#if __GLASGOW_HASKELL__ >= 702
#endif
#if __GLASGOW_HASKELL__ >= 706
#endif
#if __GLASGOW_HASKELL__ >= 710
#endif
module Data.Functor.Reverse (
Reverse(..),
) where
import Control.Applicative.Backwards
import Data.Functor.Classes
#if MIN_VERSION_base(4,12,0)
import Data.Functor.Contravariant
#endif
import Prelude hiding (foldr, foldr1, foldl, foldl1, null, length)
import Control.Applicative
import Control.Monad
#if MIN_VERSION_base(4,9,0)
import qualified Control.Monad.Fail as Fail
#endif
import Data.Foldable
import Data.Traversable
import Data.Monoid
newtype Reverse f a = Reverse { getReverse :: f a }
instance (Eq1 f) => Eq1 (Reverse f) where
liftEq eq (Reverse x) (Reverse y) = liftEq eq x y
instance (Ord1 f) => Ord1 (Reverse f) where
liftCompare comp (Reverse x) (Reverse y) = liftCompare comp x y
instance (Read1 f) => Read1 (Reverse f) where
liftReadsPrec rp rl = readsData $
readsUnaryWith (liftReadsPrec rp rl) "Reverse" Reverse
instance (Show1 f) => Show1 (Reverse f) where
liftShowsPrec sp sl d (Reverse x) =
showsUnaryWith (liftShowsPrec sp sl) "Reverse" d x
instance (Eq1 f, Eq a) => Eq (Reverse f a) where (==) = eq1
instance (Ord1 f, Ord a) => Ord (Reverse f a) where compare = compare1
instance (Read1 f, Read a) => Read (Reverse f a) where readsPrec = readsPrec1
instance (Show1 f, Show a) => Show (Reverse f a) where showsPrec = showsPrec1
instance (Functor f) => Functor (Reverse f) where
fmap f (Reverse a) = Reverse (fmap f a)
instance (Applicative f) => Applicative (Reverse f) where
pure a = Reverse (pure a)
Reverse f <*> Reverse a = Reverse (f <*> a)
instance (Alternative f) => Alternative (Reverse f) where
empty = Reverse empty
Reverse x <|> Reverse y = Reverse (x <|> y)
instance (Monad m) => Monad (Reverse m) where
#if !(MIN_VERSION_base(4,8,0))
return a = Reverse (return a)
#endif
m >>= f = Reverse (getReverse m >>= getReverse . f)
fail msg = Reverse (fail msg)
#if MIN_VERSION_base(4,9,0)
instance (Fail.MonadFail m) => Fail.MonadFail (Reverse m) where
fail msg = Reverse (Fail.fail msg)
#endif
instance (MonadPlus m) => MonadPlus (Reverse m) where
mzero = Reverse mzero
Reverse x `mplus` Reverse y = Reverse (x `mplus` y)
instance (Foldable f) => Foldable (Reverse f) where
foldMap f (Reverse t) = getDual (foldMap (Dual . f) t)
foldr f z (Reverse t) = foldl (flip f) z t
foldl f z (Reverse t) = foldr (flip f) z t
foldr1 f (Reverse t) = foldl1 (flip f) t
foldl1 f (Reverse t) = foldr1 (flip f) t
#if MIN_VERSION_base(4,8,0)
null (Reverse t) = null t
length (Reverse t) = length t
#endif
instance (Traversable f) => Traversable (Reverse f) where
traverse f (Reverse t) =
fmap Reverse . forwards $ traverse (Backwards . f) t
#if MIN_VERSION_base(4,12,0)
instance Contravariant f => Contravariant (Reverse f) where
contramap f = Reverse . contramap f . getReverse
#endif