi-
ness for correctness (whether functional or performance).
Tuples, lists, Maybe, and all the other types from Prelude continue to have their existing, lazy,
semantics.

9.28.5 Dynamic semantics of bang patterns

The semantics of Haskell pattern matching is described in Section 3.17.2 of the Haskell Re-
port. To this description add one extra item 10, saying:
• Matching the pattern !pat against a value v behaves as follows:

– if v is bottom, the match diverges
– otherwise, pat is matched against v

Similarly, in Figure 4 of Section 3.17.3, add a new case (t):

case v of { !pat -> e; _ -> e' }
= v `seq` case v of { pat -> e; _ -> e' }

That leaves let expressions, whose translation is given in Section 3.12 of the Haskell Report.
Replace the “Translation” there with the following one. Given let { bind1 ... bindn } in
body:

FORCE
Replace any binding !p = e with v = case e of p -> (x1, ..., xn); (x1, ..., xn) =
v and replace body with v seq body, where v is fresh. This translation works fine if p is
already a variable x, but can obviously be optimised by not introducing a fresh variable v.

SPLIT

392 Chapter 9. GHC Language Features

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12


GHC User’s Guide Documentation, Release 8.2.1.20171030

Replace any binding p = e, where p is not a variable, with v = e; x1 = case v of p ->
x1; ...; xn = case v of p -> xn, where v is fresh and x1.. xn are the bound variables of
p. Again if e is a variable, this can be optimised by not introducing a fresh variable.

The result will be a (possibly) recursive set of bindings, binding only simple variables on the
left hand side. (One could go one step further, as in the Haskell Report andmake the recursive
bindings non-recursive using fix, but we do not do so in Core, and it only obfuscates matters,
so we do not do so here.)
The translation is carefully crafted to make bang patterns meaningful for recursive and poly-
morphic bindings as well as straightforward non-recursive bindings.
Here are some examples of how this translation works. The first expression of each sequence
is Haskell source; the subsequent ones are Core.
Here is a simple non-recursive case:

let x :: Int -- Non-recursive
!x = factorial y

in body

===> (FORCE)
let x = factorial y in x `seq` body

===> (inline seq)
let x = factorial y in case x of x -> body

===> (inline x)
case factorial y of x -> body

Same again, only with a pattern binding:

let !(Just x, Left y) = e in body

===> (FORCE)
let v = case e of (Just x, Left y) -> (x,y)

(x,y) = v
in v `seq` body

===> (SPLIT)
let v = case e of (Just x, Left y) -> (x,y)

x = case v of (x,y) -> x
y = case v of (x,y) -> y

in v `seq` body

===> (inline seq, float x,y bindings inwards)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v -> let x = case v of (x,y) -> x

y = case v of (x,y) -> y
in body

===> (fluff up v's pattern; this is a standard Core optimisation)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v@(p,q) -> let x = case v of (x,y) -> x

y = case v of (x,y) -> y
in body

===> (case of known constructor)
let v = case e of (Just x, Left y) -> (x,y)

9.28. Bang patterns and Strict Haskell 393



GHC User’s Guide Documentation, Release 8.2.1.20171030

in case v of v@(p,q) -> let x = p
y = q

in body

===> (inline x,y, v)
case (case e of (Just x, Left y) -> (x,y) of

(p,q) -> body[p/x, q/y]

===> (case of case)
case e of (Just x, Left y) -> body[p/x, q/y]

The final form is just what we want: a simple case expression.
Here is a recursive case

letrec xs :: [Int] -- Recursive
!xs = factorial y : xs

in body

===> (FORCE)
letrec xs = factorial y : xs in xs `seq` body

===> (inline seq)
letrec xs = factorial y : xs in case xs of xs -> body

===> (eliminate case of value)
letrec xs = factorial y : xs in body

and a polymorphic one:

let f :: forall a. [a] -> [a] -- Polymorphic
!f = fst (reverse, True)

in body

===> (FORCE)
let f = /\a. fst (reverse a, True) in f `seq` body

===> (inline seq, inline f)
case (/\a. fst (reverse a, True)) of f -> body

Notice that the seq is added only in the translation to Core If we did it in Haskell source, thus

let f = ... in f `seq` body

then f‘s polymorphic type would get intantiated, so the Core translation would be

let f = ... in f Any `seq` body

When overloading is involved, the results might be slightly counter intuitive:

let f :: forall a. Eq a => a -> [a] -> Bool -- Overloaded
!f = fst (member, True)

in body

===> (FORCE)
let f = /\a \(d::Eq a). fst (member, True) in f `seq` body

===> (inline seq, case of value)
let f = /\a \(d::Eq a). fst (member, True) in body

Note that the bang has no effect at all in this case

394 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.29 Assertions

If you want to make use of assertions in your standard Haskell code, you could define a
function like the following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message – an assertion failed, but
which and where?
One way out is to define an extended assert function which also takes a descriptive string to
include in the error message and perhaps combine this with the use of a pre-processor which
inserts the source location where assert was used.
GHC offers a helping hand here, doing all of this for you. For every use of assert in the user’s
source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

GHC will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Con-
trol.Exception.assert, so you can still define and use your own versions of assert, should
you so wish. If not, import Control.Exception to make use assert in your code.
GHC ignores assertions when optimisation is turned on with the -O (page 89) flag. That is,
expressions of the form assert pred e will be rewritten to e. You can also disable assertions
using the -fignore-asserts (page 92) option. The option -fno-ignore-asserts (page 92)
allows enabling assertions even when optimisation is turned on.
Assertion failures can be caught, see the documentation for the Control.Exception library for
the details.

9.30 Static pointers

-XStaticPointers
Since 7.10.1

Allow use of static pointer syntax.
The language extension -XStaticPointers (page 395) adds a new syntactic form static
e, which stands for a reference to the closed expression ⟨e⟩. This reference is stable and
portable, in the sense that it remains valid across different processes on possibly different
machines. Thus, a process can create a reference and send it to another process that can
resolve it to ⟨e⟩.
With this extension turned on, static is no longer a valid identifier.
Static pointers were first proposed in the paper Towards Haskell in the cloud, Jeff Epstein,
Andrew P. Black and Simon Peyton-Jones, Proceedings of the 4th ACM Symposium on Haskell,
pp. 118-129, ACM, 2011.

9.29. Assertions 395

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

9.30.1 Using static pointers

Each reference is given a key which can be used to locate it at runtimewith unsafeLookupStat-
icPtr which uses a global and immutable table called the Static Pointer Table. The compiler
includes entries in this table for all static forms found in the linked modules. The value can
be obtained from the reference via deRefStaticPtr.
The body e of a static e expressionmust be a closed expression. Where we say an expression
is closed when all of its free (type) variables are closed. And a variable is closed if it is let-
bound to a closed expression and its type is closed as well. And a type is closed if it has no
free variables.
All of the following are permissible:

inc :: Int -> Int
inc x = x + 1

ref1 = static 1
ref2 = static inc
ref3 = static (inc 1)
ref4 = static ((\x -> x + 1) (1 :: Int))
ref5 y = static (let x = 1 in x)
ref6 y = let x = 1 in static x

While the following definitions are rejected:

ref7 y = let x = y in static x -- x is not closed
ref8 y = static (let x = 1 in y) -- y is not let-bound
ref8 (y :: a) = let x = undefined :: a

in static x -- x has a non-closed type

Note: While modules loaded in GHCi with the :load (page 50) command may use -
XStaticPointers (page 395) and static expressions, statements entered on the REPL may
not. This is a limitation of GHCi; see Trac #12356 for details.

9.30.2 Static semantics of static pointers

Informally, if we have a closed expression

e :: forall a_1 ... a_n . t

the static form is of type

static e :: (IsStatic p, Typeable a_1, ... , Typeable a_n) => p t

A static form determines a value of type StaticPtr t, but just like OverloadedLists and
OverloadedStrings, this literal expression is overloaded to allow lifting a StaticPtr into
another type implicitly, via the IsStatic class:

class IsStatic p where
fromStaticPtr :: StaticPtr a -> p a

The only predefined instance is the obvious one that does nothing:

instance IsStatic StaticPtr where
fromStaticPtr sptr = sptr

396 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/ticket/12356


GHC User’s Guide Documentation, Release 8.2.1.20171030

See IsStatic.
Furthermore, type t is constrained to have a Typeable instance. The following are therefore
illegal:

static show -- No Typeable instance for (Show a => a -> String)
static Control.Monad.ST.runST -- No Typeable instance for ((forall s. ST s a) -> a)

That being said, with the appropriate use of wrapper datatypes, the above limitations induce
no loss of generality:

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StaticPointers #-}

import Control.Monad.ST
import Data.Typeable
import GHC.StaticPtr

data Dict c = c => Dict

g1 :: Typeable a => StaticPtr (Dict (Show a) -> a -> String)
g1 = static (\Dict -> show)

data Rank2Wrapper f = R2W (forall s. f s)
deriving Typeable

newtype Flip f a s = Flip { unFlip :: f s a }
deriving Typeable

g2 :: Typeable a => StaticPtr (Rank2Wrapper (Flip ST a) -> a)
g2 = static (\(R2W f) -> runST (unFlip f))

9.31 Pragmas

GHC supports several pragmas, or instructions to the compiler placed in the source code.
Pragmas don’t normally affect themeaning of the program, but theymight affect the efficiency
of the generated code.
Pragmas all take the form {-# word ... #-} where ⟨word⟩ indicates the type of pragma,
and is followed optionally by information specific to that type of pragma. Case is ignored in
⟨word⟩. The various values for ⟨word⟩ that GHC understands are described in the following
sections; any pragma encountered with an unrecognised ⟨word⟩ is ignored. The layout rule
applies in pragmas, so the closing #-} should start in a column to the right of the opening
{-#.
Certain pragmas are file-header pragmas:
• A file-header pragma must precede the module keyword in the file.
• There can be as many file-header pragmas as you please, and they can be preceded or
followed by comments.

• File-header pragmas are read once only, before pre-processing the file (e.g. with cpp).
• The file-header pragmas are: {-# LANGUAGE #-}, {-# OPTIONS_GHC #-}, and {-# IN-
CLUDE #-}.

9.31. Pragmas 397



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.31.1 LANGUAGE pragma

The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the
intention that all Haskell compilers support the LANGUAGE pragma with the same syntax, al-
though not all extensions are supported by all compilers, of course. The LANGUAGE pragma
should be used instead of OPTIONS_GHC, if possible.
For example, to enable the FFI and preprocessing with CPP:

{-# LANGUAGE ForeignFunctionInterface, CPP #-}

LANGUAGE is a file-header pragma (see Pragmas (page 397)).
Every language extension can also be turned into a command-line flag by prefixing it with
“-X”; for example -XForeignFunctionInterface. (Similarly, all “-X” flags can be written as
LANGUAGE pragmas.)
A list of all supported language extensions can be obtained by invoking ghc --supported-
extensions (see --supported-extensions (page 68)).
Any extension from the Extension type defined in Language.Haskell.Extension may be used.
GHC will report an error if any of the requested extensions are not supported.

9.31.2 OPTIONS_GHC pragma

The OPTIONS_GHC pragma is used to specify additional options that are given to the compiler
when compiling this source file. See Command line options in source files (page 66) for
details.
Previous versions of GHC accepted OPTIONS rather than OPTIONS_GHC, but that is now depre-
cated.
OPTIONS_GHC is a file-header pragma (see Pragmas (page 397)).

9.31.3 INCLUDE pragma

The INCLUDE used to be necessary for specifying header files to be included when using the
FFI and compiling via C. It is no longer required for GHC, but is accepted (and ignored) for
compatibility with other compilers.

9.31.4 WARNING and DEPRECATED pragmas

The WARNING pragma allows you to attach an arbitrary warning to a particular function, class,
or type. A DEPRECATED pragma lets you specify that a particular function, class, or type is
deprecated. There are two ways of using these pragmas.
• You can work on an entire module thus:

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...

Or:

module Wibble {-# WARNING "This is an unstable interface." #-} where
...

When you compile any module that import Wibble, GHC will print the specified message.

398 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

• You can attach a warning to a function, class, type, or data constructor, with the following
top-level declarations:

{-# DEPRECATED f, C, T "Don't use these" #-}
{-# WARNING unsafePerformIO "This is unsafe; I hope you know what you're doing" #-}

When you compile any module that imports and uses any of the specified entities, GHC
will print the specified message.
You can only attach to entities declared at top level in the module being compiled, and
you can only use unqualified names in the list of entities. A capitalised name, such as T
refers to either the type constructor T or the data constructor T, or both if both are in
scope. If both are in scope, there is currently no way to specify one without the other
(c.f. fixities Infix type constructors, classes, and type variables (page 247)).

Also note that the argument to DEPRECATED and WARNING can also be a list of strings, in which
case the strings will be presented on separate lines in the resulting warning message,

{-# DEPRECATED foo, bar ["Don't use these", "Use gar instead"] #-}

Warnings and deprecations are not reported for (a) uses within the defining module, (b) defin-
ing a method in a class instance, and (c) uses in an export list. The latter reduces spurious
complaints within a library in which one module gathers together and re-exports the exports
of several others.
You can suppress the warnings with the flag -Wno-warnings-deprecations (page 79).

9.31.5 MINIMAL pragma

The MINIMAL pragma is used to specify the minimal complete definition of a class, i.e. specify
which methods must be implemented by all instances. If an instance does not satisfy the
minimal complete definition, then a warning is generated. This can be useful when a class
has methods with circular defaults. For example

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
{-# MINIMAL (==) | (/=) #-}

Without the MINIMAL pragma no warning would be generated for an instance that implements
neither method.
The syntax for minimal complete definition is:

mindef ::= name
| '(' mindef ')'
| mindef '|' mindef
| mindef ',' mindef

A vertical bar denotes disjunction, i.e. one of the two sides is required. A comma denotes
conjunction, i.e. both sides are required. Conjunction binds stronger than disjunction.
If no MINIMAL pragma is given in the class declaration, it is just as if a pragma {-# MINIMAL
op1, op2, ..., opn #-} was given, where the opi are the methods (a) that lack a default
method in the class declaration, and (b) whose name that does not start with an underscore
(c.f. -Wmissing-methods (page 83), Warnings and sanity-checking (page 76)).

9.31. Pragmas 399



GHC User’s Guide Documentation, Release 8.2.1.20171030

This warning can be turned off with the flag -Wno-missing-methods (page 83).

9.31.6 INLINE and NOINLINE pragmas

These pragmas control the inlining of function definitions.

INLINE pragma

GHC (with -O (page 89), as always) tries to inline (or “unfold”) functions/values that are
“small enough,” thus avoiding the call overhead and possibly exposing other more-wonderful
optimisations. GHC has a set of heuristics, tuned over a long period of time using many
benchmarks, that decide when it is beneficial to inline a function at its call site. The heuristics
are designed to inline functions when it appears to be beneficial to do so, but without incurring
excessive code bloat. If a function looks too big, it won’t be inlined, and functions larger than
a certain size will not even have their definition exported in the interface file. Some of the
thresholds that govern these heuristic decisions can be changed using flags, see -f*: platform-
independent flags (page 89).
Normally GHC will do a reasonable job of deciding by itself when it is a good idea to inline a
function. However, sometimes youmight want to override the default behaviour. For example,
if you have a key function that is important to inline because it leads to further optimisations,
but GHC judges it to be too big to inline.
The sledgehammer you can bring to bear is the INLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)
{-# INLINE key_function #-}

The major effect of an INLINE pragma is to declare a function’s “cost” to be very low. The
normal unfolding machinery will then be very keen to inline it. However, an INLINE pragma
for a function “f” has a number of other effects:
• While GHC is keen to inline the function, it does not do so blindly. For example, if you
write

map key_function xs

there really isn’t any point in inlining key_function to get

map (\x -> body) xs

In general, GHC only inlines the function if there is some reason (no matter how slight)
to suppose that it is useful to do so.

• Moreover, GHC will only inline the function if it is fully applied, where “fully applied”
means applied to as many arguments as appear (syntactically) on the LHS of the function
definition. For example:

comp1 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp1 #-}
comp1 f g = \x -> f (g x)

comp2 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp2 #-}
comp2 f g x = f (g x)

400 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

The two functions comp1 and comp2 have the same semantics, but comp1 will be inlined
when applied to two arguments, while comp2 requires three. This might make a big
difference if you say

map (not `comp1` not) xs

which will optimise better than the corresponding use of comp2.
• It is useful for GHC to optimise the definition of an INLINE function f just like any other
non-INLINE function, in case the non-inlined version of f is ultimately called. But we
don’t want to inline the optimised version of f; a major reason for INLINE pragmas is to
expose functions in f‘s RHS that have rewrite rules, and it’s no good if those functions
have been optimised away.
So GHC guarantees to inline precisely the code that you wrote, no more and no less.
It does this by capturing a copy of the definition of the function to use for inlining (we
call this the “inline-RHS”), which it leaves untouched, while optimising the ordinarily
RHS as usual. For externally-visible functions the inline-RHS (not the optimised RHS) is
recorded in the interface file.

• An INLINE function is not worker/wrappered by strictness analysis. It’s going to be
inlined wholesale instead.

GHC ensures that inlining cannot go on forever: every mutually-recursive group is cut by
one or more loop breakers that is never inlined (see Secrets of the GHC inliner, JFP 12(4)
July 2002). GHC tries not to select a function with an INLINE pragma as a loop breaker, but
when there is no choice even an INLINE function can be selected, in which case the INLINE
pragma is ignored. For example, for a self-recursive function, the loop breaker can only be
the function itself, so an INLINE pragma is always ignored.
Syntactically, an INLINE pragma for a function can be put anywhere its type signature could
be put.
INLINE pragmas are a particularly good idea for the then/return (or bind/unit) functions in
a monad. For example, in GHC’s own UniqueSupply monad code, we have:

{-# INLINE thenUs #-}
{-# INLINE returnUs #-}

See also the NOINLINE (NOINLINE pragma (page 402)) and INLINABLE (INLINABLE pragma
(page 401)) pragmas.

INLINABLE pragma

An {-# INLINABLE f #-} pragma on a function f has the following behaviour:
• While INLINE says “please inline me”, the INLINABLE says “feel free to inline me; use
your discretion”. In other words the choice is left to GHC, which uses the same rules as
for pragma-free functions. Unlike INLINE, that decision is made at the call site, and will
therefore be affected by the inlining threshold, optimisation level etc.

• Like INLINE, the INLINABLE pragma retains a copy of the original RHS for inlining pur-
poses, and persists it in the interface file, regardless of the size of the RHS.

• One way to use INLINABLE is in conjunction with the special function inline (Special
built-in functions (page 415)). The call inline f tries very hard to inline f. To make
sure that f can be inlined, it is a good idea to mark the definition of f as INLINABLE,
so that GHC guarantees to expose an unfolding regardless of how big it is. Moreover,

9.31. Pragmas 401

http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm
http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm


GHC User’s Guide Documentation, Release 8.2.1.20171030

by annotating f as INLINABLE, you ensure that f‘s original RHS is inlined, rather than
whatever random optimised version of f GHC’s optimiser has produced.

• The INLINABLE pragma also works with SPECIALISE: if youmark function f as INLINABLE,
then you can subsequently SPECIALISE in another module (see SPECIALIZE pragma
(page 403)).

• Unlike INLINE, it is OK to use an INLINABLE pragma on a recursive function. The princi-
pal reason do to so to allow later use of SPECIALISE

The alternative spelling INLINEABLE is also accepted by GHC.

NOINLINE pragma

The NOINLINE pragma does exactly what you’d expect: it stops the named function from being
inlined by the compiler. You shouldn’t ever need to do this, unless you’re very cautious about
code size.
NOTINLINE is a synonym for NOINLINE (NOINLINE is specified by Haskell 98 as the standard
way to disable inlining, so it should be used if you want your code to be portable).

CONLIKE modifier

An INLINE or NOINLINE pragma may have a CONLIKE modifier, which affects matching in
RULEs (only). See How rules interact with CONLIKE pragmas (page 411).

Phase control

Sometimes youwant to control exactly when in GHC’s pipeline the INLINE pragma is switched
on. Inlining happens only during runs of the simplifier. Each run of the simplifier has a
different phase number; the phase number decreases towards zero. If you use -dverbose-
core2core you’ll see the sequence of phase numbers for successive runs of the simplifier. In
an INLINE pragma you can optionally specify a phase number, thus:
• “INLINE[k] f” means: do not inline f until phase k, but from phase k onwards be very
keen to inline it.

• “INLINE[~k] f” means: be very keen to inline f until phase k, but from phase k onwards
do not inline it.

• “NOINLINE[k] f” means: do not inline f until phase k, but from phase k onwards be
willing to inline it (as if there was no pragma).

• “NOINLINE[~k] f” means: be willing to inline f until phase k, but from phase k onwards
do not inline it.

The same information is summarised here:

-- Before phase 2 Phase 2 and later
{-# INLINE [2] f #-} -- No Yes
{-# INLINE [~2] f #-} -- Yes No
{-# NOINLINE [2] f #-} -- No Maybe
{-# NOINLINE [~2] f #-} -- Maybe No

{-# INLINE f #-} -- Yes Yes
{-# NOINLINE f #-} -- No No

402 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

By “Maybe” we mean that the usual heuristic inlining rules apply (if the function body is
small, or it is applied to interesting-looking arguments etc). Another way to understand the
semantics is this:
• For both INLINE and NOINLINE, the phase number says when inlining is allowed at all.
• The INLINE pragma has the additional effect of making the function body look small, so
that when inlining is allowed it is very likely to happen.

The same phase-numbering control is available for RULES (Rewrite rules (page 409)).

9.31.7 LINE pragma

This pragma is similar to C’s #line pragma, and is mainly for use in automatically generated
Haskell code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you’d generated the current file from something called Foo.vhs and this line corresponds
to line 42 in the original. GHC will adjust its error messages to refer to the line/file named in
the LINE pragma.
LINE pragmas generated from Template Haskell set the file and line position for the duration
of the splice and are limited to the splice. Note that because Template Haskell splices abstract
syntax, the file positions are not automatically advanced.

9.31.8 COLUMN pragma

This is the analogue of the LINE pragma and is likewise intended for use in automatically gen-
erated Haskell code. It lets you specify the column number of the original code; for example

foo = do
{-# COLUMN 42 #-}pure ()
pure ()

This adjusts all column numbers immediately after the pragma to start at 42. The presence
of this pragma only affects the quality of the diagnostics and does not change the syntax of
the code itself.

9.31.9 RULES pragma

The RULES pragma lets you specify rewrite rules. It is described in Rewrite rules (page 409).

9.31.10 SPECIALIZE pragma

(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB:
more code space) specialised to particular types. Thus, if you have an overloaded function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists with Widget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

9.31. Pragmas 403



GHC User’s Guide Documentation, Release 8.2.1.20171030

• A SPECIALIZE pragma for a function can be put anywhere its type signature could be
put. Moreover, you can also SPECIALIZE an imported function provided it was given an
INLINABLE pragma at its definition site (INLINABLE pragma (page 401)).

• A SPECIALIZE has the effect of generating (a) a specialised version of the function and
(b) a rewrite rule (see Rewrite rules (page 409)) that rewrites a call to the un-specialised
function into a call to the specialised one. Moreover, given a SPECIALIZE pragma for a
function f, GHC will automatically create specialisations for any type-class-overloaded
functions called by f, if they are in the same module as the SPECIALIZE pragma, or if
they are INLINABLE; and so on, transitively.

• You can add phase control (Phase control (page 402)) to the RULE generated by a SPE-
CIALIZE pragma, just as you can if you write a RULE directly. For example:

{-# SPECIALIZE [0] hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

generates a specialisation rule that only fires in Phase 0 (the final phase). If you do not
specify any phase control in the SPECIALIZE pragma, the phase control is inherited from
the inline pragma (if any) of the function. For example:

foo :: Num a => a -> a
foo = ...blah...
{-# NOINLINE [0] foo #-}
{-# SPECIALIZE foo :: Int -> Int #-}

The NOINLINE pragma tells GHC not to inline foo until Phase 0; and this property is
inherited by the specialisation RULE, which will therefore only fire in Phase 0.
The main reason for using phase control on specialisations is so that you can write opti-
misation RULES that fire early in the compilation pipeline, and only then specialise the
calls to the function. If specialisation is done too early, the optimisation rules might fail
to fire.

• The type in a SPECIALIZE pragma can be any type that is less polymorphic than the type
of the original function. In concrete terms, if the original function is f then the pragma

{-# SPECIALIZE f :: <type> #-}

is valid if and only if the definition

f_spec :: <type>
f_spec = f

is valid. Here are some examples (where we only give the type signature for the original
function, not its code):

f :: Eq a => a -> b -> b
{-# SPECIALISE f :: Int -> b -> b #-}

g :: (Eq a, Ix b) => a -> b -> b
{-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}

h :: Eq a => a -> a -> a
{-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}

The last of these examples will generate a RULE with a somewhat-complex left-hand side
(try it yourself), so it might not fire very well. If you use this kind of specialisation, let
us know how well it works.

404 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

SPECIALIZE INLINE

A SPECIALIZE pragma can optionally be followed with a INLINE or NOINLINE pragma, option-
ally followed by a phase, as described in INLINE and NOINLINE pragmas (page 400). The
INLINE pragma affects the specialised version of the function (only), and applies even if the
function is recursive. The motivating example is this:

-- A GADT for arrays with type-indexed representation
data Arr e where

ArrInt :: !Int -> ByteArray# -> Arr Int
ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)

(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i)

Here, (!:) is a recursive function that indexes arrays of type Arr e. Consider a call to (!:)
at type (Int,Int). The second specialisation will fire, and the specialised function will be
inlined. It has two calls to (!:), both at type Int. Both these calls fire the first specialisation,
whose body is also inlined. The result is a type-based unrolling of the indexing function.
You can add explicit phase control (Phase control (page 402)) to SPECIALISE INLINE pragma,
just like on an INLINE pragma; if you do so, the same phase is used for the rewrite rule and
the INLINE control of the specialised function.

Warning: You can make GHC diverge by using SPECIALISE INLINE on an ordinarily-
recursive function.

SPECIALIZE for imported functions

Generally, you can only give a SPECIALIZE pragma for a function defined in the same mod-
ule. However if a function f is given an INLINABLE pragma at its definition site, then it can
subsequently be specialised by importing modules (see INLINABLE pragma (page 401)). For
example

module Map( lookup, blah blah ) where
lookup :: Ord key => [(key,a)] -> key -> Maybe a
lookup = ...
{-# INLINABLE lookup #-}

module Client where
import Map( lookup )

data T = T1 | T2 deriving( Eq, Ord )
{-# SPECIALISE lookup :: [(T,a)] -> T -> Maybe a

Here, lookup is declared INLINABLE, but it cannot be specialised for type T at its definition
site, because that type does not exist yet. Instead a client module can define T and then
specialise lookup at that type.
Moreover, every module that imports Client (or imports a module that imports Client, tran-
sitively) will “see”, and make use of, the specialised version of lookup. You don’t need to put
a SPECIALIZE pragma in every module.

9.31. Pragmas 405



GHC User’s Guide Documentation, Release 8.2.1.20171030

Moreover you often don’t even need the SPECIALIZE pragma in the first place. When compil-
ing a module M, GHC’s optimiser (when given the -O (page 89) flag) automatically considers
each top-level overloaded function declared in M, and specialises it for the different types
at which it is called in M. The optimiser also considers each imported INLINABLE overloaded
function, and specialises it for the different types at which it is called in M. So in our example,
it would be enough for lookup to be called at type T:

module Client where
import Map( lookup )

data T = T1 | T2 deriving( Eq, Ord )

findT1 :: [(T,a)] -> Maybe a
findT1 m = lookup m T1 -- A call of lookup at type T

However, sometimes there are no such calls, in which case the pragma can be useful.

Obsolete SPECIALIZE syntax

In earlier versions of GHC, it was possible to provide your own specialised function for a given
type:

{-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}

This feature has been removed, as it is now subsumed by the RULES pragma (see Specialisation
(page 414)).

9.31.11 SPECIALIZE instance pragma

Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...

}

The pragma must occur inside the where part of the instance declaration.

9.31.12 UNPACK pragma

The UNPACK indicates to the compiler that it should unpack the contents of a constructor field
into the constructor itself, removing a level of indirection. For example:

data T = T {-# UNPACK #-} !Float
{-# UNPACK #-} !Float

will create a constructor T containing two unboxed floats. This may not always be an opti-
misation: if the T constructor is scrutinised and the floats passed to a non-strict function for
example, they will have to be reboxed (this is done automatically by the compiler).
Unpacking constructor fields should only be used in conjunction with -O (page 89) 1, in order
to expose unfoldings to the compiler so the reboxing can be removed as often as possible. For
example:

1 in fact, UNPACK has no effect without -O , for technical reasons (see tick 5252 )

406 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxing f1 and f2 by inlining + on floats, but only when -O (page 89)
is on.
Any single-constructor data is eligible for unpacking; for example

data T = T {-# UNPACK #-} !(Int,Int)

will store the two Ints directly in the T constructor, by flattening the pair. Multi-level un-
packing is also supported:

data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int

will store two unboxed Int#s directly in the T constructor. The unpacker can see through
newtypes, too.
See also the -funbox-strict-fields (page 98) flag, which essentially has the effect of adding
{-# UNPACK #-} to every strict constructor field.

9.31.13 NOUNPACK pragma

The NOUNPACK pragma indicates to the compiler that it should not unpack the contents of a
constructor field. Example:

data T = T {-# NOUNPACK #-} !(Int,Int)

Even with the flags -funbox-strict-fields (page 98) and -O (page 89), the field of the
constructor T is not unpacked.

9.31.14 SOURCE pragma

The {-# SOURCE #-} pragma is used only in import declarations, to break a module loop. It
is described in detail in How to compile mutually recursive modules (page 141).

9.31.15 COMPLETE pragmas

The COMPLETE pragma is used to inform the pattern match checker that a certain set of pat-
terns is complete and that any function which matches on all the specified patterns is total.
The most common usage of COMPLETE pragmas is with Pattern synonyms (page 284). On its
own, the checker is very naive and assumes that any match involving a pattern synonym will
fail. As a result, any pattern match on a pattern synonym is regarded as incomplete unless
the user adds a catch-all case.
For example, the data types 2 * A and A + A are isomorphic but some computations are more
naturally expressed in terms of one or the other. To get the best of both worlds, we can choose
one as our implementation and then provide a set of pattern synonyms so that users can use
the other representation if they desire. We can then specify a COMPLETE pragma in order to
inform the pattern match checker that a function which matches on both LeftChoice and
RightChoice is total.

9.31. Pragmas 407



GHC User’s Guide Documentation, Release 8.2.1.20171030

data Choice a = Choice Bool a

pattern LeftChoice :: a -> Choice a
pattern LeftChoice a = Choice False a

pattern RightChoice :: a -> Choice a
pattern RightChoice a = Choice True a

{-# COMPLETE LeftChoice, RightChoice #-}

foo :: Choice Int -> Int
foo (LeftChoice n) = n * 2
foo (RightChoice n) = n - 2

COMPLETE pragmas are only used by the pattern match checker. If a function definition
matches on all the constructors specified in the pragma then the compiler will produce no
warning.
COMPLETE pragmas can contain any data constructors or pattern synonyms which are in scope,
but must mention at least one data constructor or pattern synonym defined in the same mod-
ule. COMPLETE pragmas may only appear at the top level of a module. Once defined, they are
automatically imported and exported from modules. COMPLETE pragmas should be thought of
as asserting a universal truth about a set of patterns and as a result, should not be used to
silence context specific incomplete match warnings.
When specifing a COMPLETE pragma, the result types of all patterns must be consistent with
each other. This is a sanity check as it would be impossible to match on all the patterns if the
types were inconsistent.
The result type must also be unambiguous. Usually this can be inferred but when all the
pattern synonyms in a group are polymorphic in the constructor the user must provide a type
signature.

class LL f where
go :: f a -> ()

instance LL [] where
go _ = ()

pattern T :: LL f => f a
pattern T <- (go -> ())

{-# COMPLETE T :: [] #-}

-- No warning
foo :: [a] -> Int
foo T = 5

9.31.16 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas

The pragmas OVERLAPPING, OVERLAPPABLE, OVERLAPS, INCOHERENT are used to specify the
overlap behavior for individual instances, as described in Section Overlapping instances
(page 303). The pragmas are written immediately after the instance keyword, like this:

instance {-# OVERLAPPING #-} C t where ...

408 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.32 Rewrite rules

The programmer can specify rewrite rules as part of the source program (in a pragma). Here
is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

Use the debug flag -ddump-simpl-stats (page 185) to see what rules fired. If you need more
information, then -ddump-rule-firings (page 184) shows you each individual rule firing and
-ddump-rule-rewrites (page 184) also shows what the code looks like before and after the
rewrite.
-fenable-rewrite-rules

Allow the compiler to apply rewrite rules to the source program.

9.32.1 Syntax

From a syntactic point of view:
• There may be zero or more rules in a RULES pragma, separated by semicolons (which
may be generated by the layout rule).

• The layout rule applies in a pragma. Currently no new indentation level is set, so if you
put several rules in single RULES pragma and wish to use layout to separate them, you
must lay out the starting in the same column as the enclosing definitions.

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
"map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys
#-}

Furthermore, the closing #-} should start in a column to the right of the opening {-#.
• Each rule has a name, enclosed in double quotes. The name itself has no significance at
all. It is only used when reporting how many times the rule fired.

• A rule may optionally have a phase-control number (see Phase control (page 402)), im-
mediately after the name of the rule. Thus:

{-# RULES
"map/map" [2] forall f g xs. map f (map g xs) = map (f.g) xs

#-}

The [2] means that the rule is active in Phase 2 and subsequent phases. The inverse
notation [~2] is also accepted, meaning that the rule is active up to, but not including,
Phase 2.
Rules support the special phase-control notation [~], which means the rule is never
active. This feature supports plugins (see Compiler Plugins (page 451)), by making it
possible to define a RULE that is never run by GHC, but is nevertheless parsed, type-
checked etc, so that it is available to the plugin.

• Each variable mentioned in a rule must either be in scope (e.g. map), or bound by the
forall (e.g. f, g, xs). The variables bound by the forall are called the pattern variables.
They are separated by spaces, just like in a type forall.

9.32. Rewrite rules 409



GHC User’s Guide Documentation, Release 8.2.1.20171030

• A pattern variablemay optionally have a type signature. If the type of the pattern variable
is polymorphic, it must have a type signature. For example, here is the foldr/build rule:

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Since g has a polymorphic type, it must have a type signature.
• The left hand side of a rule must consist of a top-level variable applied to arbitrary ex-
pressions. For example, this is not OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True
"wrong3" forall x. Just x = Nothing

In "wrong1", the LHS is not an application; in "wrong2", the LHS has a pattern variable
in the head. In "wrong3", the LHS consists of a constructor, rather than a variable,
applied to an argument.

• A rule does not need to be in the same module as (any of) the variables it mentions,
though of course they need to be in scope.

• All rules are implicitly exported from the module, and are therefore in force in any mod-
ule that imports the module that defined the rule, directly or indirectly. (That is, if A
imports B, which imports C, then C’s rules are in force when compiling A.) The situation
is very similar to that for instance declarations.

• Inside a RULE “forall” is treated as a keyword, regardless of any other flag set-
tings. Furthermore, inside a RULE, the language extension -XScopedTypeVariables
(page 348) is automatically enabled; see Lexically scoped type variables (page 348).

• Like other pragmas, RULE pragmas are always checked for scope errors, and are type-
checked. Typechecking means that the LHS and RHS of a rule are typechecked, and
must have the same type. However, rules are only enabled if the -fenable-rewrite-
rules (page 409) flag is on (see Semantics (page 410)).

9.32.2 Semantics

From a semantic point of view:
• Rules are enabled (that is, used during optimisation) by the -fenable-rewrite-rules
(page 409) flag. This flag is implied by -O (page 89), and may be switched off (as usual)
by -fno-enable-rewrite-rules (page 409). (NB: enabling -fenable-rewrite-rules
(page 409) without -O (page 89) may not do what you expect, though, because without
-O (page 89) GHC ignores all optimisation information in interface files; see -fignore-
interface-pragmas (page 92)). Note that -fenable-rewrite-rules (page 409) is an
optimisation flag, and has no effect on parsing or typechecking.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that
is a substitution instance of the LHS of a rule, it replaces the expression by the
(appropriately-substituted) RHS. By “a substitution instance” we mean that the LHS can
be made equal to the expression by substituting for the pattern variables.

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the
same meaning. That is undecidable in general, and infeasible in most interesting cases.
The responsibility is entirely the programmer’s!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For
example:

410 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

"loop" forall x y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.
• If more than one rule matches a call, GHC will choose one arbitrarily to apply.
• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule
LHS with an expression. It seeks a substitution which makes the LHS and expression
syntactically equal modulo alpha conversion. The pattern (rule), but not the expression,
is eta-expanded if necessary. (Eta-expanding the expression can lead to laziness bugs.)
But not beta conversion (that’s called higher-order matching).
Matching is carried out on GHC’s intermediate language, which includes type abstrac-
tions and applications. So a rule only matches if the types match too. See Specialisation
(page 414) below.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s = map f
t = map g

in
s (t xs)

The expression s (t xs) does not match the rule "map/map", but GHC will substitute
for s and t, giving an expression which does match. If s or t was (a) used more than
once, and (b) large or a redex, then it would not be substituted, and the rule would not
fire.

9.32.3 How rules interact with INLINE/NOINLINE pragmas

Ordinary inlining happens at the same time as rule rewriting, which may lead to unexpected
results. Consider this (artificial) example

f x = x
g y = f y
h z = g True

{-# RULES "f" f True = False #-}

Since f‘s right-hand side is small, it is inlined into g, to give
g y = y

Now g is inlined into h, but f‘s RULE has no chance to fire. If instead GHC had first inlined g
into h then there would have been a better chance that f‘s RULE might fire.
The way to get predictable behaviour is to use a NOINLINE pragma, or an INLINE[⟨phase⟩]
pragma, on f, to ensure that it is not inlined until its RULEs have had a chance to fire.
The warning flag -Winline-rule-shadowing (page 87) (see Warnings and sanity-checking
(page 76)) warns about this situation.

9.32.4 How rules interact with CONLIKE pragmas

GHC is very cautious about duplicating work. For example, consider

9.32. Rewrite rules 411



GHC User’s Guide Documentation, Release 8.2.1.20171030

f k z xs = let xs = build g
in ...(foldr k z xs)...sum xs...

{-# RULES "foldr/build" forall k z g. foldr k z (build g) = g k z #-}

Since xs is used twice, GHC does not fire the foldr/build rule. Rightly so, because it might
take a lot of work to compute xs, which would be duplicated if the rule fired.
Sometimes, however, this approach is over-cautious, and we do want the rule to fire, even
though doing so would duplicate redex. There is no way that GHC can work out when this is
a good idea, so we provide the CONLIKE pragma to declare it, thus:

{-# INLINE CONLIKE [1] f #-}
f x = blah

CONLIKE is a modifier to an INLINE or NOINLINE pragma. It specifies that an application of
f to one argument (in general, the number of arguments to the left of the = sign) should
be considered cheap enough to duplicate, if such a duplication would make rule fire. (The
name “CONLIKE” is short for “constructor-like”, because constructors certainly have such a
property.) The CONLIKE pragma is a modifier to INLINE/NOINLINE because it really only
makes sense to match f on the LHS of a rule if you are sure that f is not going to be inlined
before the rule has a chance to fire.

9.32.5 How rules interact with class methods

Giving a RULE for a class method is a bad idea:

class C a where
op :: a -> a -> a

instance C Bool where
op x y = ...rhs for op at Bool...

{-# RULES "f" op True y = False #-}

In this example, op is not an ordinary top-level function; it is a class method. GHC rapidly
rewrites any occurrences of op-used-at-type-Bool to a specialised function, say opBool, where

opBool :: Bool -> Bool -> Bool
opBool x y = ..rhs for op at Bool...

So the RULE never has a chance to fire, for just the same reasons as in How rules interact
with INLINE/NOINLINE pragmas (page 411).
The solution is to define the instance-specific function yourself, with a pragma to prevent it
being inlined too early, and give a RULE for it:

instance C Bool where
op x y = opBool

opBool :: Bool -> Bool -> Bool
{-# NOINLINE [1] opBool #-}
opBool x y = ..rhs for op at Bool...

{-# RULES "f" opBool True y = False #-}

If you want a RULE that truly applies to the overloaded class method, the only way to do it is
like this:

412 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

class C a where
op_c :: a -> a -> a

op :: C a => a -> a -> a
{-# NOINLINE [1] op #-}
op = op_c

{-# RULES "reassociate" op (op x y) z = op x (op y z) #-}

Now the inlining of op is delayed until the rule has a chance to fire. The down-side is that
instance declarations must define op_c, but all other uses should go via op.

9.32.6 List fusion

The RULES mechanism is used to implement fusion (deforestation) of common list functions.
If a “good consumer” consumes an intermediate list constructed by a “good producer”, the
intermediate list should be eliminated entirely.
The following are good producers:
• List comprehensions
• Enumerations of Int, Integer and Char (e.g. ['a'..'z']).
• Explicit lists (e.g. [True, False])
• The cons constructor (e.g 3:4:[])
• ++

• map

• take, filter
• iterate, repeat
• zip, zipWith

The following are good consumers:
• List comprehensions
• array (on its second argument)
• ++ (on its first argument)
• foldr

• map

• take, filter
• concat

• unzip, unzip2, unzip3, unzip4
• zip, zipWith (but on one argument only; if both are good producers, zip will fuse with
one but not the other)

• partition

• head

• and, or, any, all

9.32. Rewrite rules 413



GHC User’s Guide Documentation, Release 8.2.1.20171030

• sequence_

• msum

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are
not included, please tell us.
If you want to write your own good consumers or producers, look at the Prelude definitions
of the above functions to see how to do so.

9.32.7 Specialisation

Rewrite rules can be used to get the same effect as a feature present in earlier versions of
GHC. For example, suppose that:

genericLookup :: Ord a => Table a b -> a -> b
intLookup :: Table Int b -> Int -> b

where intLookup is an implementation of genericLookup that works very fast for keys of type
Int. You might wish to tell GHC to use intLookup instead of genericLookup whenever the
latter was called with type Table Int b -> Int -> b. It used to be possible to write

{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}

This feature is no longer in GHC, but rewrite rules let you do the same thing:

{-# RULES "genericLookup/Int" genericLookup = intLookup #-}

This slightly odd-looking rule instructs GHC to replace genericLookup by intLookup when-
ever the types match. What is more, this rule does not need to be in the same file as gener-
icLookup, unlike the SPECIALIZE pragmas which currently do (so that they have an original
definition available to specialise).
It is Your Responsibility to make sure that intLookup really behaves as a specialised version
of genericLookup!!!
An example in which using RULES for specialisation will Win Big:

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an interme-
diate Rational-is obscenely expensive by comparison.

9.32.8 Controlling what’s going on in rewrite rules

• Use -ddump-rules (page 184) to see the rules that are defined in this module. This
includes rules generated by the specialisation pass, but excludes rules imported from
other modules.

414 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Use -ddump-simpl-stats (page 185) to see what rules are being fired. If you add -dppr-
debug (page 186) you get a more detailed listing.

• Use -ddump-rule-firings (page 184) or -ddump-rule-rewrites (page 184) to see in
great detail what rules are being fired. If you add -dppr-debug (page 186) you get a still
more detailed listing.

• The definition of (say) build in GHC/Base.hs looks like this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []

Notice the INLINE! That prevents (:) from being inlined when compiling PrelBase, so
that an importing module will “see” the (:), and can match it on the LHS of a rule.
INLINE prevents any inlining happening in the RHS of the INLINE thing. I regret the
delicacy of this.

• In libraries/base/GHC/Base.hs look at the rules for map to see how to write rules that
will do fusion and yet give an efficient program even if fusion doesn’t happen. More rules
in GHC/List.hs.

9.33 Special built-in functions

GHC has a few built-in functions with special behaviour. In particular:
• inline allows control over inlining on a per-call-site basis.
• lazy restrains the strictness analyser.
• oneShot gives a hint to the compiler about how often a function is being called.

9.34 Generic classes

GHC used to have an implementation of generic classes as defined in the paper “Derivable
type classes”, Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000,
pp. 94-105. These have been removed and replaced by the more general support for generic
programming (page 415).

9.35 Generic programming

Using a combination of -XDeriveGeneric (page 269), -XDefaultSignatures (page 292), and
-XDeriveAnyClass (page 281), you can easily do datatype-generic programming using the
GHC.Generics framework. This section gives a very brief overview of how to do it.
Generic programming support in GHC allows defining classes with methods that do not need
a user specification when instantiating: the method body is automatically derived by GHC.
This is similar to what happens for standard classes such as Read and Show, for instance, but
now for user-defined classes.

9.33. Special built-in functions 415



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.35.1 Deriving representations

The first thing we need is generic representations. The GHC.Genericsmodule defines a couple
of primitive types that are used to represent Haskell datatypes:

-- | Unit: used for constructors without arguments
data U1 p = U1

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

The Generic and Generic1 classes mediate between user-defined datatypes and their internal
representation as a sum-of-products:

class Generic a where
-- Encode the representation of a user datatype
type Rep a :: * -> *
-- Convert from the datatype to its representation
from :: a -> (Rep a) x
-- Convert from the representation to the datatype
to :: (Rep a) x -> a

class Generic1 (f :: k -> *) where
type Rep1 f :: k -> *

from1 :: f a -> Rep1 f a
to1 :: Rep1 f a -> f a

Generic1 is used for functions that can only be defined over type containers, such as map. Note
that Generic1 ranges over types of kind * -> * by default, but if the -XPolyKinds (page 330)
extension is enabled, then it can range of types of kind k -> *, for any kind k.
Instances of these classes can be derived by GHC with the -XDeriveGeneric (page 269) ex-
tension, and are necessary to be able to define generic instances automatically.
For example, a user-defined datatype of trees

data UserTree a = Node a (UserTree a) (UserTree a) | Leaf

in a Main module in a package named foo will get the following representation:

instance Generic (UserTree a) where
-- Representation type
type Rep (UserTree a) =
M1 D ('MetaData "UserTree" "Main" "package-name" 'False) (

M1 C ('MetaCons "Node" 'PrefixI 'False) (
M1 S ('MetaSel 'Nothing

'NoSourceUnpackedness

416 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

'NoSourceStrictness
'DecidedLazy)

(K1 R a)
:*: M1 S ('MetaSel 'Nothing

'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

(K1 R (UserTree a))
:*: M1 S ('MetaSel 'Nothing

'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

(K1 R (UserTree a)))
:+: M1 C ('MetaCons "Leaf" 'PrefixI 'False) U1)

-- Conversion functions
from (Node x l r) = M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))
from Leaf = M1 (R1 (M1 U1))
to (M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))) = Node x l r
to (M1 (R1 (M1 U1))) = Leaf

This representation is generated automatically if a deriving Generic clause is attached to
the datatype. Standalone deriving (page 268) can also be used.

9.35.2 Writing generic functions

A generic function is defined by creating a class and giving instances for each of the repre-
sentation types of GHC.Generics. As an example we show generic serialization:

data Bin = O | I

class GSerialize f where
gput :: f a -> [Bin]

instance GSerialize U1 where
gput U1 = []

instance (GSerialize a, GSerialize b) => GSerialize (a :*: b) where
gput (x :*: y) = gput x ++ gput y

instance (GSerialize a, GSerialize b) => GSerialize (a :+: b) where
gput (L1 x) = O : gput x
gput (R1 x) = I : gput x

instance (GSerialize a) => GSerialize (M1 i c a) where
gput (M1 x) = gput x

instance (Serialize a) => GSerialize (K1 i a) where
gput (K1 x) = put x

Typically this class will not be exported, as it only makes sense to have instances for the
representation types.

9.35. Generic programming 417



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.35.3 Unlifted representation types

The data family URec is provided to enable generic programming over datatypes with certain
unlifted arguments. There are six instances corresponding to common unlifted types:

data family URec a p

data instance URec (Ptr ()) p = UAddr { uAddr# :: Addr# }
data instance URec Char p = UChar { uChar# :: Char# }
data instance URec Double p = UDouble { uDouble# :: Double# }
data instance URec Int p = UInt { uInt# :: Int# }
data instance URec Float p = UFloat { uFloat# :: Float# }
data instance URec Word p = UWord { uWord# :: Word# }

Six type synonyms are provided for convenience:

type UAddr = URec (Ptr ())
type UChar = URec Char
type UDouble = URec Double
type UFloat = URec Float
type UInt = URec Int
type UWord = URec Word

As an example, this data declaration:

data IntHash = IntHash Int#
deriving Generic

results in the following Generic instance:

instance 'Generic' IntHash where
type 'Rep' IntHash =
'D1' ('MetaData "IntHash" "Main" "package-name" 'False)

('C1' ('MetaCons "IntHash" 'PrefixI 'False)
('S1' ('MetaSel 'Nothing

'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

'UInt'))

A user could provide, for example, a GSerialize UInt instance so that a Serialize IntHash
instance could be easily defined in terms of GSerialize.

9.35.4 Generic defaults

The only thing left to do now is to define a “front-end” class, which is exposed to the user:

class Serialize a where
put :: a -> [Bin]

default put :: (Generic a, GSerialize (Rep a)) => a -> [Bit]
put = gput . from

Here we use a default signature (page 292) to specify that the user does not have to provide
an implementation for put, as long as there is a Generic instance for the type to instantiate.
For the UserTree type, for instance, the user can just write:

418 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

instance (Serialize a) => Serialize (UserTree a)

The default method for put is then used, corresponding to the generic implementation of
serialization. If you are using -XDeriveAnyClass (page 281), the same instance is generated
by simply attaching a deriving Serialize clause to the UserTree datatype declaration. For
more examples of generic functions please refer to the generic-deriving package on Hackage.

9.35.5 More information

For more details please refer to the Haskell Wiki page or the original paper [Generics2010]
(page 497).

9.36 Roles

Using -XGeneralizedNewtypeDeriving (page 276) (Generalising the deriving clause
(page 277)), a programmer can take existing instances of classes and “lift” these into in-
stances of that class for a newtype. However, this is not always safe. For example, consider
the following:

newtype Age = MkAge { unAge :: Int }

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool

class BadIdea a where
bad :: a -> Inspect a

instance BadIdea Int where
bad = (> 0)

deriving instance BadIdea Age -- not allowed!

If the derived instance were allowed, what would the type of its method bad be? It would
seem to be Age -> Inspect Age, which is equivalent to Age -> Int, according to the type
family Inspect. Yet, if we simply adapt the implementation from the instance for Int, the
implementation for bad produces a Bool, and we have trouble.
The way to identify such situations is to have roles assigned to type variables of datatypes,
classes, and type synonyms.
Roles as implemented in GHC are a from a simplified version of the work described in Gen-
erative type abstraction and type-level computation, published at POPL 2011.

9.36.1 Nominal, Representational, and Phantom

The goal of the roles system is to track when two types have the same underlying representa-
tion. In the example above, Age and Int have the same representation. But, the correspond-
ing instances of BadIdea would not have the same representation, because the types of the
implementations of bad would be different.
Suppose we have two uses of a type constructor, each applied to the same parameters except
for one difference. (For example, T Age Bool c and T Int Bool c for some type T.) The

9.36. Roles 419

http://hackage.haskell.org/package/generic-deriving
http://www.haskell.org/haskellwiki/GHC.Generics
http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf
http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

role of a type parameter says what we need to know about the two differing type arguments
in order to know that the two outer types have the same representation (in the example,
what must be true about Age and Int in order to show that T Age Bool c has the same
representation as T Int Bool c).
GHC supports three different roles for type parameters: nominal, representational, and phan-
tom. If a type parameter has a nominal role, then the two types that differ must not actually
differ at all: they must be identical (after type family reduction). If a type parameter has
a representational role, then the two types must have the same representation. (If T‘s first
parameter’s role is representational, then T Age Bool c and T Int Bool c would have the
same representation, because Age and Int have the same representation.) If a type parameter
has a phantom role, then we need no further information.
Here are some examples:

data Simple a = MkSimple a -- a has role representational

type family F
type instance F Int = Bool
type instance F Age = Char

data Complex a = MkComplex (F a) -- a has role nominal

data Phant a = MkPhant Bool -- a has role phantom

The type Simple has its parameter at role representational, which is generally the most com-
mon case. Simple Age would have the same representation as Simple Int. The type Com-
plex, on the other hand, has its parameter at role nominal, because Simple Age and Simple
Int are not the same. Lastly, Phant Age and Phant Bool have the same representation, even
though Age and Bool are unrelated.

9.36.2 Role inference

What role should a given type parameter should have? GHC performs role inference to de-
termine the correct role for every parameter. It starts with a few base facts: (->) has two
representational parameters; (~) has two nominal parameters; all type families’ parameters
are nominal; and all GADT-like parameters are nominal. Then, these facts are propagated
to all places where these types are used. The default role for datatypes and synonyms is
phantom; the default role for classes is nominal. Thus, for datatypes and synonyms, any pa-
rameters unused in the right-hand side (or used only in other types in phantom positions) will
be phantom. Whenever a parameter is used in a representational position (that is, used as
a type argument to a constructor whose corresponding variable is at role representational),
we raise its role from phantom to representational. Similarly, when a parameter is used in a
nominal position, its role is upgraded to nominal. We never downgrade a role from nominal
to phantom or representational, or from representational to phantom. In this way, we infer
the most-general role for each parameter.
Classes have their roles default to nominal to promote coherence of class instances. If a C
Int were stored in a datatype, it would be quite bad if that were somehow changed into a C
Age somewhere, especially if another C Age had been declared!
There is one particularly tricky case that should be explained:

data Tricky a b = MkTricky (a b)

What should Tricky‘s roles be? At first blush, it would seem that both a and b should be at
role representational, since both are used in the right-hand side and neither is involved in a

420 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

type family. However, this would be wrong, as the following example shows:

data Nom a = MkNom (F a) -- type family F from example above

Is Tricky Nom Age representationally equal to Tricky Nom Int? No! The former stores a
Char and the latter stores a Bool. The solution to this is to require all parameters to type
variables to have role nominal. Thus, GHC would infer role representational for a but role
nominal for b.

9.36.3 Role annotations

-XRoleAnnotations
Since 7.8.1

Allow role annotation syntax.
Sometimes the programmer wants to constrain the inference process. For example, the base
library contains the following definition:

data Ptr a = Ptr Addr#

The idea is that a should really be a representational parameter, but role inference assigns it
to phantom. This makes some level of sense: a pointer to an Int really is representationally
the same as a pointer to a Bool. But, that’s not at all how we want to use Ptrs! So, we want
to be able to say

type role Ptr representational
data Ptr a = Ptr Addr#

The type role (enabled with -XRoleAnnotations (page 421)) declaration forces the param-
eter a to be at role representational, not role phantom. GHC then checks the user-supplied
roles to make sure they don’t break any promises. It would be bad, for example, if the user
could make BadIdea‘s role be representational.
As another example, we can consider a type Set a that represents a set of data, ordered
according to a‘s Ord instance. While it would generally be type-safe to consider a to be at
role representational, it is possible that a newtype and its base type have different orderings
encoded in their respective Ord instances. This would lead to misbehavior at runtime. So,
the author of the Set datatype would like its parameter to be at role nominal. This would be
done with a declaration

type role Set nominal

Role annotations can also be used should a programmer wish to write a class with a repre-
sentational (or phantom) role. However, as a class with non-nominal roles can quickly lead to
class instance incoherence, it is necessary to also specify -XIncoherentInstances (page 303)
to allow non-nominal roles for classes.
The other place where role annotations may be necessary are in hs-boot files (How to com-
pile mutually recursive modules (page 141)), where the right-hand sides of definitions can
be omitted. As usual, the types/classes declared in an hs-boot file must match up with the
definitions in the hs file, including down to the roles. The default role for datatypes is repre-
sentational in hs-boot files, corresponding to the common use case.
Role annotations are allowed on data, newtype, and class declarations. A role annotation
declaration starts with type role and is followed by one role listing for each parameter of
the type. (This parameter count includes parameters implicitly specified by a kind signature

9.36. Roles 421



GHC User’s Guide Documentation, Release 8.2.1.20171030

in a GADT-style data or newtype declaration.) Each role listing is a role (nominal, repre-
sentational, or phantom) or a _. Using a _ says that GHC should infer that role. The role
annotation may go anywhere in the same module as the datatype or class definition (much
like a value-level type signature). Here are some examples:

type role T1 _ phantom
data T1 a b = MkT1 a -- b is not used; annotation is fine but unnecessary

type role T2 _ phantom
data T2 a b = MkT2 b -- ERROR: b is used and cannot be phantom

type role T3 _ nominal
data T3 a b = MkT3 a -- OK: nominal is higher than necessary, but safe

type role T4 nominal
data T4 a = MkT4 (a Int) -- OK, but nominal is higher than necessary

type role C representational _ -- OK, with -XIncoherentInstances
class C a b where ... -- OK, b will get a nominal role

type role X nominal
type X a = ... -- ERROR: role annotations not allowed for type synonyms

9.37 HasCallStack

GHC.Stack.HasCallStack is a lightweight method of obtaining a partial call-stack at any point
in the program.
A function can request its call-site with the HasCallStack constraint. For example, we can
define

errorWithCallStack :: HasCallStack => String -> a

as a variant of error that will get its call-site (as of GHC 8.0, error already gets its call-site,
but let’s assume for the sake of demonstration that it does not). We can access the call-stack
inside errorWithCallStack with GHC.Stack.callStack.

errorWithCallStack :: HasCallStack => String -> a
errorWithCallStack msg = error (msg ++ "\n" ++ prettyCallStack callStack)

Thus, if we call errorWithCallStack we will get a formatted call-stack alongside our error
message.

ghci> errorWithCallStack "die"
*** Exception: die
CallStack (from HasCallStack):

errorWithCallStack, called at <interactive>:2:1 in interactive:Ghci1

The CallStack will only extend as far as the types allow it, for example

myHead :: HasCallStack => [a] -> a
myHead [] = errorWithCallStack "empty"
myHead (x:xs) = x

bad :: Int
bad = myHead []

422 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

ghci> bad
*** Exception: empty
CallStack (from HasCallStack):

errorWithCallStack, called at Bad.hs:8:15 in main:Bad
myHead, called at Bad.hs:12:7 in main:Bad

includes the call-site of errorWithCallStack in myHead, and of myHead in bad, but not the
call-site of bad at the GHCi prompt.
GHC solves HasCallStack constraints in two steps:
1. If there is a CallStack in scope – i.e. the enclosing definition has a HasCallStack con-
straint – GHC will push the new call-site onto the existing CallStack.

2. Otherwise GHC will solve the HasCallStack constraint for the singleton CallStack con-
taining just the current call-site.

Importantly, GHC will never infer a HasCallStack constraint, you must request it explicitly.
CallStack is kept abstract, but GHC provides a function

getCallStack :: CallStack -> [(String, SrcLoc)]

to access the individual call-sites in the stack. The String is the name of the function that
was called, and the SrcLoc provides the package, module, and file name, as well as the line
and column numbers.
GHC.Stack additionally exports a function withFrozenCallStack that allows users to freeze
the current CallStack, preventing any future push operations from having an effect. This
can be used by library authors to prevent CallStacks from exposing unnecessary imple-
mentation details. Consider the myHead example above, the errorWithCallStack line in the
printed stack is not particularly enlightening, so we might choose to suppress it by freezing
the CallStack that we pass to errorWithCallStack.

myHead :: HasCallStack => [a] -> a
myHead [] = withFrozenCallStack (errorWithCallStack "empty")
myHead (x:xs) = x

ghci> myHead []
*** Exception: empty
CallStack (from HasCallStack):

myHead, called at Bad.hs:12:7 in main:Bad

NOTE: The intrepid user may notice that HasCallStack is just an alias for an implicit pa-
rameter ?callStack :: CallStack. This is an implementation detail and should not be
considered part of the CallStack API, we may decide to change the implementation in the
future.

9.37.1 Compared with other sources of stack traces

HasCallStack does not interact with the RTS and does not require compilation with -prof.
On the other hand, as the CallStack is built up explicitly via the HasCallStack constraints,
it will generally not contain as much information as the simulated call-stacks maintained by
the RTS.

9.37. HasCallStack 423



GHC User’s Guide Documentation, Release 8.2.1.20171030

9.38 Concurrent and Parallel Haskell

GHC implements some major extensions to Haskell to support concurrent and parallel pro-
gramming. Let us first establish terminology:
• Parallelism means running a Haskell program on multiple processors, with the goal of
improving performance. Ideally, this should be done invisibly, and with no semantic
changes.

• Concurrency means implementing a program by using multiple I/O-performing threads.
While a concurrent Haskell program can run on a parallel machine, the primary goal of
using concurrency is not to gain performance, but rather because that is the simplest
and most direct way to write the program. Since the threads perform I/O, the semantics
of the program is necessarily non-deterministic.

GHC supports both concurrency and parallelism.

9.38.1 Concurrent Haskell

Concurrent Haskell is the name given to GHC’s concurrency extension. It is enabled by de-
fault, so no special flags are required. The Concurrent Haskell paper is still an excellent
resource, as is Tackling the awkward squad.
To the programmer, Concurrent Haskell introduces no new language constructs; rather, it
appears simply as a library, Control.Concurrent. The functions exported by this library in-
clude:
• Forking and killing threads.
• Sleeping.
• Synchronised mutable variables, called MVars
• Support for bound threads; see the paper Extending the FFI with concurrency.

9.38.2 Software Transactional Memory

GHC now supports a new way to coordinate the activities of Concurrent Haskell threads,
called Software Transactional Memory (STM). The STM papers are an excellent introduction
to what STM is, and how to use it.
The main library you need to use is the stm library. The main features supported are these:
• Atomic blocks.
• Transactional variables.
• Operations for composing transactions: retry, and orElse.
• Data invariants.

All these features are described in the papers mentioned earlier.

9.38.3 Parallel Haskell

GHC includes support for running Haskell programs in parallel on symmetric, shared-memory
multi-processor (SMP). By default GHC runs your program on one processor; if you want it
to run in parallel you must link your program with the -threaded (page 178), and run it with

424 Chapter 9. GHC Language Features

https://www.haskell.org/ghc/docs/papers/concurrent-haskell.ps.gz
http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/
http://community.haskell.org/~simonmar/papers/conc-ffi.pdf
https://wiki.haskell.org/Research_papers/Parallelism_and_concurrency#Lock_free_data_structures_and_transactional_memory
http://hackage.haskell.org/package/stm


GHC User’s Guide Documentation, Release 8.2.1.20171030

the RTS -N ⟨x⟩ (page 100) option; see Using SMP parallelism (page 99)). The runtime will
schedule the running Haskell threads among the available OS threads, running as many in
parallel as you specified with the -N ⟨x⟩ (page 100) RTS option.

9.38.4 Annotating pure code for parallelism

Ordinary single-threaded Haskell programs will not benefit from enabling SMP parallelism
alone: you must expose parallelism to the compiler. One way to do so is forking threads
using Concurrent Haskell (Concurrent Haskell (page 424)), but the simplest mechanism for
extracting parallelism from pure code is to use the par combinator, which is closely related
to (and often used with) seq. Both of these are available from the parallel library:

infixr 0 `par`
infixr 1 `pseq`

par :: a -> b -> b
pseq :: a -> b -> b

The expression (x `par` y) sparks the evaluation of x (to weak head normal form) and
returns y. Sparks are queued for execution in FIFO order, but are not executed immedi-
ately. If the runtime detects that there is an idle CPU, then it may convert a spark into a
real thread, and run the new thread on the idle CPU. In this way the available parallelism is
spread amongst the real CPUs.
For example, consider the following parallel version of our old nemesis, nfib:

import Control.Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (pseq n2 (n1 + n2 + 1))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values of n greater than 1, we use par to spark a thread to evaluate nfib (n-1), and
then we use pseq to force the parent thread to evaluate nfib (n-2) before going on to add
together these two subexpressions. In this divide-and-conquer approach, we only spark a new
thread for one branch of the computation (leaving the parent to evaluate the other branch).
Also, we must use pseq to ensure that the parent will evaluate n2 before n1 in the expression
(n1 + n2 + 1). It is not sufficient to reorder the expression as (n2 + n1 + 1), because the
compiler may not generate code to evaluate the addends from left to right.
Note that we use pseq rather than seq. The two are almost equivalent, but differ in their
runtime behaviour in a subtle way: seq can evaluate its arguments in either order, but pseq
is required to evaluate its first argument before its second, which makes it more suitable for
controlling the evaluation order in conjunction with par.
When using par, the general rule of thumb is that the sparked computation should be required
at a later time, but not too soon. Also, the sparked computation should not be too small,
otherwise the cost of forking it in parallel will be too large relative to the amount of parallelism
gained. Getting these factors right is tricky in practice.
It is possible to glean a little information about how well par is working from the runtime
statistics; see RTS options to control the garbage collector (page 123).
More sophisticated combinators for expressing parallelism are available from the Con-
trol.Parallel.Strategiesmodule in the parallel package. This module builds functionality

9.38. Concurrent and Parallel Haskell 425

http://hackage.haskell.org/package/parallel
http://hackage.haskell.org/package/parallel


GHC User’s Guide Documentation, Release 8.2.1.20171030

around par, expressing more elaborate patterns of parallel computation, such as parallel map.

9.38.5 Data Parallel Haskell

GHC includes experimental support for Data Parallel Haskell (DPH). This code is highly un-
stable and is only provided as a technology preview. More information can be found on the
corresponding DPH wiki page.

9.39 Safe Haskell

Safe Haskell is an extension to the Haskell language that is implemented in GHC as of version
7.2. It allows for unsafe code to be securely included in a trusted code base by restricting
the features of GHC Haskell the code is allowed to use. Put simply, it makes the types of
programs trustable.
While a primary use case of Safe Haskell is running untrusted code, Safe Haskell doesn’t
provide this directly. Instead, Safe Haskell provides strict type safety. Without Safe Haskell,
GHC allows many exceptions to the type system which can subvert any abstractions. By
providing strict type safety, Safe Haskell enables developers to build their own library level
sandbox mechanisms to run untrusted code.
While Safe Haskell is an extension, it actually runs in the background for every compila-
tion with GHC. It does this to track the type violations of modules to infer their safety, even
when they aren’t explicitly using Safe Haskell. Please refer to section Safe Haskell Inference
(page 434) for more details of this.
The design of Safe Haskell covers the following aspects:
• A safe language (page 429) dialect of Haskell that provides stricter guarantees about
the code. It allows types and module boundaries to be trusted.

• A safe import extension that specifies that the module being imported must be trusted.
• A definition of trust (or safety) and how it operates, along with ways of defining and
changing the trust of modules and packages.

Safe Haskell, however, does not offer compilation safety. During compilation time it is possible
for arbitrary processes to be launched, using for example the custom pre-processor (page 174)
flag. This can be manipulated to either compromise a user’s system at compilation time, or
to modify the source code just before compilation to try to alter Safe Haskell flags. This is
discussed further in section Safe Compilation (page 436).

9.39.1 Uses of Safe Haskell

Safe Haskell has been designed with two use cases in mind:
• Enforcing strict type safety at compile time
• Compiling and executing untrusted code

Strict type-safety (good style)

Haskell offers a powerful type system and separation of pure and effectual functions through
the IOmonad. However, there are several loop holes in the type system, the most obvious be-

426 Chapter 9. GHC Language Features

http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell


GHC User’s Guide Documentation, Release 8.2.1.20171030

ing the unsafePerformIO :: IO a -> a function. The safe language dialect of Safe Haskell
disallows the use of such functions. This can be useful restriction as it makes Haskell code
easier to analyse and reason about. It also codifies the existing culture in the Haskell com-
munity of trying to avoid unsafe functions unless absolutely necessary. As such, using the
safe language (through the -XSafe flag) can be thought of as a way of enforcing good style,
similar to the function of -Wall.

Building secure systems (restricted IO Monads)

Systems such as information flow control security, capability based security systems and DSLs
for working with encrypted data.. etc can be built in the Haskell language as a library. How-
ever they require guarantees about the properties of Haskell that aren’t true in general due to
the presence of functions like unsafePerformIO. Safe Haskell gives users enough guarantees
about the type system to allow them to build such secure systems.
As an example, let’s define an interface for a plugin system where the plugin authors are
untrusted, possibly malicious third-parties. We do this by restricting the plugin interface to
pure functions or to a restricted IO monad that we have defined. The restricted IO monad
will only allow a safe subset of IO actions to be executed. We define the plugin interface so
that it requires the plugin module, Danger, to export a single computation, Danger.runMe, of
type RIO (), where RIO is a monad defined as follows:

-- While we use `Safe', the `Trustworthy' pragma would also be
-- fine. We simply want to ensure that:
-- 1) The module exports an interface that untrusted code can't
-- abuse.
-- 2) Untrusted code can import this module.
--
{-# LANGUAGE Safe #-}

module RIO (RIO(), runRIO, rioReadFile, rioWriteFile) where

-- Notice that symbol UnsafeRIO is not exported from this module!
newtype RIO a = UnsafeRIO { runRIO :: IO a }

instance Monad RIO where
return = UnsafeRIO . return
(UnsafeRIO m) >>= k = UnsafeRIO $ m >>= runRIO . k

-- Returns True iff access is allowed to file name
pathOK :: FilePath -> IO Bool
pathOK file = {- Implement some policy based on file name -}

rioReadFile :: FilePath -> RIO String
rioReadFile file = UnsafeRIO $ do

ok <- pathOK file
if ok then readFile file else return ""

rioWriteFile :: FilePath -> String -> RIO ()
rioWriteFile file contents = UnsafeRIO $ do

ok <- pathOK file
if ok then writeFile file contents else return ()

We then compile the Danger plugin using the new Safe Haskell -XSafe flag:

{-# LANGUAGE Safe #-}
module Danger ( runMe ) where

9.39. Safe Haskell 427



GHC User’s Guide Documentation, Release 8.2.1.20171030

runMe :: RIO ()
runMe = ...

Before going into the Safe Haskell details, let’s point out some of the reasons this security
mechanism would fail without Safe Haskell:
• The design attempts to restrict the operations that Danger can perform by using types,
specifically the RIO type wrapper around IO . The author of Danger can subvert this
though by simply writing arbitrary IO actions and using unsafePerformIO :: IO a ->
a to execute them as pure functions.

• The design also relies on Danger not being able to access the UnsafeRIO constructor.
Unfortunately Template Haskell can be used to subvert module boundaries and so could
be used to gain access to this constructor.

• There is no way to place restrictions on the modules that Danger can import. This gives
the author of Danger a very large attack surface, essentially any package currently in-
stalled on the system. Should any of these packages have a vulnerability, then the Danger
module can exploit it.

Safe Haskell prevents all these attacks. This is done by compiling the RIO module with the
-XSafe (page 434) or -XTrustworthy (page 435) flag and compiling Danger with the -XSafe
(page 434) flag. We explain each below.
The use of -XSafe (page 434) to compile Danger restricts the features of Haskell that can
be used to a safe subset (page 429). This includes disallowing unsafePerformIO, Template
Haskell, pure FFI functions, RULES and restricting the operation of Overlapping Instances.
The -XSafe (page 434) flag also restricts the modules can be imported by Danger to only those
that are considered trusted. Trusted modules are those compiled with -XSafe (page 434),
where GHC provides amechanical guarantee that the code is safe. Or thosemodules compiled
with -XTrustworthy (page 435), where the module author claims that the module is Safe.
This is why the RIO module is compiled with -XSafe (page 434) or -XTrustworthy
(page 435)>, to allow the Danger module to import it. The -XTrustworthy (page 435) flag
doesn’t place any restrictions on the module like -XSafe (page 434) does (expect to restrict
overlapping instances to safe overlapping instances (page 430)). Instead the module author
claims that while code may use unsafe features internally, it only exposes an API that can
used in a safe manner.
However, the unrestricted use of -XTrustworthy (page 435) is a problem as an arbitrary mod-
ule can use it to mark themselves as trusted, yet -XTrustworthy (page 435) doesn’t offer any
guarantees about the module, unlike -XSafe (page 434). To control the use of trustworthy
modules it is recommended to use the -fpackage-trust (page 435) flag. This flag adds an
extra requirement to the trust check for trustworthy modules. It requires that for a trustwor-
thy modules to be considered trusted, and allowed to be used in -XSafe (page 434) compiled
code, the client C compiling the code must tell GHC that they trust the package the trustwor-
thy module resides in. This is essentially a way of for C to say, while this package contains
trustworthymodules that can be used by untrustedmodules compiled with -XSafe (page 434),
I trust the author(s) of this package and trust the modules only expose a safe API. The trust of
a package can be changed at any time, so if a vulnerability found in a package, C can declare
that package untrusted so that any future compilation against that package would fail. For a
more detailed overview of this mechanism see Trust and Safe Haskell Modes (page 431).
In the example, Danger can import module RIO because RIO is compiled with -XSafe
(page 434). Thus, Danger can make use of the rioReadFile and rioWriteFile functions
to access permitted file names. The main application then imports both RIO and Danger. To
run the plugin, it calls RIO.runRIO Danger.runMe within the IO monad. The application is

428 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

safe in the knowledge that the only IO to ensue will be to files whose paths were approved by
the pathOK test.

9.39.2 Safe Language

The Safe Haskell safe language (enabled by -XSafe) guarantees the following properties:
• Referential transparency — The types can be trusted. Any pure function, is guaran-
teed to be pure. Evaluating them is deterministic and won’t cause any side effects.
Functions in the IO monad are still allowed and behave as usual. So, for example, the
unsafePerformIO :: IO a -> a function is disallowed in the safe language to enforce
this property.

• Module boundary control — Only symbols that are publicly available through other mod-
ule export lists can be accessed in the safe language. Values using data constructors not
exported by the defining module, cannot be examined or created. As such, if a module
M establishes some invariants through careful use of its export list, then code written in
the safe language that imports M is guaranteed to respect those invariants.

• Semantic consistency — For any module that imports a module written in the safe lan-
guage, expressions that compile both with and without the safe import have the same
meaning in both cases. That is, importing a module written in the safe language cannot
change the meaning of existing code that isn’t dependent on that module. So, for exam-
ple, there are some restrictions placed on the use of OverlappingInstances (page 303),
as these can violate this property.

• Strict subset — The safe language is strictly a subset of Haskell as implemented by GHC.
Any expression that compiles in the safe language has the same meaning as it does when
compiled in normal Haskell.

These four properties guarantee that in the safe language you can trust the types, can trust
that module export lists are respected, and can trust that code that successfully compiles has
the same meaning as it normally would.
To achieve these properties, in the safe language dialect we disable completely the following
features:
• TemplateHaskell— Can be used to gain access to constructors and abstract data types
that weren’t exported by a module, subverting module boundaries.

Furthermore, we restrict the following features:
• ForeignFunctionInterface — Foreign import declarations that import a function with
a non-IO type are disallowed.

• RULES — Rewrite rules defined in a module M compiled with -XSafe (page 434) are
dropped. Rules defined in Trustworthy modules that M imports are still valid and will fire
as usual.

• OverlappingInstances — There is no restriction on the creation of overlapping in-
stances, but we do restrict their use at a particular call site. This is a detailed restriction,
please refer to Safe Overlapping Instances (page 430) for details.

• GeneralisedNewtypeDeriving—GND is not allowed in the safe language. This is due to
the ability of it to violate module boundaries when module authors forget to put nominal
role annotations on their types as appropriate. For this reason, the Data.Coercemodule
is also considered unsafe. We are hoping to find a better solution here in the future.

• GHC.Generics — Hand crafted instances of the Generic type class are not allowed in
Safe Haskell. Such instances aren’t strictly unsafe, but there is an important invariant

9.39. Safe Haskell 429



GHC User’s Guide Documentation, Release 8.2.1.20171030

that a Generic instance should adhere to the structure of the data type for which the
instance is defined, and allowing manually implemented Generic instances would break
that invariant. Derived instances (through the -XDeriveGeneric (page 269) extension)
are still allowed. Note that the only allowed deriving strategy (page 283) for deriving
Generic under Safe Haskell is stock, as another strategy (e.g., anyclass) would produce
an instance that violates the invariant.
Refer to the generic programming (page 415) section for more details.

Safe Overlapping Instances

Due to the semantic consistency guarantee of Safe Haskell, we must restrict the function
of overlapping instances. We don’t restrict their ability to be defined, as this is a global
property and not something we can determine by looking at a single module. Instead, when
a module calls a function belonging to a type-class, we check that the instance resolution
done is considered ‘safe’. This check is enforced for modules compiled with both -XSafe and
-XTrustworthy.
More specifically, consider the following modules:

{-# LANGUAGE Safe #-}
module Class (TC(..)) where

class TC a where { op :: a -> String }

{-# LANGUAGE Safe #-}
module Dangerous (TC(..)) where

import Class

instance
{-# OVERLAPS #-}
TC [Int] where { op _ = "[Int]" }

{-# LANGUAGE Safe #-}
module TCB_Runner where

import Class
import Dangerous

instance
TC [a] where { op _ = "[a]" }

f :: String
f = op ([1,2,3,4] :: [Int])

Both module Class and module Dangerous will compile under -XSafe (page 434) without
issue. However, in module TCB_Runner, we must check if the call to op in function f is safe.
What does it mean to be Safe? That importing a module compiled with -XSafe (page 434)
shouldn’t change the meaning of code that compiles fine without importing the module. This
is the Safe Haskell property known as semantic consistency.
In our situation, module TCB_Runner compiles fine without importing module Dangerous. So
when deciding which instance to use for the call to op, if we determine the instance TC [Int]
from module Dangerous is the most specific, this is unsafe. This prevents code written by
third-parties we don’t trust (which is compiled using -XSafe in Safe Haskell) from changing
the behaviour of our existing code.
Specifically, we apply the following rule to determine if a type-class method call is unsafe
when overlapping instances are involved:

430 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

• Most specific instance, Ix, defined in an -XSafe compiled module.
• Ix is an orphan instance or a multi-parameter-type-class.
• At least one overlapped instance, Iy, is both:

– From a different module than Ix

– Iy is not marked OVERLAPPABLE
This is a slightly involved heuristic, but captures the situation of an imported module N chang-
ing the behaviour of existing code. For example, if the second condition isn’t violated, then
the module author M must depend either on a type-class or type defined in N.
When an particular type-class method call is considered unsafe due to overlapping instances,
and the module being compiled is using -XSafe (page 434) or -XTrustworthy (page 435),
then compilation will fail. For -XUnsafe (page 435), no restriction is applied, and for modules
using safe inference, they will be inferred unsafe.

9.39.3 Safe Imports

Safe Haskell enables a small extension to the usual import syntax of Haskell, adding a safe
keyword:

impdecl -> import [safe] [qualified] modid [as modid] [impspec]

When used, the module being imported with the safe keyword must be a trusted module,
otherwise a compilation error will occur. The safe import extension is enabled by either of
the -XSafe , -XTrustworthy , or -XUnsafe flags. When the -XSafe flag is used, the safe
keyword is allowed but meaningless, as every import is treated as a safe import.

9.39.4 Trust and Safe Haskell Modes

Safe Haskell introduces the following three language flags:
• -XSafe (page 434) — Enables the safe language dialect, asking GHC to guarantee trust.
The safe language dialect requires that all imports be trusted or a compilation error
will occur. Safe Haskell will also infer this safety type for modules automatically when
possible. Please refer to section Safe Haskell Inference (page 434) for more details of
this.

• -XTrustworthy (page 435) — Means that while this module may invoke unsafe functions
internally, the module’s author claims that it exports an API that can’t be used in an
unsafe way. This doesn’t enable the safe language. It does however restrict the resolu-
tion of overlapping instances to only allow safe overlapping instances (page 430). The
trust guarantee is provided by the module author, not GHC. An import statement with
the safe keyword results in a compilation error if the imported module is not trusted.
An import statement without the keyword behaves as usual and can import any module
whether trusted or not.

• -XUnsafe (page 435)—Marks themodule being compiled as unsafe so that modules com-
piled using -XSafe (page 434) can’t import it. You may want to explicitly mark a module
unsafe when it exports internal constructors that can be used to violate invariants.

While these are flags, they also correspond to Safe Haskell module types that a module can
have. You can think of using these as declaring an explicit contract (or type) that a module
must have. If it is invalid, then compilation will fail. GHC will also infer the correct type for
Safe Haskell, please refer to section Safe Haskell Inference (page 434) for more details.

9.39. Safe Haskell 431



GHC User’s Guide Documentation, Release 8.2.1.20171030

The procedure to check if a module is trusted or not depends on if the -fpackage-trust
(page 435) flag is present. The check is similar in both cases with the -fpackage-trust
(page 435) flag enabling an extra requirement for trustworthy modules to be regarded as
trusted.

Trust check (-fpackage-trust disabled)

A module M in a package P is trusted by a client C if and only if:
• Both of these hold:

– The module was compiled with -XSafe (page 434)
– All of M’s direct imports are trusted by C

• or all of these hold:
– The module was compiled with -XTrustworthy (page 435)
– All of M‘s direct safe imports are trusted by C

The above definition of trust has an issue. Any module can be compiled with -XTrustworthy
(page 435) and it will be trusted. To control this, there is an additional definition of package
trust (enabled with the -fpackage-trust (page 435) flag). The point of package trust is to
require that the client C explicitly say which packages are allowed to contain trustworthy
modules. Trustworthy packages are only trusted if they reside in a package trusted by C.

Trust check (-fpackage-trust enabled)

When the -fpackage-trust (page 435) flag is enabled, whether or not a module is trusted
depends on if certain packages are trusted. Package trust is determined by the client C
invoking GHC (i.e. you).
Specifically, a package P is trusted when one of these hold:
• C’s package database records that P is trusted (and no command-line arguments override
this)

• C’s command-line flags say to trust P regardless of what is recorded in the package
database.

In either case, C is the only authority on package trust. It is up to the client to decide which
packages they trust (page 434).
When the -fpackage-trust (page 435) flag is used a module M from package P is trusted by
a client C if and only if:
• Both of these hold:

– The module was compiled with -XSafe (page 434)
– All of M‘s direct imports are trusted by C

• or all of these hold:
– The module was compiled with -XTrustworthy (page 435)
– All of M‘s direct safe imports are trusted by C
– Package P is trusted by C

432 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

For the first trust definition the trust guarantee is provided by GHC through the restrictions
imposed by the safe language. For the second definition of trust, the guarantee is provided
initially by the module author. The client C then establishes that they trust the module author
by indicating they trust the package the module resides in. This trust chain is required as
GHC provides no guarantee for -XTrustworthy (page 435) compiled modules.
The reason there are two modes of checking trust is that the extra requirement enabled by -
fpackage-trust (page 435) causes the design of Safe Haskell to be invasive. Packages using
Safe Haskell when the flag is enabled may or may not compile depending on the state of
trusted packages on a user’s machine. This is both fragile, and causes compilation failures
for everyone, even if they aren’t trying to use any of the guarantees provided by Safe Haskell.
Disabling -fpackage-trust (page 435) by default and turning it into a flagmakes Safe Haskell
an opt-in extension rather than an always on feature.

Example

Package Wuggle:
{-# LANGUAGE Safe #-}
module Buggle where

import Prelude
f x = ...blah...

Package P:
{-# LANGUAGE Trustworthy #-}
module M where

import System.IO.Unsafe
import safe Buggle

Suppose a client C decides to trust package P and package base. Then does C trust module
M? Well M is marked -XTrustworthy (page 435), so we don’t restrict the language. However,
we still must check M‘s imports:
• First, M imports System.IO.Unsafe. This is an unsafe module, however M was compiled
with -XTrustworthy (page 435) , so P‘s author takes responsibility for that import. C
trusts P‘s author, so this import is fine.

• Second, M safe imports Buggle. For this import P‘s author takes no responsibility for the
safety, instead asking GHC to check whether Buggle is trusted by C. Is it?

• Buggle, is compiled with -XSafe, so the code is machine-checked to be OK, but again
under the assumption that all of Buggle‘s imports are trusted by C. We must recursively
check all imports!

• Buggle only imports Prelude, which is compiled with -XTrustworthy (page 435). Pre-
lude resides in the base package, which C trusts, and (we’ll assume) all of Prelude‘s
imports are trusted. So C trusts Prelude, and so C also trusts Buggle. (While Prelude is
typically imported implicitly, it still obeys the same rules outlined here).

Notice that C didn’t need to trust package Wuggle; the machine checking is enough. C only
needs to trust packages that contain -XTrustworthy (page 435) modules.

Trustworthy Requirements

Module authors using the -XTrustworthy (page 435) language extension for a module M
should ensure that M‘s public API (the symbols exposed by its export list) can’t be used in

9.39. Safe Haskell 433



GHC User’s Guide Documentation, Release 8.2.1.20171030

an unsafe manner. This mean that symbols exported should respect type safety and referen-
tial transparency.

Package Trust

Safe Haskell gives packages a new Boolean property, that of trust. Several new options are
available at the GHC command-line to specify the trust property of packages:
-trust ⟨pkg⟩

Exposes package ⟨pkg⟩ if it was hidden and considers it a trusted package regardless of
the package database.

-distrust ⟨pkg⟩
Exposes package ⟨pkg⟩ if it was hidden and considers it an untrusted package regardless
of the package database.

-distrust-all-packages
Considers all packages distrusted unless they are explicitly set to be trusted by subse-
quent command-line options.

To set a package’s trust property in the package database please refer to Packages (page 152).

9.39.5 Safe Haskell Inference

In the case where a module is compiled without one of -XSafe (page 434), -XTrustworthy
(page 435) or -XUnsafe (page 435) being used, GHC will try to figure out itself if the module
can be considered safe. This safety inference will never mark a module as trustworthy, only
as either unsafe or as safe. GHC uses a simple method to determine this for a module M: If
M would compile without error under the -XSafe (page 434) flag, then M is marked as safe.
Otherwise, it is marked as unsafe.
When should you use Safe Haskell inference and when should you use an explicit -XSafe
(page 434) flag? The later case should be used when you have a hard requirement that the
module be safe. This is most useful for the Uses of Safe Haskell (page 426) of Safe Haskell:
running untrusted code. Safe inference is meant to be used by ordinary Haskell programmers.
Users who probably don’t care about Safe Haskell.
Haskell library authors have a choice. Most should just use Safe inference. Assuming you
avoid any unsafe features of the language then your modules will be marked safe. Inferred
vs. Explicit has the following trade-offs:
• Inferred — This works well and adds no dependencies on the Safe Haskell type of any
modules in other packages. It does mean that the Safe Haskell type of your own modules
could change without warning if a dependency changes. One way to deal with this is
through the use of Safe Haskell warning flags (page 434) that will warn if GHC infers a
Safe Haskell type different from expected.

• Explicit — This gives your library a stable Safe Haskell type that others can depend on.
However, it will increase the chance of compilation failure when your package depen-
dencies change.

9.39.6 Safe Haskell Flag Summary

In summary, Safe Haskell consists of the following three language flags:
-XSafe

434 Chapter 9. GHC Language Features



GHC User’s Guide Documentation, Release 8.2.1.20171030

Since 7.2.1
Restricts the module to the safe language. All of the module’s direct imports must be
trusted, but the module itself need not reside in a trusted package, because the compiler
vouches for its trustworthiness. The “safe” keyword is allowed but meaningless in import
statements, as regardless, every import is required to be safe.
•Module Trusted — Yes
•Haskell Language — Restricted to Safe Language
•Imported Modules — All forced to be safe imports, all must be trusted.

-XTrustworthy
Since 7.2.1

This establishes that the module is trusted, but the guarantee is provided by the mod-
ule’s author. A client of this module then specifies that they trust the module author
by specifying they trust the package containing the module. -XTrustworthy (page 435)
doesn’t restrict the module to the safe language. It does however restrict the resolution
of overlapping instances to only allow safe overlapping instances (page 430). It also
allows the use of the safe import keyword.
•Module Trusted — Yes.
•Module Trusted (-fpackage-trust (page 435) enabled) — Yes but only if the pack-
age the module resides in is also trusted.
•Haskell Language — Unrestricted, except only safe overlapping instances allowed.
•Imported Modules — Under control of module author which ones must be trusted.

-XUnsafe
Since 7.4.1

Mark a module as unsafe so that it can’t be imported by code compiled with -XSafe
(page 434). Also enable the Safe Import extension so that a module can require a de-
pendency to be trusted.
•Module Trusted — No
•Haskell Language — Unrestricted
•Imported Modules — Under control of module author which ones must be trusted.

And one general flag:
-fpackage-trust
When enabled, turn on an extra check for a trustworthy module ``M``,
requiring the package that ``M`` resides in be considered trusted, for ``M``
to be considered trusted.

And three warning flags:
-Wunsafe

Issue a warning if the module being compiled is regarded to be unsafe. Should be used
to check the safety type of modules when using safe inference.

-Wsafe
Issue a warning if the module being compiled is regarded to be safe. Should be used to
check the safety type of modules when using safe inference.

9.39. Safe Haskell 435



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wtrustworthy-safe
Issue a warning if the module being compiled is marked as -XTrustworthy but it could
instead be marked as -XSafe , a more informative bound. Can be used to detect once a
Safe Haskell bound can be improved as dependencies are updated.

9.39.7 Safe Compilation

GHC includes a variety of flags that allow arbitrary processes to be run at compilation time.
One such example is the custom pre-processor (page 174) flag. Another is the ability of
Template Haskell to execute Haskell code at compilation time, including IO actions. Safe
Haskell does not address this danger (although, Template Haskell is a disallowed feature).
Due to this, it is suggested that when compiling untrusted source code that has had no manual
inspection done, the following precautions be taken:
• Compile in a sandbox, such as a chroot or similar container technology. Or simply as a
user with very reduced system access.

• Compile untrusted code with the -XSafe flag being specified on the command line. This
will ensure that modifications to the source being compiled can’t disable the use of the
Safe Language as the command line flag takes precedence over a source level pragma.

• Ensure that all untrusted code is imported as a safe import (page 431) and that the
-fpackage-trust (page 435) flag (see flag (page 434)) is used with packages from un-
trusted sources being marked as untrusted.

There is a more detailed discussion of the issues involved in compilation safety and some
potential solutions on the GHC Wiki.
Additionally, the use of annotations (page 449) is forbidden, as that would allow bypassing
Safe Haskell restrictions. See Trac #10826 for details.

436 Chapter 9. GHC Language Features

https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell/SafeCompilation
https://ghc.haskell.org/trac/ghc/ticket/10826


CHAPTER

TEN

FOREIGN FUNCTION INTERFACE (FFI)

-XForeignFunctionInterface
Allow use of the Haskell foreign function interface.

GHC (mostly) conforms to the Haskell Foreign Function Interface, whose definition is part of
the Haskell Report on http://www.haskell.org/.
FFI support is enabled by default, but can be enabled or disabled explicitly with the -
XForeignFunctionInterface (page 437) flag.
GHC implements a number of GHC-specific extensions to the FFI Addendum. These exten-
sions are described in GHC extensions to the FFI Addendum (page 437), but please note that
programs using these features are not portable. Hence, these features should be avoided
where possible.
The FFI libraries are documented in the accompanying library documentation; see for exam-
ple the Foreign module.

10.1 GHC extensions to the FFI Addendum

The FFI features that are described in this section are specific to GHC. Your code will not be
portable to other compilers if you use them.

10.1.1 Unboxed types

The following unboxed types may be used as basic foreign types (see FFI Addendum, Sec-
tion 3.2): Int#, Word#, Char#, Float#, Double#, Addr#, StablePtr# a, MutableByteArray#,
ForeignObj#, and ByteArray#.

10.1.2 Newtype wrapping of the IO monad

The FFI spec requires the IO monad to appear in various places, but it can sometimes be
convenient to wrap the IO monad in a newtype, thus:

newtype MyIO a = MIO (IO a)

(A reason for doing so might be to prevent the programmer from calling arbitrary IO proce-
dures in some part of the program.)
The Haskell FFI already specifies that arguments and results of foreign imports and exports
will be automatically unwrapped if they are newtypes (Section 3.2 of the FFI addendum).

437

http://www.haskell.org/


GHC User’s Guide Documentation, Release 8.2.1.20171030

GHC extends the FFI by automatically unwrapping any newtypes that wrap the IO monad
itself. More precisely, wherever the FFI specification requires an IO type, GHC will accept
any newtype-wrapping of an IO type. For example, these declarations are OK:

foreign import foo :: Int -> MyIO Int
foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int

10.1.3 Primitive imports

GHC extends the FFI with an additional calling convention prim, e.g.:

foreign import prim "foo" foo :: ByteArray# -> (# Int#, Int# #)

This is used to import functions written in Cmm code that follow an internal GHC calling
convention. The arguments and results must be unboxed types, except that an argument may
be of type Any (by way of unsafeCoerce#) and the result type is allowed to be an unboxed
tuple or the type Any.
This feature is not intended for use outside of the core libraries that come with GHC. For
more details see the GHC developer wiki.

10.1.4 Interruptible foreign calls

This concerns the interaction of foreign calls with Control.Concurrent.throwTo. Normally
when the target of a throwTo is involved in a foreign call, the exception is not raised until the
call returns, and in the meantime the caller is blocked. This can result in unresponsiveness,
which is particularly undesirable in the case of user interrupt (e.g. Control-C). The default
behaviour when a Control-C signal is received (SIGINT on Unix) is to raise the UserInterrupt
exception in the main thread; if the main thread is blocked in a foreign call at the time, then
the program will not respond to the user interrupt.
The problem is that it is not possible in general to interrupt a foreign call safely. However,
GHC does provide a way to interrupt blocking system calls which works for most system calls
on both Unix and Windows. When the InterruptibleFFI extension is enabled, a foreign call
can be annotated with interruptible instead of safe or unsafe:

foreign import ccall interruptible
"sleep" sleepBlock :: CUint -> IO CUint

interruptible behaves exactly as safe, except that when a throwTo is directed at a thread
in an interruptible foreign call, an OS-specific mechanism will be used to attempt to cause
the foreign call to return:
Unix systems The thread making the foreign call is sent a SIGPIPE signal using

pthread_kill(). This is usually enough to cause a blocking system call to return with
EINTR (GHC by default installs an empty signal handler for SIGPIPE, to override the
default behaviour which is to terminate the process immediately).

Windows systems [Vista and later only] The RTS calls the Win32 function CancelSyn-
chronousIO, which will cause a blocking I/O operation to return with the error ER-
ROR_OPERATION_ABORTED.

If the system call is successfully interrupted, it will return to Haskell whereupon the exception
can be raised. Be especially careful when using interruptible that the caller of the foreign
function is prepared to deal with the consequences of the call being interrupted; on Unix it

438 Chapter 10. Foreign function interface (FFI)

https://ghc.haskell.org/trac/ghc/wiki/Commentary/PrimOps


GHC User’s Guide Documentation, Release 8.2.1.20171030

is good practice to check for EINTR always, but on Windows it is not typically necessary to
handle ERROR_OPERATION_ABORTED.

10.1.5 The CAPI calling convention

The CApiFFI extension allows a calling convention of capi to be used in foreign declarations,
e.g.

foreign import capi "header.h f" f :: CInt -> IO CInt

Rather than generating code to call f according to the platform’s ABI, we instead call f using
the C API defined in the header header.h. Thus f can be called even if it may be defined as
a CPP #define rather than a proper function.
When using capi, it is also possible to import values, rather than functions. For example,

foreign import capi "pi.h value pi" c_pi :: CDouble

will work regardless of whether pi is defined as

const double pi = 3.14;

or with

#define pi 3.14

In order to tell GHC the C type that a Haskell type corresponds to when it is used with the
CAPI, a CTYPE pragma can be used on the type definition. The header which defines the type
can optionally also be specified. The syntax looks like:

data {-# CTYPE "unistd.h" "useconds_t" #-} T = ...
newtype {-# CTYPE "useconds_t" #-} T = ...

10.1.6 hs_thread_done()

void hs_thread_done(void);

GHC allocates a small amount of thread-local memory when a thread calls a Haskell function
via a foreign export. This memory is not normally freed until hs_exit(); the memory is
cached so that subsequent calls into Haskell are fast. However, if your application is long-
running and repeatedly creates new threads that call into Haskell, you probably want to
arrange that this memory is freed in those threads that have finished calling Haskell functions.
To do this, call hs_thread_done() from the thread whose memory you want to free.
Calling hs_thread_done() is entirely optional. You can call it as often or as little as you like.
It is safe to call it from a thread that has never called any Haskell functions, or one that never
will. If you forget to call it, the worst that can happen is that some memory remains allocated
until hs_exit() is called. If you call it too often, the worst that can happen is that the next
call to a Haskell function incurs some extra overhead.

10.2 Using the FFI with GHC

The following sections also give some hints and tips on the use of the foreign function interface
in GHC.

10.2. Using the FFI with GHC 439



GHC User’s Guide Documentation, Release 8.2.1.20171030

10.2.1 Using foreign export and foreign import ccall "wrapper"
with GHC

When GHC compiles a module (say M.hs) which uses foreign export or foreign import
"wrapper", it generates a M_stub.h for use by C programs.
For a plain foreign export, the file M_stub.h contains a C prototype for the foreign exported
function. For example, if we compile the following module:

module Foo where

foreign export ccall foo :: Int -> IO Int

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))

Then Foo_stub.h will contain something like this:

#include "HsFFI.h"
extern HsInt foo(HsInt a0);

To invoke foo() from C, just #include "Foo_stub.h" and call foo().
The Foo_stub.h file can be redirected using the -stubdir option; see Redirecting the com-
pilation output(s) (page 137).

Using your own main()

Normally, GHC’s runtime system provides a main(), which arranges to invoke Main.main in
the Haskell program. However, you might want to link some Haskell code into a program
which has a main function written in another language, say C. In order to do this, you have
to initialize the Haskell runtime system explicitly.
Let’s take the example from above, and invoke it from a standalone C program. Here’s the C
code:

#include <stdio.h>
#include "HsFFI.h"

#ifdef __GLASGOW_HASKELL__
#include "Foo_stub.h"
#endif

int main(int argc, char *argv[])
{

int i;

hs_init(&argc, &argv);

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();

440 Chapter 10. Foreign function interface (FFI)



GHC User’s Guide Documentation, Release 8.2.1.20171030

return 0;
}

We’ve surrounded the GHC-specific bits with #ifdef __GLASGOW_HASKELL__; the rest of the
code should be portable across Haskell implementations that support the FFI standard.
The call to hs_init() initializes GHC’s runtime system. Do NOT try to invoke any Haskell
functions before calling hs_init(): bad things will undoubtedly happen.
We pass references to argc and argv to hs_init() so that it can separate out any arguments
for the RTS (i.e. those arguments between +RTS...-RTS).
After we’ve finished invoking our Haskell functions, we can call hs_exit(), which terminates
the RTS.
There can be multiple calls to hs_init(), but each one should be matched by one (and only
one) call to hs_exit(). The outermost hs_exit() will actually de-initialise the system. Note
that currently GHC’s runtime cannot reliably re-initialise after this has happened; see The
Foreign Function Interface (page 481).

Note: When linking the final program, it is normally easiest to do the link using GHC,
although this isn’t essential. If you do use GHC, then don’t forget the flag -no-hs-main
(page 177), otherwise GHC will try to link to the Main Haskell module.

To use +RTS flags with hs_init(), we have to modify the example slightly. By default,
GHC’s RTS will only accept “safe” +RTS flags (see Options affecting linking (page 175)),
and the -rtsopts[=⟨none|some|all⟩] (page 178) link-time flag overrides this. However,
-rtsopts[=⟨none|some|all⟩] (page 178) has no effect when -no-hs-main (page 177) is in
use (and the same goes for -with-rtsopts=⟨opts⟩ (page 178)). To set these options we have
to call a GHC-specific API instead of hs_init():

#include <stdio.h>
#include "HsFFI.h"

#ifdef __GLASGOW_HASKELL__
#include "Foo_stub.h"
#include "Rts.h"
#endif

int main(int argc, char *argv[])
{

int i;

#if __GLASGOW_HASKELL__ >= 703
{

RtsConfig conf = defaultRtsConfig;
conf.rts_opts_enabled = RtsOptsAll;
hs_init_ghc(&argc, &argv, conf);

}
#else

hs_init(&argc, &argv);
#endif

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();

10.2. Using the FFI with GHC 441



GHC User’s Guide Documentation, Release 8.2.1.20171030

return 0;
}

Note two changes: we included Rts.h, which defines the GHC-specific external RTS interface,
and we called hs_init_ghc() instead of hs_init(), passing an argument of type RtsConfig.
RtsConfig is a struct with various fields that affect the behaviour of the runtime system. Its
definition is:

typedef struct {
RtsOptsEnabledEnum rts_opts_enabled;
const char *rts_opts;

} RtsConfig;

extern const RtsConfig defaultRtsConfig;

typedef enum {
RtsOptsNone, // +RTS causes an error
RtsOptsSafeOnly, // safe RTS options allowed; others cause an error
RtsOptsAll // all RTS options allowed

} RtsOptsEnabledEnum;

There is a default value defaultRtsConfig that should be used to initialise variables of type
RtsConfig. More fields will undoubtedly be added to RtsConfig in the future, so in order to
keep your code forwards-compatible it is best to initialise with defaultRtsConfig and then
modify the required fields, as in the code sample above.

Making a Haskell library that can be called from foreign code

The scenario here is much like in Using your own main() (page 440), except that the aim is
not to link a complete program, but to make a library from Haskell code that can be deployed
in the same way that you would deploy a library of C code.
The main requirement here is that the runtime needs to be initialized before any Haskell code
can be called, so your library should provide initialisation and deinitialisation entry points,
implemented in C or C++. For example:

#include <stdlib.h>
#include "HsFFI.h"

HsBool mylib_init(void){
int argc = 2;
char *argv[] = { "+RTS", "-A32m", NULL };
char **pargv = argv;

// Initialize Haskell runtime
hs_init(&argc, &pargv);

// do any other initialization here and
// return false if there was a problem
return HS_BOOL_TRUE;

}

void mylib_end(void){
hs_exit();

}

The initialisation routine, mylib_init, calls hs_init() as normal to initialise the Haskell

442 Chapter 10. Foreign function interface (FFI)



GHC User’s Guide Documentation, Release 8.2.1.20171030

runtime, and the corresponding deinitialisation function mylib_end() calls hs_exit() to shut
down the runtime.

10.2.2 Using header files

C functions are normally declared using prototypes in a C header file. Earlier versions of GHC
(6.8.3 and earlier) #included the header file in the C source file generated from the Haskell
code, and the C compiler could therefore check that the C function being called via the FFI
was being called at the right type.
GHC no longer includes external header files when compiling via C, so this checking is not
performed. The change was made for compatibility with the native code generator (page 168)
(-fasm (page 174)) and to comply strictly with the FFI specification, which requires that FFI
calls are not subject to macro expansion and other CPP conversions that may be applied when
using C header files. This approach also simplifies the inlining of foreign calls across module
and package boundaries: there’s no need for the header file to be available when compiling
an inlined version of a foreign call, so the compiler is free to inline foreign calls in any context.
The -#include option is now deprecated, and the include-files field in a Cabal package
specification is ignored.

10.2.3 Memory Allocation

The FFI libraries provide several ways to allocate memory for use with the FFI, and it isn’t
always clear which way is the best. This decision may be affected by how efficient a particular
kind of allocation is on a given compiler/platform, so this section aims to shed some light on
how the different kinds of allocation perform with GHC.
alloca Useful for short-term allocation when the allocation is intended to scope over a given

IO computation. This kind of allocation is commonly used when marshalling data to and
from FFI functions.
In GHC, alloca is implemented using MutableByteArray#, so allocation and deallocation
are fast: much faster than C’s malloc/free, but not quite as fast as stack allocation in
C. Use alloca whenever you can.

mallocForeignPtr Useful for longer-term allocation which requires garbage collection. If
you intend to store the pointer to the memory in a foreign data structure, then malloc-
ForeignPtr is not a good choice, however.
In GHC, mallocForeignPtr is also implemented using MutableByteArray#. Although
the memory is pointed to by a ForeignPtr, there are no actual finalizers involved (unless
you add one with addForeignPtrFinalizer), and the deallocation is done using GC, so
mallocForeignPtr is normally very cheap.

malloc/free If all else fails, then you need to resort to Foreign.malloc and Foreign.free.
These are just wrappers around the C functions of the same name, and their efficiency
will depend ultimately on the implementations of these functions in your platform’s C
library. We usually find malloc and free to be significantly slower than the other forms
of allocation above.

Foreign.Marshal.Pool Pools are currently implemented using malloc/free, so while they
might be a more convenient way to structure your memory allocation than using one of
the other forms of allocation, they won’t be any more efficient. We do plan to provide an
improved-performance implementation of Pools in the future, however.

10.2. Using the FFI with GHC 443



GHC User’s Guide Documentation, Release 8.2.1.20171030

10.2.4 Multi-threading and the FFI

In order to use the FFI in a multi-threaded setting, you must use the -threaded (page 178)
option (see Options affecting linking (page 175)).

Foreign imports and multi-threading

When you call a foreign imported function that is annotated as safe (the default), and the
program was linked using -threaded (page 178), then the call will run concurrently with
other running Haskell threads. If the program was linked without -threaded (page 178),
then the other Haskell threads will be blocked until the call returns.
This means that if you need to make a foreign call to a function that takes a long time or
blocks indefinitely, then you should mark it safe and use -threaded (page 178). Some library
functions make such calls internally; their documentation should indicate when this is the
case.
If you are making foreign calls frommultiple Haskell threads and using -threaded (page 178),
make sure that the foreign code you are calling is thread-safe. In particularly, some GUI
libraries are not thread-safe and require that the caller only invokes GUI methods from a
single thread. If this is the case, you may need to restrict your GUI operations to a single
Haskell thread, and possibly also use a bound thread (see The relationship between Haskell
threads and OS threads (page 444)).
Note that foreign calls made by different Haskell threads may execute in parallel, even when
the +RTS -N flag is not being used (RTS options for SMP parallelism (page 100)). The -N ⟨x⟩
(page 100) flag controls parallel execution of Haskell threads, but there may be an arbitrary
number of foreign calls in progress at any one time, regardless of the +RTS -N value.
If a call is annotated as interruptible and the program was multithreaded, the call may be
interrupted in the event that the Haskell thread receives an exception. The mechanism by
which the interrupt occurs is platform dependent, but is intended to cause blocking system
calls to return immediately with an interrupted error code. The underlying operating system
thread is not to be destroyed. See Interruptible foreign calls (page 438) for more details.

The relationship between Haskell threads and OS threads

Normally there is no fixed relationship between Haskell threads and OS threads. This means
that when you make a foreign call, that call may take place in an unspecified OS thread.
Furthermore, there is no guarantee that multiple calls made by one Haskell thread will be
made by the same OS thread.
This usually isn’t a problem, and it allows the GHC runtime system to make efficient use of
OS thread resources. However, there are cases where it is useful to have more control over
which OS thread is used, for example when calling foreign code that makes use of thread-
local state. For cases like this, we provide bound threads, which are Haskell threads tied
to a particular OS thread. For information on bound threads, see the documentation for the
Control.Concurrent module.

Foreign exports and multi-threading

When the program is linked with -threaded (page 178), then you may invoke foreign ex-
ported functions from multiple OS threads concurrently. The runtime system must be ini-

444 Chapter 10. Foreign function interface (FFI)



GHC User’s Guide Documentation, Release 8.2.1.20171030

tialised as usual by calling hs_init(), and this call must complete before invoking any for-
eign exported functions.

On the use of hs_exit()

hs_exit() normally causes the termination of any running Haskell threads in the system,
and when hs_exit() returns, there will be no more Haskell threads running. The runtime
will then shut down the system in an orderly way, generating profiling output and statistics if
necessary, and freeing all the memory it owns.
It isn’t always possible to terminate a Haskell thread forcibly: for example, the thread might
be currently executing a foreign call, and we have no way to force the foreign call to complete.
What’s more, the runtime must assume that in the worst case the Haskell code and runtime
are about to be removed from memory (e.g. if this is a Windows DLL (page 473), hs_exit()
is normally called before unloading the DLL). So hs_exit() must wait until all outstanding
foreign calls return before it can return itself.
The upshot of this is that if you have Haskell threads that are blocked in foreign calls, then
hs_exit() may hang (or possibly busy-wait) until the calls return. Therefore it’s a good idea
to make sure you don’t have any such threads in the system when calling hs_exit(). This
includes any threads doing I/O, because I/O may (or may not, depending on the type of I/O
and the platform) be implemented using blocking foreign calls.
The GHC runtime treats program exit as a special case, to avoid the need to wait for blocked
threads when a standalone executable exits. Since the program and all its threads are about to
terminate at the same time that the code is removed frommemory, it isn’t necessary to ensure
that the threads have exited first. If you want this fast and loose version of hs_exit(), you
can call:

void hs_exit_nowait(void);

instead. This is particularly useful if you have foreign libraries that need to call hs_exit() at
program exit (perhaps via a C++ destructor): in this case you should use hs_exit_nowait(),
because the thread that called exit() and is running C++ destructors is in a foreign call
from Haskell that will never return, so hs_exit() would deadlock.

Waking up Haskell threads from C

Sometimes we want to be able to wake up a Haskell thread from some C code. For example,
when using a callback-based C API, we register a C callback and then we need to wait for the
callback to run.
One way to do this is to create a foreign export that will do whatever needs to be done to
wake up the Haskell thread - perhaps putMVar - and then call this from our C callback. There
are a couple of problems with this:
1. Calling a foreign export has a lot of overhead: it creates a complete new Haskell thread,
for example.

2. The call may block for a long time if a GC is in progress. We can’t use this method if the
C API we’re calling doesn’t allow blocking in the callback.

For these reasons GHC provides an external API to tryPutMVar, hs_try_putmvar, which you
can use to cheaply and asynchronously wake up a Haskell thread from C/C++.

void hs_try_putmvar (int capability, HsStablePtr sp);

10.2. Using the FFI with GHC 445



GHC User’s Guide Documentation, Release 8.2.1.20171030

The C call hs_try_putmvar(cap, mvar) is equivalent to the Haskell call tryPutMVar mvar
(), except that it is
• non-blocking: takes a bounded, short, amount of time
• asynchronous: the actual putMVar may be performed after the call returns (for example,
if the RTS is currently garbage collecting). That’s why hs_try_putmvar() doesn’t return
a result to say whether the put succeeded. It is your responsibility to ensure that the
MVar is empty; if it is full, hs_try_putmvar() will have no effect.

Example. Suppose we have a C/C++ function to call that will return and then invoke a
callback at some point in the future, passing us some data. We want to wait in Haskell for the
callback to be called, and retrieve the data. We can do it like this:

import GHC.Conc (newStablePtrPrimMVar, PrimMVar)

makeExternalCall = mask_ $ do
mvar <- newEmptyMVar
sp <- newStablePtrPrimMVar mvar
fp <- mallocForeignPtr
withForeignPtr fp $ \presult -> do
cap <- threadCapability =<< myThreadId
scheduleCallback sp cap presult
takeMVar mvar `onException`

forkIO (do takeMVar mvar; touchForeignPtr fp)
peek presult

foreign import ccall "scheduleCallback"
scheduleCallback :: StablePtr PrimMVar

-> Int
-> Ptr Result
-> IO ()

And inside scheduleCallback, we create a callback that will in due course store the result
data in the Ptr Result, and then call hs_try_putmvar().
There are a few things to note here.
• There’s a special function to create the StablePtr: newStablePtrPrimMVar, because the
RTS needs a StablePtr to the primitive MVar# object, and we can’t create that directly.
Do not just use newStablePtr on the MVar: your program will crash.

• The StablePtr is freed by hs_try_putmvar(). This is because it would otherwise be
difficult to arrange to free the StablePtr reliably: we can’t free it in Haskell, because
if the takeMVar is interrupted by an asynchronous exception, then the callback will fire
at a later time. We can’t free it in C, because we don’t know when to free it (not when
hs_try_putmvar() returns, because that is an async call that uses the StablePtr at
some time in the future).

• The mask_ is to avoid asynchronous exceptions before the scheduleCallback call, which
would leak the StablePtr.

• We find out the current capability number and pass it to C. This is passed back to
hs_try_putmvar, and helps the RTS to know which capability it should try to perform the
tryPutMVar on. If you don’t care, you can pass -1 for the capability to hs_try_putmvar,
and it will pick an arbitrary one.
Picking the right capability will help avoid unnecessary context switches. Ideally you
should pass the capability that the thread that will be woken up last ran on, which you
can find by calling threadCapability in Haskell.

446 Chapter 10. Foreign function interface (FFI)



GHC User’s Guide Documentation, Release 8.2.1.20171030

• If you want to also pass some data back from the C callback to Haskell, this is best done
by first allocating some memory in Haskell to receive the data, and passing the address
to C, as we did in the above example.

• takeMVar can be interrupted by an asynchronous exception. If this happens, the callback
in C will still run at some point in the future, will still write the result, and will still call
hs_try_putmvar(). Therefore we have to arrange that the memory for the result stays
alive until the callback has run, so if an exception is thrown during takeMVar we fork an-
other thread to wait for the callback and hold the memory alive using touchForeignPtr.

For a fully working example, see testsuite/tests/concurrent/should_run/hs_try_putmvar001.hs
in the GHC source tree.

10.2.5 Floating point and the FFI

The standard C99 fenv.h header provides operations for inspecting and modifying the state
of the floating point unit. In particular, the rounding mode used by floating point operations
can be changed, and the exception flags can be tested.
In Haskell, floating-point operations have pure types, and the evaluation order is unspecified.
So strictly speaking, since the fenv.h functions let you change the results of, or observe
the effects of floating point operations, use of fenv.h renders the behaviour of floating-point
operations anywhere in the program undefined.
Having said that, we can document exactly what GHC does with respect to the floating point
state, so that if you really need to use fenv.h then you can do so with full knowledge of the
pitfalls:
• GHC completely ignores the floating-point environment, the runtime neither modifies
nor reads it.

• The floating-point environment is not saved over a normal thread context-switch. So if
you modify the floating-point state in one thread, those changes may be visible in other
threads. Furthermore, testing the exception state is not reliable, because a context
switch may change it. If you need to modify or test the floating point state and use
threads, then you must use bound threads (Control.Concurrent.forkOS), because a
bound thread has its own OS thread, and OS threads do save and restore the floating-
point state.

• It is safe to modify the floating-point unit state temporarily during a foreign call, because
foreign calls are never pre-empted by GHC.

10.2. Using the FFI with GHC 447



GHC User’s Guide Documentation, Release 8.2.1.20171030

448 Chapter 10. Foreign function interface (FFI)



CHAPTER

ELEVEN

EXTENDING AND USING GHC AS A LIBRARY

GHC exposes its internal APIs to users through the built-in ghc package. It allows you to
write programs that leverage GHC’s entire compilation driver, in order to analyze or compile
Haskell code programmatically. Furthermore, GHC gives users the ability to load compiler
plugins during compilation - modules which are allowed to view and change GHC’s internal
intermediate representation, Core. Plugins are suitable for things like experimental optimiza-
tions or analysis, and offer a lower barrier of entry to compiler development for many common
cases.
Furthermore, GHC offers a lightweight annotation mechanism that you can use to annotate
your source code with metadata, which you can later inspect with either the compiler API or
a compiler plugin.

11.1 Source annotations

Annotations are small pragmas that allow you to attach data to identifiers in source code,
which are persisted when compiled. These pieces of data can then inspected and utilized
when using GHC as a library or writing a compiler plugin.

11.1.1 Annotating values

Any expression that has both Typeable and Data instances may be attached to a top-level
value binding using an ANN pragma. In particular, this means you can use ANN to annotate
data constructors (e.g. Just) as well as normal values (e.g. take). By way of example, to
annotate the function foo with the annotation Just "Hello" you would do this:

{-# ANN foo (Just "Hello") #-}
foo = ...

A number of restrictions apply to use of annotations:
• The binder being annotated must be at the top level (i.e. no nested binders)
• The binder being annotated must be declared in the current module
• The expression you are annotating with must have a type with Typeable and Data in-
stances

• The Template Haskell staging restrictions (page 377) apply to the expression being an-
notated with, so for example you cannot run a function from the module being compiled.
To be precise, the annotation {-# ANN x e #-} is well staged if and only if $(e) would
be (disregarding the usual type restrictions of the splice syntax, and the usual restriction

449



GHC User’s Guide Documentation, Release 8.2.1.20171030

on splicing inside a splice - $([|1|]) is fine as an annotation, albeit redundant).
If you feel strongly that any of these restrictions are too onerous, please give the GHC team
a shout.
However, apart from these restrictions, many things are allowed, including expressions which
are not fully evaluated! Annotation expressions will be evaluated by the compiler just like
Template Haskell splices are. So, this annotation is fine:

{-# ANN f SillyAnnotation { foo = (id 10) + $([| 20 |]), bar = 'f } #-}
f = ...

11.1.2 Annotating types

You can annotate types with the ANN pragma by using the type keyword. For example:

{-# ANN type Foo (Just "A `Maybe String' annotation") #-}
data Foo = ...

11.1.3 Annotating modules

You can annotate modules with the ANN pragma by using the module keyword. For example:

{-# ANN module (Just "A `Maybe String' annotation") #-}

11.2 Using GHC as a Library

The ghc package exposes most of GHC’s frontend to users, and thus allows you to write
programs that leverage it. This library is actually the same library used by GHC’s internal,
frontend compilation driver, and thus allows you to write tools that programmatically compile
source code and inspect it. Such functionality is useful in order to write things like IDE or
refactoring tools. As a simple example, here’s a program which compiles a module, much like
ghc itself does by default when invoked:

import GHC
import GHC.Paths ( libdir )
import DynFlags ( defaultLogAction )

main =
defaultErrorHandler defaultLogAction $ do

runGhc (Just libdir) $ do
dflags <- getSessionDynFlags
setSessionDynFlags dflags
target <- guessTarget "test_main.hs" Nothing
setTargets [target]
load LoadAllTargets

The argument to runGhc is a bit tricky. GHC needs this to find its libraries, so the argument
must refer to the directory that is printed by ghc --print-libdir for the same version of
GHC that the program is being compiled with. Above we therefore use the ghc-paths package
which provides this for us.
Compiling it results in:

450 Chapter 11. Extending and using GHC as a Library

https://ghc.haskell.org/trac/ghc/wiki/MailingListsAndIRC
https://ghc.haskell.org/trac/ghc/wiki/MailingListsAndIRC


GHC User’s Guide Documentation, Release 8.2.1.20171030

$ cat test_main.hs
main = putStrLn "hi"
$ ghc -package ghc simple_ghc_api.hs
[1 of 1] Compiling Main ( simple_ghc_api.hs, simple_ghc_api.o )
Linking simple_ghc_api ...
$ ./simple_ghc_api
$ ./test_main
hi
$

For more information on using the API, as well as more samples and references, please see
this Haskell.org wiki page.

11.3 Compiler Plugins

GHC has the ability to load compiler plugins at compile time. The feature is similar to the
one provided by GCC, and allows users to write plugins that can adjust the behaviour of
the constraint solver, inspect and modify the compilation pipeline, as well as transform and
inspect GHC’s intermediate language, Core. Plugins are suitable for experimental analysis
or optimization, and require no changes to GHC’s source code to use.
Plugins cannot optimize/inspect C–, nor can they implement things like parser/front-end mod-
ifications like GCC, apart from limited changes to the constraint solver. If you feel strongly
that any of these restrictions are too onerous, please give the GHC team a shout.

11.3.1 Using compiler plugins

Plugins can be specified on the command line with the -fplugin=⟨module⟩ (page 451) option
where ⟨module⟩ is a module in a registered package that exports a plugin. Arguments can be
given to plugins with the -fplugin-opt=⟨module⟩:⟨args⟩ (page 451) option.
-fplugin=⟨module⟩

Load the plugin in the given module. The module must be a member of a package reg-
istered in GHC’s package database.

-fplugin-opt=⟨module⟩:⟨args⟩
Pass arguments ⟨args⟩ to the given plugin.

As an example, in order to load the plugin exported by Foo.Plugin in the package foo-ghc-
plugin, and give it the parameter “baz”, we would invoke GHC like this:

$ ghc -fplugin Foo.Plugin -fplugin-opt Foo.Plugin:baz Test.hs
[1 of 1] Compiling Main ( Test.hs, Test.o )
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Loading package foo-ghc-plugin-0.1 ... linking ... done.
...
Linking Test ...
$

Plugin modules live in a separate namespace from the user import namespace. By default,
these two namespaces are the same; however, there are a few command line options which
control specifically plugin packages:

11.3. Compiler Plugins 451

http://haskell.org/haskellwiki/GHC/As_a_library
http://gcc.gnu.org/wiki/plugins
https://ghc.haskell.org/trac/ghc/wiki/MailingListsAndIRC


GHC User’s Guide Documentation, Release 8.2.1.20171030

-plugin-package ⟨pkg⟩
This option causes the installed package ⟨pkg⟩ to be exposed for plugins, such as -
fplugin=⟨module⟩ (page 451). The package ⟨pkg⟩ can be specified in full with its version
number (e.g. network-1.0) or the version number can be omitted if there is only one
version of the package installed. If there are multiple versions of ⟨pkg⟩ installed and
-hide-all-plugin-packages (page 452) was not specified, then all other versions will
become hidden. -plugin-package ⟨pkg⟩ (page 451) supports thinning and renaming
described in Thinning and renaming modules (page 156).
Unlike -package ⟨pkg⟩ (page 153), this option does NOT cause package ⟨pkg⟩ to be
linked into the resulting executable or shared object.

-plugin-package-id ⟨pkg-id⟩
Exposes a package in the plugin namespace like -plugin-package ⟨pkg⟩ (page 451),
but the package is named by its installed package ID rather than by name. This is a more
robust way to name packages, and can be used to select packages that would otherwise
be shadowed. Cabal passes -plugin-package-id ⟨pkg-id⟩ (page 452) flags to GHC.
-plugin-package-id ⟨pkg-id⟩ (page 452) supports thinning and renaming described
in Thinning and renaming modules (page 156).

-hide-all-plugin-packages
By default, all exposed packages in the normal, source import namespace are also avail-
able for plugins. This causes those packages to be hidden by default. If you use this
flag, then any packages with plugins you require need to be explicitly exposed using
-plugin-package ⟨pkg⟩ (page 451) options.

At the moment, the only way to specify a dependency on a plugin in Cabal is to put it in build-
depends (which uses the conventional -package-id ⟨unit-id⟩ (page 154) flag); however, in
the future there will be a separate field for specifying plugin dependencies specifically.

11.3.2 Writing compiler plugins

Plugins are modules that export at least a single identifier, plugin, of type GhcPlug-
ins.Plugin. All plugins should import GhcPlugins as it defines the interface to the com-
pilation pipeline.
A Plugin effectively holds a function which installs a compilation pass into the com-
piler pipeline. By default there is the empty plugin which does nothing, GhcPlug-
ins.defaultPlugin, which you should override with record syntax to specify your installation
function. Since the exact fields of the Plugin type are open to change, this is the best way to
ensure your plugins will continue to work in the future with minimal interface impact.
Plugin exports a field, installCoreToDos which is a function of type [CommandLineOption]
-> [CoreToDo] -> CoreM [CoreToDo]. A CommandLineOption is effectively just String, and
a CoreToDo is basically a function of type Core -> Core. A CoreToDo gives your pass a name
and runs it over every compiled module when you invoke GHC.
As a quick example, here is a simple plugin that just does nothing and just returns the original
compilation pipeline, unmodified, and says ‘Hello’:

module DoNothing.Plugin (plugin) where
import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

452 Chapter 11. Extending and using GHC as a Library



GHC User’s Guide Documentation, Release 8.2.1.20171030

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do

putMsgS "Hello!"
return todo

Provided you compiled this plugin and registered it in a package (with cabal for instance,)
you can then use it by just specifying -fplugin=DoNothing.Plugin on the command line, and
during the compilation you should see GHC say ‘Hello’.

11.3.3 Core plugins in more detail

CoreToDo is effectively a data type that describes all the kinds of optimization passes GHC
does on Core. There are passes for simplification, CSE, vectorisation, etc. There is a specific
case for plugins, CoreDoPluginPass :: String -> PluginPass -> CoreToDo which should
be what you always use when inserting your own pass into the pipeline. The first parameter
is the name of the plugin, and the second is the pass you wish to insert.
CoreM is a monad that all of the Core optimizations live and operate inside of.
A plugin’s installation function (install in the above example) takes a list of CoreToDos and
returns a list of CoreToDo. Before GHC begins compiling modules, it enumerates all the
needed plugins you tell it to load, and runs all of their installation functions, initially on a list
of passes that GHC specifies itself. After doing this for every plugin, the final list of passes is
given to the optimizer, and are run by simply going over the list in order.
You should be careful with your installation function, because the list of passes you give back
isn’t questioned or double checked by GHC at the time of this writing. An installation function
like the following:

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ _ = return []

is certainly valid, but also certainly not what anyone really wants.

Manipulating bindings

In the last section we saw that besides a name, a CoreDoPluginPass takes a pass of type
PluginPass. A PluginPass is a synonym for (ModGuts -> CoreM ModGuts). ModGuts is a
type that represents the one module being compiled by GHC at any given time.
A ModGuts holds all of the module’s top level bindings which we can examine. These bindings
are of type CoreBind and effectively represent the binding of a name to body of code. Top-
level module bindings are part of a ModGuts in the field mg_binds. Implementing a pass
that manipulates the top level bindings merely needs to iterate over this field, and return a
new ModGuts with an updated mg_binds field. Because this is such a common case, there
is a function provided named bindsOnlyPass which lifts a function of type ([CoreBind] ->
CoreM [CoreBind]) to type (ModGuts -> CoreM ModGuts).
Continuing with our example from the last section, we can write a simple plugin that just
prints out the name of all the non-recursive bindings in a module it compiles:

module SayNames.Plugin (plugin) where
import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {

11.3. Compiler Plugins 453



GHC User’s Guide Documentation, Release 8.2.1.20171030

installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do

return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass guts = do dflags <- getDynFlags

bindsOnlyPass (mapM (printBind dflags)) guts
where printBind :: DynFlags -> CoreBind -> CoreM CoreBind

printBind dflags bndr@(NonRec b _) = do
putMsgS $ "Non-recursive binding named " ++ showSDoc dflags (ppr b)
return bndr

printBind _ bndr = return bndr

Using Annotations

Previously we discussed annotation pragmas (Source annotations (page 449)), which we men-
tioned could be used to give compiler plugins extra guidance or information. Annotations for
a module can be retrieved by a plugin, but you must go through the modules ModGuts in order
to get it. Because annotations can be arbitrary instances of Data and Typeable, you need to
give a type annotation specifying the proper type of data to retrieve from the interface file,
and you need to make sure the annotation type used by your users is the same one your plugin
uses. For this reason, we advise distributing annotations as part of the package which also
provides compiler plugins if possible.
To get the annotations of a single binder, you can use getAnnotations and specify the proper
type. Here’s an example that will print out the name of any top-level non-recursive binding
with the SomeAnn annotation:

{-# LANGUAGE DeriveDataTypeable #-}
module SayAnnNames.Plugin (plugin, SomeAnn(..)) where
import GhcPlugins
import Control.Monad (unless)
import Data.Data

data SomeAnn = SomeAnn deriving Data

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do

return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass g = do

dflags <- getDynFlags
mapM_ (printAnn dflags g) (mg_binds g) >> return g

where printAnn :: DynFlags -> ModGuts -> CoreBind -> CoreM CoreBind
printAnn dflags guts bndr@(NonRec b _) = do
anns <- annotationsOn guts b :: CoreM [SomeAnn]
unless (null anns) $ putMsgS $ "Annotated binding found: " ++ showSDoc dflags (ppr b)

454 Chapter 11. Extending and using GHC as a Library



GHC User’s Guide Documentation, Release 8.2.1.20171030

return bndr
printAnn _ _ bndr = return bndr

annotationsOn :: Data a => ModGuts -> CoreBndr -> CoreM [a]
annotationsOn guts bndr = do

anns <- getAnnotations deserializeWithData guts
return $ lookupWithDefaultUFM anns [] (varUnique bndr)

Please see the GHC API documentation for more about how to use internal APIs, etc.

11.3.4 Typechecker plugins

In addition to Core plugins, GHC has experimental support for typechecker plugins, which al-
low the behaviour of the constraint solver to be modified. For example, they make it possible
to interface the compiler to an SMT solver, in order to support a richer theory of type-level
arithmetic expressions than the theory built into GHC (see Computing With Type-Level Nat-
urals (page 341)).
The Plugin type has a field tcPlugin of type [CommandLineOption] -> Maybe TcPlugin,
where the TcPlugin type is defined thus:

data TcPlugin = forall s . TcPlugin
{ tcPluginInit :: TcPluginM s
, tcPluginSolve :: s -> TcPluginSolver
, tcPluginStop :: s -> TcPluginM ()
}

type TcPluginSolver = [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult

data TcPluginResult = TcPluginContradiction [Ct] | TcPluginOk [(EvTerm,Ct)] [Ct]

(The details of this representation are subject to change as we gain more experience writing
typechecker plugins. It should not be assumed to be stable between GHC releases.)
The basic idea is as follows:
• When type checking a module, GHC calls tcPluginInit once before constraint solving
starts. This allows the plugin to look things up in the context, initialise mutable state or
open a connection to an external process (e.g. an external SMT solver). The plugin can
return a result of any type it likes, and the result will be passed to the other two fields.

• During constraint solving, GHC repeatedly calls tcPluginSolve. This function is pro-
vided with the current set of constraints, and should return a TcPluginResult that in-
dicates whether a contradiction was found or progress was made. If the plugin solver
makes progress, GHC will re-start the constraint solving pipeline, looping until a fixed
point is reached.

• Finally, GHC calls tcPluginStop after constraint solving is finished, allowing the plugin
to dispose of any resources it has allocated (e.g. terminating the SMT solver process).

Plugin code runs in the TcPluginM monad, which provides a restricted interface to GHC
API functionality that is relevant for typechecker plugins, including IO and reading the en-
vironment. If you need functionality that is not exposed in the TcPluginM module, you can
use unsafeTcPluginTcM :: TcM a -> TcPluginM a, but are encouraged to contact the GHC
team to suggest additions to the interface. Note that TcPluginM can perform arbitrary IO via
tcPluginIO :: IO a -> TcPluginM a, although some care must be taken with side effects

11.3. Compiler Plugins 455



GHC User’s Guide Documentation, Release 8.2.1.20171030

(particularly in tcPluginSolve). In general, it is up to the plugin author to make sure that
any IO they do is safe.

Constraint solving with plugins

The key component of a typechecker plugin is a function of type TcPluginSolver, like this:

solve :: [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult
solve givens deriveds wanteds = ...

This function will be invoked at two points in the constraint solving process: after simplifica-
tion of given constraints, and after unflattening of wanted constraints. The two phases can
be distinguished because the deriveds and wanteds will be empty in the first case. In each
case, the plugin should either
• return TcPluginContradiction with a list of impossible constraints (which must be a
subset of those passed in), so they can be turned into errors; or

• return TcPluginOk with lists of solved and new constraints (the former must be a subset
of those passed in and must be supplied with corresponding evidence terms).

If the plugin cannot make any progress, it should return TcPluginOk [] []. Otherwise, if
there were any new constraints, the main constraint solver will be re-invoked to simplify
them, then the plugin will be invoked again. The plugin is responsible for making sure that
this process eventually terminates.
Plugins are provided with all available constraints (including equalities and typeclass con-
straints), but it is easy for them to discard those that are not relevant to their domain, because
they need return only those constraints for which they have made progress (either by solving
or contradicting them).
Constraints that have been solved by the plugin must be provided with evidence in the form
of an EvTerm of the type of the constraint. This evidence is ignored for given and derived
constraints, which GHC “solves” simply by discarding them; typically this is used when they
are uninformative (e.g. reflexive equations). For wanted constraints, the evidence will form
part of the Core term that is generated after typechecking, and can be checked by -dcore-
lint. It is possible for the plugin to create equality axioms for use in evidence terms, but
GHC does not check their consistency, and inconsistent axiom sets may lead to segfaults or
other runtime misbehaviour.

11.3.5 Frontend plugins

A frontend plugin allows you to add new major modes to GHC. You may prefer this over a
traditional program which calls the GHC API, as GHC manages a lot of parsing flags and
administrative nonsense which can be difficult to manage manually. To load a frontend plu-
gin exported by Foo.FrontendPlugin, we just invoke GHC with the --frontend ⟨module⟩
(page 68) flag as follows:

$ ghc --frontend Foo.FrontendPlugin ...other options...

Frontend plugins, like compiler plugins, are exported by registered plugins. However, un-
like compiler modules, frontend plugins are modules that export at least a single identifier
frontendPlugin of type GhcPlugins.FrontendPlugin.
FrontendPlugin exports a field frontend, which is a function [String] -> [(String,
Maybe Phase)] -> Ghc (). The first argument is a list of extra flags passed to the frontend

456 Chapter 11. Extending and using GHC as a Library



GHC User’s Guide Documentation, Release 8.2.1.20171030

with -ffrontend-opt; the second argument is the list of arguments, usually source files and
module names to be compiled (the Phase indicates if an -x flag was set), and a frontend simply
executes some operation in the Ghc monad (which, among other things, has a Session).
As a quick example, here is a frontend plugin that prints the arguments that were passed to
it, and then exits.

module DoNothing.FrontendPlugin (frontendPlugin) where
import GhcPlugins

frontendPlugin :: FrontendPlugin
frontendPlugin = defaultFrontendPlugin {

frontend = doNothing
}

doNothing :: [String] -> [(String, Maybe Phase)] -> Ghc ()
doNothing flags args = do

liftIO $ print flags
liftIO $ print args

Provided you have compiled this plugin and registered it in a package, you can just use it by
specifying --frontend DoNothing.FrontendPlugin on the command line to GHC.

11.3. Compiler Plugins 457



GHC User’s Guide Documentation, Release 8.2.1.20171030

458 Chapter 11. Extending and using GHC as a Library



CHAPTER

TWELVE

WHAT TO DO WHEN SOMETHING GOES WRONG

If you still have a problem after consulting this section, then you may have found a bug—
please report it! See Reporting bugs in GHC (page 6) for details on how to report a bug and
a list of things we’d like to know about your bug. If in doubt, send a report — we love mail
from irate users :-!
(Haskell standards vs. Glasgow Haskell: language non-compliance (page 477), which de-
scribes Glasgow Haskell’s shortcomings vs. the Haskell language definition, may also be of
interest.)

12.1 When the compiler “does the wrong thing”

“Help! The compiler crashed (or panic’d)!” These events are always bugs in the GHC
system—please report them.

“This is a terrible error message.” If you think that GHC could have produced a better
error message, please report it as a bug.

“What about this warning from the C compiler?” For example: …warning: \`Foo' de-
clared \`static' but never defined. Unsightly, but shouldn’t be a problem.

Sensitivity to .hi interface files GHC is very sensitive about interface files. For exam-
ple, if it picks up a non-standard Prelude.hi file, pretty terrible things will happen. If
you turn on -XNoImplicitPrelude-XNoImplicitPrelude option, the compiler will almost
surely die, unless you know what you are doing.
Furthermore, as sketched below, youmay have big problems running programs compiled
using unstable interfaces.

“I think GHC is producing incorrect code” Unlikely :-) A useful be-more-paranoid option
to give to GHC is -dcore-lint-dcore-lint option; this causes a “lint” pass to check for
errors (notably type errors) after each Core-to-Core transformation pass. We run with
-dcore-lint on all the time; it costs about 5% in compile time.

Why did I get a link error? If the linker complains about not finding _<something>_fast,
then something is inconsistent: you probably didn’t compile modules in the proper de-
pendency order.

“Is this line number right?” On this score, GHC usually does pretty well, especially if you
“allow” it to be off by one or two. In the case of an instance or class declaration, the line
number may only point you to the declaration, not to a specific method.
Please report line-number errors that you find particularly unhelpful.

459



GHC User’s Guide Documentation, Release 8.2.1.20171030

12.2 When your program “does the wrong thing”

(For advice about overly slow or memory-hungry Haskell programs, please see Advice on:
sooner, faster, smaller, thriftier (page 213)).
“Help! My program crashed!” (e.g., a “segmentation fault” or “core dumped”) segmenta-

tion fault
If your program has no foreign calls in it, and no calls to known-unsafe functions (such as
unsafePerformIO) then a crash is always a BUG in the GHC system, except in one case: If
your program is made of several modules, each module must have been compiled after
any modules on which it depends (unless you use .hi-boot files, in which case these
must be correct with respect to the module source).
For example, if an interface is lying about the type of an imported value then GHC may
well generate duff code for the importing module. This applies to pragmas inside inter-
faces too! If the pragma is lying (e.g., about the “arity” of a value), then duff code may
result. Furthermore, arities may change even if types do not.
In short, if you compile a module and its interface changes, then all the modules that
import that interface must be re-compiled.
A useful option to alert you when interfaces change is -ddump-hi-diffs option. It will
run diff on the changed interface file, before and after, when applicable.
If you are using make, GHC can automatically generate the dependencies required in or-
der to make sure that every module is up-to-date with respect to its imported interfaces.
Please see Dependency generation (page 149).
If you are down to your last-compile-before-a-bug-report, we would recommend that you
add a -dcore-lint option (for extra checking) to your compilation options.
So, before you report a bug because of a core dump, you should probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -ddump-hi-diffs to highlight changes;

# as mentioned above, use -dcore-lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets are off, because you
can trash the heap, the stack, or whatever.

“My program entered an ‘absent’ argument.” This is definitely caused by a bug in GHC.
Please report it (see Reporting bugs in GHC (page 6)).

“What’s with this arithmetic (or floating-point) exception?” Int, Float, and Double
arithmetic is unchecked. Overflows, underflows and loss of precision are either silent or
reported as an exception by the operating system (depending on the platform). Divide-
by-zero may cause an untrapped exception (please report it if it does).

460 Chapter 12. What to do when something goes wrong



CHAPTER

THIRTEEN

DEBUGGING COMPILED PROGRAMS

Since the 7.10 release GHC can emit a debugging information to help debugging tools un-
derstand the code that GHC produces. This debugging information is useable by most UNIX
debugging tools.
-g
-g⟨n⟩

Since 7.10, numeric levels since 8.0
Emit debug information in object code. Currently only DWARF debug information is
supported on x86-64 and i386. Currently debug levels 0 through 3 are accepted, with 0
disabling debug information production. Levels 1 through 3 are functionally equivalent.

13.1 Tutorial

Let’s consider a simple example,

1 -- fib.hs
2 fib :: Int -> Int
3 fib 0 = 0
4 fib 1 = 1
5 fib n = fib (n-1) + fib (n-2)
6

7 main :: IO ()
8 main = print $ fib 50

Let’s first see how execution flows through this program. We start by telling GHC that we
want debug information,

$ ghc -g -rtsopts fib.hs

Here we used the -g option to informGHC that it should add debugging information in the pro-
duced binary. There are three levels of debugging output: -g0 (no debugging information,
the default), -g1 (sufficient for basic backtraces), -g2 (or just -g for short; emitting every-
thing GHC knows). Note that this debugging information does not affect the optimizations
performed by GHC.

Tip: Under Mac OS X debug information is kept apart from the executable. After compiling
the executable you’ll need to use the dsymutil utility to extract the debugging information
and place them in the debug archive,

$ dsymutil fib

461



GHC User’s Guide Documentation, Release 8.2.1.20171030

This should produce a file named fib.dSYM.

Now let’s have a look at the flow of control. For this we can just start our program under gdb
(or an equivalent debugger) as we would any other native executable,

$ gdb --args ./Fib +RTS -V0
Reading symbols from Fib...done.
(gdb) run
Starting program: /opt/exp/ghc/ghc-dwarf/Fib
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
^C
Program received signal SIGINT, Interrupt.
0x000000000064fc7c in cfy4_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:424
424 minusInteger x y = inline plusInteger x (inline negateInteger y)
(gdb)

Here we have used the runtime system’s -V0 option to disable the RTS’s periodic timer which
may interfere with our debugging session. Upon breaking into the program gdb shows us a
location in our source program corresponding to the current point of execution.
Moreover, we can ask gdb to tell us the flow of execution that lead us to this point in the
program,

(gdb) bt
#0 0x000000000064fc7c in cfy4_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:424
#1 0x00000000006eb0c0 in ?? ()
#2 0x000000000064301c in cbuV_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:323
#3 0x000000000064311b in integerzmgmp_GHCziIntegerziType_eqInteger_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:312
#4 0x0000000000406eca in roz_info () at Fib.hs:2
#5 0x00000000006eb0c0 in ?? ()
#6 0x000000000064f075 in cfru_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:412
#7 0x00000000006eb0c0 in ?? ()
#8 0x000000000064f075 in cfru_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:412
#9 0x00000000006eb0c0 in ?? ()
#10 0x000000000064eefe in integerzmgmp_GHCziIntegerziType_plusInteger_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:393
...
#64 0x0000000000643ac8 in integerzmgmp_GHCziIntegerziType_ltIntegerzh_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:343
#65 0x00000000004effcc in base_GHCziShow_zdwintegerToString_info () at libraries/base/GHC/Show.hs:443
#66 0x00000000004f0795 in base_GHCziShow_zdfShowIntegerzuzdcshow_info () at libraries/base/GHC/Show.hs:145
#67 0x000000000048892b in cdGW_info () at libraries/base/GHC/IO/Handle/Text.hs:595
#68 0x0000000000419cb2 in base_GHCziBase_thenIO1_info () at libraries/base/GHC/Base.hs:1072

Hint: Here we notice the first bit of the stack trace has many unidentified stack frames at
address 0x006eb0c0. If we ask gdb about this location, we find that these frames are actually
STG update closures,

(gdb) print/a 0x006eb0c0
$1 = 0x6eb0c0 <stg_upd_frame_info>

The reason gdb doesn’t show this symbol name in the backtrace output is an infidelity in its in-
terpretation of debug information, which assumes an invariant preserved in C but not Haskell
programs. Unfortunately it is necessary to work around this manually until this behivior is
fixed upstream.

Note: Because of the aggressive optimization that GHC performs to the programs it compiles
it is quite difficult to pin-point exactly which point in the source program a given machine

462 Chapter 13. Debugging compiled programs



GHC User’s Guide Documentation, Release 8.2.1.20171030

instruction should be attributed to. In fact, internally GHC associates each instruction with
a set of source locations. When emitting the standard debug information used by gdb and
other language-agnostic debugging tools, GHC is forced to heuristically choose one location
from among this set.
For this reason we should be cautious when interpretting the source locations provided by
GDB. While these locations will usually be in some sense “correct”, they aren’t always useful.
This is why profiling tools targetting Haskell should supplement the standard source location
information with GHC-specific annotations (emitted with -g2) when assigning costs.

Indeed, we can even set breakpoints,

(gdb) break fib.hs:4
Breakpoint 1 at 0x406c60: fib.hs:4. (5 locations)
(gdb) run
Starting program: /opt/exp/ghc/ghc-dwarf/Fib

Breakpoint 1, c1RV_info () at Fib.hs:4
4 fib n = fib (n-1) + fib (n-2)
(gdb) bt
#0 c1RV_info () at Fib.hs:4
#1 0x00000000006eb0c0 in ?? ()
#2 0x0000000000643ac8 in integerzmgmp_GHCziIntegerziType_ltIntegerzh_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:343
#3 0x00000000004effcc in base_GHCziShow_zdwintegerToString_info () at libraries/base/GHC/Show.hs:443
#4 0x00000000004f0795 in base_GHCziShow_zdfShowIntegerzuzdcshow_info () at libraries/base/GHC/Show.hs:145
#5 0x000000000048892b in cdGW_info () at libraries/base/GHC/IO/Handle/Text.hs:595
#6 0x0000000000419cb2 in base_GHCziBase_thenIO1_info () at libraries/base/GHC/Base.hs:1072
#7 0x00000000006ebcb0 in ?? () at rts/Exception.cmm:332
#8 0x00000000006e7320 in ?? ()
(gdb)

Due to the nature of GHC’s heap and the heavy optimization that it performs, it is quite
difficult to probe the values of bindings at runtime. In this way, the debugging experience
of a Haskell program with DWARF support is still a bit impoverished compared to typical
imperative debuggers.

13.2 Requesting a stack trace from Haskell code

GHC’s runtime system has built-in support for collecting stack trace information from a run-
ning Haskell program. This currently requires that the libdw library from the elfutils pack-
age is available. Of course, the backtrace will be of little use unless debug information is
available in the executable and its dependent libraries.
Stack trace functionality is exposed for use by Haskell programs in the GHC.ExecutionStack
module. See the Haddock documentation in this module for details regarding usage.

13.3 Requesting a stack trace with SIGUSR2

On POSIX-compatible platforms GHC’s runtime system (when built with libdw support) will
produce a stack trace on stderr when a SIGUSR2 signal is received. For instance (using the
same fib.hs as above),

13.2. Requesting a stack trace from Haskell code 463



GHC User’s Guide Documentation, Release 8.2.1.20171030

$ ./fib & killall -SIGUSR2 fib
0x7f3176b15dd8 dwfl_thread_getframes (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b1582f (null) (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b15b57 dwfl_getthreads (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b16150 dwfl_getthread_frames (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)

0x6dc857 libdwGetBacktrace (rts/Libdw.c:248.0)
0x6e6126 backtrace_handler (rts/posix/Signals.c:541.0)

0x7f317677017f (null) (/lib/x86_64-linux-gnu/libc-2.19.so)
0x642e1c integerzmgmp_GHCziIntegerziType_eqIntegerzh_info (libraries/integer-gmp/src/GHC/Integer/Type.hs:320.1)
0x643023 integerzmgmp_GHCziIntegerziType_eqInteger_info (libraries/integer-gmp/src/GHC/Integer/Type.hs:312.1)
0x406eca roz_info (/opt/exp/ghc/ghc-dwarf//Fib.hs:2.1)
0x6eafc0 stg_upd_frame_info (rts/Updates.cmm:31.1)
0x64ee06 integerzmgmp_GHCziIntegerziType_plusInteger_info (libraries/integer-gmp/src/GHC/Integer/Type.hs:393.1)
0x6eafc0 stg_upd_frame_info (rts/Updates.cmm:31.1)

...
0x6439d0 integerzmgmp_GHCziIntegerziType_ltIntegerzh_info (libraries/integer-gmp/src/GHC/Integer/Type.hs:343.1)
0x4efed4 base_GHCziShow_zdwintegerToString_info (libraries/base/GHC/Show.hs:442.1)
0x4f069d base_GHCziShow_zdfShowIntegerzuzdcshow_info (libraries/base/GHC/Show.hs:145.5)
0x488833 base_GHCziIOziHandleziText_zdwa8_info (libraries/base/GHC/IO/Handle/Text.hs:582.1)
0x6ebbb0 stg_catch_frame_info (rts/Exception.cmm:370.1)
0x6e7220 stg_stop_thread_info (rts/StgStartup.cmm:42.1)

13.4 Implementor’s notes: DWARF annotations

Note: Most users don’t need to worry about the details described in this section. This
discussion is primarily targeted at tooling authors who need to interpret the GHC-specific
DWARF annotations contained in compiled binaries.

When invoked with the -g flag GHC will produce standard DWARF v4 debugging information.
This format is used by nearly all POSIX-compliant targets and can be used by debugging and
performance tools (e.g. gdb, lldb, and perf) to understand the structure of GHC-compiled
programs.
In particular GHC produces the following DWARF sections,
.debug_info Debug information entities (DIEs) describing all of the basic blocks in the com-

piled program.
.debug_line Line number information necessary to map instruction addresses to line num-

bers in the source program.
Note that the line information in this section is not nearly as rich as the information pro-
vided in .debug_info. Whereas .debug_line requires that each instruction is assigned
exactly one source location, the DIEs in .debug_info can be used to identify all relevant
sources locations.

.debug_frames Call frame information (CFI) necessary for stack unwinding to produce a call
stack trace.

.debug_arange Address range information necessary for efficient lookup in debug informa-
tion.

13.4.1 Debugging information entities

GHC may produce the following standard DIEs in the .debug_info section,

464 Chapter 13. Debugging compiled programs

http://dwarfstd.org/


GHC User’s Guide Documentation, Release 8.2.1.20171030

DW_TAG_compile_unit Represents a compilation unit (e.g. a Haskell module).
DW_TAG_subprogram Represents a C– top-level basic block.
DW_TAG_lexical_block Represents a C– basic block. Note that this is a slight departure from

the intended meaning of this DIE type as it does not necessarily reflect lexical scope in
the source program.

As GHC’s compilation products don’t map perfectly onto DWARF constructs, GHC takes ad-
vantage of the extensibility of the DWARF standard to provide additional information.
Unfortunately DWARF isn’t expressive enough to fully describe the code that GHC produces.
This is most apparent in the case of line information, where GHC is forced to choose some be-
tween a variety of possible originating source locations. This limits the usefulness of DWARF
information with traditional statistical profiling tools. For profiling it is recommended that
one use the extended debugging information. See the Profiling section below.
In addition to the usual DIEs specified by the DWARF specification, GHC produces a variety
of others using the vendor-extensibility regions of the tag and attribute space.

DW_TAG_ghc_src_note

DW_TAG_ghc_src_note DIEs (tag 0x5b01) are found as children of DW_TAG_lexical_block
DIEs. They describe source spans which gave rise to the block; formally these spans are
causally responsible for produced code: changes to code in the given span may change the
code within the block; conversely changes outside the span are guaranteed not to affect the
code in the block.
Spans are described with the following attributes,
DW_AT_ghc_span_file (0x2b00, string) the name of the source file
DW_AT_ghc_span_start_line (0x2b01, integer) the line number of the beginning of the

span
DW_AT_ghc_span_start_col (0x2b02, integer) the column number of the beginning of the

span
DW_AT_ghc_span_end_line (0x2b03, integer) the line number of the end of the span
DW_AT_ghc_span_end_col (0x2b04, integer) the column number of the end of the span

13.5 Further Reading

For more information about the debug information produced by GHC see Peter Wortmann’s
PhD thesis, *Profiling Optimized Haskell: Causal Analysis and Implementation*.

13.5. Further Reading 465

http://etheses.whiterose.ac.uk/8321/


GHC User’s Guide Documentation, Release 8.2.1.20171030

466 Chapter 13. Debugging compiled programs



CHAPTER

FOURTEEN

OTHER HASKELL UTILITY PROGRAMS

This section describes other program(s) which we distribute, that help with the Great Haskell
Programming Task.

14.1 “Yacc for Haskell”: happy

Andy Gill and SimonMarlow have written a parser-generator for Haskell, called happy. Happy
is to Haskell what Yacc is to C.
You can get happy from the Happy Homepage.
Happy is at its shining best when compiled by GHC.

14.2 Writing Haskell interfaces to C code: hsc2hs

The hsc2hs command can be used to automate some parts of the process of writing Haskell
bindings to C code. It reads an almost-Haskell source with embedded special constructs, and
outputs a real Haskell file with these constructs processed, based on information taken from
some C headers. The extra constructs deal with accessing C data from Haskell.
It may also output a C file which contains additional C functions to be linked into the program,
together with a C header that gets included into the C code to which the Haskell module will
be compiled (when compiled via C) and into the C file. These two files are created when the
#def construct is used (see below).
Actually hsc2hs does not output the Haskell file directly. It creates a C program that includes
the headers, gets automatically compiled and run. That program outputs the Haskell code.
In the following, “Haskell file” is the main output (usually a .hs file), “compiled Haskell file”
is the Haskell file after ghc has compiled it to C (i.e. a .hc file), “C program” is the program
that outputs the Haskell file, “C file” is the optionally generated C file, and “C header” is its
header file.

14.2.1 command line syntax

hsc2hs takes input files as arguments, and flags that modify its behavior:
-o FILE, --output=FILE Name of the Haskell file.
-t FILE, --template=FILE The template file (see below).
-c PROG, --cc=PROG The C compiler to use (default: gcc)

467

http://www.haskell.org/happy/


GHC User’s Guide Documentation, Release 8.2.1.20171030

-l PROG, --ld=PROG The linker to use (default: gcc).
-C FLAG, --cflag=FLAG An extra flag to pass to the C compiler.
-I DIR Passed to the C compiler.
-L FLAG, --lflag=FLAG An extra flag to pass to the linker.
-i FILE, --include=FILE As if the appropriate #include directive was placed in the source.
-D NAME[=VALUE], --define=NAME[=VALUE] As if the appropriate #define directive was

placed in the source.
--no-compile Stop after writing out the intermediate C program to disk. The file name for

the intermediate C program is the input file name with .hsc replaced with _hsc_make.c.
-k, --keep-files Proceed as normal, but do not delete any intermediate files.
-x, --cross-compile Activate cross-compilation mode (see Cross-compilation (page 470)).
--cross-safe Restrict the .hsc directives to those supported by the --cross-compile mode

(see Cross-compilation (page 470)). This should be useful if your .hsc files must be safely
cross-compiled and you wish to keep non-cross-compilable constructs from creeping into
them.

-?, --help Display a summary of the available flags and exit successfully.
-V, --version Output version information and exit successfully.
The input file should end with .hsc (it should be plain Haskell source only; literate Haskell is
not supported at the moment). Output files by default get names with the .hsc suffix replaced:
.hs Haskell file
_hsc.h C header
_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path to
HsFFI.h which is automatically included into the C program.

14.2.2 Input syntax

All special processing is triggered by the # operator. To output a literal #, write it twice: ##.
Inside string literals and comments # characters are not processed.
A # is followed by optional spaces and tabs, an alphanumeric keyword that describes the kind
of processing, and its arguments. Arguments look like C expressions separated by commas
(they are not written inside parens). They extend up to the nearest unmatched ), ] or },
or to the end of line if it occurs outside any () [] {} '' "" /**/ and is not preceded by a
backslash. Backslash-newline pairs are stripped.
In addition #{stuff} is equivalent to #stuff except that it’s self-delimited and thus needs not
to be placed at the end of line or in some brackets.
Meanings of specific keywords:
#include <file.h>, #include "file.h" The specified file gets included into the C program,

the compiled Haskell file, and the C header. <HsFFI.h> is included automatically.
#define ⟨name⟩, #define ⟨name ⟨value⟩, #undef ⟨name⟩ Similar to #include. Note that

#includes and #defines may be put in the same file twice so they should not assume
otherwise.

468 Chapter 14. Other Haskell utility programs



GHC User’s Guide Documentation, Release 8.2.1.20171030

#let ⟨name⟩ ⟨parameters⟩ = "⟨definition⟩" Defines amacro to be applied to the Haskell
source. Parameter names are comma-separated, not inside parens. Such macro is in-
voked as other #-constructs, starting with #name. The definition will be put in the C pro-
gram inside parens as arguments of printf. To refer to a parameter, close the quote,
put a parameter name and open the quote again, to let C string literals concatenate. Or
use printf‘s format directives. Values of arguments must be given as strings, unless the
macro stringifies them itself using the C preprocessor’s #parameter syntax.

#def ⟨C_definition⟩ The definition (of a function, variable, struct or typedef) is written to
the C file, and its prototype or extern declaration to the C header. Inline functions are
handled correctly. struct definitions and typedefs are written to the C program too. The
inline, struct or typedef keyword must come just after def.

#if ⟨condition⟩, #ifdef ⟨name⟩, #ifndef ⟨name⟩, #elif ⟨condition⟩, #else, #endif, #error ⟨message⟩, #warning ⟨message⟩
Conditional compilation directives are passed unmodified to the C program, C file, and
C header. Putting them in the C program means that appropriate parts of the Haskell
file will be skipped.

#const ⟨C_expression⟩ The expression must be convertible to long or unsigned long. Its
value (literal or negated literal) will be output.

#const_str ⟨C_expression⟩ The expression must be convertible to const char pointer. Its
value (string literal) will be output.

#type ⟨C_type⟩ A Haskell equivalent of the C numeric type will be output. It will be one of
{Int,Word}{8,16,32,64}, Float, Double, LDouble.

#peek ⟨struct_type⟩, ⟨field⟩ A function that peeks a field of a C struct will be output. It
will have the type Storable b => Ptr a -> IO b. The intention is that #peek and #poke
can be used for implementing the operations of class Storable for a given C struct (see
the Foreign.Storable module in the library documentation).

#poke ⟨struct_type⟩, ⟨field⟩ Similarly for poke. It will have the type Storable b =>
Ptr a -> b -> IO ().

#ptr ⟨struct_type⟩, ⟨field⟩ Makes a pointer to a field struct. It will have the type Ptr a
-> Ptr b.

#offset ⟨struct_type⟩, ⟨field⟩ Computes the offset, in bytes, of field in struct_type.
It will have type Int.

#size ⟨struct_type⟩ Computes the size, in bytes, of struct_type. It will have type Int.
#alignment ⟨struct_type⟩ Computes the alignment, in bytes, of struct_type. It will have

type Int.
#enum ⟨type⟩, ⟨constructor⟩, ⟨value⟩, ⟨value⟩, ... A shortcut for multiple defini-

tions which use #const. Each value is a name of a C integer constant, e.g. enumeration
value. The name will be translated to Haskell by making each letter following an un-
derscore uppercase, making all the rest lowercase, and removing underscores. You can
supply a different translation by writing hs_name = c_value instead of a value, in which
case c_valuemay be an arbitrary expression. The hs_name will be defined as having the
specified type. Its definition is the specified constructor (which in fact may be an ex-
pression or be empty) applied to the appropriate integer value. You can have multiple
#enum definitions with the same type; this construct does not emit the type definition
itself.

14.2. Writing Haskell interfaces to C code: hsc2hs 469



GHC User’s Guide Documentation, Release 8.2.1.20171030

14.2.3 Custom constructs

#const, #type, #peek, #poke and #ptr are not hardwired into the hsc2hs, but are defined
in a C template that is included in the C program: template-hsc.h. Custom constructs and
templates can be used too. Any #-construct with unknown key is expected to be handled by a
C template.
A C template should define a macro or function with name prefixed by hsc_ that handles the
construct by emitting the expansion to stdout. See template-hsc.h for examples.
Such macros can also be defined directly in the source. They are useful for making a #let-
like macro whose expansion uses other #let macros. Plain #let prepends hsc_ to the macro
name and wraps the definition in a printf call.

14.2.4 Cross-compilation

hsc2hs normally operates by creating, compiling, and running a C program. That approach
doesn’t work when cross-compiling — in this case, the C compiler’s generates code for the
target machine, not the host machine. For this situation, there’s a special mode hsc2hs --
cross-compile which can generate the .hs by extracting information from compilations only
— specifically, whether or not compilation fails.
Only a subset of .hsc syntax is supported by --cross-compile. The following are unsup-
ported:
• #{const_str}

• #{let}

• #{def}

• Custom constructs

470 Chapter 14. Other Haskell utility programs



CHAPTER

FIFTEEN

RUNNING GHC ON WIN32 SYSTEMS

15.1 Starting GHC on Windows platforms

The installer that installs GHC on Win32 also sets up the file-suffix associations for ”.hs” and
”.lhs” files so that double-clicking them starts ghci.
Be aware of that ghc and ghci do require filenames containing spaces to be escaped using
quotes:

c:\ghc\bin\ghci "c:\\Program Files\\Haskell\\Project.hs"

If the quotes are left off in the above command, ghci will interpret the filename as two,
c:\\\\Program and Files\\\\Haskell\\\\Project.hs.

15.2 Running GHCi on Windows

We recommend running GHCi in a standard Windows console: select the GHCi option from
the start menu item added by the GHC installer, or use Start->Run->cmd to get a Windows
console and invoke ghci from there (as long as it’s in your PATH).
If you run GHCi in a Cygwin orMSYS shell, then the Control-C behaviour is adversely affected.
In one of these environments you should use the ghcii.sh script to start GHCi, otherwise
when you hit Control-C you’ll be returned to the shell prompt but the GHCi process will still be
running. However, even using the ghcii.sh script, if you hit Control-C then the GHCi process
will be killed immediately, rather than letting you interrupt a running program inside GHCi as
it should. This problem is caused by the fact that the Cygwin and MSYS shell environments
don’t pass Control-C events to non-Cygwin child processes, because in order to do that there
needs to be a Windows console.
There’s an exception: you can use a Cygwin shell if the CYGWIN environment variable does not
contain tty. In this mode, the Cygwin shell behaves like a Windows console shell and console
events are propagated to child processes. Note that the CYGWIN environment variable must
be set before starting the Cygwin shell; changing it afterwards has no effect on the shell.
This problem doesn’t just affect GHCi, it affects any GHC-compiled program that wants to
catch console events. See the GHC.ConsoleHandler module.

471



GHC User’s Guide Documentation, Release 8.2.1.20171030

15.3 Interacting with the terminal

By default GHC builds applications that open a console window when they start. If you want
to build a GUI-only application, with no console window, use the flag -optl-mwindows in the
link step.

Warning: Windows GUI-only programs have no stdin, stdout or stderr so using the ordi-
nary Haskell input/output functions will cause your program to fail with an IO exception,
such as:

Fail: <stdout>: hPutChar: failed (Bad file descriptor)

However using Debug.Trace.trace is alright because it uses Windows debugging output
support rather than stderr.

For some reason, Mingw ships with the readline library, but not with the readline headers.
As a result, GHC (like Hugs) does not use readline for interactive input on Windows. You
can get a close simulation by using an emacs shell buffer!

15.4 Differences in library behaviour

Some of the standard Haskell libraries behave slightly differently on Windows.
• On Windows, the ^Z character is interpreted as an end-of-file character, so if you read a
file containing this character the file will appear to end just before it. To avoid this, use
IOExts.openFileEx to open a file in binary (untranslated) mode or change an already
opened file handle into binary mode using IOExts.hSetBinaryMode. The IOExtsmodule
is part of the lang package.

15.5 Using GHC (and other GHC-compiled executables)
with Cygwin

15.5.1 Background

The Cygwin tools aim to provide a Unix-style API on top of the windows libraries, to facilitate
ports of Unix software to windows. To this end, they introduce a Unix-style directory hierarchy
under some root directory (typically / is C:\cygwin\). Moreover, everything built against the
Cygwin API (including the Cygwin tools and programs compiled with Cygwin’s GHC) will see
/ as the root of their file system, happily pretending to work in a typical unix environment, and
finding things like /bin and /usr/include without ever explicitly bothering with their actual
location on the windows system (probably C:\cygwin\bin and C:\cygwin\usr\include).

15.5.2 The problem

GHC, by default, no longer depends on cygwin, but is a native Windows program. It is built
using mingw, and it uses mingw’s GHC while compiling your Haskell sources (even if you
call it from cygwin’s bash), but what matters here is that - just like any other normal windows
program - neither GHC nor the executables it produces are aware of Cygwin’s pretended unix
hierarchy. GHC will happily accept either / or \\ as path separators, but it won’t know where

472 Chapter 15. Running GHC on Win32 systems



GHC User’s Guide Documentation, Release 8.2.1.20171030

to find /home/joe/Main.hs or /bin/bash or the like. This causes all kinds of fun when GHC
is used from within Cygwin’s bash, or in make-sessions running under Cygwin.

15.5.3 Things to do

• Don’t use absolute paths in make, configure & co if there is any chance that those might
be passed to GHC (or to GHC-compiled programs). Relative paths are fine because cyg-
win tools are happy with them and GHC accepts / as path-separator. And relative paths
don’t depend on where Cygwin’s root directory is located, or on which partition or net-
work drive your source tree happens to reside, as long as you cd there first.

• If you have to use absolute paths (beware of the innocent-looking ROOT=$(pwd) in make-
file hierarchies or configure scripts), Cygwin provides a tool called cygpath that can
convert Cygwin’s Unix-style paths to their actual Windows-style counterparts. Many
Cygwin tools actually accept absolute Windows-style paths (remember, though, that you
either need to escape \\ or convert \\ to /), so you should be fine just using those ev-
erywhere. If you need to use tools that do some kind of path-mangling that depends on
unix-style paths (one fun example is trying to interpret : as a separator in path lists),
you can still try to convert paths using cygpath just before they are passed to GHC and
friends.

• If you don’t have cygpath, you probably don’t have cygwin and hence no problems with
it... unless you want to write one build process for several platforms. Again, relative
paths are your friend, but if you have to use absolute paths, and don’t want to use differ-
ent tools on different platforms, you can simply write a short Haskell program to print
the current directory (thanks to George Russell for this idea): compiled with GHC, this
will give you the view of the file system that GHC depends on (which will differ depend-
ing on whether GHC is compiled with cygwin’s gcc or mingw’s gcc or on a real Unix
system..) - that little program can also deal with escaping \\ in paths. Apart from the
banner and the startup time, something like this would also do:

$ echo "Directory.getCurrentDirectory >>= putStrLn . init . tail . show " | ghci

15.6 Building and using Win32 DLLs

Dynamic link libraries, Win32 DLLs, Win32 On Win32 platforms, the compiler is capable of
both producing and using dynamic link libraries (DLLs) containing ghc-compiled code. This
section shows you how to make use of this facility.
There are two distinct ways in which DLLs can be used:
• You can turn each Haskell package into a DLL, so that multiple Haskell executables using
the same packages can share the DLL files. (As opposed to linking the libraries stati-
cally, which in effect creates a new copy of the RTS and all libraries for each executable
produced.)
That is the same as the dynamic linking on other platforms, and it is described in Using
shared libraries (page 180).

• You can package up a complete Haskell program as a DLL, to be called by some external
(usually non-Haskell) program. This is usually used to implement plugins and the like,
and is described below.

15.6. Building and using Win32 DLLs 473



GHC User’s Guide Documentation, Release 8.2.1.20171030

15.6.1 Creating a DLL

Creating aWin32 DLL -shared Sealing up your Haskell library inside a DLL is straightforward;
compile up the object files that make up the library, and then build the DLL by issuing a
command of the form:

ghc -shared -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option -shared, it will build a DLL rather than produce
an executable. The DLL will consist of all the object files and archives given on the command
line.
A couple of things to notice:
• By default, the entry points of all the object files will be exported from the DLL when
using -shared. Should you want to constrain this, you can specify the module definition
file to use on the command line as follows:

ghc -shared -o .... MyDef.def

See Microsoft documentation for details, but a module definition file simply lists what
entry points you want to export. Here’s one that’s suitable when building a Haskell COM
server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the -shared option also creates an import library. The
import library name is derived from the name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool.dll.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-
existence of import libraries with ordinary static libraries (e.g., libHSfoo.a and libHS-
foo.dll.a. Additionally, when the compiler driver is linking in non-static mode, it will
rewrite occurrence of -lHSfoo on the command line to -lHSfoo.dll. By doing this for
you, switching from non-static to static linking is simply a question of adding -static to
your command line.

15.6.2 Making DLLs to be called from other languages

This section describes how to create DLLs to be called from other languages, such as Visual
Basic or C++. This is a special case of Making a Haskell library that can be called from
foreign code (page 442); we’ll deal with the DLL-specific issues that arise below. Here’s an
example:
Use foreign export declarations to export the Haskell functions you want to call from the
outside. For example:

-- Adder.hs
{-# LANGUAGE ForeignFunctionInterface #-}
module Adder where

adder :: Int -> Int -> IO Int -- gratuitous use of IO

474 Chapter 15. Running GHC on Win32 systems



GHC User’s Guide Documentation, Release 8.2.1.20171030

adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

Add some helper code that starts up and shuts down the Haskell RTS:

// StartEnd.c
#include <Rts.h>

void HsStart()
{

int argc = 1;
char* argv[] = {"ghcDll", NULL}; // argv must end with NULL

// Initialize Haskell runtime
char** args = argv;
hs_init(&argc, &args);

}

void HsEnd()
{

hs_exit();
}

Here, Adder is the name of the root module in the module tree (as mentioned above, there
must be a single root module, and hence a single module tree in the DLL). Compile everything
up:

ghc -c Adder.hs
ghc -c StartEnd.c
ghc -shared -o Adder.dll Adder.o Adder_stub.o StartEnd.o

Now the file Adder.dll can be used from other programming languages. Before calling any
functions in Adder it is necessary to call HsStart, and at the very end call HsEnd.

Warning: It may appear tempting to use DllMain to call hs_init/hs_exit, but this won’t
work (particularly if you compile with -threaded). There are severe restrictions on which
actions can be performed during DllMain, and hs_init violates these restrictions, which
can lead to your DLL freezing during startup (see Trac #3605).

Using from VBA

An example of using Adder.dll from VBA is:

Private Declare Function Adder Lib "Adder.dll" Alias "adder@8" _
(ByVal x As Long, ByVal y As Long) As Long

Private Declare Sub HsStart Lib "Adder.dll" ()
Private Declare Sub HsEnd Lib "Adder.dll" ()

Private Sub Document_Close()
HsEnd
End Sub

Private Sub Document_Open()
HsStart

15.6. Building and using Win32 DLLs 475

https://ghc.haskell.org/trac/ghc/ticket/3605


GHC User’s Guide Documentation, Release 8.2.1.20171030

End Sub

Public Sub Test()
MsgBox "12 + 5 = " & Adder(12, 5)
End Sub

This example uses the Document_Open/Close functions of Microsoft Word, but provided
HsStart is called before the first function, and HsEnd after the last, then it will work fine.

Using from C++

An example of using Adder.dll from C++ is:

// Tester.cpp
#include "HsFFI.h"
#include "Adder_stub.h"
#include <stdio.h>

extern "C" {
void HsStart();
void HsEnd();

}

int main()
{

HsStart();
// can now safely call functions from the DLL
printf("12 + 5 = %i\n", adder(12,5)) ;
HsEnd();
return 0;

}

This can be compiled and run with:

$ ghc -o tester Tester.cpp Adder.dll.a
$ tester
12 + 5 = 17

476 Chapter 15. Running GHC on Win32 systems



CHAPTER

SIXTEEN

KNOWN BUGS AND INFELICITIES

16.1 Haskell standards vs. Glasgow Haskell: language
non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98 and
Haskell 2010. See also the “when things go wrong” section (What to do when something
goes wrong (page 459)) for information about crashes, space leaks, and other undesirable
phenomena.
The limitations here are listed in Haskell Report order (roughly).

16.1.1 Divergence from Haskell 98 and Haskell 2010

By default, GHC mainly aims to behave (mostly) like a Haskell 2010 compiler, although you
can tell it to try to behave like a particular version of the language with the -XHaskell98 and
-XHaskell2010 flags. The known deviations from the standards are described below. Unless
otherwise stated, the deviation applies in Haskell 98, Haskell 2010 and the default modes.

Lexical syntax

• Certain lexical rules regarding qualified identifiers are slightly different in GHC com-
pared to the Haskell report. When you have ⟨module⟩.⟨reservedop⟩, such as M.\, GHC
will interpret it as a single qualified operator rather than the two lexemes M and .\.

Context-free syntax

• In Haskell 98 mode and by default (but not in Haskell 2010 mode), GHC is a little less
strict about the layout rule when used in do expressions. Specifically, the restriction that
“a nested context must be indented further to the right than the enclosing context” is
relaxed to allow the nested context to be at the same level as the enclosing context, if
the enclosing context is a do expression.
For example, the following code is accepted by GHC:

main = do args <- getArgs
if null args then return [] else do
ps <- mapM process args
mapM print ps

This behaviour is controlled by the NondecreasingIndentation extension.

477



GHC User’s Guide Documentation, Release 8.2.1.20171030

• GHC doesn’t do the fixity resolution in expressions during parsing as required by
Haskell 98 (but not by Haskell 2010). For example, according to the Haskell 98 report,
the following expression is legal:

let x = 42 in x == 42 == True

and parses as:

(let x = 42 in x == 42) == True

because according to the report, the let expression “extends as far to the right as possi-
ble”. Since it can’t extend past the second equals sign without causing a parse error (==
is non-fix), the let-expression must terminate there. GHC simply gobbles up the whole
expression, parsing like this:

(let x = 42 in x == 42 == True)

• The Haskell Report allows you to put a unary - preceding certain expressions headed by
keywords, allowing constructs like - case x of ... or - do { ... }. GHC does not
allow this. Instead, unary - is allowed before only expressions that could potentially be
applied as a function.

Expressions and patterns

In its default mode, GHC makes some programs slightly more defined than they should be.
For example, consider

f :: [a] -> b -> b
f [] = error "urk"
f (x:xs) = \v -> v

main = print (f [] `seq` True)

This should call error but actually prints True. Reason: GHC eta-expands f to

f :: [a] -> b -> b
f [] v = error "urk"
f (x:xs) v = v

This improves efficiency slightly but significantly for most programs, and is bad for only a
few. To suppress this bogus “optimisation” use -fpedantic-bottoms.

Declarations and bindings

In its default mode, GHC does not accept datatype contexts, as it has been decided to remove
them from the next version of the language standard. This behaviour can be controlled with
the DatatypeContexts extension. See Data type contexts (page 247).

Typechecking of recursive binding groups

The Haskell Report specifies that a group of bindings (at top level, or in a let or where) should
be sorted into strongly-connected components, and then type-checked in dependency order
(Haskell Report, Section 4.5.1). As each group is type-checked, any binders of the group that
have an explicit type signature are put in the type environment with the specified polymorphic

478 Chapter 16. Known bugs and infelicities

http://www.haskell.org/onlinereport/decls.html#sect4.5.1


GHC User’s Guide Documentation, Release 8.2.1.20171030

type, and all others are monomorphic until the group is generalised (Haskell Report, Section
4.5.2).
Following a suggestion ofMark Jones, in his paper TypingHaskell in Haskell, GHC implements
a more general scheme. In GHC the dependency analysis ignores references to variables
that have an explicit type signature. As a result of this refined dependency analysis, the
dependency groups are smaller, and more bindings will typecheck. For example, consider:

f :: Eq a => a -> Bool
f x = (x == x) || g True || g "Yes"

g y = (y <= y) || f True

This is rejected by Haskell 98, but under Jones’s scheme the definition for g is typechecked
first, separately from that for f, because the reference to f in g‘s right hand side is ignored
by the dependency analysis. Then g‘s type is generalised, to get

g :: Ord a => a -> Bool

Now, the definition for f is typechecked, with this type for g in the type environment.
The same refined dependency analysis also allows the type signatures of mutually-recursive
functions to have different contexts, something that is illegal in Haskell 98 (Section 4.5.2,
last sentence). GHC only insists that the type signatures of a refined group have identical
type signatures; in practice this means that only variables bound by the same pattern binding
must have the same context. For example, this is fine:

f :: Eq a => a -> Bool
f x = (x == x) || g True

g :: Ord a => a -> Bool
g y = (y <= y) || f True

Module system and interface files

GHC requires the use of hs-boot files to cut the recursive loops among mutually recursive
modules as described in How to compile mutually recursive modules (page 141). This more
of an infelicity than a bug: the Haskell Report says (Section 5.7)

“Depending on the Haskell implementation used, separate compilation of mutually
recursive modules may require that imported modules contain additional informa-
tion so that they may be referenced before they are compiled. Explicit type signa-
tures for all exported values may be necessary to deal with mutual recursion. The
precise details of separate compilation are not defined by this Report.”

Numbers, basic types, and built-in classes

Num superclasses The Num class does not have Show or Eq superclasses.
You can make code that works with both Haskell98/Haskell2010 and GHC by:
• Whenever you make a Num instance of a type, also make Show and Eq in-

stances, and
• Whenever you give a function, instance or class a Num t constraint, also give

it Show t and Eq t constraints.

16.1. Haskell standards vs. Glasgow Haskell: language non-compliance 479

http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://citeseer.ist.psu.edu/424440.html
http://haskell.org/onlinereport/modules.html#sect5.7


GHC User’s Guide Documentation, Release 8.2.1.20171030

Bits superclass The Bits class does not have a Num superclass. It therefore does not have
default methods for the bit, testBit and popCount methods.
You can make code that works with both Haskell 2010 and GHC by:
• Whenever you make a Bits instance of a type, also make a Num instance, and
• Whenever you give a function, instance or class a Bits t constraint, also give

it a Num t constraint, and
• Always define the bit, testBit and popCount methods in Bits instances.

Read class methods The Read class has two extra methods, readPrec and readListPrec,
that are not found in the Haskell 2010 since they rely on the ReadPrec data type, which
requires the -XRankNTypes (page 357) extension. GHC also derives Read instances by
implementing readPrec instead of readsPrec, and relies on a default implementation
of readsPrec that is defined in terms of readPrec. GHC adds these two extra methods
simply because ReadPrec is more efficient than ReadS (the type on which readsPrec is
based).

Monad superclass The Monad class has an Applicative superclass. You cannot write Monad
instances that work for GHC and also for a Haskell 2010 implementation that does not
define Applicative.

Extra instances The following extra instances are defined:

instance Functor ((->) r)
instance Monad ((->) r)
instance Functor ((,) a)
instance Functor (Either a)
instance Monad (Either e)

Multiply-defined array elements not checked This code fragment should elicit a fatal er-
ror, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

GHC’s implementation of array takes the value of an array slot from the last (in-
dex,value) pair in the list, and does no checking for duplicates. The reason for this
is efficiency, pure and simple.

In Prelude support

Arbitrary-sized tuples Tuples are currently limited to size 100. However, standard in-
stances for tuples (Eq, Ord, Bounded, Ix, Read, and Show) are available only up to 16-
tuples.
This limitation is easily subvertible, so please ask if you get stuck on it.

splitAt semantics Data.List.splitAt is more strict than specified in the Report. Specifi-
cally, the Report specifies that

splitAt n xs = (take n xs, drop n xs)

which implies that

splitAt undefined undefined = (undefined, undefined)

but GHC’s implementation is strict in its first argument, so

480 Chapter 16. Known bugs and infelicities



GHC User’s Guide Documentation, Release 8.2.1.20171030

splitAt undefined [] = undefined

Showing records The Haskell 2010 definition of Show stipulates that the rendered string
should only include parentheses which are necessary to unambiguously parse the re-
sult. For historical reasons, Show instances derived by GHC include parentheses around
records despite the fact that record syntax binds more tightly than function application;
e.g.,

data Hello = Hello { aField :: Int } deriving (Show)

-- GHC produces...
show (Just (Hello {aField=42})) == "Just (Hello {aField=42})"

-- whereas Haskell 2010 calls for...
show (Just (Hello {aField=42})) == "Just Hello {aField=42}"

Reading integers GHC’s implementation of the Read class for integral types accepts hex-
adecimal and octal literals (the code in the Haskell 98 report doesn’t). So, for example,

read "0xf00" :: Int

works in GHC.
A possible reason for this is that readLitChar accepts hex and octal escapes, so it seems
inconsistent not to do so for integers too.

isAlpha The Haskell 98 definition of isAlpha is:

isAlpha c = isUpper c || isLower c

GHC’s implementation diverges from the Haskell 98 definition in the sense that Unicode
alphabetic characters which are neither upper nor lower case will still be identified as
alphabetic by isAlpha.

hGetContents Lazy I/O throws an exception if an error is encountered, in contrast to the
Haskell 98 spec which requires that errors are discarded (see Section 21.2.2 of the
Haskell 98 report). The exception thrown is the usual IO exception that would be thrown
if the failing IO operation was performed in the IO monad, and can be caught by Sys-
tem.IO.Error.catch or Control.Exception.catch.

The Foreign Function Interface

hs_init(), hs_exit() The FFI spec requires the implementation to support re-initialising
itself after being shut down with hs_exit(), but GHC does not currently support that.
See Trac #13693.

16.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010

This section documents GHC’s take on various issues that are left undefined or implementa-
tion specific in Haskell 98.
Char Following the ISO-10646 standard, maxBound :: Char in GHC is 0x10FFFF.
Int In GHC the Int type follows the size of an address on the host architecture; in other

words it holds 32 bits on a 32-bit machine, and 64-bits on a 64-bit machine.

16.1. Haskell standards vs. Glasgow Haskell: language non-compliance 481

https://ghc.haskell.org/trac/ghc/ticket/13693


GHC User’s Guide Documentation, Release 8.2.1.20171030

Arithmetic on Int is unchecked for overflowoverflowInt, so all operations on Int happen
modulo 2⟨n⟩ where ⟨n⟩ is the size in bits of the Int type.
The fromInteger (and hence also fromIntegral) is a special case when converting to
Int. The value of fromIntegral x :: Int is given by taking the lower ⟨n⟩ bits of (abs
x), multiplied by the sign of x (in 2’s complement ⟨n⟩-bit arithmetic). This behaviour was
chosen so that for example writing 0xffffffff :: Int preserves the bit-pattern in the
resulting Int.
Negative literals, such as -3, are specified by (a careful reading of) the Haskell Re-
port as meaning Prelude.negate (Prelude.fromInteger 3). So -2147483648 means
negate (fromInteger 2147483648). Since fromInteger takes the lower 32 bits of
the representation, fromInteger (2147483648::Integer), computed at type Int is -
2147483648::Int. The negate operation then overflows, but it is unchecked, so negate
(-2147483648::Int) is just -2147483648. In short, one can write minBound::Int as a
literal with the expected meaning (but that is not in general guaranteed).
The fromIntegral function also preserves bit-patterns when converting between the
sized integral types (Int8, Int16, Int32, Int64 and the unsigned Word variants), see the
modules Data.Int and Data.Word in the library documentation.

Unchecked floating-point arithmetic Operations on Float and Double numbers are
unchecked for overflow, underflow, and other sad occurrences. (note, however,
that some architectures trap floating-point overflow and loss-of-precision and report a
floating-point exception, probably terminating the program)

16.2 Known bugs or infelicities

The bug tracker lists bugs that have been reported in GHC but not yet fixed: see the GHC
Trac. In addition to those, GHC also has the following known bugs or infelicities. These bugs
are more permanent; it is unlikely that any of them will be fixed in the short term.

16.2.1 Bugs in GHC

• GHC’s runtime system implements cooperative multitasking, with context switching po-
tentially occurring only when a program allocates. This means that programs that do not
allocate may never context switch. This is especially true of programs using STM, which
may deadlock after observing inconsistent state. See Trac #367 for further discussion.
If you are hit by this, you may want to compile the affected module with -fno-omit-
yields (page 94) (see -f*: platform-independent flags (page 89)). This flag ensures that
yield points are inserted at every function entrypoint (at the expense of a bit of perfor-
mance).

• GHC does not allow you to have a data type with a context that mentions type variables
that are not data type parameters. For example:

data C a b => T a = MkT a

so that MkT‘s type is

MkT :: forall a b. C a b => a -> T a

In principle, with a suitable class declaration with a functional dependency, it’s possible
that this type is not ambiguous; but GHC nevertheless rejects it. The type variables

482 Chapter 16. Known bugs and infelicities

http://ghc.haskell.org/trac/ghc/
http://ghc.haskell.org/trac/ghc/
https://ghc.haskell.org/trac/ghc/ticket/367


GHC User’s Guide Documentation, Release 8.2.1.20171030

mentioned in the context of the data type declarationmust be among the type parameters
of the data type.

• GHC’s inliner can be persuaded into non-termination using the standard way to encode
recursion via a data type:

data U = MkU (U -> Bool)

russel :: U -> Bool
russel u@(MkU p) = not $ p u

x :: Bool
x = russel (MkU russel)

The non-termination is reported like this:

ghc: panic! (the 'impossible' happened)
(GHC version 8.2.1 for x86_64-unknown-linux):

Simplifier ticks exhausted
When trying UnfoldingDone x_alB
To increase the limit, use -fsimpl-tick-factor=N (default 100)

with the panic being reported no matter how high a -fsimpl-tick-factor you supply.
We have never found another class of programs, other than this contrived one, that
makes GHC diverge, and fixing the problem would impose an extra overhead on every
compilation. So the bug remains un-fixed. There is more background in Secrets of the
GHC inliner.

• On 32-bit x86 platforms when using the native code generator, the -fexcess-precision
(page 91) option is always on. This means that floating-point calculations are non-
deterministic, because depending on how the program is compiled (optimisation set-
tings, for example), certain calculations might be done at 80-bit precision instead of the
intended 32-bit or 64-bit precision. Floating-point results may differ when optimisation
is turned on. In the worst case, referential transparency is violated, because for example
let x = E1 in E2 can evaluate to a different value than E2[E1/x].
One workaround is to use the -msse2 (page 75) option (see Platform-specific Flags
(page 75)), which generates code to use the SSE2 instruction set instead of the x87
instruction set. SSE2 code uses the correct precision for all floating-point operations,
and so gives deterministic results. However, note that this only works with processors
that support SSE2 (Intel Pentium 4 or AMD Athlon 64 and later), which is why the option
is not enabled by default. The libraries that come with GHC are probably built without
this option, unless you built GHC yourself.

• The state hack optimization can result in non-obvious changes in evaluation ordering
which may hide exceptions, even with -fpedantic-bottoms (page 94) (see, e.g., Trac
#7411). For instance,

import Control.Exception
import Control.DeepSeq
main = do

evaluate (('a' : undefined) `deepseq` return () :: IO ())
putStrLn "Hello"

Compiling this program with -O results in Hello to be printed, despite the fact that
evaluate should have bottomed. Compiling with -O -fno-state-hack results in the
exception one would expect.

16.2. Known bugs or infelicities 483

http://research.microsoft.com/~simonpj/Papers/inlining/
http://research.microsoft.com/~simonpj/Papers/inlining/
https://ghc.haskell.org/trac/ghc/ticket/7411
https://ghc.haskell.org/trac/ghc/ticket/7411


GHC User’s Guide Documentation, Release 8.2.1.20171030

• Programs compiled with -fdefer-type-errors (page 78) may fail a bit more eagerly
than one might expect. For instance,

{-# OPTIONS_GHC -fdefer-type-errors #-}
main = do
putStrLn "Hi there."
putStrLn True

Will emit no output, despite the fact that the ill-typed term appears after the well-typed
putStrLn "Hi there.". See Trac #11197.

• Despite appearances * and Constraint aren’t really distinct kinds in the compiler’s inter-
nal representation and can be unified producing unexpected results. See Trac #11715
for one example.

• Because of a toolchain limitation we are unable to support full Unicode paths on Win-
dows. On Windows we support up to Latin-1. See Trac #12971 for more.

16.2.2 Bugs in GHCi (the interactive GHC)

• GHCi does not respect the default declaration in the module whose scope you are in.
Instead, for expressions typed at the command line, you always get the default default-
type behaviour; that is, default(Int,Double).
It would be better for GHCi to record what the default settings in each module are, and
use those of the ‘current’ module (whatever that is).

• On Windows, there’s a GNU ld/BFD bug whereby it emits bogus PE object files that have
more than 0xffff relocations. When GHCi tries to load a package affected by this bug,
you get an error message of the form

Loading package javavm ... linking ... WARNING: Overflown relocation field (# relocs found: 30765)

The last time we looked, this bug still wasn’t fixed in the BFD codebase, and there wasn’t
any noticeable interest in fixing it when we reported the bug back in 2001 or so.
The workaround is to split up the .o files that make up your package into two or more
.o’s, along the lines of how the base package does it.

484 Chapter 16. Known bugs and infelicities

https://ghc.haskell.org/trac/ghc/ticket/11197
https://ghc.haskell.org/trac/ghc/ticket/11715
https://ghc.haskell.org/trac/ghc/ticket/12971


CHAPTER

SEVENTEEN

EVENTLOG ENCODINGS

This section documents the encodings of the events emitted to GHC’s event log (page 132).
These events can include information about the thread scheduling events, garbage collection
statistics, profiling information, user-defined tracing events.
This section is intended for implementors of tooling which consume these events.

17.1 Heap profiler event log output

The heap profiler can produce output to GHC’s event log, allowing samples to be correlated
with other event log events over the program’s lifecycle.
This section defines the layout of these events. The String type below is defined to be a
UTF-8 encoded NUL-terminated string.

17.1.1 Metadata event types

Beginning of sample stream

A single fixed-width event emitted during program start-up describing the samples that follow.
• EVENT_HEAP_PROF_BEGIN * Word8: Profile ID * Word64: Sampling period in nanoseconds
* Word32: Sample break-down type. One of,
– HEAP_PROF_BREAKDOWN_COST_CENTER (output from -hc (page 198))
– HEAP_PROF_BREAKDOWN_CLOSURE_DESCR (output from -hd (page 198))
– HEAP_PROF_BREAKDOWN_RETAINER (output from -hr (page 199))
– HEAP_PROF_BREAKDOWN_MODULE (output from -hm (page 198))
– HEAP_PROF_BREAKDOWN_TYPE_DESCR (output from -hy (page 199))
– HEAP_PROF_BREAKDOWN_BIOGRAPHY (output from -hb (page 199))
– HEAP_PROF_BREAKDOWN_CLOSURE_TYPE (output from -hT (page 131))
– String: Module filter
– String: Closure description filter
– String: Type description filter
– String: Cost centre filter
– String: Cost centre stack filter

485



GHC User’s Guide Documentation, Release 8.2.1.20171030

– String: Retainer filter
– String: Biography filter

Cost centre definitions

A variable-length packet produced once for each cost centre,
• EVENT_HEAP_PROF_COST_CENTRE * Word32: cost centre number * String: label * String:
module * String: source location * Word8: flags
– bit 0: is the cost-centre a CAF?

17.1.2 Sample event types

A sample (consisting of a list of break-down classes, e.g. cost centres, and heap residency
sizes), is to be encoded in the body of one or more events.
We mark the beginning of a new sample with an EVENT_HEAP_PROF_SAMPLE_BEGIN event,
• EVENT_HEAP_PROF_SAMPLE_BEGIN * Word64: sample number

A heap residency census will follow. Since events may only be up to 2^16^ bytes in length
a single sample may need to be split among multiple EVENT_HEAP_PROF_SAMPLE events. The
precise format of the census entries is determined by the break-down type.

Cost-centre break-down

A variable-length packet encoding a heap profile sample broken down by,
• cost-centre (-hc)
• EVENT_HEAP_PROF_SAMPLE_COST_CENTRE * Word8: Profile ID * Word64: heap resi-
dency in bytes * Word8: stack depth * Word32[]: cost centre stack starting with
inner-most (cost centre numbers)

String break-down

A variable-length event encoding a heap sample broken down by,
• type description (-hy)
• closure description (-hd)
• module (-hm)
• EVENT_HEAP_PROF_SAMPLE_STRING * Word8: Profile ID * Word64: heap residency in
bytes * String: type or closure description, or module name

486 Chapter 17. Eventlog encodings



CHAPTER

EIGHTEEN

CARE AND FEEDING OF YOUR GHC USER’S GUIDE

The GHC User’s Guide is the primary reference documentation for the Glasgow Haskell Com-
piler. Even more than this, it at times serves (for better or for worse) as a de-facto language
standard, being the sole non-academic reference for many widely used language extensions.
Since GHC 8.0, the User’s Guide is authored in ReStructuredText (or ReST or RST, for short)
a rich but light-weight mark-up language aimed at producing documentation. The Sphinx tool
is used to produce the final PDF and HTML documentation.
This document (also written in ReST) serves as a brief introducion to ReST and to document
the conventions used in the User’s Guide. This document is not intended to be a thorough
guide to ReST. For this see the resources referenced below (page 493).

18.1 Basics

Unicode characters are allowed in the document.
The basic syntax works largely as one would expect. For instance,

This is a paragraph containing a few sentences of text. Purple turtles walk
through green fields of lofty maize. Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Some lists,

1. This is a list item

a. Followed by a sub-item
b. And another!
c. Now with ``a bit of code`` and some *emphasis*.

2. Back to the first list

Or perhaps you are more of a bullet list person,

* Foo
* Fizzle

- Bar
- Blah

Or perhaps a definition list is in order,

*Chelonii*
The taxonomic order consisting of modern turtles

487

https://en.wikipedia.org/wiki/ReStructuredText
http://sphinx-doc.org/


GHC User’s Guide Documentation, Release 8.2.1.20171030

*Meiolaniidae*
The taxonomic order of an extinct variety of herbivorous turtles.

Note the blank lines between a list item and its sub-items. Sub-items should be on the same in-
dentation level as the content of their parent items. Also note that no whitespace is necessary
or desirable before the bullet or item number (lest the list be indented unnecessarily).
The above would be rendered as,

This is a paragraph containing a few sentences of text. Purple turtles walk through
green fields of lofty maize. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Some lists,
1. This is a list item
(a) Followed by a sub-item
(b) And another!
(c) Now with a bit of code and some emphasis.

2. Back to the first list
Or perhaps you are more of a bullet list person,
• Foo
• Fizzle

– Bar
– Blah

Or perhaps a definition list is in order,
Chelonii The taxonomic order consisting of modern turtles
Meiolaniidae The taxonomic order of an extinct variety of herbivorous turtles.

18.1.1 Headings

While ReST can accommodate a wide range of heading styles, we have standardized on this
convention in the User’s Guide,

Header level 1
==============

Header level 2
--------------

Header level 3
~~~~~~~~~~~~~~

Header level 4
^^^^^^^^^^^^^^

488 Chapter 18. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 8.2.1.20171030

18.1.2 Formatting code

Haskell

Code snippets can be included as both inline and block elements. Inline code is denoted with
double-backticks whereas block of code are introduced by ending a paragraph with double-
colons and indentation,

The ``fib`` function is defined as, ::

fib :: Integer -> Integer
fib 1 = 1
fib n = n * fib (n - 1)

Which would be rendered as,
The fib function is defined as,

fib :: Integer -> Integer
fib 1 = 1
fib n = n * fib (n - 1)

Other languages

Double-colon blocks are syntax-highlighted as Haskell by default. To avoid this use a .. code-
block directive with explicit language designation,

This is a simple shell script,

.. code-block:: sh

#!/bin/bash
echo "Hello World!"

18.1.3 Links

Within the User’s Guide

Frequently we want to give a name to a section so it can be referred to from other points in
the document,

.. _options-platform:

Platform-specific Flags
-----------------------

There are lots of platform-specific flags.

Some other section
-------------------

GHC supports a variety of :ref:`x86 specific features <options-platform>`.

See :ref:`options-platform` for details.

18.1. Basics 489

http://sphinx-doc.org/markup/code.html#directive-code-block


GHC User’s Guide Documentation, Release 8.2.1.20171030

To GHC Trac resources

There are special macros for conveniently linking to GHC Trac Wiki articles and tickets,

See :ghc-wiki:`Commentary/Latedmd` for details on demand analysis.

See the :ghc-wiki:`coding style <Commentary/CodingStyle>` for guidelines.

See the :ghc-ticket:`123` for further discussion.

See the :ghc-ticket:`this bug <123>` for what happens when this fails.

To external resources

External links can be written in either of these ways,

See the `GHC Wiki <http://ghc.haskell.org/wiki>`_ for details.

See the `GHC Wiki`_ for details.

.. _GHC Wiki: http://ghc.haskell.org/wiki

To core library Haddock documentation

It is often useful to be able to refer to the Haddock documention of the libraries shipped with
GHC. The users guide’s build system provides commands for referring to documentation for
the following core GHC packages,
• base: :base-ref:
• cabal: :cabal-ref:
• ghc-prim: :ghc-prim-ref:

These are defined in docs/users_guide/ghc_config.py.in.
For instance,

See the documentation for :base-ref:`Control.Applicative <Control-Applicative.html>`
for details.

Math

You can insert type-set equations using :math:. For instance,

Fick's law of diffusion, :math:`J = -D \frac{d \varphi}{d x}`, ...

will render as,
Fick’s law of diffusion, J = −D dφ

dx , ...

18.1.4 Index entries

Index entries can be included anywhere in the document as a block element. They look like,

490 Chapter 18. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 8.2.1.20171030

Here is some discussion on the Strict Haskell extension.

.. index::
single: strict haskell
single: language extensions; StrictData

This would produce two entries in the index referring to the “Strict Haskell” section. One
would be a simple “strict haskell” heading whereas the other would be a “StrictData” sub-
heading under “language extensions”.
Sadly it is not possible to use inline elements (e.g. monotype inlines) inside index headings.

18.2 Citations

Citations can be marked-up like this,

See the original paper [Doe2008]_

.. [Doe2008] John Doe and Leslie Conway.
"This is the title of our paper" (2008)

18.3 Admonitions

Admonitions are block elements used to draw the readers attention to a point. They should
not be over-used for the sake of readability but they can be quite effective in separating and
drawing attention to points of importance,

.. important::

Be friendly and supportive to your fellow contributors.

Would be rendered as,

Important: Be friendly and supportive to your fellow contributors.

There are a number of admonitions types,
• attention
• caution
• danger
• error
• hint
• important
• note
• tip
• warning

18.2. Citations 491

http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions


GHC User’s Guide Documentation, Release 8.2.1.20171030

18.4 Documenting command-line options and GHCi com-
mands

conf.py defines a few Sphinx object types for GHCi commands (ghci-cmd), ghc command-
line options (ghc-flag), and runtime :system options (rts-flag),

18.4.1 Command-line options

The ghc-flag and rts-flag roles/directives can be used to document command-line argu-
ments to the ghc executable and runtime system, respectively. For instance,

.. rts-flag:: -C ⟨seconds⟩

:default: 20 milliseconds

Sets the context switch interval to ⟨s⟩ seconds.

Will be rendered as,
-C ⟨seconds⟩

Default 20 milliseconds
Sets the context switch interval to ⟨s⟩ seconds.

and will have an associated index entry generated automatically. Note that, as in Style Con-
ventions below, we use ⟨⟩ instead of less-than/greater-than signs. To reference a ghc-flag
or rts-flag, you must match the definition exactly, including the arguments. A quick way to
find the exact names and special characters is,

$ git grep -- "flag:: -o "

which will generate the appropriate,

separate_compilation.rst:.. ghc-flag:: -o ⟨file⟩

18.4.2 GHCi commands

The ghci-cmd role and directive can be used to document GHCi directives. For instance, we
can describe the GHCi :module command,

.. ghci-cmd:: :module; [*]⟨file⟩

Load a module

which will be rendered as,
:module [*]⟨file⟩

Load a module
And later refer to it by just the command name, :module,

The GHCi :ghci-cmd:`:load` and :ghci-cmd:`:module` commands are used
to modify the modules in scope.

Like command-line options, GHCi commands will have associated index entries generated
automatically.

492 Chapter 18. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 8.2.1.20171030

18.5 Style Conventions

When describing user commands and the like it is common to need to denote user-
substitutable tokens. In this document we use the convention, ⟨subst⟩ (note that these are
angle brackets, U+27E8 and U+27E9, not less-than/greater-than signs).

18.6 GHC command-line options reference

The tabular nature of GHC flags reference (flags.rst) makes it very difficult to maintain as
ReST. For this reason it is generated by utils/mkUserGuidePart. Any command-line options
added to GHC should be added to the appropriate file in utils/mkUserGuidePart/Options.

18.7 ReST reference materials

• Sphinx ReST Primer: A great place to start.
• Sphinx extensions: How Sphinx extends ReST
• ReST reference: When you really need the details.
• Directives reference

18.5. Style Conventions 493

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html#code


GHC User’s Guide Documentation, Release 8.2.1.20171030

494 Chapter 18. Care and feeding of your GHC User’s Guide



CHAPTER

NINETEEN

INDICES AND TABLES

• genindex
• search

495



GHC User’s Guide Documentation, Release 8.2.1.20171030

496 Chapter 19. Indices and tables



BIBLIOGRAPHY

[Jones2000] “Type Classes with Functional Dependencies”, Mark P. Jones, In Proceedings
of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany, March
2000, Springer-Verlag LNCS 1782, .

[AssocDataTypes2005] “Associated Types with Class”, M. Chakravarty, G. Keller, S. Peyton
Jones, and S. Marlow. In Proceedings of “The 32nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL‘05)”, pages 1-13, ACM Press,
2005)

[AssocTypeSyn2005] “Type Associated Type Synonyms”. M. Chakravarty, G. Keller, and S.
Peyton Jones. In Proceedings of “The Tenth ACM SIGPLAN International Conference on
Functional Programming”, ACM Press, pages 241-253, 2005).

[TypeFamilies2008] “Type Checking with Open Type Functions”, T. Schrijvers, S. Peyton-
Jones, M. Chakravarty, and M. Sulzmann, in Proceedings of “ICFP 2008: The 13th ACM
SIGPLAN International Conference on Functional Programming”, ACM Press, pages 51-
62, 2008.

[Lewis2000] “Implicit parameters: dynamic scoping with static types”, J Lewis, MB Shields,
E Meijer, J Launchbury, 27th ACM Symposium on Principles of Programming Languages
(POPL‘00), Boston, Jan 2000.

[Generics2010] Jose Pedro Magalhaes, Atze Dijkstra, Johan Jeuring, and Andres Loeh. A
generic deriving mechanism for Haskell. Proceedings of the third ACM Haskell sympo-
sium on Haskell (Haskell‘2010), pp. 37-48, ACM, 2010.

497

http://citeseer.ist.psu.edu/jones00type.html
http://www.cse.unsw.edu.au/~chak/papers/CKPM05.html
http://www.cse.unsw.edu.au/~chak/papers/CKP05.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html
http://dreixel.net/research/pdf/gdmh.pdf
http://dreixel.net/research/pdf/gdmh.pdf


GHC User’s Guide Documentation, Release 8.2.1.20171030

498 Bibliography



INDEX

+RTS, 121
+t option

in GHCi, 25
–RTS, 121
–exclude-module=⟨file⟩

GHC option, 150
–force

ghc-pkg option, 163
–frontend ⟨module⟩

GHC option, 68
–global

ghc-pkg option, 163
–help

GHC option, 68
ghc-pkg option, 163

–info
GHC option, 69
RTS option, 134

–install-signal-handlers=⟨yes|no⟩
RTS option, 122

–interactive, 44
GHC option, 68

–ipid
ghc-pkg option, 163

–machine-readable
RTS option, 129

–make
GHC option, 68
mode of GHC, 69

–mk-dll
GHC option, 68

–numa
RTS option, 128

–numa=<mask>
RTS option, 128

–numeric-version
GHC option, 69

–package-key
ghc-pkg option, 163

–print-libdir
GHC option, 69

–show-iface ⟨file⟩

GHC option, 68, 140
–show-options

GHC option, 68
–supported-extensions

GHC option, 68
–supported-languages

GHC option, 68
–user

ghc-pkg option, 163
–verbose

ghc-pkg option, 163
–version

GHC option, 69
ghc-pkg option, 163

-?
GHC option, 68
ghc-pkg option, 163
hp2ps command line option, 203

-A ⟨size⟩
RTS option, 123

-AL ⟨size⟩
RTS option, 123

-A⟨size⟩
RTS option, 213

-B
RTS option, 133

-C, 70
GHC option, 68

-C ⟨s⟩
RTS option, 99

-D ⟨x⟩
RTS option, 133

-D⟨symbol⟩[=⟨value⟩]
GHC option, 171

-E, 70
GHC option, 68

-F
GHC option, 174

-F ⟨factor⟩
RTS option, 125

-G RTS option, 217
-G ⟨generations⟩

499



GHC User’s Guide Documentation, Release 8.2.1.20171030

RTS option, 125
-H

RTS option, 213
-H [⟨size⟩]

RTS option, 126
-H ⟨size⟩

GHC option, 75
-I ⟨seconds⟩

RTS option, 126
-I⟨dir⟩

GHC option, 171
-K ⟨size⟩

RTS option, 127
-L ⟨dir⟩

GHC option, 176
-L ⟨num⟩

RTS option, 200
-L ⟨n⟩

RTS option, 132
-M

GHC option, 68
-M ⟨size⟩

RTS option, 127
-Mgrace=⟨size⟩

RTS option, 128
-N ⟨x⟩

RTS option, 100
-O

GHC option, 89
-O ⟨size⟩

RTS option, 124
-O0

GHC option, 89
-O1

GHC option, 89
-O2

GHC option, 89
-Odph

GHC option, 89
-P

RTS option, 194
-R ⟨size⟩

RTS option, 200
-RTS, 121
-Rghc-timing

GHC option, 75
-S, 70

GHC option, 68
-S RTS option, 217
-S [⟨file⟩]

RTS option, 129
-T

RTS option, 129
-U⟨symbol⟩

GHC option, 171
-V

GHC option, 69
ghc-pkg option, 163

-V ⟨secs⟩
RTS option, 194

-W
GHC option, 76

-Wall
GHC option, 76

-Wall-missed-specialisations
GHC option, 78

-Wamp
GHC option, 79

-Wcompat
GHC option, 77

-Wcpp-undef
GHC option, 88

-Wdeferred-out-of-scope-variables
GHC option, 78

-Wdeprecated-flags
GHC option, 80

-Wdeprecations
GHC option, 79

-Wdodgy-exports
GHC option, 80

-Wdodgy-foreign-imports
GHC option, 80

-Wdodgy-imports
GHC option, 81

-Wduplicate-constraints
GHC option, 81

-Wduplicate-exports
GHC option, 82

-Wempty-enumerations
GHC option, 81

-Werror
GHC option, 77

-Whi-shadowing
GHC option, 82

-Widentities
GHC option, 82

-Wimplicit-prelude
GHC option, 82

-Wincomplete-patterns
GHC option, 82

-Wincomplete-record-updates
GHC option, 83

-Wincomplete-uni-patterns
GHC option, 82

-Winline-rule-shadowing
GHC option, 87

-Wmissed-specialisations
GHC option, 78

500 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wmissing-exported-signatures
GHC option, 84

-Wmissing-exported-sigs
GHC option, 84

-Wmissing-fields
GHC option, 83

-Wmissing-home-modules
GHC option, 88

-Wmissing-import-lists
GHC option, 83

-Wmissing-local-signatures
GHC option, 84

-Wmissing-local-sigs
GHC option, 84

-Wmissing-methods
GHC option, 83

-Wmissing-monadfail-instances
GHC option, 80

-Wmissing-pattern-synonym-signatures
GHC option, 84

-Wmissing-signatures
GHC option, 83

-Wmonomorphism-restriction
GHC option, 85

-Wname-shadowing
GHC option, 84

-Wno-compat
GHC option, 77

-Wnoncanonical-monad-instances
GHC option, 79

-Wnoncanonical-monadfail-instances
GHC option, 79

-Wnoncanonical-monoid-instances
GHC option, 80

-Worphans
GHC option, 84

-Woverflowed-literals
GHC option, 81

-Woverlapping-patterns
GHC option, 84

-Wpartial-type-signatures
GHC option, 78

-Wprint-explicit-runtime-rep
GHC option, 340

-Wredundant-constraints
GHC option, 81

-Wsafe
GHC option, 435

-Wsemigroup
GHC option, 80

-Wsimplifiable-class-constraints
GHC option, 85

-Wtabs
GHC option, 85

-Wtrustworthy-safe
GHC option, 435

-Wtype-defaults
GHC option, 85

-Wtype-errors
GHC option, 78

-Wtyped-holes
GHC option, 77

-Wunbanged-strict-patterns
GHC option, 88

-Wunrecognised-pragmas
GHC option, 78

-Wunrecognised-warning-flags
GHC option, 77

-Wunsafe
GHC option, 435

-Wunsupported-calling-conventions
GHC option, 80

-Wunsupported-llvm-version
GHC option, 85

-Wunticked-promoted-constructors
GHC option, 85

-Wunused-binds
GHC option, 85

-Wunused-do-bind
GHC option, 87

-Wunused-foralls
GHC option, 87

-Wunused-imports
GHC option, 86

-Wunused-local-binds
GHC option, 86

-Wunused-matches
GHC option, 86

-Wunused-pattern-binds
GHC option, 86

-Wunused-top-binds
GHC option, 86

-Wunused-type-patterns
GHC option, 87

-Wwarn
GHC option, 77

-Wwarnings-deprecations
GHC option, 79

-Wwrong-do-bind
GHC option, 87

-XAllowAmbiguousTypes
GHC option, 345

-XApplicativeDo
GHC option, 231

-XArrows
GHC option, 382

-XBangPatterns
GHC option, 388

Index 501



GHC User’s Guide Documentation, Release 8.2.1.20171030

-XBinaryLiterals
GHC option, 226

-XConstrainedClassMethods
GHC option, 292

-XConstraintKinds
GHC option, 343

-XDataKinds
GHC option, 327

-XDatatypeContexts
GHC option, 247

-XDefaultSignatures
GHC option, 292

-XDeriveAnyClass
GHC option, 281

-XDeriveDataTypeable
GHC option, 275

-XDeriveFoldable
GHC option, 269

-XDeriveFunctor
GHC option, 269

-XDeriveGeneric
GHC option, 269

-XDeriveLift
GHC option, 275

-XDeriveTraversable
GHC option, 269

-XDerivingStrategies
GHC option, 283

-XDisambiguateRecordFields
GHC option, 259

-XDuplicateRecordFields
GHC option, 260

-XEmptyCase
GHC option, 242

-XEmptyDataDecls
GHC option, 246

-XExistentialQuantification
GHC option, 249

-XExplicitForAll
GHC option, 344

-XExplicitNamespaces
GHC option, 245

-XExtendedDefaultRules
GHC option, 32

-XFlexibleContexts
GHC option, 291

-XFlexibleInstances
GHC option, 299

-XForeignFunctionInterface
GHC option, 437

-XFunctionalDependencies
GHC option, 294

-XGADTSyntax
GHC option, 253

-XGADTs
GHC option, 257

-XGeneralisedNewtypeDeriving
GHC option, 276

-XGeneralizedNewtypeDeriving
GHC option, 276

-XImplicitParams
GHC option, 355

-XImpredicativeTypes
GHC option, 361

-XIncoherentInstances
GHC option, 303

-XInstanceSigs
GHC option, 306

-XKindSignatures
GHC option, 347

-XLambdaCase
GHC option, 241

-XLiberalTypeSynonyms
GHC option, 248

-XMagicHash
GHC option, 224

-XMonadComprehensions
GHC option, 236

-XMonadFailDesugaring
GHC option, 238

-XMonoLocalBinds
GHC option, 351

-XMultiParamTypeClasses
GHC option, 291

-XMultiWayIf
GHC option, 242

-XNPlusKPatterns
GHC option, 228

-XNamedFieldPuns
GHC option, 262

-XNamedWildCards
GHC option, 366

-XNegativeLiterals
GHC option, 225

-XNoImplicitPrelude
GHC option, 239

-XNoMonomorphismRestriction
GHC option, 351

-XNoPatternGuards
GHC option, 226

-XNoTraditionalRecordSyntax
GHC option, 259

-XNullaryTypeClasses
GHC option, 294

-XNumDecimals
GHC option, 225

-XOverlappingInstances
GHC option, 303

502 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-XOverloadedLabels
GHC option, 308

-XOverloadedLists
GHC option, 310

-XOverloadedStrings
GHC option, 307

-XPackageImports
GHC option, 244

-XParallelListComp
GHC option, 234

-XPartialTypeSignatures
GHC option, 365

-XPatternSynonyms
GHC option, 284

-XPolyKinds
GHC option, 330

-XPostfixOperators
GHC option, 240

-XQuasiQuotes
GHC option, 379

-XRank2Types
GHC option, 358

-XRankNTypes
GHC option, 357

-XRebindableSyntax
GHC option, 239

-XRecordWildCards
GHC option, 263

-XRecursiveDo
GHC option, 228

-XRoleAnnotations
GHC option, 421

-XSafe
GHC option, 434

-XScopedTypeVariables
GHC option, 348

-XStandaloneDeriving
GHC option, 268

-XStaticPointers
GHC option, 395

-XStrict
GHC option, 390

-XStrictData
GHC option, 390

-XTemplateHaskell
GHC option, 372

-XTemplateHaskellQuotes
GHC option, 372

-XTransformListComp
GHC option, 234

-XTrustworthy
GHC option, 435

-XTupleSections
GHC option, 241

-XTypeApplications
GHC option, 353

-XTypeFamilies
GHC option, 313

-XTypeFamilyDependencies
GHC option, 325

-XTypeInType
GHC option, 330

-XTypeOperators
GHC option, 248

-XTypeSynonymInstances
GHC option, 299

-XUnboxedSums
GHC option, 223

-XUnboxedTuples
GHC option, 222

-XUndecidableInstances, 301
GHC option, 300

-XUndecidableSuperClasses
GHC option, 312

-XUnicodeSyntax
GHC option, 224

-XUnsafe
GHC option, 435

-XViewPatterns
GHC option, 226

-Z
RTS option, 134

-b
hp2ps command line option, 202

-c, 70
GHC option, 68, 175
hp2ps command line option, 203
RTS option, 124

-c ⟨n⟩
RTS option, 124

-clear-package-db
GHC option, 157

-cpp
GHC option, 171

-cpp vs string gaps, 173
-d

hp2ps command line option, 202
-dcmm-lint

GHC option, 187
-dcore-lint

GHC option, 187
-ddump options, 183
-ddump-asm

GHC option, 185
-ddump-bcos

GHC option, 185
-ddump-cmm

GHC option, 185

Index 503



GHC User’s Guide Documentation, Release 8.2.1.20171030

-ddump-cmm-from-stg
GHC option, 185

-ddump-cmm-verbose
GHC option, 185

-ddump-core-stats
GHC option, 186

-ddump-cse
GHC option, 184

-ddump-deriv
GHC option, 184

-ddump-ds
GHC option, 184

-ddump-ec-trace
GHC option, 186

-ddump-foreign
GHC option, 185

-ddump-hi
GHC option, 140

-ddump-hi-diffs, 460
GHC option, 140

-ddump-if-trace
GHC option, 185

-ddump-inlinings
GHC option, 184

-ddump-json
GHC option, 185

-ddump-llvm
GHC option, 185

-ddump-minimal-imports
GHC option, 140

-ddump-mod-cycles
GHC option, 150

-ddump-occur-anal
GHC option, 185

-ddump-opt-cmm
GHC option, 185

-ddump-parsed
GHC option, 183

-ddump-parsed-ast
GHC option, 184

-ddump-prep
GHC option, 185

-ddump-rn
GHC option, 184

-ddump-rn-ast
GHC option, 184

-ddump-rn-stats
GHC option, 186

-ddump-rn-trace
GHC option, 185

-ddump-rule-firings
GHC option, 184

-ddump-rule-rewrites
GHC option, 184

-ddump-rules
GHC option, 184

-ddump-simpl
GHC option, 184

-ddump-simpl-iterations
GHC option, 185

-ddump-simpl-stats
GHC option, 185

-ddump-spec
GHC option, 184

-ddump-splices
GHC option, 184

-ddump-stg
GHC option, 185

-ddump-str-signatures
GHC option, 184

-ddump-stranal
GHC option, 184

-ddump-tc
GHC option, 184

-ddump-tc-ast
GHC option, 184

-ddump-tc-trace
GHC option, 185

-ddump-to-file
GHC option, 183

-ddump-types
GHC option, 184

-ddump-vect
GHC option, 184

-ddump-vt-trace
GHC option, 185

-ddump-worker-wrapper
GHC option, 185

-debug
GHC option, 177

-dep-makefile ⟨file⟩
GHC option, 150

-dep-suffix ⟨suffix⟩
GHC option, 150

-dfaststring-stats
GHC option, 186

-dinitial-unique=⟨s⟩
GHC option, 188

-distrust ⟨pkg⟩
GHC option, 155, 434

-distrust-all
GHC option, 155

-distrust-all-packages
GHC option, 434

-dno-debug-output
GHC option, 186

-dppr-case-as-let
GHC option, 186

504 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-dppr-cols=⟨n⟩
GHC option, 186

-dppr-debug
GHC option, 186

-dppr-user-length
GHC option, 186

-dshow-passes
GHC option, 186

-dstg-lint
GHC option, 187

-dsuppress-all
GHC option, 187

-dsuppress-coercions
GHC option, 187

-dsuppress-idinfo
GHC option, 187

-dsuppress-module-prefixes
GHC option, 187

-dsuppress-ticks
GHC option, 187

-dsuppress-type-applications
GHC option, 187

-dsuppress-type-signatures
GHC option, 187

-dsuppress-unfoldings
GHC option, 187

-dsuppress-uniques
GHC option, 187

-dth-dec-file=⟨file⟩
GHC option, 184

-dumpdir ⟨dir⟩
GHC option, 138

-dunique-increment=⟨i⟩
GHC option, 188

-dverbose-core2core
GHC option, 186

-dverbose-stg2stg
GHC option, 186

-dylib-install-name ⟨path⟩
GHC option, 180

-dynamic
GHC option, 176

-dynamic-too
GHC option, 175

-dynload
GHC option, 177

-e ⟨expr⟩
GHC option, 68

-eventlog
GHC option, 178

-e⟨float⟩[in|mm|pt]
hp2ps command line option, 202

-f
ghc-pkg option, 163

-fPIC
GHC option, 175

-f\* options (GHC), 89
-fasm

GHC option, 174
-fbreak-on-error

GHC option, 42
-fbreak-on-exception

GHC option, 42
-fbyte-code

GHC option, 175
-fcall-arity

GHC option, 90
-fcase-folding

GHC option, 89
-fcase-merge

GHC option, 89
-fcmm-elim-common-blocks

GHC option, 90
-fcmm-sink

GHC option, 90
-fcpr-off

GHC option, 90
-fcross-module-specialise

GHC option, 96
-fcse

GHC option, 90
-fdefer-out-of-scope-variables

GHC option, 78
-fdefer-type-errors

GHC option, 78
-fdefer-typed-holes

GHC option, 78
-fdiagnostics-color=⟨always|auto|never⟩

GHC option, 74
-fdicts-cheap

GHC option, 90
-fdicts-strict

GHC option, 90
-fdmd-tx-dict-sel

GHC option, 90
-fdo-eta-reduction

GHC option, 91
-fdo-lambda-eta-expansion

GHC option, 91
-feager-blackholing

GHC option, 91, 100
-fenable-rewrite-rules

GHC option, 409
-ferror-spans

GHC option, 75
-fexcess-precision

GHC option, 91
-fexpose-all-unfoldings

Index 505



GHC User’s Guide Documentation, Release 8.2.1.20171030

GHC option, 91
-fexternal-interpreter

GHC option, 60
-ffloat-in

GHC option, 91
-fforce-recomp

GHC option, 140
-ffull-laziness

GHC option, 91
-ffun-to-thunk

GHC option, 92
-fghci-hist-size=⟨n⟩

GHC option, 41
-fglasgow-exts

GHC option, 219
-fhelpful-errors

GHC option, 78
-fhide-source-paths

GHC option, 72
-fhpc

GHC option, 207
-fignore-asserts

GHC option, 92
-fignore-interface-pragmas

GHC option, 92
-flate-dmd-anal

GHC option, 92
-fliberate-case

GHC option, 92
-fliberate-case-threshold=⟨n⟩

GHC option, 92
-fllvm

GHC option, 174
-fllvm-fill-undef-with-garbage

GHC option, 187
-flocal-ghci-history

GHC option, 44
-floopification

GHC option, 92
-fmax-inline-alloc-size=⟨n⟩

GHC option, 93
-fmax-inline-memcpy-insns=⟨n⟩

GHC option, 93
-fmax-inline-memset-insns=⟨n⟩

GHC option, 93
-fmax-pmcheck-iterations=⟨n⟩

GHC option, 82
-fmax-relevant-binds=⟨n⟩

GHC option, 93
-fmax-simplifier-iterations=⟨n⟩

GHC option, 93
-fmax-uncovered-patterns=⟨n⟩

GHC option, 93
-fmax-worker-args=⟨n⟩

GHC option, 93
-fno-\* options (GHC), 89
-fno-code

GHC option, 174
-fno-embed-manifest

GHC option, 179
-fno-gen-manifest

GHC option, 179
-fno-implicit-import-qualified, 30
-fno-max-relevant-bindings

GHC option, 93
-fno-opt-coercion

GHC option, 93
-fno-pre-inlining

GHC option, 93
-fno-prof-auto

GHC option, 194
-fno-prof-cafs

GHC option, 194
-fno-prof-count-entries, 194

GHC option, 194
-fno-shared-implib

GHC option, 179
-fno-state-hack

GHC option, 93
-fobject-code

GHC option, 175
-fomit-interface-pragmas

GHC option, 94
-fomit-yields

GHC option, 94
-foptimal-applicative-do

GHC option, 232
-fpackage-trust, 432

GHC option, 435
-fpedantic-bottoms

GHC option, 94
-fplugin-opt=⟨module⟩:⟨args⟩

GHC option, 451
-fplugin=⟨module⟩

GHC option, 451
-fprint-bind-result

GHC option, 24
-fprint-equality-relations

GHC option, 73
-fprint-expanded-synonyms

GHC option, 73
-fprint-explicit-coercions

GHC option, 73
-fprint-explicit-foralls

GHC option, 72
-fprint-explicit-kinds

GHC option, 72
-fprint-explicit-runtime-reps

506 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

GHC option, 73
-fprint-potential-instances

GHC option, 72
-fprint-typechecker-elaboration

GHC option, 73
-fprint-unicode-syntax

GHC option, 72
-fprof-auto

GHC option, 193
-fprof-auto-calls, 193

GHC option, 193
-fprof-auto-exported

GHC option, 193
-fprof-auto-top

GHC option, 193
-fprof-cafs, 193

GHC option, 193
-framework ⟨name⟩

GHC option, 176
-framework-path ⟨dir⟩

GHC option, 176
-fregs-graph

GHC option, 94
-fregs-iterative

GHC option, 94
-fshow-hole-constraints

GHC option, 364
-fshow-warning-groups

GHC option, 77
-fsimpl-tick-factor=⟨n⟩

GHC option, 94
-fsimplifier-phases=⟨n⟩

GHC option, 94
-fsolve-constant-dicts

GHC option, 96
-fspec-constr

GHC option, 95
-fspec-constr-count=⟨n⟩

GHC option, 96
-fspec-constr-keen

GHC option, 96
-fspec-constr-threshold=⟨n⟩

GHC option, 96
-fspecialise

GHC option, 96
-fspecialise-aggressively

GHC option, 96
-fstatic-argument-transformation

GHC option, 97
-fstg-cse

GHC option, 90
-fstrictness

GHC option, 97
-fstrictness-before=⟨n⟩

GHC option, 97
-funbox-small-strict-fields

GHC option, 97
-funbox-strict-fields

GHC option, 98
-funfolding-creation-threshold=⟨n⟩

GHC option, 98
-funfolding-dict-discount=⟨n⟩

GHC option, 98
-funfolding-fun-discount=⟨n⟩

GHC option, 98
-funfolding-keeness-factor=⟨n⟩

GHC option, 98
-funfolding-use-threshold0 option, 217
-funfolding-use-threshold=⟨n⟩

GHC option, 98
-fvectorisation-avoidance, 99

GHC option, 99
-fvectorise

GHC option, 99
-fvia-C, 169
-fwhole-archive-hs-libs

GHC option, 180
-fwrite-interface

GHC option, 174
-f[no-]diagnostics-show-caret

GHC option, 75
-g

GHC option, 461
hp2ps command line option, 203

-ghci-script
GHC option, 58

-global-package-db
GHC option, 157

-g⟨n⟩
GHC option, 461

-h
RTS option, 131, 198

-hT
RTS option, 131, 198

-hb
RTS option, 199

-hc
RTS option, 198

-hcsuf ⟨suffix⟩
GHC option, 138

-hd
RTS option, 198

-hide-all-packages
GHC option, 154

-hide-all-plugin-packages
GHC option, 452

-hide-package ⟨pkg⟩
GHC option, 154

Index 507



GHC User’s Guide Documentation, Release 8.2.1.20171030

-hidir ⟨dir⟩
GHC option, 138

-hisuf ⟨suffix⟩
GHC option, 138

-hm
RTS option, 198

-hr
RTS option, 199

-hy
RTS option, 199

-h⟨break-down⟩, 202
-i

GHC option, 137
-i ⟨secs⟩

RTS option, 200
-ignore-dot-ghci

GHC option, 58
-ignore-package ⟨pkg⟩

GHC option, 155
-include-pkg-deps

GHC option, 150
-interactive-print ⟨expr⟩

GHC option, 34
-i⟨dir⟩[:⟨dir⟩]*

GHC option, 137
-j[⟨n⟩]

GHC option, 70
-kb ⟨size⟩

RTS option, 127
-kc ⟨size⟩

RTS option, 127
-keep-hc-file

GHC option, 139
-keep-hc-files

GHC option, 139
-keep-hi-files

GHC option, 139
-keep-llvm-file

GHC option, 139
-keep-llvm-files

GHC option, 139
-keep-o-files

GHC option, 139
-keep-s-file

GHC option, 139
-keep-s-files

GHC option, 139
-keep-tmp-files

GHC option, 139
-ki ⟨size⟩

RTS option, 127
-l

hp2ps command line option, 203
RTS option, 199

-l ⟨flags⟩
RTS option, 132

-l ⟨lib⟩
GHC option, 175

-m ⟨n⟩
RTS option, 127

-m\* options, 75
-main-is ⟨thing⟩

GHC option, 177
-maxN ⟨x⟩

RTS option, 100
-msse2

GHC option, 75
-msse2 option, 483
-msse4.2

GHC option, 75
-m⟨int⟩

hp2ps command line option, 203
-n ⟨size⟩

RTS option, 124
-no-auto-link-packages

GHC option, 155
-no-global-package-db

GHC option, 157
-no-hs-main

GHC option, 177
-no-rtsopts-suggestions

GHC option, 179
-no-user-package-db

GHC option, 157
-o ⟨file⟩

GHC option, 137
-odir ⟨dir⟩

GHC option, 138
-ohi ⟨file⟩

GHC option, 138
-optF ⟨option⟩

GHC option, 171
-optL ⟨option⟩

GHC option, 170
-optP ⟨option⟩

GHC option, 170
-opta ⟨option⟩

GHC option, 171
-optc ⟨option⟩

GHC option, 171
-optdll ⟨option⟩

GHC option, 171
-opti ⟨option⟩

GHC option, 171
-optl ⟨option⟩

GHC option, 171
-optlc ⟨option⟩

GHC option, 171

508 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-optlo ⟨option⟩
GHC option, 171

-optwindres ⟨option⟩
GHC option, 171

-osuf ⟨suffix⟩
GHC option, 138

-outputdir ⟨dir⟩
GHC option, 138

-p
hp2ps command line option, 203
RTS option, 189, 194

-pa
RTS option, 194

-package ⟨name⟩
GHC option, 175

-package ⟨pkg⟩
GHC option, 153

-package-db
ghc-pkg option, 163

-package-db ⟨file⟩
GHC option, 157

-package-env ⟨file⟩|⟨name⟩
GHC option, 159

-package-id ⟨unit-id⟩
GHC option, 154

-pgmF, 117
-pgmF ⟨cmd⟩

GHC option, 170
-pgmL, 117
-pgmL ⟨cmd⟩

GHC option, 170
-pgmP, 117
-pgmP ⟨cmd⟩

GHC option, 170
-pgma, 117
-pgma ⟨cmd⟩

GHC option, 170
-pgmc, 117
-pgmc ⟨cmd⟩

GHC option, 170
-pgmdll, 117
-pgmdll ⟨cmd⟩

GHC option, 170
-pgmi ⟨cmd⟩

GHC option, 170
-pgml, 117
-pgml ⟨cmd⟩

GHC option, 170
-pgmlc, 117
-pgmlc ⟨cmd⟩

GHC option, 170
-pgmlibtool ⟨cmd⟩

GHC option, 170
-pgmlo, 117

-pgmlo ⟨cmd⟩
GHC option, 170

-pgms ⟨cmd⟩
GHC option, 170

-pgmwindres ⟨cmd⟩
GHC option, 170

-pj
RTS option, 194

-plugin-package ⟨pkg⟩
GHC option, 451

-plugin-package-id ⟨pkg-id⟩
GHC option, 452

-po ⟨stem⟩
RTS option, 194

-prof
GHC option, 193

-qa
RTS option, 101

-qb ⟨gen⟩
RTS option, 125

-qg ⟨gen⟩
RTS option, 125

-qm
RTS option, 101

-qn ⟨x⟩
RTS option, 126

-r ⟨file⟩
RTS option, 133

-rdynamic
GHC option, 180

-rtsopts[=⟨none|some|all⟩]
GHC option, 178

-s
hp2ps command line option, 203

-s [⟨file⟩]
RTS option, 129

-shared
GHC option, 176

-split-objs
GHC option, 176

-split-sections
GHC option, 176

-static
GHC option, 176

-staticlib
GHC option, 176

-stubdir ⟨dir⟩
GHC option, 138

-t [⟨file⟩]
RTS option, 129

-this-unit-id ⟨unit-id⟩
GHC option, 155

-threaded
GHC option, 178

Index 509



GHC User’s Guide Documentation, Release 8.2.1.20171030

-ticky
GHC option, 211

-tmpdir ⟨dir⟩
GHC option, 140

-trust ⟨pkg⟩
GHC option, 155, 434

-t⟨float⟩
hp2ps command line option, 203

-user-package-db
GHC option, 157

-v
GHC option, 71, 213
ghc-pkg option, 163

-v [⟨flags⟩]
RTS option, 133

-w
GHC option, 77

-with-rtsopts=⟨opts⟩
GHC option, 178

-x ⟨suffix⟩
GHC option, 71

-xc
RTS option, 133, 195

-xm
RTS option, 123

-xm ⟨address⟩
RTS option, 123

-xq ⟨size⟩
RTS option, 123

-xt
RTS option, 200

-y
hp2ps command line option, 203

.ghci
file, 58

.haskeline
file, 59

.hc files, saving, 139

.hi files, 136

.ll files, saving, 139

.o files, 136

.s files, saving, 139
:

⟨command⟩
GHCi command, 55

GHCi command, 49
:?

GHCi command, 49
:abandon

GHCi command, 45
:add

GHCi command, 45
:all-types

GHCi command, 46

:back
GHCi command, 46

:break
GHCi command, 46

:browse
GHCi command, 46

:cd
GHCi command, 47

:cmd
GHCi command, 47

:complete
GHCi command, 47

:continue
GHCi command, 48

:ctags
GHCi command, 48

:def
GHCi command, 48

:delete
GHCi command, 49

:edit
GHCi command, 49

:etags
GHCi command, 49

:force
GHCi command, 49

:forward
GHCi command, 49

:help
GHCi command, 49

:history
GHCi command, 49

:info
GHCi command, 49

:issafe
GHCi command, 50

:kind
GHCi command, 50

:list
GHCi command, 50

:list [⟨module⟩]
GHCi command, 50

:load, 20
GHCi command, 50

:loc-at
GHCi command, 51

:main
GHCi command, 51

:module
GHCi command, 51

:print
GHCi command, 51

:quit
GHCi command, 52

510 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

:reload, 21
GHCi command, 52

:run
GHCi command, 52

:script
GHCi command, 52

:set
command in GHCi, 56
GHCi command, 52

:set +c
GHCi command, 56

:set +m
GHCi command, 56

:set +r
GHCi command, 56

:set +s
GHCi command, 56

:set +t
GHCi command, 56

:set args
GHCi command, 52

:set editor
GHCi command, 52

:set prog
GHCi command, 52

:set prompt
GHCi command, 52

:set prompt-cont
GHCi command, 53

:set prompt-cont-function
GHCi command, 53

:set prompt-function
GHCi command, 53

:set stop
GHCi command, 53

:seti, 56
GHCi command, 53

:show
GHCi command, 54

:show bindings
GHCi command, 53

:show breaks
GHCi command, 53

:show context
GHCi command, 54

:show imports
GHCi command, 54

:show language
GHCi command, 54

:show modules
GHCi command, 54

:show packages
GHCi command, 54

:show paths

GHCi command, 54
:showi language

GHCi command, 54
:sprint

GHCi command, 54
:step

GHCi command, 54
:steplocal

GHCi command, 54
:stepmodule

GHCi command, 54
:trace

GHCi command, 54
:type

GHCi command, 54
:type +d

GHCi command, 55
:type +v

GHCi command, 54
:type-at

GHCi command, 55
:undef

GHCi command, 55
:unset

GHCi command, 55
:uses

GHCi command, 55
__GLASGOW_HASKELL_LLVM__, 173
__GLASGOW_HASKELL_PATCHLEVEL1__,

172
__GLASGOW_HASKELL_PATCHLEVEL2__,

172
__GLASGOW_HASKELL_TH__, 173
__GLASGOW_HASKELL__, 6, 172
__PARALLEL_HASKELL__, 173

allocation area for large objects, size, 124
allocation area, chunk size, 124
allocation area, size, 123
AMP, 79
ANN pragma, 449

on modules, 450
on types, 450

apparently erroneous do binding, warning, 87
Applicative do-notation, 231
Applicative-Monad Proposal, 79
arguments

command-line, 66
ASCII, 136
Assertions, 395
assertions

disabling, 395
author

package specification, 167

Index 511



GHC User’s Guide Documentation, Release 8.2.1.20171030

auto
package specification, 166

Bang patterns, 388
binds, unused, 85, 86
bugs

reporting, 6

C calls, function headers, 443
C code generator, 169
C pre-processor options, 171
CAFs

in GHCi, 56
category

package specification, 167
cc-options

package specification, 168
Char

size of, 481
code coverage, 206
COLUMN

pragma, 403
command-line

arguments, 66
order of arguments, 66

compacting garbage collection, 124
compilation phases, changing, 170
compiled code

in GHCi, 21
compiler problems, 459
compiling faster, 213
complete user-supplied kind signature, 332
concurrency, 424
Concurrent Haskell

using, 99
CONLIKE, 402
consistency checks, 187
Constant Applicative Form, 56
constructor fields, strict, 97, 98
copyright

package specification, 166
cost centres

automatically inserting, 193
cost-centre profiling, 189
cpp, pre-processing with, 171
CUSK, 332
Custom printing function

in GHCi, 33

debugger
in GHCi, 35

debugging options (for GHC), 183
default declarations, 33
defaulting mechanism, warning, 85
dependencies in Makefiles, 149

dependency-generation mode
of GHC, 68

depends
package specification, 168

DEPRECATED, 398
deprecated flags, 80
deprecations, 79

warnings, 79
description

package specification, 166
deterministic builds, 188
disabling

assertions, 395
displaying type

in GHCi, 56
DLL-creation mode, 68
do binding, apparently erroneous, 87
do binding, unused, 87
do-notation

Applicative, 231
in GHCi, 24

dumping GHC intermediates, 183
duplicate constraints, warning, 81
duplicate exports, warning, 82
dynamic

options, 57, 67
Dynamic libraries

using, 180

EDITOR, 49
encodings

of source files, 136
environment file, 158
environment variable

EDITOR, 49
for setting RTS options, 121
GHC_PACKAGE_PATH, 157, 158, 161
GHCRTS, 120, 121, 178
HOME, 46, 47
HPCTIXFILE, 207, 211
LD_LIBRARY_PATH, 45, 183
PATH, 158, 174
RPATH, 182
RUNPATH, 182
TMPDIR, 140

eval mode
of GHC, 68

eventlog
and heap profiling, 199

eventlog files, 132
EventLogWriter (C type), 122
EventLogWriter.flushEventLog (C member),

122

512 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

EventLogWriter.initEventLogWriter (C mem-
ber), 122

EventLogWriter.stopEventLogWriter (Cmem-
ber), 122

EventLogWriter.writeEventLog (C member),
122

events, 132
export lists, duplicates, 82
exposed

package specification, 167
exposed-modules

package specification, 167
extended list comprehensions, 234
extensions

options controlling, 219
extra-libraries

package specification, 167

faster compiling, 213
faster programs, how to produce, 214
FFI

GHCi support, 19
fields, missing, 83
file names

of source files, 136
file suffixes for GHC, 67
filenames

of modules, 20
finding interface files, 137
Floating point

and the FFI, 447
floating-point exceptions., 482
forall, 246
foralls, unused, 87
forcing GHC-phase options, 170
foreign, 246
foreign export

with GHC, 440
Foreign Function Interface

GHCi support, 19
Foreign function interface, 437
formatting dumps, 186
framework-dirs

package specification, 168
frameworks

package specification, 168
fromInteger function, 481
fromIntegral function, 481
frontend plugins

using, 68

garbage collection
compacting, 124

garbage collector

options, 123
GC threads, setting the number of, 126
generations, number of, 125
getArgs, behavior in GHCi, 52
getProgName, behavior in GHCi, 52
GHC backends, 168
GHC code generators, 168
GHC option

–exclude-module=⟨file⟩, 150
–frontend ⟨module⟩, 68
–help, 68
–info, 69
–interactive, 68
–make, 68
–mk-dll, 68
–numeric-version, 69
–print-libdir, 69
–show-iface ⟨file⟩, 68, 140
–show-options, 68
–supported-extensions, 68
–supported-languages, 68
–version, 69
-?, 68
-C, 68
-D⟨symbol⟩[=⟨value⟩], 171
-E, 68
-F, 174
-H ⟨size⟩, 75
-I⟨dir⟩, 171
-L ⟨dir⟩, 176
-M, 68
-O, 89
-O0, 89
-O1, 89
-O2, 89
-Odph, 89
-Rghc-timing, 75
-S, 68
-U⟨symbol⟩, 171
-V, 69
-W, 76
-Wall, 76
-Wall-missed-specialisations, 78
-Wamp, 79
-Wcompat, 77
-Wcpp-undef, 88
-Wdeferred-out-of-scope-variables, 78
-Wdeprecated-flags, 80
-Wdeprecations, 79
-Wdodgy-exports, 80
-Wdodgy-foreign-imports, 80
-Wdodgy-imports, 81
-Wduplicate-constraints, 81
-Wduplicate-exports, 82

Index 513



GHC User’s Guide Documentation, Release 8.2.1.20171030

-Wempty-enumerations, 81
-Werror, 77
-Whi-shadowing, 82
-Widentities, 82
-Wimplicit-prelude, 82
-Wincomplete-patterns, 82
-Wincomplete-record-updates, 83
-Wincomplete-uni-patterns, 82
-Winline-rule-shadowing, 87
-Wmissed-specialisations, 78
-Wmissing-exported-signatures, 84
-Wmissing-exported-sigs, 84
-Wmissing-fields, 83
-Wmissing-home-modules, 88
-Wmissing-import-lists, 83
-Wmissing-local-signatures, 84
-Wmissing-local-sigs, 84
-Wmissing-methods, 83
-Wmissing-monadfail-instances, 80
-Wmissing-pattern-synonym-signatures,

84
-Wmissing-signatures, 83
-Wmonomorphism-restriction, 85
-Wname-shadowing, 84
-Wno-compat, 77
-Wnoncanonical-monad-instances, 79
-Wnoncanonical-monadfail-instances, 79
-Wnoncanonical-monoid-instances, 80
-Worphans, 84
-Woverflowed-literals, 81
-Woverlapping-patterns, 84
-Wpartial-type-signatures, 78
-Wprint-explicit-runtime-rep, 340
-Wredundant-constraints, 81
-Wsafe, 435
-Wsemigroup, 80
-Wsimplifiable-class-constraints, 85
-Wtabs, 85
-Wtrustworthy-safe, 435
-Wtype-defaults, 85
-Wtype-errors, 78
-Wtyped-holes, 77
-Wunbanged-strict-patterns, 88
-Wunrecognised-pragmas, 78
-Wunrecognised-warning-flags, 77
-Wunsafe, 435
-Wunsupported-calling-conventions, 80
-Wunsupported-llvm-version, 85
-Wunticked-promoted-constructors, 85
-Wunused-binds, 85
-Wunused-do-bind, 87
-Wunused-foralls, 87
-Wunused-imports, 86
-Wunused-local-binds, 86

-Wunused-matches, 86
-Wunused-pattern-binds, 86
-Wunused-top-binds, 86
-Wunused-type-patterns, 87
-Wwarn, 77
-Wwarnings-deprecations, 79
-Wwrong-do-bind, 87
-XAllowAmbiguousTypes, 345
-XApplicativeDo, 231
-XArrows, 382
-XBangPatterns, 388
-XBinaryLiterals, 226
-XConstrainedClassMethods, 292
-XConstraintKinds, 343
-XDataKinds, 327
-XDatatypeContexts, 247
-XDefaultSignatures, 292
-XDeriveAnyClass, 281
-XDeriveDataTypeable, 275
-XDeriveFoldable, 269
-XDeriveFunctor, 269
-XDeriveGeneric, 269
-XDeriveLift, 275
-XDeriveTraversable, 269
-XDerivingStrategies, 283
-XDisambiguateRecordFields, 259
-XDuplicateRecordFields, 260
-XEmptyCase, 242
-XEmptyDataDecls, 246
-XExistentialQuantification, 249
-XExplicitForAll, 344
-XExplicitNamespaces, 245
-XExtendedDefaultRules, 32
-XFlexibleContexts, 291
-XFlexibleInstances, 299
-XForeignFunctionInterface, 437
-XFunctionalDependencies, 294
-XGADTSyntax, 253
-XGADTs, 257
-XGeneralisedNewtypeDeriving, 276
-XGeneralizedNewtypeDeriving, 276
-XImplicitParams, 355
-XImpredicativeTypes, 361
-XIncoherentInstances, 303
-XInstanceSigs, 306
-XKindSignatures, 347
-XLambdaCase, 241
-XLiberalTypeSynonyms, 248
-XMagicHash, 224
-XMonadComprehensions, 236
-XMonadFailDesugaring, 238
-XMonoLocalBinds, 351
-XMultiParamTypeClasses, 291
-XMultiWayIf, 242

514 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-XNPlusKPatterns, 228
-XNamedFieldPuns, 262
-XNamedWildCards, 366
-XNegativeLiterals, 225
-XNoImplicitPrelude, 239
-XNoMonomorphismRestriction, 351
-XNoPatternGuards, 226
-XNoTraditionalRecordSyntax, 259
-XNullaryTypeClasses, 294
-XNumDecimals, 225
-XOverlappingInstances, 303
-XOverloadedLabels, 308
-XOverloadedLists, 310
-XOverloadedStrings, 307
-XPackageImports, 244
-XParallelListComp, 234
-XPartialTypeSignatures, 365
-XPatternSynonyms, 284
-XPolyKinds, 330
-XPostfixOperators, 240
-XQuasiQuotes, 379
-XRank2Types, 358
-XRankNTypes, 357
-XRebindableSyntax, 239
-XRecordWildCards, 263
-XRecursiveDo, 228
-XRoleAnnotations, 421
-XSafe, 434
-XScopedTypeVariables, 348
-XStandaloneDeriving, 268
-XStaticPointers, 395
-XStrict, 390
-XStrictData, 390
-XTemplateHaskell, 372
-XTemplateHaskellQuotes, 372
-XTransformListComp, 234
-XTrustworthy, 435
-XTupleSections, 241
-XTypeApplications, 353
-XTypeFamilies, 313
-XTypeFamilyDependencies, 325
-XTypeInType, 330
-XTypeOperators, 248
-XTypeSynonymInstances, 299
-XUnboxedSums, 223
-XUnboxedTuples, 222
-XUndecidableInstances, 300
-XUndecidableSuperClasses, 312
-XUnicodeSyntax, 224
-XUnsafe, 435
-XViewPatterns, 226
-c, 68, 175
-clear-package-db, 157
-cpp, 171

-dcmm-lint, 187
-dcore-lint, 187
-ddump-asm, 185
-ddump-bcos, 185
-ddump-cmm, 185
-ddump-cmm-from-stg, 185
-ddump-cmm-verbose, 185
-ddump-core-stats, 186
-ddump-cse, 184
-ddump-deriv, 184
-ddump-ds, 184
-ddump-ec-trace, 186
-ddump-foreign, 185
-ddump-hi, 140
-ddump-hi-diffs, 140
-ddump-if-trace, 185
-ddump-inlinings, 184
-ddump-json, 185
-ddump-llvm, 185
-ddump-minimal-imports, 140
-ddump-mod-cycles, 150
-ddump-occur-anal, 185
-ddump-opt-cmm, 185
-ddump-parsed, 183
-ddump-parsed-ast, 184
-ddump-prep, 185
-ddump-rn, 184
-ddump-rn-ast, 184
-ddump-rn-stats, 186
-ddump-rn-trace, 185
-ddump-rule-firings, 184
-ddump-rule-rewrites, 184
-ddump-rules, 184
-ddump-simpl, 184
-ddump-simpl-iterations, 185
-ddump-simpl-stats, 185
-ddump-spec, 184
-ddump-splices, 184
-ddump-stg, 185
-ddump-str-signatures, 184
-ddump-stranal, 184
-ddump-tc, 184
-ddump-tc-ast, 184
-ddump-tc-trace, 185
-ddump-to-file, 183
-ddump-types, 184
-ddump-vect, 184
-ddump-vt-trace, 185
-ddump-worker-wrapper, 185
-debug, 177
-dep-makefile ⟨file⟩, 150
-dep-suffix ⟨suffix⟩, 150
-dfaststring-stats, 186
-dinitial-unique=⟨s⟩, 188

Index 515



GHC User’s Guide Documentation, Release 8.2.1.20171030

-distrust ⟨pkg⟩, 155, 434
-distrust-all, 155
-distrust-all-packages, 434
-dno-debug-output, 186
-dppr-case-as-let, 186
-dppr-cols=⟨n⟩, 186
-dppr-debug, 186
-dppr-user-length, 186
-dshow-passes, 186
-dstg-lint, 187
-dsuppress-all, 187
-dsuppress-coercions, 187
-dsuppress-idinfo, 187
-dsuppress-module-prefixes, 187
-dsuppress-ticks, 187
-dsuppress-type-applications, 187
-dsuppress-type-signatures, 187
-dsuppress-unfoldings, 187
-dsuppress-uniques, 187
-dth-dec-file=⟨file⟩, 184
-dumpdir ⟨dir⟩, 138
-dunique-increment=⟨i⟩, 188
-dverbose-core2core, 186
-dverbose-stg2stg, 186
-dylib-install-name ⟨path⟩, 180
-dynamic, 176
-dynamic-too, 175
-dynload, 177
-e ⟨expr⟩, 68
-eventlog, 178
-fPIC, 175
-fasm, 174
-fbreak-on-error, 42
-fbreak-on-exception, 42
-fbyte-code, 175
-fcall-arity, 90
-fcase-folding, 89
-fcase-merge, 89
-fcmm-elim-common-blocks, 90
-fcmm-sink, 90
-fcpr-off, 90
-fcross-module-specialise, 96
-fcse, 90
-fdefer-out-of-scope-variables, 78
-fdefer-type-errors, 78
-fdefer-typed-holes, 78
-fdiagnostics-color=⟨always|auto|never⟩,

74
-fdicts-cheap, 90
-fdicts-strict, 90
-fdmd-tx-dict-sel, 90
-fdo-eta-reduction, 91
-fdo-lambda-eta-expansion, 91
-feager-blackholing, 91, 100

-fenable-rewrite-rules, 409
-ferror-spans, 75
-fexcess-precision, 91
-fexpose-all-unfoldings, 91
-fexternal-interpreter, 60
-ffloat-in, 91
-fforce-recomp, 140
-ffull-laziness, 91
-ffun-to-thunk, 92
-fghci-hist-size=⟨n⟩, 41
-fglasgow-exts, 219
-fhelpful-errors, 78
-fhide-source-paths, 72
-fhpc, 207
-fignore-asserts, 92
-fignore-interface-pragmas, 92
-flate-dmd-anal, 92
-fliberate-case, 92
-fliberate-case-threshold=⟨n⟩, 92
-fllvm, 174
-fllvm-fill-undef-with-garbage, 187
-flocal-ghci-history, 44
-floopification, 92
-fmax-inline-alloc-size=⟨n⟩, 93
-fmax-inline-memcpy-insns=⟨n⟩, 93
-fmax-inline-memset-insns=⟨n⟩, 93
-fmax-pmcheck-iterations=⟨n⟩, 82
-fmax-relevant-binds=⟨n⟩, 93
-fmax-simplifier-iterations=⟨n⟩, 93
-fmax-uncovered-patterns=⟨n⟩, 93
-fmax-worker-args=⟨n⟩, 93
-fno-code, 174
-fno-embed-manifest, 179
-fno-gen-manifest, 179
-fno-max-relevant-bindings, 93
-fno-opt-coercion, 93
-fno-pre-inlining, 93
-fno-prof-auto, 194
-fno-prof-cafs, 194
-fno-prof-count-entries, 194
-fno-shared-implib, 179
-fno-state-hack, 93
-fobject-code, 175
-fomit-interface-pragmas, 94
-fomit-yields, 94
-foptimal-applicative-do, 232
-fpackage-trust, 435
-fpedantic-bottoms, 94
-fplugin-opt=⟨module⟩:⟨args⟩, 451
-fplugin=⟨module⟩, 451
-fprint-bind-result, 24
-fprint-equality-relations, 73
-fprint-expanded-synonyms, 73
-fprint-explicit-coercions, 73

516 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

-fprint-explicit-foralls, 72
-fprint-explicit-kinds, 72
-fprint-explicit-runtime-reps, 73
-fprint-potential-instances, 72
-fprint-typechecker-elaboration, 73
-fprint-unicode-syntax, 72
-fprof-auto, 193
-fprof-auto-calls, 193
-fprof-auto-exported, 193
-fprof-auto-top, 193
-fprof-cafs, 193
-framework ⟨name⟩, 176
-framework-path ⟨dir⟩, 176
-fregs-graph, 94
-fregs-iterative, 94
-fshow-hole-constraints, 364
-fshow-warning-groups, 77
-fsimpl-tick-factor=⟨n⟩, 94
-fsimplifier-phases=⟨n⟩, 94
-fsolve-constant-dicts, 96
-fspec-constr, 95
-fspec-constr-count=⟨n⟩, 96
-fspec-constr-keen, 96
-fspec-constr-threshold=⟨n⟩, 96
-fspecialise, 96
-fspecialise-aggressively, 96
-fstatic-argument-transformation, 97
-fstg-cse, 90
-fstrictness, 97
-fstrictness-before=⟨n⟩, 97
-funbox-small-strict-fields, 97
-funbox-strict-fields, 98
-funfolding-creation-threshold=⟨n⟩, 98
-funfolding-dict-discount=⟨n⟩, 98
-funfolding-fun-discount=⟨n⟩, 98
-funfolding-keeness-factor=⟨n⟩, 98
-funfolding-use-threshold=⟨n⟩, 98
-fvectorisation-avoidance, 99
-fvectorise, 99
-fwhole-archive-hs-libs, 180
-fwrite-interface, 174
-f[no-]diagnostics-show-caret, 75
-g, 461
-ghci-script, 58
-global-package-db, 157
-g⟨n⟩, 461
-hcsuf ⟨suffix⟩, 138
-hide-all-packages, 154
-hide-all-plugin-packages, 452
-hide-package ⟨pkg⟩, 154
-hidir ⟨dir⟩, 138
-hisuf ⟨suffix⟩, 138
-i, 137
-ignore-dot-ghci, 58

-ignore-package ⟨pkg⟩, 155
-include-pkg-deps, 150
-interactive-print ⟨expr⟩, 34
-i⟨dir⟩[:⟨dir⟩]*, 137
-j[⟨n⟩], 70
-keep-hc-file, 139
-keep-hc-files, 139
-keep-hi-files, 139
-keep-llvm-file, 139
-keep-llvm-files, 139
-keep-o-files, 139
-keep-s-file, 139
-keep-s-files, 139
-keep-tmp-files, 139
-l ⟨lib⟩, 175
-main-is ⟨thing⟩, 177
-msse2, 75
-msse4.2, 75
-no-auto-link-packages, 155
-no-global-package-db, 157
-no-hs-main, 177
-no-rtsopts-suggestions, 179
-no-user-package-db, 157
-o ⟨file⟩, 137
-odir ⟨dir⟩, 138
-ohi ⟨file⟩, 138
-optF ⟨option⟩, 171
-optL ⟨option⟩, 170
-optP ⟨option⟩, 170
-opta ⟨option⟩, 171
-optc ⟨option⟩, 171
-optdll ⟨option⟩, 171
-opti ⟨option⟩, 171
-optl ⟨option⟩, 171
-optlc ⟨option⟩, 171
-optlo ⟨option⟩, 171
-optwindres ⟨option⟩, 171
-osuf ⟨suffix⟩, 138
-outputdir ⟨dir⟩, 138
-package ⟨name⟩, 175
-package ⟨pkg⟩, 153
-package-db ⟨file⟩, 157
-package-env ⟨file⟩|⟨name⟩, 159
-package-id ⟨unit-id⟩, 154
-pgmF ⟨cmd⟩, 170
-pgmL ⟨cmd⟩, 170
-pgmP ⟨cmd⟩, 170
-pgma ⟨cmd⟩, 170
-pgmc ⟨cmd⟩, 170
-pgmdll ⟨cmd⟩, 170
-pgmi ⟨cmd⟩, 170
-pgml ⟨cmd⟩, 170
-pgmlc ⟨cmd⟩, 170
-pgmlibtool ⟨cmd⟩, 170

Index 517



GHC User’s Guide Documentation, Release 8.2.1.20171030

-pgmlo ⟨cmd⟩, 170
-pgms ⟨cmd⟩, 170
-pgmwindres ⟨cmd⟩, 170
-plugin-package ⟨pkg⟩, 451
-plugin-package-id ⟨pkg-id⟩, 452
-prof, 193
-rdynamic, 180
-rtsopts[=⟨none|some|all⟩], 178
-shared, 176
-split-objs, 176
-split-sections, 176
-static, 176
-staticlib, 176
-stubdir ⟨dir⟩, 138
-this-unit-id ⟨unit-id⟩, 155
-threaded, 178
-ticky, 211
-tmpdir ⟨dir⟩, 140
-trust ⟨pkg⟩, 155, 434
-user-package-db, 157
-v, 71
-w, 77
-with-rtsopts=⟨opts⟩, 178
-x ⟨suffix⟩, 71
requiring the package that ‘‘M‘‘ resides in

be considered trusted, for ‘‘M‘‘, 435
resets the search path back to nothing.,

137
to be considered trusted., 435
When enabled, turn on an extra check for

a trustworthy module ‘‘M‘‘„ 435
GHC vs the Haskell standards, 477
GHC, using, 65
GHC_PACKAGE_PATH, 157, 161
GHCi, 19, 68
GHCi command

:, 49
⟨command⟩, 55

:?, 49
:abandon, 45
:add, 45
:all-types, 46
:back, 46
:break, 46
:browse, 46
:cd, 47
:cmd, 47
:complete, 47
:continue, 48
:ctags, 48
:def, 48
:delete, 49
:edit, 49
:etags, 49

:force, 49
:forward, 49
:help, 49
:history, 49
:info, 49
:issafe, 50
:kind, 50
:list, 50
:list [⟨module⟩], 50
:load, 50
:loc-at, 51
:main, 51
:module, 51
:print, 51
:quit, 52
:reload, 52
:run, 52
:script, 52
:set, 52
:set +c, 56
:set +m, 56
:set +r, 56
:set +s, 56
:set +t, 56
:set args, 52
:set editor, 52
:set prog, 52
:set prompt, 52
:set prompt-cont, 53
:set prompt-cont-function, 53
:set prompt-function, 53
:set stop, 53
:seti, 53
:show, 54
:show bindings, 53
:show breaks, 53
:show context, 54
:show imports, 54
:show language, 54
:show modules, 54
:show packages, 54
:show paths, 54
:showi language, 54
:sprint, 54
:step, 54
:steplocal, 54
:stepmodule, 54
:trace, 54
:type, 54
:type +d, 55
:type +v, 54
:type-at, 55
:undef, 55
:unset, 55

518 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

:uses, 55
import, 51

GHCi prompt
setting, 52

GHCi prompt function
setting, 53

GHCRTS, 120, 121, 178
GHCRTS environment variable, 121
Glasgow Haskell mailing lists, 5
group, 234

haddock-html
package specification, 168

haddock-interfaces
package specification, 168

Happy, 467
happy parser generator, 467
Haskell Program Coverage, 206
Haskell standards vs GHC, 477
heap profiles, 202
heap size, factor, 125
heap size, grace, 128
heap size, maximum, 128
heap size, suggested, 126
heap space, using less, 217
heap, minimum free, 127
help options, 68
hidden-modules

package specification, 167
HOME, 46, 47
homepage

package specification, 166
hooks

RTS, 122
hp2ps, 202
hp2ps command line option

-?, 203
-b, 202
-c, 203
-d, 202
-e⟨float⟩[in|mm|pt], 202
-g, 203
-l, 203
-m⟨int⟩, 203
-p, 203
-s, 203
-t⟨float⟩, 203
-y, 203

hpc, 206
HPCTIXFILE, 207, 211
hs-libraries

package specification, 167
hs_exit, 481
hs_init, 481

hsc2hs, 467
Hugs, 19
hugs-options

package specification, 168

id
package specification, 166

idle GC, 126
implicit parameters, 246
implicit prelude, warning, 82
import

GHCi command, 51
import lists, missing, 83
import-dirs

package specification, 167
imports, unused, 86
improvement, code, 88
in GHCi

Repeating last command, 49
include-dirs

package specification, 168
includes

package specification, 168
INCOHERENT, 408
incomplete patterns, warning, 82
incomplete record updates, warning, 83
INLINE, 400
inlining, controlling, 98
Int

size of, 481
interactive, 19
Interactive classes, 33
interactive mode, 68
interface files, 136
interface files, finding them, 137
interface files, options, 140
interfacing with native code, 437
intermediate files, saving, 139
intermediate passes, output, 183
interpreter, 19
invoking

GHCi, 44
it variable, 31

kind heterogeneous
Type equality constraints, 342

LANGUAGE
pragma, 398

language
option, 219

language, GHC extensions, 219
Latin-1, 136
ld options, 175
ld-options

Index 519



GHC User’s Guide Documentation, Release 8.2.1.20171030

package specification, 168
LD_LIBRARY_PATH, 45, 183
levity polymorphism, 338
lhs file extension, 67
libdir, 69
libraries

with GHCi, 45
library-dirs

package specification, 167
license-file

package specification, 166
LINE

pragma, 403
linker options, 175
linking Haskell libraries with foreign code,

177
lint, 187
list comprehensions

ambiguity with quasi-quotes, 380
generalised, 234
parallel, 234

LLVM code generator, 168

machine-specific options, 75
mailing lists, Glasgow Haskell, 5
maintainer

package specification, 166
make

building programs with, 148
make and recompilation, 135
make mode

of GHC, 68
Makefile dependencies, 149
Makefiles

avoiding, 69
MallocFailHook (C function), 122
matches, unused, 86
mdo, 246
memory, using less heap, 217
methods, missing, 83
MFP, 80
MIN_VERSION_GLASGOW_HASKELL, 172
MINIMAL, 399
missing fields, warning, 83
missing import lists, warning, 83
missing methods, warning, 83
mode

options, 67
module system, recursion, 141
modules

and filenames, 20
monad comprehensions, 236
MonadFail Proposal, 80
monomorphism restriction, warning, 85

multiline input
in GHCi, 56

name
package specification, 166

native code generator, 168
NOINLINE, 402
nominal

role, 419
NOTINLINE, 402
NOUNPACK, 407
NUMA, enabling in the runtime, 128

object files, 136
old generation, size, 124
optimisation, 88
optimise

aggressively, 89
DPH, 89
normally, 89

optimization
and GHCi, 60

options
for profiling, 193
GHCi, 56
language, 219

OPTIONS_GHC, 398
orphan instances, warning, 84
orphan rules, warning, 84
OutOfHeapHook (C function), 122
output-directing options, 137
OVERLAPPABLE, 408
OVERLAPPING, 408
overlapping patterns, warning, 84
OVERLAPS, 408
overloading, death to, 214, 403, 406

package environments, 158
package trust, 434
package-url

package specification, 166
packages, 152

building, 164
management, 161
using, 152
with GHCi, 45

parallel list comprehensions, 234
parallelism, 99, 424
parser generator for Haskell, 467
PATH, 158, 174
patterns, incomplete, 82
patterns, overlapping, 84
phantom

role, 419
platform-specific options, 75

520 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

postscript, from heap profiles, 202
pragma, 397

‘‘INLINE‘‘, 400
‘‘OPTIONS_GHC‘‘, 398
ANN, 449
COLUMN, 403
INCOHERENT, 408
LANGUAGE, 398
LINE, 403
MINIMAL, 399
OVERLAPPABLE, 408
OVERLAPPING, 408
OVERLAPS, 408
RULES, 409
SOURCE, 407

pragma, SPECIALIZE, 403
pre-processing: cpp, 171
pre-processing: custom, 174
pre-processor options, 174
problems, 459
problems running your program, 460
problems with the compiler, 459
proc, 246
profiling, 189

options, 193
ticky ticky, 133
with Template Haskell, 379

promoted constructor, warning, 85
prompt

GHCi, 19

quasi-quotation, 246
Quasi-quotes, 246
quasi-quotes

ambiguity with list comprehensions, 380

recompilation checker, 135, 140
record updates, incomplete, 83
recursion, between modules, 141
redirecting compilation output, 137
redundant constraints, warning, 81
reexported-modules

reexport specification, 167
Repeating last command

in GHCi, 49
reporting bugs, 6
representational

role, 419
requiring the package that ‘‘M‘‘ resides in be

considered trusted, for ‘‘M‘‘
GHC option, 435

resets the search path back to nothing.
GHC option, 137

rewrite rules, 409

roles, 419
RPATH, 182
RTS, 134
RTS behaviour, changing, 122
RTS hooks, 122
RTS option

–info, 134
–install-signal-handlers=⟨yes|no⟩, 122
–machine-readable, 129
–numa, 128
–numa=<mask>, 128
-A ⟨size⟩, 123
-AL ⟨size⟩, 123
-B, 133
-C ⟨s⟩, 99
-D ⟨x⟩, 133
-F ⟨factor⟩, 125
-G ⟨generations⟩, 125
-H [⟨size⟩], 126
-I ⟨seconds⟩, 126
-K ⟨size⟩, 127
-L ⟨num⟩, 200
-L ⟨n⟩, 132
-M ⟨size⟩, 127
-Mgrace=⟨size⟩, 128
-N ⟨x⟩, 100
-O ⟨size⟩, 124
-P, 194
-R ⟨size⟩, 200
-S [⟨file⟩], 129
-T, 129
-V ⟨secs⟩, 194
-Z, 134
-c, 124
-c ⟨n⟩, 124
-h, 131, 198
-hT, 131, 198
-hb, 199
-hc, 198
-hd, 198
-hm, 198
-hr, 199
-hy, 199
-i ⟨secs⟩, 200
-kb ⟨size⟩, 127
-kc ⟨size⟩, 127
-ki ⟨size⟩, 127
-l, 199
-l ⟨flags⟩, 132
-m ⟨n⟩, 127
-maxN ⟨x⟩, 100
-n ⟨size⟩, 124
-p, 194
-pa, 194

Index 521



GHC User’s Guide Documentation, Release 8.2.1.20171030

-pj, 194
-po ⟨stem⟩, 194
-qa, 101
-qb ⟨gen⟩, 125
-qg ⟨gen⟩, 125
-qm, 101
-qn ⟨x⟩, 126
-r ⟨file⟩, 133
-s [⟨file⟩], 129
-t [⟨file⟩], 129
-v [⟨flags⟩], 133
-xc, 133, 195
-xm ⟨address⟩, 123
-xq ⟨size⟩, 123
-xt, 200

RTS options, 120
concurrent, 99
from the environment, 121
garbage collection, 123

RTS options, hacking/debugging, 133
RTS options, setting, 120
RULES pragma, 409
runghc, 63
running, compiled program, 120
RUNPATH, 182
runtime control of Haskell programs, 120

safe compilation, 436
safe haskell, 426
Safe Haskell flags, 434
safe haskell trust, 431
safe haskell uses, 426
safe imports, 431
safe inference, 434
safe language, 429
sanity-checking options, 76
search path, 137

source code, 137
secure haskell, 427
semigroup

warning, 80
separate compilation, 69, 135
shadowing

interface files, 82
shadowing, warning, 84
Shared libraries

using, 180
shell commands

in GHCi, 56
Show class, 32
signature files

Backpack
hsig files, 143

simple: stack trace

in GHCi, 34
simplifiable class constraints, warning, 85
single : -osuf

using with profiling, 379
smaller programs, how to produce, 217
SMP, 99, 424
SOURCE, 407
source annotations, 449
source-file options, 66
space-leaks, avoiding, 217
SPECIALIZE pragma, 214, 403, 406
specifying your own main function, 177
SQL, 234
stability

package specification, 166
stack

chunk buffer size, 127
chunk size, 127

stack, initial size, 127
stack, maximum size, 127
StackOverflowHook (C function), 122
startup

files, GHCi, 58, 59
statements

in GHCi, 24
static

options, 57, 67
Static pointers, 395
strict constructor fields, 97, 98
strict haskell, 388
string gaps vs -cpp., 173
structure, command-line, 66
suffixes, file, 67
suppression

of unwanted dump output, 187

tabs, warning, 85
Template Haskell, 246
temporary files

keeping, 139, 140
redirecting, 140

ticky ticky profiling, 133
ticky-ticky profiling, 211
time profile, 194
TMPDIR, 140
TMPDIR environment variable, 140
to be considered trusted.

GHC option, 435
tracing, 132
trust, 431
trust check, 432
trusted

package specification, 167
trustworthy, 433

522 Index



GHC User’s Guide Documentation, Release 8.2.1.20171030

TYPE, 338
Type defaulting

in GHCi, 32
Type equality constraints

kind heterogeneous, 342
type patterns, unused, 87
type signatures, missing, 84
type signatures, missing, pattern synonyms,

84

unfolding, controlling, 98
Unicode, 136
UNPACK, 406
unregisterised compilation, 169
unused binds, warning, 85, 86
unused do binding, warning, 87
unused foralls, warning, 87
unused imports, warning, 86
unused matches, warning, 86
unused type patterns, warning, 87
using GHC, 65
UTF-8, 136
utilities, Haskell, 467

verbosity options, 71
version

package specification, 166
version, of ghc, 6

WARNING, 398
warnings, 76

deprecations, 79
When enabled, turn on an extra check for a

trustworthy module ‘‘M‘‘,
GHC option, 435

windres, 179

Yacc for Haskell, 467

Index 523


	The Glasgow Haskell Compiler License
	Introduction to GHC
	Obtaining GHC
	Meta-information: Web sites, mailing lists, etc.
	Reporting bugs in GHC
	GHC version numbering policy

	Release notes for version 8.2.1
	Highlights
	Full details
	Libraries
	Known bugs

	Using GHCi
	Introduction to GHCi
	Loading source files
	Loading compiled code
	Interactive evaluation at the prompt
	The GHCi Debugger
	Invoking GHCi
	GHCi commands
	The :set and :seti commands
	The .ghci and .haskeline files
	Compiling to object code inside GHCi
	Running the interpreter in a separate process
	FAQ and Things To Watch Out For

	Using runghc
	Usage
	runghc flags
	GHC Flags

	Using GHC
	Using GHC
	Warnings and sanity-checking
	Optimisation (code improvement)
	Using Concurrent Haskell
	Using SMP parallelism
	Flag reference
	Running a compiled program
	Filenames and separate compilation
	Packages
	GHC Backends
	Options related to a particular phase
	Using shared libraries
	Debugging the compiler

	Profiling
	Cost centres and cost-centre stacks
	Compiler options for profiling
	Time and allocation profiling
	Profiling memory usage
	hp2ps – Rendering heap profiles to PostScript
	Profiling Parallel and Concurrent Programs
	Observing Code Coverage
	Using “ticky-ticky” profiling (for implementors)

	Advice on: sooner, faster, smaller, thriftier
	Sooner: producing a program more quickly
	Faster: producing a program that runs quicker
	Smaller: producing a program that is smaller
	Thriftier: producing a program that gobbles less heap space

	GHC Language Features
	Language options
	Unboxed types and primitive operations
	Syntactic extensions
	Extensions to data types and type synonyms
	Extensions to the record system
	Extensions to the ``deriving'' mechanism
	Pattern synonyms
	Class and instances declarations
	Type families
	Datatype promotion
	Kind polymorphism and Type-in-Type
	Levity polymorphism
	Type-Level Literals
	Constraints in types
	Extensions to type signatures
	Lexically scoped type variables
	Bindings and generalisation
	Visible type application
	Implicit parameters
	Arbitrary-rank polymorphism
	Impredicative polymorphism
	Typed Holes
	Partial Type Signatures
	Custom compile-time errors
	Deferring type errors to runtime
	Template Haskell
	Arrow notation
	Bang patterns and Strict Haskell
	Assertions
	Static pointers
	Pragmas
	Rewrite rules
	Special built-in functions
	Generic classes
	Generic programming
	Roles
	HasCallStack
	Concurrent and Parallel Haskell
	Safe Haskell

	Foreign function interface (FFI)
	GHC extensions to the FFI Addendum
	Using the FFI with GHC

	Extending and using GHC as a Library
	Source annotations
	Using GHC as a Library
	Compiler Plugins

	What to do when something goes wrong
	When the compiler “does the wrong thing”
	When your program “does the wrong thing”

	Debugging compiled programs
	Tutorial
	Requesting a stack trace from Haskell code
	Requesting a stack trace with SIGUSR2
	Implementor's notes: DWARF annotations
	Further Reading

	Other Haskell utility programs
	``Yacc for Haskell'': happy
	Writing Haskell interfaces to C code: hsc2hs

	Running GHC on Win32 systems
	Starting GHC on Windows platforms
	Running GHCi on Windows
	Interacting with the terminal
	Differences in library behaviour
	Using GHC (and other GHC-compiled executables) with Cygwin
	Building and using Win32 DLLs

	Known bugs and infelicities
	Haskell standards vs. Glasgow Haskell: language non-compliance
	Known bugs or infelicities

	Eventlog encodings
	Heap profiler event log output

	Care and feeding of your GHC User's Guide
	Basics
	Citations
	Admonitions
	Documenting command-line options and GHCi commands
	Style Conventions
	GHC command-line options reference
	ReST reference materials

	Indices and tables
	Bibliography
	Index

