GHC User’s Guide Documentation
Release 8.4.4

GHC Team

October 13, 2018

CONTENTS

The Glasgow Haskell Compiler License

Introduction to GHC

2.1 Obtaining GHC e e e e e e e
2.2 Meta-information: Web sites, mailing lists, etc.
2.3 Reporting bugsin GHC e
2.4 GHC version numbering policy e

Release notes for version 8.4.1
3.1 Highlights e e e e e e e e
3.2 Fulldetails. e e

Release notes for version 8.4.2

4.1 Highlights e e e e e e
4.2 Fulldetails. e e e e
4.3 Included libraries e e e e e

Release notes for version 8.4.3

5.1 Highlights e e e
5.2 Fulldetails. e e e e e
5.3 Included libraries e e e e

Release notes for version 8.4.4

6.1 Highlights e e e e e
6.2 Fulldetails. e e e e e e
6.3 Included libraries @ e e e

Using GHCi

7.1 Introduction to GHCi e e e e e
7.2 Loading source files e
7.3 Loading compiled code e e e
7.4 Interactive evaluation atthe prompt
7.5 The GHCiDebugger i e e e e e e e e e e e e
7.6 Invoking GHCi e e e e e e e e e e e e
7.7 GHCicommands v ittt e et e e e e
7.8 The :setand :seticommands,
7.9 The .ghci and .haskelinefiles
7.10 Compiling to object code inside GHCi
7.11 Running the interpreter in a separate process
7.12 FAQ and Things To WatchOutFor

8 Using runghc

8.1 Usage o e e e e e e e e e e e
8.2 runghcflags e e e e e e e e e
8.3 GHC FIags i i i e e e e e e e e e e e e e e e e e e

9 Using GHC

9.1 Using GHC e e e e e e e e e e e e e e
9.2 Warnings and sanity-checking oo
9.3 Optimisation (code improvement) e
9.4 Using Concurrent Haskell
9.5 Using SMP parallelism e
9.6 Flagreference i i i i e e e e e e e
9.7 Running a compiled program e e
9.8 Filenames and separate compilation
9.9 Packages e e e e e e e e
9.10 GHC Backends i i e e e e e e e e
9.11 Options related to a particularphase
9.12 Using shared libraries 0 i e e e e e
9.13 Debugging the compiler e

10Profiling

10.1 Cost centres and cost-centre stacks L L.
10.2 Compiler options for profiling,
10.3 Time and allocation profiling
10.4 Profiling memory USAge v v v v v v e e e e e e e e e e e e e e e e e e e
10.5 hp2ps - Rendering heap profiles to PostScript
10.6 Profiling Parallel and Concurrent Programs
10.7 Observing Code COVETAgE v v v v v v vt e et e e e e e e e e e e e e
10.8 Using “ticky-ticky” profiling (for implementors)

11 Advice on: sooner, faster, smaller, thriftier

11.1 Sooner: producing a program more quickly
11.2 Faster: producing a program that runs quicker
11.3 Smaller: producing a program thatissmaller
11.4 Thriftier: producing a program that gobbles less heap space

12GHC Language Features

12.1 Language options o i v i i i e
12.2 Unboxed types and primitive operations
12.3 Syntactic extensions e e e e e e e e e
12.4 Extensions to data types and type synonyms
12.5 Extensions to the record system
12.6 Extensions to the “deriving” mechanism.
12.7 Pattern Ssynonyms o e
12.8 Class and instances declarations
12.9 Type families o e e e e
12.1Matatype promotion e e e e e e e e e e e e e e
12.11Kind polymorphism and Type-in-Type,
12.12Levity polymorphism e e e e e e e
12.13Type-Level Literals e e e e e e e
12.14Constraints in types L e e e e
12.13Fxtensions to type signatureso
12.1@.exically scoped type variables
12.17Bindings and generalisation o oo
12.18Visible type application e

12.19mplicit parameters e e e e e e e e e e e e e 387

12.2Arbitrary-rank polymorphism e 390
12.21Impredicative polymorphism L e 394
12.22Typed Holes o e e e e e e 395
12.23artial Type Signatures e e 397
12.24Custom compile-time errors e e e e e e 402
12.2Deferring type errors toruntime L L e e 403
12.26Template Haskell e e e e e e e e 404
12.27Arrow notation e e e e e e e e e 414
12.28ang patterns and Strict Haskell 420
12.29ASSETTIONS v v it i e 427
12.30Btatic pointers e e e e e e e e e e 428
12.31IPTagmas . . . o v o v o e 430
12.3Rewriterules e e e e e e 4472
12.3Fpecial built-in functions 449
12.34Generic ClassSes v . v i i e e e e e e e e e e e e e e e e 449
12.35G€eneric programming v v v v v v vt e e e e e e e e e e e e e e e e e e 449
12.36R0les e e e 453
12.3HasCallStack e e e e 456
12.38oncurrent and Parallel Haskell 458
12.3%afe Haskell 0 e 460
13 Foreign function interface (FFI) 471
13.1 GHC differences to the FFI Chapter 471
13.2 GHC extensions to the FFI Chapter. 472
13.3 Using the FFIwith GHC e e 474
14 Extending and using GHC as a Library 483
14.1 Source annotations i i e e e e e e e e e e e e e e e 483
14.2 Using GHC asa Library i e s e e e e e 484
14.3 Compiler Plugins e e e e e e e e 485
15What to do when something goes wrong 493
15.1 When the compiler “does the wrong thing” 493
15.2 When your program “does the wrong thing” 494
16 Debugging compiled programs 495
16.1 Tutorial e e e e e e e e e 495
16.2 Requesting a stack trace from Haskellcode 497
16.3 Requesting a stack trace with SIGQUIT 497
16.4 Implementor’s notes: DWARF annotations 498
16.5 Further Reading e e e e e 499
17 Other Haskell utility programs 501
17.1 “Yacc for Haskell”: happy o o 0 i i e e e 501
17.2 Writing Haskell interfaces to C code: hsc2hs 501
18 Running GHC on Win32 systems 505
18.1 Starting GHC on Windows platforms 505
18.2 Running GHCion Windows i i i i i e e e e e e e e e 505
18.3 Interacting with the terminal 506
18.4 Differences in library behaviour 506
18.5 Using GHC (and other GHC-compiled executables) with Cygwin 506
18.6 Building and using Win32 DLLs o0 i e 507

19 Known bugs and infelicities

19.1 Haskell standards vs. Glasgow Haskell: language non-compliance

19.2 Known bugs or infelicities

20Eventlog encodings

20.1 Heap profilereventlogoutput,

21Care and feeding of your GHC User’s Guide

21.1Basics.
21.2 Citations
21.3 Admonitions

21.4 Documenting command-line options and GHCi commands

21.5 Style Conventions
21.6 ReST reference materials

22 Indices and tables
Bibliography

Index

511
511
516

519
519

521
521
525
525
526
527
527

529
531
533

GHC User’s Guide Documentation, Release 8.4.4

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 8.4.4

2 CONTENTS

CHAPTER
ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GHC User’s Guide Documentation, Release 8.4.4

4 Chapter 1. The Glasgow Haskell Compiler License

CHAPTER
TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 27), and a batch compiler, described throughout Using GHC
(page 73). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 243).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 213) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page

http://www.haskell.org/
http://www.haskell.org/ghc/
https://ghc.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/

GHC User’s Guide Documentation, Release 8.4.4

* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where (y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 193)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__ GLASGOW_HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since

6 Chapter 2. Introduction to GHC

http://ghc.haskell.org/trac/ghc/
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://ghc.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories
http://www.haskell.org/ghc/dist/current/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories

GHC User’s Guide Documentation, Release 8.4.4

interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 79)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when -XCPP (page 193) is used).
See Standard CPP macros (page 193) for details.

2.4. GHC version numbering policy 7

GHC User’s Guide Documentation, Release 8.4.4

8 Chapter 2. Introduction to GHC

CHAPTER
THREE

RELEASE NOTES FOR VERSION 8.4.1

The significant changes to the various parts of the compiler are listed in the following sec-
tions. There have also been numerous bug fixes and performance improvements over the
8.2.1 release.

Note: This compiling this release requires GCC 4.7 or newer due to Trac #14244.

3.1 Highlights

The highlights, since the 8.2.1 release, are:
* GHC is now capable of deriving more instances

* More refinement of the -XTypeInType (page 362) story and improvements in type error
messages.

* Further improvements in code generation

* Incorporation of library changes including the Phase 2 of the Semigroup-Monoid Pro-
posal

* A variety of Windows compatibility improvements

* Many, many bug fixes.

3.2 Full details

3.2.1 Language

* Data families have been generalised a bit: a data family declaration can now end with
a kind variable k instead of Type. Additionally, data/newtype instance no longer need
to list all the patterns of the family if they don’t wish to; this is quite like how regular
datatypes with a kind signature can omit some type variables.

» There are now fewer restrictions regarding whether kind variables can appear on the
right-hand sides of type and data family instances. Before, there was a strict require-
ments that all kind variables on the RHS had to be explicitly bound by type patterns on
the LHS. Now, kind variables can be implicitly bound, which allows constructions like
these:

https://ghc.haskell.org/trac/ghc/ticket/14244

GHC User’s Guide Documentation, Release 8.4.4

data family Nat :: k -> k -> *

-- k is implicitly bound by an invisible kind pattern

newtype instance Nat :: (k -> *) -> (k -> *) -> * where
Nat :: (forall xx. f xx -> g xx) -> Nat f g

class Funct f where
type Codomain f :: *
instance Funct ('KProxy :: KProxy o) where
-- 0 is implicitly bound by the kind signature
-- of the LHS type pattern ('KProxy)
type Codomain 'KProxy = NatTr (Proxy :: o -> *)

Implicitly bidirectional pattern synonyms no longer allow bang patterns (!) orirrefutable
patterns (~) on the right-hand side. Previously, this was allowed, although the bang
patterns and irrefutable patterns would be silently ignored when used in an expression
context. This is now a proper error, and explicitly bidirectional pattern synonyms should
be used in their stead. That is, instead of using this (which is an error):

data StrictJust a = Just !a

Use this:

data StrictJust a <- Just 'a where
StrictJust 'a = Just a

GADTs with kind-polymorphic type arguments now require -XTypeInType (page 362).
For instance, consider the following,

data G :: k -> * where
GInt 11 G Int
GMaybe :: G Maybe

In previous releases this would compile with -XPolyKinds (page 362) alone due to bug
Trac #13391. As of GHC 8.4, however, this requires -XTypeInType (page 362). Note that
since GADT kind signatures aren’t generalized, this will also require that you provide a
CUSK (page 364) by explicitly quantifying over the kind argument, k,

data G :: forall k. k -> * where
GInt 1 G Int
GMaybe :: G Maybe

The order in which type variables are quantified in GADT constructor type signatures
has changed. Before, if you had MKT as below:

data T a where
MKT :: forall b a. b -> T a

Then the type of MkT would (counterintuitively) be forall a b. b -> T a! Now, GHC
quantifies the type variables in the order that the users writes them, so the type of MKT
isnow forall b a. b -> T a (this matters for -XTypeApplications (page 385)).

The new -XEmptyDataDeriving (page 296) extension allows deriving Eq, 0rd, Read, and
Show instances directly for empty data types, as in data Empty deriving Eq. (Previ-
ously, this would require the use of -XStandaloneDeriving (page 297) to accomplish.)

One can also now derive Data instances directly for empty data types (as in data Empty
deriving Data) without needing to use -XStandaloneDeriving (page 297). However,
since already requires a GHC extension (-XDeriveDataTypeable (page 305)), one does

10

Chapter 3. Release notes for version 8.4.1

https://ghc.haskell.org/trac/ghc/ticket/13391

GHC User’s Guide Documentation, Release 8.4.4

not need to enable -XEmptyDataDeriving (page 296) to do so. This also goes for other
classes which require extensions to derive, such as -XDeriveFunctor (page 299).

* Hexadecimal floating point literals (e.g. 0x0.1p4), enabled with -XHexFloatLiterals
(page 252). See Hexadecimal floating point literals (page 252) for the full details.

3.2.2 Compiler

* LLVM code generator (e.g. -fllvm (page 196)) compatible with LLVM releases in the
5.0 series.

* Add warning flag -Wmissing-export-1lists (page 92) which causes the type checker to
warn when a module does not include an explicit export list.

* The configure script now no longer accepts --with-TOOL flags (e.g. --with-nm, --
with-1d, etc.). Instead, these are taken from environment variables, as is typical in
autoconf scripts. Forinstance, ./configure --with-nm=/usr/local/bin/nmturnsinto
./configure NM=/usr/local/bin/nm.

e Derived Functor, Foldable, and Traversable instances are now optimized when their
last type parameters have phantom roles. Specifically,

fmap _ = coerce
traverse _ x = pure (coerce Xx)
foldMap _ _ = mempty

These definitions of foldMap and traverse are lazier than the ones we would otherwise
derive, as they may produce results without inspecting their arguments at all.

See also Deriving Functor instances (page 299), Deriving Foldable instances (page 302),
and Deriving Traversable instances (page 304).

* Derived instances for empty data types are now substantially different than before. Here
is an overview of what has changed. These examples will use a running example of data
Empty a to describe what happens when an instance is derived for Empty:

- Derived Eq and Ord instances would previously emit code that used error:

instance Eq (Empty a) where
(==) = error "Void =="

instance Ord (Empty a) where
compare = error "Void compare"

Now, they emit code that uses maximally defined, lazier semantics:

instance Eq (Empty a) where
== _ = True

instance Ord (Empty a) where
compare _ _ = EQ

- Derived Read instances would previous emit code that used parens:

instance Read (Empty a) where
readPrec = parens pfail

But parens forces parts of the parsed string that it doesn’t need to. Now, the derived
instance will not use parens (that it, parsing Empty will always fail, without reading

3.2. Full details 11

GHC User’s Guide Documentation, Release 8.4.4

any input):

instance Read (Empty a) where
readPrec = pfail

Derived Show instances would previously emit code that used error:

instance Show (Empty a) where
showsPrec = error "Void showsPrec"

Now, they emit code that inspects the argument. That is, if the argument diverges,
then showing it will also diverge:

instance Show (Empty a) where
showsPrec _ x = case x of {}

Derived Functor, Foldable, Traversable, Generic, Genericl, Lift, and Data in-
stances previously emitted code that used error:

instance Functor Empty where
fmap = error "Void fmap"

instance Foldable Empty where
foldMap = error "Void foldMap"

instance Traversable Empty where
traverse = error "Void traverse"

instance Generic (Empty a) where
from = M1 (error "No generic representation for empty datatype Empty")
to (M1 _) = error "No values for empty datatype Empty"

-- Similarly for Genericl

instance Lift (Empty a) where
lift _ = error "Can't lift value of empty datatype Empty"

instance Data a => Data (Empty a) where
gfoldl _ _ _ = error "Void gfoldl"
toConstr _ = error "Void toConstr"

Now, derived Functor, Traversable, " "Generic, Genericl, Lift, and Data in-
stances emit code which inspects their arguments:

instance Functor Empty where
fmap _ x = case x of {}

instance Traversable Empty where
traverse _ x = pure (case x of {})

instance Generic (Empty a) where
from x = M1 (case x of {})
to (M1 x) = case x of {}

-- Similarly for Genericl

instance Lift (Empty a) where
lift x = pure (case x of {})

12

Chapter 3. Release notes for version 8.4.1

GHC User’s Guide Documentation, Release 8.4.4

instance Data a => Data (Empty a) where
gfoldl _ x = case x of {}
toConstr x = case x of {}

Derived Foldable instances now are maximally lazy:

instance Foldable Empty where
foldMap _ _ = mempty

Derived Foldable instances now derive custom definitions for null instead of using the
default one. This leads to asymptotically better performance for recursive types not
shaped like cons-lists, and allows null to terminate for more (but not all) infinitely large
structures.

Configure on Windows now supports the --enable-distro-toolchain configure flag,
which can be used to build a GHC using compilers on your PATH instead of using the
bundled bindist. See Trac #13792

GHC now enables -fllvm-pass-vectors-in-regs (page 102) by default. This means
that GHC will now use native vector registers to pass vector arguments across function
calls.

The optional instance keyword is now usable in type family instance declarations. See
Trac #13747

Lots of other bugs. See Trac for a complete list.

New flags -fignore-optim-changes (page 162) and -fignore-hpc-changes (page 162)
allow GHC to reuse previously compiled modules even if they were compiled with differ-
ent optimisation or HPC flags. These options are enabled by default by --interactive
(page 76). See Trac #13604

3.2.3 Runtime system

Function hs_add root() was removed. It was a no-op since GHC-7.2.1 where module
initialisation stopped requiring a call to hs_add root().

Proper import library support added to GHC which can handle all of the libraries pro-
duced by dl1tool. The limitation of them needing to be named with the suffix .dl1l.ais
also removed. See Trac #13606, Trac #12499, Trac #12498

The GHCi runtime linker on Windows now supports the big-obj file format.

The runtime system’s native stack backtrace (page 497) support on POSIX platforms is
now triggered by SIGQUIT instead of SIGUSR2 as it was in previous releases. This change
is to bring GHC’s behavior into compliance with the model set by the most Java virtual
machine implementations.

The GHC runtime on Windows now uses Continue handlers instead of Vectorized han-
dlers to trap exceptions. This change gives other exception handlers a chance to han-
dle the exception before the runtime does. Furthermore The RTS flag --install-seh-
handlers= Can be used on Wndows to completely disable the runtime’s handling of ex-
ceptions. See Trac #13911, Trac #12110.

The GHC runtime on Windows can now generate crash dumps on unhandled exceptions
using the RTS flag - -generate-crash-dumps (page 143).

3.2.

Full details 13

https://ghc.haskell.org/trac/ghc/ticket/13792
https://ghc.haskell.org/trac/ghc/ticket/13747
https://ghc.haskell.org/trac/ghc/query?status=closed&milestone=8.4.1&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=priority
https://ghc.haskell.org/trac/ghc/ticket/13604
https://ghc.haskell.org/trac/ghc/ticket/13606
https://ghc.haskell.org/trac/ghc/ticket/12499
https://ghc.haskell.org/trac/ghc/ticket/12498
https://ghc.haskell.org/trac/ghc/ticket/13911
https://ghc.haskell.org/trac/ghc/ticket/12110

GHC User’s Guide Documentation, Release 8.4.4

* The GHCIi runtime linker now avoid calling GCC to find libraries as much as possible by

caching the list of search directories of GCC and querying the file system directly. This
results in much better performance, especially on Windows.

* The GHC runtime on Windows can now generate stack traces on unhandled exceptions.

When running in GHCi more information is displayed about the symbols if available. This
behavior can be controlled with the RTS flag -generate-stack-traces=<yes|no>.

3.2.4 Template Haskell

» Template Haskell now reifies data types with GADT syntax accurately. Previously, TH

used heuristics to determine whether a data type should be reified using GADT syntax,
which could lead to incorrect results, such as data Tl a = (a ~ Int) => MKT1 being
reified as a GADT and data T2 a where MkT2 :: Show a => T2 a not being reified as
a GADT.

In addition, reified GADT constructors now more accurately track the order in which
users write type variables. Before, if you reified MKT as below:

data T a where
MKT :: forall b a. b -> T a

Then the reified type signature of MkT would have been headed by ForallC [PlainTV
a, PlainTV b]. Now, reifying MKT will give a type headed by ForallC [PlainTV b,
PlainTV a], as one would expect.

Language.Haskell.TH.FamFlavour, which was deprecated in GHC 8.2, has been re-
moved.

3.2.5 base library

* Blank strings can now be used as values for environment variables using the Sys-

tem.Environment.Blank module. See Trac #12494

Data.Type.Equality.==is now a closed type family. It works for all kinds out of the box.
Any modules that previously declared instances of this family will need to remove them.
Whereas the previous definition was somewhat ad hoc, the behavior is now completely
uniform. As a result, some applications that used to reduce no longer do, and conversely.
Most notably, (==) no longer treats the *, j -> k, or () kinds specially; equality is tested
structurally in all cases.

3.2.6 Build system

* dl1l-split has been removed and replaced with an automatic partitioning utility gen-

d1l1. This utility can transparently split and compile any DLLs that require this. Note that
the rts and base can not be split at this point because of the mutual recursion between
base and rts. There is currently no explicit dependency between the two in the build
system and such there is no way to notify base that the rts has been split, or vice versa.
(see Trac #5987).

14

Chapter 3. Release notes for version 8.4.1

https://ghc.haskell.org/trac/ghc/ticket/12494
https://ghc.haskell.org/trac/ghc/ticket/5987

GHC User’s Guide Documentation, Release 8.4.4

3.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 8.4.4 The compiler itself
Cabal 2.2.0.1 Dependency of ghc-pkg utility
Win32 2.6.1.0 Dependency of ghc library
array 0.5.2.0 Dependency of ghc library
base 4.11.1.0 Core library
binary 0.8.5.1 Dependency of ghc library
bytestring 0.10.8.2 Deppendency of ghc library
containers 0.5.11.0 Dependency of ghc library
deepseq 1.4.3.0 Dependency of ghc library
directory 1.3.1.5 Dependency of ghc library
filepath 1.4.2 Dependency of ghc library
ghc-boot 8.4.4 Internal compiler library
ghc-compact 0.1.0.0 Core library
ghc-prim 0.5.2.0 Core library
ghci 8.44 The REPL interface
haskeline 0.7.4.2 Dependency of ghci executable
hpc 0.6.0.3 Dependency of hpc executable
integer-gmp 1.0.2.0 Core library
mtl 2.2.2 Dependency of Cabal library
parsec 3.1.13.0 Dependency of Cabal library
process 1.6.3.0 Dependency of ghc library
template-haskell | 2.13.0.0 Core library
text 1.2.3.1 Dependency of Cabal library
time 1.8.0.2 Dependency of ghc library
transformers 0.5.5.0 Dependency of ghc library
unix 2.7.2.2 Dependency of ghc library
xhtml 3000.2.2.1 | Dependency of haddock executable
3.3.1 Win32

Attention: This release is a backwards incompatible release which corrects the type of
certain APIs. See issue #24.

3.3. Included libraries

15

https://github.com/haskell/win32/issues/24

GHC User’s Guide Documentation, Release 8.4.4

16 Chapter 3. Release notes for version 8.4.1

CHAPTER
FOUR

RELEASE NOTES FOR VERSION 8.4.2

4.1 Highlights

This is a bug-fix release resolving several regressions introduced in 8.4.1.
The highlights, since the 8.4.1 release, are:

» Fixed a regression causing uses of Control.Exception.evaluate to be incorrectly op-
timised, resulting in incorrect evaluation behavior (Trac #13930)

* Fix a regression causing the interpreter to segmentation fault when built with profiling
(Trac #14705)

* DWARF debug information support has been significantly improved (Trac #14894, Trac
#14779)

* A regression in runtime performance of code involving newtypes has been fixed (Trac
#14936)

4.2 Full details

In addition to the highlights listed above, this release resolves a number of other issues,
described below.

4.2.1 Compiler
* A bug affecting GHC’s debug output support (-g (page 495)) which resulted in invalid
code being generated for string literals (Trac #13868)

» Trac #14918, where Read instances for types with field names containing # would fail to
parse, has been fixed.

* Several compiler panics have been resolved (Trac #12158, Trac #15002, Trac #14933,
Trac #14959)

* Fix a regression in which derived Read instances for record data types with field names
ending with # (by way of -XMagicHash (page 251)) would no longer parse valid output.

4.2.2 Runtime system

* A bug causing panics while running programs with retainer profiling (-hr (page 223))
was fixed (Trac #14947)

17

https://ghc.haskell.org/trac/ghc/ticket/13930
https://ghc.haskell.org/trac/ghc/ticket/14705
https://ghc.haskell.org/trac/ghc/ticket/14894
https://ghc.haskell.org/trac/ghc/ticket/14779
https://ghc.haskell.org/trac/ghc/ticket/14779
https://ghc.haskell.org/trac/ghc/ticket/14936
https://ghc.haskell.org/trac/ghc/ticket/14936
https://ghc.haskell.org/trac/ghc/ticket/13868
https://ghc.haskell.org/trac/ghc/ticket/14918
https://ghc.haskell.org/trac/ghc/ticket/12158
https://ghc.haskell.org/trac/ghc/ticket/15002
https://ghc.haskell.org/trac/ghc/ticket/14933
https://ghc.haskell.org/trac/ghc/ticket/14959
https://ghc.haskell.org/trac/ghc/ticket/14947

GHC User’s Guide Documentation, Release 8.4.4

4.2.3 Template Haskell

No changes.

4.2.4 ghc library

No changes.

4.2.5 base library

* Version bumped to 4.11.1.0 to account for the addition of GHC.IO.FixIOException
Add the readFieldHash function to GHC.Read which behaves like readField, but for a

field that ends with a # symbol.

4.2.6 integer-gmp library

* Version bumped to 1.0.2.0 to account for the addition of powModSecInteger.

* Define powModSecInteger, a “secure” version of powModInteger using the mpz_powm sec

function.

4.2.7 Build system

* configure now takes a - -disable-dtrace flag, allowing workaround of Trac #15040.
* A bug breaking GHC builds bootstrapped on Darwin has been fixed (Trac #14972)

4.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 8.44 The compiler itself
Cabal 2.2.0.1 Dependency of ghc-pkg utility
Win32 2.6.1.0 Dependency of ghc library
array 0.5.2.0 Dependency of ghc library
base 4.11.1.0 Core library
binary 0.8.5.1 Dependency of ghc library
bytestring 0.10.8.2 Deppendency of ghc library
containers 0.5.11.0 Dependency of ghc library
deepseq 1.4.3.0 Dependency of ghc library
directory 1.3.1.5 Dependency of ghc library
filepath 1.4.2 Dependency of ghc library
ghc-boot 8.44 Internal compiler library
ghc-compact 0.1.0.0 Core library
ghc-prim 0.5.2.0 Core library
Continued on next page
18 Chapter 4. Release notes for version 8.4.2

https://ghc.haskell.org/trac/ghc/ticket/15040
https://ghc.haskell.org/trac/ghc/ticket/14972

GHC User’s Guide Documentation, Release 8.4.4

Table 4.1 - continued from previous page

Package Version Reason for inclusion

ghci 8.44 The REPL interface

haskeline 0.7.4.2 Dependency of ghci executable
hpc 0.6.0.3 Dependency of hpc executable
integer-gmp 1.0.2.0 Core library

mtl 2.2.2 Dependency of Cabal library
parsec 3.1.13.0 Dependency of Cabal library
process 1.6.3.0 Dependency of ghc library
template-haskell | 2.13.0.0 Core library

text 1.2.3.1 Dependency of Cabal library
time 1.8.0.2 Dependency of ghc library
transformers 0.5.5.0 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library
xhtml 3000.2.2.1 | Dependency of haddock executable

4.3.

Included libraries

19

GHC User’s Guide Documentation, Release 8.4.4

20 Chapter 4. Release notes for version 8.4.2

CHAPTER
FIVE

RELEASE NOTES FOR VERSION 8.4.3

5.1 Highlights

This is a bug-fix release resolving several regressions introduced in 8.4.1.
The highlights, since the 8.4.2 release, are:

* Abug (Trac #15068) causing GHC to produce assembler that would be rejected by some
versions of GNU Binutils, has been fixed.

* GHC.Compact. compact now properly handles SmallArrays (Trac #13857)

* A bug (Trac #15038) resulting in memory corruption and crashes in some uses of un-
boxed sums has been fixed.

* GHC now logs a message when an environment file (page 180) is loaded (Trac #15145).

5.2 Full details

In addition to the highlights listed above, this release resolves a number of other issues,
described below.

5.2.1 Compiler

No changes beyond those listed in Highlights.

5.2.2 Runtime system

* A bug causing aggressive potentially resulting in crashes when (nursery chunks
(page 145)) are used with a changing capability count has been fixed.

5.2.3 Template Haskell

No changes.

5.2.4 ghc library

No changes.

21

https://ghc.haskell.org/trac/ghc/ticket/15068
https://ghc.haskell.org/trac/ghc/ticket/13857
https://ghc.haskell.org/trac/ghc/ticket/15038
https://ghc.haskell.org/trac/ghc/ticket/15145

GHC User’s Guide Documentation, Release 8.4.4

5.2.5 base library

* Version bumped to 4.11.1.0 to account for the addition of GHC.IO.FixIOException

¢ Add the readFieldHash function to GHC.Read which behaves like readField, but for a
field that ends with a # symbol.

5.2.6 integer-gmp library

No changes.

5.2.7 Build system

No changes.

5.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 8.44 The compiler itself
Cabal 2.2.0.1 Dependency of ghc-pkg utility
Win32 2.6.1.0 Dependency of ghc library
array 0.5.2.0 Dependency of ghc library
base 4.11.1.0 Core library
binary 0.8.5.1 Dependency of ghc library
bytestring 0.10.8.2 Deppendency of ghc library
containers 0.5.11.0 Dependency of ghc library
deepseq 1.4.3.0 Dependency of ghc library
directory 1.3.1.5 Dependency of ghc library
filepath 1.4.2 Dependency of ghc library
ghc-boot 8.44 Internal compiler library
ghc-compact 0.1.0.0 Core library
ghc-prim 0.5.2.0 Core library
ghci 8.44 The REPL interface
haskeline 0.7.4.2 Dependency of ghci executable
hpc 0.6.0.3 Dependency of hpc executable
integer-gmp 1.0.2.0 Core library
mtl 2.2.2 Dependency of Cabal library
parsec 3.1.13.0 Dependency of Cabal library
process 1.6.3.0 Dependency of ghc library
template-haskell | 2.13.0.0 Core library
text 1.2.3.1 Dependency of Cabal library
time 1.8.0.2 Dependency of ghc library
transformers 0.5.5.0 Dependency of ghc library
unix 2.7.2.2 Dependency of ghc library
xhtml 3000.2.2.1 | Dependency of haddock executable

22

Chapter 5. Release notes for version 8.4.3

CHAPTER
SIX

RELEASE NOTES FOR VERSION 8.4.4

6.1 Highlights

This is a bug-fix release resolving several regressions introduced in 8.4.1.
The highlights, since the 8.4.3 release, are:

* A bug which could result in memory unsafety with certain uses of touch# has been re-
solved. (Trac #14346)

* A compiler panic triggered by some GADT record updates has been fixed (Trac #15499)

» The text library has been updated, fixing several serious bugs in the version shipped
with GHC 8.4.3 (see #227, #221, and #197.

* A serious code generation bug in the LLVM code generation, potentially resulting in
incorrect evaluation of floating point expressions, has been fixed (Trac #14251)

6.2 Full details

In addition to the highlights listed above, this release resolves a number of other issues,
described below.

6.2.1 Compiler

* A compiler panic triggered by case alternatives matching on invalid tags returned by
dataToTag#, has been fixed (Trac #15436)

* Package environments can now be explicitly disabled using the new -package-env -
flag. (Trac #13753)

6.2.2 Runtime system

No changes.

6.2.3 Template Haskell

No changes.

23

https://ghc.haskell.org/trac/ghc/ticket/14346
https://ghc.haskell.org/trac/ghc/ticket/15499
https://github.com/haskell/text/issues/227
https://github.com/haskell/text/issues/221
https://github.com/haskell/text/issues/197
https://ghc.haskell.org/trac/ghc/ticket/14251
https://ghc.haskell.org/trac/ghc/ticket/15436
https://ghc.haskell.org/trac/ghc/ticket/13753

GHC User’s Guide Documentation, Release 8.4.4

6.2.4 ghc library

No changes.

6.2.5 base library

* Version bumped to 4.11.1.0 to account for the addition of GHC.IO.FixIOException

¢ Add the readFieldHash function to GHC.Read which behaves like readField, but for a
field that ends with a # symbol.

6.2.6 integer-gmp library

No changes.

6.2.7 Build system

No changes.

6.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 8.44 The compiler itself
Cabal 2.2.0.1 Dependency of ghc-pkg utility
Win32 2.6.1.0 Dependency of ghc library
array 0.5.2.0 Dependency of ghc library
base 4.11.1.0 Core library
binary 0.8.5.1 Dependency of ghc library
bytestring 0.10.8.2 Deppendency of ghc library
containers 0.5.11.0 Dependency of ghc library
deepseq 1.4.3.0 Dependency of ghc library
directory 1.3.1.5 Dependency of ghc library
filepath 1.4.2 Dependency of ghc library
ghc-boot 8.4.4 Internal compiler library
ghc-compact 0.1.0.0 Core library
ghc-prim 0.5.2.0 Core library
ghci 8.4.4 The REPL interface
haskeline 0.7.4.2 Dependency of ghci executable
hpc 0.6.0.3 Dependency of hpc executable
integer-gmp 1.0.2.0 Core library
mtl 2.2.2 Dependency of Cabal library
parsec 3.1.13.0 Dependency of Cabal library
process 1.6.3.0 Dependency of ghc library
template-haskell | 2.13.0.0 Core library

Continued on next page

24 Chapter 6. Release notes for version 8.4.4

GHC User’s Guide Documentation, Release 8.4.4

Table 6.1 - continued from previous page

Package Version Reason for inclusion

text 1.2.3.1 Dependency of Cabal library

time 1.8.0.2 Dependency of ghc library
transformers 0.5.5.0 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 | Dependency of haddock executable

6.3.

Included libraries

25

GHC User’s Guide Documentation, Release 8.4.4

26 Chapter 6. Release notes for version 8.4.4

CHAPTER
SEVEN

USING GHCI

GHCi ! is GHC'’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you're familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all ? the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 43)).

7.1 Introduction to GHCi

Let’s start with an example GHCIi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type :? (page 57) to see the list of com-
mands available, and a half line description of each of them. We’ll explain most of these
commands as we go along, and there is complete documentation for all the commands in
GHCi commands (page 54).

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

Prelude> x = 42
Prelude> x

42

Prelude>

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

27

http://www.haskell.org/hugs/

GHC User’s Guide Documentation, Release 8.4.4

7.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
n

1
fac n

* fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory ® then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.
To load a Haskell source file into GHCi, use the : load (page 58) command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
0k, modules loaded: Main.

*Main>

GHCi has loaded the Main module, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 36)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the : load (page 58) command (hint: : load (page 58) can be abbreviated to
:1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-1loaded-modules
Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 58) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

7.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 58),
or specify it when you invoke ghci, you can give a filename rather than a module name. This

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

28 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the -i (page 158) option on the GHCi
command line, like so:

or it can be set using the :set (page 60) command from within GHCi (see Setting GHC
command-line options in GHCi (page 65)) *

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

7.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 60) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 162)).

7.3 Loading compiled code

When you load a Haskell source module into GHC,], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with :1load (page 58), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

A
/\
B C
\/

D

We can compile D, then load the whole program, like this:

4 Note that in GHCi, and - -make (page 76) mode, the -i (page 158) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -1i (page 158) option is used to specify the search path
for interface files, see The search path (page 158).

7.3. Loading compiled code 29

GHC User’s Guide Documentation, Release 8.4.4

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B

(interpreted)
Compiling C (
(

s,
s, interpreted)
s, interpreted)
D.

0).

Compiling A
0Ok, modules loaded: A, B, C
*Main>

B.h
C.h
A.h
D (

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 198) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command :show modules (page 62) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs
*Main> :load A
Compiling D

Compiling B

(D.hs, interpreted

(B.h
Compiling C (C.h

(A.h

, D

s,)

s, interpreted)

s, interpreted)
Compiling A s, interpreted)
Ok, modules loaded: A, B, C

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCIi also rejected C’s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 60), only : load (page 58):

30 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 36)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 58), for
example

Prelude> :load *A
Compiling A (A.hs, interpreted)
*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the - fobject-
code (page 196) option (see Compiling to object code inside GHCi (page 67)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally

run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

7.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 5+5

10

7.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

7.4. Interactive evaluation at the prompt 31

GHC User’s Guide Documentation, Release 8.4.4

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

7.4.2 Using do notation at the prompt

GHCIi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 32) is set then GHCi will print the result of a statement
if and only if:

*The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

*The variable’s type is not polymorphic, is not (), and is an instance of Show.
Of course, you can also bind normal non-IO expressions using the let-statement:

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!

Prelude>

32 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Note that let bindings do not automatically print the value bound, unlike monadic bindings.
You can also define functions at the prompt:

Prelude> add a b =a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [] =n; fopn (h:t) =h op” fopnt
Prelude> f (+) 0 [1..3]

6

Prelude>

{

:}

Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g opn [] =n

Prelude| g op n (h:t) = h "op” gopnt
Prelude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 66)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

Warning: Temporary bindings introduced at the prompt only last until the next :1load
(page 58) or :reload (page 60) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 59): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 62)
command:

Prelude> :show bindings
x i Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

7.4. Interactive evaluation at the prompt 33

GHC User’s Guide Documentation, Release 8.4.4

Prelude> :set +t

Prelude> let (x:xs) = [1..]
x :: Integer

xs :: [Integer]

7.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m

Prelude> let x = 42
Prelude| y =3
Prelude|
Prelude>

Explicit braces and semicolons can be used instead of layout:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| 1ift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do

Prelude| putStrLn "Hello, World!"
Prelude| ~C

Prelude>

34 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

7.4.4 Type, class and other declarations
At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T = A | B

Prelude> 1let f A = True; f B = False
Prelude> data T=A | B | C

Prelude> f A

<interactive>:2:3:
Couldn't match expected type “main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it =f A
Prelude>

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCIi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 344).) For example:

Prelude> type family T a b
Prelude> type instance T a b = a
Prelude> 1let uc :: a -> T a b; uc = id

Prelude> type instance Ta b =0b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

Prelude> type family T a b
-- This is a brand-new T, unrelated to the old one

7.4. Interactive evaluation at the prompt 35

GHC User’s Guide Documentation, Release 8.4.4

Prelude> type instance Ta b =1b
Prelude> uc 'a' :: Int

<interactive>:8:1: error:
e Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
* In the expression: uc 'a' :: Int
In an equation for ‘it’': it = uc 'a' :: Int

7.4.5 What'’s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 58), :add (page 54), and :reload (page 60) commands (The effect of
:load on what is in scope (page 36)).

* The import declaration (Controlling what is in scope with import (page 37)).

* The :module (page 59) command (Controlling what is in scope with the :module com-
mand (page 38)).

The command :show imports (page 62) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

The effect of :1load on what is in scope

The : load (page 58), :add (page 54), and :reload (page 60) commands (Loading source files
(page 28) and Loading compiled code (page 29)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of {(module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

36 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the

current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 58) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude Bar (GHCi automatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 62):

Prelude> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0Ok, modules loaded: Main.

*Main> :show imports

:module +*Main -- added automatically

*Main>

and the automatically-added import is replaced the next time you use :1load (page 58), :add
(page 54), or : reload (page 60). It can also be removed by :module (page 59) as with normal
imports.

Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 62):

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO0 Map> :show imports
import Prelude -- implicit

import System.IO

import Data.Map as Map

Prelude System.IO0 Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

7.4. Interactive evaluation at the prompt 37

GHC User’s Guide Documentation, Release 8.4.4

Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 59) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 59) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 59) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

:module and :load

It might seem that :module (page 59)/import and :load (page 58)/:add (page 54)/: reload
(page 60) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 58),
:add (page 54) and : reload (page 60), and can be shown with :show modules (page 62).

* The set of modules that are currently in scope at the prompt. This set is modified by im-
port and :module (page 59), and it is also modified automatically after : Load (page 58),
:add (page 54), and : reload (page 60), as described above. The set of modules in scope
can be shown with :show imports (page 62).

You can add a module to the scope (via :module (page 59) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 59)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

7.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 59) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

38 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[”foo”,”bar"]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 60)
command:

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

7.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCIi implicitly binds its value to the variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

7.4. Interactive evaluation at the prompt 39

GHC User’s Guide Documentation, Release 8.4.4

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eg.:

Prelude> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
Prelude> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is
it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

7.4.8 Type defaulting in GHCi

ExtendedDefaultRules
Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])

[l

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 40) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

» Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

40 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won'’t try to print a result when running them. This is particularly important
for printf, which has an instance that returns I0 a. However, it is only able to return unde-
fined (the reason for the instance having this type is so that printf doesn’t require extensions
to the class system), so if the type defaults to Integer then ghci gives an error when running
a printf.

See also I/O actions at the prompt (page 31) for how the monad of a computational expression
defaults to I0 if possible.

Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 40) is in effect) are:
any numeric class, Show, Eq, 0rd, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 40), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

7.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

7.4. Interactive evaluation at the prompt 41

GHC User’s Guide Documentation, Release 8.4.4

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (expr) (page 42) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 55), :add (page 54), :load (page 58),
:reload (page 60) or, :set (page 60).

-interactive-print (expr)
Set the function used by GHCIi to print evaluation results. Expression must be of type C
a=>a ->1I0 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"
The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (expr) (page 42) flag can also be used when running GHC in -e
mode:

7.4.10 Stack Traces in GHCi

[This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a separate
process (page 68)) and runs it in profiling mode to collect call stack information. Note that
because we’re running the interpreted code in profiling mode, all packages that you use must
be compiled for profiling. The -prof flag to GHCi only works in conjunction with - fexternal-
interpreter.

There are three ways to get access to the current call stack.

42 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 456)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 215)).

7.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger °.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

» Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

* Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 50)).

7.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:
gsort [] = []

gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (gsort [8, 4, 6, 3, 1, 23, 11, 18])

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

7.5. The GHCi Debugger 43

GHC User’s Guide Documentation, Release 8.4.4

First, load the module into GHCi:

Prelude> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
0k, modules loaded: Main.
*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [al]
right :: [a]

[gsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the :1list (page 58) command:

[qsort.hs:2:15-46] *Main> :list

1 gsort [] =[]

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 58) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables © of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 63), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

44 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 60), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *Main> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 60) does not force any evaluation.
The idea is that :print (page 60) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 48)). Rather than forcing thunks, :print (page 60) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

The flag -fprint-evld-with-show instructs :print (page 60) to reuse available Show in-
stances when possible. This happens only when the contents of the variable being inspected
are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 57) instead of :print (page 60). The : force (page 57) command behaves exactly like
:print (page 60), except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since :force (page 57) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[gsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[gsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 57). For example:

[gsort.hs:2:15-46] *Main> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *Main> seq _tl1 ()
()

[gsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to

7.5. The GHCi Debugger 45

GHC User’s Guide Documentation, Release 8.4.4

use :def (page 56) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] *Main> :continue
Stopped at gsort.hs:2:15-46
_result :: [a]

a :: a

left :: [a]

right :: [al

[gsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 94) in Warnings
and sanity-checking (page 84)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

46 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using : show breaks (page 62):

*Main> :show breaks
[0] Main gsort.hs:1:11-12
[1] Main qgsort.hs:2:15-46

To delete a breakpoint, use the :delete (page 57) command with the number given in the
output from :show breaks (page 62):

*Main> :delete 0
*Main> :show breaks
[1] Main qgsort.hs:2:15-46

To delete all breakpoints at once, use :delete *.

7.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 62) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 62) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 62) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 62) begins the evaluation of {(expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 62)
and :stepmodule (page 62) commands work similarly.

The :1list (page 58) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *Main> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[gsort.hs:5:7-47] *Main>

In fact, GHCIi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 58):

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step

Stopped at qsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *Main>

7.5. The GHCi Debugger a7

GHC User’s Guide Documentation, Release 8.4.4

7.5.3 Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[gsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of qsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 62):

[gsort.hs:(1,0)-(3,55)] *Main> :show context

--> main
Stopped at gsort.hs:2:15-46
--> qsort [1,3]

Stopped at qsort.hs:(1,0)-(3,55)
[qsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 54):

[gsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon
*Main>

7.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 62)). So it will probably be necessary to issue a : continue (page 56) immediately when
evaluating result. Alternatively, you can use :force (page 57) which ignores breakpoints.

7.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 213)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).

48 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 62) command. For example, if
we set a breakpoint on the base case of gqsort:

*Main> :list gsort

1 gsort [] = []

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12

*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[gqsort.hs:1:11-12] *Main> :hist
- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 54):

[qsort.hs:1:11-12] *Main> :back
Logged breakpoint at qgsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 57) can be used to
traverse forward in the history.

The :trace (page 62) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like : step (page 62).

7.5. The GHCi Debugger 49

GHC User’s Guide Documentation, Release 8.4.4

The history is only available when using : trace (page 62); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)
Default 50
Modify the depth of the evaluation history tracked by GHCi.

7.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 155)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a breakpoint on
the location in the source code that throws the exception, and then use :trace (page 62) and
:history (page 57) to establish the context. However, head is in a library and we can’t set
a breakpoint on it directly. For this reason, GHCi provides the flags - fbreak-on-exception
(page 50) which causes the evaluator to stop when an exception is thrown, and -fbreak-
on-error (page 51), which works similarly but stops only on uncaught exceptions. When
stopping at an exception, GHCi will act just as it does when a breakpoint is hit, with the
deviation that it will not show you any source code location. Due to this, these commands are
only really useful in conjunction with :trace (page 62), in order to log the steps leading up
to the exception. For example:

*Main> :set -fbreak-on-exception

*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *Main> :hist

- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]

as :: [al

a:: a

[-1: gsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c¢' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

50 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

-fbreak-on-exception
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-exception (page 50) breaks on all exceptions.

-fbreak-on-error
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 51) breaks on only those exceptions which would
otherwise be uncaught.

7.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]
X i a
f::a->b
xs :: [al

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 43)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*Main> seq x ()
*Main> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*Main> :t X

X :: Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

7.5. The GHCi Debugger 51

GHC User’s Guide Documentation, Release 8.4.4

*Main> let b = f 10
*Main> :t b
b ::b
*Main> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0
*Main> :p b
b= (t2::a)
*Main> seq b ()
()

*Main> :t b

b :: a
*Main> :p b
b = Just 10

*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer

*Main> f 20

Just 20

*Main> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

7.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

» Implicit parameters (see Implicit parameters (page 387)) are only available at the scope
of a breakpoint if there is an explicit type signature.

7.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 54)). For example, to start GHCi
and load the program whose topmost module is in the file Main. hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 73)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

52 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

-flocal-ghci-history
By default, GHCi keeps global history in ~/.ghc/ghci history or %APP-
DATA%/<app>/ghci history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCi is launched.

7.6.1 Packages
Most packages (see Using Packages (page 174)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the -
package (pkg) (page 175) flag:

$ ghci -package readline
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:
Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

7.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 28).) For example, to load the “m” library:

$ ghci -1m
On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 197) command-line option,

* the standard library search path for your system, which on some systems may be over-
ridden by setting the LD LIBRARY PATH environment variable.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.d11l. Again,
GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .obj depending on your platform) from the
command-line. Just add the name the object file to the command line.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 197)).

7.6. Invoking GHCi 53

GHC User’s Guide Documentation, Release 8.4.4

7.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

tadd[*] (module)
Add {module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while : set
+C (page 64) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo

GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 48) for more about GHCi’s debugging facilities. See also: :trace (page 62), :his-
tory (page 57), : forward (page 57).

tbreak [(identifier) | [{(module)] (line) [{column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 46).

tbrowse[!] [[*] (module)]
Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If (module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What's really in scope at the prompt? (page 36)).

There are two variants of the browse command:

«If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of :browse (page 54) is
available.

*Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the com-
mand, thus :browse!, they are listed individually. The !-form also annotates the
listing with comments giving possible imports for each group of entries. Here is an
example:

54 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Prelude> :browse! Data.Maybe
- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (althought they
are available in fully qualified form in the GHCIi session - see What’s really in scope
at the prompt? (page 36)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

ted (dir)
Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 62) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:emd (expr)
Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 55) command is useful with :def (page 56) and :set stop (page 61).

:complete (type) [(n)-1[{(m)] (string-literal)
This command allows to request command completions from GHCi even when inter-
acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.

When called, :complete (page 55) prints the (n) to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and {m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and {(m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 55) begins with a header line containing three space-
delimited fields:

*An integer denoting the number 1 of printed completions,
*an integer denoting the total number of completions available, and finally

*a string literal denoting a common prefix to be added to the returned completion
candidates.

7.7. GHCi commands 55

GHC User’s Guide Documentation, Release 8.4.4

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"

"Foreign.Storable"

Prelude> :complete repl "map"

33"

Ilmapll

"mapM*"

"mapM_"

Prelude> :complete repl 5-10 "map"
03"

:continue

Continue the current evaluation, when stopped at a breakpoint.

:ctags [(filename)]

Generates a “tags” file for Vi-style editors (:ctags (page 56)) or Emacs-style editors
(:etags (page 57)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

:def[!] (name) (expr)

:def (page 56) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines a new GHCi command :name, implemented by the Haskell ex-
pression (expr), which must have type String -> I0 String. When :name args is typed
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.

That'’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

Prelude> let date = Data.Time.getZonedTime >>= print >> return ""
Prelude> :def date date
Prelude> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of

56

Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

:cd (page 55):

Prelude> let mycd d = System.Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_-> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 62) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

redit (file)
Opens an editor to edit the file (file), or the most recently loaded module if (file) is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 60).

:etags
See :ctags (page 56).

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 60). Unlike :print
(page 60), :force (page 57) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 48) for more about GHCi’s debugging facilities. See also: :trace (page 62), :his-
tory (page 57), :back (page 54).

thelp
Hrd

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with :trace (page 62); see Tracing and history (page 48). To set the number
of history entries stored by GHCIi, use the -fghci-hist-size=(n) (page 50) flag.

7.7. GHCi commands 57

GHC User’s Guide Documentation, Release 8.4.4

:info[!] (name)

Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name)},
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : Lload (page 58) or :module (page 59) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {name) in their head.

tissafe [(module)]

Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

tkind[!] (type)

Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 58) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T:: ¥ ->* > %

ghci> :k T Int

T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)

Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [{(module)] (line)

Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!'] [*]{module)

Recursively loads the specified {module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 58) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

58

Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 403) for further motivation and details.

After a : load (page 58) command, the current context is set to:
*(module), if it was loaded successfully, or

*the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 58), or

*Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [(name)]
Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :1loc-at command requires :set +c (page 64) to be set.

:main (argl) ... (argn)
When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

Instead, we can use the :main (page 59) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["fOO","bar"]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run (page 60)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

7.7. GHCi commands 59

GHC User’s Guide Documentation, Release 8.4.4

import (mod)
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 36)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 60) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 60) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 60) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 43) for more information.
See also the :sprint (page 62) command, which works like :print (page 60) but does
not bind new variables.

rquit
Quits GHCIi. You can also quit by typing Control-D at the prompt.
treload[!]
Attempts to reload the current target set (see : load (page 58)) if any of the modules in

the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 403) for further motivation and details.

irun
See :main (page 59).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 64)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 64) for a list of available
options and Interactive-mode options (page 116) for a list of GHCi-specific flags. The
:set (page 60) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 57) to {cmd).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

*%S by the names of the modules currently in scope.
*%1 by the line number (as referenced in compiler messages) of the current prompt.
*%d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .

60 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

*%t by the current time in 24-hour HH:MM:SS format.
*%T by the current time in 12-hour HH:MM:SS format.
*%@ by the current time in 12-hour am/pm format.

*%A by the current time in 24-hour HH:MM format.
*%u by the username of the current user.

*%w by the current working directory.

*%0 by the operating system.

*%a by the machine architecture.

*%N by the compiler name.

*%V by the compiler version.

*%call(cmd [args]) by the result of calling cmd args.
*%% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont (prompt)
Sets the string to be used as the continuation prompt (used when using the : { (page 33)
command) in GHCi.

:set prompt-function (prompt-function)
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What's really in
scope at the prompt? (page 36) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)
Sets the function to be used for the continuation prompt (used when using the :{
(page 33) command) displaying in GHCI.

:set stop (num) (cmd)
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 61) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 56) whenever it is hit
(although GHCi will still emit a message to say the breakpoint was hit). What’s more,
with cunning use of :def (page 56) and :cmd (page 55) you can use :set stop (page 61)
to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else return \":con
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar

techniques.

:seti [(option) ...]
Like :set (page 60), but options set with :seti (page 61) affect only expressions and

7.7. GHCi commands 61

GHC User’s Guide Documentation, Release 8.4.4

commands typed at the prompt, and not modules loaded with :1load (page 58) (in con-
trast, options set with :set (page 60) apply everywhere). See Setting options for inter-
active evaluation only (page 65).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 59)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 55) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 61)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 60)).

:sprint (expr)
Prints a value without forcing its evaluation. :sprint (page 62) is similar to :print
(page 60), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {(expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 47).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint.

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),

62 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

and additionally logs the evaluation steps for later inspection using :history (page 57).
See Tracing and history (page 48).

:type (expression)
Infers and prints the type of (expression), including explicit forall quantifiers for polymor-
phic types. The type reported is the type that would be inferred for a variable assigned
to the expression, but without the monomorphism restriction applied.

*X> :type length
length :: Foldable t => t a -> Int

:type +v (expression)
Infers and prints the type of {(expression), but without fiddling with type variables or class
constraints. This is useful when you are using TypeApplications (page 385) and care
about the distinction between specified type variables (available for type application) and
inferred type variables (not available). This mode sometimes prints constraints (such as
Show Int) that could readily be solved, but solving these constraints may affect the type
variables, so GHC refrains.

*X> :set -fprint-explicit-foralls
*X> :type +v length
length :: forall (t :: * -> *). Foldable t => forall a. t a -> Int

:type +d (expression)
Infers and prints the type of (expression), defaulting type variables if possible. In this
mode, if the inferred type is constrained by any interactive class (Num, Show, Eq, Ord,
Foldable, or Traversable), the constrained type variable(s) are defaulted according to
the rules described under ExtendedDefaultRules (page 40). This mode is quite useful
when the inferred type is quite general (such as for foldr) and it may be helpful to see
a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at (module) (line) (col) (end-line) {(end-col) [(name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case :type-at (page 63) falls back to a general : type
(page 63) like lookup.

The :type-at (page 63) command requires :set +c (page 64) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 56) above).

tunset (option)
Unsets certain options. See The :set and :seti commands (page 64) for a list of available
options.

:uses (module) (line) (col) (end-line) (end-col) [(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

7.7. GHCi commands 63

GHC User’s Guide Documentation, Release 8.4.4

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 63) command requires :set +c (page 64) to be set.

:! (command)
Executes the shell command (command).

7.8 The :set and :seti commands

The :set (page 60) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-”.

Note: At the moment, the :set (page 60) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For

example, :set -DF00='BAR BAZ' will not do what you expect.

7.8.1 GHCi options

GHCi options may be set using :set (page 60) and unset using :unset (page 63).
The available GHCi options are:

iset +c
Collect type and location information after loading modules. The commands :all-types
(page 54), :loc-at (page 59), :type-at (page 63), and :uses (page 63) require +c to be
active.

iset +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 34)).

:set +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

iset +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

iset +t
Display the type of each variable bound after a statement is entered at the prompt. If the

64 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

statement is a single expression, then the only variable binding will be for the variable
it.

7.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 60). For example, to
turn on -Wmissing-signatures (page 92), you would say:

Prelude> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 111)), may be set using :set (page 60). To unset an option, you can set the reverse
option:

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 111) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 175), -I(dir) (page 193), -i(dir)[:{(dir)]*
(page 158), and -1 (lib) (page 197) in particular) will also work, but some may not take
effect until the next reload.

7.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options:
* The loading options apply when loading modules

* The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 60) command modifies both, but there is also a :seti (page 61) command
(for “set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonoLocalBinds

It would be undesirable if MonoLocalBinds (page 384) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use :seti (page 61)
rather than :set (page 60), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 60) and :seti (page 61) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

7.8. The :set and :seti commands 65

GHC User’s Guide Documentation, Release 8.4.4

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 66). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 40)).

*» The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 384)).

7.9 The .ghci and .haskeline files

7.9.1 The .ghci files
When it starts, unless the -ignore-dot-ghci (page 67) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ./.ghci

2. appdata/ghc/ghci.conf, where {(appdata) depends on your system, but is usually some-
thing like C: /Documents and Settings/user/Application Data

3. On Unix: $HOME/.ghc/ghci.conf
4. $HOME/ .ghci

The ghci.conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting lanﬁgua e options in this file it is usually desirable to use :seti (page 61)
rather than :set (page 60) (gsee Setting options for interactive evaluation only (page 65))

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -i (page 158) flag is a static one, but in fact it works to set it
using :set (page 60) like this. The changes won’t take effect until the next : Load (page 58),
though.)

Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your . ghci file, you can use :source file toread GHCicommands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

66 Chapter 7. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 8.4.4

Additionally, any files specified with -ghci-script (page 67) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script
Read a specific file after the usual startup files. Maybe be specified repeatedly for mul-
tiple inputs.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:
1. You have a macro :time and enter :t 3
You get :type 3
2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.
3. You have a macro :time and a macro :type, and enter :t 3

You get :type 3 with your defined macro.

7.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

7.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 196) flag either on the command line or with :set (page 60) (the
option -fbyte-code (page 196) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 60) command typically runs much faster than restart-
ing GHC with --make (page 76) from the command-line, because all the interface files are
already cached in memory.

7.10. Compiling to object code inside GHCi 67

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 8.4.4

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHC],
rather than all top-level bindings as in interpreted modules.

7.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 68) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 217) is in
effect, and in dynamically-linked mode if -dynamic (page 198) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option is
currently not implemented on Windows (it is a no-op), and the external interpreter does
not support the GHCi debugger, so breakpoints and single-stepping don’t work with -
fexternal-interpreter (page 68).

See also the -pgmi (cmd) (page 192) (Replacing the program for one or more phases
(page 191)) and -opti (option) (page 192) (Forcing options to a particular phase
(page 192)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 42)).

* When compiling Template Haskell code with -prof (page 217) we don’t need to compile
the modules without -prof (page 217) first (see Using Template Haskell with Profiling
(page 411)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

7.12 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 98) doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile a module that
uses unboxed tuples and load it into GHCi, however. (Incidentally the previous point,

68 Chapter 7. Using GHCi

GHC User’s Guide Documentation, Release 8.4.4

namely that -0 (page 98) is incompatible with GHCi, is because the bytecode compiler
can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 199) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 58) or
:reload (page 60) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 505).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

7.12. FAQ and Things To Watch Out For 69

GHC User’s Guide Documentation, Release 8.4.4

70 Chapter 7. Using GHCi

CHAPTER
EIGHT

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

8.1 Usage

The runghc command-line looks like:

runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a - -

separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

8.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

* --version: print version information.

8.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, - f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case

71

GHC User’s Guide Documentation, Release 8.4.4

* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

72 Chapter 8. Using runghc

CHAPTER
NINE

USING GHC

9.1 Using GHC

9.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

main = putStrLn "Hello, World!"

To compile the program, use GHC like this:
$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 79) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

73

GHC User’s Guide Documentation, Release 8.4.4

9.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c¢ -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag impli-

cation. For instance, consider - fno-specialise (page 105) and -01 (page 98) (which implies
-fspecialise (page 105)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overriden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the -
fspecialise implied by -01.

Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 431)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 431)).

Only dynamic flags can be used in an OPTIONS GHC pragma (see Static, Dynamic, and Mode
options (page 75)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

74 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

It is not recommended to move all the contents of your Makefiles into your source files, but
in some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-
file (page 160) and have OPTION flags in your module, the OPTIONS GHC will get put into the
generated . hc file).

Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 60) command.

9.1.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:

For example, --make (page 76) or -E (page 76). There may only be a single mode
flag on the command line. The available modes are listed in Modes of operation
(page 76).

Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a OPTIONS GHC pragma in a source file, or set using : set (page 60)
in GHCi.

A few flags are “static”, which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCIi run.

The flag reference tables (Flag reference (page 111)) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi’s :set
(page 60) command; these are listed as “static/:set” in the table.

9.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.S An assembly-language source file, usually produced by the compiler.

.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

9.1. Using GHC 75

GHC User’s Guide Documentation, Release 8.4.4

9.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 76) mode (Using ghc -make
(page 77)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCIi (page 27).

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc
-make (page 77).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 76) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. See
Expression evaluation mode (page 78) for more details.

-E
Stop after preprocessing (.hspp file)
-C
Stop after generating C (. hc file)
-S
Stop after generating assembly (. s file)
-C
Stop after generating object (.o0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 78).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 171).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 490) for details.

--mk-dl1
DLL-creation mode (Windows only). See Creating a DLL (page 508).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.

76 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

- -supported-extensions
--supported-languages
Print the supported language extensions.

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-libdir
Print the path to GHC’s library directory. This is the top of the directory tree
containing GHC'’s libraries, interfaces, and include files (usually something like
/usr/local/lib/ghc-5.04 on Unix). This is the value of $libdir in the package con-
figuration file (see Packages (page 173)).

Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

ghc --make Main.hs

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

ghc Main.hs

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Usingthe -j[(n)] (page 78) flag, you can compile modules in parallel. Specify -j (n) to
compile (n) jobs in parallel. If {(n) is omitted, then it defaults to the number of processors.

9.1. Using GHC 77

GHC User’s Guide Documentation, Release 8.4.4

Any of the command-line options described in the rest of this chapter can be used with - -
make, but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 74)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 76), the linking phase is omitted (same as - -make -no-1link).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -i (page 158)
option can be used to add directories to the search path (see The search path (page 158)).

-il(n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

78 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Phase of the compilation Suffix saying “start Flag saying “stop (suffix of)
system here” after” output file
literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hcor.c -S .S
assembler .S -C .0

linker {other) a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 190) for more details.

Note: Pre-processing is optional, the -cpp (page 193) flag turns it on. See Options affecting
the C pre-processor (page 193) for more details.

Note: The option -E (page 76) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (pa?e 76) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 191) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 79) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-Cc -x hs M.my-hs.

9.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-1libdir modes in Modes
of operation (page 76).

-v
The -v (page 79) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

9.1. Using GHC 79

GHC User’s Guide Documentation, Release 8.4.4

-v{n)
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0@ Disable all non-essential messages (this is the default).

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 76) or --interactive (page 76) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to -dshow-
passes (page 206)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 79)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:

-fprint-unicode-syntax
When enabled GHC prints type signatures using the unicode symbols from the -
XUnicodeSyntax (page 250) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ® Monad m=Vab. ma—-mb-—-mb

-fprint-explicit-foralls
Using -fprint-explicit-foralls (page 80) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f::ra->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

*For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

«If any of the quantified type variables has a kind that mentions a kind variable, e.g.

80 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall (k :: BOX) (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using -fprint-explicit-kinds (page 81) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds

ghci> data T a = MKT

ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T a
ghci> :set -fprint-explicit-foralls
ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T k a

-fprint-explicit-runtime-reps
When -fprint-explicit-runtime-reps (page 81) is enabled, GHC prints RuntimeRep
type variables for levity-polymorphic types. Otherwise GHC will default these to Ptr-
RepLifted. For example,

ghci> :t ($)
($) :: (@ -=>b) ->a ->b
ghci> :set -fprint-explicit-runtime-reps
ghci> :t ($)
($)
:: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).
(a ->b) ->a ->b

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 81) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-equality-relations

Using -fprint-equality-relations (page 81) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equality,
the internal equality relation used in GHC’s solver. Generally, users should not need
to worry about the subtleties here; ~ is probably what you want. Without -fprint-
equality-relations (page 81), GHC prints all of these as ~. See also Equality con-
straints (page 374).

-fprint-expanded-synonyms
When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

9.1. Using GHC 81

GHC User’s Guide Documentation, Release 8.4.4

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration
When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
<= (9)
return
let
AbsBinds [] []
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdType]
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdiagnostics-color=(always|auto|never)
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,

82 Chapter 9. Using GHC

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 8.4.4

it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
*message
-header
*warning
*error
*fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret
Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

test.hs:3:6: parse error on input “where'

becomes:

test296.hs:3:6-10: parse error on input “where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 144).

-Rghc-timing

Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 144).

9.1. Using GHC 83

GHC User’s Guide Documentation, Release 8.4.4

9.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2

(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 190). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 190) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

SSE?2 is unconditionally used on x86-64 platforms.

-msse4.2

(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 190). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 190) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

9.1.8 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s package
database does not contain the rts package, or one wants to specify a specific ghcver-
sions.hto be included. This option can be used to specify the path to the ghcversions.h
file to be included. This is primarily intended to be used by GHC’s build system.

9.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. By default, you get a standard set
of warnings which are generally likely to indicate bugs in your program. These are:

-Woverlapping-patterns (page 93)
-Wwarnings-deprecations (page 87)
-Wdeprecations (page 88)
-Wdeprecated-flags (page 89)
-Wunrecognised-pragmas (page 87)
-Wduplicate-constraints (page 90)
-Wduplicate-exports (page 90)
-Woverflowed-literals (page 89)
-Wempty-enumerations (page 89)
-Wmissing-fields (page 92)
-Wmissing-methods (page 92)
-Wwrong-do-bind (page 96)
-Wunsupported-calling-conventions (page 89)
-Wdodgy-foreign-imports (page 89)
-Winline-rule-shadowing (page 97)

84

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

* -Wunsupported-1llvm-version (page 94)
* -Wtabs (page 94)
* -Wunrecognised-warning-flags (page 86)

The following flags are simple ways to select standard “packages” of warnings:

-W
Provides the standard warnings plus

*-Wunused-binds (page 94)
*-Wunused-matches (page 95)
*-Wunused-foralls (page 96)
*-Wunused-imports (page 95)
*-Wincomplete-patterns (page 91)
*-Wdodgy-exports (page 89)
*-Wdodgy-imports (page 89)
*-Wunbanged-strict-patterns (page 97)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 85) are

e-Wincomplete-uni-patterns (page 91)
*-Wincomplete-record-updates (page 91)
e -Wmonomorphism-restriction (page 94)
e-Wimplicit-prelude (page 91)
*-Wmissing-local-signatures (page 93)
*-Wmissing-exported-signatures (page 93)
e-Wmissing-export-lists (page 92)
e-Wmissing-import-lists (page 92)
*-Wmissing-home-modules (page 97)
*-Widentities (page 90)
*-Wredundant-constraints (page 90)
*-Wpartial-fields (page 97)

-Weverything
Turns on every single warning supported by the compiler.

-Wcompat
Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

*-Wmissing-monadfail-instances (page 88)
*-Wsemigroup (page 89)
*-Wnoncanonical-monoid-instances (page 88)

-Wno-compat
Disables all warnings enabled by -Wcompat (page 85).

-w
Turns off all warnings, including the standard ones and those that -Wall (page 85)
doesn’t enable.

These options control which warnings are considered fatal and cause compilation to abort.

-Werror
Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing

9.2. Warnings and sanity-checking 85

GHC User’s Guide Documentation, Release 8.4.4

batch compilation.
-Werror={(wflag)
Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 85) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

When a warning is emitted, the specific warning flag which controls it is shown.

-fshow-warning-groups
When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.

This warning is on by default.

-Wtyped-holes
Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 395) and Deferring
type errors to runtime (page 403)

This warning is on by default.

-Wdeferred-type-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 403)

This warning is on by default.
-fdefer-type-errors
Implies -fdefer-typed-holes (page 86)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 403)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 395) into
warnings. Using a value that depends on a typed hole produces a runtime error, the

86 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

same as -fdefer-type-errors (page 86) (which implies this option). See Typed Holes
(page 395) and Deferring type errors to runtime (page 403).

Implied by -fdefer-type-errors (page 86). See also -Wtyped-holes (page 86).

-fdefer-out-of-scope-variables
Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a value
that depends on a typed hole produces a runtime error, the same as -fdefer-type-
errors (page 86) (which implies this option). See Typed Holes (page 395) and Deferring
type errors to runtime (page 403).

Implied by -fdefer-type-errors (page 86). See also -Wdeferred-out-of-scope-
variables (page 87).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless -XPartialTypeSignatures (page 397) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 397).

This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.

This option is on by default.

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as IN-
LINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page 85).
This option is off by default.

-Wall-missed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page 85).
This option is off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or

9.2. Warnings and sanity-checking 87

GHC User’s Guide Documentation, Release 8.4.4

DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 431) for
more details on the pragmas.

This option is on by default.

-Wdeprecations

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 431) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 87).

This option is on by default.

-Wamp

This option is deprecated.

Caused a warning to be emitted when a definition was in conflict with the AMP
(Applicative-Monad proosal).

-Wnoncanonical-monad-instances

Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
*If return is defined it must be canonical (i.e. return = pure).
«If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:

*Warn if pure is defined backwards (i.e. pure
eWarn if (*>) is defined backwards (i.e. (*>)

This option is off by default.

return).

(>>)).

-Wnoncanonical-monadfail-instances

Warn if noncanonical Monad or MonadFail instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
oIf fail is defined it must be canonical (i.e. fail = Control.Monad.Fail.fail).

Moreover, in MonadFail instance declarations:
*Warn if fail is defined backwards (i.e. fail = Control.Monad.fail).

See also -Wmissing-monadfail-instances (page 88).

This option is off by default.

-Wnoncanonical-monoid-instances

Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
*If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
*Warn if (<>) is defined backwards (i.e. (<>) = mappend).

This warning is off by default. However, it is part of the -Wcompat (page 85) option group.

88

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

-Wmissing-monadfail-instances
Warn when a failable pattern is used in a do-block that does not have a MonadFail
instance.

See also -Wnoncanonical-monadfail-instances (page 88).

Being part of the -Wcompat (page 85) option group, this warning is off by default, but
will be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup
Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1.Instances of Monoid should also be instances of Semigroup

2.The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 85) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.

This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

foreign import "f" f :: FunPtr t

on the grounds that it probably should be

foreign import "&f" f :: FunPtr t

The first form declares that ‘f* is a (pure) C function that takes no arguments and returns
a pointer to a C function with type ‘t’, whereas the second form declares that ‘f* itself is
a C function with type ‘t’. The first declaration is usually a mistake, and one that is hard
to debug because it results in a crash, hence this warning.

-Wdodgy-exports
Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports
Causes a warning to be emitted in the following cases:

*When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

*When an import statement hides an entity that is not exported.

-Woverflowed-literals
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

9.2. Warnings and sanity-checking 89

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC User’s Guide Documentation, Release 8.4.4

-Wempty-enumerations
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wduplicate-constraints
Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 90).
-Wredundant-constraints
Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:
*A redundant constraint within the type signature itself:
f:: (Eq a, Ord @) => a -> a
The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.
*A constraint in the type signature is not used in the code it covers:
f :: EQa=>a->a ->Bool
f xy = True
The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)
Similar warnings are given for a redundant constraint in an instance declaration.

This option is on by default. As usual you can suppress it on a per-module basis with -
Wno-redundant-constraints (page 90). Occasionally you may specifically want a func-
tion to have a more constrained signature than necessary, perhaps to leave yourself
wiggle-room for changing the implementation without changing the API. In that case,
you can suppress the warning on a per-function basis, using a call in a dead binding. For

example:
f :: EQ a =>a ->a -> Bool
f xy = True
where
_ =X == X -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

90 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or this
implicit import is disabled (either by -XNoImplicitPrelude (page 266) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even
if -XNoImplicitPrelude (page 266) would change whether it refers to the Prelude.
For example, no warning is given when 368 means Prelude. fromInteger (368::Pre-
lude.Integer) (where Prelude refers to the actual Prelude module, regardless of the
imports of the module being compiled).

This warning is off by default.

-Wincomplete-patterns
The option -Wincomplete-patterns (page 91) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 91) is enabled.

g [1=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 85).

-Wincomplete-uni-patterns
The flag -Wincomplete-uni-patterns (page 91) is similar to -Wincomplete-patterns
(page 91), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] -> 2
Just k = fy

-fmax-pmcheck-iterations=(n)
Default 2000000

Sets how many iterations of the pattern-match checker will perform before giving up.
This limit is to catch cases where pattern-match checking might be excessively costly
(due to the exponential complexity of coverage checking in the general case). It typi-
cally shouldn’t be necessary to set this unless GHC informs you that it has exceeded the
pattern match checker’s iteration limit (in which case you may want to consider refac-
toring your pattern match, for the sake of future readers of your code.

-Wincomplete-record-updates
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 91) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6}

9.2. Warnings and sanity-checking 91

GHC User’s Guide Documentation, Release 8.4.4

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-fields
This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists
Since 8.4.1

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where
p X = X

The -Wmissing-export-lists (page 92) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-lists (page 92) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z‘s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The warning is suppressed if the method name begins with an underscore. Here’s an
example where this is useful:

class C a where

_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... _simpleFn ...

The idea is that: (a) users of the class will only call complexFn; never simpleFn; and (b)
instance declarations can define either complexFn or simpleFn.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 432).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,

92 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

use the -Wmissing-signatures (page 92) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 93).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 93) option. This option takes precedence over -Wmissing-signatures (page 92).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 93).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 93) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 93) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 93) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callin f = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; ignore <- that; return (the other) }

-Worphans
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 172) for details.

The flag -Worphans (page 93) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

: String -> Int
1
1XS)

f
f
L
f ||2||

0
1
2

9.2. Warnings and sanity-checking 93

GHC User’s Guide Documentation, Release 8.4.4

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

-Wsimplifiable-class-constraints

Since 8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a] => a -> a
Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC

goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f:: EQqa=>a->a

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 94).

-Wtabs

Have the compiler warn if there are tabs in your source file.

-Wtype-defaults

Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.

-Wunsupported-1llvm-version

Warn when using - fllvm (page 196) with an unsupported version of LLVM.

-Wunticked-promoted-constructors

Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.

This warning is enabled by default in -Wall (page 85) mode.

-Wunused-binds

Report any function definitions (and local bindings) which are unused. An alias for

924

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

*-Wunused-top-binds (page 95)
*-Wunused-local-binds (page 95)
*-Wunused-pattern-binds (page 95)

-Wunused-top-binds
Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
It is exported, or

It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where

f = let (p,q) = rhsl in t p -- No warning: g is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g =nhx -- Warning: g unused
h = rhs2 -- Warning: h is only used in the
-- right-hand side of another unused binding
~w = True -- No warning: w starts with an underscore

-Wunused-local-binds
Report any local definitions which are unused. For example:

module A (f) where
f = let (p,q) = rhsl in t p -- Warning: g is unused
g =hx -- No warning: g is unused, but is a top-level binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_,) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

1'() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= X::Int. A banged pattern (see Bang patterns and Strict Haskell (page 420)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as

9.2. Warnings and sanity-checking 95

GHC User’s Guide Documentation, Release 8.4.4

unused. The warning is suppressed if the variable name begins with an underscore,
thus:

f _x = True

Note that -Wunused-matches (page 95) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 96) flag.

-Wunused-do-bind

Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

-Wunused-type-patterns

Report all unused type variables which arise from patterns in type family and data family
instances. For instance:

type instance F x y = []

would report x and y as unused. The warning is suppressed if the type variable name
begins with an underscore, like so:

type instance F x y = []

Unlike -Wunused-matches (page 95), -Wunused-type-patterns (page 96) is not implied
by -Wall (page 85). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and ¢ as unused.

-Wwrong-do-bind

Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

96

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

do { popInt 10 ; return 10 }

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 445).

-Wcpp-undef
Since 8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 247) for information about unlifted types.

-Wmissing-home-modules
Since 8.2

When a module provided by the package currently being compiled (i.e. the “home”
package) is imported, but not explicitly listed in command line as a target. Useful for
Cabal to ensure GHC won't pick up modules, not listed neither in exposed-modules, nor
in other-modules.

-Wpartial-fields
Since 8.4

The option -Wpartial-fields (page 97) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 97)
is enabled.

The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

If you’'re feeling really paranoid, the -dcore-1int (page 212) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

9.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off” (begin-
ning with the prefix no-). For instance, while -fspecialise enables specialisation, -fno-
specialise disables it. When multiple flags for the same option appear in the command-line
they are evaluated from left to right. For instance, -fno-specialise -fspecialise will en-
able specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

9.3. Optimisation (code improvement) 97

GHC User’s Guide Documentation, Release 8.4.4

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

9.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ““-O*‘-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-0

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-0dph
Enables all -02 optimisation, sets -fmax-simplifier-iterations=20 and -
fsimplifier-phases=3. Designed for use with Data Parallel Haskell (DPH) (page 460).

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 79), then stand
back in amazement.

9.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat.

-fcase-merge
Default on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-
ample,

98 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

case x of
Red -> el
-> case x of

Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcase-folding
Default on
Allow constant folding in case expressions that scrutinise some primops: For example,

case X ~minusWord# 10## of
10## -> el
20## -> e2
Y -> e3

Is transformed to,

case x of
20## -> el
30## -> e2
-> let v = x “minusWord#™ 10## in e3
-fcall-arity
Default on
Enable call-arity analysis.
-fexitification
Default on
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcpr-anal
Default on
Turn on CPR analysis in the demand analyser.

-fcse

9.3. Optimisation (code improvement) 99

GHC User’s Guide Documentation, Release 8.4.4

Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-

up.
-fstg-cse
Default on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their represetation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off
Make dictionaries strict.
-fdmd-tx-dict-sel
Default on
Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 109) for a dicussion on its use.
-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 516).

-fexpose-all-unfoldings

100 Chapter 9. Using GHC

http://community.haskell.org/~simonmar/papers/multiproc.pdf

GHC User’s Guide Documentation, Release 8.4.4

Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness
Default on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full-laziness. When optimisation in on, and
-fno-full-laziness is not given, some transformations that increase sharing are per-

formed, such as extracting repeated computations from a loop. These are the same
transformations that a fully lazy implementation would do, the difference is that GHC
doesn’t consistently apply full-laziness, so don’t rely on it.

-ffun-to-thunk
Default off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 427)).

-fignore-interface-pragmas
Default off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal

9.3. Optimisation (code improvement) 101

http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 8.4.4

Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 104) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the Trac wiki page.

-fliberate-case
Default off but enabled with -02 (page 98).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It's a bit like the call-pattern
specialiser (- fspec-constr (page 104)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)
Default 2000
Set the size threshold for the liberate-case transformation.
-floopification
Default on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs
Default on

Instructs GHC to use the platform’s native vector registers to pass vector arguments
during function calls. As with all vector support, this requires - fllvm (page 196).

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=(n)
Default 32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.
-fmax-relevant-binds=(n)
Default 6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with -fno-
max-relevant-bindings gives an unlimited number. Syntactically top-level bindings are
also usually excluded (since they may be numerous), but - fno-max- relevant-bindings
includes them too.

102 Chapter 9. Using GHC

https://ghc.haskell.org/trac/ghc/wiki/LateDmd

GHC User’s Guide Documentation, Release 8.4.4

-fmax-valid-substitutions=(n)
Default 6

The type checker sometimes displays a list of valid substitutions for typed holes in error
messages, but only up to some maximum number, set by this flag. Turning it off with
-fno-max-valid-substitutions gives an unlimited number.

-fmax-uncovered-patterns=(n)
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by -
Wincomplete-patterns (page 91) and -Wincomplete-uni-patterns (page 91).

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)
Default 10
If a worker has that many arguments, none will be unpacked anymore.
-fno-opt-coercion
Default coercion optimisation enabled.
Turn off the coercion optimiser.
-fno-pre-inlining
Default pre-inlining enabled
Turn off pre-inlining.
-fno-state-hack
Default state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Default Implied by -00 (page 98), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default yield points enabled
Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to

interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

9.3. Optimisation (code improvement) 103

GHC User’s Guide Documentation, Release 8.4.4

-fpedantic-bottoms
Default off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 103)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (Trac #7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

Note that the graph colouring allocator is a bit experimental and may fail when faced
with code with high register pressure Trac #8657.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 104) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)
Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 442)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 516)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr
Default off but enabled by -02 (page 98).
Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last []1 = error "last"
last (x : [1) X

last (x : xs) last xs

104 Chapter 9. Using GHC

https://ghc.haskell.org/trac/ghc/ticket/7679
https://ghc.haskell.org/trac/ghc/ticket/8657
https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 8.4.4

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [1] = error "last"
last (x : xs) = last' x xs
where
last' x [1 = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -=> b -> a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> 7

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)
Default 2000
Set the size threshold for the SpecConstr transformation.

-fspecialise

9.3. Optimisation (code improvement) 105

GHC User’s Guide Documentation, Release 8.4.4

Default on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 106) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 434)) will
be specialised as well.

-fspecialise-aggressively
Default off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 100) if you want to ensure all calls are specialised.

-fcross-module-specialise
Default on

Specialise INLINABLE (INLINABLE pragma (page 434)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-fsolve-constant-dicts
Default on
When solving constraints, try to eagerly solve super classes using available dictionaries.
For example:

class M a b wherem :: a -> b
type C a b = (Num a, M a b)

f:: CIntb=>b ->1Int -> Int

f_x=x+1

The body of f requires a Num Int instance. We could solve this constraint from the
context because we have C Int b and that provides us a solution for Num Int. However,
we can often produce much better code by directly solving for an available Num Int
dictionary we might have at hand. This removes potentially many layers of indirection
and crucially allows other optimisations to fire as the dictionary will be statically known
and selector functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

-fstrictness

Default on

106 Chapter 9. Using GHC

http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz

GHC User’s Guide Documentation, Release 8.4.4

Switch on the strictness analyser. The implementation is described in the paper ‘“The-
ory and Practice of Demand Analysis in Haskell’<https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf>‘__.

The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This
allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=(n)
Run an additional strictness analysis before simplifier phase (n).

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 439)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A = A 'Int
data B = B !A
newtype C = C B
data D =D !IC

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 246)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 440)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 439)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 440)).

Alternatively you can use - funbox-small-strict-fields (page 107) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

9.3. Optimisation (code improvement) 107

GHC User’s Guide Documentation, Release 8.4.4

Consequences:
1.nothing larger than this will be inlined (unless it has an INLINE pragma)
2.nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The -funfolding-use-threshold=(n) (page 108) is more useful.

-funfolding-dict-discount=(n)
Default 30
How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?
-funfolding-keeness-factor=(n)
Default 1.5
How eager should the compiler be to inline functions?
-funfolding-use-threshold=(n)
Default 60

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and -funfolding-creation-threshold=(n) (page 107) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-fvectorisation-avoidance
Default on
Part of Data Parallel Haskell (DPH) (page 460).

Enable the vectorisation avoidance optimisation. This optimisation only works when
used in combination with the -fvectorise transformation.

While vectorisation of code using DPH is often a big win, it can also produce worse results
for some kinds of code. This optimisation modifies the vectorisation transformation to
try to determine if a function would be better of unvectorised and if so, do just that.

-fvectorise
Default off
Part of Data Parallel Haskell (DPH) (page 460).

Enable the vectorisation optimisation transformation. This optimisation transforms the
nested data parallelism code of programs using DPH into flat data parallelism. Flat
data parallel programs should have better load balancing, enable SIMD parallelism and
friendlier cache behaviour.

108 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

9.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page 199) option (see Options
affecting linking (page 197). This provides two benefits:

* It enables the -N (x) (page 110) to be used, which allows threads to run in parallelism
on a multi-processor or multi-core machine. See Using SMP parallelism (page 109).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 478).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0O or -C, context switches will occur as often as possible (at every
heap block allocation).

9.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 458) we describe the
language features that affect parallelism.

9.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 199) option (see Options affecting linking (page 197)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly

9.4. Using Concurrent Haskell 109

GHC User’s Guide Documentation, Release 8.4.4

it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 100) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

We recommend compiling any code that is intended to be run in parallel with the -
feager-blackholing (page 100) flag.

9.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 110)
options.

-N (x)
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 478)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine . For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

With -maxN{x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error; if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 144)).

The current value of the -N option is available to the Haskell program via Con-
trol.Concurrent.getNumCapabilities, and it may be changed while the program is
running by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qga
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

110 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

When this option is enabled, the OS threads for a capability ¢ are bound to the CPU core
1 using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

9.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 150) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 110) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 144)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

9.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list
its static/dynamic status (see Static, Dynamic, and Mode options (page 75)), and the flag’s
opposite (if available).

9.6.1 Verbosity options

More details in Verbosity options (page 79)

Flag Description Type Reverse
-fdiagnostics- Use colors in error mes- | dynamic
color=(always|auto|never) sages
(page ??)
-fdiagnostics-show- Whether to show snippets | dynamic| -fno-diagnostics-
caret (page ??) of original source code show-caret
-ferror-spans (page ??) Output full span in error | dynamic

messages

Continued on next page

9.6. Flag reference 111

GHC User’s Guide Documentation, Release 8.4.4

Table 9.1 - continued from previous page

Flag Description Type Reverse
-fhide-source-paths hide module source and | dynamic
(page ??) object paths
-fprint-equality- Distinguish between | dynamic| -fno-print-
relations (page ??) equality relations when equality-relations
printing
-fprint-expanded- In type errors, also print | dynamic| -fno-print-
synonyms (page ??) type-synonym-expanded expanded-synonyms
types.
-fprint-explicit- Print coercions in types dynamic| -fno-print-
coercions (page ??) explicit-coercions
-fprint-explicit- Print explicit forall quan- | dynamic| -fno-print-
foralls (page ??) tification in types. See explicit-foralls
also -XExplicitForAll
(page 377)
-fprint-explicit-kinds Print explicit kind | dynamic| -fno-print-
(page ??) foralls and kind argu- explicit-kinds
ments in types. See
also -XKindSignatures
(page 379)
-fprint-explicit- Print RuntimeRep vari- | dynamic| -fno-print-
runtime-rep (page ??) ables in types which are explicit-runtime-
runtime-representation reps
polymorphic.
-fprint-explicit- Print RuntimeRep vari- | dynamic| -fno-print-
runtime-reps (page ??) ables in types which are explicit-runtime-
runtime-representation reps
polymorphic.
-fprint-potential- display all available in- | dynamic| -fno-print-
instances (page ??) stances in type error mes- potential-
sages instances
-fprint-typechecker- Print extra information | dynamic| -fno-print-
elaboration (page ??) from typechecker. typechecker-
elaboration
-fprint-unicode-syntax Use unicode syntax when | dynamic| -fno-print-
(page ??) printing expressions, unicode-syntax
types and kinds. See
also -XUnicodeSyntax
(page 250)
-fshow-hole-constraints | Show constraints when re- | dynamic
(page ??) porting typed holes
-Rghc-timing (page ??) Summarise timing stats | dynamic
for GHC (same as +RTS -
tstderr).
-v (page ??) verbose mode (equivalent | dynamic
to -v3)
-v(n) (page ??) set verbosity level dynamic

112

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

9.6.2 Alternative modes of operation

More details in Modes of operation (page 76)

Flag Description Type Reverse

--frontend (module) run GHC with the given | mode

(page ??) frontend plugin; see Fron-
tend plugins (page 490)
for details.

--help (page ?7?), -? | Display help mode

(page ??)

--info (page ??) display information about | mode
the compiler

--interactive (page ??) | Interactive mode - nor- | mode
mally used by just run-
ning ghci; see Using GHCi
(page 27) for details.

- -make (page ??) Build a multi-module | mode
Haskell program, auto-
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc -make
(page ??) for details.

--mk-dll (page ??) DLL-creation mode (Win- | mode
dows only)

--numeric-version display GHC version (nu- | mode

(page ??) meric only)

--print-libdir display GHC library direc- | mode

(page ??) tory

--show-iface (file) display the contents of an | mode

(page ??) interface file.

--show-options display the supported | mode

(page ??) command line options

--supported- display the supported lan- | mode

extensions (page ?7?), | guage extensions

--supported-languages

(page ??)

--version (page ??), -V | display GHC version mode

(page ??)

-e (expr) (page ??) Evaluate expr; see Ex- | mode
pression evaluation mode
(page ??) for details.

-M (page ??) generate dependency | mode

information suitable for
use in a Makefile; see
Dependency generation
(page 171) for details.

9.6. Flag reference

113

GHC User’s Guide Documentation, Release 8.4.4

9.6.3 Which phases to run

More details in Batch compiler mode (page 78)

Flag Description Type Reverse
-C (page ??) Stop after generating C | mode
(.hc file)
-C (page ??) Stop after generating ob- | mode
ject (. o) file
-E (page ??) Stop after preprocessing | mode
(.hspp file)
-F (page ??) Enable the wuse of a | dynamic
pre-processor (page ?27?)
(set with -pgmF {(cmd)
(page ??))
-S (page ??) Stop after generating as- | mode
sembly (.s file)
-x (suffix) (page ??) Override default be- | dynamic
haviour for source files
9.6.4 Redirecting output
More details in Redirecting the compilation output(s) (page 158)
Flag Description Type Reverse
- -exclude- Regard (file) as “sta- | dynamic
module=(file) (page ??) | ble”; i.e., exclude it from
having dependencies on it.
-ddump-mod-cycles Dump module cycles dynamic
(page ??)
-dep-makefile (file) Use (file) as the makefile dynamic
(page ??)
-dep-suffix (suffix) Make dependencies that | dynamic
(page ??) declare that files with suf-
fix .(suf)(osuf) depend
on interface files with suf-
fix . (suf)hi
-dumpdir (dir) redirect dump files dynamic
(page ??)
-hcsuf (suffix) set the suffix to use for in- | dynamic
(page ??) termediate C files
-hidir (dir) (page ??) set directory for interface | dynamic
files
-hisuf (suffix) set the suffix to use for in- | dynamic
(page ??) terface files
-include-pkg-deps Regard modules imported | dynamic
(page ??) from packages as unstable
-0 (file) (page ??) set output filename dynamic
-odir (dir) (page ??) set directory for object | dynamic

files

Continued on next page

114

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.4 - continued from previous page

Flag Description Type Reverse
-ohi (file) (page ??) set the filename in which | dynamic
to put the interface
-osuf (suffix) set the output file suffix dynamic
(page ??)
-outputdir (dir) set output directory dynamic
(page ??)
-stubdir (dir) redirect FFI stub files dynamic
(page ??)
9.6.5 Keeping intermediate files
More details in Keeping Intermediate Files (page 160)
Flag Description Type Reverse
-keep-hc-file Retain intermediate .hc | dynamic
(page ??), -keep-hc- | files.
files (page ??)
-keep-hi-files Retain intermediate .hi | dynamic| -no-keep-hi-files
(page ??) files (the default).
-keep-1llvm-file Retain intermediate LLVM | dynamic
(page ??), -keep-llvm- | .11 files. Implies -fllvm
files (page ??) (page 196).
-keep-o-files (page ??) | Retain intermediate .o | dynamic| -no-keep-o-files
files (the default).
-keep-s-file (page ??), | Retain intermediate .s | dynamic
-keep-s-files (page ??) | files.
-keep-tmp-files Retain all intermediate | dynamic
(page ??) temporary files.
9.6.6 Temporary files
More details in Redirecting temporary files (page 161)
Flag Description Type Reverse
-tmpdir (dir) (page ??) | set the directory for tem- | dynamic
porary files
9.6.7 Finding imports
More details in The search path (page 158)
Flag Description Type Reverse
-1 (page ??) Empty the import direc- | dynamic
tory list :set

Continued on next page

9.6. Flag reference

115

GHC User’s Guide Documentation, Release 8.4.4

Table 9.7 - continued from previous page

Flag Description Type Reverse
-i{dir)[:(dir)]* add (dir), (dir2), etc. toim- | dynamic
(page ??) port path :set

9.6.8 Interface file options

More details in Other options related to interface files (page 161)

Flag Description Type Reverse
--show-iface (file) See Modes of operation | mode
(page 76) (page 76).
-ddump-hi (page ??) Dump the new interface to | dynamic
stdout
-ddump-hi-diffs Show the differences vs. | dynamic
(page ??) the old interface
-ddump-minimal- Dump a minimal set of im- | dynamic
imports (page ??) ports

9.6.9 Recompilation checking

More details in The recompilation checker (page 162)

Flag Description Type Reverse
-fforce-recomp Turn off recompilation | dynamic| -fno-force-recomp
(page ??) checking. This is implied

by any -ddump-X option
when compiling a single
file (i.e. when using -c

(page 76)).
-fignore-hpc-changes Do not recompile modules | dynamic| -fno-ignore-hpc-
(page ??) just to match changes to changes

HPC flags. This is espe-
cially useful for avoiding
recompilation when using
GHCi, and is enabled by

default for GHCi.
-fignore-optim- Do not recompile modules | dynamic| -fno-ignore-optim-
changes (page ??) just to match changes to changes

optimisation flags. This is
especially useful for avoid-
ing recompilation when
using GHCi, and is en-
abled by default for GHCi.

9.6.10 Interactive-mode options

More details in The .ghci and .haskeline files (page 66)

116 Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Flag Description Type Reverse
-fbreak-on-error Break on uncaught excep- | dynamic| -fno-break-on-error
(page ??) tions and errors (page ??)
-fbreak-on-exception Break on any exception | dynamic| -fno-break-on-
(page ??) thrown (page ??) exception
-fghci-hist-size=(n) Set the number of entries | dynamic
(page ??) GHCi keeps for :history.
See The GHCi Debugger
(page ??).
-flocal-ghci-history Use current directory for | dynamic| -fno-local-ghci-
(page ??) the GHCi command his- history
tory file .ghci-history.
-fprint-bind-result Turn on printing of | dynamic| -fno-print-bind-
(page ??) binding results in GHCi result
(page ??)
-fshow-loaded-modules | Show the names of mod- | dynamic
(page ??) ules that GHCi loaded af-
ter a : load (page ??) com-
mand.
-ghci-script (page ??) Read additional .ghci | dynamic
files
-ignore-dot-ghci Disable reading of .ghci | dynamic
(page ??) files
-interactive-print Select the function to | dynamic
(expr) (page ??) use for printing evalu-
ated expressions in GHCi
(page ??)
9.6.11 Packages
More details in Packages (page 173)
Flag Description Type Reverse
-clear-package-db Clear the package db | dynamic
(page ??) stack.
-distrust (pkg) Expose package (pkg) and | dynamic
(page ??) set it to be distrusted. See | :set
Safe Haskell (page ??).
-distrust-all- Distrust all packages by | dynamic
packages (page ??) default. See Safe Haskell | :set
(page ??).
-fpackage-trust Enable Safe Haskell | dynamic
(page ??) (page ??) trusted package
requirement for trustwor-
thy modules.
-global-package-db Add the global package db | dynamic
(page ??) to the stack.
-hide-all-packages Hide all packages by de- | dynamic

(page ??)

fault

Continued on next page

9.6. Flag reference

117

GHC User’s Guide Documentation, Release 8.4.4

Table 9.11 - continued from previous page

Flag Description Type Reverse
-hide-package (pkg) Hide package (pkg) dynamic
(page ??) :set
-ignore-package (pkg) | Ignore package (pkg) dynamic
(page ??) 1set
-no-auto-link- Don’t automatically link in | dynamic
packages (page ??) the base and rts packages.
-no-global-package-db | Remove the global pack- | dynamic
(page ??) age db from the stack.
-no-user-package-db Remove the user’s pack- | dynamic
(page ??) age db from the stack.
-package (pkg) Expose package (pkg) dynamic
(page ??) 1set
-package-db (file) Add (file) to the package | dynamic
(page ??) db stack.
-package-env Use the specified package | dynamic
(file) | (name) (page ??) | environment.
-package-id (unit-id) | Expose package by id | dynamic
(page ??) (unit-id) :set
-this-unit-id (unit- Compile to be part of unit | dynamic
id) (page ??) (i.e. package) (unit-id)
-trust (pkg) (page ??) | Expose package (pkg) and | dynamic
set it to be trusted. See | :set
Safe Haskell (page ??).
-user-package-db Add the user’s package db | dynamic

(page ??)

to the stack.

9.6.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-# LAN-
GUAGE blah #-} pragma in the file itself. See Language options (page 243).

9.6.13 Warnings

More details in Warnings and sanity-checking (page 84)

Flag

Description

Type

Reverse

-fdefer-out-of-scope-
variables (page ??)

Convert variable out
of scope variables er-
rors into warnings.
Implied by -fdefer-
type-errors (page ?7?).
See also -Wdeferred-
out-of-scope-variables
(page ?7?).

dynamic

-fno-defer-out-of-
scope-variables

Continued on next page

118

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

Flag Description Type Reverse
-fdefer-type-errors Turn type errors into | dynamic| -fno-defer-type-
(page ??) warnings, deferring errors
the error until runtime
(page 403). Implies -
fdefer-typed-holes
(page ??) and -fdefer-
out-of-scope-variables
(page ?7?). See also -
Wdeferred-type-errors
(page ??)
-fdefer-typed-holes Convert typed hole | dynamic| -fno-defer-typed-
(page ??) (page 395) errors into holes
warnings, deferring
the error until runtime
(page 403). Implied by
-fdefer-type-errors
(page ?7?). See also -
Wtyped-holes (page ??).
-fhelpful-errors Make suggestions for mis- | dynamic| -fno-helpful-errors
(page ??) spelled names.
- fmax-pmcheck- the iteration limit for the | dynamic
iterations=(n) pattern match checker
(page ??)
-fshow-warning-groups | show which group an emit- | dynamic| -fno-show-warning-
(page ??) ted warning belongs to. groups
-W (page ??) enable normal warnings dynamic| -w (page ??)
-w (page ??) disable all warnings dynamic
-Wall (page ??) enable almost all warnings | dynamic| -w (page ??)
(details in Warnings and
sanity-checking (page ??))
-Wall-missed- warn when specialisation | dynamic| -Wno-all-missed-
specialisations of any overloaded function specialisations
(page ??) fails.
-Wamp (page ??) (deprecated) warn on def- | dynamic| -Wno-amp
initions conflicting with
the Applicative-Monad
Proposal (AMP)
-Wcompat (page ??) enable future compati- | dynamic| -Wno-compat (page ??)
bility warnings (details
in Warnings and sanity-
checking (page ?7?))
-Wcpp-undef (page ??) warn on uses of the #if di- | dynamic

rective on undefined iden-
tifiers

Continued on next page

9.6. Flag reference

119

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

lude numeric conversions
that are probably the iden-
tity (and hence could be
omitted)

Flag Description Type Reverse
-Wdeferred-out- Report warnings when | dynamic| -Wno-deferred-out-
of-scope-variables variable out-of-scope er- of-scope-variables
(page ??) rors are deferred until

runtime (page 403). See

-fdefer-out-of-scope-

variables (page ??).
-Wdeferred-type- Report warnings when | dynamic| -Wno-deferred-type-
errors (page ??) deferred type errors errors

(page 403) are enabled.

This option is enabled by

default. See -fdefer-

type-errors (page ??).
-Wdeprecated-flags warn about uses of com- | dynamic| -Wno-deprecated-
(page ??) mandline flags that are flags

deprecated
-Wdeprecations warn about uses of func- | dynamic| -Wno-deprecations
(page ??) tions & types that have

warnings or deprecated

pragmas. Alias for -

Wwarnings-deprecations

(page ?7?)
-Wdodgy-exports warn about dodgy exports | dynamic| -Wno-dodgy-exports
(page ??)
-Wdodgy-foreign- warn about dodgy foreign | dynamic| -Wno-dodgy-foreign-
imports (page ??) imports import
-Wdodgy-imports warn about dodgy imports | dynamic| -Wno-dodgy-imports
(page ??)
-Wduplicate- warn when a constraint | dynamic| -Wno-duplicate-
constraints (page ??) appears duplicated in a constraints

type signature
-Wduplicate-exports warn when an entity is ex- | dynamic| -Wno-duplicate-
(page ??) ported multiple times exports
-Wempty-enumerations warn about enumerations | dynamic| -Wno-empty-
(page ??) that are empty enumerations
-Werror (page ??) make warnings fatal dynamic| -Wwarn (page ??)
-Weverything (page ??) | enable all warnings sup- | dynamic

ported by GHC
-Whi-shadowing warn when a . hi file in the | dynamic| -Wno-hi-shadowing
(page ??) current directory shadows

a library
-Widentities (page ??) | warn about uses of Pre- | dynamic| -Wno-identities

Continued on next page

120

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

Flag Description Type Reverse
-Wimplicit-prelude warn when the Prelude is | dynamic| -Wno-implicit-
(page ??) implicitly imported prelude
-Wincomplete-patterns | warn when a pattern | dynamic| -Wno-incomplete-
(page ??) match could fail patterns
-Wincomplete-record- warn when a record up- | dynamic| -Wno-incomplete-
updates (page ??) date could fail record-updates
-Wincomplete-uni- warn when a pattern | dynamic| -Wno-incomplete-uni-
patterns (page ??) match in a lambda expres- patterns

sion or pattern binding

could fail
-Winline-rule- Warn if a rewrite RULE | dynamic| -Wno-inline-rule-
shadowing (page ??) might fail to fire because shadowing

the function might be in-

lined before the rule has

a chance to fire. See

How rules interact with

INLINE/NOINLINE prag-

mas (page 445).
-Wmissed- warn when specialisation | dynamic| -Wno-missed-
specialisations of an imported, over- specialisations
(page ??) loaded function fails.
-Wmissing-export- warn when a module dec- | dynamic| -fnowarn-missing-
lists (page ??) laration does not explicitly export-lists

list all exports
-Wmissing-exported- warn about top-level func- | dynamic| -Wno-missing-
signatures (page ??) tions without signatures, exported-signatures

only if they are exported.

takes precedence over -

Wmissing-signatures
-Wmissing-exported- (deprecated) warn about | dynamic| -Wno-missing-
sigs (page ??) top-level functions with- exported-sigs

out signatures, only

if they are exported.

takes precedence over

-Wmissing-signatures
-Wmissing-fields warn when fields of a | dynamic| -Wno-missing-fields
(page ??) record are uninitialised
-Wmissing-home- warn when encountering | dynamic| -Wno-missing-home-

modules (page ??)

a home module imported,
but not listed on the
command line. Useful
for cabal to ensure GHC
won’t pick up modules,
not listed neither in
exposed-modules, nor in
other-modules.

modules

Continued on next page

9.6. Flag reference

121

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

Flag Description Type Reverse
-Wmissing-import- warn when an import dec- | dynamic| -fnowarn-missing-
lists (page ??) laration does not explicitly import-lists

list all the names brought

into scope
-Wmissing-local- warn about polymorphic | dynamic| -Wno-missing-local-
signatures (page ??) local bindings without sig- signatures

natures
-Wmissing-local-sigs (deprecated) warn about | dynamic| -Wno-missing-local-
(page ??) polymorphic local bind- sigs

ings without signatures
-Wmissing-methods warn when class methods | dynamic| -Wno-missing-methods
(page ??) are undefined
-Wmissing-monadfail- Warn when a failable pat- | dynamic| -Wno-missing-
instances (page ??) tern is used in a do-block monadfail-instances

that does not have a Mon-

adFail instance.
-Wmissing-pattern- warn when pattern syn- | dynamic| -Wno-missing-
synonym-signatures onyms do not have type pattern-synonym-
(page ??) signatures signatures
-Wmissing-signatures warn about top-level func- | dynamic| -Wno-missing-
(page ??) tions without signatures signatures
-Wmonomorphism- warn when the Monomor- | dynamic| -Wno-monomorphism-
restriction (page ??) phism Restriction is ap- restriction

plied
-Wname-shadowing warn when names are | dynamic| -Wno-name-shadowing
(page ??) shadowed
-Wno-compat (page ??) Disables all warnings | dynamic| -Wcompat (page ??)

enabled by -Wcompat

(page ??).
-Wnoncanonical-monad- | warn when Applicative | dynamic| -Wno-noncanonical-
instances (page ??) or Monad instances have monad-instances

noncanonical definitions

of return, pure, (>>), or

(*>). See flag description

in Warnings and sanity-

checking (page ??) for

more details.
-Wnoncanonical- warn when Monad or Mon- | dynamic| -Wno-noncanonical-

monadfail-instances
(page ??)

adFail instances have
noncanonical definitions
of fail. See flag de-
scription in Warnings and
sanity-checking (page ??)
for more details.

monadfail-instances

Continued on next page

122

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

Flag

Description

Type

Reverse

-Wnoncanonical-
monoid-instances

(page ??)

warn when Semigroup or
Monoid instances have
noncanonical definitions
of (<>) or mappend. See
flag description in Warn-
ings and sanity-checking
(page ??) for more details.

dynamic

-Wno-noncanonical-
monoid-instances

-Worphans (page ??)

warn when the module
contains orphan instance
declarations or rewrite
rules (page 172)

dynamic

-Wno-orphans

-Woverflowed-literals
(page ??)

warn about literals that
will overflow their type

dynamic

-Wno-overflowed-
literals

-Woverlapping-
patterns (page ??)

warn about overlapping
patterns

dynamic

-Wno-overlapping-
patterns

-Wpartial-fields
(page ??)

warn when defining a par-
tial record field.

dynamic

-Wno-partial-fields

-Wpartial-type-
signatures (page ??)

warn about holes in partial
type signatures when -
XPartialTypeSignatures
(page 397) is enabled.
Not applicable when -
XPartialTypesignatures
is not enabled, in which
case errors are gener-
ated for such holes. See
Partial Type Signatures
(page 397).

dynamic

-Wno-partial-type-
signatures

-Wredundant -
constraints (page ??)

Have the compiler warn
about redundant con-
straints in type signa-
tures.

dynamic

-Wno-redundant -
constraints

-Wsafe (page ??)

warn if the module being
compiled is regarded to be
safe.

dynamic

-Wno-safe

-Wsemigroup (page ??)

warn when a Monoid is not
Semigroup, and on non-
Semigroup definitions of
(<>)?

dynamic

-Wno-semigroup

-Wsimplifiable-class-
constraints (page ??)

2arn about class con-
straints in a type signa-
ture that can be simplified
using a top-level instance
declaration.

dynamic

-Wno-overlapping-
patterns

-Wtabs (page ??)

warn if there are tabs in
the source file

dynamic

-Wno-tabs

Continued on next page

9.6. Flag reference

123

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

Flag Description Type Reverse
-Wtrustworthy-safe warn if the module be- | dynamic| -Wno-safe
(page ??) ing compiled is marked
as Trustworthy (page ?7?)
but it could instead be
marked as Safe (page ??),
a more informative bound.
-Wtype-defaults warn when defaulting hap- | dynamic| -Wno-type-defaults
(page ??) pens
-Wtyped-holes (page ??) | Report warnings when | dynamic| -Wno-typed-holes
typed hole (page 395)
errors are deferred until
runtime (page 403). See
-fdefer-typed-holes
(page ??).
-Wunbanged-strict- warn on pattern bind of | dynamic| -Wno-unbanged-
patterns (page ??) unlifted variable that is strict-patterns
neither bare nor banged
-Wunrecognised- warn about uses of prag- | dynamic| -Wno-unrecognised-
pragmas (page ??) mas that GHC doesn’t pragmas
recognise
-Wunrecognised- throw a warning when an | dynamic| -Wno-unrecognised-
warning-flags (page ??) | unreconised -W... flag is warning-flags
encountered on the com-
mand line.
-Wunsafe (page ??) warn if the module being | dynamic| -Wno-unsafe
compiled is regarded to be
unsafe. See Safe Haskell
(page ??)
-Wunsupported- warn about use of an un- | dynamic| -Wno-unsupported-
calling-conventions supported calling conven- calling-conventions
(page ??) tion
-Wunsupported-1lvm- Warn when using -fllvm | dynamic| -Wno-monomorphism-
version (page ??) (page 196) with an unsup- restriction
ported version of LLVM.
-Wunticked-promoted- warn if promoted con- | dynamic| -Wno-unticked-
constructors (page ??) structors are not ticked promoted-
constructors
-Wunused-binds warn about bindings | dynamic| -Wno-unused-binds
(page ??) that are unused. Alias
for -Wunused-top-binds
(page ?7?), -Wunused-
local-binds (page ?7?)
and -Wunused-pattern-
binds (page ??)
-Wunused-do-bind warn about do bindings | dynamic| -Wno-unused-do-bind

(page ??)

that appear to throw away
values of types other than

()

Continued on next page

124

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.12 - continued from previous page

(page ??)

that appear to throw away
monadic values that you
should have bound instead

Flag Description Type Reverse
-Wunused-foralls warn about type variables | dynamic| -Wno-unused-foralls
(page ??) in user-written forall\s

that are unused
-Wunused-imports warn about unnecessary | dynamic| -Wno-unused-imports
(page ??) imports
-Wunused-local-binds warn about local bindings | dynamic| -Wno-unused-local-
(page ??) that are unused binds
-Wunused-matches warn about variables in | dynamic| -Wno-unused-matches
(page ??) patterns that aren’t used
-Wunused-pattern- warn about pattern match | dynamic| -Wno-unused-pattern-
binds (page ??) bindings that are unused binds
-Wunused-top-binds warn about top-level bind- | dynamic| -Wno-unused-top-
(page ??) ings that are unused binds
-Wunused-type- warn about unused type | dynamic| -Wno-unused-type-
patterns (page ??) variables which arise from patterns

patterns in type family and

data family instances
-Wwarn (page ??) make warnings non-fatal dynamic| -Werror (page ??)
-Wwarnings- warn about uses of func- | dynamic| -Wno-warnings-
deprecations (page ??) tions & types that have deprecations

warnings or deprecated

pragmas
-Wwrong-do-bind warn about do bindings | dynamic| -Wno-wrong-do-bind

9.6.14 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 97).

See Individual optimisations (page 126) for a list of optimisations enabled on level 1 and level

2.
Flag Description Type Reverse
-0 (page ??), -01 | Enable level 1 optimisa- | dynamic| -00 (page ??)
(page ??) tions
-00 (page ??) Disable optimisations (de- | dynamic
fault)
-02 (page ??) Enable level 2 optimisa- | dynamic| -00 (page ??)
tions
-0dph (page ??) Enable level 2 op- | dynamic
timisations, set -
fmax-simplifier-
iterations=20 and -

fsimplifier-phases=3.

9.6. Flag reference

125

GHC User’s Guide Documentation, Release 8.4.4

9.6.15 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 98). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

(page ??)

(page 109)

Flag Description Type Reverse
-fcall-arity (page ??) Enable call-arity optimi- | dynamic| -fno-call-arity
sation. Implied by -0
(page ?7?).
-fcase-folding Enable constant folding in | dynamic| -fno-case-folding
(page ??) case expressions. Implied
by -0 (page ??).
-fcase-merge (page ??) | Enable case-merging. Im- | dynamic| -fno-case-merge
plied by -0 (page ??).
-fcmm-elim- common- Enable Cmm common | dynamic| -fno-cmm-elim-
blocks (page ??) block elimination. Implied common-blocks
by -0 (page ??).
-fcmm-sink (page ??) Enable Cmm sinking. Im- | dynamic| -fno-cmm-sink
plied by -0 (page ??).
-fcpr-anal (page ??) Turn on CPR analysis in | dynamic| -fno-cpr-anal
the demand analyser. Im-
plied by -0 (page 2?).
-fcross-module- Turn on specialisation of | dynamic| -fno-cross-module-
specialise (page ??) overloaded functions im- specialise
ported from other mod-
ules.
-fcse (page ??) Enable common sub- | dynamic| -fno-cse
expression elimination.
Implied by -0 (page ??).
-fdicts-cheap (page ??) | Make dictionary-valued | dynamic| -fno-dicts-cheap
expressions seem cheap
to the optimiser.
-fdicts-strict Make dictionaries strict dynamic| -fno-dicts-strict
(page ??)
-fdmd-tx-dict-sel Use a special demand | dynamic| -fno-dmd-tx-dict-sel
(page ??) transformer for dictionary
selectors. Always enabled
by default.
-fdo-eta-reduction Enable eta-reduction. Im- | dynamic| -fno-do-eta-
(page ??) plied by -0 (page ?7?). reduction
-fdo-lambda-eta- Enable lambda eta- | dynamic| -fno-do-lambda-eta-
expansion (page ??) expansion. Always en- expansion
abled by default.
-feager-blackholing Turn on eager blackholing | dynamic

Continued on next page

126

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.14 - continued from previous page

Flag Description Type Reverse
-fenable-rewrite- Switch on all rewrite rules | dynamic| -fno-enable-rewrite-
rules (page ??) (including rules generated rules

by automatic specialisa-

tion of overloaded func-

tions). Implied by -0

(page 98).
-fexcess-precision Enable excess intermedi- | dynamic| -fno-excess-
(page ??) ate precision precision
-fexitification Enables exitification opti- | dynamic| -fno-exitification
(page ??) misation. Implied by -0

(page ??).
-fexpose-all- Expose all unfoldings, | dynamic| -fno-expose-all-
unfoldings (page ??) even for very large or unfoldings

recursive functions.
-ffloat-in (page ??) Turn on the float-in trans- | dynamic| -fno-float-in

formation. Implied by -0

(page ?7?).
-ffull-laziness Turn on full laziness (float- | dynamic| -fno-full-laziness
(page ??) ing bindings outwards).

Implied by -0 (page ??).
-ffun-to-thunk Allow worker-wrapper to | dynamic| -fno-fun-to-thunk
(page ??) convert a function closure

into a thunk if the function

does not use any of its ar-

guments. Off by default.
-fignore-asserts Ignore assertions in the | dynamic| -fno-ignore-asserts
(page ??) source. Implied by -0

(page ??).
-fignore-interface- Ignore pragmas in inter- | dynamic| -fno-ignore-
pragmas (page ??) face files. Implied by -00 interface-pragmas

(page ??) only.
-flate-dmd-anal Run demand analysis | dynamic| -fno-late-dmd-anal
(page ??) again, at the end of the

simplification pipeline
-fliberate-case Turn on the liberate-case | dynamic| -fno-1liberate-case
(page ??) transformation. Implied

by -02 (page ??).
-fliberate-case- default: 2000. Set the size | dynamic| -fno-liberate-case-
threshold=(n) (page ??) | threshold for the liberate- threshold

case transformation to (n)
-fllvm-pass-vectors- Pass vector value in vector | dynamic| -fno-1lvm-pass-
in-regs (page ??) registers for function calls vectors-in-regs
-floopification Turn saturated self- | dynamic| -fno-loopification
(page ??) recursive tail-calls into

local jumps in the gener-
ated assembly. Implied by
-0 (page ??).

Continued on next page

9.6. Flag reference

127

GHC User’s Guide Documentation, Release 8.4.4

Table 9.14 - continued from previous page

Flag Description Type Reverse
-fmax-inline-alloc- default: 128. Set the | dynamic
size=(n) (page ??) maximum size of inline ar-
ray allocations to (n) bytes
(default: 128).
-fmax-inline-memcpy- default: 32. Inline mem- | dynamic
insns=(n) (page ??) cpy calls if they would gen-
erate no more than (n)
pseudo instructions.
-fmax-inline-memset- default: 32. Inline mem- | dynamic
insns=(n) (page ??) set calls if they would gen-
erate no more than (n)
pseudo instructions
-fmax-relevant- default: 6. Set the max- | dynamic| -fno-max-relevant-
binds=(n) (page ??) imum number of bindings bindings
to display in type error
messages.
-fmax-simplifier- default: 4. Set the max it- | dynamic
iterations=(n) erations for the simplifier.
(page ??)
-fmax-uncovered- default: 4. Set the | dynamic
patterns=(n) (page ??) maximum number of pat-
terns to display in warn-
ings about non-exhaustive
ones.
-fmax-valid- default: 6. Set the maxi- | dynamic| -fno-max-valid-
substitutions=(n) mum number of valid sub- substitutions
(page ??) stitutions for typed holes
to display in type error
messages.
-fmax-worker-args=(n) | default: 10. If a worker | dynamic
(page ??) has that many arguments,
none will be unpacked
anymore.
-fno-opt-coercion Turn off the coercion opti- | dynamic
(page ??) miser
-fno-pre-inlining Turn off pre-inlining dynamic
(page ??)
-fno-state-hack Turn off the state hack- | dynamic
(page ??) whereby any lambda with
a real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.
-fomit-interface- Don’t generate interface | dynamic| -fno-omit-interface-
pragmas (page ??) pragmas. Implied by -00 pragmas
(page ??) only.
-fomit-yields (page ??) | Omit heap checks when | dynamic| -fno-omit-yields

no allocation is being per-
formed.

Continued on next page

128

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Table 9.14 - continued from previous page

Flag Description Type Reverse
-foptimal- Use a slower but better al- | dynamic| -fno-optimal-
applicative-do gorithm for ApplicativeDo applicative-do
(page ??)
-fpedantic-bottoms Make GHC be more pre- | dynamic| -fno-pedantic-
(page ??) cise about its treatment of bottoms
bottom (but see also -fno-
state-hack (page ??)). In
particular, GHC will not
eta-expand through a case
expression.
-fregs-graph (page ??) Use the graph colouring | dynamic| -fno-regs-graph
register allocator for reg-
ister allocation in the na-
tive code generator. Im-
plied by -02 (page ??).
-fregs-iterative Use the iterative coalesc- | dynamic| -fno-regs-iterative
(page ??) ing graph colouring regis-
ter allocator in the native
code generator.
-fsimpl-tick- default: 100. Set the per- | dynamic
factor=(n) (page ??) centage factor for simpli-
fier ticks.
-fsimplifier- default: 2. Set the num- | dynamic
phases=(n) (page ??) ber of phases for the sim-
plifier. Ignored with -00
(page ?7?).
-fsolve-constant- When solving constraints, | dynamic| -fno-solve-constant-
dicts (page ??) try to eagerly solve su- dicts
per classes using available
dictionaries.
-fspec-constr (page ??) | Turn on the SpecConstr | dynamic| -fno-spec-constr
transformation. Implied
by -02 (page ??).
-fspec-constr- default: 3.* Set to (n) | dynamic| -fno-spec-constr-
count=(n) (page ??) the maximum number of count
specialisations that will be
created for any one func-
tion by the SpecConstr
transformation.
-fspec-constr-keen Specialize a call with an | dynamic| -fno-spec-constr-
(page ??) explicit constructor argu- keen
ment, even if the argu-
ment is not scrutinised in
the body of the function
-fspec-constr- default: 2000. Set the size | dynamic| -fno-spec-constr-

threshold=(n) (page ??)

threshold for the Spec-
Constr transformation to

(n).

threshold

Continued on next page

9.6. Flag reference

129

GHC User’s Guide Documentation, Release 8.4.4

Table 9.14 - continued from previous page

Flag Description Type Reverse
-fspecialise (page ??) | Turn on specialisation of | dynamic| -fno-specialise
overloaded functions. Im-
plied by -0 (page ??).
-fspecialise- Turn on specialisation of | dynamic| -fno-specialise-
aggressively (page ??) | overloaded functions re- aggressively
gardless of size, if unfold-
ing is available
-fstatic-argument- Turn on the static argu- | dynamic| -fno-static-
transformation ment transformation. argument-
(page ??) transformation
-fstg-cse (page ??) Enable common sub- | dynamic| -fno-stg-cse
expression elimination
on the STG intermediate
language
-fstrictness (page ??) Turn on strictness anal- | dynamic| -fno-strictness
ysis. Implied by -0
(page ??). Implies -
fworker-wrapper
-fstrictness- Run an additional strict- | dynamic
before=(n) (page ??) ness analysis before sim-
plifier phase (n)
-funbox-small-strict- | Flatten strict constructor | dynamic| -fno-unbox-small-
fields (page ??) fields with a pointer-sized strict-fields
representation. Implied
by -0 (page ?7?).
-funbox-strict-fields | Flatten strict constructor | dynamic| -fno-unbox-strict-
(page ??) fields fields
-funfolding-creation- | default: 750. Tweak un- | dynamic
threshold=(n) (page ??) | folding settings.
-funfolding-dict- default: 30. Tweak unfold- | dynamic
discount=(n) (page ??) | ing settings.
-funfolding- fun- default: 60. Tweak unfold- | dynamic
discount=(n) (page ??) | ing settings.
-funfolding-keeness- default: 1.5. Tweak un- | dynamic
factor=(n) (page ??) folding settings.
-funfolding-use- default: 60. Tweak unfold- | dynamic
threshold=(n) (page ??) | ing settings.
-fvectorisation- Enable vectorisation | dynamic| -fno-vectorisation-
avoidance (page ??) avoidance. Always en- avoidance
abled by default.
-fvectorise (page ??) Enable vectorisation of | dynamic| -fno-vectorise

nested data parallelism

9.6.16 Profiling options

More details in Profiling (page 213)

130

Chapter 9. Using GHC

GHC User’s Guide Documentation, Release 8.4.4

Flag Description Type Reverse
-fno-prof-auto