
GHC User’s Guide Documentation
Release 9.2.6

GHC Team

Feb 09, 2023

CONTENTS

1 Introduction 3
1.1 Obtaining GHC . 3
1.2 Meta-information: Web sites, mailing lists, etc. 3
1.3 Reporting bugs in GHC . 4
1.4 GHC version numbering policy . 4
1.5 The Glasgow Haskell Compiler License . 5

2 Release notes 7
2.1 Version 9.2.1 . 7

2.1.1 Language . 7
2.1.2 Compiler . 10
2.1.3 GHCi . 10
2.1.4 Runtime system . 11
2.1.5 Template Haskell . 11
2.1.6 ghc-prim library . 12
2.1.7 Eventlog . 12
2.1.8 ghc library . 12
2.1.9 base library . 13

Included libraries . 14
2.2 Version 9.2.2 . 16

2.2.1 Compiler . 16
2.2.2 GHCi . 17
2.2.3 Core libraries . 17
2.2.4 Build system and packaging . 17
2.2.5 Runtime system . 17
2.2.6 Included libraries . 18

2.3 Version 9.2.3 . 19
2.3.1 Compiler . 20
2.3.2 Runtime system . 20
2.3.3 GHCi . 20
2.3.4 Core libraries . 20
2.3.5 Build system and packaging . 21
2.3.6 Included libraries . 21

2.4 Version 9.2.4 . 22
2.4.1 Compiler . 23
2.4.2 Runtime system . 23
2.4.3 GHCi . 23
2.4.4 Core libraries . 24
2.4.5 Build system and packaging . 24
2.4.6 Included libraries . 24

i

2.5 Version 9.2.5 . 25
2.5.1 Compiler . 26
2.5.2 Runtime system . 26
2.5.3 Core libraries . 26
2.5.4 Included libraries . 26

2.6 Version 9.2.6 . 28
2.6.1 Compiler . 28
2.6.2 Runtime system . 29
2.6.3 Build system and packaging . 29
2.6.4 Core libraries . 29
2.6.5 Included libraries . 29

3 Using GHCi 33
3.1 Introduction to GHCi . 33
3.2 Loading source files . 34

3.2.1 Modules vs. filenames . 35
3.2.2 Making changes and recompilation . 35

3.3 Loading compiled code . 35
3.4 Interactive evaluation at the prompt . 37

3.4.1 I/O actions at the prompt . 38
3.4.2 Using do notation at the prompt . 38
3.4.3 Multiline input . 40
3.4.4 Type, class and other declarations . 41
3.4.5 What’s really in scope at the prompt? . 42

The effect of :load on what is in scope . 43
Controlling what is in scope with import . 43
Controlling what is in scope with the :module command 44
Qualified names . 44
:module and :load . 44

3.4.6 The :main and :run commands . 45
3.4.7 The it variable . 45
3.4.8 Type defaulting in GHCi . 46

Interactive classes . 47
Extended rules around default declarations 48

3.4.9 Using a custom interactive printing function 48
3.4.10 Stack Traces in GHCi . 49

3.5 The GHCi Debugger . 49
3.5.1 Breakpoints and inspecting variables . 50

Setting breakpoints . 52
Managing breakpoints . 54

3.5.2 Single-stepping . 54
3.5.3 Nested breakpoints . 55
3.5.4 The _result variable . 55
3.5.5 Tracing and history . 56
3.5.6 Debugging exceptions . 57
3.5.7 Example: inspecting functions . 58
3.5.8 Limitations . 59

3.6 Invoking GHCi . 60
3.6.1 Packages . 60
3.6.2 Extra libraries . 61

3.7 GHCi commands . 61
3.8 The :set and :seti commands . 73

3.8.1 GHCi options . 73
3.8.2 Setting GHC command-line options in GHCi 74

ii

3.8.3 Setting options for interactive evaluation only 74
3.9 The .ghci and .haskeline files . 75

3.9.1 The .ghci files . 75
3.9.2 The .haskeline file . 77

3.10 Compiling to object code inside GHCi . 77
3.11 Running the interpreter in a separate process . 77
3.12 Running the interpreter on a different host . 78
3.13 FAQ and Things To Watch Out For . 78

4 Using runghc 81
4.1 Usage . 81
4.2 runghc flags . 81
4.3 GHC Flags . 81

5 Using GHC 83
5.1 Using GHC . 83

5.1.1 Getting started: compiling programs . 83
5.1.2 Options overview . 84

Command-line arguments . 84
Command line options in source files . 84
Setting options in GHCi . 85

5.1.3 Dynamic and Mode options . 85
5.1.4 Meaningful file suffixes . 85
5.1.5 Modes of operation . 86

Using ghc --make . 89
Expression evaluation mode . 90
Batch compiler mode . 90

5.1.6 Verbosity options . 91
5.1.7 Platform-specific Flags . 96
5.1.8 Haddock . 98
5.1.9 Miscellaneous flags . 98

Other environment variables . 98
5.2 Warnings and sanity-checking . 98
5.3 Optimisation (code improvement) . 120

5.3.1 -O*: convenient “packages” of optimisation flags. 120
5.3.2 -f*: platform-independent flags . 121

5.4 Using Concurrent Haskell . 136
5.5 Using SMP parallelism . 136

5.5.1 Compile-time options for SMP parallelism . 137
5.5.2 RTS options for SMP parallelism . 137
5.5.3 Hints for using SMP parallelism . 138

5.6 Flag reference . 139
5.6.1 Verbosity options . 139
5.6.2 Alternative modes of operation . 142
5.6.3 Which phases to run . 144
5.6.4 Redirecting output . 144
5.6.5 Keeping intermediate files . 145
5.6.6 Temporary files . 146
5.6.7 Finding imports . 146
5.6.8 Interface file options . 146
5.6.9 Extended interface file options . 146
5.6.10 Recompilation checking . 147
5.6.11 Interactive-mode options . 147
5.6.12 Packages . 148

iii

5.6.13 Language options . 149
5.6.14 Warnings . 149
5.6.15 Optimisation levels . 159
5.6.16 Individual optimisations . 159
5.6.17 Profiling options . 165
5.6.18 Program coverage options . 166
5.6.19 C pre-processor options . 166
5.6.20 Code generation options . 166
5.6.21 Linking options . 167
5.6.22 Plugin options . 169
5.6.23 Replacing phases . 170
5.6.24 Forcing options to particular phases . 171
5.6.25 Platform-specific options . 172
5.6.26 Compiler debugging options . 172
5.6.27 Miscellaneous compiler options . 177

5.7 Running a compiled program . 178
5.7.1 Setting RTS options . 178

Setting RTS options on the command line . 179
Setting RTS options at compile time . 179
Setting RTS options with the GHCRTS environment variable 179
“Hooks” to change RTS behaviour . 180

5.7.2 Miscellaneous RTS options . 181
5.7.3 RTS options to control the garbage collector 183
5.7.4 RTS options to produce runtime statistics . 190
5.7.5 RTS options for concurrency and parallelism 193
5.7.6 RTS options for profiling . 193
5.7.7 Tracing . 193
5.7.8 RTS options for hackers, debuggers, and over-interested souls 195
5.7.9 Getting information about the RTS . 197

5.8 Filenames and separate compilation . 198
5.8.1 Haskell source files . 198
5.8.2 Output files . 199
5.8.3 The search path . 199
5.8.4 Redirecting the compilation output(s) . 200
5.8.5 Keeping Intermediate Files . 202
5.8.6 Redirecting temporary files . 203
5.8.7 Other options related to interface files . 203
5.8.8 Options related to extended interface files . 204
5.8.9 The recompilation checker . 204
5.8.10 How to compile mutually recursive modules 205
5.8.11 Module signatures . 207
5.8.12 Using make . 212
5.8.13 Dependency generation . 213
5.8.14 Orphan modules and instance declarations 215

5.9 Packages . 216
5.9.1 Using Packages . 217
5.9.2 The main package . 220
5.9.3 Consequences of packages for the Haskell language 220
5.9.4 Thinning and renaming modules . 220
5.9.5 Package Databases . 221

The GHC_PACKAGE_PATH environment variable 222
Package environments . 223

5.9.6 Installed package IDs, dependencies, and broken packages 224
5.9.7 Package management (the ghc-pkg command) 225

iv

5.9.8 Building a package from Haskell source . 228
5.9.9 InstalledPackageInfo: a package specification 230

5.10 GHC Backends . 233
5.10.1 Native Code Generator (-fasm) . 233
5.10.2 LLVM Code Generator (-fllvm) . 233
5.10.3 C Code Generator (-fvia-C) . 234
5.10.4 Unregisterised compilation . 234

5.11 Options related to a particular phase . 234
5.11.1 Replacing the program for one or more phases 234
5.11.2 Forcing options to a particular phase . 235
5.11.3 Options affecting the C pre-processor . 236

Standard CPP macros . 237
CPP and string gaps . 239

5.11.4 Options affecting a Haskell pre-processor 239
5.11.5 Options affecting code generation . 240
5.11.6 Options affecting linking . 241

5.12 Using shared libraries . 247
5.12.1 Building programs that use shared libraries 248
5.12.2 Shared libraries for Haskell packages . 248
5.12.3 Shared libraries that export a C API . 248
5.12.4 Finding shared libraries at runtime . 249

Unix . 249
Mac OS X . 250

5.13 Debugging the compiler . 250
5.13.1 Dumping out compiler intermediate structures 251

Front-end . 252
Type-checking and renaming . 252
Core representation and simplification . 253
STG representation . 254
C-\- representation . 255
LLVM code generator . 256
C code generator . 256
Native code generator . 256
Miscellaneous backend dumps . 257

5.13.2 Formatting dumps . 257
5.13.3 Suppressing unwanted information . 258
5.13.4 Checking for consistency . 259
5.13.5 Checking for determinism . 260
5.13.6 Other . 260

6 Language extensions 261
6.1 Introduction . 261

6.1.1 Controlling extensions . 261
6.1.2 Overview of all language extensions . 264
6.1.3 Summary of stolen syntax . 266

6.2 Syntax . 267
6.2.1 Unicode syntax . 267
6.2.2 The magic hash . 268
6.2.3 The recursive do-notation . 269

Recursive binding groups . 269
The mdo notation . 270

6.2.4 Applicative do-notation . 271
Strict patterns . 273
Things to watch out for . 274

v

6.2.5 Qualified do-notation . 274
Examples . 276

6.2.6 Parallel List Comprehensions . 277
6.2.7 Generalised (SQL-like) List Comprehensions 278
6.2.8 Monad comprehensions . 280
6.2.9 Overloaded lists . 282

The IsList class . 283
Rebindable syntax . 284
Defaulting . 284
Speculation about the future . 284

6.2.10 Rebindable syntax and the implicit Prelude import 285
Things unaffected by RebindableSyntax . 286

6.2.11 Postfix operators . 286
6.2.12 Tuple sections . 287
6.2.13 Lambda-case . 287
6.2.14 Empty case alternatives . 288
6.2.15 Multi-way if-expressions . 289
6.2.16 Local Fixity Declarations . 290
6.2.17 More liberal syntax for function arguments 290

Changes to the grammar . 291
6.2.18 Typed Holes . 292

Valid Hole Fits . 296
6.2.19 Arrow notation . 299

do-notation for commands . 301
Conditional commands . 302
Defining your own control structures . 302
Primitive constructs . 303
Differences with the paper . 305
Portability . 305

6.2.20 Lexical negation . 305
6.3 Import and export . 306

6.3.1 Hiding things the imported module doesn’t export 306
6.3.2 Package-qualified imports . 306
6.3.3 Safe imports . 307
6.3.4 Explicit namespaces in import/export . 307
6.3.5 Writing qualified in postpositive position . 307

6.4 Types . 308
6.4.1 Data types with no constructors . 308
6.4.2 Data type contexts . 309
6.4.3 Infix type constructors, classes, and type variables 309
6.4.4 Type operators . 310
6.4.5 Liberalised type synonyms . 310
6.4.6 Existentially quantified data constructors . 312

Why existential? . 313
Existentials and type classes . 313
Record Constructors . 313
Restrictions . 314

6.4.7 Declaring data types with explicit constructor signatures 316
Formal syntax for GADTs . 317
GADT syntax odds and ends . 319

6.4.8 Generalised Algebraic Data Types (GADTs) 321
6.4.9 Type families . 325

Data families . 325
Synonym families . 328

vi

Wildcards on the LHS of data and type family instances 333
Associated data and type families . 334
Import and export . 338
Type families and instance declarations . 340
Injective type families . 341

6.4.10 Datatype promotion . 343
Motivation . 343
Overview . 343
Distinguishing between types and constructors 344
Type-level literals . 345
Promoted list and tuple types . 345
Promoting existential data constructors . 345
Constraints in kinds . 346

6.4.11 Kind polymorphism . 346
Overview of kind polymorphism . 347
Overview of Type-in-Type . 347
Principles of kind inference . 348
Kind inference in type signatures . 348
Explicit kind quantification . 349
Inferring the order of variables in a type/class declaration 349
Complete user-supplied kind signatures and polymorphic recursion 350
Standalone kind signatures and polymorphic recursion 352
Standalone kind signatures and declaration headers 353
Kind inference in data type declarations . 355
Kind inference for data/newtype instance declarations 356
Kind inference in class instance declarations 356
Kind inference in type synonyms and type family instances 357
Kind inference in closed type families . 358
Higher-rank kinds . 359
The kind Type . 360
Inferring dependency in datatype declarations 360
Inferring dependency in user-written foralls 360
Kind defaulting without PolyKinds . 361
Pretty-printing in the presence of kind polymorphism 361
Datatype return kinds . 361

6.4.12 Levity polymorphism . 363
No levity-polymorphic variables or arguments 363
Levity-polymorphic bottoms . 364
Printing levity-polymorphic types . 364

6.4.13 Type-Level Literals . 364
Runtime Values for Type-Level Literals . 365
Computing With Type-Level Naturals . 366

6.4.14 Visible type application . 366
Inferred vs. specified type variables . 367
Ordering of specified variables . 368
Manually defining inferred variables . 369
Type Applications in Patterns . 370

6.4.15 Arbitrary-rank polymorphism . 372
Examples . 373
Subsumption . 374
Type inference . 375
Implicit quantification . 376

6.4.16 Impredicative polymorphism . 377
6.4.17 Linear types . 378

vii

Data types . 378
Printing multiplicity-polymorphic types . 379
Limitations . 379
Design and further reading . 380

6.4.18 Custom compile-time errors . 380
6.4.19 Deferring type errors to runtime . 381

Enabling deferring of type errors . 382
Deferred type errors in GHCi . 382
Limitations of deferred type errors . 383

6.4.20 Roles . 383
Nominal, Representational, and Phantom . 384
Role inference . 385
Role annotations . 385

6.5 Records . 387
6.5.1 Traditional record syntax . 387
6.5.2 Field selectors and TypeApplications . 387

Field selectors for Haskell98-style data constructors 387
Field selectors for GADT constructors . 388
Field selectors for pattern synonyms . 388

6.5.3 Record field disambiguation . 389
6.5.4 Duplicate record fields . 390

Selector functions . 391
Record updates . 391
Import and export of record fields . 392

6.5.5 Field selectors . 392
Import and export of selector functions . 393

6.5.6 Record puns . 394
6.5.7 Record wildcards . 395
6.5.8 Record field selector polymorphism . 396

Solving HasField constraints . 397
Virtual record fields . 398

6.5.9 Overloaded record dot . 399
6.5.10 Overloaded record update . 400

6.6 Deriving mechanism . 401
6.6.1 Deriving instances for empty data types . 401
6.6.2 Inferred context for deriving clauses . 402
6.6.3 Stand-alone deriving declarations . 403
6.6.4 Deriving instances of extra classes (Data, etc.) 404

Deriving Functor instances . 405
Deriving Foldable instances . 408
Deriving Traversable instances . 410
Deriving Data instances . 411
Deriving Typeable instances . 411
Deriving Lift instances . 412

6.6.5 Generalised derived instances for newtypes 413
Generalising the deriving clause . 413
A more precise specification . 415
Associated type families . 416

6.6.6 Deriving any other class . 419
6.6.7 Deriving strategies . 421

Default deriving strategy . 422
6.6.8 Deriving via . 422

6.7 Patterns . 424
6.7.1 Pattern guards . 424

viii

6.7.2 View patterns . 424
6.7.3 n+k patterns . 426
6.7.4 Pattern synonyms . 427

Record Pattern Synonyms . 429
Syntax and scoping of pattern synonyms . 430
Import and export of pattern synonyms . 430
Typing of pattern synonyms . 431
Matching of pattern synonyms . 434
Pragmas for pattern synonyms . 434

6.8 Class and instances declarations . 435
6.8.1 Multi-parameter type classes . 435
6.8.2 Undecidable (or recursive) superclasses . 435
6.8.3 Constrained class method types . 436
6.8.4 Default method signatures . 437
6.8.5 Detailed requirements for default type signatures 438
6.8.6 Nullary type classes . 440
6.8.7 Functional dependencies . 440

Rules for functional dependencies . 441
Background on functional dependencies . 441

6.8.8 Instance declarations and resolution . 445
Relaxed rules for the instance head . 445
Formal syntax for instance declaration types 446
Instance termination rules . 448
Overlapping instances . 449
Instance signatures: type signatures in instance declarations 453

6.9 Literals . 454
6.9.1 Negative literals . 454
6.9.2 Binary integer literals . 454
6.9.3 Hexadecimal floating point literals . 454
6.9.4 Fractional looking integer literals . 455
6.9.5 Numeric underscores . 455
6.9.6 Overloaded string literals . 457
6.9.7 Overloaded labels . 458

6.10 Constraints . 459
6.10.1 Loosening restrictions on class contexts . 459
6.10.2 Equality constraints and Coercible constraint 460

Equality constraints . 460
Heterogeneous equality . 460
Unlifted heterogeneous equality . 460
The Coercible constraint . 461

6.10.3 The Constraint kind . 461
6.10.4 Quantified constraints . 462

Motivation . 462
Syntax changes . 463
Typing changes . 464
Superclasses . 464
Overlap . 465
Instance lookup . 466
Termination . 466
Coherence . 466

6.11 Type signatures . 466
6.11.1 Explicit universal quantification (forall) . 466

The forall-or-nothing rule . 467
6.11.2 Ambiguous types and the ambiguity check 469

ix

6.11.3 Explicitly-kinded quantification . 471
6.11.4 Lexically scoped type variables . 472

Overview . 472
Declaration type signatures . 473
Expression type signatures . 474
Pattern type signatures . 474
Class and instance declarations . 475

6.11.5 Implicit parameters . 476
Implicit-parameter type constraints . 477
Implicit-parameter bindings . 478
Implicit parameters and polymorphic recursion 478
Implicit parameters and monomorphism . 479

6.11.6 Partial Type Signatures . 479
Syntax . 480
Where can they occur? . 483

6.12 Bindings and generalisation . 484
6.12.1 Switching off the Monomorphism Restriction 484
6.12.2 Let-generalisation . 485

6.13 Template Haskell . 486
6.13.1 Syntax . 486
6.13.2 Using Template Haskell . 492
6.13.3 Viewing Template Haskell generated code 492
6.13.4 A Template Haskell Worked Example . 493
6.13.5 Template Haskell quotes and Rebindable Syntax 494
6.13.6 Using Template Haskell with Profiling . 494
6.13.7 Template Haskell Quasi-quotation . 495

6.14 Bang patterns and Strict Haskell . 497
6.14.1 Bang patterns . 498
6.14.2 Strict-by-default data types . 499
6.14.3 Strict-by-default pattern bindings . 500
6.14.4 Modularity . 502
6.14.5 Dynamic semantics of bang patterns . 502

6.15 Parallel and Concurrent . 504
6.15.1 Concurrent and Parallel Haskell . 505

Concurrent Haskell . 505
Parallel Haskell . 505
Annotating pure code for parallelism . 505

6.15.2 Software Transactional Memory . 506
6.15.3 Static pointers . 506

Using static pointers . 507
Static semantics of static pointers . 508

6.16 Unboxed types and primitive operations . 509
6.16.1 Unboxed types . 509
6.16.2 Unboxed type kinds . 509
6.16.3 Unboxed tuples . 510
6.16.4 Unboxed sums . 511
6.16.5 Unlifted Newtypes . 513
6.16.6 Unlifted Datatypes . 514

6.17 Foreign function interface (FFI) . 515
6.17.1 GHC differences to the FFI Chapter . 515

Guaranteed call safety . 516
Interactions between safe calls and bound threads 516
Varargs not supported by ccall calling convention 516

6.17.2 GHC extensions to the FFI Chapter . 517

x

Unlifted FFI Types . 517
Newtype wrapping of the IO monad . 518
Explicit “forall”s in foreign types . 519
Primitive imports . 519
Interruptible foreign calls . 519
The CAPI calling convention . 520
hs_thread_done() . 521
Freeing many stable pointers efficiently . 521

6.17.3 Using the FFI with GHC . 522
Using foreign export and foreign import ccall "wrapper" with GHC 522
Using header files . 525
Memory Allocation . 526
Multi-threading and the FFI . 526
Floating point and the FFI . 529
Pinned Byte Arrays . 530

6.18 Safe Haskell . 530
6.18.1 Uses of Safe Haskell . 531

Strict type-safety (good style) . 531
Building secure systems (restricted IO Monads) 531

6.18.2 Safe Language . 533
Safe Overlapping Instances . 534

6.18.3 Safe Imports . 535
6.18.4 Trust and Safe Haskell Modes . 536

Trust check (-fpackage-trust disabled) . 536
Trust check (-fpackage-trust enabled) . 537
Example . 537
Trustworthy Requirements . 538
Package Trust . 538

6.18.5 Safe Haskell Inference . 539
6.18.6 Safe Haskell Flag Summary . 539
6.18.7 Safe Compilation . 541

6.19 Miscellaneous . 541
6.19.1 Rewrite rules . 541

Syntax . 542
Semantics . 543
How rules interact with INLINE/NOINLINE pragmas 545
How rules interact with CONLIKE pragmas . 545
How rules interact with class methods . 546
List fusion . 547
Specialisation . 548
Controlling what’s going on in rewrite rules 548

6.19.2 Special built-in functions . 549
6.19.3 Generic programming . 549

Deriving representations . 549
Writing generic functions . 551
Unlifted representation types . 552
Generic defaults . 552
More information . 553

6.19.4 Assertions . 553
6.19.5 HasCallStack . 554

Compared with other sources of stack traces 556
6.20 Pragmas . 556

6.20.1 LANGUAGE pragma . 556
6.20.2 OPTIONS_GHC pragma . 557

xi

6.20.3 INCLUDE pragma . 557
6.20.4 WARNING and DEPRECATED pragmas . 557
6.20.5 MINIMAL pragma . 558
6.20.6 INLINE and NOINLINE pragmas . 559

INLINE pragma . 559
INLINABLE pragma . 560
NOINLINE pragma . 561
CONLIKE modifier . 561
Phase control . 561

6.20.7 LINE pragma . 562
6.20.8 COLUMN pragma . 563
6.20.9 RULES pragma . 563
6.20.10 SPECIALIZE pragma . 563

SPECIALIZE INLINE . 564
SPECIALIZE for imported functions . 565

6.20.11 SPECIALIZE instance pragma . 566
6.20.12 UNPACK pragma . 566
6.20.13 NOUNPACK pragma . 567
6.20.14 SOURCE pragma . 567
6.20.15 COMPLETE pragmas . 567
6.20.16 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas . . . 569

7 Extending and using GHC as a Library 571
7.1 Source annotations . 571

7.1.1 Annotating values . 571
7.1.2 Annotating types . 572
7.1.3 Annotating modules . 572

7.2 Using GHC as a Library . 572
7.3 Compiler Plugins . 573

7.3.1 Using compiler plugins . 573
7.3.2 Writing compiler plugins . 575
7.3.3 Core plugins in more detail . 575

Manipulating bindings . 576
Using Annotations . 577

7.3.4 Typechecker plugins . 577
Constraint solving with plugins . 578

7.3.5 Source plugins . 579
Parsed representation . 579
Type checked representation . 580
Evaluated code . 580
Interface files . 580
Source plugin example . 581

7.3.6 Hole fit plugins . 583
Stateful hole fit plugins . 583
Hole fit plugin example . 584

7.3.7 Controlling Recompilation . 588
7.3.8 Frontend plugins . 589
7.3.9 DynFlags plugins . 589

8 Profiling 593
8.1 Cost centres and cost-centre stacks . 593

8.1.1 Inserting cost centres by hand . 595
8.1.2 Rules for attributing costs . 597

8.2 Compiler options for profiling . 597

xii

8.2.1 Automatically placing cost-centres . 598
8.3 Time and allocation profiling . 599

8.3.1 JSON profile format . 600
8.4 Profiling memory usage . 602

8.4.1 RTS options for heap profiling . 603
8.4.2 Retainer Profiling . 605

Hints for using retainer profiling . 606
8.4.3 Biographical Profiling . 606
8.4.4 Actual memory residency . 607

8.5 hp2ps – Rendering heap profiles to PostScript . 607
8.5.1 Manipulating the hp file . 609
8.5.2 Zooming in on regions of your profile . 609
8.5.3 Viewing the heap profile of a running program 609
8.5.4 Viewing a heap profile in real time . 610

8.6 Profiling Parallel and Concurrent Programs . 610
8.7 Observing Code Coverage . 611

8.7.1 A small example: Reciprocation . 611
8.7.2 Options for instrumenting code for coverage 613
8.7.3 The hpc toolkit . 613

hpc report . 613
hpc markup . 614
hpc sum . 614
hpc combine . 614
hpc map . 615
hpc overlay and hpc draft . 615

8.7.4 Caveats and Shortcomings of Haskell Program Coverage 616
8.8 Using “ticky-ticky” profiling (for implementors) . 616

9 Debugging compiled programs 617
9.1 Tutorial . 617
9.2 Requesting a stack trace from Haskell code . 620
9.3 Requesting a stack trace with SIGQUIT . 620
9.4 Implementor’s notes: DWARF annotations . 621

9.4.1 Debugging information entities . 621
DW_TAG_ghc_src_note . 622

9.5 Further Reading . 622
9.6 Direct Mapping . 622
9.7 Querying the Info Table Map . 623

10 What to do when something goes wrong 625
10.1 When the compiler “does the wrong thing” . 625
10.2 When your program “does the wrong thing” . 626

11 Hints 627
11.1 Sooner: producing a program more quickly . 627
11.2 Faster: producing a program that runs quicker . 628
11.3 Smaller: producing a program that is smaller . 631
11.4 Thriftier: producing a program that gobbles less heap space 631
11.5 Controlling inlining via optimisation flags. 631

11.5.1 Unfolding creation . 631
11.5.2 Inlining decisions . 632
11.5.3 Inlining generics . 632

11.6 Understanding how OS memory usage corresponds to live data 632

12 Other Haskell utility programs 635

xiii

12.1 “Yacc for Haskell”: happy . 635
12.2 Writing Haskell interfaces to C code: hsc2hs . 635

12.2.1 command line syntax . 635
12.2.2 Input syntax . 636
12.2.3 Custom constructs . 638
12.2.4 Cross-compilation . 638

13 Running GHC on Win32 systems 639
13.1 Starting GHC on Windows platforms . 639
13.2 Running GHCi on Windows . 639
13.3 Interacting with the terminal . 640
13.4 Differences in library behaviour . 640
13.5 File paths under Windows . 640
13.6 Using GHC (and other GHC-compiled executables) with Cygwin 641

13.6.1 Background . 641
13.6.2 The problem . 641
13.6.3 Things to do . 641

13.7 Building and using Win32 DLLs . 642
13.7.1 Creating a DLL . 642
13.7.2 Making DLLs to be called from other languages 643

Using from VBA . 644
Using from C++ . 644

14 Known bugs and infelicities 647
14.1 Haskell standards vs. Glasgow Haskell: language non-compliance 647

14.1.1 Divergence from Haskell 98 and Haskell 2010 647
Lexical syntax . 647
Context-free syntax . 648
Expressions and patterns . 649
Failable patterns . 649
Typechecking of recursive binding groups . 650
Default Module headers with -main-is . 650
Module system and interface files . 651
Numbers, basic types, and built-in classes . 651
In Prelude support . 652
The Foreign Function Interface . 653

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 . 653

14.2 Known bugs or infelicities . 654
14.2.1 Bugs in GHC . 654
14.2.2 Bugs in GHCi (the interactive GHC) . 656

15 Eventlog encodings 657
15.1 Event log format . 657
15.2 Runtime system diagnostics . 658

15.2.1 Capability sets . 658
15.2.2 Environment information . 658
15.2.3 Thread and scheduling events . 659
15.2.4 Garbage collector events . 660
15.2.5 Heap events and statistics . 663
15.2.6 Spark events . 664
15.2.7 Capability events . 665
15.2.8 Task events . 665
15.2.9 Tracing events . 666

xiv

15.3 Heap profiler event log output . 666
15.3.1 Metadata event types . 667

Beginning of sample stream . 667
Cost centre definitions . 667
Info Table Provenance definitions . 668
Sample event types . 668
Cost-centre break-down . 669
String break-down . 669

15.4 Time profiler event log output . 670
15.4.1 Profile begin event . 670
15.4.2 Profile sample event . 670

15.5 Biographical profile sample event . 670
15.6 Non-moving GC event output . 670

15.6.1 Non-moving heap census . 672
15.6.2 Ticky counters . 672

16 Care and feeding of your GHC User’s Guide 675
16.1 Basics . 675

16.1.1 Headings . 676
16.1.2 Formatting code . 676

Haskell . 677
Other languages . 677

16.1.3 Links . 677
Within the User’s Guide . 677
To GHC resources . 678
To external resources . 678
To core library Haddock documentation . 678
Math . 678

16.1.4 Index entries . 679
16.2 Citations . 679
16.3 Admonitions . 679
16.4 Documenting command-line options and GHCi commands 680

16.4.1 Command-line options . 680
16.4.2 GHCi commands . 681

16.5 Style Conventions . 681
16.6 ReST reference materials . 681

17 Indices and tables 683

Bibliography 685

Index 687

xv

xvi

GHC User’s Guide Documentation, Release 9.2.6

Contents:

CONTENTS 1

GHC User’s Guide Documentation, Release 9.2.6

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.
GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 33), and a batch compiler, described throughout Using GHC
(page 83). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.
The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.
GHC supports numerous language extensions, including concurrency, a foreign function inter-
face, exceptions, type system extensions such as multi-parameter type classes, local universal
and existential quantification, functional dependencies, scoped type variables and explicit un-
boxed types. These are all described in Language extensions (page 261).
GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).
GHC’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 593) for more details.
GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.
Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
• GHC home page

3

http://www.haskell.org/
http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building
http://www.haskell.org/ghc/

GHC User’s Guide Documentation, Release 9.2.6

• GHC Developers Home (developer documentation, wiki, and bug tracker)
We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.
glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a

specific question about GHC, please check the FAQ first.
Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.
Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:
Stable branches are numbered x.y, where ⟨y⟩ is even. Releases on the stable branch
x.y are numbered x.y.z, where ⟨z⟩ (>= 1) is the patchlevel number. Patchlevels
are bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will need
to recompile any code that was compiled against the old libraries.
The value of __GLASGOW_HASKELL__ (see Options affecting the C pre-processor
(page 236)) for a major release x.y.z is the integer ⟨xyy⟩ (if ⟨y⟩ is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__GLASGOW_HASKELL__==608).
Wemaymake snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.
Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.
Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.
The value of __GLASGOW_HASKELL__ for a snapshot release is the integer ⟨xyy⟩. You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the

4 Chapter 1. Introduction

https://gitlab.haskell.org/ghc/ghc
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
http://www.haskell.org/ghc/dist/latest/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 9.2.6

values of __GLASGOW_HASKELL__, you should only conditionally compile using pred-
icates which test whether __GLASGOW_HASKELL__ is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 91)).
The compiler version can be tested within compiled code with the
MIN_VERSION_GLASGOW_HASKELL CPP macro (defined only when CPP (page 236) is used).
See Standard CPP macros (page 237) for details.

1.5 The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5. The Glasgow Haskell Compiler License 5

GHC User’s Guide Documentation, Release 9.2.6

6 Chapter 1. Introduction

CHAPTER

TWO

RELEASE NOTES

2.1 Version 9.2.1

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 240) of this release is to be used with LLVM 10 or 11.

2.1.1 Language

• ImpredicativeTypes (page 377): Finally, polymorphic types have become first class!
GHC 9.2 includes a full implementation of the Quick Look approach to type inference for
impredicative types, as described in in the paper A quick look at impredicativity (Serrano
et al, ICFP 2020). More information here: Impredicative polymorphism (page 377). This
replaces the old (undefined, flaky) behaviour of the ImpredicativeTypes (page 377)
extension.

• The first stage of the Pointer Rep Proposal has been implemented. All boxed types, both
lifted and unlifted, now have representation kinds of the shape BoxedRep r. Code that
references LiftedRep and UnliftedRep will need to be updated.

• UnliftedDatatypes (page 514): The Unlifted Datatypes Proposal has been implemented.
That means GHC Haskell now offers a way to define algebraic data types with strict se-
mantics like in OCaml or Idris! The distinction to ordinary lifted data types is made in
the kind system: Unlifted data types live in kind TYPE (BoxedRep Unlifted). Unlifted-
Datatypes (page 514) allows giving data declarations such result kinds, such as in the
following example with the help of StandaloneKindSignatures (page 352):

type IntSet :: UnliftedType -- type UnliftedType = TYPE (BoxedRep Unlifted)
data IntSet = Branch IntSet !Int IntSet | Leaf

See UnliftedDatatypes (page 514) for what other declarations are possible. Slight
caveat: Most functions in base (including $) are not levity-polymorphic (yet) and hence
won’t work with unlifted data types.

• GHC now supports visible type applications in patterns when TypeApplications
(page 366) is enabled . This allows you to use the @variable syntax to bind types in
patterns. For instance, instead of

foo (Just (x :: ty)) = …

You can now use
foo (Just @ty x) = …

7

https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0203-pointer-rep.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst

GHC User’s Guide Documentation, Release 9.2.6

See the Type Applications in Patterns Proposal for more details
• Kind inference for data/newtype instance declarations is slightly more restrictive than
before. In particular, GHC now requires that the kind of a data family instance be fully
determined by the header of the instance, without looking at the definition of the con-
structor.
This means that data families that dispatched on an invisible parameter might now re-
quire this parameter to be made explicit, as in the following example:

data family DF :: forall (r :: RuntimeRep). TYPE r
newtype instance DF @IntRep = MkDF2 Int#
newtype instance DF @FloatRep = MkDF1 Float#

See the user manual Kind inference for data/newtype instance declarations (page 356).
• GHC is stricter about checking for out-of-scope type variables on the right-hand sides of
associated type family instances that are not bound on the left-hand side. As a result,
some programs that were accidentally accepted in previous versions of GHC will now be
rejected, such as this example:

class Funct f where
type Codomain f

instance Funct ('KProxy :: KProxy o) where
type Codomain 'KProxy = NatTr (Proxy :: o -> Type)

Where:

data Proxy (a :: k) = Proxy
data KProxy (t :: Type) = KProxy
data NatTr (c :: o -> Type)

GHC will now reject the o on the right-hand side of the Codomain instance as being
out of scope, as it does not meet the requirements for being explicitly bound (as it is
not mentioned on the left-hand side) nor implicitly bound (as it is not mentioned in an
outermost kind signature, as required by Scoping of class parameters (page 337)). This
program can be repaired in a backwards-compatible way by mentioning o on the left-
hand side:

instance Funct ('KProxy :: KProxy o) where
type Codomain ('KProxy @o) = NatTr (Proxy :: o -> Type)
-- Alternatively,
-- type Codomain ('KProxy :: KProxy o) = NatTr (Proxy :: o -> Type)

• Previously, -XUndecidableInstances accidentally implied -XFlexibleContexts. This is
now fixed, but it means that some programs will newly require -XFlexibleContexts.

• The GHC2021 (page 261) language is supported now. It builds on top of Haskell2010,
adding several stable and conservative extensions, and removing deprecated ones. It is
now also the “default” language set that is active when no other language set, such as
Haskell98 (page 263) or Haskell2010 (page 262), is explicitly loaded (e.g via Cabal’s
default-language).
Because GHC2021 (page 261) includes GeneralizedNewtypeDeriving (page 413), which
is not safe for Safe Haskell, users of Safe Haskell are advised to use Haskell2010
(page 262) explicitly.
The default mode of GHC until 9.0 included NondecreasingIndentation (page 648), but
GHC2021 (page 261) does not. This may break code implicitly using this extension.

8 Chapter 2. Release notes

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0126-type-applications-in-patterns.rst

GHC User’s Guide Documentation, Release 9.2.6

• The Record Dot Syntax Proposal has been implemented:
– A new extension OverloadedRecordDot (page 399) provides record . syntax e.g.
x.foo

– A new extension OverloadedRecordUpdate (page 400) provides record . syntax in
record updates e.g. x{foo.bar = 1}. The design of this extension may well change
in the future.

• Various records-related extensions have been improved:
– A new extension NoFieldSelectors (page 392) hides record field selector functions,
so it is possible to define top-level bindings with the same names.

– The DisambiguateRecordFields (page 389) extension now works for updates. An
update expr { field = value } will be accepted if there is a single field called
field in scope, regardless of whether there are non-fields in scope with the same
name.

– The DuplicateRecordFields (page 390) extension now applies to fields in record
pattern synonyms. In particular, it is possible for a single module to define multiple
pattern synonyms using the same field names.

• Because of simplifications to the way that GHC typechecks operator sections, operators
with nested foralls or contexts in their type signatures might not typecheck when used
in a section. For instance, the g function below, which was accepted in previous GHC
releases, will no longer typecheck:

f :: a -> forall b. b -> a
f x _ = x

g :: a -> a
g = (`f` "hello")

g can be made to typecheck once more by eta expanding it to \x -> x `f` "hello". For
more information, see simple-subsumption.

• LinearTypes (page 378) can now infer multiplicity for case expressions. Previously,
the scrutinee of a case (the bit between case and of) was always assumed to have a
multiplicity of Many. Now, GHC will allow the scrutinee to have a multiplicity of One,
using its best-effort inference algorithm.

• Support for matching on GADT constructors in arrow notation has been removed, as the
current implementation of Arrows (page 299) doesn’t handle GADT evidence correctly.
One possible workaround, for the time being, is to perform GADT matches inside let
bindings:

data G a where
MkG :: Show a => a -> G a

foo :: G a -> String
foo = proc x -> do

let res = case x of { MkG a -> show a }
returnA -< res

2.1. Version 9.2.1 9

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0282-record-dot-syntax.rst

GHC User’s Guide Documentation, Release 9.2.6

2.1.2 Compiler

• GHC now has an ARMv8 native code generator, significantly improving compilation per-
formance for ARM targets and eliminating a dependency on LLVM.

• Performance of the compiler in --make (page 86) mode with -j[⟨n⟩] (page 90) is signif-
icantly improved by improvements to the parallel garbage collector noted below.
Benchmarks show a 20% decrease in wall clock time, and a 40% decrease in cpu time,
when compiling Cabal with -j4 on linux. Improvements are more dramatic with higher
parallelism, andwe no longer see significant degradation in wall clock time as parallelism
increases above 4.

• New -Wredundant-bang-patterns (page 116) flag that enables checks for “dead” bangs.
For instance, given this program:

f :: Bool -> Bool
f True = False
f !x = x

GHC would report that the bang on x is redundant and can be removed since the argu-
ment was already forced in the first equation. For more details see -Wredundant-bang-
patterns (page 116).

• New -Wimplicit-lift (page 107) flag which warns when a Template Haskell quote
implicitly uses lift.

• New -finline-generics (page 130) and -finline-generics-aggressively (page 130)
flags for improving performance of generics-based algorithms.
For more details see -finline-generics (page 130) and -finline-generics-
aggressively (page 130).

• GHC now supports a flag, -fprof-callers=⟨name⟩ (page 598), for requesting that the
compiler automatically insert cost-centres on all call-sites of the named function.

• The heap profiler can now be controlled from within a Haskell program using functions
in GHC.Profiling. Profiling can be started and stopped or a heap census requested at a
specific point in the program. There is a new RTS flag --no-automatic-heap-samples
(page 605) which can be used to stop heap profiling starting when a program starts.

• A new debugging facility, -finfo-table-map (page 622), which embeds a mapping from
the address of an info table to information about that info table, including an approximate
source position. -fdistinct-constructor-tables (page 622) is also useful with this
flag to give each usage of a data constructor its own unique info table so they can be
distinguished in gdb and heap profiles.

2.1.3 GHCi

• GHCi’s :kind! command now expands through type synonyms in addition to type fami-
lies. See :kind (page 67).

• GHCi’s :edit (page 65) command now looks for an editor in the VISUAL (page 65) envi-
ronment variable before EDITOR, following UNIX convention. (#19030)

• GHC now follows by default the XDG Base Directory Specification. If $HOME/.ghc is
found it will fallback to the old paths to give you time to migrate. This fallback will be
removed in three releases.

10 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/19030

GHC User’s Guide Documentation, Release 9.2.6

• New debugger command :ignore (page 67) to set an ignore count for a specified break-
point. The next ignore count times the program hits this breakpoint, the breakpoint is
ignored, and the program doesn’t stop.

• New optional parameter added to the command :continue (page 64) to set the ignore
count for the current breakpoint.

2.1.4 Runtime system

• The parallel garbage collector is now significantly more performant. Heavily contended
spinlocks have been replaced with mutexes and condition variables. For most programs
compiled with the threaded runtime, and run with more than four capabilities, we expect
minor GC pauses and GC cpu time both to be reduced.
For very short running programs (in the order of 10s of milliseconds), we have seen some
performance regressions. We recommend programs affected by this to either compile
with the single threaded runtime, or otherwise to disable the parallel garbage collector
with -qg ⟨gen⟩ (page 186).
We don’t expect any other performance regressions, however only limited benchmarking
has been done. We have only benchmarked GHC and nofib and only on linux.
Users are advised to reconsider the rts flags that programs are run with. If you have
been mitigating poor parallel GC performance by: using large nurseries (-A (page 184)),
disabling load balancing (-qb ⟨gen⟩ (page 186)), or limiting parallel GC to older gener-
ations (-qg ⟨gen⟩ (page 186)); then you may find these mitigations are no longer neces-
sary.

• The heap profiler now has proper treatment of pinned ByteArray#s. Such heap objects
will now be correctly attributed to their appropriate cost centre instead of merely being
lumped into the PINNED category. Moreover, we now correctly account for the size of the
array, meaning that space lost to fragmentation is no longer counted as live data.

• The -xt RTS flag has been removed. Now STACK and TSO closures are always included
in heap profiles. Tooling can choose to filter out these closure types if necessary.

• A new heap profiling mode, -hi (page 604), profile by info table allows for fine-grain
banding by the info table address of a closure. The profiling mode is intended to be used
with -finfo-table-map (page 622) and can best be consumed with eventlog2html. This
profiling mode does not require a profiling build.

• The RTS will now gradually return unused memory back to the OS rather than retaining
a large amount (up to 4 * live) indefinitely. The rate at which memory is returned is
controlled by the -Fd ⟨factor⟩ (page 185). Memory return is triggered by consecutive
idle collections.

• The default nursery size, -A (page 184), has been increased from 1mb to 4mb.

2.1.5 Template Haskell

• There are two new functions putDoc and getDoc, which allow Haddock documentation
to be attached and read from module headers, declarations, function arguments, class
instances and family instances. These functions are quite low level, so the withDecDoc
function provides a more ergonomic interface for this. Similarly funD_doc, dataD_doc
and friends provide an easy way to document functions and constructors alongside their
arguments simultaneously.

2.1. Version 9.2.1 11

GHC User’s Guide Documentation, Release 9.2.6

$(withDecsDoc "This does good things" [d| foo x = 42 |])

2.1.6 ghc-prim library

• Void# is now a type synonym for the unboxed tuple (# #). Code using Void# now has to
enable UnboxedTuples (page 510).

2.1.7 Eventlog

• Two new events, BLOCKS_SIZE (page 663) tells you about the total size of all allocated
blocks and MEM_RETURN (page 662) gives statistics about why the OS is returning and
retaining megablocks.

2.1.8 ghc library

• There is a significant refactoring in the solver; any type-checker plugins will have to be
updated, as GHC no longer uses flattening skolems or flattening metavariables.

• Type checker plugins which work with the natural numbers now should use naturalTy
kind instead of typeNatKind, which has been removed.

• The con_args field of ConDeclGADT has been renamed to con_g_args. This is because the
type of con_g_args is now different from the type of the con_args field in ConDeclH98:

data ConDecl pass
= ConDeclGADT

{ ...
, con_g_args :: HsConDeclGADTDetails pass -- ^ Arguments; never infix
, ...
}

| ConDeclH98
{ ...
, con_args :: HsConDeclH98Details pass -- ^ Arguments; can be infix
, ...
}

Where:

-- Introduced in GHC 9.2; was called `HsConDeclDetails` in previous versions of␣
↪→GHC

type HsConDeclH98Details pass
= HsConDetails (HsScaled pass (LBangType pass)) (XRec pass [LConDeclField␣

↪→pass])

-- Introduced in GHC 9.2
data HsConDeclGADTDetails pass

= PrefixConGADT [HsScaled pass (LBangType pass)]
| RecConGADT (XRec pass [LConDeclField pass])

Unlike Haskell98-style constructors, GADT constructors cannot be declared using infix
syntax, which is why HsConDeclGADTDetails lacks an InfixConGADT constructor.

12 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.2.6

As a result of all this, the con_args field is now partial, so using con_args as a top-level
field selector is discouraged.

2.1.9 base library

• The lifted fixed-width integer and word types (e.g. Data.Int.Int8, Data.Word.Word32)
are now represented by their associated fixed-width unlifted types. For instance, while
in previous GHC versions Int8 was defined as:

data Int8 = I8# Int#

As of GHC 9.2 it is rather defined as,

data Int8 = I8# Int8#

• Character set metadata bumped to Unicode 13.0.0.
• It’s possible now to promote the Natural type:

data Coordinate = Mk2D Natural Natural
type MyCoordinate = Mk2D 1 10

The separate kind Nat is removed and now it is just a type synonym for Natural. As a
consequence, one must enable TypeSynonymInstances in order to define instances for
Nat.
The Numeric module receives showBin and readBin to show and read integer numbers
in binary.

• Char gets type-level support by analogy with strings and natural numbers. We extend
the GHC.TypeLits module with these built-in type-families:

type family CmpChar (a :: Char) (b :: Char) :: Ordering
type family ConsSymbol (a :: Char) (b :: Symbol) :: Symbol
type family UnconsSymbol (a :: Symbol) :: Maybe (Char, Symbol)
type family CharToNat (c :: Char) :: Natural
type family NatToChar (n :: Natural) :: Char

and with the type class KnownChar (and such additional functions as charVal and char-
Val'):

class KnownChar (n :: Char)

charVal :: forall n proxy. KnownChar n => proxy n -> Char
charVal' :: forall n. KnownChar n => Proxy# n -> Char

• A new kind-polymorphic Compare type family was added in Data.Type.Ord and has type
instances for Nat, Symbol, and Char. Furthermore, the (<=?) type (and (<=)) from
GHC.TypeNats is now governed by this type family (as well as new comparison type oper-
ators that are exported by Data.Type.Ord). This has two important repercussions. First,
GHC can no longer deduce that all natural numbers are greater than or equal to zero.
For instance,

test1 :: Proxy (0 <=? x) -> Proxy True
test1 = id

2.1. Version 9.2.1 13

GHC User’s Guide Documentation, Release 9.2.6

which previously type checked will now result in a type error. Second, when these com-
parison type operators are used very generically, a kind may need to be provided. For
example,

test2 :: Proxy (x <=? x) -> Proxy True
test2 = id

will now generate a type error because GHC does not know the kind of x. To fix this, one
must provide an explicit kind, perhaps by changing the type to:

test2 :: forall (x :: Nat). Proxy (x <=? x) -> Proxy True

• On POSIX, System.IO.openFile can no longer leak a file descriptor if it is interrupted
by an asynchronous exception (#19114, #19115).

• There’s a new binding GHC.Exts.considerAccessible. It’s equivalent to True and al-
lows the programmer to turn off pattern-match redundancy warnings for particular
clauses, like the third one here

g :: Bool -> Int
g x = case (x, x) of

(True, True) -> 1
(False, False) -> 2
(True, False) | considerAccessible -> 3 -- No warning!

Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

Continued on next page

14 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/19114
https://gitlab.haskell.org/ghc/ghc/issues/19115

GHC User’s Guide Documentation, Release 9.2.6

Table 2.1 – continued from previous page
Package Version Reason for inclusion
exceptions 0.10.4 Dependency of ghc and

haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

terminfo 0.4.1.5 Dependency of haskeline li-
brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

Continued on next page

2.1. Version 9.2.1 15

GHC User’s Guide Documentation, Release 9.2.6

Table 2.1 – continued from previous page
Package Version Reason for inclusion
unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.2 Version 9.2.2

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 240) of this release is to be used with LLVM 9, 10, 11, or 12.

2.2.1 Compiler

• Numerous improvements in compiler performance.
• A fix for GHC’s handling of the XDG Base Directory Specification (#6077, #20684,
#20669, #20660):
– For the package database previously in ~/.ghc/<arch-ver>, we will continue to use
the old path if it exists. For example, if the ~/.ghc/x86_64-linux-9.4.1 directory exists,
GHC will use that for its user package database. If this directory does not exist, we
will use $XDG_DATA_HOME/ghc/x86_64-linux-9.4.1. This is in order to give tooling
like cabal time to migrate

– For GHCi configuration files previously located in ~/.ghc/ like ghci.conf and
ghci_history, we will first check if they exist in ~/.ghc and use those if they do. How-
ever, we will create new files like ghci_history only in $XDG_DATA_HOME/ghc. So
if you don’t have a previous GHC installation which created ~/.ghc/ghci_history, the
history file will be written to $XDG_DATA_HOME/ghc. If you already have an older
GHC installation which wrote ~/.ghc/ghci_history, then GHC will continue to write
the history to that file.

• Fix bug in CPR analysis’s treatment of join points which may result in runtime crashes
(#18824).

• Link against libatomic for atomic operations on platforms where this is necessary
(#19119).

• Fix bootstrapping of compiler with GHC 9.2 and later (#19631)
• Silence non-actionable warnings regarding missed specialisations of class methods
(#19592).

• Fix a race condition in the registration of ticky-ticky profiling counters, potentially re-
sulting in hangs when ticky-ticky is used in a threaded application (#20451).

• Introduce a flag, -Wunicode-bidirectional-format-characters (page 120), to warn if
Unicode bidirectional formatting are found in Haskell source files.

• Improve the pattern match checker’s handling of unlifted data types, eliminating spuri-
ous warnings from impossible branches (#20631).

• Fix a compiler crash due to incorrect in-scope set (#20639)
• Don’t use implicit lifting when deriving a Lift instances, fixing #20688.

16 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/6077
https://gitlab.haskell.org/ghc/ghc/issues/20684
https://gitlab.haskell.org/ghc/ghc/issues/20669
https://gitlab.haskell.org/ghc/ghc/issues/20660
https://gitlab.haskell.org/ghc/ghc/issues/18824
https://gitlab.haskell.org/ghc/ghc/issues/19119
https://gitlab.haskell.org/ghc/ghc/issues/19631
https://gitlab.haskell.org/ghc/ghc/issues/19592
https://gitlab.haskell.org/ghc/ghc/issues/20451
https://gitlab.haskell.org/ghc/ghc/issues/20631
https://gitlab.haskell.org/ghc/ghc/issues/20639
https://gitlab.haskell.org/ghc/ghc/issues/20688

GHC User’s Guide Documentation, Release 9.2.6

• Unbox unlifted datatypes fields (#20663).
• Introduce a flag, -fcheck-prim-bounds (page 259), which adds dynamic bounds checks
in the code generated for array primops (#20769).

• Ensure that the indexWord8ArrayAs<Type># family of array primops are lowered cor-
rectly on platforms which do not support unaligned memory access (#21015, #20987).

• Fix a potential bug where common-block elimination may common-up incompatible load
operations (#21016)

• Eliminate the ghc library’s dependence on parsec (#21033).
• Introduced -fcompact-unwind (page 247) , enabling the generation of compact unwind-
ing information on Apple Darwin targets (#11829).

• Fix a bug where some exception closures could be inappropriately garbage collected,
resulting in crashes (#21141)

• Fix a variety of bugs in the AArch64 code generator’s handling of sub-word-size values
(#19993, #20637, #20638).

2.2.2 GHCi

• Fix bug in handling of GHC environment files which lead to unintentional resetting of
GHCi’s package state (#19650)

2.2.3 Core libraries

• Fix a few bugs in WinIO which might result in heap corruption (#21048).
• Fix an interaction between WinIO and deadlock detection, resulting in programs poten-
tially hanging in IO (#18382)

• Add CTYPE pragmas to all foreign type wrappers (e.g. Foreign.C.Types), ensuring that
correct signatures are generated for capi foreign imports (#15531).

• Fix incorrect implementation of Data.Type.Ord.<: (TODO)
• Bump stm to release 2.5.0.2 (#20575)
• Avoid using Apple Darwin’s broken one-shot kqueue implementation (#20662)

2.2.4 Build system and packaging

• Fix generation of binary distribution for cross-compilers with Hadrian (#20267)
• Don’t rely on non-POSIX realpath utility in Hadrian’s binary distribution installation
Makefile (#19963)

2.2.5 Runtime system

• #20577
• Teach runtime linker to resolve special iconv_ symbols on FreeBSD (#20354)
• Fix garbage collector statistics produced when run -qn 1 (page 186) (#19685).

2.2. Version 9.2.2 17

https://gitlab.haskell.org/ghc/ghc/issues/20663
https://gitlab.haskell.org/ghc/ghc/issues/20769
https://gitlab.haskell.org/ghc/ghc/issues/21015
https://gitlab.haskell.org/ghc/ghc/issues/20987
https://gitlab.haskell.org/ghc/ghc/issues/21016
https://gitlab.haskell.org/ghc/ghc/issues/21033
https://gitlab.haskell.org/ghc/ghc/issues/11829
https://gitlab.haskell.org/ghc/ghc/issues/21141
https://gitlab.haskell.org/ghc/ghc/issues/19993
https://gitlab.haskell.org/ghc/ghc/issues/20637
https://gitlab.haskell.org/ghc/ghc/issues/20638
https://gitlab.haskell.org/ghc/ghc/issues/19650
https://gitlab.haskell.org/ghc/ghc/issues/21048
https://gitlab.haskell.org/ghc/ghc/issues/18382
https://gitlab.haskell.org/ghc/ghc/issues/15531
https://gitlab.haskell.org/ghc/ghc/issues/20575
https://gitlab.haskell.org/ghc/ghc/issues/20662
https://gitlab.haskell.org/ghc/ghc/issues/20267
https://gitlab.haskell.org/ghc/ghc/issues/19963
https://gitlab.haskell.org/ghc/ghc/issues/20577
https://gitlab.haskell.org/ghc/ghc/issues/20354
https://gitlab.haskell.org/ghc/ghc/issues/19685

GHC User’s Guide Documentation, Release 9.2.6

• Fix the reporting of elapsed GC time when using the non-moving garbage collector
(page 183). (#20751)

• Fix a bug where the memory-mapping base address was not updated after creating a
mapping, resulting in linking failures (#20734)

• Eliminate a case in the linker which would result in memory mappings that were simul-
taneously writable and executable (#20814).

• Seed environ in the runtime system’s symbol table, ensuring that environment is cor-
rectly propagated to loaded objects (#20861 and related tickets)

• Introduce a new flag, --null-eventlog-writer (page 605), allowing the eventlog to be
enabled while suppressing the usual .eventlog file output. This can be useful when
running programs with a custom eventlog writer (page 180).

2.2.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

exceptions 0.10.4 Dependency of ghc and
haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

Continued on next page

18 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/20751
https://gitlab.haskell.org/ghc/ghc/issues/20734
https://gitlab.haskell.org/ghc/ghc/issues/20814
https://gitlab.haskell.org/ghc/ghc/issues/20861

GHC User’s Guide Documentation, Release 9.2.6

Table 2.2 – continued from previous page
Package Version Reason for inclusion
ghc-compact 0.1.0.0 Core library

ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

terminfo 0.4.1.5 Dependency of haskeline li-
brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.3 Version 9.2.3

The significant changes to the various parts of the compiler are listed in the following sections.

2.3. Version 9.2.3 19

GHC User’s Guide Documentation, Release 9.2.6

The LLVM backend (page 240) of this release is to be used with LLVM 9, 10, 11, or 12.

2.3.1 Compiler

• Fix a bug causing compiler panics on certain RULE declarations (#20820).
• Fix a typechecker regression on certain programs involving type families and type equal-
ity constraints (#21473, #21515).

• Fix a typechecker regression affecting programs involving quantified constraints and
superclasses (#20582)

• Fix a typechecker bug causing compiler panics on certain programs involing GADTs and
Type Families (#20820).

• Fix a typechecker panic on certain programs involving typed holes (#21130).
• Fix a typechecker panic arising from uninferrable variables in a pattern synonym
(#21479).

• Various other typechecker bug fixes (#21531, #21516, #21519).
• Ensure that XMM registers are preserved according to the calling convention on Win64
(#21465).

• Fix a bug in the STG pipeline leading to segfaults in certain situations (#21396).
• Fix a code generator bug causing CAFs to be incorrectly GC’d (#20959).
• Improve error messages for OverloadedRecordFields in the case of ambiguous fields
(#17420).

• Improve warnings for redundant constraints (#20602).

2.3.2 Runtime system

• Fix a bugwith RTS accounting resulting in computing incorrect and negative productivity
stats (#21082).

2.3.3 GHCi

• Fix a bug causing certain type signatures to be pretty printed in a unpleasant way
(#20974).

2.3.4 Core libraries

• Bump bytestring to 0.11.3.1 fixing a critical linking bug causing GHC 9.2.2 to be unus-
able on Windows (#21196).

• base: Export GHC.Event.Internal on Windows (#21245).

20 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/20820
https://gitlab.haskell.org/ghc/ghc/issues/21473
https://gitlab.haskell.org/ghc/ghc/issues/21515
https://gitlab.haskell.org/ghc/ghc/issues/20582
https://gitlab.haskell.org/ghc/ghc/issues/20820
https://gitlab.haskell.org/ghc/ghc/issues/21130
https://gitlab.haskell.org/ghc/ghc/issues/21479
https://gitlab.haskell.org/ghc/ghc/issues/21531
https://gitlab.haskell.org/ghc/ghc/issues/21516
https://gitlab.haskell.org/ghc/ghc/issues/21519
https://gitlab.haskell.org/ghc/ghc/issues/21465
https://gitlab.haskell.org/ghc/ghc/issues/21396
https://gitlab.haskell.org/ghc/ghc/issues/20959
https://gitlab.haskell.org/ghc/ghc/issues/17420
https://gitlab.haskell.org/ghc/ghc/issues/20602
https://gitlab.haskell.org/ghc/ghc/issues/21082
https://gitlab.haskell.org/ghc/ghc/issues/20974
https://gitlab.haskell.org/ghc/ghc/issues/21196
https://gitlab.haskell.org/ghc/ghc/issues/21245

GHC User’s Guide Documentation, Release 9.2.6

2.3.5 Build system and packaging

• Use POSIX compatible shell syntax for redirecting output during configure (#20760).
• Only copy and install libffi headers when using in-tree libffi (#21485, #21487).
• Add support for bootstrapping hadrian without needing cabal-install.
• Allow installing hadrian generated binary distributions to paths including the string “xxx”
(#21402)

• Allow bootstrapping from GHC 9.2.
• Allow running the testsuite using Python 3.10.

2.3.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

exceptions 0.10.4 Dependency of ghc and
haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

ghc-compact 0.1.0.0 Core library

Continued on next page

2.3. Version 9.2.3 21

https://gitlab.haskell.org/ghc/ghc/issues/20760
https://gitlab.haskell.org/ghc/ghc/issues/21485
https://gitlab.haskell.org/ghc/ghc/issues/21487
https://gitlab.haskell.org/ghc/ghc/issues/21402

GHC User’s Guide Documentation, Release 9.2.6

Table 2.3 – continued from previous page
Package Version Reason for inclusion
ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

terminfo 0.4.1.5 Dependency of haskeline li-
brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.4 Version 9.2.4

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 240) of this release is to be used with LLVM 9, 10, 11, or 12.

22 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.2.6

2.4.1 Compiler

• Add the DeepSubsumption (page 375) language extension which reverses the effects of
the Simplified Subsumption Proposal introduced in GHC 9.0. This is an attempt to make
GHC 9.2.4 more backwards compatible with GHC 8.10 and eases migration for users
who depended on this feature.
This extension is enabled by default with the Haskell2010 (page 262) and Haskell98
(page 263) languages but disabled with the GHC2021 (page 261) language originally in-
troduced in GHC 9.2.1.
See the Deep Subsumption Proposal for more details.

• The flag -ddump-llvm doesn’t imply -fllvm any more (#21776).
• Fix a compiler panic due to a bug in the simplifier (#21694).
• Fix a bug where the flag Werror=unrecognised-warning-flags did not behave as ex-
pected (#21682).

• Fix miscompilations on AArch64 (#21624, #21773, #20735).
• Fix a miscompilation bug that manifests due to improper handling of name shadowing
during common subexpression elimination (#21685).

• Fix a space leak that may manifest using the extendMG function (#21818).
• Ensure types from record dot syntax are stored in the HIE file AST (#21797).
• Fix a compiler panic when importing “wrapper” with -XCApiFFI (#20272).
• Enable -Wunicode-bidirectional-format-characters by default. This was meant to
be enabled previously but was not due to a botched backport (#21865).

2.4.2 Runtime system

• Fix segfaults that may arise due to a bug in the implementation of the keepAlive# primop.
This may regress performance for certain programs which use this primop or functions
which use the primop, such as withForeignPtr. These regressions are mostly small, but
can be larger in certain edge cases. Judicious use of unsafeWithForeignPtr when its
argument is known not to statically diverge can mitigate these in many cases. It is our
judgement that the critical correctness issues justify the regression in performance and
that it is important to get a release out with the fix while we work on a better approach
which will improve performance for future releases (#21708).

• Fix a segfault that may arise using LDV profiling (#21880).
• Fix a bug in the nonmoving GC which resulted in segfaults due to early GC (#21885).
• Fix accounting for copied bytes during sequential garbage collections (#21745).
• Allow passing‘‘-po‘‘ flag to set output during non-profiled builds (#21445).
• Respect the -po flag to set output while heap profiling (#21446).

2.4.3 GHCi

• Allow CApi FFI calls in GHCi (#7388).
• Fix behaviour of Ctrl-C on Windows in GHCi (#21889).

2.4. Version 9.2.4 23

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst
https://gitlab.haskell.org/ghc/ghc/issues/21776
https://gitlab.haskell.org/ghc/ghc/issues/21694
https://gitlab.haskell.org/ghc/ghc/issues/21682
https://gitlab.haskell.org/ghc/ghc/issues/21624
https://gitlab.haskell.org/ghc/ghc/issues/21773
https://gitlab.haskell.org/ghc/ghc/issues/20735
https://gitlab.haskell.org/ghc/ghc/issues/21685
https://gitlab.haskell.org/ghc/ghc/issues/21818
https://gitlab.haskell.org/ghc/ghc/issues/21797
https://gitlab.haskell.org/ghc/ghc/issues/20272
https://gitlab.haskell.org/ghc/ghc/issues/21865
https://gitlab.haskell.org/ghc/ghc/issues/21708
https://gitlab.haskell.org/ghc/ghc/issues/21880
https://gitlab.haskell.org/ghc/ghc/issues/21885
https://gitlab.haskell.org/ghc/ghc/issues/21745
https://gitlab.haskell.org/ghc/ghc/issues/21445
https://gitlab.haskell.org/ghc/ghc/issues/21446
https://gitlab.haskell.org/ghc/ghc/issues/7388
https://gitlab.haskell.org/ghc/ghc/issues/21889

GHC User’s Guide Documentation, Release 9.2.6

2.4.4 Core libraries

• Bump base to 4.16.3.0.
• Ensure hGetBufNonBlocking doesn’t block on Windows (#21665).

2.4.5 Build system and packaging

• Don’t override linker on Darwin during configure (#21712).
• Fix a hadrian bug to do with building profiled executables without corresponding li-
braries (#19624).

• Fix a panic on FreeBSDwhen building with hadrian due to incorrect arch triple (#15718).

2.4.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

exceptions 0.10.4 Dependency of ghc and
haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

Continued on next page

24 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/21665
https://gitlab.haskell.org/ghc/ghc/issues/21712
https://gitlab.haskell.org/ghc/ghc/issues/19624
https://gitlab.haskell.org/ghc/ghc/issues/15718

GHC User’s Guide Documentation, Release 9.2.6

Table 2.4 – continued from previous page
Package Version Reason for inclusion
ghc-compact 0.1.0.0 Core library

ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

terminfo 0.4.1.5 Dependency of haskeline li-
brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.5 Version 9.2.5

The significant changes to the various parts of the compiler are listed in the following sections.

2.5. Version 9.2.5 25

GHC User’s Guide Documentation, Release 9.2.6

The LLVM backend (page 240) of this release is to be used with LLVM 9, 10, 11, or 12.

2.5.1 Compiler

• Fix a number of issues with the simplifier leading to core lint errors and suboptimal
performance (#21694, #21755, #22114).

• Fix a sign extension bug resulting in incorrent runtime results on the native aarch64
backend (#22282).

• Improve determinism by not inclusing build directories in interface files (#22162).
• Fix a code generation panic when using SIMD types with unboxed sums (#22187).
• Fix a code generation bug with the native code generator on aarch64 darwin leading to
runtime segmentation faults due to an incorrect ABI (#21964)

2.5.2 Runtime system

• Fix a bug where attempting to clear the card table of a zero-length array resulted in an
integer underflow (#21962).

2.5.3 Core libraries

• Bump base to 4.16.3.0.
• Bump process to 1.6.16.0
• base: Fix races in the IOManager to do with the setNumCapabilities and closeFdWith
functions (#21651)

2.5.4 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

Continued on next page

26 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/21694
https://gitlab.haskell.org/ghc/ghc/issues/21755
https://gitlab.haskell.org/ghc/ghc/issues/22114
https://gitlab.haskell.org/ghc/ghc/issues/22282
https://gitlab.haskell.org/ghc/ghc/issues/22162
https://gitlab.haskell.org/ghc/ghc/issues/22187
https://gitlab.haskell.org/ghc/ghc/issues/21964
https://gitlab.haskell.org/ghc/ghc/issues/21962
https://gitlab.haskell.org/ghc/ghc/issues/21651

GHC User’s Guide Documentation, Release 9.2.6

Table 2.5 – continued from previous page
Package Version Reason for inclusion
bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

exceptions 0.10.4 Dependency of ghc and
haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

Continued on next page

2.5. Version 9.2.5 27

GHC User’s Guide Documentation, Release 9.2.6

Table 2.5 – continued from previous page
Package Version Reason for inclusion
terminfo 0.4.1.5 Dependency of haskeline li-

brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.6 Version 9.2.6

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 240) of this release is to be used with LLVM 9, 10, 11, or 12.

2.6.1 Compiler

• Fix a regression in the simplifier due to a bad backport in GHC 9.2.5 that could seriously
impact runtime performance when compiling with optimisations due to duplication of
expensive work (#22425).

• Fix a compiler panic in the simplifier due to a bad backport in GHC 9.2.5 (#22491).
• Fix a compiler panic in the simplifier that manifests when compiling with optimisations
(#19824,:ghc-ticket:22482).

• Fix a compiler panic in the demand analyser due to a bug involving shadowing (#22718).
• Fix a compiler panic during the “Float In” optimsation pass due to improper handling of
shadowing (#22662).

• Fix a compiler panic in the demand analyser (#22039).
• Fix a shadowing related bug in the occurence analysis phase of the simplifier (#22623).
• Fix a compiler bug where programs using Template Haskell involving Constant Applica-
tive forms could be garbage collected too early (#22417).

• Fix a regression in the typechecker where certain typeclass instances involving type and
data familes would fail to resolve (#22647).

• Fix the linker warning about chained fixups on Darwin platforms for programs compiled
with GHC (#22429).

• Fix a bug with the graph-colouring register allocater leading to compiler panics when
compiling with -fregs-graph (#22798).

• Fix a parser bug where certain keywords which could be used as variables were not
allowed to be used with OverloadedRecordDot (page 399) (#20723).

28 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/22425
https://gitlab.haskell.org/ghc/ghc/issues/22491
https://gitlab.haskell.org/ghc/ghc/issues/19824
https://gitlab.haskell.org/ghc/ghc/issues/22718
https://gitlab.haskell.org/ghc/ghc/issues/22662
https://gitlab.haskell.org/ghc/ghc/issues/22039
https://gitlab.haskell.org/ghc/ghc/issues/22623
https://gitlab.haskell.org/ghc/ghc/issues/22417
https://gitlab.haskell.org/ghc/ghc/issues/22647
https://gitlab.haskell.org/ghc/ghc/issues/22429
https://gitlab.haskell.org/ghc/ghc/issues/22798
https://gitlab.haskell.org/ghc/ghc/issues/20723

GHC User’s Guide Documentation, Release 9.2.6

• Fix the location of some Typeable definitions from GHC.Types which resulted in poor
error messages (#22510).

• Improve error messages involving non-exhaustive patterns when using ApplicativeDo
(page 271) (#22483).

• Fix a driver bug where certain non-fatal Safe Haskell related warnings were being
marked as fatal (#22728).

• Fix a core lint error arises from incorrect scoping of type variables in specialise pragmas
inside class instances (#22913).

• Improve typchecker performance for modules with holes in type signatures (#14766).

2.6.2 Runtime system

• Fix a GC bug where a race condition in the parallel GC could cause it to garbage collect
live sparks (#22528).

• Truncate eventlog events with a large payload (#20221).
• A bug in the nonmoving garbage collector regarding the treatment of zero-length Smal-
lArray#s has been fixed (#22264)

• A number of bugs regarding the non-moving garbage collector’s treatment of Weak#
pointers have been fixed (#22327)

• A few race conditions between the non-moving collector and setNumCapabilitieswhich
could result in undefined behavior have been fixed (#22926, #22927)

• The non-moving collector is now able to better schedule marking work during the post-
mark synchronization phase of collection, significantly reducing pause times in some
workloads (#22929).

• Various bugs in the non-moving collector’s implementation of the selector optimisation
have been fixed (#22930)

2.6.3 Build system and packaging

• Bump gmp-tarballs to a version which doesn’t use the reserved x18 register on
AArch64/Darwin systems, and also has fixes for CVE-2021-43618 (#22497, #22789).

• Include haddock documentation in interface files for hadrian generated bindists, includ-
ing darwin platforms (#22734).

2.6.4 Core libraries

• Bump bytestring to 0.11.4.0.

2.6.5 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

2.6. Version 9.2.6 29

https://gitlab.haskell.org/ghc/ghc/issues/22510
https://gitlab.haskell.org/ghc/ghc/issues/22483
https://gitlab.haskell.org/ghc/ghc/issues/22728
https://gitlab.haskell.org/ghc/ghc/issues/22913
https://gitlab.haskell.org/ghc/ghc/issues/14766
https://gitlab.haskell.org/ghc/ghc/issues/22528
https://gitlab.haskell.org/ghc/ghc/issues/20221
https://gitlab.haskell.org/ghc/ghc/issues/22264
https://gitlab.haskell.org/ghc/ghc/issues/22327
https://gitlab.haskell.org/ghc/ghc/issues/22926
https://gitlab.haskell.org/ghc/ghc/issues/22927
https://gitlab.haskell.org/ghc/ghc/issues/22929
https://gitlab.haskell.org/ghc/ghc/issues/22930
https://gitlab.haskell.org/ghc/ghc/issues/22497
https://gitlab.haskell.org/ghc/ghc/issues/22789
https://gitlab.haskell.org/ghc/ghc/issues/22734

GHC User’s Guide Documentation, Release 9.2.6

Package Version Reason for inclusion
ghc 9.2.6 The compiler itself

Cabal 3.6.3.0 Dependency of ghc-pkg util-
ity

Win32 2.12.0.1 Dependency of ghc library

array 0.5.4.0 Dependency of ghc library

base 4.16.4.0 Core library

binary 0.8.9.0 Dependency of ghc library

bytestring 0.11.4.0 Dependency of ghc library

containers 0.6.5.1 Dependency of ghc library

deepseq 1.4.6.1 Dependency of ghc library

directory 1.3.6.2 Dependency of ghc library

exceptions 0.10.4 Dependency of ghc and
haskeline library

filepath 1.4.2.2 Dependency of ghc library

ghc-boot-th 9.2.6 Internal compiler library

ghc-boot 9.2.6 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 9.2.6 GHC heap-walking library

ghc-prim 0.8.0 Core library

ghci 9.2.6 The REPL interface

haskeline 0.8.2 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

libiserv 9.2.6 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

Continued on next page

30 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.2.6

Table 2.6 – continued from previous page
Package Version Reason for inclusion
parsec 3.1.15.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.16.0 Dependency of ghc library

stm 2.5.0.2 Dependency of haskeline li-
brary

template-haskell 2.18.0.0 Core library

terminfo 0.4.1.5 Dependency of haskeline li-
brary

text 1.2.5.0 Dependency of Cabal library

time 1.11.1.1 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

2.6. Version 9.2.6 31

GHC User’s Guide Documentation, Release 9.2.6

32 Chapter 2. Release notes

CHAPTER

THREE

USING GHCI

GHCi 1 is GHC’s interactive environment that includes an interactive debugger (see The GHCi
Debugger (page 49)).
GHCi can
• interactively evaluate Haskell expressions
• interpret Haskell programs
• load GHC-compiled modules.

At the moment GHCi supports most of GHC’s language extensions.

3.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
ghci>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type :? (page 65) to see the list of com-
mands available, and a half line description of each of them. We’ll explain most of these
commands as we go along, and there is complete documentation for all the commands in
GHCi commands (page 61).
Haskell expressions can be typed at the prompt:

ghci> 1+2
3
ghci> let x = 42 in x / 9
4.666666666666667
ghci>

GHCi interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.
In Haskell, a let expression is followed by in. However, in GHCi, since the expression can
also be interpreted in the IO monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.
Since GHC 8.0.1, you can bind values and functions to names without let statement:

1 The “i” stands for “Interactive”

33

GHC User’s Guide Documentation, Release 9.2.6

ghci> x = 42
ghci> x
42
ghci>

3.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory 3 then we will need to change to the right directory in GHCi:

ghci> :cd dir

where ⟨dir⟩ is the directory (or folder) in which you saved Main.hs.
To load a Haskell source file into GHCi, use the :load (page 67) command:

ghci> :load Main
Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.
*ghci>

GHCi has loaded the Mainmodule, and the prompt has changed to *ghci> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 42)). So we
can now type expressions involving the functions from Main.hs:

*ghci> fac 17
355687428096000

Loading amulti-module program is just as straightforward; just give the name of the “topmost”
module to the :load (page 67) command (hint: :load (page 67) can be abbreviated to :l).
The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.
-fshow-loaded-modules

Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 67) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

34 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

3.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module ⟨M⟩? Answer: it looks for
the file M.hs, or M.lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won’t be able to find it.
There is one exception to this general rule: when you load a program with :load (page 67),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Mainmodules in the same directory and you can’t call them all
Main.hs.
The search path for finding source files is specified with the -i (page 200) option on the GHCi
command line, like so:

ghci -idir1:...:dirn

or it can be set using the :set (page 69) command from within GHCi (see Setting GHC
command-line options in GHCi (page 74)) 4

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as IO and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

3.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 69) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 204)).

3.3 Loading compiled code

When you load a Haskell source module into GHCi, it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code
in GHCi; indeed, normally when GHCi starts, it loads up a compiled copy of the base package,
which contains the Prelude.
Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.
When loading up source modules with :load (page 67), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

4 Note that in GHCi, and --make (page 86) mode, the -i (page 200) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -i (page 200) option is used to specify the search path
for interface files, see The search path (page 199).

3.3. Loading compiled code 35

GHC User’s Guide Documentation, Release 9.2.6

A
/ \
B C
\ /
D

We can compile D, then load the whole program, like this:

ghci> :! ghc -c -dynamic D.hs
ghci> :load A
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D (D.o).
*ghci>

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.
Note the -dynamic (page 242) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.
At any time you can use the command :show modules (page 71) to get a list of the modules
currently loaded into GHCi:

*ghci> :show modules
D (D.hs, D.o)
C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)
*ghci>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*ghci> :! touch D.hs
*ghci> :reload
Compiling D (D.hs, interpreted)
Ok, modules loaded: A, B, C, D.
*ghci>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.
So let’s try compiling one of the other modules:

*ghci> :! ghc -c C.hs
*ghci> :load A
Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

36 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C‘s object file. Ok, so let’s also compile D:

*ghci> :! ghc -c D.hs
*ghci> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 69), only :load (page 67):

*ghci> :load A
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 42)). For this
reason, you might sometimes want to force GHCi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using :load (page 67), for
example

ghci> :load *A
Compiling A (A.hs, interpreted)
*ghci>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module. If
you have already loaded a number of modules as object code and decide that you wanted to
interpret one of them, instead of re-loading the whole set you can use :add *M to specify that
you want M to be interpreted (note that this might cause other modules to be interpreted too,
because compiled modules cannot depend on interpreted ones).
To always compile everything to object code and never use the interpreter, use the -fobject-
code (page 240) option (see Compiling to object code inside GHCi (page 77)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

3.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

ghci> reverse "hello"
"olleh"
ghci> 5+5
10

3.4. Interactive evaluation at the prompt 37

GHC User’s Guide Documentation, Release 9.2.6

3.4.1 I/O actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type IO a for some a, then GHCi executes it as an IO-computation.

ghci> "hello"
"hello"
ghci> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to IO a. For example

ghci> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
• The result type is an instance of Show.
• The result type is not ().

For example, remembering that putStrLn :: String -> IO ():

ghci> putStrLn "hello"
hello
ghci> do { putStrLn "hello"; return "yes" }
hello
"yes"

3.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.
The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the IO monad.

ghci> x <- return 42
ghci> print x
42
ghci>

The statement x <-return 42 means “execute return 42 in the IO monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.
-fprint-bind-result

If -fprint-bind-result (page 38) is set then GHCi will print the result of a statement
if and only if:
•The statement is not a binding, or it is a monadic binding (p <-e) that binds exactly
one variable.
•The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

38 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

ghci> let x = 42
ghci> x
42
ghci>

Another important difference between the two types of binding is that the monadic bind (p
<-e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated imme-
diately:

ghci> let x = error "help!"
ghci> print x
*** Exception: help!
ghci>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.
You can also define functions at the prompt:

ghci> add a b = a + b
ghci> add 1 2
3
ghci>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

ghci> f op n [] = n ; f op n (h:t) = h `op` f op n t
ghci> f (+) 0 [1..3]
6
ghci>

:{
:}

Begin or end a multi-line GHCi command block.
To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

ghci> :{
ghci| g op n [] = n
ghci| g op n (h:t) = h `op` g op n t
ghci| :}
ghci> g (*) 1 [1..3]
6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 75)) more readable
and maintainable.
Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.
Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

3.4. Interactive evaluation at the prompt 39

GHC User’s Guide Documentation, Release 9.2.6

Warning: Temporary bindings introduced at the prompt only last until the next :load
(page 67) or :reload (page 69) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 68): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 71)
command:

ghci> :show bindings
x :: Int
ghci>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

ghci> :set +t
ghci> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

3.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

ghci> :set +m
ghci> let x = 42
ghci|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

ghci> :set +m
ghci> let x = 42
ghci| y = 3
ghci|
ghci>

Explicit braces and semicolons can be used instead of layout:

ghci> do {
ghci| putStrLn "hello"
ghci| ;putStrLn "world"
ghci| }
hello
world
ghci>

40 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.
Multiline mode is useful when entering monadic do statements:

ghci> flip evalStateT 0 $ do
ghci| i <- get
ghci| lift $ do
ghci| putStrLn "Hello World!"
ghci| print i
ghci|
"Hello World!"
0
ghci>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

ghci> do
ghci| putStrLn "Hello, World!"
ghci| ^C
ghci>

3.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type,
newtype, class, instance, deriving, and foreign declarations. For example:

ghci> data T = A | B | C deriving (Eq, Ord, Show, Enum)
ghci> [A ..]
[A,B,C]
ghci> :i T
data T = A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30
instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

ghci> data T = A | B
ghci> let f A = True; f B = False
ghci> data T = A | B | C
ghci> f A

<interactive>:2:3:
Couldn't match expected type `main::Interactive.T'

with actual type `T'
In the first argument of `f', namely `A'
In the expression: f A
In an equation for `it': it = f A

ghci>

3.4. Interactive evaluation at the prompt 41

GHC User’s Guide Documentation, Release 9.2.6

The old, shadowed, version of T is displayed as main::Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.
Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 325).) For example:

ghci> type family T a b
ghci> type instance T a b = a
ghci> let uc :: a -> T a b; uc = id

ghci> type instance T a b = b

<interactive>:3:15: error:
Conflicting family instance declarations:
T a b = a -- Defined at <interactive>:3:15
T a b = b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

ghci> type family T a b
-- This is a brand-new T, unrelated to the old one
ghci> type instance T a b = b
ghci> uc 'a' :: Int

<interactive>:8:1: error:
• Couldn't match type ‘Char’ with ‘Int’
Expected type: Int

Actual type: Ghci1.T Char b0
• In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

3.4.5 What’s really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:
• The :load (page 67), :add (page 61), and :reload (page 69) commands (The effect of
:load on what is in scope (page 43)).

• The import declaration (Controlling what is in scope with import (page 43)).
• The :module (page 68) command (Controlling what is in scope with the :module com-
mand (page 44)).

The command :show imports (page 71) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

42 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

The effect of :load on what is in scope

The :load (page 67), :add (page 61), and :reload (page 69) commands (Loading source files
(page 34) and Loading compiled code (page 35)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

ghci>

By default, this means that everything from the module Prelude is currently in scope. Should
the prompt be set to %s> in the .ghci configuration file, we would be seeing Prelude> dis-
played. However, it is not the default mechanism due to the large space the prompt can take
if more imports are done.
The syntax in the prompt *module indicates that it is the full top-level scope of ⟨module⟩ that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the *when
loading the module, e.g. :load *M.

In general, after a :load (page 67) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude and Bar (GHCi automatically
adds Prelude if it isn’t present and there aren’t any *-form modules). These automatically-
added imports can be seen with :show imports (page 71):

ghci> :load hello.hs
[1 of 1] Compiling Main (hello.hs, interpreted)
Ok, modules loaded: Main.
*ghci> :show imports
:module +*Main -- added automatically
*ghci>

and the automatically-added import is replaced the next time you use :load (page 67), :add
(page 61), or :reload (page 69). It can also be removed by :module (page 68) as with normal
imports.

Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.
To add modules to the scope, use ordinary Haskell import syntax:

ghci> import System.IO
ghci> hPutStrLn stdout "hello\n"
hello

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 71):

3.4. Interactive evaluation at the prompt 43

GHC User’s Guide Documentation, Release 9.2.6

ghci> import System.IO
ghci> import Data.Map as Map
ghci Map> :show imports
import Prelude -- implicit
import System.IO
import Data.Map as Map

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.
With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 68) command, whose syntax
is this:

:module +|- *mod1 ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.
The :module (page 68) command provides a way to do two things that cannot be done with
ordinary import declarations:
• :module (page 68) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

• Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

:module and :load

It might seem that :module (page 68)/import and :load (page 67)/:add (page 61)/:reload
(page 69) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCi is concerned with two sets of modules:
• The set of modules that are currently loaded. This set is modified by :load (page 67),
:add (page 61) and :reload (page 69), and can be shown with :show modules (page 71).

• The set of modules that are currently in scope at the prompt. This set is modified by
import and :module (page 68), and it is alsomodified automatically after :load (page 67),
:add (page 61), and :reload (page 69), as described above. The set of modules in scope
can be shown with :show imports (page 71).

44 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

You can add a module to the scope (via :module (page 68) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 68)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

3.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.
Instead, we can use the :main (page 68) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
["foo","bar"]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

ghci> :main foo "bar baz"
["foo","bar baz"]
ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 69)
command:

ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
ghci> :set -main-is foo
ghci> :main foo "bar baz"
foo
["foo","bar baz"]
ghci> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

3.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

ghci> 1+2
3
ghci> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an IO
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

3.4. Interactive evaluation at the prompt 45

GHC User’s Guide Documentation, Release 9.2.6

which is then run as an IO-action.
Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

ghci> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of `print' at <interactive>:1:0-1

Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.
If the expression was instead of type IO a for some a, then it will be bound to the result of
the IO computation, which is of type a. eg.:

ghci> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
ghci> print it
2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.
In order to stop the value it being bound on each command, the flag -fno-it (page 46) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 41)).
-fno-it

When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

3.4.8 Type defaulting in GHCi

ExtendedDefaultRules

Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)
""
ghci> reverse ([] :: [Int])
[]

46 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard rules
take each group of constraints (C1 a,C2 a,...,Cn a) for each type variable a, and defaults
the type variable if
1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 46) flag is given, the
types are instead resolved with the following method:
Find all the unsolved constraints. Then:
• Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

• Keep only the groups in which at least one of the classes is an interactive class (defined
below).

• Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

• The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.
The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.
The motivation for the change is that it means IO a actions default to IO (), which in turn
means that ghci won’t try to print a result when running them. This is particularly important
for printf, which has an instance that returns IO a. However, it is only able to return unde-
fined (the reason for the instance having this type is so that printf doesn’t require extensions
to the class system), so if the type defaults to Integer then ghci gives an error when running
a printf.
See also I/O actions at the prompt (page 38) for how the monad of a computational expression
defaults to IO if possible.

Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 46) is in effect) are:
any numeric class, Show, Eq, Ord, Foldable or Traversable.

3.4. Interactive evaluation at the prompt 47

GHC User’s Guide Documentation, Release 9.2.6

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 46), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (t1,...,tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

3.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> IO (), and it works by converting
the value to String using show.
This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.
The -interactive-print ⟨name⟩ (page 48) flag allows to specify any function of type C a =>
a -> IO (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 62), :add (page 61), :load (page 67),
:reload (page 69) or, :set (page 69).
-interactive-print ⟨name⟩

Set the function used by GHCi to print evaluation results. Given name must be of type C
a => a -> IO ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42
42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

48 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

The -interactive-print ⟨name⟩ (page 48) flag can also be used when running GHC in -e
mode:

% ghc -e "[1,2,3]" -interactive-print=SpecPrinter.sprint SpecPrinter
[1,2,3]!

3.4.10 Stack Traces in GHCi

[This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]
GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a separate
process (page 77)) and runs it in profiling mode to collect call stack information. Note that
because we’re running the interpreted code in profiling mode, all packages that you use must
be compiled for profiling. The -prof flag to GHCi only works in conjunction with -fexternal-
interpreter.
There are three ways to get access to the current call stack.
• error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 554)), so both call
stacks are shown.

• Debug.Trace.traceStack is a version of Debug.Trace.trace that also prints the current
call stack.

• Functions in the module GHC.Stack can be used to get the current stack and render it.
You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 595)).

3.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger 5.
The debugger provides the following:
• The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

3.5. The GHCi Debugger 49

GHC User’s Guide Documentation, Release 9.2.6

• Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

• Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

• Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 57)).

3.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

qsort [] = []
qsort (a:as) = qsort left ++ [a] ++ qsort right
where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

ghci> :l qsort.hs
[1 of 1] Compiling Main (qsort.hs, interpreted)
Ok, modules loaded: Main.
*ghci>

Now, let’s set a breakpoint on the right-hand-side of the second equation of qsort:

*ghci> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*ghci>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case qsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
qsort right).
Now, we run the program:

*ghci> main
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *ghci>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [qsort.hs:2:15-46]. To further clarify
the location, we can use the :list (page 67) command:

50 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

[qsort.hs:2:15-46] *ghci> :list
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 67) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.
GHCi has provided bindings for the free variables 6 of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 72), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[qsort.hs:2:15-46] *ghci> left

<interactive>:1:0:
Ambiguous type variable `a' in the constraint:
`Show a' arising from a use of `print' at <interactive>:1:0-3

Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.
Fortunately, the debugger includes a generic printing command, :print (page 69), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[qsort.hs:2:15-46] *ghci> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *ghci> :print left
left = (_t1::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 69) does not force any evaluation.
The idea is that :print (page 69) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 55)). Rather than forcing thunks, :print (page 69) binds each thunk to a fresh variable
beginning with an underscore, in this case _t1.
-fprint-evld-with-show

The flag -fprint-evld-with-show (page 51) instructs :print (page 69) to reuse avail-
able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use :force
(page 65) instead of :print (page 69). The :force (page 65) command behaves exactly like
:print (page 69), except that it forces the evaluation of any thunks it encounters:

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

3.5. The GHCi Debugger 51

GHC User’s Guide Documentation, Release 9.2.6

[qsort.hs:2:15-46] *ghci> :force left
left = [4,0,3,1]

Now, since :force (page 65) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[qsort.hs:2:15-46] *ghci> :show bindings
_result :: [Integer]
a :: Integer
left :: [Integer]
right :: [Integer]
_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *ghci> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with :force (page 65). For example:

[qsort.hs:2:15-46] *ghci> :print right
right = (_t1::[Integer])
[qsort.hs:2:15-46] *ghci> seq _t1 ()
()
[qsort.hs:2:15-46] *ghci> :print right
right = 23 : (_t2::[Integer])

We evaluated only the _t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to _t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 64) to make a nicer interface (left as an exercise for the reader!).
Finally, we can continue the current execution:

[qsort.hs:2:15-46] *ghci> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *ghci>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where ⟨identifier⟩ names any top-level function in an interpreted module currently loaded into
GHCi (qualified names may be used). The breakpoint will be set on the body of the function,

52 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

when it is fully applied. If the function has several patterns, then a breakpoint will be set on
each of them.
By using qualified names, one can set breakpoints on all functions (top-level and nested) in
every loaded and interpreted module:

:break [ModQual.]topLevelIdent[.nestedIdent]...[.nestedIdent]

⟨ModQual⟩ is optional and is either the effective name of a module or the local alias of a
qualified import statement.
⟨topLevelIdent⟩ is the name of a top level function in the module referenced by ⟨ModQual⟩.
⟨nestedIdent⟩ is optional and the name of a function nested in a let or where clause inside the
previously mentioned function ⟨nestedIdent⟩ or ⟨topLevelIdent⟩.
If ⟨ModQual⟩ is a module name, then ⟨topLevelIdent⟩ can be any top level identifier in this
module. If ⟨ModQual⟩ is missing or a local alias of a qualified import, then ⟨topLevelIdent⟩
must be in scope.
Breakpoints can be set on arbitrarily deeply nested functions, but the whole chain of nested
function names must be specified.
Consider the function foo in a module Main:

foo s = 'a' : add s
where add = (++"z")

The breakpoint on the function add can be set with one of the following commands:

:break Main.foo.add
:break foo.add

Breakpoints can also be set by line (and optionally column) number:

:break line
:break line column
:break module line
:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.
When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 113) in Warnings
and sanity-checking (page 98)).
If the module is omitted, then the most recently-loaded module is used.
Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are breakpoint

3.5. The GHCi Debugger 53

GHC User’s Guide Documentation, Release 9.2.6

locations, together with the bodies of functions, lambdas, case alternatives and binding state-
ments. There is normally no breakpoint on a let expression, but there will always be a break-
point on its body, because we are usually interested in inspecting the values of the variables
bound by the let.

Managing breakpoints

The list of breakpoints currently defined can be displayed using :show breaks (page 71):

*ghci> :show breaks
[0] Main qsort.hs:1:11-12 enabled
[1] Main qsort.hs:2:15-46 enabled

To disable one or several defined breakpoint, use the :disable (page 65) command with one
or several blank separated numbers given in the output from :show breaks (page 71):. To
disable all breakpoints at once, use :disable *.

*ghci> :disable 0
*ghci> :show breaks
[0] Main qsort.hs:1:11-12 disabled
[1] Main qsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 65) command. The param-
eters of the :disable (page 65) and :enable (page 65) commands are identical.
To delete a breakpoint, use the :delete (page 65) command with the number given in the
output from :show breaks (page 71):

*ghci> :delete 0
*ghci> :show breaks
[1] Main qsort.hs:2:15-46 disabled

To delete all breakpoints at once, use :delete *.

3.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 71) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 72) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 72) to single step
only on breakpoints contained in the current module. For example:

*ghci> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 71) begins the evaluation of ⟨expr⟩ in single-stepping mode.
If ⟨expr⟩ is omitted, then it single-steps from the current breakpoint. :steplocal (page 72)
and :stepmodule (page 72) commands work similarly.
The :list (page 67) command is particularly useful when single-stepping, to see where you
currently are:

54 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

[qsort.hs:5:7-47] *ghci> :list
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:7-47] *ghci>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do :list (page 67):

[qsort.hs:5:7-47] *ghci> :set stop :list
[qsort.hs:5:7-47] *ghci> :step
Stopped at qsort.hs:5:14-46
_result :: [Integer]
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:14-46] *ghci>

3.5.3 Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[qsort.hs:2:15-46] *ghci> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]
... [qsort.hs:(1,0)-(3,55)] *ghci>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step qsort [1,3]. This new evaluation stopped after one step (at the definition of qsort).
The prompt has changed, now prefixed with ..., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 71):

... [qsort.hs:(1,0)-(3,55)] *ghci> :show context
--> main
Stopped at qsort.hs:2:15-46

--> qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)

... [qsort.hs:(1,0)-(3,55)] *ghci>

To abandon the current evaluation, use :abandon (page 61):

... [qsort.hs:(1,0)-(3,55)] *ghci> :abandon
[qsort.hs:2:15-46] *ghci> :abandon
*ghci>

3.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable _result to the value of
the currently active expression. The value of _result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then
just entering _result at the prompt will show it. However, there’s one caveat to doing this:

3.5. The GHCi Debugger 55

GHC User’s Guide Documentation, Release 9.2.6

evaluating _result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 71)). So it will probably be necessary to issue a :continue (page 64) immediately when
evaluating _result. Alternatively, you can use :force (page 65) which ignores breakpoints.

3.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack“ in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 593)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.
To use tracing, evaluate an expression with the :trace (page 72) command. For example, if
we set a breakpoint on the base case of qsort:

*ghci> :list qsort
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)
4
*ghci> :b 1
Breakpoint 1 activated at qsort.hs:1:11-12
*ghci>

and then run a small qsort with tracing:

*ghci> :trace qsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[qsort.hs:1:11-12] *ghci>

We can now inspect the history of evaluation steps:

[qsort.hs:1:11-12] *ghci> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:3:24-38
-7 : qsort.hs:3:23-55
-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24
-10 : qsort.hs:2:15-46
-11 : qsort.hs:3:24-38
-12 : qsort.hs:3:23-55
-13 : qsort.hs:(1,0)-(3,55)

56 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

-14 : qsort.hs:2:15-24
-15 : qsort.hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 62):

[qsort.hs:1:11-12] *ghci> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *ghci>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command :forward (page 65) can be used to
traverse forward in the history.
The :trace (page 72) command can be used with or without an expression. When used with-
out an expression, tracing begins from the current breakpoint, just like :step (page 71).
The history is only available when using :trace (page 72); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.
-fghci-hist-size=⟨n⟩

Default 50
Modify the depth of the evaluation history tracked by GHCi.

3.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 196)).
The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a breakpoint on
the location in the source code that throws the exception, and then use :trace (page 72) and
:history (page 65) to establish the context. However, head is in a library and we can’t set
a breakpoint on it directly. For this reason, GHCi provides the flags -fbreak-on-exception
(page 58) which causes the evaluator to stop when an exception is thrown, and -fbreak-on-
error (page 58), which works similarly but stops only on uncaught exceptions. When stopping
at an exception, GHCi will act just as it does when a breakpoint is hit, with the deviation that it
will not show you any source code location. Due to this, these commands are only really useful
in conjunction with :trace (page 72), in order to log the steps leading up to the exception.
For example:

*ghci> :set -fbreak-on-exception
*ghci> :trace qsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e
[<exception thrown>] *ghci> :hist
-1 : qsort.hs:3:24-38

3.5. The GHCi Debugger 57

GHC User’s Guide Documentation, Release 9.2.6

-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:(1,0)-(3,55)
<end of history>
[<exception thrown>] *ghci> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *ghci> :force as
*** Exception: Prelude.undefined
[-1: qsort.hs:3:24-38] *ghci> :print as
as = 'b' : 'c' : (_t1::[Char])

The exception itself is bound to a new variable, _exception.
Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.
-fbreak-on-exception

Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-exception (page 58) breaks on all exceptions.

-fbreak-on-error
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 58) breaks on only those exceptions which would
otherwise be uncaught.

3.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.
The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*ghci> :break 5
Breakpoint 0 activated at map.hs:5:15-28
*ghci> map Just [1..5]
Stopped at map.hs:(4,0)-(5,12)
_result :: [b]
x :: a
f :: a -> b
xs :: [a]

58 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.
As we demonstrated earlier (Breakpoints and inspecting variables (page 50)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or _result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*ghci> seq x ()
*ghci> :print x
x = 1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*ghci> :t x
x :: Integer
*ghci> :t f
f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*ghci> let b = f 10
*ghci> :t b
b :: b
*ghci> b
<interactive>:1:0:

Ambiguous type variable `b' in the constraint:
`Show b' arising from a use of `print' at <interactive>:1:0

*ghci> :p b
b = (_t2::a)
*ghci> seq b ()
()
*ghci> :t b
b :: a
*ghci> :p b
b = Just 10
*ghci> :t b
b :: Maybe Integer
*ghci> :t f
f :: Integer -> Maybe Integer
*ghci> f 20
Just 20
*ghci> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

3.5.8 Limitations

• When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable
is under evaluation, so the new evaluation just waits for the result before continuing, but

3.5. The GHCi Debugger 59

GHC User’s Guide Documentation, Release 9.2.6

of course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.
The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

• Implicit parameters (see Implicit parameters (page 476)) are only available at the scope
of a breakpoint if there is an explicit type signature.

3.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :load
modules at the GHCi prompt (see GHCi commands (page 61)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 83)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.
-flocal-ghci-history

By default, GHCi keeps global history in $XDG_DATA_HOME/ghc/ghci_history or %APP-
DATA%/<app>/ghci_history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCi is launched.
-fghci-leak-check

(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

3.6.1 Packages

Most packages (see Using Packages (page 217)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.
For hidden packages, however, you need to request the package be loaded by using the -
package ⟨pkg⟩ (page 218) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
ghci>

The following command works to load new packages into a running GHCi:

ghci> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

60 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

3.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -llib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 35).) For example, to load the “m” library:

$ ghci -lm

On systems with .so-style shared libraries, the actual library loaded will the liblib.so. GHCi
searches the following places for libraries, in this order:
• Paths specified using the -L ⟨dir⟩ (page 242) command-line option,
• The standard library search path for your system loader, which on some systems may be
overridden by setting the LD_LIBRARY_PATH environment variable.

• The linker standard library search can also be overridden on some systems using the LI-
BRARY_PATH environment variable. Because of some implementation detail on Windows,
setting LIBRARY_PATH will also extend the system loader path for any library it finds. So
often setting LIBRARY_PATH is enough.

On systems with .dll-style shared libraries, the actual library loaded will be lib.dll, lib-
lib.dll. GHCi also has full support for import libraries, either Microsoft style .lib, or GNU
GCC style .a and .dll.a libraries. If you have an import library it is advisable to always spec-
ify the import library instead of the .dll. e.g. use -lgcc` instead of ``-llibgcc_s_seh-1.
Again, GHCi will signal an error if it can’t find the library.
GHCi can also load plain object files (.o or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.
Ordering of -l options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 241)).

3.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.
:abandon

Abandons the current evaluation (only available when stopped at a breakpoint).
:add[*] ⟨module⟩

Add ⟨module⟩(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.
⟨module⟩ may be a file path. A “~” symbol at the beginning of ⟨module⟩ will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while :set
+c (page 73) was active) with their respective source-code span, e.g.

GhciTypes> :all-types
GhciTypes.hs:(38,13)-(38,24): Maybe Id

3.7. GHCi commands 61

GHC User’s Guide Documentation, Release 9.2.6

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable␣

↪→SpanInfo

:back ⟨n⟩
Travel back ⟨n⟩ steps in the history. ⟨n⟩ is one if omitted. See Tracing and history
(page 56) for more about GHCi’s debugging facilities. See also: :trace (page 72), :his-
tory (page 65), :forward (page 65).

:break [⟨identifier⟩ | [⟨module⟩] ⟨line⟩ [⟨column⟩]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 52).

:browse[!] [[*] ⟨module⟩]
Displays the identifiers exported by the module ⟨module⟩, which must be either loaded
into GHCi or be a member of a package. If ⟨module⟩ is omitted, the most recently-loaded
module is used.
Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 42)).
There are two variants of the browse command:
•If the * symbol is placed before the module name, then all the identifiers in scope in
⟨module⟩ (rather that just its exports) are shown.
The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of :browse (page 62) is
available.
•Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

ghci> :browse! Data.Maybe
-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCi session - see What’s really in scope
at the prompt? (page 42)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

:cd ⟨dir⟩
Changes the current working directory to ⟨dir⟩. A “~” symbol at the beginning of ⟨dir⟩

62 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 71) command for showing the current working directory.
Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd ⟨expr⟩
Executes ⟨expr⟩ as a computation of type IO String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 63) command is useful with :def (page 64) and :set stop (page 70).

:complete ⟨type⟩ [⟨n⟩-][⟨m⟩] ⟨string-literal⟩
This command allows to request command completions fromGHCi evenwhen interacting
over a pipe instead of a proper terminal and is designed for integrating GHCi’s comple-
tion with text editors and IDEs.
When called, :complete (page 63) prints the ⟨n⟩th to ⟨m⟩th completion candidates for
the partial input ⟨string-literal⟩ for the completion domain denoted by ⟨type⟩. Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.
If omitted, ⟨n⟩ and ⟨m⟩ default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, ⟨n⟩ and ⟨m⟩
are implicitly capped to the number of available completion candidates.
The output of :complete (page 63) begins with a header line containing three space-
delimited fields:
•An integer denoting the number l of printed completions,
•an integer denoting the total number of completions available, and finally
•a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by ⟨l⟩ lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

ghci> :complete repl 0 ""
0 470 ""
ghci> :complete repl 5 "import For"
5 21 "import "
"Foreign"
"Foreign.C"
"Foreign.C.Error"
"Foreign.C.String"
"Foreign.C.Types"
ghci> :complete repl 5-10 "import For"
6 21 "import "
"Foreign.C.Types"
"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"
ghci> :complete repl 20- "import For"
2 21 "import "
"Foreign.StablePtr"
"Foreign.Storable"
ghci> :complete repl "map"

3.7. GHCi commands 63

GHC User’s Guide Documentation, Release 9.2.6

3 3 ""
"map"
"mapM"
"mapM_"
ghci> :complete repl 5-10 "map"
0 3 ""

:continue [⟨ignoreCount⟩]
Continue the current evaluation, when stopped at a breakpoint.
If an ⟨ignoreCount⟩ is specified, the program will ignore the current breakpoint for the
next ⟨ignoreCount⟩ iterations. See command :ignore (page 67).

:ctags [⟨filename⟩]
Generates a “tags” file for Vi-style editors (:ctags (page 64)) or Emacs-style editors
(:etags (page 65)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

:def[!] ⟨name⟩ ⟨expr⟩
:def (page 64) is used to define new commands, or macros, in GHCi. The command :def
⟨name⟩ ⟨expr⟩ defines a newGHCi command :name, implemented by the Haskell expres-
sion ⟨expr⟩, which must have type String -> IO String. When :name args is typed at
the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the
result must be separated by “\n”.
That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

ghci> let date _ = Data.Time.getZonedTime >>= print >> return ""
ghci> :def date date
ghci> :date
2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 62):

ghci> let mycd d = System.Directory.setCurrentDirectory d >> return ""
ghci> :def mycd mycd
ghci> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

ghci> :def make (_ -> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

ghci> :def . readFile
ghci> :. cmds.ghci

Notice that we named the command :., by analogy with the “.” Unix shell command
that does the same thing.
Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case

64 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands :{, :} and :!.

:delete * | ⟨num⟩ ...
Delete one or more breakpoints by number (use :show breaks (page 71) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | ⟨num⟩ ...
Disable one or more breakpoints by number (use :show breaks (page 71) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc ⟨name⟩
(Experimental: This command will likely change significantly in GHC 8.8.)
Displays the documentation for the given name. Currently the command is restricted to
displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

:edit ⟨file⟩
Opens an editor to edit the file ⟨file⟩, or themost recently loadedmodule if ⟨file⟩ is omitted.
If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the VISUAL (page 65) or EDITOR
environment variables, or a default editor on your system if neither is not set. You can
change the editor using :set editor (page 69).

VISUAL

Hidden
:enable * | ⟨num⟩ ...

Enable one or more disabled breakpoints by number (use :show breaks (page 71) to
see the number and state of each breakpoint). The * form enables all the disabled break-
points. Enabling a break point will reset its ignore count to 0. (See :ignore (page 67))

:etags
See :ctags (page 64).

:force ⟨identifier⟩ ...
Prints the value of ⟨identifier⟩ in the same way as :print (page 69). Unlike :print
(page 69), :force (page 65) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward ⟨n⟩
Move forward ⟨n⟩ steps in the history. ⟨n⟩ is one if omitted. See Tracing and history
(page 56) for more about GHCi’s debugging facilities. See also: :trace (page 72), :his-
tory (page 65), :back (page 62).

:help
:?

Displays a list of the available commands.
:

Repeat the previous command.
:history [num]

Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with :trace (page 72); see Tracing and history (page 56). To set the number
of history entries stored by GHCi, use the -fghci-hist-size=⟨n⟩ (page 57) flag.

3.7. GHCi commands 65

GHC User’s Guide Documentation, Release 9.2.6

:info[!] ⟨name⟩
Displays information about the given name(s). For example, if ⟨name⟩ is a class, then
the class methods and their types will be printed; if ⟨name⟩ is a type constructor, then
its definition will be printed; if ⟨name⟩ is a function, then its type will be printed. If
⟨name⟩ has been loaded from a source file, then GHCi will also display the location of its
definition in the source.
For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions ⟨name⟩,
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a :load (page 67) or :module (page 68) commands.
The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention ⟨name⟩ in their head.

:instances ⟨type⟩
Displays all the class instances available to the argument ⟨type⟩. The command will
match ⟨type⟩ with the first parameter of every instance and then check that all constraints
are satisfiable.
When combined with PartialTypeSignatures (page 479), a user can insert wildcards
into a query and learn the constraints required of each wildcard for ⟨type⟩ match with
an instance.
The output is a listing of all matching instances, simplified and instantiated as much as
possible.
For example:

> :instances Maybe (Maybe Int)
instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

> :instances Maybe _
instance Eq _ => Eq (Maybe _) -- Defined in ‘GHC.Maybe’
instance Semigroup _ => Monoid (Maybe _) -- Defined in ‘GHC.Base’
instance Ord _ => Ord (Maybe _) -- Defined in ‘GHC.Maybe’
instance Semigroup _ => Semigroup (Maybe _) -- Defined in ‘GHC.Base’
instance Show _ => Show (Maybe _) -- Defined in ‘GHC.Show’
instance Read _ => Read (Maybe _) -- Defined in ‘GHC.Read’

Only instances which could potentially be used will be displayed in the results. Instances
which require unsatisfiable constraints such as TypeError will not be included. In the
following example, the instance for A is not shown because it cannot be used.

ghci>:set -XDataKinds -XUndecidableInstances
ghci>import GHC.TypeLits
ghci>class A a
ghci>instance (TypeError (Text "Not possible")) => A Bool
ghci>:instances Bool
instance Eq Bool -- Defined in ‘GHC.Classes’
instance Ord Bool -- Defined in ‘GHC.Classes’
instance Enum Bool -- Defined in ‘GHC.Enum’
instance Show Bool -- Defined in ‘GHC.Show’

66 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

instance Read Bool -- Defined in ‘GHC.Read’
instance Bounded Bool -- Defined in ‘GHC.Enum’

:issafe [⟨module⟩]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

:ignore ⟨break⟩ ⟨ignoreCount⟩
Set the ignore count of the breakpoint with number ⟨break⟩ to ⟨ignoreCount⟩.
The next ⟨ignoreCount⟩ times the program hits the breakpoint ⟨break⟩, this breakpoint
is ignored and the program doesn’t stop. Every time the breakpoint is ignored, the
ignore count is decremented by 1. When the ignore count is zero, the program again
stops at the break point.
You can also specify an ⟨ignoreCount⟩ on a :continue (page 64) command when you
resume execution of your program.

:kind[!] ⟨type⟩
Infers and prints the kind of ⟨type⟩. The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 67) even allows you to write a partial application of a type synonym (usually disal-
lowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool
T Int Bool :: *
ghci> :k T
T :: * -> * -> *
ghci> :k T Int
T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list ⟨identifier⟩
Lists the source code around the definition of ⟨identifier⟩ or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [⟨module⟩] ⟨line⟩
Lists the source code around the given line number of ⟨module⟩. This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*]⟨module⟩
Recursively loads the specified ⟨module⟩s, and all the modules they depend on. Here,
each ⟨module⟩ must be a module name or filename, but may not be the name of a module
in a package.
All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that :load (page 67) can be used without any
arguments to unload all the currently loaded modules and bindings.
Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

3.7. GHCi commands 67

GHC User’s Guide Documentation, Release 9.2.6

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 381) for further motivation and details.
After a :load (page 67) command, the current context is set to:
•⟨module⟩, if it was loaded successfully, or
•the most recently successfully loaded module, if any other modules were loaded as
a result of the current :load (page 67), or
•Prelude otherwise.

:loc-at ⟨module⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]
Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.
The :loc-at command requires :set +c (page 73) to be set.

:main ⟨arg1⟩ ... ⟨argn⟩
When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.
Instead, we can use the :main (page 68) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
["foo","bar"]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

ghci> :main foo "bar baz"
["foo","bar baz"]
ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 69)
command:

ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
ghci> :set -main-is foo
ghci> :main foo "bar baz"
foo
["foo","bar baz"]
ghci> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

68 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

:module +|- [*]⟨mod1⟩ ...

import ⟨mod⟩
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 42)
for more details.

:print ⟨names⟩
Prints a value without forcing its evaluation. :print (page 69) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 69) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 69) binds a fresh variable with a name beginning with _t to
each thunk. See Breakpoints and inspecting variables (page 50) for more information.
See also the :sprint (page 71) command, which works like :print (page 69) but does
not bind new variables.

:quit
Quits GHCi. You can also quit by typing Control-D at the prompt.

:reload[!]
Attempts to reload the current target set (see :load (page 67)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.
Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 381) for further motivation and details.

:run
See :main (page 68).

:script [⟨n⟩] ⟨filename⟩
Executes the lines of a file as a series of GHCi commands. The syntax for file-name ar-
guments respects shell quoting rules, i.e., file names containing spaces can be enclosed
in double quotes or with spaces escaped with a backslash. This command is compatible
with multiline statements as set by :set +m (page 74)

:set [⟨option⟩ ...]
Sets various options. See The :set and :seti commands (page 73) for a list of available
options and Interactive-mode options (page 147) for a list of GHCi-specific flags. The
:set (page 69) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args ⟨arg⟩
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor ⟨cmd⟩
Sets the command used by :edit (page 65) to ⟨cmd⟩.

:set local-config ⟨source|ignore⟩
If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.
Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 76) on the command line, or sourced via :script (page 69).

3.7. GHCi commands 69

GHC User’s Guide Documentation, Release 9.2.6

:set prog ⟨prog⟩
Sets the string to be returned when the program calls System.getProgName.

:set prompt ⟨prompt⟩
Sets the string to be used as the prompt in GHCi. Inside ⟨prompt⟩, the next sequences
are replaced:
•%s by the names of the modules currently in scope.
•%l by the line number (as referenced in compiler messages) of the current prompt.
•%d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
•%t by the current time in 24-hour HH:MM:SS format.
•%T by the current time in 12-hour HH:MM:SS format.
•%@ by the current time in 12-hour am/pm format.
•%A by the current time in 24-hour HH:MM format.
•%u by the username of the current user.
•%w by the current working directory.
•%o by the operating system.
•%a by the machine architecture.
•%N by the compiler name.
•%V by the compiler version.
•%call(cmd [args]) by the result of calling cmd args.
•%% by %.

If ⟨prompt⟩ starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont ⟨prompt⟩
Sets the string to be used as the continuation prompt (used when using the :{ (page 39)
command) in GHCi.

:set prompt-function ⟨prompt-function⟩
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 42) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function ⟨prompt-function⟩
Sets the function to be used for the continuation prompt (used when using the :{
(page 39) command) displaying in GHCi.

:set stop ⟨num⟩ ⟨cmd⟩
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 70) is to display the source code at
the current location, e.g. :set stop :list.
If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 64) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t

70 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

want such a message, you can use the :disable (page 65) command. What’s more, with
cunning use of :def (page 64) and :cmd (page 63) you can use :set stop (page 70) to
implement conditional breakpoints:

*ghci> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\"␣
↪→else return \":continue\"")

*ghci> :set stop 0 :cond (x < 3)

To ignore breakpoints for a specified number of iterations use the :ignore (page 67) or
the ⟨ignoreCount⟩ parameter of the :continue (page 64) command.

:seti [⟨option⟩ ...]
Like :set (page 69), but options set with :seti (page 71) affect only expressions and com-
mands typed at the prompt, and not modules loaded with :load (page 67) (in contrast,
options set with :set (page 69) apply everywhere). See Setting options for interactive
evaluation only (page 74).
Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 68)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via :cd (page 62) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 71)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 69)).

:sprint ⟨expr⟩
Prints a value without forcing its evaluation. :sprint (page 71) is similar to :print
(page 69), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by _.

:step [⟨expr⟩]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to

3.7. GHCi commands 71

GHC User’s Guide Documentation, Release 9.2.6

be inspected. If ⟨expr⟩ is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 54).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint. Continuation with :steplocal (page 72) is not possible if this last break-
point was hit by an error (-fbreak-on-error (page 58)) or an exception (-fbreak-on-
exception (page 58)).

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace ⟨expr⟩
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 65).
See Tracing and history (page 56).

:type ⟨expression⟩
Infers and prints the type of ⟨expression⟩. For polymorphic types it instantiates the ‘in-
ferred’ forall quantifiers (but not the ‘specified’ ones; see Inferred vs. specified type
variables (page 367)), solves constraints, re-generalises, and then reduces type families
as much as possible.

*X> :type length
length :: Foldable t => t a -> Int

Type family reduction is skipped if the function is not fully instantiated, as this has been
observed to give more intuitive results. You may want to use :info (page 65) if you are
not applying any arguments, as that will return the original type of the function without
instantiating.

:type +v ⟨expression⟩
Infers and prints the type of ⟨expression⟩, binding inferred type variables with *specified*
visibility (page 367).

:type +d ⟨expression⟩
Infers and prints the type of ⟨expression⟩, instantiating all the forall quantifiers, solving
constraints, defaulting, and generalising. In this mode, if the inferred type is constrained
by any interactive class (Num, Show, Eq, Ord, Foldable, or Traversable), the constrained
type variable(s) are defaulted according to the rules described under ExtendedDefault-
Rules (page 46). This mode is quite useful when the inferred type is quite general (such
as for foldr) and it may be helpful to see a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at ⟨path⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.
The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames

72 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

(page 35) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.
The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case :type-at (page 72) falls back to a general :type
(page 72) like lookup.
The :type-at (page 72) command requires :set +c (page 73) to be set.

:undef ⟨name⟩
Undefines the user-defined command ⟨name⟩ (see :def (page 64) above).

:unset ⟨option⟩
Unsets certain options. See The :set and :seti commands (page 73) for a list of available
options.

:uses ⟨module⟩ ⟨line⟩ ⟨col⟩ ⟨end-line⟩ ⟨end-col⟩ [⟨name⟩]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs:(46,25)-(46,29)
GhciFind.hs:(47,37)-(47,41)
GhciFind.hs:(53,66)-(53,70)
GhciFind.hs:(57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.
The :uses (page 73) command requires :set +c (page 73) to be set.

:: ⟨builtin-command⟩
Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of
builtin commands, excluding defined macros. See also: :def (page 64).

:! ⟨command⟩
Executes the shell command ⟨command⟩.

3.8 The :set and :seti commands

The :set (page 69) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-”.

Note: At the moment, the :set (page 69) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DFOO='BAR BAZ' will not do what you expect.

3.8.1 GHCi options

GHCi options may be set using :set (page 69) and unset using :unset (page 73).
The available GHCi options are:
:set +c

Collect type and location information after loading modules. The commands :all-types
(page 61), :loc-at (page 68), :type-at (page 72), and :uses (page 73) require +c to be
active.

3.8. The :set and :seti commands 73

GHC User’s Guide Documentation, Release 9.2.6

:set +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 40)).

:set +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).
This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

:set +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

3.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 69). For example, to
turn on -Wmissing-signatures (page 110), you would say:

ghci> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 139)), may be set using :set (page 69). To unset an option, you can set the reverse
option:

ghci> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 139) lists the reverse for each option where applicable.
Certain static options (-package ⟨pkg⟩ (page 218), -I⟨dir⟩ (page 237), -i⟨dir⟩[:⟨dir⟩]*
(page 200), and -l ⟨lib⟩ (page 241) in particular) will also work, but some may not take
effect until the next reload.

3.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options:
• The loading options apply when loading modules
• The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 69) command modifies both, but there is also a :seti (page 71) command (for
“set interactive”) that affects only the interactive options set.
It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

74 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

:seti -XMonoLocalBinds

It would be undesirable if MonoLocalBinds (page 485) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.
If you are setting language options in your .ghci file, it is good practice to use :seti (page 71)
rather than :set (page 69), unless you really do want them to apply to all modules you load
in GHCi.
The two sets of options can be inspected using the :set (page 69) and :seti (page 71) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

ghci> :seti
base language is: GHC2021
with the following modifiers:
-XExtendedDefaultRules
-XNoMonomorphismRestriction

GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
-fexternal-dynamic-refs
-fignore-optim-changes
-fignore-hpc-changes
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 75). Then the interactive options are
modified as follows:
• The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 46)).

• The Monomorphism Restriction is disabled (see Switching off the Monomorphism Re-
striction (page 484)).

3.9 The .ghci and .haskeline files

3.9.1 The .ghci files

When it starts, unless the -ignore-dot-ghci (page 76) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:
1. ghcappdata/ghci.conf, where ⟨ghcappdata⟩ depends on your system, but is usually
something like $HOME/.ghc on Unix or C:/Documents and Settings/user/Application
Data/ghc on Windows.

2. $XDG_CONFIG_HOME/.ghci
3. ./.ghci

The ghci.conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

3.9. The .ghci and .haskeline files 75

GHC User’s Guide Documentation, Release 9.2.6

Note: When setting language options in this file it is usually desirable to use :seti (page 71)
rather than :set (page 69) (see Setting options for interactive evaluation only (page 74)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -i (page 200) flag is a static one, but in fact it works to set it
using :set (page 69) like this. The changes won’t take effect until the next :load (page 67),
though.)

Warning: Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary
commands that will be executed as the user. Use :set local-config (page 69) to inhibit
the processing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files, or
you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your .ghci file, you can use :source file to read GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi
Additionally, any files specified with -ghci-script (page 76) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.
Two command-line options control whether the startup files files are read:
-ignore-dot-ghci

Don’t read either ./.ghci or the other startup files when starting up.
-ghci-script

Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 76) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.
For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:
1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.
3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.

Here are some examples:

76 Chapter 3. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 9.2.6

1. You have a macro :time and enter :t 3

You get :type 3

2. You have a macro :type and enter :t 3

You get :type 3 with your defined macro, not the builtin.
3. You have a macro :time and a macro :type, and enter :t 3

You get :type 3 with your defined macro.
When giving priority to built-in commands, you can use :: ⟨builtin-command⟩ (page 73),
like ::type 3.

3.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

3.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 240) flag either on the command line or with :set (page 69) (the
option -fbyte-code (page 240) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.
Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the :reload (page 69) command typically runs much faster than restart-
ing GHC with --make (page 86) from the command-line, because all the interface files are
already cached in memory.
There are disadvantages to compiling to object-code: you can’t set breakpoints in object-
code modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

3.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag -fexternal-interpreter (page 77) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.
-fexternal-interpreter

Since 8.0.1
Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 597) is in
effect, and in dynamically-linked mode if -dynamic (page 242) is in effect.
There are a couple of caveats that will hopefully be removed in the future: this option is
currently not implemented on Windows (it is a no-op), and the external interpreter does
not support the GHCi debugger, so breakpoints and single-stepping don’t work with -
fexternal-interpreter (page 77).

3.10. Compiling to object code inside GHCi 77

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 9.2.6

See also the -pgmi ⟨cmd⟩ (page 235) (Replacing the program for one or more phases
(page 234)) and -opti ⟨option⟩ (page 236) (Forcing options to a particular phase
(page 235)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:
• We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 49)).

• When compiling Template Haskell code with -prof (page 597) we don’t need to compile
the modules without -prof (page 597) first (see Using Template Haskell with Profiling
(page 494)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

3.12 Running the interpreter on a different host

When using the flag -fexternal-interpreter (page 77) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling) where
it is favourable to have the communication happen over the network. GHC provides two
utilities for this, which can be found in the utils directory.
• remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

• iserv-proxy needs to be built on the build machine by the build compiler.
After starting remote-iserv ⟨tmp_dir⟩ ⟨port⟩ on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.
Providing -pgmi ⟨/path/to/iserv-proxy⟩ (page 235) and -opti ⟨slave-ip⟩ -opti
⟨slave-port⟩ [-opti -v] (page 236) in addition to -fexternal-interpreter (page 77) will
then make ghc go through the proxy instead.
There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

3.13 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-O (page 121) doesn’t work with GHCi!
For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Modules using unboxed tuples or sums will automatically enable -fobject-code (page 240)

78 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.2.6

The bytecode interpreter doesn’t support most uses of unboxed tuples or sums, so
GHCi will automatically compile these modules, and all modules they depend on, to
object code instead of bytecode.
GHCi checks for the presence of unboxed tuples and sums in a somewhat con-
servative fashion: it simply checks to see if a module enables the UnboxedTuples
(page 510) or UnboxedSums (page 511) language extensions. It is not always the case
that code which enables UnboxedTuples (page 510) or UnboxedSums (page 511) re-
quires -fobject-code (page 240), so if you really want to compile UnboxedTuples
(page 510)/UnboxedSums (page 511)-using code to bytecode, you can do so explicitly
by enabling the -fbyte-code (page 240) flag. If you do this, do note that bytecode
interpreter will throw an error if it encounters unboxed tuple/sum–related code that
it cannot handle.
Incidentally, the previous point, that -O (page 121) is incompatible with GHCi, is
because the bytecode compiler can’t deal with unboxed tuples or sums.

Concurrent threads don’t carry on running when GHCi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 244) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 67) or
:reload (page 69) command.
You can make stdin reset itself after every evaluation by giving GHCi the command :set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 639).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.
If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

3.13. FAQ and Things To Watch Out For 79

GHC User’s Guide Documentation, Release 9.2.6

80 Chapter 3. Using GHCi

CHAPTER

FOUR

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

4.1 Usage

The runghc command-line looks like:

runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized by
both runghc and GHC but you want to pass it to GHC then you can place it after a -- separator.
Flags after the separator are treated as GHC only flags. Alternatively you can use the runghc
option --ghc-arg=<arg> to pass any flag or argument directly to GHC.
module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second -- to indicate the end of flags. Anything
following a second -- will be considered a program file or module name followed by its argu-
ments. For example:
• runghc -- -- -hello.hs

4.2 runghc flags

runghc accepts the following flags:
• -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

• --ghc-arg=<arg>: Pass an option or argument to GHC
• --help: print usage information.
• --version: print version information.

4.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, -f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:
• runghc -- -fliberate-case

81

GHC User’s Guide Documentation, Release 9.2.6

• runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:
• runghc -package --ghc-arg=foo Main.hs

• runghc --ghc-arg=-package --ghc-arg=foo Main.hs

82 Chapter 4. Using runghc

CHAPTER

FIVE

USING GHC

5.1 Using GHC

5.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.
Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.
By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 91) to the
command line.
Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

83

GHC User’s Guide Documentation, Release 9.2.6

5.1.2 Options overview

GHC’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.
Command-line options begin with -. They may not be grouped: -vO is different from -v -O.
Options need not precede filenames: e.g., ghc *.o -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c -O1 Foo.hs -O2 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag implica-
tion. For instance, consider -fno-specialise (page 129) and -O1 (page 121) (which implies
-fspecialise (page 129)). These two command lines mean very different things:
-fno-specialise -O1

-fspecialise will be enabled as the -fno-specialise is overridden by the -O1.
-O1 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the -
fspecialise implied by -O1.

Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS_GHC pragma (page 557)

{-# OPTIONS_GHC -Wno-name-shadowing #-}
module X where
...

OPTIONS_GHC is a file-header pragma (see OPTIONS_GHC pragma (page 557)).
Only dynamic flags can be used in an OPTIONS_GHC pragma (see Dynamic and Mode options
(page 85)).
Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS_GHC.

84 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Note: The contents of OPTIONS_GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but
in some circumstances, the OPTIONS_GHC pragma is the Right Thing. (If you use -keep-hc-
file (page 202) and have OPTION flags in your module, the OPTIONS_GHC will get put into the
generated .hc file).

Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 69) command.

5.1.3 Dynamic and Mode options

Each of GHC’s command line options is classified as dynamic or mode:
Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, --make (page 86) or -E (page 86). The available modes are listed
in Modes of operation (page 86).
Dynamic: A dynamic flag may be used on the command line, in a OPTIONS_GHC
pragma in a source file, or set using :set (page 69) in GHCi.

The flag reference tables (Flag reference (page 139)) lists the status of each flag.

5.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., .lhs or .o) cause the “right thing” to happen to
those files.
.hs A Haskell module.
.lhs A “literate Haskell” module.
.hspp A file created by the preprocessor.
.hi A Haskell interface file, probably compiler-generated.
.hie An extended Haskell interface file, produced by the Haskell compiler.
.hc Intermediate C file produced by the Haskell compiler.
.c A C file not produced by the Haskell compiler.
.ll An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.s An assembly-language source file, usually produced by the compiler.
.o An object file, produced by an assembler.
Files with other suffixes (or without suffixes) are passed straight to the linker.

5.1. Using GHC 85

GHC User’s Guide Documentation, Release 9.2.6

5.1.5 Modes of operation

GHC’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 86) mode (Using ghc –make
(page 89)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.
The available mode flags are:
--interactive

Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 33).

--run ⟨file⟩
Run a script’s main entry-point. Similar to runghc this will by default use the bytecode
interpreter. If the command-line contains a -- argument then all arguments that follow
will be passed to the script. All arguments that precede -- are interpreted as GHC
arguments.

--make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc –make
(page 89).
This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the --make (page 86) option can be omitted.

-e ⟨expr⟩
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate (⟨expr⟩) which is given on the command line. This flag
may be given multiple times, in which case each expression is evaluated sequentially.
See Expression evaluation mode (page 90) for more details.

-E
Stop after preprocessing (.hspp file)

-C
Stop after generating C (.hc file)

-S
Stop after generating assembly (.s file)

-c
Stop after generating object (.o) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 90).

-M
Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 213).

--frontend ⟨module⟩
Run GHC using the given frontend plugin. See Frontend plugins (page 589) for details.

86 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

--mk-dll
DLL-creation mode (Windows only). See Creating a DLL (page 642).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.
--show-iface ⟨file⟩

Read the interface in ⟨file⟩ and dump it as text to stdout. For example ghc --show-iface
M.hi.

--supported-extensions
--supported-languages

Print the supported language extensions.
--show-options

Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V

Print a one-line string including GHC’s version number.
--numeric-version

Print GHC’s numeric version number only.
--print-booter-version

Print the numeric version of the GHC binary used to bootstrap the build of this compiler.
--print-build-platform

Print the target string of the build platform, on which GHC was built, as generated by
GNU Autotools. The format is cpu-manufacturer-operating_system-(kernel), e.g.,
x86_64-unknown-linux.

--print-c-compiler-flags
List the flags passed to the C compiler during GHC build.

--print-c-compiler-link-flags
List the flags passed to the C compiler for the linking step during GHC build.

--print-debug-on
Print True if GHC was built with -DDebug flag. This enables assertions and extra debug
code. The flag can be set in GhcStage1HcOpts and/or GhcStage2HcOpts and is automat-
ically set for devel1 and devel2 build flavors.

--print-global-package-db
Print the path to GHC’s global package database directory. A package database stores
details about installed packages as a directory containing a file for each package. This
flag prints the path to the global database shipped with GHC, and looks something like
/usr/lib/ghc/package.conf.d on Unix. There may be other package databases, e.g.,
the user package databse. For more details see Package Databases (page 221).

--print-have-interpreter
Print YES if GHC was compiled to include the interpreter, NO otherwise. If this GHC does
not have the interpreter included, running it in interactive mode (see --interactive
(page 86)) will throw an error. This only pertains the use of GHC interactively, not any
separate GHCi binaries (see Using GHCi (page 33)).

5.1. Using GHC 87

GHC User’s Guide Documentation, Release 9.2.6

--print-have-native-code-generator
Print YES if native code generator supports the target platform, NO otherwise. (See Na-
tive Code Generator (-fasm) (page 233))

--print-host-platform
Print the target string of the host platform, i.e., the one on which GHC is supposed to run,
as generated by GNU Autotools. The format is cpu-manufacturer-operating_system-
(kernel), e.g., x86_64-unknown-linux.

--print-leading-underscore
Print YES if GHC was compiled to use symbols with leading underscores in object files,
NO otherwise. This is usually atarget platform dependent.

--print-libdir
Print the path to GHC’s library directory. This is the top of the directory tree
containing GHC’s libraries, interfaces, and include files (usually something like
/usr/local/lib/ghc-5.04 on Unix). This is the value of $libdir in the package config-
uration file (see Packages (page 216)).

--print-ld-flags
Print linke flags used to compile GHC.

--print-object-splitting-supported
Print YES if GHC was compiled with support for splitting generated object files into
smaller objects, NO otherwise. This feature uses platform specific techniques and may
not be available on all platforms. See -split-objs (page 241) for details.

--print-project-git-commit-id
Print the Git commit id from which this GHC was built. This can be used to trace the
current binary back to a specific revision, which is especially useful during development
on GHC itself. It is set by the configure script.

--print-project-version
Print the version set in the configure script during build. This is simply the GHC version.

--print-rts-ways
Packages, like the Runtime System, can be built in a number of ways: - profiling - with
profiling support - dynamic - with dynamic linking - logging - RTS event logging - threaded
- mulithreaded RTS - debug - RTS with debug information
Various combinations of these flavours are possible.

--print-stage
GHC is built using GHC itself and this build happens in stages, which are numbered.
•Stage 0 is the GHC you have installed. The “GHC you have installed” is also called
“the bootstrap compiler”.
•Stage 1 is the first GHC we build, using stage 0. Stage 1 is then used to build the
packages.
•Stage 2 is the second GHC we build, using stage 1. This is the one we normally
install when you say make install.
•Stage 3 is optional, but is sometimes built to test stage 2.

Stage 1 does not support interactive execution (GHCi) and Template Haskell.
--print-support-smp

Print YES if GHC was built with multiporcessor support, NO otherwise.

88 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

--print-tables-next-to-code
Print YES if GHC was built with the flag --enable-tables-next-to-code, NO otherwise.
This option is on by default, as it generates a more efficient code layout.

--print-target-platform
Print the target string of the target platform, i.e., the one on which generated bi-
naries will run, as generated by GNU Autotools. The format is cpu-manufacturer-
operating_system-(kernel), e.g., x86_64-unknown-linux.

--print-unregisterised
Print YES if this GHC was built in unregisterised mode, NO otherwise. “Unregisterised”
means that GHC will disable most platform-specific tricks and optimisations. Only
the LLVM and C code generators will be available. See Unregisterised compilation
(page 234) for more details.

Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

ghc --make Main.hs

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

ghc Main.hs

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.
The main advantages to using ghc --make over traditional Makefiles are:
• GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

• You don’t have to write a Makefile.
• GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

• Using the -j[⟨n⟩] (page 90) flag, you can compile modules in parallel. Specify -j ⟨n⟩ to
compile ⟨n⟩ jobs in parallel. If ⟨n⟩ is omitted, then it defaults to the number of processors.

Any of the command-line options described in the rest of this chapter can be used with --
make, but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS_GHC pragma (see Command line options in source files (page 84)).
If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.
For backward compatibility with existing make scripts, when used in combination with -c
(page 86), the linking phase is omitted (same as --make -no-link).

5.1. Using GHC 89

GHC User’s Guide Documentation, Release 9.2.6

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.
The source files for the program don’t all need to be in the same directory; the -i (page 200)
option can be used to add directories to the search path (see The search path (page 199)).
-j[⟨n⟩]

Perform compilation in parallel when possible. GHC will use up to ⟨N⟩ threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.
For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.
The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:
Phase of the compilation
system

Suffix saying “start
here”

Flag saying “stop
after”

(suffix of) output
file

literate pre-processor .lhs .hs
C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s
C compiler (opt.) .hc or .c -S .s
assembler .s -c .o
linker ⟨other⟩ a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

90 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 233) for more details.

Note: Pre-processing is optional, the -cpp (page 237) flag turns it on. See Options affecting
the C pre-processor (page 236) for more details.

Note: The option -E (page 86) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 86) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 234) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x ⟨suffix⟩ (page 91) option:
-x ⟨suffix⟩

Causes all files following this option on the command line to be processed as if they had
the suffix ⟨suffix⟩. For example, to compile a Haskell module in the file M.my-hs, use ghc
-c -x hs M.my-hs.

5.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Modes
of operation (page 86).
-v

The -v (page 91) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).
Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v⟨n⟩
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:
-v0 Disable all non-essential messages (this is the default).
-v1 Minimal verbosity: print one line per compilation (this is the default when --make

(page 86) or --interactive (page 86) is on).
-v2 Print the name of each compilation phase as it is executed. (equivalent to -dshow-

passes (page 251)).

5.1. Using GHC 91

GHC User’s Guide Documentation, Release 9.2.6

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 91)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the Uni-
codeSyntax (page 267) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ∷ Monad m ⇒ ∀ a b. m a → m b → m b

-fprint-explicit-foralls
Using -fprint-explicit-foralls (page 92) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x
ghci> :t f
f :: a -> a
ghci> :set -fprint-explicit-foralls
ghci> :t f
f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:
•For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

•If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::

forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a

-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using -fprint-explicit-kinds (page 92) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

92 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

ghci> :set -XPolyKinds
ghci> data T a (b :: l) = MkT
ghci> :t MkT
MkT :: forall k l (a :: k) (b :: l). T a b
ghci> :set -fprint-explicit-kinds
ghci> :t MkT
MkT :: forall k l (a :: k) (b :: l). T @{k} @l a b
ghci> :set -XNoPolyKinds
ghci> :t MkT
MkT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and l) and two type vari-
ables (a and b). Note that k is an inferred variable and l is a specified variable (see
Inferred vs. specified type variables (page 367)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of l (with @l) is the
standard syntax for visible type application (see Visible type application (page 366)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when -fprint-explicit-kinds (page 92) is enabled.

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 93) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-axiom-incomps
Using -fprint-axiom-incomps (page 93) tells GHC to display incompatibilities between
closed type families’ equations, whenever they are printed by :info (page 65) or --show-
iface ⟨file⟩ (page 87).

ghci> :i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool

where
(==) (f a) (g b) = (f == g) && (a == b)
(==) a a = 'True
(==) _1 _2 = 'False

ghci> :set -fprint-axiom-incomps
ghci> :i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where

{- #0 -} (==) (f a) (g b) = (f == g) && (a == b)
{- #1 -} (==) a a = 'True

-- incompatible with: #0
{- #2 -} (==) _1 _2 = 'False

-- incompatible with: #1, #0

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations
Using -fprint-equality-relations (page 93) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equality,
the internal equality relation used in GHC’s solver. Generally, users should not need
to worry about the subtleties here; ~ is probably what you want. Without -fprint-
equality-relations (page 93), GHC prints all of these as ~. See also Equality con-

5.1. Using GHC 93

GHC User’s Guide Documentation, Release 9.2.6

straints (page 460).
-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo = Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo

Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo

Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int

Actual type: ST s Bool

-fprint-typechecker-elaboration
When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: IO ()
main = do

return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘_ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘_ <- ($)
return
let
AbsBinds [] []

{Exports: [a <= a
<>]

Exported types: a :: [Char]
[LclId, Str=DmdType]

Binds: a = "hello"}
in a’

or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics
Causes GHC to group diagnostic messages by severity and output them after other mes-

94 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with --make (page 86) and -j[⟨n⟩]
(page 90). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=⟨always|auto|never⟩
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.
The precise color scheme is controlled by the environment variable GHC_COLORS (or
GHC_COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.
Currently, in the primary message, the following inheritance tree is in place:
•message

–header
∗warning
∗error
∗fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.
The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret
Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.
For example:

test.hs:3:6: parse error on input `where'

becomes:

test296.hs:3:6-10: parse error on input `where'

And multi-line spans are possible too:

5.1. Using GHC 95

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 9.2.6

test.hs:(5,4)-(6,7):
Conflicting definitions for `a'
Bound at: test.hs:5:4

test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going

Since 8.10.1
Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j[⟨n⟩] (page 90)) is in use.

-freverse-errors
Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 183).

5.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.
-mavx

(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.
The LLVM backend (page 233) may use AVX if your processor supports it, but detects
this automatically, so no flag is required.

-mavx2
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.
The LLVM backend (page 233) may use AVX2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512cd
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.
The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512er
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.
The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512f
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

96 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512pf
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.
The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-msse
(x86 only) Use the SSE registers and instruction set to implement floating point opera-
tions when using the native code generator (page 233). This gives a substantial perfor-
mance improvement for floating point, but the resulting compiled code will only run on
processors that support SSE (Intel Pentium 3 and later, or AMD Athlon XP and later).
The LLVM backend (page 233) will also use SSE if your processor supports it but detects
this automatically so no flag is required.
Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default. Even when setting this flag, SSE2 will be used instead.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 233). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 233) will also use SSE2 if your processor
supports it but detects this automatically so no flag is required.
Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default.

-msse3
(x86 only) Use the SSE3 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 233).
Note that the current version does not use SSE3 specific instructions and only requires
SSE2 processor support.
The LLVM backend (page 233) will also use SSE3 if your processor supports it but detects
this automatically so no flag is required.

-msse4
(x86 only) Use the SSE4 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 233).
Note that the current version does not use SSE4 specific instructions and only requires
SSE2 processor support.
The LLVM backend (page 233) will also use SSE4 if your processor supports it but detects
this automatically so no flag is required.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 233). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 233) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

5.1. Using GHC 97

GHC User’s Guide Documentation, Release 9.2.6

-mbmi
(x86 only) Use the BMI1 instruction set to implement some bit operations when using
the native code generator (page 233).
Note that the current version does not use BMI specific instructions, so using this flag
has no effect.

-mbmi2
(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 233). The resulting compiled code
will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

5.1.8 Haddock

-haddock
By default, GHC ignores Haddock comments (-- | ... and -- ^ ...) and does not
check that they’re associated with a valid term, such as a top-level type-signature. With
this flag GHC will parse Haddock comments and include them in the interface file it
produces.
Note that this flag makes GHC’s parser more strict so programs which are accepted
without Haddock may be rejected with -haddock (page 98).

5.1.9 Miscellaneous flags

Some flags only make sense for a particular use case.
-ghcversion-file ⟨path to ghcversion.h⟩

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s package
database does not contain the rts package, or one wants to specify a specific ghcver-
sions.h to be included. This option can be used to specify the path to the ghcversions.h
file to be included. This is primarily intended to be used by GHC’s build system.

-H ⟨size⟩
Set the minimum size of the heap to ⟨size⟩. This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 183).

Other environment variables

GHC can also be configured using environment variables. Currently the only variable it sup-
ports is GHC_NO_UNICODE, which, when set, disables Unicode output regardless of locale set-
tings. GHC_NO_UNICODE can be set to anything +(event an empty string) to trigger this be-
haviour.

5.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, other-
wise known as warnings, can be generated during compilation. Some options control indi-
vidual warnings and others control collections of warnings. To turn off an individual warning

98 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-W<wflag>, use -Wno-<wflag>. To reverse -Werror, which makes all warnings into errors, use
-Wwarn.

Note: In GHC < 8 the syntax for -W<wflag> was -fwarn-<wflag> (e.g. -fwarn-incomplete-
patterns). This spelling is deprecated, but still accepted for backwards compatibility. Like-
wise, -Wno-<wflag> used to be fno-warn-<wflag> (e.g. -fno-warn-incomplete-patterns).

-Wdefault

Since 8.0
By default, you get a standard set of warnings which are generally likely to indicate bugs
in your program. These are:
•-Woverlapping-patterns (page 111)
•-Wwarnings-deprecations (page 103)
•-Wdeprecations (page 103)
•-Wdeprecated-flags (page 105)
•-Wunrecognised-pragmas (page 103)
•-Wduplicate-exports (page 107)
•-Wderiving-defaults (page 106)
•-Woverflowed-literals (page 105)
•-Wempty-enumerations (page 106)
•-Wmissing-fields (page 109)
•-Wmissing-methods (page 110)
•-Wwrong-do-bind (page 117)
•-Wsimplifiable-class-constraints (page 113)
•-Wtyped-holes (page 102)
•-Wdeferred-type-errors (page 102)
•-Wpartial-type-signatures (page 102)
•-Wunsupported-calling-conventions (page 105)
•-Wdodgy-foreign-imports (page 105)
•-Winline-rule-shadowing (page 117)
•-Wunsupported-llvm-version (page 114)
•-Wmissed-extra-shared-lib (page 114)
•-Wtabs (page 113)
•-Wunrecognised-warning-flags (page 101)
•-Winaccessible-code (page 112)
•-Wstar-binder (page 113)
•-Woperator-whitespace-ext-conflict (page 119)
•-Wambiguous-fields (page 120)
•-Wunicode-bidirectional-format-characters (page 120)

The following flags are simple ways to select standard “packages” of warnings:
-W

Provides the standard warnings plus
•-Wunused-binds (page 114)
•-Wunused-matches (page 115)
•-Wunused-foralls (page 116)
•-Wunused-imports (page 115)
•-Wincomplete-patterns (page 108)
•-Wdodgy-exports (page 105)
•-Wdodgy-imports (page 105)
•-Wunbanged-strict-patterns (page 118)

5.2. Warnings and sanity-checking 99

GHC User’s Guide Documentation, Release 9.2.6

-Wextra
Alias for -W (page 99)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 100) are
•-Wmonomorphism-restriction (page 113)
•-Wimplicit-prelude (page 107)
•-Wmissing-local-signatures (page 110)
•-Wmissing-exported-signatures (page 110)
•-Wmissing-export-lists (page 109)
•-Wmissing-import-lists (page 109)
•-Wmissing-home-modules (page 118)
•-Widentities (page 107)
•-Wredundant-constraints (page 106)
•-Wpartial-fields (page 118)
•-Wmissed-specialisations (page 103)
•-Wall-missed-specialisations (page 103)
•-Wcpp-undef (page 118)
•-Wduplicate-constraints (page 106)
•-Wmissing-deriving-strategies (page 109)
•-Wunused-packages (page 118)
•-Wunused-type-patterns (page 116)
•-Wsafe (page 540)
•-Wimplicit-lift (page 107)
•-Wmissing-kind-signatures (page 110)

-Weverything

Since 8.0
Turns on every single warning supported by the compiler.

-Wcompat

Since 8.0
Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.
This currently enables
•-Wsemigroup (page 104)
•-Wnoncanonical-monoid-instances (page 104)
•-Wstar-is-type (page 112)
•-Wcompat-unqualified-imports (page 101)

-Wno-compat
Disables all warnings enabled by -Wcompat (page 100).

-w
Turns off all warnings, including the standard ones and those that -Wall (page 100)
doesn’t enable.

-Wnot
Deprecated alias for -w (page 100)

These options control which warnings are considered fatal and cause compilation to abort.

100 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-Werror

Since 6.8 (-Wwarn)
Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn=<wflag> to stop treating specific warnings as errors.

-Werror=⟨wflag⟩

Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn=<wflag>.
-Werror=compat has the same effect as -Werror=... for each warning flag in the -
Wcompat (page 100) option group.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 101) flag.

-Wwarn=⟨wflag⟩
Causes a specific warning to be treated as normal warning, not fatal error.
Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.
-Wwarn=compat has the same effect as -Wwarn=... for each warning flag in the -Wcompat
(page 100) option group.

When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.
This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno-... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.
-Wunrecognised-warning-flags

Since 8.0
Default on

Enables warnings when the compiler encounters a -W... flag that is not recognised.
-Wcompat-unqualified-imports

Since 8.10
Warns on qualified imports of core library modules which are subject to change in future
GHC releases. Currently the following modules are covered by this warning:
•Data.List due to the future addition of Data.List.singleton and specialisation of
exports to the [] type. See the mailing list for details.

This warning can be addressed by either adding an explicit import list or using a quali-
fied import.

5.2. Warnings and sanity-checking 101

https://groups.google.com/forum/#!topic/haskell-core-libraries/q3zHLmzBa5E

GHC User’s Guide Documentation, Release 9.2.6

-Wprepositive-qualified-module
Normally, imports are qualified prepositively: import qualified M. By using Im-
portQualifiedPost (page 307), the qualified keyword can be used after the module
name. Like so: import M qualified. This will warn when the first, prepositive syntax
is used.

-Wtyped-holes

Since 7.8
Default on

Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 292) and Deferring
type errors to runtime (page 381)

-Wdeferred-type-errors

Since 8.4
Causes a warning to be reported when a type error is deferred until runtime. See Defer-
ring type errors to runtime (page 381)
This warning is on by default.

-fdefer-type-errors

Implies -fdefer-typed-holes (page 102), -fdefer-out-of-scope-
variables (page 102)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 381)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “_”, “_foo”,
“_bar”)) until runtime. This will turn the errors produced by typed holes (page 292) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as -fdefer-type-errors (page 102) (which implies this option). See Typed Holes
(page 292) and Deferring type errors to runtime (page 381).
Implied by -fdefer-type-errors (page 102). See also -Wtyped-holes (page 102).

-fdefer-out-of-scope-variables

Since 8.0
Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a value
that depends on an out-of-scope variable produces a runtime error, the same as -fdefer-
type-errors (page 102) (which implies this option). See Typed Holes (page 292) and
Deferring type errors to runtime (page 381).
Implied by -fdefer-type-errors (page 102). See also -Wdeferred-out-of-scope-
variables (page 102).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures

Since 7.10

102 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 479) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 479).
This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or package
you might have meant instead.
This option is on by default.

-Wunrecognised-pragmas

Since 6.10
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS_HUGS and DERIVE.
This option is on by default.

-Wmissed-specialisations

Since 8.0
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.
This form is intended to catch cases where an imported function that is marked as IN-
LINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.
Note that this warning will not throw errors if used with -Werror (page 101).
This option is off by default.

-Wmissed-specializations
Alias for -Wmissed-specialisations (page 103)

-Wall-missed-specialisations

Since 8.0
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.
Note that this warning will not throw errors if used with -Werror (page 101).
This option is off by default.

-Wall-missed-specializations
Alias for -Wall-missed-specialisations (page 103)

-Wwarnings-deprecations

Since 6.10
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 557) for
more details on the pragmas.
This option is on by default.

5.2. Warnings and sanity-checking 103

GHC User’s Guide Documentation, Release 9.2.6

-Wdeprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 557) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 103).
This option is on by default.

-Wnoncanonical-monad-instances

Since 8.0
Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
•If return is defined it must be canonical (i.e. return = pure).
•If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:
•Warn if pure is defined backwards (i.e. pure = return).
•Warn if (*>) is defined backwards (i.e. (*>) = (>>)).

This option is off by default.
-Wnoncanonical-monadfail-instances

Since 8.0, deprecated in 9.2
This warning is deprecated. It no longer has any effect since GHC 8.8. It was used
during the transition period of the MonadFail proposal, to detect when an instance of the
Monad class was not defined via MonadFail, or when a MonadFail instance was defined
backwards, using the method in Monad.

-Wnoncanonical-monoid-instances

Since 8.0
Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
•If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).

Moreover, in Semigroup instance declarations:
•Warn if (<>) is defined backwards (i.e. (<>) = mappend).

This warning is off by default. However, it is part of the -Wcompat (page 100) option
group.

-Wmissing-monadfail-instances

Since 8.0
This warning is deprecated. It no longer has any effect since GHC 8.8. It was used during
the transition period of the MonadFail proposal, to warn when a failable pattern is used
in a do-block that does not have a MonadFail instance.

-Wsemigroup

Since 8.0

104 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.
1.Instances of Monoid should also be instances of Semigroup
2.The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 100) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags

Since 6.10
Causes a warning to be emitted when a deprecated command-line flag is used.
This option is on by default.

-Wunsupported-calling-conventions

Since 7.6
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports

Since 6.10
Causes a warning to be emitted for foreign imports of the following form:

foreign import "f" f :: FunPtr t

on the grounds that it probably should be

foreign import "&f" f :: FunPtr t

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports

Since 6.12
Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), but is it just a type synonym.
Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports

Since 6.8
Causes a warning to be emitted in the following cases:
•When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.
•When an import statement hides an entity that is not exported.

-Woverflowed-literals

5.2. Warnings and sanity-checking 105

GHC User’s Guide Documentation, Release 9.2.6

Since 7.8
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations

Since 7.8
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wderiving-defaults

Since 8.10
Causes a warning when both DeriveAnyClass (page 419) and GeneralizedNewtypeD-
eriving (page 413) are enabled and no explicit deriving strategy is in use. For example,
this would result a warning:

class C a
newtype T a = MkT a deriving C

-Wduplicate-constraints

Since 7.8
Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 106).

-Wredundant-constraints

Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:
•A redundant constraint within the type signature itself:

f :: (Eq a, Ord a) => a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.
•A constraint in the type signature is not used in the code it covers:

f :: Eq a => a -> a -> Bool
f x y = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.
When turning on, you can suppress it on a per-module basis with -Wno-redundant-
constraints (page 106). Occasionally you may specifically want a function to have a
more constrained signature than necessary, perhaps to leave yourself wiggle-room for
changing the implementation without changing the API. In that case, you can suppress
the warning on a per-function basis, using a call in a dead binding. For example:

106 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

f :: Eq a => a -> a -> Bool
f x y = True
where

_ = x == x -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.
This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.
This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities

Since 7.2
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars

Since 8.6
This warning is deprecated. It no longer has any effect since GHC 8.10. It was used
to detect if a kind variable is not explicitly quantified over. For instance, the following
would produce a warning:

f :: forall (a :: k). Proxy a

This can be fixed by explicitly quantifying over k:

f :: forall k (a :: k). Proxy a

-Wimplicit-lift

Since 9.2
Template Haskell quotes referring to local variables bound outside of the quote are im-
plicitly converted to use lift`. For example,``f x = [| reverse x |] becomes f x
= [| reverse $(lift x) |]). This flag issues a warning for every such implicit addi-
tion of lift. This can be useful when debugging more complex staged programs, where
an implicit lift‘ can accidentally conceal a variable used at a wrong stage.

-Wimplicit-prelude

Since 6.8
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or
this implicit import is disabled (either by NoImplicitPrelude (page 285) or a LANGUAGE
NoImplicitPrelude pragma).

5.2. Warnings and sanity-checking 107

GHC User’s Guide Documentation, Release 9.2.6

Note that no warning is given for syntax that implicitly refers to the Prelude, even if NoIm-
plicitPrelude (page 285) would change whether it refers to the Prelude. For example,
no warning is given when 368 means Prelude.fromInteger (368::Prelude.Integer)
(where Prelude refers to the actual Prelude module, regardless of the imports of the
module being compiled).
This warning is off by default.

-Wincomplete-patterns

Since 5.04
The option -Wincomplete-patterns (page 108) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 108) is enabled.

g [] = 2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 99).

-Wincomplete-uni-patterns

Since 7.2
The flag -Wincomplete-uni-patterns (page 108) is similar to -Wincomplete-patterns
(page 108), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h = \[] -> 2
Just k = f y

Furthermore, this flag also applies to lazy patterns, since they are syntactic sugar for
pattern bindings. For example, f ~(Just x) = (x,x) is equivalent to f y = let Just
x = y in (x,x).

-fmax-pmcheck-models=⟨n⟩

Default 30
The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y but y is
not 4.
This can be exponential in the arity of the pattern and in the number of guards in some
cases. The -fmax-pmcheck-models=⟨n⟩ (page 108) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates

Since 6.4
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 108) is enabled.

108 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x = 6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies

Since 8.8
The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When -
Wmissing-deriving-strategies (page 109) is enabled, the compiler will emit a warning
about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the
warning is enabled, but DerivingStrategies (page 421) is not enabled, the compiler
will suggest turning on the DerivingStrategies (page 421) extension. This option is
not on by default, having to be turned on manually or with -Weverything (page 100).

-Wmissing-fields
This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists

Since 8.4
This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p x = x

The -Wmissing-export-lists (page 109) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists

Since 7.0
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
p x = f x x

5.2. Warnings and sanity-checking 109

GHC User’s Guide Documentation, Release 9.2.6

The -Wmissing-import-lists (page 109) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z‘s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.
The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 558).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 110) option. As part of the warning GHC also
reports the inferred type. The option is off by default.

-Wmissing-exported-sigs

Since 7.10
This option is now deprecated in favour of -Wmissing-exported-signatures (page 110).

-Wmissing-exported-signatures

Since 8.0
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 110) option. If this option is used in conjunction with -Wmissing-signatures
(page 110) then every top-level function/value must have a type signature. As part of the
warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs

Since 7.0
This option is now deprecated in favour of -Wmissing-local-signatures (page 110).

-Wmissing-local-signatures

Since 8.0
If you use the -Wmissing-local-signatures (page 110) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures

Since 8.0
If you would like GHC to check that every pattern synonym has a type signature, use the
-Wmissing-pattern-synonym-signatures (page 110) option. If this option is used in
conjunction with -Wmissing-exported-signatures (page 110) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wmissing-kind-signatures

Since 9.2

110 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

If you would like GHC to check that every data, type family, type-class definition has a
standalone kind signature (page 352) or a CUSK (page 350), use the -Wmissing-kind-
signatures (page 110) option. You can specify the kind via StandaloneKindSignatures
(page 352) or CUSKs (page 350).
Note that -Wmissing-kind-signatures (page 110) does not warn about associated type
families, as GHC considers an associated type family declaration to have a CUSK if its en-
closing class has a CUSK. (See Complete user-supplied kind signatures and polymorphic
recursion (page 350) for more on this point.) Therefore, giving the parent class a stan-
dalone kind signature or CUSK is sufficient to fix the warning for the class’s associated
type families as well.
This option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive call in f = ... let f = id in ... f
The warning is suppressed for names beginning with an underscore. For example

f x = do { _ignore <- this; _ignore <- that; return (the other) }

-Worphans

Since 6.4
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.
The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 215) for details.
The flag -Worphans (page 111) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmermistake/error, so this option
is enabled by default.
If the programmer is dead set on keeping a redundant clause, for example to prevent
bitrot, they can make use of a guard scrutinising GHC.Exts.considerAccessible to pre-
vent the checker from flagging the parent clause as redundant:

g :: String -> Int
g [] = 0

5.2. Warnings and sanity-checking 111

GHC User’s Guide Documentation, Release 9.2.6

g (_:xs) = 1
g "2" | considerAccessible = 2 -- No warning!

Note that considerAccessible should come as the last statement of the guard in order
not to impact the results of the checker. E.g., if you write

h :: Bool -> Int
h x = case (x, x) of

(True, True) -> 1
(False, False) -> 2
(True, False) | considerAccessible, False <- x -> 3

The pattern-match checker takes you by your word, will conclude that False <-x might
fail and warn that the pattern-match is inexhaustive. Put considerAccessible last to
avoid such confusions.
Note that due to technical limitations, considerAccessible will not suppress -
Winaccessible-code (page 112) warnings.

-Winaccessible-code

Since 8.6
By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.
Take, for example, the following program

{-# LANGUAGE GADTs #-}

data Foo a where
Foo1 :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool
step2 = case checkTEQ Foo1 Foo2 of

Just Refl -> True -- Inaccessible code
Nothing -> False

The Just Refl case in step2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ u must hold, but since we’re passing Foo1 and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type

Since 8.6
The use of * to denote the kind of inhabited types relies on the StarIsType (page 360) ex-
tension, which in a future release will be turned off by default and then possibly removed.
The reasons for this and the deprecation schedule are described in GHC proposal #30.
This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

112 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst

GHC User’s Guide Documentation, Release 9.2.6

Being part of the -Wcompat (page 100) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wstar-binder

Since 8.6
Under StarIsType (page 360), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.
In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a + b
type family a * b

While a + b is parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * b is parsed as a (*) b and is rejected.
As a workaround, we allow to bind (*) in prefix form:

type family (*) a b

This is a rather fragile arrangement, as generally a programmer expects (*) a b to
be equivalent to a * b. With -Wstar-binder (page 113) we warn when this special
treatment of (*) takes place.

-Wsimplifiable-class-constraints

Since 8.2
Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a] => a -> a

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f :: Eq a => a -> a

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 113).

-Wtabs

Since 6.8
Have the compiler warn if there are tabs in your source file.

-Wtype-defaults
Have the compiler warn/inform you where in your source the Haskell defaulting mecha-
nism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.
This warning is off by default.

5.2. Warnings and sanity-checking 113

GHC User’s Guide Documentation, Release 9.2.6

-Wmonomorphism-restriction

Since 6.8
Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.
This warning is off by default.

-Wunsupported-llvm-version

Since 7.8
Warn when using -fllvm (page 240) with an unsupported version of LLVM.

-Wmissed-extra-shared-lib

Since 8.8
Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors

Since 7.10
Warn if a promoted data constructor is used without a tick preceding its name.
For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.
This warning is enabled by default in -Wall (page 100) mode.

-Wunused-binds
Report any function definitions (and local bindings) which are unused. An alias for
•-Wunused-top-binds (page 114)
•-Wunused-local-binds (page 115)
•-Wunused-pattern-binds (page 115)

-Wunused-top-binds

Since 8.0
Report any function definitions which are unused.
More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.
A variable is regarded as “used” if
•It is exported, or
•It appears in the right hand side of a binding that binds at least one used variable
that is used

114 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

For example:

module A (f) where
f = let (p,q) = rhs1 in t p -- No warning: q is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g = h x -- Warning: g unused
h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding
_w = True -- No warning: _w starts with an underscore

-Wunused-local-binds

Since 8.0
Report any local definitions which are unused. For example:

module A (f) where
f = let (p,q) = rhs1 in t p -- Warning: q is unused
g = h x -- No warning: g is unused, but is a top-level␣

↪→binding

-Wunused-pattern-binds

Since 8.0
Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding
(_, _) = rhs4 -- Warning: unused pattern binding
_ = rhs3 -- No warning: lone wild-card pattern
!() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from _v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g. _
= x::Int. A banged pattern (see Bang patterns and Strict Haskell (page 497)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore, thus:

f _x = True

Note that -Wunused-matches (page 115) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 116) flag.

-Wunused-do-bind

Since 6.12
Report expressions occurring in do and mdo blocks that appear to silently throw informa-
tion away. For instance do { mapM popInt xs ; return 10 } would report the first

5.2. Warnings and sanity-checking 115

GHC User’s Guide Documentation, Release 9.2.6

statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

-Wunused-type-patterns

Since 8.0
Report all unused implicitly bound type variables which arise from patterns in type family
and data family instances. For instance:

type instance F x y = []

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

type instance F _x _y = []

When ExplicitForAll (page 466) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

type instance forall x y. F x y = []

would still report x and y as unused on the right hand side
Unlike -Wunused-matches (page 115), -Wunused-type-patterns (page 116) is not im-
plied by -Wall (page 100). The rationale for this decision is that unlike term-level pat-
tern names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

Since 8.0
Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and c as unused.
-Wunused-record-wildcards

Since 8.10
Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P = P { x :: Int, y :: Int }

f1 :: P -> Int
f1 P{..} = 1 + 3

would report that the P{..} match is unused.

116 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-Wredundant-bang-patterns

Since 9.2
Report dead bang patterns, where dead bangs are bang patterns that under no circum-
stances can force a thunk that wasn’t already forced. Dead bangs are a form of redundant
bangs. The new check is performed in pattern-match coverage checker along with other
checks (namely, redundant and inaccessible RHSs). Given

f :: Bool -> Int
f True = 1
f !x = 2

The bang pattern on !x is dead. By the time the x in the second equation is reached, x
will already have been forced due to the first equation (f True = 1). Moreover, there is
no way to reach the second equation without going through the first one.
Note that -Wredundant-bang-patterns will not warn about dead bangs that appear on
a redundant clause. That is because in that case, it is recommended to delete the clause
wholly, including its leading pattern match.
Dead bang patterns are redundant. But there are bang patterns which are redundant
that aren’t dead, for example:

f !() = 0

the bang still forces the argument, before we attempt to match on (). But it is redun-
dant with the forcing done by the () match. Currently such redundant bangs are not
considered dead, and -Wredundant-bang-patterns will not warn about them.

-Wredundant-record-wildcards

Since 8.10
Report all record wildcards where the wild card match binds no patterns. For instance:

data P = P { x :: Int, y :: Int }

f1 :: P -> Int
f1 P{x,y,..} = x + y

would report that the P{x,y,..} match has a redundant use of ...
-Wwrong-do-bind

Since 6.12
Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

do { popInt 10 ; return 10 }

5.2. Warnings and sanity-checking 117

GHC User’s Guide Documentation, Release 9.2.6

-Winline-rule-shadowing

Since 7.8
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 545).

-Wcpp-undef

Since 8.2
This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns

Since 8.2
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 509) for information about unlifted types.

-Wmissing-home-modules

Since 8.2
When a module provided by the package currently being compiled (i.e. the “home” pack-
age) is imported, but not explicitly listed in command line as a target. Useful for Cabal
to ensure GHC won’t pick up modules, not listed neither in exposed-modules, nor in
other-modules.

-Wpartial-fields

Since 8.4
The option -Wpartial-fields (page 118) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 118)
is enabled.
The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

-Wunused-packages

Since 8.10
The option -Wunused-packages (page 118) warns about packages, specified on command
line via -package ⟨pkg⟩ (page 218) or -package-id ⟨unit-id⟩ (page 219), but were not
loaded during compilation. Usually it means that you have an unused dependency.
You may want to enable this warning on a clean build or enable -fforce-recomp
(page 204) in order to get reliable results.

-Winvalid-haddock

Since 9.0
When the -haddock option is enabled, GHC collects documentation comments and asso-
ciates them with declarations, function arguments, data constructors, and other syntac-
tic elements. Documentation comments in invalid positions are discarded:

118 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

myValue =
-- | Invalid (discarded) comment in an expression
2 + 2

This warning informs you about discarded documentation comments. It has no effect
when -haddock (page 98) is disabled.

-Woperator-whitespace-ext-conflict

Since 9.2
When TemplateHaskell (page 486) is enabled, f $x is parsed as f applied to an untyped
splice. But when the extension is disabled, the expression is parsed as a use of the $
infix operator.
To make it easy to read f $x without checking the enabled extensions, one could rewrite
it as f $ x, which is what this warning suggests.
Currently, it detects the following cases:
•$x could mean an untyped splice under TemplateHaskell (page 486)
•$$x could mean a typed splice under TemplateHaskell (page 486)
•%m could mean a multiplicity annotation under LinearTypes (page 378)

It only covers extensions that currently exist. If you want to enforce a stricter policy
and always require whitespace around all infix operators, use -Woperator-whitespace
(page 119).

-Woperator-whitespace

Since 9.2
There are four types of infix operator occurrences, as defined by GHC Proposal #229:

a ! b -- a loose infix occurrence
a!b -- a tight infix occurrence
a !b -- a prefix occurrence
a! b -- a suffix occurrence

A loose infix occurrence of any operator is always parsed as an infix operator, but other
occurrence types may be assigned a special meaning. For example, a prefix ! denotes a
bang pattern, and a prefix $ denotes a TemplateHaskell (page 486) splice.
This warning encourages the use of loose infix occurrences of all infix operators, to pre-
vent possible conflicts with future language extensions.

-Wauto-orphans

Since 7.4
Does nothing.

-Wmissing-space-after-bang

Since 8.8
Does nothing.

-Wderiving-typeable

Since 7.10

5.2. Warnings and sanity-checking 119

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.2.6

This flag warns when Typeable is listed in a deriving clause or derived with StandaloneD-
eriving (page 403).
Since GHC 7.10, Typeable is automatically derived for all types. Thus, deriving Typeable
yourself is redundant.

-Wambiguous-fields

Since 9.2
When DuplicateRecordFields (page 390) is enabled, the option -Wambiguous-fields
(page 120) warns about occurrences of fields in selectors or updates that depend on
the deprecated mechanism for type-directed disambiguation. This mechanism will be
removed in a future GHC release, at which point these occurrences will be rejected as
ambiguous. See the proposal DuplicateRecordFields without ambiguous field access and
the documentation on DuplicateRecordFields (page 390) for further details.
This warning has no effect when DuplicateRecordFields (page 390) is disabled.

-Wunicode-bidirectional-format-characters
Explicit unicode bidirectional formatting characters can cause source code to be ren-
dered misleadingly in many viewers. We warn if any such character is present in the
source.
Specifically, the characters disallowed by this warning are those which are a part of the
‘Explicit Formatting‘ category of the Unicode Bidirectional Character Type Listing

Since 9.0.2
If you’re feeling really paranoid, the -dcore-lint (page 259) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

5.3 Optimisation (code improvement)

The -O* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.
Most of these options are boolean and have options to turn them both “on” and “off” (be-
ginning with the prefix no-). For instance, while -fspecialise enables specialisation, -fno-
specialise disables it. When multiple flags for the same option appear in the command-line
they are evaluated from left to right. For instance, -fno-specialise -fspecialise will en-
able specialisation.
It is important to note that the -O* flags are roughly equivalent to combinations of -f* flags.
For this reason, the effect of the -O* and -f* flags is dependent upon the order in which they
occur on the command line.
For instance, take the example of -fno-specialise -O1. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -O1
implies -fspecialise, overriding the previous flag. By contrast, -O1 -fno-specialise will
compile without specialisation, as one would expect.

5.3.1 -O*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased

120 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst
https://www.unicode.org/reports/tr9/#Bidirectional_Character_Types

GHC User’s Guide Documentation, Release 9.2.6

lightning.” The following “packages” of optimisations (or lack thereof) should suffice.
Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.
No ‘‘-O*‘‘-type option specified: This is taken to mean “Please compile quickly; I’m not
over-bothered about compiled-code quality.” So, for example, ghc -c Foo.hs

-O0
Means “turn off all optimisation”, reverting to the same settings as if no -O options had
been specified. Saying -O0 can be useful if e.g. make has inserted a -O on the command
line already.

-O
-O1

Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -O Main.lhs

-O2
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”
The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-O⟨n⟩
Any -On where n > 2 is the same as -O2.

We don’t use a -O* flag for day-to-day work. We use -O to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -O2 (and we
go for lots of coffee breaks).
The easiest way to see what -O (etc.) “really mean” is to run with -v (page 91), then stand
back in amazement.

5.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flagsmarked as on by default are enabled
by -O, and as such you shouldn’t need to set any of them explicitly. A flag -fwombat can be
negated by saying -fno-wombat.
-fcase-merge

Default on
Merge immediately-nested case expressions that scrutinise the same variable. For ex-
ample,

case x of
Red -> e1
_ -> case x of

Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> e1

5.3. Optimisation (code improvement) 121

GHC User’s Guide Documentation, Release 9.2.6

Blue -> e2
Green -> e2

-fcase-folding

Default on
Allow constant folding in case expressions that scrutinise some primops: For example,

case x `minusWord#` 10## of
10## -> e1
20## -> e2
v -> e3

Is transformed to,

case x of
20## -> e1
30## -> e2
_ -> let v = x `minusWord#` 10## in e3

-fcall-arity

Default on
Enable call-arity analysis.

-fexitification

Default on
Enables the floating of exit paths out of recursive functions.

-fcmm-elim-common-blocks

Default on
Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink

Default on
Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcmm-static-pred

Default off but enabled with -O (page 121).
This enables static control flow prediction on the final Cmm code. If enabled GHC will
apply certain heuristics to identify loops and hot code paths. This information is then
used by the register allocation and code layout passes.

-fasm-shortcutting

Default off
This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

122 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

This is mostly done during Cmm passes. However this can miss corner cases. So at -O2
we run the pass again at the asm stage to catch these.

-fblock-layout-cfg

Default off but enabled with -O (page 121).
The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to
find hot code paths and place them sequentially leading to better cache utilization and
performance.
This is expected to improve performance on average, but actual performance difference
can vary.
If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights
This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.
If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

-fblock-layout-weightless

Default off
When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.
With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.
When this flag is enabled and -fblock-layout-cfg (page 123) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal

Default on
Turn on CPR analysis in the demand analyser.

-fcse

Default on
Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.

-fstg-cse

Default on
Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap

Default off

5.3. Optimisation (code improvement) 123

GHC User’s Guide Documentation, Release 9.2.6

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict

Default off
Make dictionaries strict.

-fdmd-tx-dict-sel

Default on
Use a special demand transformer for dictionary selectors. Behaviour is unconditionally
enabled starting with 9.2

-fdo-eta-reduction

Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.

-fdo-lambda-eta-expansion

Default on
Eta-expand let-bindings to increase their arity.

-feager-blackholing

Default off
Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.
See Compile-time options for SMP parallelism (page 137) for a discussion on its use.

-fexcess-precision

Default off
When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.
Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 654).

-fexpose-all-unfoldings

Default off
An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in

Default on
Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).
This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.

124 Chapter 5. Using GHC

http://community.haskell.org/~simonmar/papers/multiproc.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 9.2.6

It also enables other optimisation passes to work more effectively as they have more
information locally.
This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness

Default on
Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full laziness. Although GHC’s full-laziness op-
timisation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these transfor-
mations are not applied consistently, so don’t rely on them.

-ffun-to-thunk

Default off
Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts

Default on
Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 553)).

-fignore-interface-pragmas

Default off
Tells GHC to ignore all inessential information when reading interface files. That is, even
if M.hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal

Default off
Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like -fspec-constr (page 128) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case

Default off but enabled with -O2 (page 121).

5.3. Optimisation (code improvement) 125

http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 9.2.6

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (-fspec-constr (page 128)) but for free variables rather than arguments.

-fliberate-case-threshold=⟨n⟩

Default 2000
Set the size threshold for the liberate-case transformation.

-floopification

Default on
When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs

Default on
This flag has no effect since GHC 8.8 - its behavior is always on. It used to instruct GHC
to use the platform’s native vector registers to pass vector arguments during function
calls.

-fmax-inline-alloc-size=⟨n⟩

Default 128
Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=⟨n⟩

Default 32
Inline memcpy calls if they would generate no more than ⟨n⟩ pseudo-instructions.

-fmax-inline-memset-insns=⟨n⟩

Default 32
Inline memset calls if they would generate no more than n pseudo instructions.

-fmax-relevant-binds=⟨n⟩

Default 6
The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with -
fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but -fno-max-relevant-binds
includes them too.

-fmax-uncovered-patterns=⟨n⟩

Default 4
Maximum number of unmatched patterns to be shown in warnings generated by -
Wincomplete-patterns (page 108) and -Wincomplete-uni-patterns (page 108).

-fmax-simplifier-iterations=⟨n⟩

Default 4

126 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=⟨n⟩

Default 10
A function will not be split into worker and wrapper if the number of value arguments of
the resulting worker exceeds both that of the original function and this setting.

-fno-opt-coercion

Default coercion optimisation enabled.
Turn off the coercion optimiser.

-fno-pre-inlining

Default pre-inlining enabled
Turn off pre-inlining.

-fno-state-hack

Default state hack is enabled
Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas

Default Implied by -O0 (page 121), otherwise off.
Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields

Default on (yields are not inserted)
Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms

Default off
Make GHC bemore precise about its treatment of bottom (but see also -fno-state-hack
(page 127)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph

Default off due to a performance regression bug (#7679)
Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

5.3. Optimisation (code improvement) 127

https://gitlab.haskell.org/ghc/ghc/issues/7679

GHC User’s Guide Documentation, Release 9.2.6

-fregs-iterative

Default off
Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the -fregs-graph (page 127) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=⟨n⟩

Default 2
Set the number of phases for the simplifier. Ignored with -O0.

-fsimpl-tick-factor=⟨n⟩

Default 100
GHC’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 541)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 654)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.
If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr

Default off but enabled by -O2 (page 121).
Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.
This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last [] = error "last"
last (x : []) = x
last (x : xs) = last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above
code to:

last :: [a] -> a
last [] = error "last"
last (x : xs) = last' x xs

where
last' x [] = x
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.
It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we

128 Chapter 5. Using GHC

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 9.2.6

may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -> b -> a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl_loop SPEC z s

where
foldl_loop !sPEC z s = case step s of

Yield x s' -> foldl_loop sPEC (f z x) s'
Skip -> foldl_loop sPEC z s'
Done -> z

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl_loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.
(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)
In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen

Default off
If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=⟨n⟩

Default 3
Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=⟨n⟩

Default 2000
Set the size threshold for the SpecConstr transformation.

-fspecialise

Default on
Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 129) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 560)) will
be specialised as well.

-fspecialise-aggressively

Default off
By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with -fexpose-all-unfoldings
(page 124) if you want to ensure all calls are specialised.

5.3. Optimisation (code improvement) 129

GHC User’s Guide Documentation, Release 9.2.6

-fcross-module-specialise

Default on
Specialise INLINABLE (INLINABLE pragma (page 560)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by -fspecialise) for this to have any effect.

-flate-specialise

Default off
Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.
You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-finline-generics

Default on
Since 9.2.1

Annotate methods of derived Generic and Generic1 instances with INLINE[1] pragmas
based on heuristics dependent on the size of the data type in question. Improves per-
formance of generics-based algorithms as GHC is able to optimize away intermediate
representation more often.

-finline-generics-aggressively

Default off
Since 9.2.1

Annotate methods of all derived Generic and Generic1 instances with INLINE[1] prag-
mas.
This flag should only be used in modules deriving Generic instances that weren’t con-
sidered appropriate for INLINE[1] annotations by heuristics of -finline-generics
(page 130), yet you know that doing so would be beneficial.
When enabled globally it will most likely lead to worse compile times and code size
blowup without runtime performance gains.

-fsolve-constant-dicts

Default on
When solving constraints, try to eagerly solve super classes using available dictionaries.
For example:

class M a b where m :: a -> b

type C a b = (Num a, M a b)

f :: C Int b => b -> Int -> Int
f _ x = x + 1

The body of f requires aNum Int instance. We could solve this constraint from the context
because we have C Int b and that provides us a solution for Num Int. However, we can
often produce much better code by directly solving for an available Num Int dictionary

130 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

we might have at hand. This removes potentially many layers of indirection and crucially
allows other optimisations to fire as the dictionary will be statically known and selector
functions can be inlined.
The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation

Default off
Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams

Default on
Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-lift-lams-known

Default off
Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-lift-lams-non-rec-args

Default 5
Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86_64.

-fstg-lift-lams-rec-args

Default 5
Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86_64.

-fstrictness

Default on
Turn on demand analysis.
A Demand describes an evaluation context of an expression. Demand analysis tries to
find out what demands a function puts on its arguments when called: If an argument is
scrutinised on every code path, the function is strict in that argument and GHC is free
to use the more efficient call-by-value calling convention, as well as pass parameters
unboxed.
Apart from strictness analysis, demand analysis also performs usage analysis: Where
strict translates to “evaluated at least once”, usage analysis asks whether arguments
and bindings are “evaluated at most once” or not at all (“evaluated at most zero times”),
e.g. absent. For the former, GHC may use call-by-name instead of call-by-need, effec-
tively turning thunks into non-memoised functions. For the latter, no code needs to be
generated at all: An absent argument can simply be replaced by a dummy value at the
call site or omitted altogether.

5.3. Optimisation (code improvement) 131

https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/

GHC User’s Guide Documentation, Release 9.2.6

The worker/wrapper transformation (-fworker-wrapper (page 135)) is responsible for
exploiting unboxing opportunities and replacing absent arguments by dummies. For
arguments that can’t be unboxed, opportunities for call-by-value and call-by-name are
exploited in CorePrep when translating to STG.
It’s not only interesting to look at how often a binding is evaluated, but also how often
a function is called. If a function is called at most once, we may freely eta-expand it,
even if doing so destroys shared work if the function was called multiple times. This
information translates into OneShotInfo annotations that the Simplifier acts on.
Notation
So demand analysis is about conservatively inferring lower and upper bounds about how
many times something is evaluated/called. We call the “how many times” part a cardinal-
ity. In the compiler and debug output we differentiate the following cardinality intervals
as approximations to cardinality:
Interval Set of denoted

cardinalities
Syntax Explanation tying syntax to semantics

[1,0] {} B Bottom element
[0,0] {0} A Absent
[0,1] {0,1} M Used at most once (“Maybe”)
[0,ω] {0,1,ω} L Lazy. Top element, no information, used at

least 0, at most many times
[1,1] {1} 1 Strict, used exactly once
[1,ω] {1,ω} S Strict, used possibly many times

Note that it’s never interesting to differentiate between a cardinality of 2 and 3, or even
4232123. We just approximate the >1 case with ω, standing for “many times”.
Apart from the cardinality describing how often an argument is evaluated, a demand also
carries a sub-demand, describing how deep something is evaluated beyond a simple seq-
like evaluation.
This is the full syntax for cardinalities, demands and sub-demands in BNF:

card ::= B | A | M | L | 1 | S semantics as in the table above

d ::= card sd card = how often, sd = how deep
| card abbreviation: Same as "card card"

sd ::= card polymorphic sub-demand, card at every level
| P(d,d,..) product sub-demand
| Ccard(sd) call sub-demand

For example, fst is strict in its argument, and also in the first component of the argument.
It will not evaluate the argument’s second component. That is expressed by the demand
1P(1L,A). The P is for “product sub-demand”, which has a demand for each product field.
The notation 1L just says “evaluated strictly (1), with everything nested inside evaluated
according to L” – e.g., no information, because that would depend on the evaluation
context of the call site of fst. The role of L in 1L is that of a polymorphic sub-demand,
being semantically equivalent to the sub-demand P(LP(..)), whichwe simply abbreviate
by the (consequently overloaded) cardinality notation L.
For another example, the expression x + 1 evaluates x according to demand 1P(L). We
have seen single letters stand for cardinalities and polymorphic sub-demands, but what
does the single letter Lmean for a demand? Such a single letter demand simply expands
to a cardinality and a polymorphic sub-demand of the same letter: E.g. L is equivalent to
LL by expansion of the single letter demand, which is equivalent to LP(LP(..)), so Ls all

132 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

the way down. It is always clear from context whether we talk about about a cardinality,
sub-demand or demand.
Demand signatures
We summarise a function’s demand properties in its demand signature. This is the gen-
eral syntax:

{x->dx,y->dy,z->dz...}<d1><d2><d3>...<dn>div
^ ^ ^ ^ ^ ^
| | | | | |
| \---+---+------/ |
| | |

demand on free demand on divergence
variables arguments information

(omitted if empty) (omitted if
no information)

We summarise fst‘s demand properties in its demand signature <1P(1L,A)>, which
just says “If fst is applied to one argument, that argument is evaluated according to
1P(1L,A)”. For another example, the demand signature of seq would be <1A><1L> and
that of + would be <1P(L)><1P(L)>.
If not omitted, the divergence information can be b (surely diverges) or x (surely di-
verges or throws a precise exception). For example, error has demand signature <S>b
and throwIO (which is the only way to throw precise exceptions) has demand signature
<_><L><L>x (leaving out the complicated demand on the Exception dictionary).
Call sub-demands
Consider maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing = n
maybe _ s (Just a) = s a

We give it demand signature <L><MCM(L)><1L>. The CM(L) is a call sub-demand that says
“Called at most once, where the result is used according to L”. The expression f `seq`
f 1 puts f under demand SC1(L) and serves as an example where the upper bound on
evaluation cardinality doesn’t conincide with that of the call cardinality.
Cardinality is always relative to the enclosing call cardinality, so g 1 2 + g 3 4 puts g
under demand SCS(C1(L)), which says “called multiple times (S), but every time it is
called with one argument, it is applied exactly once to another argument (1)”.

-fstrictness-before=⟨n⟩
Run an additional demand analysis before simplifier phase ⟨n⟩.

-funbox-small-strict-fields

Default on
This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible. It
is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 566)) to every
strict constructor field that fulfils the size restriction.
For example, the constructor fields in the following data types

data A = A !Int
data B = B !A

5.3. Optimisation (code improvement) 133

GHC User’s Guide Documentation, Release 9.2.6

newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 509)) value with -funbox-small-strict-fields enabled.
This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 567)).
Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields

Default off
This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 566)).
This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 567)).
Alternatively you can use -funbox-small-strict-fields (page 133) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=⟨n⟩

Default 750
Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)
Consequences:
1.nothing larger than this will be inlined (unless it has an INLINE pragma)
2.nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The -funfolding-use-threshold=⟨n⟩ (page 134) is more useful.

-funfolding-dict-discount=⟨n⟩

Default 30
How eager should the compiler be to inline dictionaries?

-funfolding-fun-discount=⟨n⟩

Default 60
How eager should the compiler be to inline functions?

-funfolding-keeness-factor=⟨n⟩
This factor was deprecated in GHC 9.0.1. See #15304 for details. Users who need to
control inlining should rather consider -funfolding-use-threshold=⟨n⟩ (page 134).

134 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/15304

GHC User’s Guide Documentation, Release 9.2.6

-funfolding-use-threshold=⟨n⟩

Default 80
This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.
The difference between this and -funfolding-creation-threshold=⟨n⟩ (page 134) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-funfolding-case-threshold=⟨n⟩

Default 2
GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.
As it happened in #18730.
Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes a specific (maybe quite high!) threshold of nesting is to be expected.
In such cases this flag can be used to ignore the first ⟨n⟩ levels of nesting when computing
the penalty.
This flag in combination with -funfolding-case-scaling=⟨n⟩ (page 135) can be used
to break inlining loops without disabling inlining completely. For this purpose a smaller
value is more likely to break such loops although often adjusting the scaling is enough
and preferably.

-funfolding-case-scaling=⟨n⟩

Default 30
GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.
As it happened in #18730.
Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes we are ok with inlining a lot in the name of performance.
In such cases this flag can be used to tune how hard we penalize inlining into deeply
nested cases beyond the threshold set by -funfolding-case-threshold=⟨n⟩ (page 135).
Cases are only counted against the nesting level if they have more than one alternative.
We use 1/n to scale the penalty. That is a higher value gives a lower penalty.
This can be used to break inlining loops. For this purpose a lower value is recommended.
Values in the range 10 <= n <= 20 allow some inlining to take place while still allowing
GHC to compile modules containing such inlining loops.

5.3. Optimisation (code improvement) 135

GHC User’s Guide Documentation, Release 9.2.6

-fworker-wrapper
Enable the worker/wrapper transformation after a demand analysis pass.
Exploits strictness and absence information by unboxing strict arguments and replacing
absent fields by dummy values in a wrapper function that will inline in all relevant sce-
narios and thus expose a specialised, unboxed calling convention of the worker function.
Implied by -O (page 121), and by -fstrictness (page 131). Disabled by -fno-
strictness (page 131). Enabling -fworker-wrapper (page 135) while demand analysis
is disabled (by -fno-strictness (page 131)) has no effect.

-fbinary-blob-threshold=⟨n⟩

Default 500000
The native code-generator can either dump binary blobs (e.g. string literals) into the
assembly file (by using ”.asciz” or ”.string” assembler directives) or it can dump them
as binary data into a temporary file which is then included by the assembler (using the
”.incbin” assembler directive).
This flag sets the size (in bytes) threshold above which the second approach is used. You
can disable the second approach entirely by setting the threshold to 0.

5.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.
Optionally, the program may be linked with the -threaded (page 244) option (see Options
affecting linking (page 241). This provides two benefits:
• It enables the -N ⟨x⟩ (page 137) to be used, which allows threads to run in parallel on
a multi-processor or multi-core machine. See Using SMP parallelism (page 136).

• If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 526).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C ⟨s⟩

Default 20 milliseconds
Sets the context switch interval to ⟨s⟩ seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0 or -C, context switches will occur as often as possible (at every
heap block allocation).

5.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

136 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.
However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Parallel and Concurrent (page 504) we describe the language
features that affect parallelism.

5.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 244) option (see Options affecting linking (page 241)). Additionally, the following com-
piler options affect parallelism:
-feager-blackholing

Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly
it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.
The option -feager-blackholing (page 124) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.
We recommend compiling any code that is intended to be run in parallel with the -feager-
blackholing (page 124) flag.

5.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N ⟨x⟩ (page 137)
options.
-N ⟨x⟩
-N
-maxN ⟨x⟩

Use ⟨x⟩ simultaneous threads when running the program.
The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 526)) another OS thread can take
over that capability.

5.5. Using SMP parallelism 137

GHC User’s Guide Documentation, Release 9.2.6

Normally ⟨x⟩ should be chosen to match the number of CPU cores on the machine 1. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.
Omitting ⟨x⟩, i.e. +RTS -N -RTS, lets the runtime choose the value of ⟨x⟩ itself based on
how many processors are in your machine.
Omitting -N⟨x⟩ entirely means -N1.
With -maxN⟨x⟩, i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.
Be careful when using all the processors in your machine: if some of your processors
are in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.
Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 183)).
The current value of the -N option is available to the Haskell program via Con-
trol.Concurrent.getNumCapabilities, and it may be changed while the program is
running by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:
-qa

Use the OS’s affinity facilities to try to pin OS threads to CPU cores.
When this option is enabled, the OS threads for a capability i are bound to the CPU core
i using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched_setaffinity().
Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.
This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

5.5.3 Hints for using SMP parallelism

Add the -s [⟨file⟩] (page 190) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N ⟨x⟩ (page 137) for comparison.
The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 183)), which will
give you an idea how well your par annotations are working.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

138 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

GHC’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

5.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
mode/dynamic status (see Dynamic and Mode options (page 85)), and the flag’s opposite (if
available).

5.6.1 Verbosity options

More details in Verbosity options (page 91)

Flag Description Type Reverse
-fabstract-refinement-
hole-fits (page 298)

default: off. Toggles
whether refinements
where one or more of the
holes are abstract are
reported.

dynamic -fno-abstract-
refinement-hole-
fits (page 298)

-fdefer-diagnostics
(page 94)

Defer and group diagnos-
tic messages by severity

dynamic

-fdiagnostics-
color=⟨always|auto|never⟩
(page 95)

Use colors in error mes-
sages

dynamic

-fdiagnostics-show-
caret (page 95)

Whether to show snippets
of original source code

dynamic -fno-diagnostics-
show-caret (page 95)

-ferror-spans (page 95) Output full span in error
messages

dynamic

-fhide-source-paths
(page 92)

hide module source and
object paths

dynamic

-fkeep-going (page 96) Continue compilation as
far as possible on errors

dynamic

-fmax-refinement-hole-
fits=⟨n⟩ (page 298)

default: 6. Set the max-
imum number of refine-
ment hole fits for typed
holes to display in type er-
ror messages.

dynamic -fno-max-
refinement-hole-
fits (page 298)

-fmax-relevant-
binds=⟨n⟩ (page 126)

default: 6. Set the maxi-
mum number of bindings
to display in type error
messages.

dynamic -fno-max-relevant-
binds (page 126)

-fmax-valid-hole-
fits=⟨n⟩ (page 296)

default: 6. Set the maxi-
mum number of valid hole
fits for typed holes to dis-
play in type error mes-
sages.

dynamic -fno-max-valid-
hole-fits (page 296)

Continued on next page

5.6. Flag reference 139

GHC User’s Guide Documentation, Release 9.2.6

Table 5.1 – continued from previous page
Flag Description Type Reverse
-fno-show-valid-hole-
fits (page 296)

Disables showing a list of
valid hole fits for typed
holes in type error mes-
sages.

dynamic

-fno-sort-valid-hole-
fits (page 298)

Disables the sorting of the
list of valid hole fits for
typed holes in type error
messages.

dynamic -fsort-valid-hole-
fits (page 298)

-fprint-axiom-incomps
(page 93)

Display equation incom-
patibilities in closed type
families

dynamic -fno-print-axiom-
incomps (page 93)

-fprint-equality-
relations (page 93)

Distinguish between
equality relations when
printing

dynamic -fno-print-
equality-relations
(page 93)

-fprint-expanded-
synonyms (page 94)

In type errors, also print
type-synonym-expanded
types.

dynamic -fno-print-
expanded-synonyms
(page 94)

-fprint-explicit-
coercions (page 93)

Print coercions in types dynamic -fno-print-
explicit-coercions
(page 93)

-fprint-explicit-
foralls (page 92)

Print explicit forall
quantification in types.
See also ExplicitForAll
(page 466)

dynamic -fno-print-
explicit-foralls
(page 92)

-fprint-explicit-kinds
(page 92)

Print explicit kind foralls
and kind arguments in
types. See also KindSig-
natures (page 471)

dynamic -fno-print-
explicit-kinds
(page 92)

-fprint-explicit-
runtime-reps (page 364)

Print RuntimeRep vari-
ables in types which are
runtime-representation
polymorphic.

dynamic -fno-print-
explicit-runtime-
reps (page 364)

-fprint-potential-
instances (page 92)

display all available in-
stances in type error mes-
sages

dynamic -fno-print-
potential-
instances (page 92)

-fprint-typechecker-
elaboration (page 94)

Print extra information
from typechecker.

dynamic -fno-print-
typechecker-
elaboration
(page 94)

-fprint-unicode-syntax
(page 92)

Use unicode syntax when
printing expressions,
types and kinds. See
also UnicodeSyntax
(page 267)

dynamic -fno-print-
unicode-syntax
(page 92)

Continued on next page

140 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.1 – continued from previous page
Flag Description Type Reverse
-frefinement-level-hole-
fits=⟨n⟩ (page 298)

default: off. Sets the level
of refinement of the refine-
ment hole fits, where level
nmeans that hole fits of up
to n holes will be consid-
ered.

dynamic -fno-refinement-
level-hole-fits
(page 298)

-freverse-errors
(page 96)

Output errors in reverse
order

dynamic -fno-reverse-
errors (page 96)

-fshow-docs-of-hole-
fits (page 296)

Toggles whether to show
the documentation of the
valid hole fits in the out-
put.

dynamic -fno-show-docs-of-
hole-fits (page 296)

-fshow-hole-constraints
(page 295)

Show constraints when re-
porting typed holes.

dynamic

-fshow-hole-matches-of-
hole-fits (page 298)

Toggles whether to show
the type of the additional
holes in refinement hole
fits.

dynamic -fno-show-hole-
matches-of-hole-
fits (page 298)

-fshow-provenance-of-
hole-fits (page 296)

Toggles whether to show
the provenance of the
valid hole fits in the
output.

dynamic -fno-show-
provenance-of-
hole-fits (page 296)

-fshow-type-app-of-hole-
fits (page 296)

Toggles whether to show
the type application of the
valid hole fits in the out-
put.

dynamic -fno-show-type-
app-of-hole-fits
(page 296)

-fshow-type-app-vars-of-
hole-fits (page 296)

Toggles whether to show
what type each quantified
variable takes in a valid
hole fit.

dynamic -fno-show-type-
app-vars-of-hole-
fits (page 296)

-fshow-type-of-hole-
fits (page 296)

Toggles whether to show
the type of the valid hole
fits in the output.

dynamic -fno-show-type-of-
hole-fits (page 296)

-fsort-by-size-hole-
fits (page 299)

Sort valid hole fits by size. dynamic -fno-sort-by-size-
hole-fits (page 299)

-fsort-by-subsumption-
hole-fits (page 299)

Sort valid hole fits by sub-
sumption.

dynamic -fno-sort-by-
subsumption-hole-
fits (page 299)

-funclutter-valid-hole-
fits (page 296)

Unclutter the list of valid
hole fits by not showing
provenance nor type appli-
cations of suggestions.

dynamic

-Rghc-timing (page 96) Summarise timing stats
for GHC (same as +RTS -
tstderr).

dynamic

-v (page 91) verbose mode (equivalent
to -v3)

dynamic

Continued on next page

5.6. Flag reference 141

GHC User’s Guide Documentation, Release 9.2.6

Table 5.1 – continued from previous page
Flag Description Type Reverse
-v⟨n⟩ (page 91) set verbosity level dynamic

5.6.2 Alternative modes of operation

More details in Modes of operation (page 86)

Flag Description Type Reverse
--frontend ⟨module⟩
(page 86)

run GHC with the given
frontend plugin; see Fron-
tend plugins (page 589)
for details.

mode

--help (page 87), -?
(page 87)

Display help mode

--info (page 87) display information about
the compiler

mode

--interactive (page 86) Interactive mode - nor-
mally used by just run-
ning ghci; see Using GHCi
(page 33) for details.

mode

--make (page 86) Build a multi-module
Haskell program, auto-
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc –make
(page 89) for details.

mode

--mk-dll (page 86) DLL-creation mode (Win-
dows only)

mode

--numeric-version
(page 87)

display GHC version (nu-
meric only)

mode

--print-booter-
version (page 87)

display bootstrap compiler
version

mode

--print-build-
platform (page 87)

display platform on which
GHC was built

mode

--print-c-compiler-
flags (page 87)

C compiler flags used to
build GHC

mode

--print-c-compiler-
link-flags (page 87)

C linker flags used to build
GHC

mode

--print-debug-on
(page 87)

print whether GHC was
built with -DDEBUG

mode

--print-global-
package-db (page 87)

display GHC’s global pack-
age database directory

mode

--print-have-
interpreter (page 87)

display whether GHC was
built with interactive sup-
port

mode

Continued on next page

142 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.2 – continued from previous page
Flag Description Type Reverse
--print-have-native-
code-generator
(page 87)

display whether target
platform has NCG support

mode

--print-host-platform
(page 88)

display host platform of
GHC

mode

--print-ld-flags
(page 88)

display linker flags used to
compile GHC

mode

--print-leading-
underscore (page 88)

display use of leading
underscores on symbol
names

mode

--print-libdir
(page 88)

display GHC library direc-
tory

mode

--print-object-
splitting-supported
(page 88)

display whether GHC sup-
ports object splitting

mode

--print-project-git-
commit-id (page 88)

display Git commit id GHC
is built from

mode

--print-project-
version (page 88)

display GHC version mode

--print-rts-ways
(page 88)

display which way RTS
was built

mode

--print-stage (page 88) display stage number of
GHC

mode

--print-support-smp
(page 88)

display whether GHC was
compiled with SMP sup-
port

mode

--print-tables-next-
to-code (page 88)

display whether GHC was
compiled with --enable-
tables-next-to-code

mode

--print-target-
platform (page 89)

display target platform of
GHC

mode

--print-
unregisterised
(page 89)

display whether this GHC
was built in unregisterised
mode

mode

--run ⟨file⟩ (page 86) Run a Haskell program. mode

--show-iface ⟨file⟩
(page 87)

display the contents of an
interface file.

mode

--show-options
(page 87)

display the supported com-
mand line options

mode

--supported-
extensions (page 87),
--supported-languages
(page 87)

display the supported lan-
guage extensions

mode

--version (page 87), -V
(page 87)

display GHC version mode

-e ⟨expr⟩ (page 86) Evaluate expr; see Ex-
pression evaluation mode
(page 90) for details.

mode

Continued on next page

5.6. Flag reference 143

GHC User’s Guide Documentation, Release 9.2.6

Table 5.2 – continued from previous page
Flag Description Type Reverse
-M (page 86) generate dependency

information suitable for
use in a Makefile; see
Dependency generation
(page 213) for details.

mode

5.6.3 Which phases to run

More details in Batch compiler mode (page 90)

Flag Description Type Reverse
-C (page 86) Stop after generating C

(.hc file)
mode

-c (page 86) Stop after generating ob-
ject (.o) file

mode

-E (page 86) Stop after preprocessing
(.hspp file)

mode

-F (page 239) Enable the use of a pre-
processor (page 239)
(set with -pgmF ⟨cmd⟩
(page 235))

dynamic

-S (page 86) Stop after generating as-
sembly (.s file)

mode

-x ⟨suffix⟩ (page 91) Override default be-
haviour for source files

dynamic

5.6.4 Redirecting output

More details in Redirecting the compilation output(s) (page 200)

Flag Description Type Reverse
--exclude-
module=⟨file⟩
(page 215)

Regard ⟨file⟩ as “sta-
ble”; i.e., exclude it from
having dependencies on it.

dynamic

-ddump-mod-cycles
(page 214)

Dump module cycles dynamic

-dep-makefile ⟨file⟩
(page 214)

Use ⟨file⟩ as the makefile dynamic

-dep-suffix ⟨suffix⟩
(page 215)

Make dependencies that
declare that files with suf-
fix .⟨suf⟩⟨osuf⟩ depend
on interface files with suf-
fix .⟨suf⟩hi

dynamic

-dumpdir ⟨dir⟩
(page 201)

redirect dump files dynamic

-dynhisuf ⟨suffix⟩
(page 202)

set the suffix to use for dy-
namic interface files

dynamic

Continued on next page

144 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.4 – continued from previous page
Flag Description Type Reverse
-dyno ⟨file⟩ (page 201) set dynamic output file-

name
dynamic

-dynohi ⟨file⟩
(page 201)

set the filename in which
to put the dynamic inter-
face

dynamic

-dynosuf ⟨suffix⟩
(page 202)

set the dynamic output file
suffix

dynamic

-hcsuf ⟨suffix⟩
(page 202)

set the suffix to use for in-
termediate C files

dynamic

-hidir ⟨dir⟩ (page 201) set directory for interface
files

dynamic

-hiedir ⟨dir⟩
(page 201)

set directory for extended
interface files

dynamic

-hiesuf ⟨suffix⟩
(page 202)

set the suffix to use for ex-
tended interface files

dynamic

-hisuf ⟨suffix⟩
(page 202)

set the suffix to use for in-
terface files

dynamic

-include-cpp-deps
(page 215)

Include preprocessor de-
pendencies

dynamic

-include-pkg-deps
(page 215)

Regard modules imported
from packages as unstable

dynamic

-o ⟨file⟩ (page 200) set output filename dynamic

-odir ⟨dir⟩ (page 201) set directory for object
files

dynamic

-ohi ⟨file⟩ (page 201) set the filename in which
to put the interface

dynamic

-osuf ⟨suffix⟩
(page 202)

set the output file suffix dynamic

-outputdir ⟨dir⟩
(page 202)

set output directory dynamic

-stubdir ⟨dir⟩
(page 201)

redirect FFI stub files dynamic

5.6.5 Keeping intermediate files

More details in Keeping Intermediate Files (page 202)

Flag Description Type Reverse
-keep-hc-file
(page 202), -keep-hc-
files (page 202)

Retain intermediate .hc
files.

dynamic

-keep-hi-files
(page 202)

Retain intermediate .hi
files (the default).

dynamic -no-keep-hi-files
(page 202)

-keep-hscpp-file
(page 202), -keep-hscpp-
files (page 203)

Retain intermediate
.hscpp files.

dynamic

Continued on next page

5.6. Flag reference 145

GHC User’s Guide Documentation, Release 9.2.6

Table 5.5 – continued from previous page
Flag Description Type Reverse
-keep-llvm-file
(page 203), -keep-llvm-
files (page 203)

Retain intermediate LLVM
.ll files. Implies -fllvm
(page 240).

dynamic

-keep-o-files
(page 203)

Retain intermediate .o
files (the default).

dynamic -no-keep-o-files
(page 203)

-keep-s-file
(page 203), -keep-s-
files (page 203)

Retain intermediate .s
files.

dynamic

-keep-tmp-files
(page 203)

Retain all intermediate
temporary files.

dynamic

5.6.6 Temporary files

More details in Redirecting temporary files (page 203)

Flag Description Type Reverse
-tmpdir ⟨dir⟩
(page 203)

set the directory for tem-
porary files

dynamic

5.6.7 Finding imports

More details in The search path (page 199)

Flag Description Type Reverse
-i (page 200) Empty the import direc-

tory list
dynamic

-i⟨dir⟩[:⟨dir⟩]*
(page 200)

add ⟨dir⟩, ⟨dir2⟩, etc. to im-
port path

dynamic

5.6.8 Interface file options

More details in Other options related to interface files (page 203)

Flag Description Type Reverse
--show-iface ⟨file⟩
(page 87)

See Modes of operation
(page 86).

mode

-ddump-hi (page 203) Dump the new interface to
stdout

dynamic

-ddump-hi-diffs
(page 203)

Show the differences vs.
the old interface

dynamic

-ddump-minimal-
imports (page 203)

Dump a minimal set of im-
ports

dynamic

5.6.9 Extended interface file options

More details in Options related to extended interface files (page 204)

146 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Flag Description Type Reverse
-fvalidate-ide-info
(page 204)

Perform some sanity
checks on the extended
interface files

dynamic

-fwrite-ide-info
(page 204)

Write out extended inter-
face files

dynamic

5.6.10 Recompilation checking

More details in The recompilation checker (page 204)

Flag Description Type Reverse
-fforce-recomp
(page 204)

Turn off recompilation
checking. This is implied
by any -ddump-X option
when compiling a single
file (i.e. when using -c
(page 86)).

dynamic -fno-force-recomp
(page 204)

-fignore-hpc-changes
(page 204)

Do not recompile modules
just to match changes to
HPC flags. This is espe-
cially useful for avoiding
recompilation when using
GHCi, and is enabled by
default for GHCi.

dynamic -fno-ignore-hpc-
changes (page 204)

-fignore-optim-
changes (page 204)

Do not recompile modules
just to match changes to
optimisation flags. This is
especially useful for avoid-
ing recompilation when us-
ing GHCi, and is enabled
by default for GHCi.

dynamic -fno-ignore-optim-
changes (page 204)

5.6.11 Interactive-mode options

More details in The .ghci and .haskeline files (page 75)

Flag Description Type Reverse
-fbreak-on-error
(page 58)

Break on uncaught excep-
tions and errors (page 57)

dynamic -fno-break-on-error
(page 58)

-fbreak-on-exception
(page 58)

Break on any exception
thrown (page 57)

dynamic -fno-break-on-
exception (page 58)

-fghci-hist-size=⟨n⟩
(page 57)

Set the number of entries
GHCi keeps for :history.
See The GHCi Debugger
(page 49).

dynamic

Continued on next page

5.6. Flag reference 147

GHC User’s Guide Documentation, Release 9.2.6

Table 5.11 – continued from previous page
Flag Description Type Reverse
-fghci-leak-check
(page 60)

(Debugging only) check
for space leaks when load-
ing new modules in GHCi.

dynamic -fno-ghci-leak-check
(page 60)

-flocal-ghci-history
(page 60)

Use current directory for
the GHCi command his-
tory file .ghci-history.

dynamic -fno-local-ghci-
history (page 60)

-fno-it (page 46) No longer set the special
variable it.

dynamic -fno-no-it (page 46)

-fprint-bind-result
(page 38)

Turn on printing of
binding results in GHCi
(page 38)

dynamic -fno-print-bind-
result (page 38)

-fprint-evld-with-
show (page 51)

Instruct :print (page 69)
to use Show instances
where possible.

dynamic

-fshow-loaded-modules
(page 34)

Show the names of mod-
ules that GHCi loaded af-
ter a :load (page 67) com-
mand.

dynamic

-ghci-script (page 76) Read additional .ghci
files

dynamic

-ignore-dot-ghci
(page 76)

Disable reading of .ghci
files

dynamic -no-ignore-dot-ghci
(page 76)

-interactive-print
⟨name⟩ (page 48)

Select the function to
use for printing evalu-
ated expressions in GHCi
(page 48)

dynamic

5.6.12 Packages

More details in Packages (page 216)

Flag Description Type Reverse
-clear-package-db
(page 222)

Clear the package db
stack.

dynamic

-distrust ⟨pkg⟩
(page 538)

Expose package ⟨pkg⟩ and
set it to be distrusted. See
Safe Haskell (page 530).

dynamic

-distrust-all-
packages (page 538)

Distrust all packages by
default. See Safe Haskell
(page 530).

dynamic

-fpackage-trust
(page 540)

Enable Safe Haskell
(page 530) trusted pack-
age requirement for
trustworthy modules.

dynamic

-global-package-db
(page 222)

Add the global package db
to the stack.

dynamic

-hide-all-packages
(page 219)

Hide all packages by de-
fault

dynamic

Continued on next page

148 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.12 – continued from previous page
Flag Description Type Reverse
-hide-package ⟨pkg⟩
(page 219)

Hide package ⟨pkg⟩ dynamic

-ignore-package ⟨pkg⟩
(page 219)

Ignore package ⟨pkg⟩ dynamic

-no-auto-link-
packages (page 219)

Don’t automatically link in
the base and rts packages.

dynamic

-no-global-package-db
(page 222)

Remove the global pack-
age db from the stack.

dynamic

-no-user-package-db
(page 222)

Remove the user’s pack-
age db from the stack.

dynamic

-package ⟨pkg⟩
(page 218)

Expose package ⟨pkg⟩ dynamic

-package-db ⟨file⟩
(page 222)

Add ⟨file⟩ to the package
db stack.

dynamic

-package-env
⟨file⟩|⟨name⟩
(page 223)

Use the specified package
environment.

dynamic

-package-id ⟨unit-id⟩
(page 219)

Expose package by id
⟨unit-id⟩

dynamic

-this-unit-id ⟨unit-
id⟩ (page 219)

Compile to be part of unit
(i.e. package) ⟨unit-id⟩

dynamic

-trust ⟨pkg⟩ (page 538) Expose package ⟨pkg⟩ and
set it to be trusted. See
Safe Haskell (page 530).

dynamic

-user-package-db
(page 222)

Add the user’s package db
to the stack.

dynamic

5.6.13 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-# LAN-
GUAGE blah #-} pragma in the file itself. See Controlling extensions (page 261).

5.6.14 Warnings

More details in Warnings and sanity-checking (page 98)

Flag Description Type Reverse
-fdefer-out-of-scope-
variables (page 102)

Convert variable out
of scope variables er-
rors into warnings. Im-
plied by -fdefer-type-
errors (page 102). See
also -Wdeferred-out-
of-scope-variables
(page 102).

dynamic -fno-defer-out-of-
scope-variables
(page 102)

Continued on next page

5.6. Flag reference 149

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-fdefer-type-errors
(page 102)

Turn type errors into warn-
ings, deferring the error
until runtime (page 381).
Implies -fdefer-typed-
holes (page 102) and
-fdefer-out-of-scope-
variables (page 102).
See also -Wdeferred-
type-errors (page 102)

dynamic -fno-defer-type-
errors (page 102)

-fdefer-typed-holes
(page 102)

Convert typed hole
(page 292) errors into
warnings, deferring
the error until runtime
(page 381). Implied by
-fdefer-type-errors
(page 102). See also -
Wtyped-holes (page 102).

dynamic -fno-defer-typed-
holes (page 102)

-fenable-th-splice-
warnings (page 492)

Generate warnings for
Template Haskell splices

dynamic -fno-enable-th-
splice-warnings
(page 492)

-fhelpful-errors
(page 103)

Make suggestions for mis-
spelled names.

dynamic -fno-helpful-errors
(page 103)

-fmax-pmcheck-
models=⟨n⟩ (page 108)

soft limit on the number
of parallel models the pat-
tern match checker should
check a pattern match
clause against

dynamic

-fshow-warning-groups
(page 101)

show which group an emit-
ted warning belongs to.

dynamic -fno-show-warning-
groups (page 101)

-fvia-C (page 234) use the C code generator dynamic

-W (page 99) enable normal warnings dynamic -w (page 100)

-w (page 100) disable all warnings dynamic

-Wall (page 100) enable almost all warnings
(details in Warnings and
sanity-checking (page 98))

dynamic -w (page 100)

-Wall-missed-
specialisations
(page 103)

warn when specialisation
of any overloaded function
fails.

dynamic -Wno-all-missed-
specialisations
(page 103)

-Wall-missed-
specializations
(page 103)

alias for -Wall-missed-
specialisations
(page 103)

dynamic -Wno-all-missed-
specializations
(page 103)

Continued on next page

150 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wambiguous-fields
(page 120)

warn about ambiguous
field selectors or updates

dynamic

-Wauto-orphans
(page 119)

(deprecated) Does nothing dynamic

-Wcompat (page 100) enable future compati-
bility warnings (details
in Warnings and sanity-
checking (page 98))

dynamic -Wno-compat (page 100)

-Wcompat-unqualified-
imports (page 101)

Report unqualified im-
ports of core libraries
which are expected to
cause compatibility prob-
lems in future releases.

dynamic -Wno-compat-
unqualified-imports
(page 101)

-Wcpp-undef (page 118) warn on uses of the #if di-
rective on undefined iden-
tifiers

dynamic

-Wdefault (page 99) enable default flags dynamic

-Wdeferred-out-of-
scope-variables
(page 102)

Report warnings when
variable out-of-scope er-
rors are deferred until
runtime (page 381). See
-fdefer-out-of-scope-
variables (page 102).

dynamic -Wno-deferred-out-
of-scope-variables
(page 102)

-Wdeferred-type-
errors (page 102)

Report warnings when
deferred type errors
(page 381) are enabled.
This option is enabled
by default. See -fdefer-
type-errors (page 102).

dynamic -Wno-deferred-type-
errors (page 102)

-Wdeprecated-flags
(page 105)

warn about uses of com-
mandline flags that are
deprecated

dynamic -Wno-deprecated-
flags (page 105)

-Wdeprecations
(page 103)

warn about uses of func-
tions & types that have
warnings or deprecated
pragmas. Alias for -
Wwarnings-deprecations
(page 103)

dynamic -Wno-deprecations
(page 103)

-Wderiving-defaults
(page 106)

warn about default deriv-
ing when using both De-
riveAnyClass (page 419)
and GeneralizedNew-
typeDeriving (page 413)

dynamic -Wno-deriving-
defaults (page 106)

-Wderiving-typeable
(page 119)

warn when Typeable is de-
rived

dynamic -Wno-deriving-
typeable (page 119)

-Wdodgy-exports
(page 105)

warn about dodgy exports dynamic -Wno-dodgy-exports
(page 105)

Continued on next page

5.6. Flag reference 151

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wdodgy-foreign-
imports (page 105)

warn about dodgy foreign
imports

dynamic -Wno-dodgy-foreign-
imports (page 105)

-Wdodgy-imports
(page 105)

warn about dodgy imports dynamic -Wno-dodgy-imports
(page 105)

-Wduplicate-
constraints (page 106)

warn when a constraint ap-
pears duplicated in a type
signature

dynamic -Wno-duplicate-
constraints (page 106)

-Wduplicate-exports
(page 107)

warn when an entity is ex-
ported multiple times

dynamic -Wno-duplicate-
exports (page 107)

-Wempty-enumerations
(page 106)

warn about enumerations
that are empty

dynamic -Wno-empty-
enumerations
(page 106)

-Werror (page 101) make warnings fatal dynamic -Wwarn (page 101)

-Weverything (page 100) enable all warnings sup-
ported by GHC

dynamic

-Wextra (page 99) alias for -W (page 99) dynamic -w (page 100)

-Whi-shadowing
(page 107)

(deprecated) warn when a
.hi file in the current di-
rectory shadows a library

dynamic -Wno-hi-shadowing
(page 107)

-Widentities (page 107) warn about uses of Pre-
lude numeric conversions
that are probably the iden-
tity (and hence could be
omitted)

dynamic -Wno-identities
(page 107)

-Wimplicit-kind-vars
(page 107)

warn when kind variables
are implicitly quantified
over.

dynamic -Wno-implicit-kind-
vars (page 107)

-Wimplicit-lift
(page 107)

warn about implicit lift
in Template Haskell
quotes

dynamic -Wno-implicit-lift
(page 107)

-Wimplicit-prelude
(page 107)

warn when the Prelude is
implicitly imported

dynamic -Wno-implicit-
prelude (page 107)

-Winaccessible-code
(page 112)

warn about inaccessible
code

dynamic -Wno-inaccessible-
code (page 112)

-Wincomplete-patterns
(page 108)

warn when a pattern
match could fail

dynamic -Wno-incomplete-
patterns (page 108)

-Wincomplete-record-
updates (page 108)

warn when a record up-
date could fail

dynamic -Wno-incomplete-
record-updates
(page 108)

Continued on next page

152 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wincomplete-uni-
patterns (page 108)

warn when a pattern
match in a lambda expres-
sion, pattern binding or a
lazy pattern could fail

dynamic -Wno-incomplete-uni-
patterns (page 108)

-Winferred-safe-
imports (page 540)

warn when an explicitly
Safe Haskell module im-
ports a Safe-Inferred one

dynamic -Wno-inferred-safe-
imports (page 540)

-Winline-rule-
shadowing (page 117)

Warn if a rewrite RULE
might fail to fire because
the function might be in-
lined before the rule has
a chance to fire. See
How rules interact with
INLINE/NOINLINE prag-
mas (page 545).

dynamic -Wno-inline-rule-
shadowing (page 117)

-Winvalid-haddock
(page 118)

warn when a Haddock
comment occurs in an in-
valid position

dynamic -Wno-invalid-haddock
(page 118)

-Wmissed-extra-
shared-lib (page 114)

Warn when GHCi can’t
load a shared lib.

dynamic -Wno-missed-extra-
shared-lib (page 114)

-Wmissed-
specialisations
(page 103)

warn when specialisation
of an imported, over-
loaded function fails.

dynamic -Wno-missed-
specialisations
(page 103)

-Wmissed-
specializations
(page 103)

alias for -Wmissed-
specialisations
(page 103)

dynamic -Wno-missed-
specializations
(page 103)

-Wmissing-deriving-
strategies (page 109)

warn when a deriving
clause is missing a deriv-
ing strategy

dynamic -Wno-missing-
deriving-strategies
(page 109)

-Wmissing-export-
lists (page 109)

warn when a module dec-
laration does not explicitly
list all exports

dynamic -Wno-missing-export-
lists (page 109)

-Wmissing-exported-
signatures (page 110)

warn about top-level func-
tions without signatures,
only if they are exported

dynamic -Wno-missing-
exported-signatures
(page 110)

-Wmissing-exported-
sigs (page 110)

(deprecated) warn about
top-level functions with-
out signatures, only
if they are exported.
takes precedence over
-Wmissing-signatures

dynamic -Wno-missing-
exported-sigs
(page 110)

-Wmissing-fields
(page 109)

warn when fields of a
record are uninitialised

dynamic -Wno-missing-fields
(page 109)

Continued on next page

5.6. Flag reference 153

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wmissing-home-
modules (page 118)

warn when encountering
a home module imported,
but not listed on the
command line. Useful
for cabal to ensure GHC
won’t pick up modules,
not listed neither in ex-
posed-modules, nor in
other-modules.

dynamic -Wno-missing-home-
modules (page 118)

-Wmissing-import-
lists (page 109)

warn when an import dec-
laration does not explicitly
list all the names brought
into scope

dynamic -Wno-missing-import-
lists (page 109)

-Wmissing-kind-
signatures (page 110)

warn when type declara-
tions don’t have kind sig-
natures nor CUSKs

dynamic -Wno-missing-kind-
signatures (page 110)

-Wmissing-local-
signatures (page 110)

warn about polymorphic
local bindings without sig-
natures

dynamic -Wno-missing-local-
signatures (page 110)

-Wmissing-local-sigs
(page 110)

(deprecated) warn about
polymorphic local bind-
ings without signatures

dynamic -Wno-missing-local-
sigs (page 110)

-Wmissing-methods
(page 110)

warn when class methods
are undefined

dynamic -Wno-missing-methods
(page 110)

-Wmissing-monadfail-
instances (page 104)

Warn when a failable pat-
tern is used in a do-block
that does not have a Mon-
adFail instance.

dynamic -Wno-missing-
monadfail-instances
(page 104)

-Wmissing-pattern-
synonym-signatures
(page 110)

warn when pattern syn-
onyms do not have type
signatures

dynamic -Wno-missing-pattern-
synonym-signatures
(page 110)

-Wmissing-safe-
haskell-mode (page 541)

warn when the Safe
Haskell mode is not explic-
itly specified.

dynamic -Wno-missing-
safe-haskell-mode
(page 541)

-Wmissing-signatures
(page 110)

warn about top-level func-
tions without signatures

dynamic -Wno-missing-
signatures (page 110)

-Wmissing-space-
after-bang (page 119)

(deprecated) Does nothing dynamic

-Wmonomorphism-
restriction (page 113)

warn when the Monomor-
phism Restriction is ap-
plied

dynamic -Wno-monomorphism-
restriction (page 114)

-Wname-shadowing
(page 111)

warn when names are
shadowed

dynamic -Wno-name-shadowing
(page 111)

Continued on next page

154 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wno-compat (page 100) Disables all warnings

enabled by -Wcompat
(page 100).

dynamic -Wcompat (page 100)

-Wnoncanonical-monad-
instances (page 104)

warn when Applicative
or Monad instances have
noncanonical definitions
of return, pure, (>>), or
(*>). See flag description
in Warnings and sanity-
checking (page 98) for
more details.

dynamic -Wno-noncanonical-
monad-instances
(page 104)

-Wnoncanonical-
monadfail-instances
(page 104)

(deprecated) warn when
Monad or MonadFail in-
stances have noncanoni-
cal definitions of fail.

dynamic -Wno-noncanonical-
monadfail-instances
(page 104)

-Wnoncanonical-
monoid-instances
(page 104)

warn when Semigroup or
Monoid instances have
noncanonical definitions
of (<>) or mappend. See
flag description in Warn-
ings and sanity-checking
(page 98) for more details.

dynamic -Wno-noncanonical-
monoid-instances
(page 104)

-Wnot (page 100) (deprecated) Alias for -w
(page 100)

dynamic

-Woperator-whitespace
(page 119)

warn on prefix, suffix, and
tight infix uses of infix op-
erators

dynamic -Wno-operator-
whitespace (page 119)

-Woperator-
whitespace-ext-
conflict (page 119)

warn on uses of infix oper-
ators that would be parsed
differently were a particu-
lar GHC extension enabled

dynamic -Wno-operator-
whitespace-ext-
conflict (page 119)

-Worphans (page 111) warn when the module
contains orphan instance
declarations or rewrite
rules (page 215)

dynamic -Wno-orphans
(page 111)

-Woverflowed-literals
(page 105)

warn about literals that
will overflow their type

dynamic -Wno-overflowed-
literals (page 105)

-Woverlapping-
patterns (page 111)

warn about overlapping
patterns

dynamic -Wno-overlapping-
patterns (page 111)

-Wpartial-fields
(page 118)

warn when defining a par-
tial record field.

dynamic -Wno-partial-fields
(page 118)

Continued on next page

5.6. Flag reference 155

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wpartial-type-
signatures (page 102)

warn about holes in par-
tial type signatures when
PartialTypeSignatures
(page 479) is enabled.
Not applicable when
PartialTypeSignatures
(page 479) is not enabled,
in which case errors are
generated for such holes.

dynamic -Wno-partial-type-
signatures (page 102)

-Wprepositive-
qualified-module
(page 101)

Report imports with a lead-
ing/prepositive “qualified”

dynamic -Wno-prepositive-
qualified-module
(page 101)

-Wredundant-bang-
patterns (page 116)

Warn about redundant
bang patterns.

dynamic -Wno-redundant-bang-
patterns (page 116)

-Wredundant-
constraints (page 106)

Have the compiler warn
about redundant con-
straints in type signa-
tures.

dynamic -Wno-redundant-
constraints (page 106)

-Wredundant-record-
wildcards (page 117)

Warn about record wild-
card matches when the
wildcard binds no pat-
terns.

dynamic -Wno-redundant-
record-wildcards
(page 117)

-Wsafe (page 540) warn if the module being
compiled is regarded to be
safe.

dynamic -Wno-safe (page 540)

-Wsemigroup (page 104) warn when a Monoid is not
Semigroup, and on non-
Semigroup definitions of
(<>)?

dynamic -Wno-semigroup
(page 104)

-Wsimplifiable-class-
constraints (page 113)

Warn about class con-
straints in a type signa-
ture that can be simplified
using a top-level instance
declaration.

dynamic -Wno-simplifiable-
class-constraints
(page 113)

-Wstar-binder
(page 113)

warn about binding the
(*) type operator despite
StarIsType (page 360)

dynamic -Wno-star-binder
(page 113)

-Wstar-is-type
(page 112)

warn when * is used to
mean Data.Kind.Type

dynamic -Wno-star-is-type
(page 112)

-Wtabs (page 113) warn if there are tabs in
the source file

dynamic -Wno-tabs (page 113)

Continued on next page

156 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wtrustworthy-safe
(page 540)

warn if the module being
compiled is marked as
Trustworthy (page 539)
but it could instead
be marked as Safe
(page 539), a more in-
formative bound.

dynamic -Wno-safe (page 540)

-Wtype-defaults
(page 113)

warn when defaulting hap-
pens

dynamic -Wno-type-defaults
(page 113)

-Wtyped-holes
(page 102)

Report warnings when
typed hole (page 292)
errors are deferred until
runtime (page 381). See
-fdefer-typed-holes
(page 102).

dynamic -Wno-typed-holes
(page 102)

-Wunbanged-strict-
patterns (page 118)

warn on pattern bind of un-
lifted variable that is nei-
ther bare nor banged

dynamic -Wno-unbanged-strict-
patterns (page 118)

-Wunicode-
bidirectional-format-
characters (page 120)

warn about the usage of
unicode bidirectional lay-
out override characters

dynamic

-Wunrecognised-
pragmas (page 103)

warn about uses of prag-
mas that GHC doesn’t
recognise

dynamic -Wno-unrecognised-
pragmas (page 103)

-Wunrecognised-
warning-flags
(page 101)

throw a warning when an
unrecognised -W... flag
is encountered on the com-
mand line.

dynamic -Wno-unrecognised-
warning-flags
(page 101)

-Wunsafe (page 540) warn if the module being
compiled is regarded to be
unsafe. See Safe Haskell
(page 530)

dynamic -Wno-unsafe (page 540)

-Wunsupported-
calling-conventions
(page 105)

warn about use of an un-
supported calling conven-
tion

dynamic -Wno-unsupported-
calling-conventions
(page 105)

-Wunsupported-llvm-
version (page 114)

Warn when using -fllvm
(page 240) with an unsup-
ported version of LLVM.

dynamic -Wno-monomorphism-
restriction (page 114)

-Wunticked-promoted-
constructors (page 114)

warn if promoted con-
structors are not ticked

dynamic -Wno-unticked-
promoted-
constructors
(page 114)

Continued on next page

5.6. Flag reference 157

GHC User’s Guide Documentation, Release 9.2.6

Table 5.13 – continued from previous page
Flag Description Type Reverse
-Wunused-binds
(page 114)

warn about bindings
that are unused. Alias
for -Wunused-top-binds
(page 114), -Wunused-
local-binds (page 115)
and -Wunused-pattern-
binds (page 115)

dynamic -Wno-unused-binds
(page 114)

-Wunused-do-bind
(page 115)

warn about do bindings
that appear to throw away
values of types other than
()

dynamic -Wno-unused-do-bind
(page 115)

-Wunused-foralls
(page 116)

warn about type variables
in user-written forall\s
that are unused

dynamic -Wno-unused-foralls
(page 116)

-Wunused-imports
(page 115)

warn about unnecessary
imports

dynamic -Wno-unused-imports
(page 115)

-Wunused-local-binds
(page 115)

warn about local bindings
that are unused

dynamic -Wno-unused-local-
binds (page 115)

-Wunused-matches
(page 115)

warn about variables in
patterns that aren’t used

dynamic -Wno-unused-matches
(page 115)

-Wunused-packages
(page 118)

warn when package is re-
quested on command line,
but was never loaded.

dynamic -Wno-unused-packages
(page 118)

-Wunused-pattern-
binds (page 115)

warn about pattern match
bindings that are unused

dynamic -Wno-unused-pattern-
binds (page 115)

-Wunused-record-
wildcards (page 116)

Warn about record wild-
card matches when none
of the bound variables are
used.

dynamic -Wno-unused-record-
wildcards (page 116)

-Wunused-top-binds
(page 114)

warn about top-level bind-
ings that are unused

dynamic -Wno-unused-top-
binds (page 114)

-Wunused-type-
patterns (page 116)

warn about unused type
variables which arise from
patterns in in type family
and data family instances

dynamic -Wno-unused-type-
patterns (page 116)

-Wwarn (page 101) make warnings non-fatal dynamic -Werror (page 101)

-Wwarnings-
deprecations (page 103)

warn about uses of func-
tions & types that have
warnings or deprecated
pragmas

dynamic -Wno-warnings-
deprecations
(page 103)

-Wwrong-do-bind
(page 117)

warn about do bindings
that appear to throw away
monadic values that you
should have bound instead

dynamic -Wno-wrong-do-bind
(page 117)

158 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

5.6.15 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 120).
See Individual optimisations (page 159) for a list of optimisations enabled on level 1 and level
2.

Flag Description Type Reverse
-O (page 121), -O1
(page 121)

Enable level 1 optimisa-
tions

dynamic -O0 (page 121)

-O0 (page 121) Disable optimisations (de-
fault)

dynamic

-O2 (page 121) Enable level 2 optimisa-
tions

dynamic -O0 (page 121)

-O⟨n⟩ (page 121) Any -On where n > 2 is the
same as -O2.

dynamic -O0 (page 121)

5.6.16 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 121). If
a flag is implied by -O then it is also implied by -O2 (unless flag description explicitly says
otherwise). If a flag is implied by -O0 only then the flag is not implied by -O and -O2.

Flag Description Type Reverse
-fasm-shortcutting
(page 122)

Enable shortcutting on as-
sembly. Implied by -O2
(page 121).

dynamic -fno-asm-
shortcutting
(page 122)

-fbinary-blob-
threshold=⟨n⟩
(page 136)

default: 500K. Tweak as-
sembly generator for bi-
nary blobs.

dynamic

-fblock-layout-cfg
(page 123)

Use the new cfg based
block layout algorithm.

dynamic -fno-block-layout-
cfg (page 123)

-fblock-layout-
weightless (page 123)

Ignore cfg weights for
code layout.

dynamic -fno-block-layout-
weightless (page 123)

-fblock-layout-
weights (page 123)

Sets edge weights used by
the new code layout algo-
rithm.

dynamic

-fcall-arity (page 122) Enable call-arity optimi-
sation. Implied by -O
(page 121).

dynamic -fno-call-arity
(page 122)

-fcase-folding
(page 122)

Enable constant folding in
case expressions. Implied
by -O (page 121).

dynamic -fno-case-folding
(page 122)

-fcase-merge (page 121) Enable case-merging. Im-
plied by -O (page 121).

dynamic -fno-case-merge
(page 121)

-fcmm-elim-common-
blocks (page 122)

Enable Cmm common
block elimination. Implied
by -O (page 121).

dynamic -fno-cmm-elim-common-
blocks (page 122)

Continued on next page

5.6. Flag reference 159

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-fcmm-sink (page 122) Enable Cmm sinking. Im-

plied by -O (page 121).
dynamic -fno-cmm-sink

(page 122)

-fcmm-static-pred
(page 122)

Enable static control flow
prediction. Implied by -O
(page 121).

dynamic -fno-cmm-static-pred
(page 122)

-fcpr-anal (page 123) Turn on CPR analysis in
the demand analyser. Im-
plied by -O (page 121).

dynamic -fno-cpr-anal
(page 123)

-fcross-module-
specialise (page 129)

Turn on specialisation of
overloaded functions im-
ported from other mod-
ules.

dynamic -fno-cross-module-
specialise (page 129)

-fcse (page 123) Enable common sub-
expression elimination.
Implied by -O (page 121).

dynamic -fno-cse (page 123)

-fdicts-cheap
(page 123)

Make dictionary-valued
expressions seem cheap
to the optimiser.

dynamic -fno-dicts-cheap
(page 123)

-fdicts-strict
(page 124)

Make dictionaries strict dynamic -fno-dicts-strict
(page 124)

-fdmd-tx-dict-sel
(page 124)

(deprecated) Use a spe-
cial demand transformer
for dictionary selectors.

dynamic -fno-dmd-tx-dict-sel
(page 124)

-fdo-eta-reduction
(page 124)

Enable eta-reduction. Im-
plied by -O (page 121).

dynamic -fno-do-eta-
reduction (page 124)

-fdo-lambda-eta-
expansion (page 124)

Enable lambda eta-
expansion. Always en-
abled by default.

dynamic -fno-do-lambda-eta-
expansion (page 124)

-feager-blackholing
(page 124)

Turn on eager blackholing
(page 137)

dynamic

-fenable-rewrite-
rules (page 542)

Switch on all rewrite rules
(including rules generated
by automatic specialisa-
tion of overloaded func-
tions). Implied by -O
(page 121).

dynamic -fno-enable-rewrite-
rules (page 542)

-fexcess-precision
(page 124)

Enable excess intermedi-
ate precision

dynamic -fno-excess-
precision (page 124)

-fexitification
(page 122)

Enables exitification opti-
misation. Implied by -O
(page 121).

dynamic -fno-exitification
(page 122)

-fexpose-all-
unfoldings (page 124)

Expose all unfoldings,
even for very large or
recursive functions.

dynamic -fno-expose-all-
unfoldings (page 124)

Continued on next page

160 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-ffloat-in (page 124) Turn on the float-in trans-

formation. Implied by -O
(page 121).

dynamic -fno-float-in
(page 124)

-ffull-laziness
(page 125)

Turn on full laziness (float-
ing bindings outwards).
Implied by -O (page 121).

dynamic -fno-full-laziness
(page 125)

-ffun-to-thunk
(page 125)

Allow worker-wrapper to
convert a function closure
into a thunk if the function
does not use any of its ar-
guments. Off by default.

dynamic -fno-fun-to-thunk
(page 125)

-fignore-asserts
(page 125)

Ignore assertions in the
source. Implied by -O
(page 121).

dynamic -fno-ignore-asserts
(page 125)

-fignore-interface-
pragmas (page 125)

Ignore pragmas in inter-
face files. Implied by -O0
(page 121) only.

dynamic -fno-ignore-
interface-pragmas
(page 125)

-finline-generics
(page 130)

Annotate methods of
derived Generic and
Generic1 instances with
INLINE[1] pragmas based
on heuristics. Implied by
-O (page 121).

dynamic -fno-inline-generics
(page 130)

-finline-generics-
aggressively (page 130)

Annotate methods of
all derived Generic and
Generic1 instances with
INLINE[1] pragmas.

dynamic -fno-inline-generics-
aggressively
(page 130)

-flate-dmd-anal
(page 125)

Run demand analysis
again, at the end of the
simplification pipeline

dynamic -fno-late-dmd-anal
(page 125)

-flate-specialise
(page 130)

Run a late specialisation
pass

dynamic -fno-late-specialise
(page 130)

-fliberate-case
(page 125)

Turn on the liberate-case
transformation. Implied
by -O2 (page 121).

dynamic -fno-liberate-case
(page 125)

-fliberate-case-
threshold=⟨n⟩
(page 126)

default: 2000. Set the size
threshold for the liberate-
case transformation to ⟨n⟩

dynamic -fno-liberate-case-
threshold (page 126)

-fllvm-pass-vectors-
in-regs (page 126)

(deprecated) Does nothing dynamic

-floopification
(page 126)

Turn saturated self-
recursive tail-calls into
local jumps in the gener-
ated assembly. Implied by
-O (page 121).

dynamic -fno-loopification
(page 126)

Continued on next page

5.6. Flag reference 161

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-fmax-inline-alloc-
size=⟨n⟩ (page 126)

default: 128. Set the maxi-
mum size of inline array al-
locations to ⟨n⟩ bytes (de-
fault: 128).

dynamic

-fmax-inline-memcpy-
insns=⟨n⟩ (page 126)

default: 32. Inline mem-
cpy calls if they would gen-
erate no more than ⟨n⟩
pseudo instructions.

dynamic

-fmax-inline-memset-
insns=⟨n⟩ (page 126)

default: 32. Inline mem-
set calls if they would gen-
erate no more than ⟨n⟩
pseudo instructions

dynamic

-fmax-simplifier-
iterations=⟨n⟩
(page 126)

default: 4. Set the max it-
erations for the simplifier.

dynamic

-fmax-uncovered-
patterns=⟨n⟩ (page 126)

default: 4. Set the
maximum number of pat-
terns to display in warn-
ings about non-exhaustive
ones.

dynamic

-fmax-worker-args=⟨n⟩
(page 127)

default: 10. Maximum
number of value argu-
ments for a worker.

dynamic

-fno-opt-coercion
(page 127)

Turn off the coercion opti-
miser

dynamic

-fno-pre-inlining
(page 127)

Turn off pre-inlining dynamic

-fno-state-hack
(page 127)

Turn off the state hack-
whereby any lambda with
a real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.

dynamic

-fomit-interface-
pragmas (page 127)

Don’t generate interface
pragmas. Implied by -O0
(page 121) only.

dynamic -fno-omit-interface-
pragmas (page 127)

-fomit-yields
(page 127)

Omit heap checks when
no allocation is being per-
formed.

dynamic -fno-omit-yields
(page 127)

-foptimal-
applicative-do
(page 273)

Use a slower but better al-
gorithm for ApplicativeDo

dynamic -fno-optimal-
applicative-do
(page 273)

-fpedantic-bottoms
(page 127)

Make GHC be more pre-
cise about its treatment of
bottom (but see also -fno-
state-hack (page 127)).
In particular, GHC will not
eta-expand through a case
expression.

dynamic -fno-pedantic-
bottoms (page 127)

Continued on next page

162 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-fregs-graph (page 127) Use the graph colouring

register allocator for regis-
ter allocation in the native
code generator.

dynamic -fno-regs-graph
(page 127)

-fregs-iterative
(page 127)

Use the iterative coalesc-
ing graph colouring regis-
ter allocator in the native
code generator.

dynamic -fno-regs-iterative
(page 127)

-fsimpl-tick-
factor=⟨n⟩ (page 128)

default: 100. Set the per-
centage factor for simpli-
fier ticks.

dynamic

-fsimplifier-
phases=⟨n⟩ (page 128)

default: 2. Set the num-
ber of phases for the sim-
plifier. Ignored with -O0
(page 121).

dynamic

-fsolve-constant-
dicts (page 130)

When solving constraints,
try to eagerly solve super
classes using available dic-
tionaries.

dynamic -fno-solve-constant-
dicts (page 130)

-fspec-constr
(page 128)

Turn on the SpecConstr
transformation. Implied
by -O2 (page 121).

dynamic -fno-spec-constr
(page 128)

-fspec-constr-
count=⟨n⟩ (page 129)

default: 3.* Set to ⟨n⟩
the maximum number of
specialisations that will be
created for any one func-
tion by the SpecConstr
transformation.

dynamic -fno-spec-constr-
count (page 129)

-fspec-constr-keen
(page 129)

Specialize a call with an
explicit constructor argu-
ment, even if the argu-
ment is not scrutinised in
the body of the function

dynamic -fno-spec-constr-
keen (page 129)

-fspec-constr-
threshold=⟨n⟩
(page 129)

default: 2000. Set the size
threshold for the Spec-
Constr transformation to
⟨n⟩.

dynamic -fno-spec-constr-
threshold (page 129)

-fspecialise (page 129) Turn on specialisation of
overloaded functions. Im-
plied by -O (page 121).

dynamic -fno-specialise
(page 129)

-fspecialise-
aggressively (page 129)

Turn on specialisation of
overloaded functions re-
gardless of size, if unfold-
ing is available

dynamic -fno-specialise-
aggressively
(page 129)

-fstatic-argument-
transformation
(page 131)

Turn on the static argu-
ment transformation.

dynamic -fno-static-argument-
transformation
(page 131)

Continued on next page

5.6. Flag reference 163

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-fstg-cse (page 123) Enable common sub-

expression elimination
on the STG intermediate
language

dynamic -fno-stg-cse
(page 123)

-fstg-lift-lams
(page 131)

Enable late lambda lifting
on the STG intermediate
language. Implied by -O2
(page 121).

dynamic -fno-stg-lift-lams
(page 131)

-fstg-lift-lams-known
(page 131)

Allow turning known into
unknown calls while per-
forming late lambda lift-
ing.

dynamic -fno-stg-lift-lams-
known (page 131)

-fstg-lift-lams-non-
rec-args (page 131)

Create top-level non-
recursive functions with
at most <n> parameters
while performing late
lambda lifting.

dynamic -fstg-lift-lams-
non-rec-args-any
(page 131)

-fstg-lift-lams-rec-
args (page 131)

Create top-level recursive
functions with at most
<n> parameters while per-
forming late lambda lift-
ing.

dynamic -fstg-lift-lams-rec-
args-any (page 131)

-fstrictness (page 131) Turn on demand anal-
ysis. Implied by -O
(page 121). Implies
-fworker-wrapper
(page 135)

dynamic -fno-strictness
(page 131)

-fstrictness-
before=⟨n⟩ (page 133)

Run an additional demand
analysis before simplifier
phase ⟨n⟩

dynamic

-funbox-small-strict-
fields (page 133)

Flatten strict constructor
fields with a pointer-sized
representation. Implied
by -O (page 121).

dynamic -fno-unbox-small-
strict-fields
(page 133)

-funbox-strict-fields
(page 134)

Flatten strict constructor
fields

dynamic -fno-unbox-strict-
fields (page 134)

-funfolding-case-
scaling=⟨n⟩ (page 135)

default: 30. Apply a
penalty of (inlining_cost *
1/n) for each level of case
nesting.

dynamic

-funfolding-case-
threshold=⟨n⟩
(page 135)

default: 2. Reduce in-
lining for cases nested
deeper than n.

dynamic

-funfolding-creation-
threshold=⟨n⟩
(page 134)

default: 750. Tweak un-
folding settings.

dynamic

-funfolding-dict-
discount=⟨n⟩ (page 134)

default: 30. Tweak unfold-
ing settings.

dynamic

Continued on next page

164 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.15 – continued from previous page
Flag Description Type Reverse
-funfolding-fun-
discount=⟨n⟩ (page 134)

default: 60. Tweak unfold-
ing settings.

dynamic

-funfolding-keeness-
factor=⟨n⟩ (page 134)

This has been deprecated
in GHC 9.0.1.

dynamic

-funfolding-use-
threshold=⟨n⟩
(page 134)

default: 80. Tweak unfold-
ing settings.

dynamic

-fworker-wrapper
(page 135)

Enable the
worker/wrapper trans-
formation.

dynamic

5.6.17 Profiling options

More details in Profiling (page 593)

Flag Description Type Reverse
-auto (page 599) (deprecated) Alias for

-fprof-auto-exported
(page 598)

dynamic

-auto-all (page 598) (deprecated) Alias for -
fprof-auto (page 598)

dynamic

-caf-all (page 599) (deprecated) Alias for -
fprof-cafs (page 598)

dynamic

-fno-prof-count-
entries (page 597)

Do not collect entry counts dynamic -fprof-count-entries
(page 597)

-fprof-auto (page 598) Auto-add SCC\ s to all bind-
ings not marked INLINE

dynamic -fno-prof-auto
(page 598)

-fprof-auto-calls
(page 598)

Auto-add SCC\ s to all call
sites

dynamic -fno-prof-auto
(page 598)

-fprof-auto-exported
(page 598)

Auto-add SCC\ s to all
exported bindings not
marked INLINE (page 559)

dynamic -fno-prof-auto
(page 598)

-fprof-auto-top
(page 598)

Auto-add SCC\ s to all top-
level bindings not marked
INLINE

dynamic -fno-prof-auto
(page 598)

-fprof-cafs (page 598) Auto-add SCC\ s to all CAFs dynamic -fno-prof-cafs
(page 598)

-fprof-callers=⟨name⟩
(page 598)

Auto-add SCC\ s to all call-
sites of the named func-
tion.

dynamic

-no-auto (page 599) (deprecated) Alias
for -fno-prof-auto
(page 598)

dynamic

Continued on next page

5.6. Flag reference 165

GHC User’s Guide Documentation, Release 9.2.6

Table 5.16 – continued from previous page
Flag Description Type Reverse
-no-auto-all (page 599) (deprecated) Alias

for -fno-prof-auto
(page 598)

dynamic

-no-caf-all (page 599) (deprecated) Alias
for -fno-prof-cafs
(page 598)

dynamic

-prof (page 597) Turn on profiling dynamic

-ticky (page 616) Turn on ticky-ticky profil-
ing (page 616)

dynamic

-ticky-allocd
(page 616)

Track the number of times
each closure type is allo-
cated.

dynamic

-ticky-dyn-thunk
(page 616)

Track allocations of dy-
namic thunks

dynamic

5.6.18 Program coverage options

More details in Observing Code Coverage (page 611)

Flag Description Type Reverse
-fhpc (page 613) Turn on Haskell program

coverage instrumentation
dynamic

5.6.19 C pre-processor options

More details in Options affecting the C pre-processor (page 236)

Flag Description Type Reverse
-cpp (page 237) Run the C pre-processor

on Haskell source files
dynamic

-D⟨symbol⟩[=⟨value⟩]
(page 237)

Define a symbol in the C
pre-processor

dynamic -U⟨symbol⟩ (page 237)

-I⟨dir⟩ (page 237) Add ⟨dir⟩ to the directory
search list for #include
files

dynamic

-U⟨symbol⟩ (page 237) Undefine a symbol in the C
pre-processor

dynamic

5.6.20 Code generation options

More details in Options affecting code generation (page 240)

Flag Description Type Reverse
-dynamic-too (page 241) Build dynamic object files

as well as static object files
during compilation

dynamic

Continued on next page

166 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.19 – continued from previous page
Flag Description Type Reverse
-fasm (page 240) Use the native code gener-

ator (page 233)
dynamic -fllvm (page 240)

-fbyte-code (page 240) Generate byte-code dynamic

-fexpose-internal-
symbols (page 241)

Produce symbols for all
functions, including inter-
nal functions.

dynamic

-fexternal-dynamic-
refs (page 240)

Generate code for linking
against dynamic libraries

dynamic

-fllvm (page 240) Compile using the LLVM
code generator (page 233)

dynamic -fasm (page 240)

-fno-code (page 240) Omit code generation dynamic

-fobject-code
(page 240)

Generate object code dynamic

-fPIC (page 240) Generate position-
independent code (where
available)

dynamic

-fPIE (page 240) Generate code for a
position-independent exe-
cutable (where available)

dynamic

-fwrite-interface
(page 240)

Always write interface
files

dynamic

-split-objs (page 241) Split generated object
files into smaller files

dynamic

5.6.21 Linking options

More details in Options affecting linking (page 241)

Flag Description Type Reverse
-c (page 86) Stop after generating object (.o) file mode

-debug (page 244) Use the debugging runtime dynamic

-dylib-install-name
⟨path⟩ (page 246)

Set the install name (via -
install_name passed to Apple’s
linker), specifying the full install path
of the library file. Any libraries or
executables that link with it later will
pick up that path as their runtime
search location for it. (Darwin/OS X
only)

dynamic

-dynamic (page 242) Build dynamically-linked object files
and executables

dynamic

-dynload (page 243) Selects one of a number of modes for
finding shared libraries at runtime.

dynamic

-eventlog (page 244) Enable runtime event tracing dynamic

Continued on next page

5.6. Flag reference 167

GHC User’s Guide Documentation, Release 9.2.6

Table 5.20 – continued from previous page
Flag Description Type Reverse
-fcompact-unwind (page 247) Instruct the linker to produce a __com-

pact_unwind section.
dynamic

-fkeep-cafs (page 247) Do not garbage-collect CAFs (top-level
expressions) at runtime

dynamic

-flink-rts (page 243) Link the runtime when generating a
shared or static library

dynamic

-fno-embed-manifest
(page 245)

Do not embed the manifest in the exe-
cutable (Windows only)

dynamic

-fno-gen-manifest
(page 245)

Do not generate a manifest file (Win-
dows only)

dynamic

-fno-shared-implib
(page 246)

Don’t generate an import library for a
DLL (Windows only)

dynamic

-framework ⟨name⟩
(page 242)

On Darwin/OS X/iOS only, link in the
framework ⟨name⟩. This option corre-
sponds to the -framework option for
Apple’s Linker.

dynamic

-framework-path ⟨dir⟩
(page 242)

On Darwin/OS X/iOS only, add ⟨dir⟩
to the list of directories searched for
frameworks. This option corresponds
to the -F option for Apple’s Linker.

dynamic

-fuse-rpaths (page 242) Set the rpath based on -L flags dynamic

-fwhole-archive-hs-libs
(page 246)

When linking a binary executable,
this inserts the flag -Wl,--whole-
archive before any -l flags for
Haskell libraries, and -Wl,--no-
whole-archive afterwards

dynamic

-L ⟨dir⟩ (page 242) Add ⟨dir⟩ to the list of directories
searched for libraries

dynamic

-l ⟨lib⟩ (page 241) Link in library ⟨lib⟩ dynamic

-main-is ⟨thing⟩ (page 243) Set main module and function dynamic

-no-hs-main (page 243) Don’t assume this program contains
main

dynamic

-no-pie (page 247) Don’t instruct the linker to produce a
position-independent executable.

dynamic -pie
(page 247)

-no-rtsopts-suggestions
(page 245)

Don’t print RTS sugges-
tions about linking with -
rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]
(page 244).

dynamic

-package ⟨name⟩ (page 241) Expose package ⟨pkg⟩ dynamic

-pie (page 247) Instruct the linker to produce a
position-independent executable.

dynamic -no-
pie
(page 247)

Continued on next page

168 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.20 – continued from previous page
Flag Description Type Reverse
-rdynamic (page 246) This instructs the linker to add all sym-

bols, not only used ones, to the dy-
namic symbol table. Currently Linux
and Windows/MinGW32 only. This is
equivalent to using -optl -rdynamic
on Linux, and -optl -export-all-
symbols on Windows.

dynamic

-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]
(page 244)

Control whether the RTS behaviour
can be tweaked via command-line flags
and the GHCRTS environment variable.
Using none means no RTS flags can
be given; some means only a mini-
mum of safe options can be given (the
default); all (or no argument at all)
means that all RTS flags are permit-
ted; ignore means RTS flags can be
given, but are treated as regular argu-
ments and passed to the Haskell pro-
gram as arguments; ignoreAll is the
same as ignore, but GHCRTS is also
ignored. -rtsopts does not affect -
with-rtsopts behavior; flags passed
via -with-rtsopts are used regard-
less of -rtsopts.

dynamic

-shared (page 242) Generate a shared library (as opposed
to an executable)

dynamic

-split-sections (page 242) Split sections for link-time dead-code
stripping

dynamic

-static (page 242) Use static Haskell libraries dynamic

-staticlib (page 242) Generate a standalone static library
(as opposed to an executable). This
is useful when cross compiling. The
library together with all its dependen-
cies ends up in in a single static library
that can be linked against.

dynamic

-threaded (page 244) Use the threaded runtime dynamic

-with-rtsopts=⟨opts⟩
(page 245)

Set the default RTS options to ⟨opts⟩. dynamic

5.6.22 Plugin options

More details in Compiler Plugins (page 573)

Flag Description Type Reverse
-fclear-plugins
(page 573)

Clear the list of active plu-
gins

dynamic

Continued on next page

5.6. Flag reference 169

GHC User’s Guide Documentation, Release 9.2.6

Table 5.21 – continued from previous page
Flag Description Type Reverse
-fplugin-
opt=⟨module⟩:⟨args⟩
(page 573)

Give arguments to a
plugin module; mod-
ule must be specified
with -fplugin=⟨module⟩
(page 573)

dynamic

-fplugin-trustworthy
(page 573)

Trust the used plugins and
no longer mark the com-
piled module as unsafe

dynamic

-fplugin=⟨module⟩
(page 573)

Load a plugin exported by
a given module

dynamic

-hide-all-plugin-
packages (page 574)

Hide all packages for plug-
ins by default

dynamic

-plugin-package ⟨pkg⟩
(page 574)

Expose ⟨pkg⟩ for plugins dynamic

-plugin-package-id
⟨pkg-id⟩ (page 574)

Expose ⟨pkg-id⟩ for plug-
ins

dynamic

5.6.23 Replacing phases

More details in Replacing the program for one or more phases (page 234)

Flag Description Type Reverse
-pgma ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the assem-

bler
dynamic

-pgmc ⟨cmd⟩ (page 234) Use ⟨cmd⟩ as the C com-
piler

dynamic

-pgmdll ⟨cmd⟩
(page 235)

Use ⟨cmd⟩ as the DLL gen-
erator

dynamic

-pgmF ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the pre-
processor (with -F
(page 239) only)

dynamic

-pgmi ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the external
interpreter command.

dynamic

-pgminstall_name_tool
⟨cmd⟩ (page 235)

Use ⟨cmd⟩ as the pro-
gram to inject runpath
into mach-o dylibs on ma-
cOS

dynamic

-pgmL ⟨cmd⟩ (page 234) Use ⟨cmd⟩ as the literate
pre-processor

dynamic

-pgml ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the linker dynamic

-pgmlc ⟨cmd⟩ (page 234) Use ⟨cmd⟩ as the LLVM
compiler

dynamic

-pgmlibtool ⟨cmd⟩
(page 235)

Use ⟨cmd⟩ as the com-
mand for libtool (with
-staticlib (page 242)
only).

dynamic

-pgmlm ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the linker
when merging object files

dynamic

Continued on next page

170 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.22 – continued from previous page
Flag Description Type Reverse
-pgmlo ⟨cmd⟩ (page 234) Use ⟨cmd⟩ as the LLVM op-

timiser
dynamic

-pgmotool ⟨cmd⟩
(page 235)

Use ⟨cmd⟩ as the program
to inspect mach-o dylibs
on macOS

dynamic

-pgmP ⟨cmd⟩ (page 234) Use ⟨cmd⟩ as the C pre-
processor (with -cpp only)

dynamic

-pgms ⟨cmd⟩ (page 235) Use ⟨cmd⟩ as the splitter dynamic

-pgmwindres ⟨cmd⟩
(page 235)

Use ⟨cmd⟩ as the program
for embedding manifests
on Windows.

dynamic

5.6.24 Forcing options to particular phases

More details in Forcing options to a particular phase (page 235)

Flag Description Type Reverse
-opta ⟨option⟩
(page 236)

pass ⟨option⟩ to the assem-
bler

dynamic

-optc ⟨option⟩
(page 235)

pass ⟨option⟩ to the C com-
piler

dynamic

-optcxx ⟨option⟩
(page 236)

pass ⟨option⟩ to the C++
compiler

dynamic

-optdll ⟨option⟩
(page 236)

pass ⟨option⟩ to the DLL
generator

dynamic

-optF ⟨option⟩
(page 235)

pass ⟨option⟩ to the cus-
tom pre-processor

dynamic

-opti ⟨option⟩
(page 236)

pass ⟨option⟩ to the inter-
preter sub-process.

dynamic

-optL ⟨option⟩
(page 235)

pass ⟨option⟩ to the liter-
ate pre-processor

dynamic

-optl ⟨option⟩
(page 236)

pass ⟨option⟩ to the linker dynamic

-optlc ⟨option⟩
(page 236)

pass ⟨option⟩ to the LLVM
compiler

dynamic

-optlm ⟨option⟩
(page 236)

pass ⟨option⟩ to the linker
when merging object files.

dynamic

-optlo ⟨option⟩
(page 236)

pass ⟨option⟩ to the LLVM
optimiser

dynamic

-optP ⟨option⟩
(page 235)

pass ⟨option⟩ to cpp (with
-cpp only)

dynamic

-optwindres ⟨option⟩
(page 236)

pass ⟨option⟩ to windres. dynamic

-pgmc-supports-no-pie
(page 235)

Indicate that the C com-
piler supports -no-pie

dynamic

5.6. Flag reference 171

GHC User’s Guide Documentation, Release 9.2.6

5.6.25 Platform-specific options

More details in Platform-specific Flags (page 96)

Flag Description Type Reverse
-mavx (page 96) (x86 only) Enable support

for AVX SIMD extensions
dynamic

-mavx2 (page 96) (x86 only) Enable support
for AVX2 SIMD extensions

dynamic

-mavx512cd (page 96) (x86 only) Enable support
for AVX512-CD SIMD ex-
tensions

dynamic

-mavx512er (page 96) (x86 only) Enable support
for AVX512-ER SIMD ex-
tensions

dynamic

-mavx512f (page 96) (x86 only) Enable support
for AVX512-F SIMD exten-
sions

dynamic

-mavx512pf (page 97) (x86 only) Enable support
for AVX512-PF SIMD ex-
tensions

dynamic

-mbmi (page 97) (x86 only) Use BMI1 for bit
manipulation operations

dynamic

-mbmi2 (page 98) (x86 only) Use BMI2 for bit
manipulation operations

dynamic

-msse (page 97) (x86 only) Use SSE for
floating-point operations

dynamic

-msse2 (page 97) (x86 only) Use SSE2 for
floating-point operations

dynamic

-msse3 (page 97) (x86 only) Use SSE3 for
floating-point operations

dynamic

-msse4 (page 97) (x86 only) Use SSE4 for
floating-point operations

dynamic

-msse4.2 (page 97) (x86 only) Use SSE4.2 for
floating-point operations

dynamic

5.6.26 Compiler debugging options

More details in Debugging the compiler (page 250)

Flag Description Type Reverse
-dasm-lint (page 259) ASM pass sanity checking dynamic

-dcmm-lint (page 259) C-\- pass sanity checking dynamic

-dcore-lint (page 259) Turn on internal sanity checking dynamic

-ddump-asm (page 256) Dump final assembly dynamic

-ddump-asm-expanded
(page 256)

Dump the result of the synthetic in-
struction expansion pass.

dynamic

Continued on next page

172 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.25 – continued from previous page
Flag Description Type Reverse
-ddump-asm-liveness
(page 256)

Dump assembly augmented with regis-
ter liveness

dynamic

-ddump-asm-native
(page 256)

Dump initial assembly dynamic

-ddump-asm-regalloc
(page 256)

Dump the result of register allocation dynamic

-ddump-asm-regalloc-
stages (page 256)

Dump the build/spill stages of the -
fregs-graph (page 127) register allo-
cator.

dynamic

-ddump-asm-stats (page 256) Dump statistics from the register allo-
cator.

dynamic

-ddump-bcos (page 257) Dump interpreter byte code dynamic

-ddump-c-backend (page 256) Dump C code produced by the C (un-
registerised) backend.

dynamic

-ddump-cfg-weights
(page 256)

Dump the assumed weights of the
CFG.

dynamic

-ddump-cmm (page 256) Dump the final C-\- output dynamic

-ddump-cmm-caf (page 255) Dump the results of the C-\- CAF anal-
ysis pass.

dynamic

-ddump-cmm-cbe (page 255) Dump the results of common block
elimination

dynamic

-ddump-cmm-cfg (page 255) Dump the results of the C-\- control
flow optimisation pass.

dynamic

-ddump-cmm-cps (page 256) Dump the results of the CPS pass dynamic

-ddump-cmm-from-stg
(page 255)

Dump STG-to-C-\- output dynamic

-ddump-cmm-info (page 256) Dump the results of the C-\- info table
augmentation pass.

dynamic

-ddump-cmm-opt (page 256) Dump the results of C-\- to C-\- optimis-
ing passes

dynamic

-ddump-cmm-proc (page 255) Dump the results of proc-point analysis dynamic

-ddump-cmm-procmap
(page 255)

Dump the results of the C-\- proc-point
map pass.

dynamic

-ddump-cmm-raw (page 255) Dump raw C-\- dynamic

-ddump-cmm-sink (page 255) Dump the results of the C-\- sinking
pass.

dynamic

-ddump-cmm-sp (page 255) Dump the results of the C-\- stack lay-
out pass.

dynamic

-ddump-cmm-split (page 255) Dump the results of the C-\- proc-point
splitting pass.

dynamic

-ddump-cmm-switch
(page 255)

Dump the results of switch lowering
passes

dynamic

-ddump-cmm-verbose
(page 255)

Write output from main C-\- pipeline
passes to files

dynamic

Continued on next page

5.6. Flag reference 173

GHC User’s Guide Documentation, Release 9.2.6

Table 5.25 – continued from previous page
Flag Description Type Reverse
-ddump-cmm-verbose-by-
proc (page 255)

Show output from main C-\- pipeline
passes (grouped by proc)

dynamic

-ddump-core-stats
(page 253)

Print a one-line summary of the size of
the Core program at the end of the op-
timisation pipeline

dynamic

-ddump-cpr-signatures
(page 254)

Dump CPR signatures dynamic

-ddump-cpranal (page 254) Dump CPR analysis output dynamic

-ddump-cse (page 254) Dump CSE output dynamic

-ddump-deriv (page 253) Dump deriving output dynamic

-ddump-ds (page 253), -
ddump-ds-preopt (page 253)

Dump desugarer output. dynamic

-ddump-ec-trace (page 252) Trace exhaustiveness checker dynamic

-ddump-faststrings
(page 251)

Dump the whole FastString table when
finished

dynamic

-ddump-file-prefix=⟨str⟩
(page 251)

Set the prefix of the filenames used for
debugging output.

dynamic

-ddump-foreign (page 257) Dump foreign export stubs dynamic

-ddump-hie (page 252) Dump the hie file syntax tree dynamic

-ddump-hpc (page 257) An alias for -ddump-ticked
(page 257).

dynamic

-ddump-if-trace (page 252) Trace interface files dynamic

-ddump-inlinings (page 254) Dump inlining info dynamic

-ddump-json (page 251) Dump error messages as JSON docu-
ments

dynamic

-ddump-llvm (page 256) Dump LLVM intermediate code. dynamic

-ddump-mod-map (page 257) Dump the state of the module mapping
database.

dynamic

-ddump-occur-anal
(page 254)

Dump occurrence analysis output dynamic

-ddump-opt-cmm (page 256) Dump the results of C-\- to C-\- optimis-
ing passes

dynamic

-ddump-parsed (page 252) Dump parse tree dynamic

-ddump-parsed-ast
(page 252)

Dump parser output as a syntax tree dynamic

-ddump-prep (page 254) Dump prepared core dynamic

-ddump-rn (page 252) Dump renamer output dynamic

Continued on next page

174 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.25 – continued from previous page
Flag Description Type Reverse
-ddump-rn-ast (page 252) Dump renamer output as a syntax tree dynamic

-ddump-rn-stats (page 252) Renamer stats dynamic

-ddump-rn-trace (page 252) Trace renamer dynamic

-ddump-rtti (page 257) Trace runtime type inference dynamic

-ddump-rule-firings
(page 253)

Dump rule firing info dynamic

-ddump-rule-rewrites
(page 253)

Dump detailed rule firing info dynamic

-ddump-rules (page 253) Dump rewrite rules dynamic

-ddump-simpl (page 254) Dump final simplifier output dynamic

-ddump-simpl-iterations
(page 253)

Dump output from each simplifier iter-
ation

dynamic

-ddump-simpl-stats
(page 253)

Dump simplifier stats dynamic

-ddump-spec (page 253) Dump specialiser output dynamic

-ddump-splices (page 252) Dump TH spliced expressions, and
what they evaluate to

dynamic

-ddump-stg (page 255) (deprecated) Alias for -ddump-stg-
from-core (page 254)

dynamic

-ddump-stg-final (page 255) Show output of last STG pass. dynamic

-ddump-stg-from-core
(page 254)

Show CoreToStg output dynamic

-ddump-stg-unarised
(page 255)

Show unarised STG dynamic

-ddump-str-signatures
(page 254)

Dump top-level demand signatures dynamic

-ddump-stranal (page 254) Dump demand analysis output dynamic

-ddump-tc (page 252) Dump typechecker output dynamic

-ddump-tc-ast (page 252) Dump typechecker output as a syntax
tree

dynamic

-ddump-tc-trace (page 252) Trace typechecker dynamic

-ddump-ticked (page 257) Dump the code instrumented by
HPC (Observing Code Coverage
(page 611)).

dynamic

-ddump-timings (page 252) Dump per-pass timing and allocation
statistics

dynamic

-ddump-to-file (page 251) Dump to files instead of stdout dynamic

Continued on next page

5.6. Flag reference 175

GHC User’s Guide Documentation, Release 9.2.6

Table 5.25 – continued from previous page
Flag Description Type Reverse
-ddump-types (page 253) Dump type signatures dynamic

-ddump-worker-wrapper
(page 254)

Dump worker-wrapper output dynamic

-dfaststring-stats
(page 251)

Show statistics for fast string usage
when finished

dynamic

-dhex-word-literals
(page 257)

Print values of type Word# in hexadec-
imal.

dynamic

-dinitial-unique=⟨s⟩
(page 260)

Start UniqSupply allocation from ⟨s⟩. dynamic

-dinline-check=⟨str⟩
(page 254)

Dump information about inlining deci-
sions

dynamic

-dlinear-core-lint
(page 259)

Turn on internal sanity checking dynamic

-dno-debug-output
(page 258)

Suppress unsolicited debugging out-
put

dynamic -
ddebug-
output
(page 258)

-dno-typeable-binds
(page 260)

Don’t generate bindings for Typeable
methods

dynamic

-dppr-case-as-let
(page 257)

Print single alternative case expres-
sions as strict lets.

dynamic

-dppr-cols=⟨n⟩ (page 257) Set the width of debugging output. For
example -dppr-cols200

dynamic

-dppr-debug (page 251) Turn on debug printing (more verbose) dynamic

-dppr-user-length
(page 257)

Set the depth for printing expressions
in error msgs

dynamic

-drule-check=⟨str⟩
(page 254)

Dump information about potential rule
application

dynamic

-dshow-passes (page 251) Print out each pass name as it happens dynamic

-dstg-lint (page 259) STG pass sanity checking dynamic

-dsuppress-all (page 258) In dumps, suppress everything (except
for uniques) that is suppressible.

dynamic

-dsuppress-coercions
(page 258)

Suppress the printing of coercions in
Core dumps to make them shorter

dynamic

-dsuppress-idinfo
(page 258)

Suppress extended information about
identifiers where they are bound

dynamic

-dsuppress-module-
prefixes (page 258)

Suppress the printing of module quali-
fication prefixes

dynamic

-dsuppress-stg-free-vars
(page 258)

Suppress the printing of closure free
variable lists in STG output

dynamic

-dsuppress-ticks (page 258) Suppress “ticks” in the pretty-printer
output.

dynamic

-dsuppress-timestamps
(page 258)

Suppress timestamps in dumps dynamic

Continued on next page

176 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Table 5.25 – continued from previous page
Flag Description Type Reverse
-dsuppress-type-
applications (page 258)

Suppress type applications dynamic

-dsuppress-type-
signatures (page 258)

Suppress type signatures dynamic

-dsuppress-unfoldings
(page 258)

Suppress the printing of the stable un-
folding of a variable at its binding site

dynamic

-dsuppress-uniques
(page 258)

Suppress the printing of uniques in de-
bug output (easier to use diff)

dynamic

-dsuppress-var-kinds
(page 258)

Suppress the printing of variable kinds dynamic

-dth-dec-file (page 253) Dump evaluated TH declarations into
*.th.hs files

dynamic

-dunique-increment=⟨i⟩
(page 260)

Set the increment for the generated
Unique‘s to ⟨i⟩.

dynamic

-dverbose-core2core
(page 253)

Show output from each core-to-core
pass

dynamic

-dverbose-stg2stg
(page 255)

Show output from each STG-to-STG
pass

dynamic

-falignment-sanitisation
(page 259)

Compile with alignment checks for all
info table dereferences.

dynamic

-fcatch-bottoms (page 259) Add a default error alternative to case
expressions without a default alterna-
tive.

dynamic

-fcheck-prim-bounds
(page 259)

Instrument array primops with bounds
checks.

dynamic

-fdistinct-constructor-
tables (page 622)

Generate a fresh info table for each us-
age of a data constructor.

dynamic

-finfo-table-map (page 622) Embed a lookup table in the generated
binary which maps the address of an
info table to the source position the clo-
sure originated from.

dynamic

-fllvm-fill-undef-with-
garbage (page 259)

Intruct LLVM to fill dead STG registers
with garbage

dynamic

-fproc-alignment (page 259) Align functions at given boundary. dynamic

-g (page 617), -g⟨n⟩
(page 617)

Produce DWARF debug information in
compiled object files. ⟨n⟩ can be 0, 1,
or 2, with higher numbers producing
richer output. If ⟨n⟩ is omitted, level 2
is assumed.

dynamic

5.6.27 Miscellaneous compiler options

Flag Description Type Reverse
-fexternal-interpreter
(page 77)

Run interpreted code in a separate pro-
cess

dynamic

Continued on next page

5.6. Flag reference 177

GHC User’s Guide Documentation, Release 9.2.6

Table 5.26 – continued from previous page
Flag Description Type Reverse
-ffamily-application-
cache (page 333)

Use a cache when reducing type family
applications

dynamic -fno-
family-
application-
cache
(page 333)

-fglasgow-exts (page 263) Deprecated. Enable most language
extensions; see Controlling extensions
(page 261) for exactly which ones.

dynamic -fno-
glasgow-
exts
(page 263)

-fno-safe-haskell
(page 540)

Disable Safe Haskell (page 530) dynamic

-ghcversion-file ⟨path to
ghcversion.h⟩ (page 98)

(GHC as a C compiler only) Use this
ghcversion.h file

dynamic

-H ⟨size⟩ (page 98) Set the minimum size of the heap to
⟨size⟩

dynamic

-j[⟨n⟩] (page 90) When compiling with --make
(page 86), compile ⟨n⟩ modules in
parallel.

dynamic

5.7 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with
a non-trivial runtime system (RTS), which handles storage management, thread scheduling,
profiling, and so on.
The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 178)) describes the various methods, and the following sections describe the
RTS options themselves.

5.7.1 Setting RTS options

There are four ways to set RTS options:
• on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 179))

• at compile-time, using -with-rtsopts=⟨opts⟩ (page 245) (Setting RTS options at com-
pile time (page 179))

• with the environment variable GHCRTS (page 179) (Setting RTS options with the GHCRTS
environment variable (page 179))

• by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 180))

178 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Setting RTS options on the command line

If you set the -rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) flag appropri-
ately when linking (see Options affecting linking (page 241)), you can give RTS options on
the command line when running your program.
When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts
[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...
$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.
No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

% hls -ltr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a --RTS or --. The difference is that --RTS will not be passed
to the program, while -- will.
As always, for RTS options that take ⟨size⟩s: If the last character of ⟨size⟩ is a K or k, multiply
by 1024; if an M or m, by 1024*1024; if a G or G, by 1024^3. (And any wraparound in the
counters is your fault!)
Giving a +RTS -? RTS option will print out the RTS options actually available in your program
(which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the -with-
rtsopts flag (Options affecting linking (page 241)). A common use for this is to give your
program a default heap and/or stack size that is greater than the default. For example, to set
-H128m -K64m, link with -with-rtsopts="-H128m -K64m".

Setting RTS options with the GHCRTS environment variable

GHCRTS
If the -rtsopts flag is set to something other than none or ignoreAll when linking, RTS
options are also taken from the environment variable GHCRTS (page 179). For example,
to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like
shell):

GHCRTS='-M2G'
export GHCRTS

5.7. Running a compiled program 179

GHC User’s Guide Documentation, Release 9.2.6

RTS options taken from the GHCRTS (page 179) environment variable can be overridden
by options given on the command line.

Tip: Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

“Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defini-
tions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.
Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

You can change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:
void OutOfHeapHook(unsigned long, unsigned long)

The heap-overflow message.
void StackOverflowHook(long int)

The stack-overflow message.
void MallocFailHook(long int)

The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -l ⟨flags⟩ (page 194)) is
written through a custom EventLogWriter (page 180):
size_t

Hidden
EventLogWriter

A sink of event-log data.
void initEventLogWriter(void)

Initializes your EventLogWriter (page 180). This is optional.
bool writeEventLog(void *eventlog, size_t eventlog_size)

Hands buffered event log data to your event log writer. Return true on success.
Required for a custom EventLogWriter (page 180).
Note that this function may be called by multiple threads simultaneously.

180 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 180). This can be NULL.
Note that this function may be called by multiple threads simultaneously.

void stopEventLogWriter(void)
Called when event logging is about to stop. This can be NULL.

To use an EventLogWriter (page 180) the RTS API provides the following functions:
EventLogStatus (page 181) eventLogStatus(void)

Query whether the current runtime system supports the eventlog (e.g. whether the
current executable was linkedwith -eventlog (page 244)) and, if it is supported, whether
it is currently logging.

bool startEventLogging(const EventLogWriter (page 180) *writer)
Start logging events to the given EventLogWriter (page 180). Returns true on success
or false if another writer has already been configured.

void endEventLogging()
Tear down the active EventLogWriter (page 180).

where the enum EventLogStatus (page 181) is:
EventLogStatus

•EVENTLOG_NOT_SUPPORTED: The runtime system wasn’t compiled with eventlog sup-
port.
•EVENTLOG_NOT_CONFIGURED: An EventLogWriter (page 180) has not yet been config-
ured.
•EVENTLOG_RUNNING: An EventLogWriter (page 180) has been configured and is run-
ning.

5.7.2 Miscellaneous RTS options

--install-signal-handlers=⟨yes|no⟩
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This
option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.
Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see -V ⟨secs⟩ (page 599)).

--install-seh-handlers=⟨yes|no⟩
If yes (the default), the RTS on Windows installs exception handlers to catch unhandled
exceptions using the Windows exception handling mechanism. This option is primarily
useful for when you are using the Haskell code as a DLL, and don’t want the RTS to
ungracefully terminate your application on errors such as segfaults.

--generate-crash-dumps
If yes (the default), the RTS on Windows will generate a core dump on any crash. These
dumps can be inspected using debuggers such as WinDBG. The dumps record all code,
registers and threading information at the time of the crash. Note that this implies --
install-seh-handlers=yes.

5.7. Running a compiled program 181

GHC User’s Guide Documentation, Release 9.2.6

--generate-stack-traces=<yes|no>
If yes (the default), the RTS on Windows will generate a stack trace on crashes if excep-
tion handling are enabled. In order to get more information in compiled executables, C
code or DLLs symbols need to be available.

--disable-delayed-os-memory-return
If given, uses MADV_DONTNEED instead of MADV_FREE on platforms where this results in
more accurate resident memory usage of the program as shown in memory usage re-
porting tools (e.g. the RSS column in top and htop).
Using this is expected to make the program slightly slower.
On Linux, MADV_FREE is newer and faster because it can avoid zeroing pages if they
are re-used by the process later (see man 2 madvise), but for the trade-off that memory
inspection tools like top will not immediately reflect the freeing in their display of res-
ident memory (RSS column): Only under memory pressure will Linux actually remove
the freed pages from the process and update its RSS statistics. Until then, the pages
show up as LazyFree in /proc/PID/smaps (see man 5 proc).
The delayed RSS update can confuse programmers debugging memory issues, produc-
tion memory monitoring tools, and end users who may complain about undue memory
usage shown in reporting tools, so with this flag it can be turned off.

-xp
On 64-bit machines, the runtime linker usually needs to map object code into the low 2Gb
of the address space, due to the x86_64 small memory model where most symbol refer-
ences are 32 bits. The problem is that this 2Gb of address space can fill up, especially if
you’re loading a very large number of object files into GHCi.
This flag offers a workaround, albeit a slightly convoluted one. To be able to load an
object file outside of the low 2Gb, the object code needs to be compiled with -fPIC -
fexternal-dynamic-refs. When the +RTS -xp flag is passed, the linker will assume
that all object files were compiled with -fPIC -fexternal-dynamic-refs and load them
anywhere in the address space. It’s up to you to arrange that the object files you load
(including all packages) were compiled in the right way. If this is not the case for an
object, the linker will probably fail with an error message when the problem is detected.
On some platforms where PIC is always the case, e.g. macOS and OpenBSD on x86_64,
and macOS and Linux on aarch64 this flag is enabled by default. One repercussion of
this is that referenced system libraries also need to be compiled with -fPIC if we need
to load them in the runtime linker.

-xm ⟨address⟩

Warning: This option is for working aroundmemory allocation problems only. Do not
use unless GHCi fails with a message like “failed to mmap() memory below 2Gb”.
Consider recompiling the objects with -fPIC -fexternal-dynamic-refs and using
the -xp flag instead. If you need to use this option to get GHCi working on your
machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to use

182 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

-xq ⟨size⟩

Default 100k
This option relates to allocation limits; for more about this see
GHC.Conc.enableAllocationLimit. When a thread hits its allocation limit, the RTS
throws an exception to the thread, and the thread gets an additional quota of allocation
before the exception is raised again, the idea being so that the thread can execute its
exception handlers. The -xq controls the size of this additional quota.

5.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.
--copying-gc

Default on
Since 8.10.2
Reverse –nonmoving-gc

Uses the generational copying garbage collector for all generations. This is the default.
--nonmoving-gc

Default off
Since 8.10.1
Reverse –copying-gc

Enable the concurrent mark-and-sweep garbage collector for old generation collectors.
Typically GHC uses a stop-the-world copying garbage collector for all generations. This
can cause long pauses in execution during major garbage collections. --nonmoving-
gc (page 183) enables the use of a concurrent mark-and-sweep garbage collector for
oldest generation collections. Under this collection strategy oldest-generation garbage
collection can proceed concurrently with mutation.
Note that --nonmoving-gc (page 183) cannot be used with -G1, profiling (page 603)
nor -c (page 185).

-w

Default off
Since a long time ago
Reverse none

Uses a mark-region garbage collection strategy for the oldest-generation heap. Note
that this cannot be used in conjunction with heap profiling (-hT (page 193)) unless linked
against the profiling runtime system with -prof (page 597).

-xn

Default off
Since 8.10.1

5.7. Running a compiled program 183

GHC User’s Guide Documentation, Release 9.2.6

An alias for --nonmoving-gc (page 183)
-A ⟨size⟩

Default 4MB
Set the allocation area size used by the garbage collector. The allocation area (actually
generation 0 step 0) is fixed and is never resized (unless you use -H [⟨size⟩] (page 187),
below).
Optimal settings depend on the actual machine, program, and other RTS options. In-
creasing the allocation area size means worse cache behaviour but fewer garbage col-
lections and less promotion.
In general settings >= 4MB can reduce performance in some cases, in particular for
single threaded operation. However in a parallel setting increasing the allocation area
to 16MB, or even 64MB can increase gc throughput significantly.
With only 1 generation (e.g. -G1, see -G ⟨generations⟩ (page 186)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be
resized according to the amount of data in the heap (see -F ⟨factor⟩ (page 185), be-
low).
When heap profiling using a smaller allocation area can increase accuracy as more fre-
quent major garbage collections also results in more frequent heap snapshots

-AL ⟨size⟩

Default -A (page 184) value
Since 8.2.1

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 184) value.
Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.
To see whether you’re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-O ⟨size⟩

Default 1m
Set the minimum size of the old generation. The old generation is collected whenever it
grows to this size or the value of the -F ⟨factor⟩ (page 185) option multiplied by the
size of the live data at the previous major collection, whichever is larger.

-n ⟨size⟩

Default 4m with -A16m (page 184) or larger, otherwise 0.
[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts

184 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.
This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.
This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

-c
Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.
For a given heap size (using the -H [⟨size⟩] (page 187) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the
ratio of live data to heap size is high, say greater than 30%.

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c ⟨n⟩

Default 30
Automatically enable compacting collection when the live data exceeds ⟨n⟩% of the max-
imum heap size (see the -M ⟨size⟩ (page 189) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M ⟨size⟩ (page 189).

-F ⟨factor⟩

Default 2
This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.
The default seems to work well here. If you have plenty of memory, it is usually better to
use -H ⟨size⟩ (see -H [⟨size⟩] (page 187)) than to increase -F ⟨factor⟩ (page 185).
The -F ⟨factor⟩ (page 185) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M ⟨size⟩ (page 189) setting) is approaching.

-Fd ⟨factor⟩

Default 4
The inverse rate at which unused memory is returned to the OS when it is no longer
needed. After a large amount of allocation the RTSwill start by retaining a lot of allocated
blocks in case it will need them again shortly but then it will gradually release them
based on the -Fd ⟨factor⟩ (page 185). On each subsequent major collection which is

5.7. Running a compiled program 185

GHC User’s Guide Documentation, Release 9.2.6

not caused by a heap overflow a little more memory will attempt to be returned until the
amount retained is similar to the amount of live bytes.
Increasing this factor will make the rate memory is returned slower, decreasing it will
make memory be returned more eagerly. Setting it to 0 will disable the memory return
(which will emulate the behaviour in releases prior to 9.2).

-G ⟨generations⟩

Default 2
Set the number of generations used by the garbage collector. The default of 2 seems to
be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.
Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A ⟨size⟩ (page 184) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [⟨size⟩] (page 187) option).

-qg ⟨gen⟩

Default 0
Since 6.12.1

Use parallel GC in generation ⟨gen⟩ and higher. Omitting ⟨gen⟩ turns off the parallel GC
completely, reverting to sequential GC.
The default parallel GC settings are usually suitable for parallel programs (i.e. those
using GHC.Conc.par, Strategies, or with multiple threads). However, it is sometimes
beneficial to enable the parallel GC for a single-threaded sequential program too, espe-
cially if the program has a large amount of heap data and GC is a significant fraction of
runtime. To use the parallel GC in a sequential program, enable the parallel runtime with
a suitable -N ⟨x⟩ (page 137) option, and additionally it might be beneficial to restrict
parallel GC to the old generation with -qg1.

-qb ⟨gen⟩

Default 1 for -A (page 184) < 32M, 0 otherwise
Since 6.12.1

Use load-balancing in the parallel GC in generation ⟨gen⟩ and higher. Omitting ⟨gen⟩
disables load-balancing entirely.
Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used
to the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qb.

-qn ⟨x⟩

Default the value of -N (page 137) or the number of CPU cores, whichever is
smaller.

Since 8.2.1

186 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.
The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [⟨size⟩]

Default 0
This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A ⟨size⟩ (page 184) option. It says: I want to use at least ⟨size⟩ bytes, so
use whatever is left over to increase the -A value.
This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.
If ⟨size⟩ is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the ⟨size⟩. This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I ⟨seconds⟩

Default 0.3 seconds in the threaded runtime, 0 in the non-threaded runtime
In the threaded and SMP versions of the RTS (see -threaded (page 244), Options af-
fecting linking (page 241)), a major GC is automatically performed if the runtime has
been idle (no Haskell computation has been running) for a period of time. The amount of
idle time which must pass before a GC is performed is set by the -I ⟨seconds⟩ option.
Specifying -I0 disables the idle GC.
For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.
The idle period timer only resets after some activity by a Haskell thread. If your program
is doing literally nothing then after the first idle collection is triggered then no more
future collections will be scheduled until more work is performed.
This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-Iw ⟨seconds⟩

Default 0 seconds
By default, if idle GC is enabled in the threaded runtime, a major GC will be performed
every time the process goes idle for a sufficiently long duration (see -I ⟨seconds⟩
(page 187)). For large server processes accepting regular but infrequent requests (e.g.,
once per second), an expensive, major GC may run after every request. As an alternative

5.7. Running a compiled program 187

GHC User’s Guide Documentation, Release 9.2.6

to shutting off idle GC entirely (with -I0), a minimum wait time between idle GCs can
be specified with this flag. For example, -Iw60 will ensure that an idle GC runs at most
once per minute.
This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-ki ⟨size⟩

Default 1k
Set the initial stack size for new threads.
Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

-kc ⟨size⟩

Default 32k
Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K ⟨size⟩
(page 188) is reached.
The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

-kb ⟨size⟩

Default 1k
Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.
Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc ⟨size⟩ (page 188)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K ⟨size⟩

Default 80% of physical memory
Set the maximum stack size for an individual thread to ⟨size⟩ bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.
This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

188 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-m ⟨n⟩

Default 3%
Minimum % ⟨n⟩ of heap which must be available for allocation.

-M ⟨size⟩

Default unlimited
Set the maximum heap size to ⟨size⟩ bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.
The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=⟨size⟩

Default 1M
If the program’s heap exceeds the value set by -M ⟨size⟩ (page 189), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa
--numa=<mask>

Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux and Windows currently).
Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.
The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:
•Determine the number of NUMA nodes (N) by querying the OS.
•Manage separate memory pools for each node.
•Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
•Bind worker threads on a capability to the appropriate node.
•Allocate the nursery from node-local memory.
•Perform other memory allocation, including in the GC, from node-local memory.
•When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The --numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.

5.7. Running a compiled program 189

GHC User’s Guide Documentation, Release 9.2.6

Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts_setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is
running on and the memory it is using while running Haskell code, which will negate
any benefits of --numa.
If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, --numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

--long-gc-sync
--long-gc-sync=<seconds>

When a GC starts, all the running mutator threads have to stop and synchronise. The
period between when the GC is initiated and all the mutator threads are stopped is called
the GC synchronisation phase. If this phase is taking a long time (longer than 1ms is
considered long), then it can have a severe impact on overall throughput.
A long GC sync can be caused by a mutator thread that is inside an unsafe FFI call, or
running in a loop that doesn’t allocate memory and so doesn’t yield. To fix the former,
make the call safe, and to fix the latter, either avoid calling the code in question or
compile it with -fomit-yields (page 127).
By default, the flag will cause a warning to be emitted to stderr when the sync time ex-
ceeds the specified time. This behaviour can be overridden, however: the longGCSync()
hook is called when the sync time is exceeded during the sync period, and the longGC-
SyncEnd() hook at the end. Both of these hooks can be overridden in the RtsConfig
when the runtime is started with hs_init_ghc(). The default implementations of these
hooks (LongGcSync() and LongGCSyncEnd() respectively) print warnings to stderr.
One way to use this flag is to set a breakpoint on LongGCSync() in the debugger, and find
the thread that is delaying the sync. You probably want to use -g (page 617) to provide
more info to the debugger.
The GC sync time, along with other GC stats, are available by calling the getRTSStats()
function from C, or GHC.Stats.getRTSStats from Haskell.

5.7.4 RTS options to produce runtime statistics

-T
-t [⟨file⟩]
-s [⟨file⟩]
-S [⟨file⟩]
--machine-readable
--internal-counters

These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection. Passing --internal-counters to a threaded runtime will cause a
detailed summary to include various internal counts accumulated during the run; note
that these are unspecified and may change between releases.
The output is placed in ⟨file⟩. If ⟨file⟩ is omitted, then the output is sent to stderr.

190 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

If you use the -T flag then, you should access the statistics using GHC.Stats.
If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples),
↪→ 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07␣
↪→elapsed) :ghc>>

This tells you:
•The total number of bytes allocated by the program over the whole run.
•The total number of garbage collections performed.
•The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 193) RTS option (RTS options for profiling (page 193)).
•The peak memory the RTS has allocated from the OS.
•The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t --
machine-readable:

[("bytes allocated", "36169392")
,("num_GCs", "69")
,("average_bytes_used", "603392")
,("max_bytes_used", "1065272")
,("num_byte_usage_samples", "2")
,("peak_megabytes_allocated", "3")
,("init_cpu_seconds", "0.00")
,("init_wall_seconds", "0.00")
,("mutator_cpu_seconds", "0.02")
,("mutator_wall_seconds", "0.02")
,("GC_cpu_seconds", "0.07")
,("GC_wall_seconds", "0.07")
]

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))

54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 0.01s (0.02s elapsed)

5.7. Running a compiled program 191

GHC User’s Guide Documentation, Release 9.2.6

GC time 0.07s (0.07s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.08s (0.09s elapsed)

%GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

•The “bytes allocated in the heap” is the total bytes allocated by the program over
the whole run.
•GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.
•The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.
•The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.
•The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.
•Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.
•The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.
•Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.
%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts
bytes bytes bytes user elap user elap
528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)

192 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

[...]
524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:
•How many bytes we allocated this garbage collection.
•How many bytes we copied this garbage collection.
•How many bytes are currently live.
•How long this garbage collection took (CPU time and elapsed wall clock time).
•How long the program has been running (CPU time and elapsed wall clock time).
•How many page faults occurred this garbage collection.
•How many page faults occurred since the end of the last garbage collection.
•Which generation is being garbage collected.

5.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell (page 136),
and those for parallelism in RTS options for SMP parallelism (page 137).

5.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 597), and RTS options for heap profiling (page 603)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:
-hT
-h

Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hp2ps – Rendering heap profiles to PostScript (page 607)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 593)). Can be shortened to -h
(page 193).

Note: The meaning of the shortened -h (page 193) is dependent on whether your
program was compiled for profiling. (See RTS options for heap profiling (page 603) for
details.)

-L ⟨n⟩

Default 25 characters
Sets the maximum length of the cost-centre names listed in the heap profile.

5.7.7 Tracing

When the program is linked with the -eventlog (page 244) option (Options affecting linking
(page 241)), runtime events can be logged in several ways:

5.7. Running a compiled program 193

GHC User’s Guide Documentation, Release 9.2.6

• In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

• In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

• As text to standard output, for debugging purposes.
-l ⟨flags⟩

Log events in binary format. Without any ⟨flags⟩ specified, this logs a default set of
events, suitable for use with tools like ThreadScope.
Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overridden with a custom EventLogWriter.
For some special use cases you may want more control over which events are included.
The ⟨flags⟩ is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:
•s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.
•g — GC events, including GC start/stop. Enabled by default.
•n — non-moving garbage collector (see --nonmoving-gc (page 183)) events includ-
ing start and end of the concurrent mark and census information to characterise
heap fragmentation. Disabled by default.
•p — parallel sparks (sampled). Enabled by default.
•f — parallel sparks (fully accurate). Disabled by default.
•T — ticky-ticky profiler (page 616) events. Disabled by default.
•u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
•a — enable all event classes listed above
•-⟨x⟩ — disable the given class of events, for any event class listed above
•-a — disable all classes

For example, -l-ag would disable all event classes (-a) except for GC events (g).
For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.
The format of the log file is described in this users guide in Eventlog encodings (page 657)
It can be parsed in Haskell using the ghc-events library. To dump the contents of a
.eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.
Each event is associated with a timestamp which is the number of nanoseconds since
the start of executation of the running program. This is the elapsed time, not the CPU
time.

194 Chapter 5. Using GHC

http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope
http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 9.2.6

-ol⟨filename⟩

Default ⟨program⟩.eventlog

Since 8.8
Sets the destination for the eventlog produced with the -l ⟨flags⟩ (page 194) flag.

--eventlog-flush-interval=⟨seconds⟩

Default disabled
Since 9.2

When enabled, the eventlog will be flushed periodically every ⟨seconds⟩. This can be use-
ful in live-monitoring situations where the eventlog is consumed in real-time by another
process.

-v [⟨flags⟩]
Log events as text to standard output, instead of to the .eventlog file. The ⟨flags⟩ are the
same as for -l, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -l option.

5.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!
-B

Sound the bell at the start of each garbage collection.
Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office…”

-D ⟨x⟩
An RTS debugging flag; only available if the program was linked with the -debug
(page 244) option. Various values of ⟨x⟩ are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -? to find out which
debug flags are supported.
Full list of currently supported flags:

-Ds DEBUG: scheduler

-Di DEBUG: interpreter

-Dw DEBUG: weak

-DG DEBUG: gccafs

-Dg DEBUG: gc

-Db DEBUG: block

5.7. Running a compiled program 195

GHC User’s Guide Documentation, Release 9.2.6

-DS DEBUG: sanity

-DZ DEBUG: zero freed memory on GC

-Dt DEBUG: stable

-Dp DEBUG: prof

-Da DEBUG: apply

-Dl DEBUG: linker

-Dm DEBUG: stm

-Dz DEBUG: stack squeezing

-Dc DEBUG: program coverage

-Dr DEBUG: sparks

-DC DEBUG: compact
Debug messages will be sent to the binary event log file instead of stdout if the -l
⟨flags⟩ (page 194) option is added. This might be useful for reducing the overhead
of debug tracing.
To figure out what exactly they do, the least bad way is to grep the rts/ directory in the
ghc code for macros like DEBUG(scheduler or DEBUG_scheduler.

-r ⟨file⟩
Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 244)). The ⟨file⟩ business works just like on the -S
[⟨file⟩] (page 190) RTS option, above.
For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for imple-
mentors) (page 616).

-xc
(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.
This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with
-prof -fprof-auto (see -prof (page 597)) and running with +RTS -xc -RTSwill tell you
exactly the call stack at the point the error was raised.
The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table_search,
called from Main.polynomial.theta_index,
called from Main.polynomial,
called from Main.zonal_pressure,
called from Main.make_pressure.p,
called from Main.make_pressure,
called from Main.compute_initial_state.p,
called from Main.compute_initial_state,
called from Main.CAF
...

196 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].
Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.
See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

-Z
Turn off update frame squeezing on context switch. (There’s no particularly good reason
to turn it off, except to ensure the accuracy of certain data collected regarding thunk
entry counts.)

5.7.9 Getting information about the RTS

--info
It is possible to ask the RTS to give some information about itself. To do this, use the
--info (page 197) flag, e.g.

$./a.out +RTS --info
[("GHC RTS", "YES")
,("GHC version", "6.7")
,("RTS way", "rts_p")
,("Host platform", "x86_64-unknown-linux")
,("Host architecture", "x86_64")
,("Host OS", "linux")
,("Host vendor", "unknown")
,("Build platform", "x86_64-unknown-linux")
,("Build architecture", "x86_64")
,("Build OS", "linux")
,("Build vendor", "unknown")
,("Target platform", "x86_64-unknown-linux")
,("Target architecture", "x86_64")
,("Target OS", "linux")
,("Target vendor", "unknown")
,("Word size", "64")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
,("Flag -with-rtsopts", "")
]

The information is formatted such that it can be read as a of type [(String,String)].
Currently the following fields are present:
GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.
RTS way The variant (“way”) of the runtime. The most common values are rts_v

(vanilla), rts_thr (threaded runtime, i.e. linked using the -threaded (page 244)
option) and rts_p (profiling runtime, i.e. linked using the -prof (page 597) option).
Other variants include debug (linked using -debug (page 244)), and dyn (the RTS

5.7. Running a compiled program 197

GHC User’s Guide Documentation, Release 9.2.6

is linked in dynamically, i.e. a shared library, rather than statically linked into the
executable itself). These can be combined, e.g. you might have rts_thr_debug_p.

Target platformTarget architectureTarget OSTarget vendor These are the plat-
form the program is compiled to run on.

Build platformBuild architectureBuild OSBuild vendor These are the platform
where the program was built on. (That is, the target platform of GHC itself.) Or-
dinarily this is identical to the target platform. (It could potentially be different if
cross-compiling.)

Host platformHost architectureHost OSHost vendor These are the platform where
GHC itself was compiled. Again, this would normally be identical to the build and
target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.
Compiler unregistered Was this program compiled with an “unregistered” (page 234)

version of GHC? (I.e., a version of GHC that has no platform-specific optimisations
compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful perfor-
mance optimisation that is not available on all platforms. This field tells you whether
the program has been compiled with this optimisation. (Usually yes, except on un-
usual platforms.)

Flag -with-rtsopts The value of the GHC flag -with-rtsopts=⟨opts⟩ (page 245) at
compile/link time.

5.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.
Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

5.8.1 Haskell source files

Each Haskell source module should be placed in a file on its own.
Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C.hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.
GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

198 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

5.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.
The object file, which normally ends in a .o suffix, contains the compiled code for the module.
The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the --show-iface ⟨file⟩ (page 87) option instead (see
Other options related to interface files (page 203)).
You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).
Every module has a module name defined in its source code (module A.B.C where ...).
The name of the object file generated by GHC is derived according to the following rules,
where ⟨osuf⟩ is the object-file suffix (this can be changed with the -osuf option).
• If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with ⟨osuf⟩.

• If -odir ⟨dir⟩ has been specified, then the object filename is ⟨dir⟩/⟨mod⟩.⟨osuf⟩, where
⟨mod⟩ is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath ⟨dir⟩, if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is ⟨hisuf⟩
(.hi by default) instead of ⟨osuf⟩, and the relevant options are -hidir ⟨dir⟩ (page 201)
and -hisuf ⟨suffix⟩ (page 202) instead of -odir ⟨dir⟩ (page 201) and -osuf ⟨suffix⟩
(page 202) respectively.
For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.
For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 199). This means that for most modules,
the source file name should match the module name.
However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it
is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.
In batch compilation mode, the name of the object file can also be overridden using the -o
⟨file⟩ (page 200) option, and the name of the interface file can be specified directly using
the -ohi ⟨file⟩ (page 201) option.

5.8.3 The search path

In your program, you import a module Foo by saying import Foo. In --make (page 86) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without --make
(page 86), GHC will look for the interface file for Foo, which should have been created by an

5.8. Filenames and separate compilation 199

GHC User’s Guide Documentation, Release 9.2.6

earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the
appropriate file.
This strategy is as follows: GHC keeps a list of directories called the search path. For each
of these directories, it tries appending ⟨basename⟩.⟨extension⟩ to the directory, and checks
whether the file exists. The value of ⟨basename⟩ is the module name with dots replaced by
the directory separator (“/” or “\\", depending on the system), and ⟨extension⟩ is a source
extension (hs, lhs) if we are in --make (page 86) mode or GHCi, or ⟨hisuf⟩ otherwise.
For example, suppose the search path contains directories d1, d2, and d3, and we are in
--make (page 86) mode looking for the source file for a module A.B.C. GHC will look in
d1/A/B/C.hs, d1/A/B/C.lhs, d2/A/B/C.hs, and so on.
The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:
-i⟨dir⟩[:⟨dir⟩]*

This flag appends a colon-separated list of dirs to the search path.
-i

resets the search path back to nothing.
This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as
packages. See the section on packages (Packages (page 216)) for details.

5.8.4 Redirecting the compilation output(s)

-o ⟨file⟩
GHC’s compiled output normally goes into a .hc, .o, etc., file, depending on the last-run
compilation phase. The option -o file re-directs the output of that last-run phase to
⟨file⟩.

Note: This “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the
intermediate C code in the file foo.o, name notwithstanding!

This option is most often used when creating an executable file, to set the filename of
the executable. For example:

ghc -o prog --make Main

will compile the program starting with module Main and put the executable in the file
prog.
Note: on Windows, if the result is an executable file, the extension “.exe” is added if the
specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe
(not foo).
If you use ghc --make and you don’t use the -o, the name GHC will choose for the
executable will be based on the name of the file containing the module Main. Note that
with GHC the Main module doesn’t have to be put in file Main.hs. Thus both

ghc --make Prog

200 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

and

ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).
-dyno ⟨file⟩

When using -dynamic-too, option -dyno ⟨suffix⟩ is the counterpart of -o. It redirects
the dynamic output to ⟨file⟩.

-odir ⟨dir⟩
Redirects object files to directory ⟨dir⟩. For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir `uname -m`

The object files, Foo.o, Bar.o, and Bumble.o would be put into a subdirectory named
after the architecture of the executing machine (x86, mips, etc).
Note that the -odir option does not affect where the interface files are put; use the -
hidir option for that. In the above example, they would still be put in parse/Foo.hi,
parse/Bar.hi, and gurgle/Bumble.hi.
Please also note that when doing incremental compilation, this directory is where GHC
looks into to find object files from previous builds.

-ohi ⟨file⟩
The interface output may be directed to another file bar2/Wurble.iface with the option
-ohi bar2/Wurble.iface (not recommended).

Warning: If you redirect the interface file somewhere that GHC can’t find it, then
the recompilation checker may get confused (at the least, you won’t get any recompi-
lation avoidance). We recommend using a combination of -hidir and -hisuf options
instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface
into the bit bucket: -ohi /dev/null, for example.

-dynohi ⟨file⟩
When using -dynamic-too, option -dynohi ⟨file⟩ is the counterpart of -ohi. It redirects
the dynamic interface output to ⟨file⟩.

-hidir ⟨dir⟩
Redirects all generated interface files into ⟨dir⟩, instead of the default.
Please also note that when doing incremental compilation (by ghc --make or ghc -c),
this directory is where GHC looks into to find interface files.

-hiedir ⟨dir⟩
Redirects all generated extended interface files into ⟨dir⟩, instead of the default.
Please also note that when doing incremental compilation (by ghc --make or ghc -c),
this directory is where GHC looks into to find extended interface files.

-stubdir ⟨dir⟩
Redirects all generated FFI stub files into ⟨dir⟩. Stub files are generated when the
Haskell source contains a foreign export or foreign import "&wrapper" declaration
(see Using foreign export and foreign import ccall “wrapper” with GHC (page 522)). The
-stubdir option behaves in exactly the same way as -odir and -hidir with respect to
hierarchical modules.

5.8. Filenames and separate compilation 201

GHC User’s Guide Documentation, Release 9.2.6

-dumpdir ⟨dir⟩
Redirects all dump files into ⟨dir⟩. Dump files are generated when -ddump-to-file is
used with other -ddump-* flags.

-outputdir ⟨dir⟩
The -outputdir option is shorthand for the combination of -odir ⟨dir⟩ (page 201), -
hidir ⟨dir⟩ (page 201), -hiedir ⟨dir⟩ (page 201), -stubdir ⟨dir⟩ (page 201) and
-dumpdir ⟨dir⟩ (page 201).

-osuf ⟨suffix⟩
The -osuf ⟨suffix⟩ will change the .o file suffix for object files to whatever you specify.
We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.

-dynosuf ⟨suffix⟩
When using -dynamic-too, option -dynosuf ⟨suffix⟩ is the counterpart of -osuf. It
changes the .dyn_o file suffix for dynamic object files.

-hisuf ⟨suffix⟩
Similarly, the -hisuf ⟨suffix⟩ will change the .hi file suffix for non-system interface files
(see Other options related to interface files (page 203)).
The -hisuf/-osuf game is particularly useful if you want to compile a program both with
and without profiling, in the same directory. You can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -fprof-auto

to get the profiled version.
-dynhisuf ⟨suffix⟩

When using -dynamic-too, option -dynhisuf ⟨suffix⟩ is the counterpart of -hisuf. It
changes the .dyn_hi file suffix for dynamic interface files.

-hiesuf ⟨suffix⟩
The -hiesuf ⟨suffix⟩ will change the .hie file suffix for extended interface files to what-
ever you specify.

-hcsuf ⟨suffix⟩
Finally, the option -hcsuf ⟨suffix⟩ will change the .hc file suffix for compiler-generated
intermediate C files.

5.8.5 Keeping Intermediate Files

The following options are useful for keeping (or not keeping) certain intermediate files around,
when normally GHC would throw these away after compilation:
-keep-hc-file
-keep-hc-files

Keep intermediate .hc files when doing .hs-to-.o compilations via C (page 234) (Note:
.hc files are only generated by unregisterised (page 234) compilers).

-keep-hi-files
Keep intermediate .hi files. This is the default. You may use -no-keep-hi-files if you
are not interested in the .hi files.

202 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-keep-hscpp-file
-keep-hscpp-files

Keep the output of the CPP pre-processor phase as .hscpp files. A .hscpp file is only
created, if a module gets compiled and uses the C pre-processor.

-keep-llvm-file
-keep-llvm-files

Implies -fllvm (page 240)
Keep intermediate .ll files when doing .hs-to-.o compilations via LLVM (page 233)
(Note: .ll files aren’t generated when using the native code generator, you may need
to use -fllvm (page 240) to force them to be produced).

-keep-o-files
Keep intermediate .o files. This is the default. You may use -no-keep-o-files if you
are not interested in the .o files.

-keep-s-file
-keep-s-files

Keep intermediate .s files.
-keep-tmp-files

Instructs the GHC driver not to delete any of its temporary files, which it normally keeps
in /tmp (or possibly elsewhere; see Redirecting temporary files (page 203)). Running
GHC with -v will show you what temporary files were generated along the way.

5.8.6 Redirecting temporary files

-tmpdir ⟨dir⟩
If you have trouble because of running out of space in /tmp (or wherever your installation
thinks temporary files should go), you may use the -tmpdir ⟨dir⟩ (page 203) option to
specify an alternate directory. For example, -tmpdir . says to put temporary files in
the current working directory.
Alternatively, use your TMPDIR environment variable. Set it to the name of the directory
where temporary files should be put. GCC and other programs will honour the TMPDIR
variable as well.

5.8.7 Other options related to interface files

-ddump-hi
Dumps the new interface to standard output.

-ddump-hi-diffs
The compiler does not overwrite an existing .hi interface file if the new one is the same
as the old one; this is friendly to make. When an interface does change, it is often enlight-
ening to be informed. The -ddump-hi-diffs (page 203) option will make GHC report
the differences between the old and new .hi files.

-ddump-minimal-imports
Dump to the file M.imports (where ⟨M⟩ is the name of the module being compiled) a
“minimal” set of import declarations. The directory where the .imports files are created
can be controlled via the -dumpdir ⟨dir⟩ (page 201) option.
You can safely replace all the import declarations in M.hs with those found in its respec-
tive .imports file. Why would you want to do that? Because the “minimal” imports (a)

5.8. Filenames and separate compilation 203

GHC User’s Guide Documentation, Release 9.2.6

import everything explicitly, by name, and (b) import nothing that is not required. It can
be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface ⟨file⟩
where ⟨file⟩ is the name of an interface file, dumps the contents of that interface in a
human-readable format. See Modes of operation (page 86).

5.8.8 Options related to extended interface files

GHC builds up a wealth of information about a Haskell source file as it compiles it. Extended
interface files are a way of persisting some of this information to disk so that external tools,
such as IDE’s, can avoid parsing, typechecking, and renaming all over again. These files
contain
• a simplified AST

– nodes are annotated with source positions and types
– identifiers are annotated with scope information

• the raw bytes of the initial Haskell source
The GHC API exposes functions for reading and writing these files.
-fwrite-ide-info

Writes out extended interface files alongside regular interface files. Just like regular
interface files, GHC has a recompilation check to detect out of date or missing extended
interface files.

-fvalidate-ide-info
Runs a series of sanity checks and lints on the extended interface files that are being
written out. These include testing things properties such as variables not occurring
outside of their expected scopes.

The format in which GHC currently stores its typechecked AST, makes it costly to collect the
types for some expressions nodes. For the sake of performance, GHC currently chooses to
skip over these, so not all expression nodes should be expected to have type information on
them. See #16233 for more.

5.8.9 The recompilation checker

-fforce-recomp
Turn off recompilation checking (which is on by default). Recompilation checking nor-
mally stops compilation early, leaving an existing .o file in place, if it can be determined
that the module does not need to be recompiled.

-fignore-optim-changes

-fignore-hpc-changes

In the olden days, GHC compared the newly-generated .hi file with the previous version;
if they were identical, it left the old one alone and didn’t change its modification date. In
consequence, importers of a module with an unchanged output .hi file were not recompiled.
This doesn’t work any more. Suppose module C imports module B, and B imports module A. So
changes to module Amight require module C to be recompiled, and hence when A.hi changes
we should check whether C should be recompiled. However, the dependencies of C will only
list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears

204 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/16233

GHC User’s Guide Documentation, Release 9.2.6

in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So
now…
GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each decla-
ration within the interface file. It also keeps in every interface file a list of the fingerprints
of everything it used when it last compiled the file. If the source file’s modification date is
earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled),
and the recompilation checking is on, GHC will be clever. It compares the fingerprints on the
things it needs this time with the fingerprints on the things it needed last time (gleaned from
the interface file of the module being compiled); if they are all the same it stops compiling
early in the process saying “Compilation IS NOT required”. What a beautiful sight!
You can read about how all this works in the GHC commentary.

5.8.10 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.
Every cycle in the module import graph must be broken by a hs-boot file. Suppose that
modules A.hs and B.hs are Haskell source files, thus:

module A where
import B(TB(..))

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

Here A imports B, but B imports A with a {-# SOURCE #-} pragma, which breaks the circular
dependency. Every loop in the module import graph must be broken by a {-# SOURCE #-}
import; or, equivalently, the module import graph must be acyclic if {-# SOURCE #-} imports
are ignored.
For every module A.hs that is {-# SOURCE #-}-imported in this way there must exist a source
file A.hs-boot. This file contains an abbreviated version of A.hs, thus:

module A where
newtype TA = MkTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot
ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o
ghc -o foo A.o B.o -- Linking the program

There are several points to note here:

5.8. Filenames and separate compilation 205

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/recompilation-avoidance

GHC User’s Guide Documentation, Release 9.2.6

• The file A.hs-boot is a programmer-written source file. It must live in the same directory
as its parent source file A.hs. Currently, if you use a literate source file A.lhs you must
also use a literate boot file, A.lhs-boot; and vice versa.

• A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When
its parent module A.hs is compiled, the two are compared, and an error is reported if
the two are inconsistent.

• Just as compiling A.hs produces an interface file A.hi, and an object file A.o, so compil-
ing A.hs-boot produces an interface file A.hi-boot, and a pseudo-object file A.o-boot:
– The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when
using a Makefile, to record when the A.hi-boot was last brought up to date (see
Using make (page 212)).

– The hi-boot generated by compiling a hs-boot file is in the same machine-
generated binary format as any other GHC-generated interface file (e.g. B.hi). You
can display its contents with ghc --show-iface. If you specify a directory for inter-
face files, the -hidir flag, then that affects hi-boot files too.

• If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE
#-} import is considered to refer to the hs-boot file, then the module import graph must
have no cycles. The command ghc -M will report an error if a cycle is found.

• A module M that is {-# SOURCE #-}-imported in a program will usually also be ordinarily
imported elsewhere. If not, ghc --make automatically adds M to the set of modules it tries
to compile and link, to ensure that M‘s implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrap-
ping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module(s) that import A recursively.
A hs-boot file is written in a subset of Haskell:
• The module header (including the export list), and import statements, are exactly as in
Haskell, and so are the scoping rules. Hence, to mention a non-Prelude type or class,
you must import it.

• There must be no value declarations, but there can be type signatures for values. For
example:

double :: Int -> Int

• Fixity declarations are exactly as in Haskell.
• Vanilla type synonym declarations are exactly as in Haskell.
• Open type and data family declarations are exactly as in Haskell.
• A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where ..

The .. is meant literally – you should write two dots in your file. Note that the where
clause is still necessary to distinguish closed families from open ones. If you give any
equations of a closed family, you must give all of them, in the same order as they appear
in the accompanying Haskell file.

206 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

• A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension:
see Data types with no constructors (page 308)), but in an hi-boot file it means “I don’t
know or care what the constructors are”. This is the most common form of data type
declaration, because it’s easy to get right. You can also write out the constructors but,
if you do so, you must write it out precisely as in its real definition.
If you do not write out the constructors, you may need to give a kind annotation
(Explicitly-kinded quantification (page 471)), to tell GHC the kind of the type variable, if
it is not “*”. (In source files, this is worked out from the way the type variable is used in
the constructors.) For example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration in-
stead.

• Class declarations is exactly as in Haskell, except that you may not put default method
declarations. You can also omit all the superclasses and class methods entirely; but you
must either omit them all or put them all in.

• You can include instance declarations just as in Haskell; but omit the “where” part.
• The default role for abstract datatype parameters is now representational. (An abstract
datatype is one with no constructors listed.) To get another role, use a role annotation.
(See Roles (page 383).)

5.8.11 Module signatures

GHC 8.2 supports module signatures (hsig files), which allow you to write a signature in
place of a module implementation, deferring the choice of implementation until a later point
in time. This feature is not intended to be used without Cabal; this manual entry will focus
on the syntax and semantics of signatures.
To start with an example, suppose you had a module A which made use of some string opera-
tions. Using normal module imports, you would only be able to pick a particular implementa-
tion of strings:

module Str where
type Str = String

empty :: Str
empty = ""

toString :: Str -> String
toString s = s

module A where
import Str
z = toString empty

By replacing Str.hs with a signature Str.hsig, A (and any other modules in this package)
are now parametrized by a string implementation:

5.8. Filenames and separate compilation 207

http://www.haskell.org/cabal/

GHC User’s Guide Documentation, Release 9.2.6

signature Str where
data Str
empty :: Str
toString :: Str -> String

We can typecheck A against this signature, or we can instantiate Str with a module that
provides the following declarations. Refer to Cabal’s documentation for a more in-depth dis-
cussion on how to instantiate signatures.
Module signatures actually consist of two closely related features:
• The ability to define an hsig file, containing type definitions and type signature for values
which can be used by modules that import the signature, and must be provided by the
eventual implementing module, and

• The ability to inherit required signatures from packages we depend upon, combining the
signatures into a single merged signature which reflects the requirements of any locally
defined signature, as well as the requirements of our dependencies.

A signature file is denoted by an hsig file; every required signature must have an hsig file
(even if it is an empty one), including required signatures inherited from dependencies. Sig-
natures can be imported using an ordinary import Sig declaration.
hsig files are written in a variant of Haskell similar to hs-boot files, but with some slight
changes:
• The header of a signature is signature A where ... (instead of the usual module A
where ...).

• Import statements and scoping rules are exactly as in Haskell. To mention a non-Prelude
type or class, you must import it.

• Unlike regular modules, the defined entities of a signature include not only those written
in the local hsig file, but also those from inherited signatures (as inferred from the -
package-id ⟨unit-id⟩ (page 219) flags). These entities are not considered in scope
when typechecking the local hsig file, but are available for import by any module or
signature which imports the signature. The one exception to this rule is the export list,
described below.
If a declaration occurs in multiple inherited signatures, they will be merged together.
For values, we require that the types from both signatures match exactly; however, other
declarations may merge in more interesting ways. The merging operation in these cases
has the effect of textually replacing all occurrences of the old name with a reference to
the new, merged declaration. For example, if we have the following two signatures:

signature A where
data T
f :: T -> T

signature A where
data T = MkT
g :: T

the resulting merged signature would be:

signature A where
data T = MkT
f :: T -> T
g :: T

208 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

• If no export list is provided for a signature, the exports of a signature are all of its defined
entities merged with the exports of all inherited signatures.
If you want to reexport an entity from a signature, you must also include a module Sig-
Name export, so that all of the entities defined in the signature are exported. For example,
the following module exports both f and Int from Prelude:

signature A(module A, Int) where
import Prelude (Int)
f :: Int

Reexports merge with local declarations; thus, the signature above would successfully
merge with:

signature A where
data Int

The only permissible implementation of such a signature is a module which reexports
precisely the same entity:

module A (f, Int) where
import Prelude (Int)
f = 2 :: Int

Conversely, any entity requested by a signature can be provided by a reexport from the
implementing module. This is different from hs-boot files, which require every entity to
be defined locally in the implementing module.

• GHC has experimental support for signature thinning, which is used when a signature
has an explicit export list without a module export of the signature itself. In this case,
the export list applies to the final export list after merging, in particular, you may refer
to entities which are not declared in the body of the local hsig file.
The semantics in this case is that the set of required entities is defined exclusively by its
exports; if an entity is not mentioned in the export list, it is not required. The motivation
behind this feature is to allow a library author to provide an omnibus signature contain-
ing the type of every function someone might want to use, while a client thins down the
exports to the ones they actually require. For example, supposing that you have inher-
ited a signature for strings, you might write a local signature of this form, listing only
the entities that you need:

signature Str (Str, empty, append, concat) where
-- empty

A few caveats apply here. First, it is illegal to export an entity which refers to a locally
defined type which itself is not exported (GHC will report an error in this case). Second,
signatures which come from dependencies which expose modules cannot be thinned in
this way (after all, the dependency itself may need the entity); these requirements are
unconditionally exported. Finally, any module reexports must refer to modules imported
by the local signature (even if an inherited signature exported the module).
We may change the syntax and semantics of this feature in the future.

• The declarations and types from signatures of dependencies that will be merged in are
not in scope when type checking an hsig file. To refer to any such type, you must declare
it yourself:

5.8. Filenames and separate compilation 209

GHC User’s Guide Documentation, Release 9.2.6

-- OK, assuming we inherited an A that defines T
signature A (T) where

-- empty

-- Not OK
signature A (T, f) where

f :: T -> T

-- OK
signature A (T, f) where

data T
f :: T -> T

• There must be no value declarations, but there can be type signatures for values. For
example, we might define the signature:

signature A where
double :: Int -> Int

A module implementing A would have to export the function double with a type defini-
tionally equal to the signature. Note that this means you can’t implement double using
a polymorphic function double :: Num a => a -> a.
Note that signature matching does check if fixity matches, so be sure specify fixity of
ordinary identifiers if you intend to use them with backticks.

• Fixity, type synonym, open type/data family declarations are permitted as in normal
Haskell.

• Closed type family declarations are permitted as in normal Haskell. They can also be
given abstractly, as in the following example:

type family ClosedFam a where ..

The .. is meant literally – you should write two dots in your file. The where clause
distinguishes closed families from open ones.

• A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

signature A where
data T a b

Abstract data types can be implemented not only with data declarations, but also new-
types and type synonyms (with the restriction that a type synonym must be fully eta-
reduced, e.g., type T = ... to be accepted.) For example, the following are all valid
implementations of the T above:

-- Algebraic data type
data T a b = MkT a b

-- Newtype
newtype T a b = MkT (a, b)

-- Type synonym
data T2 a b = MkT2 a a b b
type T = T2

210 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Data type declarations merge only with other data type declarations which match exactly,
except abstract data, which can merge with data, newtype or type declarations. Merges
with type synonyms are especially useful: suppose you are using a package of strings
which has left the type of characters in the string unspecified:

signature Str where
data Str
data Elem
head :: Str -> Elem

If you locally define a signature which specifies type Elem = Char, you can now use
head from the inherited signature as if it returned a Char.
If you do not write out the constructors, you may need to give a kind to tell GHC what
the kinds of the type variables are, if they are not the default *. Unlike regular data
type declarations, the return kind of an abstract data declaration can be anything (in
which case it probably will be implemented using a type synonym.) This can be used to
allow compile-time representation polymorphism (as opposed to run-time representation
polymorphism (page ??)), as in this example:

signature Number where
import GHC.Types
data Rep :: RuntimeRep
data Number :: TYPE Rep
plus :: Number -> Number -> Number

Roles of type parameters are subject to the subtyping relation phantom < representa-
tional < nominal: for example, an abstract type with a nominal type parameter can
be implemented using a concrete type with a representational type parameter. Merging
respects this subtyping relation (e.g., nominalmerged with representational is repre-
sentational.) Roles in signatures default to nominal, which gives maximum flexibility
on the implementor’s side. You should only need to give an explicit role annotation if
a client of the signature would like to coerce the abstract type in a type parameter (in
which case you should specify representational explicitly.) Unlike regular data types,
we do not assume that abstract data types are representationally injective: if we have
Coercible (T a) (T b), and T has role nominal, this does not imply that a ~ b.

• A class declarations can either be abstract or concrete. An abstract class is one with no
superclasses or class methods:

signature A where
class Key k

It can be implemented in any way, with any set of superclasses and methods; however,
modules depending on an abstract class are not permitted to define instances (as of GHC
8.2, this restriction is not checked, see #13086.) These declarations can be implemented
by type synonyms of kind Constraint; this can be useful if you want to parametrize over
a constraint in functions. For example, with the ConstraintKinds extension, this type
synonym is a valid implementation of the signature above:

module A where
type Key = Eq

A concrete class specifies its superclasses, methods, default method signatures (but not
their implementations) and a MINIMAL pragma. Unlike regular Haskell classes, you don’t
have to explicitly declare a default for a method to make it optional vis-a-vis the MINIMAL
pragma.

5.8. Filenames and separate compilation 211

https://gitlab.haskell.org/ghc/ghc/issues/13086

GHC User’s Guide Documentation, Release 9.2.6

When merging class declarations, we require that the superclasses and methods match
exactly; however, MINIMAL pragmas are logically ORed together, and a method with a
default signature will merge successfully against one that does not.

• You can include instance declarations as in Haskell; just omit the “where” part. An
instance declaration need not be implemented directly; if an instance can be derived
based on instances in the environment, it is considered implemented. For example, the
following signature:

signature A where
data Str
instance Eq Str

is considered implemented by the following module, since there are instances of Eq for
[] and Char which can be combined to form an instance Eq [Char]:

module A where
type Str = [Char]

Unlike other declarations, for which only the entities declared in a signature file are
brought into scope, instances from the implementation are always brought into scope,
even if they were not declared in the signature file. This means that a module may
typecheck against a signature, but not against a matching implementation. You can
avoid situations like this by never defining orphan instances inside a package that has
signatures.
Instance declarations are only merged if their heads are exactly the same, so it is possible
to get into a situation where GHC thinks that instances in a signature are overlapping,
even if they are implemented in a non-overlapping way. If this is giving you problems
give us a shout.

• Any orphan instances which are brought into scope by an import from a signature are
unconditionally considered in scope, even if the eventual implementing module doesn’t
actually import the same orphans.

Known limitations:
• Pattern synonyms are not supported.
• Algebraic data types specified in a signature cannot be implemented using pattern syn-
onyms. See #12717

5.8.12 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name
your source files the same as your modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm -f $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

212 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/12717

GHC User’s Guide Documentation, Release 9.2.6

Standard suffix rules
.o.hi:

@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

.hs.o:
$(HC) -c $< $(HC_OPTS)

.o-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

Note: Sophisticated make variants may achieve some of the above more elegantly. Notably,
gmake‘s pattern rules let you write the more comprehensible:

%.o : %.lhs
$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with any make.

Note the cheesy .o.hi rule: It records the dependency of the interface (.hi) file on the source.
The rule says a .hi file can be made from a .o file by doing…nothing. Which is true.
Note that the suffix rules are all repeated twice, once for normal Haskell source files, and
once for hs-boot files (see How to compile mutually recursive modules (page 205)).
Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks
for a rule to do so; one of the preceding suffix rules does the job nicely. These dependencies
can be generated automatically by ghc; see Dependency generation (page 213)

5.8.13 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required depen-
dencies. Add the following to your Makefile:

depend :
ghc -dep-suffix '' -M $(HC_OPTS) $(SRCS)

5.8. Filenames and separate compilation 213

GHC User’s Guide Documentation, Release 9.2.6

Now, before you start compiling, and any time you change the imports in your program, do
make depend before you do make cool_pgm. The command ghc -M will append the needed
dependencies to your Makefile.
In general, ghc -M Foo does the following. For each module M in the set Foo plus all its
imports (transitively), it adds to the Makefile:
• A line recording the dependence of the object file on the source file.

M.o : M.hs

(or M.lhs if that is the filename you used).
• For each import declaration import X in M, a line recording the dependence of M on X:

M.o : X.hi

• For each import declaration import {-# SOURCE #-} X in M, a line recording the depen-
dence of M on X:

M.o : X.hi-boot

(See How to compile mutually recursive modules (page 205) for details of hi-boot style
interface files.)

If M imports multiple modules, then there will be multiple lines with M.o as the target.
There is no need to list all of the source files as arguments to the ghc -M command; ghc traces
the dependencies, just like ghc --make (a new feature in GHC 6.4).
Note that ghc -M needs to find a source file for each module in the dependency graph, so that
it can parse the import declarations and follow dependencies. Any pre-compiled modules
without source files must therefore belong to a package 1.
By default, ghc -M generates all the dependencies, and then concatenates them onto the
end of makefile (or Makefile if makefile doesn’t exist) bracketed by the lines “# DO NOT
DELETE: Beginning of Haskell dependencies” and “# DO NOT DELETE: End of Haskell
dependencies”. If these lines already exist in the makefile, then the old dependencies are
deleted first.
Don’t forget to use the same -package options on the ghc -M command line as you would
when compiling; this enables the dependency generator to locate any imported modules that
come from packages. The package modules won’t be included in the dependencies generated,
though (but see the -include-pkg-deps option below).
The dependency generation phase of GHC can take some additional options, which you may
find useful. The options which affect dependency generation are:
-ddump-mod-cycles

Display a list of the cycles in the module graph. This is useful when trying to eliminate
such cycles.

-v2
Print a full list of the module dependencies to stdout. (This is the standard verbosity flag,
so the list will also be displayed with -v3 and -v4; see Verbosity options (page 91).)

-dep-makefile ⟨file⟩
Use ⟨file⟩ as the makefile, rather than makefile or Makefile. If ⟨file⟩ doesn’t exist, mkde-

1 This is a change in behaviour relative to 6.2 and earlier.

214 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

pendHS creates it. We often use -dep-makefile .depend to put the dependencies in
.depend and then include the file .depend into Makefile.

-dep-suffix ⟨suffix⟩
Make dependencies that declare that files with suffix .⟨suf⟩⟨osuf⟩ depend on interface
files with suffix .⟨suf⟩hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multiple -dep-
suffix flags are permitted. For example, -dep-suffix a_ -dep-suffix b_ will make
dependencies for .hs on .hi, .a_hs on .a_hi, and .b_hs on .b_hi. Note that you must
provide at least one suffix; if you do not want a suffix then pass -dep-suffix ''.

--exclude-module=⟨file⟩
Regard ⟨file⟩ as “stable”; i.e., exclude it from having dependencies on it.

-include-pkg-deps
Regardmodules imported from packages as unstable, i.e., generate dependencies on any
imported package modules (including Prelude, and all other standard Haskell libraries).
Dependencies are not traced recursively into packages; dependencies are only gener-
ated for home-package modules on external-package modules directly imported by the
home package module. This option is normally only used by the various system libraries.

-include-cpp-deps
Output preprocessor dependencies. This only has an effect when the CPP language
extension is enabled. These dependencies are files included with the #include prepro-
cessor directive (as well as transitive includes) and implicitly included files such as stan-
dard c preprocessor headers and a GHC version header. One exception to this is that
GHC generates a temporary header file (during compilation) containing package version
macros. As this is only a temporary file that GHC will always generate, it is not output
as a dependency.

5.8.14 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module “be-
low” M is visible. (Module A is “below” M if A is imported directly by M, or if A is below a
module that M imports directly.) In principle, GHC must therefore read the interface files of
every module below M, just in case they contain an instance declaration that matters to M. This
would be a disaster in practice, so GHC tries to be clever.
In particular, if an instance declaration is in the same module as the definition of any type or
class mentioned in the head of the instance declaration (the part after the “=>”; see Instance
termination rules (page 448)), then GHC has to visit that interface file anyway. Example:

module A where
instance C a => D (T a) where ...
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited
A‘s interface file to find T‘s definition.
The only problem comes when a module contains an instance declaration and GHC has no
other reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”.
GHC identifies orphan modules, and visits the interface file of every orphan module below the

5.8. Filenames and separate compilation 215

GHC User’s Guide Documentation, Release 9.2.6

module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.
Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But
suppose class E had a functional dependency:

module Lib where
class E x y | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be “improved” by setting
a = T, even though there is no explicit mention of T in M.
These considerations lead to the following definition of an orphan module:
• An orphan module orphan module contains at least one orphan instance or at least one
orphan rule.

• An instance declaration in a module M is an orphan instance if
– The class of the instance declaration is not declared in M, and
– Either the class has no functional dependencies, and none of the type constructors
in the instance head is declared in M; or there is a functional dependency for which
none of the type constructors mentioned in the non-determined part of the instance
head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C‘s
declaration to be in module A; it must be the declaration of D or T.

• A rewrite rule in a module M is an orphan rule orphan rule if none of the variables, type
constructors, or classes that are free in the left hand side of the rule are declared in M.

If you use the flag -Worphans (page 111), GHC will warn you if you are creating an orphan
module. Like any warning, you can switch the warning off with -Wno-orphans (page 111),
and -Werror (page 101) will make the compilation fail if the warning is issued.
You can identify an orphan module by looking in its interface file, M.hi, using the --show-
iface ⟨file⟩ (page 87) mode (page 86). If there is a [orphan module] on the first line,
GHC considers it an orphan module.

5.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several
packages: see the accompanying library documentation. More packages to install can be
obtained from HackageDB.
Using a package couldn’t be simpler: if you’re using --make or GHCi, then most of the in-
stalled packages will be automatically available to your program without any further options.
The exceptions to this rule are covered below in Using Packages (page 217).
Building your own packages is also quite straightforward: we provide the Cabal infrastructure
which automates the process of configuring, building, installing and distributing a package.
All you need to do is write a simple configuration file, put a few files in the right places, and

216 Chapter 5. Using GHC

http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/

GHC User’s Guide Documentation, Release 9.2.6

you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

5.9.1 Using Packages

GHC only knows about packages that are installed. Installed packages live in package
databases. For details on package databases and how to control which package databases or
specific set of packages are visible to GHC, see Package Databases (page 221).
To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:

Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
(dph-par-0.4.0)
(dph-prim-interface-0.4.0)
(dph-prim-par-0.4.0)
(dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0
ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)
ghc-prim-0.1.0.0
haskeline-0.6.2
haskell98-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.0.1
old-time-1.0.0.1
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0.1
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4
unix-2.3.1.0
utf8-string-0.3.4

An installed package is either exposed or hidden by default. Packages hidden by default are
listed in parentheses (e.g. (lang-1.0)), or possibly in blue if your terminal supports colour,
in the output of ghc-pkg list. Command-line flags, described below, allow you to expose
a hidden package or hide an exposed one. Only modules from exposed packages may be
imported by your Haskell code; if you try to import a module from a hidden package, GHC
will emit an error message. It should be noted that a hidden package might still get linked

5.9. Packages 217

http://www.haskell.org/cabal/users-guide/

GHC User’s Guide Documentation, Release 9.2.6

with your program as a dependency of an exposed package, it is only restricted from direct
imports.
If there are multiple exposed versions of a package, GHC will prefer the latest one. Addi-
tionally, some packages may be broken: that is, they are missing from the package database,
or one of their dependencies are broken; in this case; these packages are excluded from the
default set of packages.

Note: If you’re using Cabal, then the exposed or hidden status of a package is irrelevant:
the available packages are instead determined by the dependencies listed in your .cabal
specification. The exposed/hidden status of packages is only relevant when using ghc or ghci
directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either
trusted or not trusted (distrusted). By default packages are distrusted. This property of a
package only plays a role when compiling code using GHC’s Safe Haskell feature (see Safe
Haskell (page 530)) with the -fpackage-trust flag enabled.
To see which modules are provided by a package use the ghc-pkg command (see Package
management (the ghc-pkg command) (page 225)):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,

Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:
-package ⟨pkg⟩

This option causes the installed package ⟨pkg⟩ to be exposed. The package ⟨pkg⟩ can be
specified in full with its version number (e.g. network-1.0) or the version number can
be omitted in which case GHC will automatically expose the latest non-broken version
from the installed versions of the package.
By default (when -hide-all-packages (page 219) is not specified), GHC exposes only
one version of a package, all other versions become hidden. If -package option is spec-
ified multiple times for the same package the last one overrides the previous ones. On
the other hand, if -hide-all-packages (page 219) is used, GHC allows you to expose
multiple versions of a package by using the -package option multiple times with different
versions of the same package.
-package supports thinning and renaming described in Thinning and renaming modules
(page 220).
The -package ⟨pkg⟩ option also causes package ⟨pkg⟩ to be linked into the resulting exe-
cutable or shared object. Whether a packages’ library is linked statically or dynamically
is controlled by the flag pair -static (page 242)/ -dynamic (page 242).
In --make (page 86) mode and --interactive (page 86) mode (see Modes of operation
(page 86)), the compiler normally determines which packages are required by the cur-
rent Haskell modules, and links only those. In batch mode however, the dependency
information isn’t available, and explicit -package options must be given when linking.
The one other time you might need to use -package to force linking a package is when
the package does not contain any Haskell modules (it might contain a C library only,

218 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

for example). In that case, GHC will never discover a dependency on it, so it has to be
mentioned explicitly.
For example, to link a program consisting of objects Foo.o and Main.o, where we made
use of the network package, we need to give GHC the -package flag thus:

$ ghc -o myprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source, because GHC
still reckons it’s in batch mode:

$ ghc -o myprog Foo.hs Main.hs -package network

-package-id ⟨unit-id⟩
Exposes a package like -package ⟨pkg⟩ (page 218), but the package is named by its
unit ID (i.e. the value of id in its entry in the installed package database, also previously
known as an installed package ID) rather than by name. This is a more robust way to
name packages, and can be used to select packages that would otherwise be shadowed.
Cabal passes -package-id flags to GHC. -package-id supports thinning and renaming
described in Thinning and renaming modules (page 220).

-hide-all-packages
Ignore the exposed flag on installed packages, and hide them all by default. If you use
this flag, then any packages you require (including base) need to be explicitly exposed
using -package ⟨pkg⟩ (page 218) options.
This is a good way to insulate your program from differences in the globally exposed
packages, and being explicit about package dependencies is a Good Thing. Cabal always
passes the -hide-all-packages flag to GHC, for exactly this reason.

-hide-package ⟨pkg⟩
This option does the opposite of -package ⟨pkg⟩ (page 218): it causes the specified
package to be hidden, which means that none of its modules will be available for import
by Haskell import directives.
Note that the package might still end up being linked into the final program, if it is a
dependency (direct or indirect) of another exposed package.

-ignore-package ⟨pkg⟩
Causes the compiler to behave as if package ⟨pkg⟩, and any packages that depend on
⟨pkg⟩, are not installed at all.
Saying -ignore-package ⟨pkg⟩ is the same as giving -hide-package ⟨pkg⟩ (page 219)
flags for ⟨pkg⟩ and all the packages that depend on ⟨pkg⟩. Sometimes we don’t know
ahead of time which packages will be installed that depend on ⟨pkg⟩, which is when the
-ignore-package ⟨pkg⟩ (page 219) flag can be useful.

-no-auto-link-packages
By default, GHC will automatically link in the base and rts packages. This flag disables
that behaviour.

-this-unit-id ⟨unit-id⟩
Tells GHC that the module being compiled forms part of unit ID ⟨unit-id⟩; internally, these
keys are used to determine type equality and linker symbols. As of GHC 8.0, unit IDs
must consist solely of alphanumeric characters, dashes, underscores and periods. GHC
reserves the right to interpret other characters in a special way in later releases.

-trust ⟨pkg⟩
This option causes the install package ⟨pkg⟩ to be both exposed and trusted by GHC.

5.9. Packages 219

GHC User’s Guide Documentation, Release 9.2.6

This command functions in a very similar way to the -package ⟨pkg⟩ (page 218) com-
mand but in addition sets the selected packages to be trusted by GHC, regardless of the
contents of the package database. (see Safe Haskell (page 530)).

-distrust ⟨pkg⟩
This option causes the install package ⟨pkg⟩ to be both exposed and distrusted by GHC.
This command functions in a very similar way to the -package ⟨pkg⟩ (page 218) com-
mand but in addition sets the selected packages to be distrusted by GHC, regardless of
the contents of the package database. (see Safe Haskell (page 530)).

-distrust-all-packages
Ignore the trusted flag on installed packages, and distrust them by default. If you use
this flag and Safe Haskell then any packages you require to be trusted (including base)
need to be explicitly trusted using -trust ⟨pkg⟩ (page 538) options. This option does
not change the exposed/hidden status of a package, so it isn’t equivalent to applying -
distrust ⟨pkg⟩ (page 538) to all packages on the system. (see Safe Haskell (page 530)).

5.9.2 The main package

Every complete Haskell program must define main in module Main in package main. Omitting
the -this-unit-id ⟨unit-id⟩ (page 219) flag compiles code for package main. Failure to
do so leads to a somewhat obscure link-time error of the form:

/usr/bin/ld: Undefined symbols:
_ZCMain_main_closure

5.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two
modules with the same name: perhaps you used a package P that has a hidden module M,
and there is also a module M in your program. Or perhaps the dependencies of packages that
you used contain some overlapping modules. Perhaps the program even contains multiple
versions of a certain package, due to dependencies from other packages.
None of these scenarios gives rise to an error on its own 1, but they may have some interesting
consequences. For instance, if you have a type M.T from version 1 of package P, then this is
not the same as the type M.T from version 2 of package P, and GHC will report an error if you
try to use one where the other is expected.
Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely
identified by the pair of the module name in which it is defined and its name. In GHC, an
entity is uniquely defined by a triple: package, module, and name.

5.9.4 Thinning and renaming modules

When incorporating packages frommultiple sources, you may end up in a situation where mul-
tiple packages publish modules with the same name. Previously, the only way to distinguish
between these modules was to use Package-qualified imports (page 306). However, since
GHC 7.10, the -package ⟨pkg⟩ (page 218) flags (and their variants) have been extended to
allow a user to explicitly control what modules a package brings into scope, by analogy to the
import lists that users can attach to module imports.

1 it used to in GHC 6.4, but not since 6.6

220 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

The basic syntax is that instead of specifying a package name P to the package flag -package,
instead we specify both a package name and a parenthesized, comma-separated list of mod-
ule names to import. For example, -package "base (Data.List,Data.Bool)" makes only
Data.List and Data.Bool visible from package base. We also support renaming of modules,
in case you need to refer to both modules simultaneously; this is supporting by writing Old-
ModName as NewModName, e.g. -package "base (Data.Bool as Bool). You can also write
-package "base with (Data.Bool as Bool) to include all of the original bindings (e.g. the
renaming is strictly additive). It’s important to specify quotes so that your shell passes the
package name and thinning/renaming list as a single argument to GHC.
Package imports with thinning/renaming do not hide other versions of the package: e.g.
if containers-0.9 is already exposed, -package "containers-0.8 (Data.List as ListV8)"
will only add an additional binding to the environment. Similarly, -package "base
(Data.Bool as Bool)" -package "base (Data.List as List)" is equivalent to -package
"base (Data.Bool as Bool,Data.List as List)". Literal names must refer to modules
defined by the original package, so for example -package "base (Data.Bool as Bool,Bool
as Baz)" is invalid unless there was a Bool module defined in the original package. Hiding
a package also clears all of its renamings.
You can use renaming to provide an alternate prelude, e.g. -hide-all-packages -package
"basic-prelude (BasicPrelude as Prelude)", in lieu of the Rebindable syntax and the im-
plicit Prelude import (page 285) extension.

5.9.5 Package Databases

A package database is where the details about installed packages are stored. It is a directory,
usually called package.conf.d, that contains a file for each package, together with a binary
cache of the package data in the file package.cache. Normally you won’t need to look at or
modify the contents of a package database directly; all management of package databases
can be done through the ghc-pkg tool (see Package management (the ghc-pkg command)
(page 225)).
GHC knows about two package databases in particular:
• The global package database, which comes with your GHC installation, e.g.
/usr/lib/ghc-6.12.1/package.conf.d.

• The user package database private to each user. On Unix systems this will be
$XDG_DATA_HOME/ghc/arch-os-version/package.conf.d, and on Windows it will be
something like C:\Documents And Settings\user\ghc\package.conf.d. The ghc-pkg
tool knows where this file should be located, and will create it if it doesn’t exist (see
Package management (the ghc-pkg command) (page 225)).

Package database stack: Package databases are arranged in a stack structure. When GHC
starts up it adds the global and the user package databases to the stack, in that order, unless
GHC_PACKAGE_PATH (page 222) is specified. When GHC_PACKAGE_PATH is specified then it
will determine the initial database stack. Several command line options described below can
further manipulate this initial stack. You can see GHC’s effective package database stack by
running GHC with the -v (page 91) flag.
This stack structure means that the order of -package-db ⟨file⟩ (page 222) flags or
GHC_PACKAGE_PATH (page 222) is important. Each substack of the stack must be well formed
(packages in databases on top of the stack can refer to packages below, but not vice versa).
Package shadowing: When multiple package databases are in use it is possible, though rarely,
that the same installed package id is present in more than one database. In that case, pack-
ages closer to the top of the stack will override (shadow) those below them. If the conflicting

5.9. Packages 221

GHC User’s Guide Documentation, Release 9.2.6

packages are found to be equivalent (by ABI hash comparison) then one of them replaces all
references to the other, otherwise the overridden package and all those depending on it will
be removed.
Package version selection: When selecting a package, GHC will search for packages in all
available databases. If multiple versions of the same package are available the latest non-
broken version will be chosen.
Version conflict resolution: If multiple instances of a package version chosen by GHC are
available then GHC will choose an unspecified instance.
You can control GHC’s package database stack using the following options:
-package-db ⟨file⟩

Add the package database ⟨file⟩ on top of the current stack.
-no-global-package-db

Remove the global package database from the package database stack.
-no-user-package-db

Prevent loading of the user’s local package database in the initial stack.
-clear-package-db

Reset the current package database stack. This option removes every previously spec-
ified package database (including those read from the GHC_PACKAGE_PATH (page 222)
environment variable) from the package database stack.

-global-package-db
Add the global package database on top of the current stack. This option can be used
after -no-global-package-db (page 222) to specify the position in the stack where the
global package database should be loaded.

-user-package-db
Add the user’s package database on top of the current stack. This option can be used
after -no-user-package-db (page 222) to specify the position in the stack where the
user’s package database should be loaded.

The GHC_PACKAGE_PATH environment variable

GHC_PACKAGE_PATH
The GHC_PACKAGE_PATH environment variable may be set to a :-separated (;-
separated on Windows) list of files containing package databases. This list of package
databases, used by GHC and ghc-pkg, specifies a stack of package databases from top to
bottom. This order was chosen to match the behaviour of the PATH environment variable
where entries earlier in the PATH override ones that come later. See Package Databases
(page 221) for details on how the package database stack is used.
Normally GHC_PACKAGE_PATH replaces the default package stack. For example, all of
the following commands are equivalent, creating a stack with db1 at the top followed by
db2 (use ; instead of : on Windows):

$ ghc -clear-package-db -package-db db2.conf -package-db db1.conf
$ env GHC_PACKAGE_PATH=db1.conf:db2.conf ghc
$ env GHC_PACKAGE_PATH=db2.conf ghc -package-db db1.conf

However, if GHC_PACKAGE_PATH ends in a separator, the default databases (i.e. the
user and global package databases, in that order) are appended to the path. For example,
to augment the usual set of packages with a database of your own, you could say (on
Unix):

222 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

$ export GHC_PACKAGE_PATH=$XDG_DATA_HOME/.my-ghc-packages.conf:

To check whether your GHC_PACKAGE_PATH setting is doing the right thing, ghc-pkg
list will list all the databases in use, in the reverse order they are searched.

Package environments

A package environment file is a file that tells ghc precisely which packages should be visible.
It can be used to create environments for ghc or ghci that are local to a shell session or to
some file system location. They are intended to be managed by build/package tools, to enable
ghc and ghci to automatically use an environment created by the tool.
In the case of ghci, the environment file will be read once, during initialisation. If the file
changes then you have to restart GHCi to reflect the updated file.
The file contains package IDs and optionally package databases, one directive per line:

clear-package-db
global-package-db
user-package-db
package-db db.d/
package-id id_1
package-id id_2
...
package-id id_n

If such a package environment is found, it is equivalent to passing these command line argu-
ments to ghc:

-hide-all-packages
-clear-package-db
-global-package-db
-user-package-db
-package-db db.d/
-package-id id_1
-package-id id_2
...
-package-id id_n

Note the implicit -hide-all-packages (page 219) and the fact that it is -package-id ⟨unit-
id⟩ (page 219), not -package ⟨pkg⟩ (page 218). This is because the environment specifies
precisely which packages should be visible.
Note that for the package-db directive, if a relative path is given it must be relative to the
location of the package environment file.
-package-env ⟨file⟩|⟨name⟩

Use the package environment in ⟨file⟩, or in $XDG_DATA_HOME/ghc/arch-os-
version/environments/⟨name⟩ If set to - no package environment is read.

GHC_ENVIRONMENT
Specifies the path to the package environment file to be used by GHC. Overridden by the
-package-env ⟨file⟩|⟨name⟩ (page 223) flag if set.

In order, ghc will look for the package environment in the following locations:
• File ⟨file⟩ if you pass the option -package-env ⟨file⟩|⟨name⟩ (page 223).

5.9. Packages 223

GHC User’s Guide Documentation, Release 9.2.6

• File $XDG_DATA_HOME/ghc/arch-os-version/environments/name if you pass the option
-package-env ⟨name⟩.
• File ⟨file⟩ if the environment variable GHC_ENVIRONMENT (page 223) is set to ⟨file⟩.
• File $XDG_DATA_HOME/ghc/arch-os-version/environments/name if the environment
variable GHC_ENVIRONMENT (page 223) is set to ⟨name⟩.

Additionally, unless -hide-all-packages is specified ghc will also look for the package envi-
ronment in the following locations:
• File .ghc.environment.arch-os-version if it exists in the current directory or any par-
ent directory (but not the user’s home directory).

• File $XDG_DATA_HOME/ghc/arch-os-version/environments/default if it exists.
Package environments can be modified by further command line arguments; for example, if
you specify -package foo on the command line, then package ⟨foo⟩ will be visible even if it’s
not listed in the currently active package environment.

5.9.6 Installed package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”), which distin-
guishes it from all other installed packages on the system. To see the installed package IDs
associated with each installed package, use ghc-pkg list -v:

$ ghc-pkg list -v
using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache
/usr/lib/ghc-6.12.1/package.conf.d

Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853af93593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbb157b9ae852096266e113b8fac4a2)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c)
...

The string in parentheses after the package name is the installed package ID: it normally be-
gins with the package name and version, and ends in a hash string derived from the compiled
package. Dependencies between packages are expressed in terms of installed package IDs,
rather than just packages and versions. For example, take a look at the dependencies of the
haskell98 package:

$ ghc-pkg field haskell98 depends
depends: array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d

base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
directory-1.0.0.2-f51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e27f2b8e9
old-time-1.0.0.1-1c0d8ea38056e5087ef1e75cb0d139d1
process-1.0.1.1-d8fc6d3baf44678a29b9d59ca0ad5780
random-1.0.0.1-423d08c90f004795fd10e60384ce6561

The purpose of the installed package ID is to detect problems caused by re-installing a pack-
age without also recompiling the packages that depend on it. Recompiling dependencies is
necessary, because the newly compiled package may have a different ABI (Application Binary
Interface) than the previous version, even if both packages were built from the same source
code using the same compiler. With installed package IDs, a recompiled package will have a
different installed package ID from the previous version, so packages that depended on the
previous version are now orphaned - one of their dependencies is not satisfied. Packages that

224 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

are broken in this way are shown in the ghc-pkg list output either in red (if possible) or oth-
erwise surrounded by braces. In the following example, we have recompiled and reinstalled
the filepath package, and this has caused various dependencies including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run 'ghc-pkg check' for more details.
/usr/lib/ghc-6.12.1/package.conf.d:

{Cabal-1.7.4}
array-0.2.0.1
base-3.0.3.0
... etc ...

Additionally, ghc-pkg list reminds you that there are broken packages and suggests ghc-
pkg check, which displays more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:
dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

There are problems in package haskeline-0.6.2:
dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

There are problems in package Cabal-1.7.4:
dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

There are problems in package process-1.0.1.1:
dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

There are problems in package directory-1.0.0.2:
dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.
ghc-6.12.1
haskeline-0.6.2
Cabal-1.7.4
process-1.0.1.1
directory-1.0.0.2
bin-package-db-0.0.0.0
hpc-0.5.0.2
haskell98-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependen-
cies. The easiest way to do this is to use cabal-install, or download the packages from
HackageDB and build and install them as normal.
Be careful not to recompile any packages that GHC itself depends on, as this may render the
ghc package itself broken, and ghc cannot be simply recompiled. The only way to recover
from this would be to re-install GHC.

5.9.7 Package management (the ghc-pkg command)

The ghc-pkg tool is for querying and modifying package databases. To see what pack-
age databases are in use, use ghc-pkg list. The stack of databases that ghc-pkg knows
about can be modified using the GHC_PACKAGE_PATH (page 222) environment variable (see
The GHC_PACKAGE_PATH environment variable (page 222), and using -package-db ⟨file⟩
(page 222) options on the ghc-pkg command line.
When asked tomodify a database, ghc-pkgmodifies the global database by default. Specifying
--user causes it to act on the user database, or --package-db can be used to act on another

5.9. Packages 225

http://hackage.haskell.org/packages/hackage.html

GHC User’s Guide Documentation, Release 9.2.6

database entirely. When multiple of these options are given, the rightmost one is used as the
database to act upon.
Commands that query the package database (list, latest, describe, field, dot) operate on the
list of databases specified by the flags --user, --global, and --package-db. If none of these
flags are given, the default is --global --user.
If the environment variable GHC_PACKAGE_PATH (page 222) is set, and its value does not end
in a separator (: on Unix, ; on Windows), then the last database is considered to be the
global database, and will be modified by default by ghc-pkg. The intention here is that
GHC_PACKAGE_PATH can be used to create a virtual package environment into which Cabal
packages can be installed without setting anything other than GHC_PACKAGE_PATH.
The ghc-pkg programmay be run in the ways listed below. Where a package name is required,
the package can be named in full including the version number (e.g. network-1.0), or without
the version number. Naming a package without the version number matches all versions of
the package; the specified action will be applied to all the matching packages. A package
specifier that matches all version of the package can also be written ⟨pkg⟩ -*, to make it
clearer that multiple packages are being matched. To match against the installed package ID
instead of just package name and version, pass the --ipid flag.
ghc-pkg init path Creates a new, empty, package database at ⟨path⟩, which must not al-

ready exist.
ghc-pkg register ⟨file⟩ Reads a package specification from ⟨file⟩ (which may be “-” to

indicate standard input), and adds it to the database of installed packages. The syntax
of ⟨file⟩ is given in InstalledPackageInfo: a package specification (page 230).
The package specification must be a package that isn’t already installed.

ghc-pkg update ⟨file⟩ The same as register, except that if a package of the same name
is already installed, it is replaced by the new one.

ghc-pkg unregister ⟨P⟩ Remove the specified package from the database.
ghc-pkg check Check consistency of dependencies in the package database, and report pack-

ages that have missing dependencies.
ghc-pkg expose ⟨P⟩ Sets the exposed flag for package ⟨P⟩ to True.
ghc-pkg hide ⟨P⟩ Sets the exposed flag for package ⟨P⟩ to False.
ghc-pkg trust ⟨P⟩ Sets the trusted flag for package ⟨P⟩ to True.
ghc-pkg distrust ⟨P⟩ Sets the trusted flag for package ⟨P⟩ to False.
ghc-pkg list [⟨P⟩] [--simple-output] This option displays the currently installed pack-

ages, for each of the databases known to ghc-pkg. That includes the global database, the
user’s local database, and any further files specified using the -f option on the command
line.
Hidden packages (those for which the exposed flag is False) are shown in parentheses
in the list of packages.
If an optional package identifier ⟨P⟩ is given, then only packages matching that identifier
are shown.
If the option --simple-output is given, then the packages are listed on a single line
separated by spaces, and the database names are not included. This is intended to make
it easier to parse the output of ghc-pkg list using a script.

ghc-pkg find-module ⟨M⟩ [--simple-output] This option lists registered packages expos-
ing module ⟨M⟩. Examples:

226 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:

(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:

containers-0.1

Otherwise, it behaves like ghc-pkg list, including options.
ghc-pkg latest ⟨P⟩ Prints the latest available version of package ⟨P⟩.
ghc-pkg describe ⟨P⟩ Emit the full description of the specified package. The description is

in the form of an InstalledPackageInfo, the same as the input file format for ghc-pkg
register. See InstalledPackageInfo: a package specification (page 230) for details.
If the pattern matches multiple packages, the description for each package is emitted,
separated by the string --- on a line by itself.

ghc-pkg field ⟨P⟩ ⟨field⟩[,⟨field⟩]* Show just a single field of the installed package
description for P. Multiple fields can be selected by separating them with commas

ghc-pkg dot Generate a graph of the package dependencies in a form suitable for input for
the graphviz tools. For example, to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc-pkg dump Emit the full description of every package, in the form of an InstalledPack-
ageInfo. Multiple package descriptions are separated by the string --- on a line by
itself.
This is almost the same as ghc-pkg describe '*', except that ghc-pkg dump is intended
for use by tools that parse the results, so for example where ghc-pkg describe '*' will
emit an error if it can’t find any packages that match the pattern, ghc-pkg dump will
simply emit nothing.

ghc-pkg recache Re-creates the binary cache file package.cache for the selected database.
This may be necessary if the cache has somehow become out-of-sync with the contents
of the database (ghc-pkg will warn you if this might be the case).
The other time when ghc-pkg recache is useful is for registering packages manually: it
is possible to register a package by simply putting the appropriate file in the package
database directory and invoking ghc-pkg recache to update the cache. This method of
registering packages may be more convenient for automated packaging systems.

Substring matching is supported for ⟨M⟩ in find-module and for ⟨P⟩ in list, describe, and
field, where a '*' indicates open substring ends (prefix*, *suffix, *infix*). Examples
(output omitted):

-- list all regex-related packages
ghc-pkg list '*regex*' --ignore-case
-- list all string-related packages
ghc-pkg list '*string*' --ignore-case
-- list OpenGL-related packages
ghc-pkg list '*gl*' --ignore-case
-- list packages exporting modules in the Data hierarchy
ghc-pkg find-module 'Data.*'
-- list packages exporting Monad modules
ghc-pkg find-module '*Monad*'
-- list names and maintainers for all packages

5.9. Packages 227

http://www.graphviz.org/

GHC User’s Guide Documentation, Release 9.2.6

ghc-pkg field '*' name,maintainer
-- list location of haddock htmls for all packages
ghc-pkg field '*' haddock-html
-- dump the whole database
ghc-pkg describe '*'

Additionally, the following flags are accepted by ghc-pkg:
-f ⟨file⟩, -package-db ⟨file⟩ Adds ⟨file⟩ to the stack of package databases. Additionally,

⟨file⟩ will also be the database modified by a register, unregister, expose or hide
command, unless it is overridden by a later --package-db, --user or --global option.

--force Causes ghc-pkg to ignore missing dependencies, directories and libraries when
registering a package, and just go ahead and add it anyway. This might be useful if
your package installation system needs to add the package to GHC before building and
installing the files.

--global Operate on the global package database (this is the default). This flag affects the
register, update, unregister, expose, and hide commands.

--help, -? Outputs the command-line syntax.
--user Operate on the current user’s local package database. This flag affects the register,

update, unregister, expose, and hide commands.
-v [⟨n⟩], --verbose [=⟨n⟩] Control verbosity. Verbosity levels range from 0-2, where the

default is 1, and -v alone selects level 2.
-V; --version Output the ghc-pkg version number.
--ipid, --unit-id Causes ghc-pkg to interpret arguments as installed unit IDs (e.g., an

identifier like unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240). This is useful if
providing just the package name and version are ambiguous (in old versions of GHC,
this was guaranteed to be unique, but this invariant no longer necessarily holds).

5.9.8 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure
if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so a few hints for those brave souls
follow.
You need to build an “installed package info” file for passing to ghc-pkg when installing your
package. The contents of this file are described in InstalledPackageInfo: a package specifica-
tion (page 230).
The Haskell code in a package may be built into one or more archive libraries (e.g. libHS-
foo.a), or a single shared object (e.g. libHSfoo.dll/.so/.dylib). The restriction to a single
shared object is because the package system is used to tell the compiler when it should make
an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-object
calls require an extra indirection).
• Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo-1.0.a A.o B.o C.o ...

where A.o, B.o and so on are the compiled Haskell modules, and libHSfoo.a is the
library you wish to create. The syntax may differ slightly on your system, so check the
documentation if you run into difficulties.

228 Chapter 5. Using GHC

http://www.haskell.org/cabal/users-guide/

GHC User’s Guide Documentation, Release 9.2.6

• To load a package foo, GHCi can load its libHSfoo.a library directly, but it can also
load a package in the form of a single HSfoo.o file that has been pre-linked. Loading
the .o file is slightly quicker, but at the expense of having another copy of the compiled
package. The rule of thumb is that if the modules of the package were compiled with
-split-sections (page 242) then building the HSfoo.o is worthwhile because it saves
time when loading the package into GHCi. Without -split-sections (page 242), there
is not much difference in load time between the .o and .a libraries, so it is better to save
the disk space and only keep the .a around. In a GHC distribution we provide .o files
for most packages except the GHC package itself.
The HSfoo.o file is built by Cabal automatically; use --disable-library-for-ghci to
disable it. To build one manually, the following GNU ld command can be used:

ld -r --whole-archive -o HSfoo.o libHSfoo.a

(replace --whole-archive with -all_load on MacOS X)
• When building the package as shared library, GHC can be used to perform the link step.
This hides some of the details out the underlying linker and provides a common interface
to all shared object variants that are supported by GHC (DLLs, ELF DSOs, and Mac OS
dylibs). The shared object must be named in specific way for two reasons: (1) the name
must contain the GHC compiler version, so that two library variants don’t collide that
are compiled by different versions of GHC and that therefore are most likely incompat-
ible with respect to calling conventions, (2) it must be different from the static name
otherwise we would not be able to control the linker as precisely as necessary to make
the -static (page 242)/-dynamic (page 242) flags work, see Options affecting linking
(page 241).

ghc -shared -dynamic -o libHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC’s version number in the shared object name allows different library versions
compiled by different GHC versions to be installed in standard system locations, e.g. un-
der *nix /usr/lib. To obtain the version number of GHC invoke ghc --numeric-version
and use its output in place of ⟨GHCVersion⟩. See also Options affecting code generation
(page 240) on how object files must be prepared for shared object linking.

• When building a shared library, care must be taken to ensure that the resulting object
is named appropriately. In particular, GHC expects the name of a shared object to have
the form libHS<unit id>-ghc<ghc version>.<ext> where unit id is the unit ID given
during compilation via the -this-unit-id ⟨unit-id⟩ (page 219) flag, ghc version is the
version of GHC that produced/consumes the object and ext is the host system’s usual file
extension for shared objects.

To compile a module which is to be part of a new package, use the -package-name (to identify
the name of the package) and -library-name (to identify the version and the version hashes
of its identities.) options (Using Packages (page 217)). Failure to use these options when
compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the
package name it was expecting the module to come from is not the same as the package name
stored in the .hi file.
It is worth noting with shared objects, when each package is built as a single shared object
file, since a reference to a shared object costs an extra indirection, intra-package references
are cheaper than inter-package references. Of course, this applies to the main package as
well.

5.9. Packages 229

GHC User’s Guide Documentation, Release 9.2.6

5.9.9 InstalledPackageInfo: a package specification

A package specification is a Haskell record; in particular, it is the record
Distribution.InstalledPackageInfo.InstalledPackageInfo in the module Distribu-
tion.InstalledPackageInfo, which is part of the Cabal package distributed with GHC.
An InstalledPackageInfo has a human readable/writable syntax. The functions parse-
InstalledPackageInfo and showInstalledPackageInfo read and write this syntax respec-
tively. Here’s an example of the InstalledPackageInfo for the unix package:

$ ghc-pkg describe unix
name: unix
version: 2.3.1.0
id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240
license: BSD3
copyright:
maintainer: libraries@haskell.org
stability:
homepage:
package-url:
description: This package gives you access to the set of operating system

services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).
.
The package is not supported under Windows (except under Cygwin).

category: System
author:
exposed: True
exposed-modules: System.Posix System.Posix.DynamicLinker.Module

System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.IO System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:
trusted: False
import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
hs-libraries: HSunix-2.3.1.0
extra-libraries: rt util dl
extra-ghci-libraries:
include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include
includes: HsUnix.h execvpe.h
depends: base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
hugs-options:
cc-options:
ld-options:
framework-dirs:
frameworks:
haddock-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock
haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:
A package description consists of a number of field/value pairs. A field starts with the field

230 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

name in the left-hand column followed by a “:”, and the value continues until the next line
that begins in the left-hand column, or the end of file.
The syntax of the value depends on the field. The various field types are:
freeform Any arbitrary string, no interpretation or parsing is done.
string A sequence of non-space characters, or a sequence of arbitrary characters surrounded

by quotes "....".
string list A sequence of strings, separated by commas. The sequence may be empty.
In addition, there are some fields with special syntax (e.g. package names, version, depen-
dencies).
The allowed fields, with their types, are:
name (string) The package’s name (without the version).
id (string) The installed package ID. It is up to you to choose a suitable one.
version (string) The package’s version, usually in the form A.B (any number of components

are allowed).
license (string) The type of license under which this package is distributed. This field is a

value of the Distribution.License.License type.
license-file (optional string) The name of a file giving detailed license information for this

package.
copyright (optional freeform) The copyright string.
maintainer (optional freeform) The email address of the package’s maintainer.
stability (optional freeform) A string describing the stability of the package (e.g. stable,

provisional or experimental).
homepage (optional freeform) URL of the package’s home page.
package-url (optional freeform) URL of a downloadable distribution for this package. The

distribution should be a Cabal package.
description (optional freeform) Description of the package.
category (optional freeform) Which category the package belongs to. This field is for use in

conjunction with a future centralised package distribution framework, tentatively titled
Hackage.

author (optional freeform) Author of the package.
exposed (bool) Whether the package is exposed or not.
exposed-modules (string list) modules exposed by this package.
hidden-modules (string list) modules provided by this package, but not exposed to the pro-

grammer. These modules cannot be imported, but they are still subject to the overlap-
ping constraint: no other package in the same program may provide a module of the
same name.

reexported-modules Modules reexported by this package. This list takes the form of
pkg:OldName as NewName (A@orig-pkg-0.1-HASH): the first portion of the string is the
user-written reexport specification (possibly omitting the package qualifier and the re-
naming), while the parenthetical is the original package which exposed themodule under

5.9. Packages 231

GHC User’s Guide Documentation, Release 9.2.6

are particular name. Reexported modules have a relaxed overlap constraint: it’s permis-
sible for two packages to reexport the same module as the same name if the reexported
moduleis identical.

trusted (bool) Whether the package is trusted or not.
import-dirs (string list) A list of directories containing interface files (.hi files) for this

package.
If the package contains profiling libraries, then the interface files for those library mod-
ules should have the suffix .p_hi. So the package can contain both normal and profiling
versions of the same library without conflict (see also library_dirs below).

library-dirs (string list) A list of directories containing libraries for this package.
hs-libraries (string list) A list of libraries containing Haskell code for this package, with

the .a or .dll suffix omitted. When packages are built as libraries, the lib prefix is also
omitted.
For use with GHCi, each library should have an object file too. The name of the object
file does not have a lib prefix, and has the normal object suffix for your platform.
For example, if we specify a Haskell library as HSfoo in the package spec, then the various
flavours of library that GHC actually uses will be called:
libHSfoo.a The name of the library on Unix and Windows (mingw) systems.
HSfoo.dll The name of the dynamic library on Windows systems (optional).
HSfoo.o; HSfoo.obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference be-
tween hs-libraries and extra-libraries is that hs-libraries normally have several
versions, to support profiling, parallel and other build options. The various versions
are given different suffixes to distinguish them, for example the profiling version of the
standard prelude library is named libHSbase_p.a, with the _p indicating that this is a
profiling version. The suffix is added automatically by GHC for hs-libraries only, no
suffix is added for libraries in extra-libraries.
The libraries listed in extra-librariesmay be any libraries supported by your system’s
linker, including dynamic libraries (.so on Unix, .DLL on Windows).
Also, extra-libraries are placed on the linker command line after the hs-libraries for
the same package. If your package has dependencies in the other direction (i.e. extra-
libraries depends on hs-libraries), and the libraries are static, you might need to
make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.
includes (string list) A list of files to include for via-C compilations using this package. Typ-

ically the include file(s) will contain function prototypes for any C functions used in the
package, in case they end up being called as a result of Haskell functions from the pack-
age being inlined.

depends (package id list) Packages on which this package depends.
hugs-options (string list) Options to pass to Hugs for this package.
cc-options (string list) Extra arguments to be added to the gcc command line when this

package is being used (only for via-C compilations).
ld-options (string list) Extra arguments to be added to the gcc command line (for linking)

when this package is being used.

232 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

framework-dirs (string list) On Darwin/MacOS X, a list of directories containing frameworks
for this package. This corresponds to the -framework-path option. It is ignored on all
other platforms.

frameworks (string list) OnDarwin/MacOS X, a list of frameworks to link to. This corresponds
to the -framework option. Take a look at Apple’s developer documentation to find out
what frameworks actually are. This entry is ignored on all other platforms.

haddock-interfaces (string list) A list of filenames containing Haddock interface files (.had-
dock files) for this package.

haddock-html (optional string) The directory containing the Haddock-generated HTML for
this package.

5.10 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible
for taking the last intermediate representation that GHC uses (a form called Cmm that is a
simple, C like language) and compiling it to executable code. The backends that GHC support
are described below.

5.10.1 Native Code Generator (-fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to
assembly code. It is the fastest backend and generally produces good performance code. It
has the best support for compiling shared libraries. Select it with the -fasm flag.

5.10.2 LLVM Code Generator (-fllvm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It
generally produces code with performance as good as the native code generator but for some
cases can produce much faster code. This is especially true for numeric, array heavy code
using packages like vector. The penalty is a significant increase in compilation times. Select
the LLVM backend with the -fllvm (page 240) flag.
You must install and have LLVM available on your PATH for the LLVM code generator to work.
Specifically GHC needs to be able to call the opt and llc tools. Secondly, if you are run-
ning Mac OS X with LLVM 3.0 or greater then you also need the Clang C compiler compiler
available on your PATH.

Note: Note that this GHC release expects an LLVM version in the 9 up to 13 (not inclusive)
release series.

To install LLVM and Clang:
• Linux: Use your package management tool.
• Mac OS X: Clang is included by default on recent OS X machines when Xcode is installed
(from 10.6 and later). LLVM is not included. In order to use the LLVM based code
generator, you should install the Homebrew package manager for OS X. Alternatively
you can download binaries for LLVM and Clang from here.

• Windows: You should download binaries for LLVM and clang from here.

5.10. GHC Backends 233

http://www.haskell.org/haddock/
http://llvm.org
http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html

GHC User’s Guide Documentation, Release 9.2.6

5.10.3 C Code Generator (-fvia-C)

-fvia-C
Use the C code generator. Only supposed in unregisterised GHC builds.

This is the oldest code generator in GHC and is generally not included any more having been
deprecated around GHC 7.0. Select it with the -fvia-C (page 234) flag.
The C code generator is only supported when GHC is built in unregisterised mode, a mode
where GHC produces “portable” C code as output to facilitate porting GHC itself to a new
platform. This mode produces much slower code though so it’s unlikely your version of GHC
was built this way. If it has then the native code generator probably won’t be available. You
can check this information by calling ghc --info (see --info (page 87)).

5.10.4 Unregisterised compilation

The term “unregisterised” reallymeans “compile via vanilla C”, disabling some of the platform-
specific tricks that GHC normally uses to make programs go faster. When compiling unregis-
terised, GHC simply generates a C file which is compiled via gcc.
When GHC is build in unregisterised mode only the LLVM and C code generators will be
available. The native code generator won’t be. LLVM usually offers a substantial performance
benefit over the C backend in unregisterised mode.
Unregisterised compilation can be useful when porting GHC to a new machine, since it re-
duces the prerequisite tools to gcc, as, and ld and nothing more, and furthermore the amount
of platform-specific code that needs to be written in order to get unregisterised compilation
going is usually fairly small.
Unregisterised compilation cannot be selected at compile-time; you have to build GHC with
the appropriate options set. Consult the GHC Building Guide for details.
You can check if your GHC is unregisterised by calling ghc --print-unregisterised (see
--print-unregisterised (page 89)) or ghc --info (see --info (page 87)).

5.11 Options related to a particular phase

5.11.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation
system, in place of whatever the ghc has wired into it. For example, you might want to try
a different assembler. The following options allow you to change the external program used
for a given compilation phase:
-pgmL ⟨cmd⟩

Use ⟨cmd⟩ as the literate pre-processor.
-pgmP ⟨cmd⟩

Use ⟨cmd⟩ as the C pre-processor (with -cpp only).
-pgmc ⟨cmd⟩

Use ⟨cmd⟩ as the C compiler.
-pgmlo ⟨cmd⟩

Use ⟨cmd⟩ as the LLVM optimiser.

234 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-pgmlc ⟨cmd⟩
Use ⟨cmd⟩ as the LLVM compiler.

-pgms ⟨cmd⟩
Use ⟨cmd⟩ as the splitter.

-pgma ⟨cmd⟩
Use ⟨cmd⟩ as the assembler.

-pgml ⟨cmd⟩
Use ⟨cmd⟩ as the linker.

-pgmlm ⟨cmd⟩
Use ⟨cmd⟩ as the linker when merging object files (e.g. when generating joined objects
for loading into GHCi).

-pgmdll ⟨cmd⟩
Use ⟨cmd⟩ as the DLL generator.

-pgmF ⟨cmd⟩
Use ⟨cmd⟩ as the pre-processor (with -F (page 239) only).

-pgmotool ⟨cmd⟩
Use ⟨cmd⟩ as the program to inspect mach-o dynamic libraries and executables to read
the dynamic library dependencies. We will compute the necessary runpath``s to em-
bed for the dependencies based on the result of the ``otool call.

-pgminstall_name_tool ⟨cmd⟩
Use ⟨cmd⟩ as the program to inject runpath``s into mach-o dynamic libraries and
executables. As detected by the ``otool call.

-pgmwindres ⟨cmd⟩
Use ⟨cmd⟩ as the program to use for embedding manifests on Windows. Normally this
is the program windres, which is supplied with a GHC installation. See -fno-embed-
manifest in Options affecting linking (page 241).

-pgmlibtool ⟨cmd⟩
Use ⟨cmd⟩ as the libtool command (when using -staticlib (page 242) only).

-pgmi ⟨cmd⟩
Use ⟨cmd⟩ as the external interpreter command (see Running the interpreter in a sepa-
rate process (page 77)). Default: ghc-iserv-prof if -prof (page 597) is enabled, ghc-
iserv-dyn if -dynamic (page 242) is enabled, or ghc-iserv otherwise.

5.11.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:
-optL ⟨option⟩

Pass ⟨option⟩ to the literate pre-processor
-optP ⟨option⟩

Pass ⟨option⟩ to CPP (makes sense only if -cpp is also on).
-optF ⟨option⟩

Pass ⟨option⟩ to the custom pre-processor (see Options affecting a Haskell pre-processor
(page 239)).

-optc ⟨option⟩
Pass ⟨option⟩ to the C compiler.

5.11. Options related to a particular phase 235

GHC User’s Guide Documentation, Release 9.2.6

-pgmc-supports-no-pie
When -pgmc is used, GHC by default will never pass the -no-pie command line flag. The
rationale is that it is not known whether the specified compiler will support it. This flag
can be used to indicate that -no-pie is supported. It has to be passed after -pgmc.
This flag is not necessary when -pgmc is not used, since GHC remembers whether the
default C compiler supports -no-pie in an internal settings file.

-optcxx ⟨option⟩
Pass ⟨option⟩ to the C++ compiler.

-optlo ⟨option⟩
Pass ⟨option⟩ to the LLVM optimiser.

-optlc ⟨option⟩
Pass ⟨option⟩ to the LLVM compiler.

-opta ⟨option⟩
Pass ⟨option⟩ to the assembler.

-optl ⟨option⟩
Pass ⟨option⟩ to the linker.

-optlm ⟨option⟩
Pass ⟨option⟩ to the linker when merging object files. In the case of a standard ld-style
linker this should generally include the -r flag.

-optdll ⟨option⟩
Pass ⟨option⟩ to the DLL generator.

-optwindres ⟨option⟩
Pass ⟨option⟩ to windres when embedding manifests on Windows. See -fno-embed-
manifest in Options affecting linking (page 241).

-opti ⟨option⟩
Pass ⟨option⟩ to the interpreter sub-process (see Running the interpreter in a separate
process (page 77)). A common use for this is to pass RTS options e.g., -opti+RTS -opti-
A64m, or to enable verbosity with -opti-v to see what messages are being exchanged by
GHC and the interpreter.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver -
opta-Ewurble (the dash before the E is required).
GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime
system you can enclose them in +RTS ... -RTS (see Running a compiled program (page 178)).

5.11.3 Options affecting the C pre-processor

CPP

Since 6.8.1
The CPP (page 236) language extension enables the C pre-processor. This can be turned
into a command-line flag by prefixing it with -X; For example:

$ ghc -XCPP foo.hs

The CPP (page 236) language extension can also be enabled using the LANGUAGE
(page 556) pragma; For example:

236 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

{-# LANGUAGE CPP #-}

-cpp
The C pre-processor cpp is run over your Haskell code if the -cpp option or -XCPP exten-
sion are given. Unless you are building a large system with significant doses of condi-
tional compilation, you really shouldn’t need it.

-D⟨symbol⟩[=⟨value⟩]
Define macro ⟨symbol⟩ in the usual way. When no value is given, the value is taken to be
1. For instance, -DUSE_MYLIB is equivalent to -DUSE_MYLIB=1.

Note: -D⟨symbol⟩[=⟨value⟩] (page 237) does not affect -D macros passed to the
C compiler when compiling an unregisterised build! In this case use the -optc-Dfoo
hack… (see Forcing options to a particular phase (page 235)).

-U⟨symbol⟩
Undefine macro ⟨symbol⟩ in the usual way.

-I⟨dir⟩
Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs
files).

Standard CPP macros

The symbols defined by GHC are listed below. To check which symbols are defined by your
local GHC installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn’t actually used).
__GLASGOW_HASKELL__ For version x.y.z of GHC, the value of __GLASGOW_HASKELL__ is the

integer ⟨xyy⟩ (if ⟨y⟩ is a single digit, then a leading zero is added, so for example in version
6.2 of GHC, __GLASGOW_HASKELL__==602). More information in GHC version numbering
policy (page 4).
With any luck, __GLASGOW_HASKELL__ will be undefined in all other implementations that
support C-style pre-processing.

Note: The comparable symbols for other systems are: __HUGS__ for Hugs, __NHC__ for
nhc98, and __HBC__ for hbc).

NB. This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_FULL_VERSION__

__GLASGOW_HASKELL_PATCHLEVEL1__; __GLASGOW_HASKELL_PATCHLEVEL2__ These macros
are available starting with GHC 7.10.1.
For three-part GHC version numbers x.y.z, the value of __GLAS-
GOW_HASKELL_PATCHLEVEL1__ is the integer ⟨z⟩.

5.11. Options related to a particular phase 237

GHC User’s Guide Documentation, Release 9.2.6

For four-part GHC version numbers x.y.z.z', the value of __GLAS-
GOW_HASKELL_PATCHLEVEL1__ is the integer ⟨z⟩ while the value of __GLAS-
GOW_HASKELL_PATCHLEVEL2__ is set to the integer ⟨z’⟩.
These macros are provided for allowing finer granularity than is provided by __GLAS-
GOW_HASKELL__. Usually, this should not be necessary as it’s expected for most APIs to
remain stable between patchlevel releases, but occasionally internal API changes are
necessary to fix bugs. Also conditional compilation on the patchlevel can be useful for
working around bugs in older releases.

Tip: These macros are set when pre-processing both Haskell source and C source,
including the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc
files).

MIN_VERSION_GLASGOW_HASKELL(x,y,z,z') This macro is available starting with GHC
7.10.1.
This macro is provided for convenience to write CPP conditionals testing whether the
GHC version used is version x.y.z.z' or later.
If compatibility with Haskell compilers (including GHC prior to version 7.10.1)
which do not define MIN_VERSION_GLASGOW_HASKELL is required, the presence of the
MIN_VERSION_GLASGOW_HASKELL macro needs to be ensured before it is called, e.g.:

#if defined(MIN_VERSION_GLASGOW_HASKELL)
#if MIN_VERSION_GLASGOW_HASKELL(7,10,2,0)
/* code that applies only to GHC 7.10.2 or later */
#endif
#endif

Tip: This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_TH__ This is set to 1 when the compiler supports Template Haskell, and
to 0 when not. The latter is the case for a stage-1 compiler during bootstrapping, or on
architectures where the interpreter is not available.

__GLASGOW_HASKELL_LLVM__ Only defined when -fllvm is specified. When GHC is using
version x.y.z of LLVM, the value of __GLASGOW_HASKELL_LLVM__ is the integer ⟨xyy⟩ (if
⟨y⟩ is a single digit, then a leading zero is added, so for example when using version 3.7
of LLVM, __GLASGOW_HASKELL_LLVM__==307).

__PARALLEL_HASKELL__ Only defined when -parallel is in use! This symbol is defined when
pre-processing Haskell (input) and pre-processing C (GHC output).

os_HOST_OS=1 This define allows conditional compilation based on the Operating System,
where⟨os⟩ is the name of the current Operating System (eg. linux, mingw32 for Win-
dows, solaris, etc.).

arch_HOST_ARCH=1 This define allows conditional compilation based on the host architecture,
where⟨arch⟩ is the name of the current architecture (eg. i386, x86_64, powerpc, sparc,
etc.).

VERSION_pkgname This macro is available starting GHC 8.0. It is defined for every exposed
package. This macro expands to a string recording the version of pkgname that is exposed

238 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

for module import. It is identical in behavior to the VERSION_pkgnamemacros that Cabal
defines.

MIN_VERSION_pkgname(x,y,z) This macro is available starting GHC 8.0. It is defined for
every exposed package. This macro is provided for convenience to write CPP condi-
tionals testing if a package version is x.y.z or later. It is identical in behavior to the
MIN_VERSION_pkgname macros that Cabal defines.

CPP and string gaps

A small word of warning: -cpp (page 237) is not friendly to “string gaps”. In other words,
strings such as the following:

strmod = "\
\ p \
\ "

don’t work with -cpp (page 237); /usr/bin/cpp elides the backslash-newline pairs.
However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp
and possibly other cpps) leaves the backslash-space pairs alone and the string gap works as
expected.

5.11.4 Options affecting a Haskell pre-processor

-F
A custom pre-processor is run over your Haskell source file only if the -F option is given.
Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The -F option lets you run a pre-processor as part of the overall GHC compilation
pipeline, which has the advantage over running a Haskell pre-processor separately in
that it works in interpreted mode and you can continue to take reap the benefits of
GHC’s recompilation checker.
The pre-processor is run just before the Haskell compiler proper processes the Haskell
input, but after the literate markup has been stripped away and (possibly) the C pre-
processor has washed the Haskell input.
Use -pgmF ⟨cmd⟩ (page 235) to select the program to use as the preprocessor. When
invoked, the ⟨cmd⟩ pre-processor is given at least three arguments on its command-line:
the first argument is the name of the original source file, the second is the name of the
file holding the input, and the third is the name of the file where ⟨cmd⟩ should write its
output to.
Additional arguments to the pre-processor can be passed in using the -optF ⟨option⟩
(page 235) option. These are fed to ⟨cmd⟩ on the command line after the three standard
input and output arguments.
An example of a pre-processor is to convert your source files to the input encoding that
GHC expects, i.e. create a script convert.sh containing the lines:

#!/bin/sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f l1 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The -f l1 option tells iconv to convert your
Latin-1 file, supplied in argument $2, while the “-t utf-8” options tell iconv to return a
UTF-8 encoded file. The result is redirected into argument $3. The echo "{-# LINE 1

5.11. Options related to a particular phase 239

GHC User’s Guide Documentation, Release 9.2.6

\"$2\" #-}" just makes sure that your error positions are reported as in the original
source file.

5.11.5 Options affecting code generation

-fasm
Use GHC’s native code generator (page 233) rather than compiling via LLVM. -fasm is
the default.

-fllvm
Compile via LLVM (page 233) instead of using the native code generator. This will gen-
erally take slightly longer than the native code generator to compile. Produced code is
generally the same speed or faster than the other two code generators. Compiling via
LLVM requires LLVM’s opt and llc executables to be in PATH.

Note: Note that this GHC release expects an LLVM version in the |llvm-version| re-
lease series.

-fno-code
Omit code generation (and all later phases) altogether. This is useful if you’re only inter-
ested in type checking code.

-fwrite-interface
Always write interface files. GHC will normally write interface files automatically, but
this flag is useful with -fno-code (page 240), which normally suppresses generation of
interface files. This is useful if you want to type check over multiple runs of GHC without
compiling dependencies.

-fobject-code
Generate object code. This is the default outside of GHCi, and can be used with GHCi to
cause object code to be generated in preference to bytecode.

-fbyte-code
Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can
currently only be used in the interactive interpreter, not saved to disk. This option is
only useful for reversing the effect of -fobject-code (page 240).

-fPIC
Generate position-independent code (code that can be put into shared libraries). This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform.

-fexternal-dynamic-refs
When generating code, assume that entities imported from a different module might be
dynamically linked. This flag is enabled automatically by -dynamic (page 242).

-fPIE
Generate code in such a way to be linkable into a position-independent executable This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform. To link the final executable use -pie
(page 247).

-dynamic
Build code for dynamic linking. This can reduce code size tremendously, but may slow-
down cross-module calls of non-inlined functions. There can be some complications com-

240 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

bining -shared (page 242) with this flag relating to linking in the RTS under Linux. See
#10352.
Note that using this option when linking causes GHC to link against shared libraries.

-dynamic-too
Generates both dynamic and static object files in a single run of GHC. This option is
functionally equivalent to running GHC twice, the second time adding -dynamic -osuf
dyn_o -hisuf dyn_hi.
Although it is equivalent to running GHC twice, using -dynamic-too is more efficient,
because the earlier phases of the compiler up to code generation are performed just
once.
When using -dynamic-too, the options -dyno, -dynosuf, and -dynhisuf are the coun-
terparts of -o, -osuf, and -hisuf respectively, but applying to the dynamic compilation.

-split-objs
When using this option, the object file is split into many smaller objects. This feature is
used when building libraries, so that a program statically linked against the library will
pull in less of the library.
Since this uses platform specific techniques, it may not be available on all target plat-
forms. See the --print-object-splitting-supported (page 88) flag to check whether
your GHC supports object splitting.

-fexpose-internal-symbols
Request that GHC emits verbose symbol tables which include local symbols for module-
internal functions. These can be useful for tools like perf but increase object file sizes.
This is implied by -g2 (page 617) and above.
-fno-expose-internal-symbols (page 241) suppresses all non-global symbol table en-
tries, resulting in smaller object file sizes at the expense of debuggability.

5.11.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-
supplied, and system-supplied (-lm math library, for example).
-l ⟨lib⟩

Link in the ⟨lib⟩ library. On Unix systems, this will be in a file called liblib.a or
liblib.so which resides somewhere on the library directories path.
Because of the sad state of most UNIX linkers, the order of such options does matter.
If library ⟨foo⟩ requires library ⟨bar⟩, then in general -l ⟨foo⟩ should come before -l
⟨bar⟩ on the command line.
There’s one other gotcha to bear in mind when using external libraries: if the library con-
tains a main() function, then this will be a link conflict with GHC’s own main() function
(eg. libf2c and libl have their own main()s).
You can use an external main function if you initialize the RTS manually and pass -no-
hs-main. See also Using your own main() (page 523).

-c
Omits the link step. This option can be used with --make (page 86) to avoid the automatic
linking that takes place if the program contains a Main module.

-package ⟨name⟩
If you are using a Haskell “package” (see Packages (page 216)), don’t forget to add the

5.11. Options related to a particular phase 241

https://gitlab.haskell.org/ghc/ghc/issues/10352
https://perf.wiki.kernel.org/

GHC User’s Guide Documentation, Release 9.2.6

relevant -package option when linking the program too: it will cause the appropriate
libraries to be linked in with the program. Forgetting the -package option will likely
result in several pages of link errors.

-framework ⟨name⟩
On Darwin/OS X/iOS only, link in the framework ⟨name⟩. This option corresponds to the
-framework option for Apple’s Linker. Please note that frameworks and packages are two
different things - frameworks don’t contain any Haskell code. Rather, they are Apple’s
way of packaging shared libraries. To link to Apple’s “Carbon” API, for example, you’d
use -framework Carbon.

-staticlib

Implies -flink-rts (page 243)
Link all passed files into a static library suitable for linking. To control the name, use
the -o ⟨file⟩ (page 200) option as usual. The default name is liba.a.

-L ⟨dir⟩
Where to find user-supplied libraries… Prepend the directory ⟨dir⟩ to the library directo-
ries path.

-fuse-rpaths
This flag is enabled by default and will set the rpath of the linked object to the library
directories of dependent packages.
When building binaries to distribute it can be useful to pass your own linker options to
control the rpath and disable the automatic injection of rpath entries by disabling this
flag.

-framework-path ⟨dir⟩
On Darwin/OS X/iOS only, prepend the directory ⟨dir⟩ to the framework directories path.
This option corresponds to the -F option for Apple’s Linker (-F already means something
else for GHC).

-split-sections
Place each generated function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of the data
item determines the section’s name in the output file.
When linking, the linker can automatically remove all unreferenced sections and thus
produce smaller executables.

-static
Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic
This flag tells GHC to link against sharedHaskell libraries. This flag only affects the selec-
tion of dependent libraries, not the form of the current target (see -shared (page 242)).
See Using shared libraries (page 247) on how to create them.
Note that this option also has an effect on code generation (see above).

-shared
Instead of creating an executable, GHC produces a shared object with this linker flag.
Depending on the operating system target, this might be an ELF DSO, a Windows DLL,
or a Mac OS dylib. GHC hides the operating system details beneath this uniform flag.
The flags -dynamic (page 242) and -static (page 242) control whether the resulting
shared object links statically or dynamically to Haskell package libraries given as -
package ⟨pkg⟩ (page 218) option. Non-Haskell libraries are linked as gcc would reg-

242 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

ularly link it on your system, e.g. on most ELF system the linker uses the dynamic
libraries when found.
Object files linked into shared objects must be compiled with -fPIC (page 240), see
Options affecting code generation (page 240)
When creating shared objects for Haskell packages, the shared object must be named
properly, so that GHC recognizes the shared object when linking against this package.
See shared object name mangling (page 228) for details.

-dynload
This flag selects one of a number of modes for finding shared libraries at runtime. See
Finding shared libraries at runtime (page 249) for a description of each mode.

-flink-rts
When linking shared libraries (-shared (page 242)) GHC does not automatically link
the RTS. This is to allow choosing the RTS flavour (-threaded (page 244), -eventlog
(page 244), etc) when linking an executable. However when the shared library is the
intended product it is useful to be able to reverse this default. See Shared libraries that
export a C API (page 248) for an usage example.
When linking a static library (-staticlib (page 242)) GHC links the RTS automatically,
you can reverse this behaviour by reversing this flag: -fno-link-rts.

-main-is ⟨thing⟩
The normal rule in Haskell is that your program must supply a main function in module
Main. When testing, it is often convenient to change which function is the “main” one,
and the -main-is flag allows you to do so. The ⟨thing⟩ can be one of:
•A lower-case identifier foo. GHC assumes that the main function is Main.foo.
•A module name A. GHC assumes that the main function is A.main.
•A qualified name A.foo. GHC assumes that the main function is A.foo.

Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the link
step. The flag must be specified when compiling the module containing the specified
main function (e.g. module A in the latter two items above). It has no effect for other
modules, and hence can safely be given to ghc --make. However, if all the modules are
otherwise up to date, you may need to force recompilation both of the module where the
new “main” is, and of the module where the “main” function used to be; ghc is not clever
enough to figure out that they both need recompiling. You can force recompilation by
removing the object file, or by using the -fforce-recomp (page 204) flag.

-no-hs-main
In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of main() at link-time, you will
have to. To signal that to the compiler when linking, use -no-hs-main. See also Using
your own main() (page 523).
Notice that since the command-line passed to the linker is rather involved, you probably
want to use ghc to do the final link of your ‘mixed-language’ application. This is not a
requirement though, just try linking once with -v (page 91) on to see what options the
driver passes through to the linker.
The -no-hs-main flag can also be used to persuade the compiler to do the link step in
--make (page 86) mode when there is no Haskell Main module present (normally the
compiler will not attempt linking when there is no Main).
The flags -rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) and -with-
rtsopts=⟨opts⟩ (page 245) have no effect when used with -no-hs-main (page 243),

5.11. Options related to a particular phase 243

GHC User’s Guide Documentation, Release 9.2.6

because they are implemented by changing the definition of main that GHC
generates. See Using your own main() (page 523) for how to get the ef-
fect of -rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) and -with-
rtsopts=⟨opts⟩ (page 245) when using your own main.

-debug
Link the program with a debugging version of the runtime system. The debugging run-
time turns on numerous assertions and sanity checks, and provides extra options for
producing debugging output at runtime (run the program with +RTS -? to see a list).

-threaded
Link the program with the “threaded” version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to the
default runtime system which is purely single-threaded.
Note that you do not need -threaded in order to use concurrency; the single-threaded
runtime supports concurrency between Haskell threads just fine.
The threaded runtime system provides the following benefits:
•It enables the -N ⟨x⟩ (page 137) RTS option to be used, which allows threads to run
in parallel on a multiprocessor or multicore machine. See Using SMP parallelism
(page 136).
•If a thread makes a foreign call (and the call is not marked unsafe), then other
Haskell threads in the program will continue to run while the foreign call is in
progress. Additionally, foreign exported Haskell functions may be called from
multiple OS threads simultaneously. See Multi-threading and the FFI (page 526).

-eventlog
Link the program with the “eventlog” version of the runtime system. A program linked
in this way can generate a runtime trace of events (such as thread start/stop) to a binary
file program.eventlog, which can then be interpreted later by various tools. See Tracing
(page 193) for more information.
-eventlog (page 244) can be used with -threaded (page 244). It is implied by -debug
(page 244).

-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]

Default some
This option affects the processing of RTS control options given either on the command
line or via the GHCRTS (page 179) environment variable. There are five possibilities:
-rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the

command line, then the program will abort with an error message. If the GHCRTS
environment variable is set, then the program will emit a warning message, GHCRTS
will be ignored, and the program will run as normal.

-rtsopts=ignore Disables all processing of RTS options. Unlike none this treats all RTS
flags appearing on the command line the same way as regular arguments. (Passing
them on to your program as arguments). GHCRTS options will be processed normally.

-rtsopts=ignoreAll Same as ignore but also ignores GHCRTS.
-rtsopts=some [this is the default setting] Enable only the “safe” RTS options: (Cur-

rently only -? and --info.) Any other RTS options on the command line or in the
GHCRTS environment variable causes the program with to abort with an error mes-
sage.

244 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-rtsopts=all or just -rtsopts Enable all RTS option processing, both on the com-
mand line and through the GHCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since
RTS options can be used to write logging data to arbitrary files under the security context
of the running program, there is a potential security problem. For this reason, GHC 7.0.1
and later default to -rtsopts=some.
Note that -rtsopts has no effect when used with -no-hs-main (page 243); see Using
your own main() (page 523) for details.
-rtsopts does not affect RTS options passed via -with-rtsopts; those are used regard-
less of -rtsopts.

-with-rtsopts=⟨opts⟩
This option allows you to set the default RTS options at link-time. For example, -with-
rtsopts="-H128m" sets the default heap size to 128MB. This will always be the default
heap size for this program, unless the user overrides it. (Depending on the setting of the
-rtsopts option, the user might not have the ability to change RTS options at run-time,
in which case -with-rtsopts would be the only way to set them.)
Use the runtime flag --info (page 197) on the executable program to see the options
set with -with-rtsopts.
Note that -with-rtsopts has no effect when used with -no-hs-main; see Using your
own main() (page 523) for details.

-no-rtsopts-suggestions
This option disables RTS suggestions about linking with -
rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) when they are not
available. These suggestions would be unhelpful if the users have installed Haskell
programs through their package managers. With this option enabled, these suggestions
will not appear. It is recommended for people distributing binaries to build with either
-rtsopts or -no-rtsopts-suggestions.

-fno-gen-manifest
OnWindows, GHC normally generates amanifest file when linking a binary. Themanifest
is placed in the file prog.exe.manifest` where ⟨prog.exe⟩ is the name of the executable.
The manifest file currently serves just one purpose: it disables the “installer detection”
in Windows Vista that attempts to elevate privileges for executables with certain names
(e.g. names containing “install”, “setup” or “patch”). Without the manifest file to turn
off installer detection, attempting to run an executable that Windows deems to be an
installer will return a permission error code to the invoker. Depending on the invoker,
the result might be a dialog box asking the user for elevated permissions, or it might
simply be a permission denied error.
Installer detection can be also turned off globally for the system using the security con-
trol panel, but GHC by default generates binaries that don’t depend on the user having
disabled installer detection.
The -fno-gen-manifest disables generation of the manifest file. One reason to do this
would be if you had a manifest file of your own, for example.
In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.
-fno-gen-manifest (page 245) also implies -fno-embed-manifest (page 245), see be-
low.

5.11. Options related to a particular phase 245

GHC User’s Guide Documentation, Release 9.2.6

-fno-embed-manifest
Themanifest file that GHC generates when linking a binary onWindows is also embedded
in the executable itself, by default. This means that the binary can be distributed without
having to supply the manifest file too. The embedding is done by running windres; to
see exactly what GHC does to embed the manifest, use the -v (page 91) flag. A GHC
installation comes with its own copy of windres for this reason.
See also -pgmwindres ⟨cmd⟩ (page 235) (Replacing the program for one or more phases
(page 234)) and -optwindres ⟨option⟩ (page 236) (Forcing options to a particular
phase (page 235)).

-fno-shared-implib
DLLs on Windows are typically linked to by linking to a corresponding .lib or .dll.a
— the so-called import library. GHC will typically generate such a file for every DLL you
create by compiling in -shared (page 242) mode. However, sometimes you don’t want
to pay the disk-space cost of creating this import library, which can be substantial — it
might require as much space as the code itself, as Haskell DLLs tend to export lots of
symbols.
As long as you are happy to only be able to link to the DLL using GetProcAddress and
friends, you can supply the -fno-shared-implib (page 246) flag to disable the creation
of the import library entirely.

-dylib-install-name ⟨path⟩
On Darwin/OS X, dynamic libraries are stamped at build time with an “install name”,
which is the ultimate install path of the library file. Any libraries or executables that
subsequently link against it will pick up that path as their runtime search location for
it. By default, ghc sets the install name to the location where the library is built. This
option allows you to override it with the specified file path. (It passes -install_name to
Apple’s linker.) Ignored on other platforms.

-rdynamic
This instructs the linker to add all symbols, not only used ones, to the dynamic symbol
table. Currently Linux and Windows/MinGW32 only. This is equivalent to using -optl
-rdynamic on Linux, and -optl -export-all-symbols on Windows.

-fwhole-archive-hs-libs
When linking a binary executable, this inserts the flag -Wl,--whole-archive before any
-l flags for Haskell libraries, and -Wl,--no-whole-archive afterwards (on OS X, the flag
is -Wl,-all_load, there is no equivalent for -Wl,--no-whole-archive). This flag also
disables the use of -Wl,--gc-sections (-Wl,-dead_strip on OS X).
This is for specialist applications that may require symbols defined in these Haskell li-
braries at runtime even though they aren’t referenced by any other code linked into
the executable. If you’re using -fwhole-archive-hs-libs, you probably also want -
rdynamic.

-pie

Since 8.2.2
This instructs the linker to produce a position-independent executable. This flag is only
valid while producing executables and all object code being linked must have been pro-
duced with -fPIE (page 240).
Position independent executables are required by some platforms as they enable address-
space layout randomization (ASLR), a common security measure. They can also be useful
as they can be dynamically loaded and used as shared libraries by other executables.

246 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Position independent executables should be dynamically-linked (e.g. built with -dynamic
(page 242) and only loaded into other dynamically-linked executables to ensure that only
one libHSrts is present if loaded into the address space of another Haskell process.
Also, you may need to use the -rdynamic (page 246) flag to ensure that that symbols are
not dropped from your PIE objects.

-no-pie
If required, the C compiler will still produce a PIE. Otherwise, this is the default. Refer
to -pie for more information about PIEs.

-fkeep-cafs

Since 8.8.1
Disables the RTS’s normal behaviour of garbage-collecting CAFs (Constant Applicative
Forms, in other words top-level expressions). This option is useful for specialised appli-
cations that do runtime dynamic linking, where code dynamically linked in the future
might require the value of a CAF that would otherwise be garbage-collected.

-fcompact-unwind

Since 9.4.1, 9.2.2
This instructs the linker to produce an executable that supports Apple’s compact unwind-
ing sections. These are used by C++ and Objective-C code to unwind the stack when an
exception occurs.
In theory, the older __eh_frame section should also be usable for this purpose, but this
does not always work.

5.12 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries
are also sometimes known as dynamic libraries, in particular on Windows they are referred
to as dynamic link libraries (DLLs).
Shared libraries allow a single instance of some pre-compiled code to be shared between sev-
eral programs. In contrast, with static linking the code is copied into each program. Using
shared libraries can thus save disk space. They also allow a single copy of code to be shared
in memory between several programs that use it. Shared libraries are often used as a way of
structuring large projects, especially where different parts are written in different program-
ming languages. Shared libraries are also commonly used as a plugin mechanism by various
applications. This is particularly common on Windows using COM.
In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64
architectures). GHC version 7.0 adds support on Windows (see Building and using Win32
DLLs (page 642)), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86
and PowerPC).
Building and using shared libraries is slightly more complicated than building and using static
libraries. When using Cabal much of the detail is hidden, just use --enable-shared when
configuring a package to build it into a shared library, or to link it against other packages built
as shared libraries. The additional complexity when building code is to distinguish whether
the code will be used in a shared library or will use shared library versions of other packages
it depends on. There is additional complexity when installing and distributing shared libraries
or programs that use shared libraries, to ensure that all shared libraries that are required at
runtime are present in suitable locations.

5.12. Using shared libraries 247

GHC User’s Guide Documentation, Release 9.2.6

5.12.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the
base libraries use the -dynamic (page 242) flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against
shared library versions of Haskell packages (such as base). The second is when linking, to
link against the shared versions of the packages’ libraries rather than the static versions.
Obviously this requires that the packages were built with shared libraries. On supported
platforms GHC comes with shared libraries for all the core packages, but if you install extra
packages (e.g. with Cabal) then they would also have to be built with shared libraries (--
enable-shared for Cabal).

5.12.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other
Haskell programs. The easiest way is using Cabal, simply configure the Cabal package with
the --enable-shared flag.
If you want to do the steps manually or are writing your own build system then there are
certain conventions that must be followed. Building a shared library that exports Haskell
code, to be used by other Haskell code is a bit more complicated than it is for one that exports
a C API and will be used by C code. If you get it wrong you will usually end up with linker
errors.
In particular Haskell shared libraries must be made into packages. You cannot freely assign
which modules go in which shared libraries. The Haskell shared libraries must match the
package boundaries. The reason for this is that GHC handles references to symbols within
the same shared library (or main executable binary) differently from references to symbols
between different shared libraries. GHC needs to know for each imported module if that
module lives locally in the same shared lib or in a separate shared lib. The way it does this is
by using packages. When using -dynamic (page 242), a module from a separate package is
assumed to come from a separate shared lib, while modules from the same package (or the
default “main” package) are assumed to be within the same shared lib (or main executable
binary).
Most of the conventions GHC expects when using packages are described in Building a pack-
age from Haskell source (page 228). In addition note that GHC expects the .hi files to use the
extension .dyn_hi. The other requirements are the same as for C libraries and are described
below, in particular the use of the flags -dynamic (page 242), -fPIC (page 240) and -shared
(page 242).

5.12.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger
mixed-language project. While with static linking it is recommended to use GHC to perform
the final link step, with shared libraries a Haskell library can be treated just like any other
shared library. The linking can be done using the normal system C compiler or linker.
It is possible to load shared libraries generated by GHC in other programs not written in
Haskell, so they are suitable for using as plugins. Of course to construct a plugin you will
have to use the FFI to export C functions and follow the rules about initialising the RTS. See

248 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

Making a Haskell library that can be called from foreign code (page 525). In particular you
will probably want to export a C function from your shared library to initialise the plugin
before any Haskell functions are called.
To build Haskell modules that export a C API into a shared library use the -dynamic (page 242),
-fPIC (page 240) and -shared (page 242) flags:

ghc --make -dynamic -shared -fPIC -flink-rts Foo.hs -o libfoo.so

As before, the -dynamic (page 242) flag specifies that this library links against the shared
library versions of the base package. -flink-rts (page 243) additionally links against the
shared library version of the rts package (linking against the rts package is not enabled
by default when building shared libraries). You may also omit -flink-rts and link the RTS
library into your final executable.
The -fPIC (page 240) flag is required for all code that will end up in a shared library. The
-shared (page 242) flag specifies to make a shared library rather than a program. To make
this clearer we can break this down into separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc -dynamic -shared -flink-rts Foo.o -o libfoo.so

In principle you can use -shared (page 242) without -dynamic (page 242) in the link step.
That means to statically link the runtime system and all of the base libraries into your new
shared library. This would make a very big, but standalone shared library. On most platforms
however that would require all the static libraries to have been built with -fPIC (page 240) so
that the code is suitable to include into a shared library and we do not do that at the moment.

Warning: If your shared library exports a Haskell API then you cannot directly link it into
another Haskell program and use that Haskell API. You will get linker errors. You must
instead make it into a package as described in the section above.

5.12.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs
can find the libraries they need at runtime. The details of how this works varies between
platforms, in particular the three major systems: Unix ELF platforms, Windows and Mac OS
X.

Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations
that the dynamic linker knows about. For example /usr/lib or /usr/local/lib on most
systems. The other mechanism is to use a “runtime path” or “rpath” embedded into programs
and libraries themselves. These paths can either be absolute paths or on at least Linux and
Solaris they can be paths relative to the program or library itself. In principle this makes it
possible to construct fully relocatable sets of programs and libraries.
GHC has a -dynload linking flag to select the method that is used to find shared libraries at
runtime. There are currently two modes:
sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this

embeds RPATH/RUNPATH entries into the shared library or executable. In particular it uses

5.12. Using shared libraries 249

GHC User’s Guide Documentation, Release 9.2.6

absolute paths to where the shared libraries for the rts and each package can be found.
This means the program can immediately be run and it will be able to find the libraries
it needs. However it may not be suitable for deployment if the libraries are installed in
a different location on another machine.

deploy This does not embed any runtime paths. It relies on the shared libraries being avail-
able in a standard location or in a directory given by the LD_LIBRARY_PATH environment
variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable
-rpath flag to the linker:

ghc -dynamic Main.hs -o main -lfoo -L. -optl-Wl,-rpath,'$ORIGIN'

This assumes that the library libfoo.so is in the current directory and will be able to be
found in the same directory as the executable main once the program is deployed. Simi-
larly it would be possible to use a subdirectory relative to the executable e.g. -optl-Wl,-
rpath,'$ORIGIN/lib'.
This relative path technique can be used with either of the two -dynload modes, though it
makes most sense with the deploy mode. The difference is that with the deploy mode, the
above example will end up with an ELF RUNPATH of just $ORIGIN while with the sysdep mode
the RUNPATH will be $ORIGIN followed by all the library directories of all the packages that the
program depends on (e.g. base and rts packages etc.) which are typically absolute paths.
The unix tool readelf --dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF
shared libraries and executables.
On most UNIX platforms it is also possible to build executables that can be dlopen‘d like
shared libraries using the -pie (page 247) flag during linking.

Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at
build time with an “install name”, which is the full ultimate install path of the library file. Any
libraries or executables that subsequently link against it (even if it hasn’t been installed yet)
will pick up that path as their runtime search location for it. When compiling with ghc directly,
the install name is set by default to the location where it is built. You can override this with the
-dylib-install-name ⟨path⟩ (page 246) option (which passes -install_name to the Apple
linker). Cabal does this for you. It automatically sets the install name for dynamic libraries
to the absolute path of the ultimate install location.

5.13 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

Dump flags

• Debugging the compiler (page 250)
– Dumping out compiler intermediate structures (page 251)

∗ Front-end (page 252)
∗ Type-checking and renaming (page 252)

250 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

∗ Core representation and simplification (page 253)
∗ STG representation (page 254)
∗ C-\- representation (page 255)
∗ LLVM code generator (page 256)
∗ C code generator (page 256)
∗ Native code generator (page 256)
∗ Miscellaneous backend dumps (page 257)

– Formatting dumps (page 257)
– Suppressing unwanted information (page 258)
– Checking for consistency (page 259)
– Checking for determinism (page 260)
– Other (page 260)

5.13.1 Dumping out compiler intermediate structures

-ddump-to-file
Causes the output from all of the flags listed below to be dumped to a file. The file name
depends upon the output produced; for instance, output from -ddump-simpl (page 254)
will end up in module.dump-simpl.

-ddump-file-prefix=⟨str⟩
Set the prefix of the filenames used for debugging output. For example, -ddump-file-
prefix=Foo will cause the output from -ddump-simpl (page 254) to be dumped to
Foo.dump-simpl.

-ddump-json
Dump error messages as JSON documents. This is intended to be consumed by external
tooling. A good way to use it is in conjunction with -ddump-to-file (page 251).

-dshow-passes
Print out each pass name, its runtime and heap allocations as it happens. Note that this
may come at a slight performance cost as the compiler will be a bit more eager in forcing
pass results to more accurately account for their costs.
Two types of messages are produced: Those beginning with *** do denote the beginning
of a compilation phase whereas those starting with !!! mark the end of a pass and are
accompanied by allocation and runtime statistics.

-dfaststring-stats
Show statistics on the usage of fast strings by the compiler.

-ddump-faststrings
Dump the whole FastString table when finished. Consider using -ddump-file-
prefix=⟨str⟩ (page 251) to dump it into a file.

-dppr-debug
Debugging output is in one of several “styles.” Take the printing of types, for example. In
the “user” style (the default), the compiler’s internal ideas about types are presented in
Haskell source-level syntax, insofar as possible. In the “debug” style (which is the default
for debugging output), the types are printed in with explicit foralls, and variables have

5.13. Debugging the compiler 251

GHC User’s Guide Documentation, Release 9.2.6

their unique-id attached (so you can check for things that look the same but aren’t). This
flag makes debugging output appear in the more verbose debug style.

-ddump-timings
Show allocation and runtime statistics for various stages of compilation. Allocations are
measured in bytes. Timings are measured in milliseconds.

GHC is a large program consisting of a number of stages. You can tell GHC to dump infor-
mation from various stages of compilation using the -ddump-⟨pass⟩ flags listed below. Note
that some of these tend to produce a lot of output. You can prevent them from clogging up
your standard output by passing -ddump-to-file (page 251).

Front-end

These flags dump various information from GHC’s frontend. This includes the parser and
interface file reader.
-ddump-parsed

Dump parser output
-ddump-parsed-ast

Dump parser output as a syntax tree
-ddump-if-trace

Make the interface loader be real chatty about what it is up to.

Type-checking and renaming

These flags dump various information from GHC’s typechecker and renamer.
-ddump-tc-trace

Make the type checker be real chatty about what it is up to.
-ddump-rn-trace

Make the renamer be real chatty about what it is up to.
-ddump-ec-trace

Make the pattern match exhaustiveness checker be real chatty about what it is up to.
-ddump-rn-stats

Print out summary of what kind of information the renamer had to bring in.
-ddump-rn

Dump renamer output
-ddump-rn-ast

Dump renamer output as a syntax tree
-ddump-tc

Dump typechecker output. Note that this hides a great deal of detail by default; you
might consider using this with -fprint-typechecker-elaboration (page 94).

-ddump-tc-ast
Dump typechecker output as a syntax tree

-ddump-hie
Dump the hie file syntax tree if we are generating extended interface files

252 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-ddump-splices
Dump Template Haskell expressions that we splice in, and what Haskell code the expres-
sion evaluates to.

-dth-dec-file
Dump expansions of all top-level Template Haskell splices into module.th.hs for each
file module.hs.

-ddump-types
Dump a type signature for each value defined at the top level of the module. The list is
sorted alphabetically. Using -dppr-debug (page 251) dumps a type signature for all the
imported and system-defined things as well; useful for debugging the compiler.

-ddump-deriv
Dump derived instances

Core representation and simplification

These flags dump various phases of GHC’s Core-to-Core pipeline. This begins with the desug-
arer and includes the simplifier, worker-wrapper transformation, the rule engine, the spe-
cialiser, the strictness/occurrence analyser, and a common subexpression elimination pass.

-ddump-core-stats
Print a one-line summary of the size of the Core program at the end of the optimisation
pipeline.

-ddump-ds
-ddump-ds-preopt

Dump desugarer output. -ddump-ds (page 253) dumps the output after the very simple
optimiser has run (which discards a lot of clutter and hence is a sensible default. -ddump-
ds-preopt (page 253) shows the output after desugaring but before the very simple
optimiser.

-ddump-simpl-iterations
Show the output of each iteration of the simplifier (each run of the simplifier has a max-
imum number of iterations, normally 4).

-ddump-simpl-stats
Dump statistics about how many of each kind of transformation took place. If you add
-dppr-debug (page 251) you get more detailed information.

-dverbose-core2core
Show the output of the intermediate Core-to-Core pass. (lots of output!) So: when we’re
really desperate:

% ghc -noC -O -ddump-simpl -dverbose-core2core -dcore-lint Foo.hs

-ddump-spec
Dump output of specialisation pass

-ddump-rules
Dumps all rewrite rules specified in this module; see Controlling what’s going on in
rewrite rules (page 548).

-ddump-rule-firings
Dumps the names of all rules that fired in this module

5.13. Debugging the compiler 253

GHC User’s Guide Documentation, Release 9.2.6

-ddump-rule-rewrites
Dumps detailed information about all rules that fired in this module

-drule-check=⟨str⟩
This flag is useful for debugging why a rule you expect to be firing isn’t.
Rules are filtered by the user provided string, a rule is kept if a prefix of its namematches
the string. The pass then checks whether any of these rules could apply to the program
but which didn’t fire for some reason. For example, specifying -drule-check=SPEC will
check whether there are any applications which might be subject to a rule created by
specialisation.

-dinline-check=⟨str⟩
This flag is useful for debugging why a definition is not inlined.
When a string is passed to this flag we report information about all functions whose name
shares a prefix with the string.
For example, if you are inspecting the core of your program and you observe that foo
is not being inlined. You can pass -dinline-check foo and you will see a report about
why foo is not inlined.

-ddump-simpl
Dump simplifier output (Core-to-Core passes)

-ddump-inlinings
Dumps inlining info from the simplifier. Note that if used in conjunction with -dverbose-
core2core (page 253) the compiler will also dump the inlinings that it considers but
passes up, along with its rationale.

-ddump-stranal
Dump demand analysis output.
See -fstrictness (page 131) for the syntax and semantics of demand annotations.

-ddump-str-signatures
Dump top-level demand signatures as produced by demand analysis.
See -fstrictness (page 131) for the syntax and semantics of demand annotations.

-ddump-cpranal
Dump Constructed Product Result analysis output

-ddump-cpr-signatures
Dump Constructed Product Result signatures

-ddump-cse
Dump common subexpression elimination (CSE) pass output

-ddump-worker-wrapper
Dump worker/wrapper split output

-ddump-occur-anal
Dump “occurrence analysis” output

-ddump-prep
Dump output of Core preparation pass

STG representation

These flags dump various phases of GHC’s STG pipeline.

254 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-ddump-stg-from-core
Show the output of CoreToStg pass.

-dverbose-stg2stg
Show the output of the intermediate STG-to-STG pass. (lots of output!)

-ddump-stg-unarised
Show the output of the unarise pass.

-ddump-stg-final
Show the output of the last STG pass before we generate Cmm.

-ddump-stg
Alias for -ddump-stg-from-core (page 254). Deprecated in favor of more explicit flags:
-ddump-stg-from-core (page 254), -ddump-stg-final (page 255), etc.

C-\- representation

These flags dump various phases of GHC’s C-\- pipeline.
-ddump-cmm-verbose-by-proc

Dump output from main C-\- pipeline stages. In case of .cmm compilation this also dumps
the result of file parsing. Not included are passes run by the chosen backend. Currently
only the NCG backends runs additional passes (-ddump-opt-cmm (page 256)).
Cmm dumps don’t include unreachable blocks since we print blocks in reverse post-
order.

-ddump-cmm-verbose
If used in conjunction with -ddump-to-file (page 251), writes dump output from main
C-\- pipeline stages to files (each stage per file).

-ddump-cmm-from-stg
Dump the result of STG-to-C-\- conversion

-ddump-cmm-raw
Dump the “raw” C-\-.

-ddump-cmm-cfg
Dump the results of the C-\- control flow optimisation pass.

-ddump-cmm-cbe
Dump the results of the C-\- Common Block Elimination (CBE) pass.

-ddump-cmm-switch
Dump the results of the C-\- switch lowering pass.

-ddump-cmm-proc
Dump the results of the C-\- proc-point analysis pass.

-ddump-cmm-sp
Dump the results of the C-\- stack layout pass.

-ddump-cmm-sink
Dump the results of the C-\- sinking pass.

-ddump-cmm-caf
Dump the results of the C-\- CAF analysis pass.

-ddump-cmm-procmap
Dump the results of the C-\- proc-point map pass.

5.13. Debugging the compiler 255

GHC User’s Guide Documentation, Release 9.2.6

-ddump-cmm-split
Dump the results of the C-\- proc-point splitting pass.

-ddump-cmm-info
Dump the results of the C-\- info table augmentation pass.

-ddump-cmm-cps
Dump the results of the CPS pass.

-ddump-cmm
Dump the result of the C-\- pipeline processing

-ddump-cfg-weights
Dumps the CFG with weights used by the new block layout code. Each CFG is dumped
in dot format graph making it easy to visualize them.

LLVM code generator

-ddump-llvm

Implies -fllvm (page 240)
LLVM code from the LLVM code generator (page 233)

C code generator

-ddump-c-backend

Shortdesc Dump C code produced by the C (unregisterised) backend.

Native code generator

These flags dump various stages of the native code generator’s (page 233) pipeline, which
starts with C-\- and produces native assembler.
-ddump-cmm-opt

Dump the results of C-\- to C-\- optimising passes performed by the NCG.
-ddump-opt-cmm

Alias for -ddump-cmm-opt (page 256)
-ddump-asm-native

Dump the initial assembler output produced from C-\-.
-ddump-asm-liveness

Dump the result of the register liveness pass.
-ddump-asm-regalloc

Dump the result of the register allocation pass.
-ddump-asm-regalloc-stages

Dump the build/spill stages of the -fregs-graph (page 127) register allocator.
-ddump-asm-stats

Dump statistics from the register allocator.
-ddump-asm-expanded

Dump the result of the synthetic instruction expansion pass.

256 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

-ddump-asm
Dump the final assembly produced by the native code generator.

Miscellaneous backend dumps

These flags dump various bits of information from other backends.
-ddump-bcos

Dump byte-code objects (BCOs) produced for the GHC’s byte-code interpreter.
-ddump-rtti

Trace runtime type inference done by various interpreter commands.
-ddump-foreign

Dump foreign export stubs.
-ddump-ticked

Dump the code instrumented by HPC (Observing Code Coverage (page 611)).
-ddump-hpc

An alias for -ddump-ticked (page 257).
-ddump-mod-map

Dump a mapping of modules to where they come from, and how:
•(hidden module): Module is hidden, and thus will never be available for import.
•(unusable module): Module is unavailable because the package is unusable.
•(hidden package): This module is in someone’s exported-modules list, but that
package is hidden.
•(exposed package): Module is available for import.
•(reexport by <PACKAGES>): This module is available from a reexport of some set
of exposed packages.
•(hidden reexport by <PACKAGES>): This module is available from a reexport of
some set of hidden packages.
•(package flag): This module export comes from a package flag.

5.13.2 Formatting dumps

-dppr-user-length
In error messages, expressions are printed to a certain “depth”, with subexpressions
beyond the depth replaced by ellipses. This flag sets the depth. Its default value is 5.

-dppr-cols=⟨n⟩
Set the width of debugging output. Use this if your code is wrapping too much. For
example: -dppr-cols=200.

-dppr-case-as-let
Print single alternative case expressions as though they were strict let expressions. This
is helpful when your code does a lot of unboxing.

-dhex-word-literals
Print values of type Word# and Word64# (but not values of type Int# and Int64#) in hex-
adecimal instead of decimal. The hexadecimal is zero-padded to make the length of the
representation a power of two. For example: 0x0A0A##, 0x000FFFFF##, 0xC##. This

5.13. Debugging the compiler 257

GHC User’s Guide Documentation, Release 9.2.6

flag may be helpful when you are producing a bit pattern that to expect to work correctly
on a 32-bit or a 64-bit architecture. Dumping hexadecimal literals after optimizations
and constant folding makes it easier to confirm that the generated bit pattern is correct.

-dno-debug-output
Suppress any unsolicited debugging output. When GHC has been built with the DEBUG
option it occasionally emits debug output of interest to developers. The extra output can
confuse the testing framework and cause bogus test failures, so this flag is provided to
turn it off.

5.13.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all
of it will be useful. Use these flags to suppress the parts that you are not interested in.
-dsuppress-all

Suppress everything that can be suppressed, except for unique ids as this often makes
the printout ambiguous. If you just want to see the overall structure of the code, then
start here.

-dsuppress-ticks
Suppress “ticks” in the pretty-printer output.

-dsuppress-uniques
Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear
where an occurrence of ‘x’ is bound), but it makes the output of two compiler runs have
many fewer gratuitous differences, so you can realistically apply diff. Once diff has
shown you where to look, you can try again without -dsuppress-uniques (page 258)

-dsuppress-idinfo
Suppress extended information about identifiers where they are bound. This includes
strictness information and inliner templates. Using this flag can cut the size of the core
dump in half, due to the lack of inliner templates

-dsuppress-unfoldings
Suppress the printing of the stable unfolding of a variable at its binding site.

-dsuppress-module-prefixes
Suppress the printing of module qualification prefixes. This is the Data.List in
Data.List.length.

-dsuppress-timestamps
Suppress the printing of timestamps. This makes it easier to diff dumps.

-dsuppress-type-signatures
Suppress the printing of type signatures.

-dsuppress-type-applications
Suppress the printing of type applications.

-dsuppress-coercions
Suppress the printing of type coercions.

-dsuppress-var-kinds
Suppress the printing of variable kinds

-dsuppress-stg-free-vars
Suppress the printing of closure free variable lists in STG output

258 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.2.6

5.13.4 Checking for consistency

-dcore-lint
Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks
GHC’s sanity, not yours.)

-dlinear-core-lint
Turn on linearity checking in GHC. Currently, some optimizations in GHC might not pre-
serve linearity and they valid programs might fail Linear Core Lint. In the near future,
this option will be removed and folded into normal Core Lint.

-dstg-lint
Ditto for STG level.

-dcmm-lint
Ditto for C-\- level.

-dasm-lint
Turn on intra-pass sanity-checking within GHC, at the code generator level.

-fllvm-fill-undef-with-garbage
Instructs the LLVM code generator to fill dead STG registers with garbage instead of
undef in calls. This makes it easier to catch subtle code generator and runtime system
bugs (e.g. see #11487).

-falignment-sanitisation
Compile with alignment checks for all info table dereferences. This can be useful when
finding pointer tagging issues.

-fproc-alignment
Align functions to multiples of the given value. Only valid values are powers of two.
-fproc-alignment=64 can be used to limit alignment impact on performance as each
function will start at a cache line. However forcing larger alignments in general reduces
performance.

-fcatch-bottoms
GHC generates case expressions without a default alternative in some cases:
•When the demand analysis thinks that the scrutinee does not return (i.e. a bottoming
expression)
•When the scrutinee is a GADT and its type rules out some constructors, and others
constructors are already handled by the case expression.

With this flag GHC generates a default alternative with error in these cases. This is
helpful when debugging demand analysis or type checker bugs which can sometimes
manifest as segmentation faults.

-fcheck-prim-bounds
Typically primops operations like writeArray# exhibit unsafe behavior, relying on the
user to perform any bounds checking. This flag instructs the code generator to instru-
ment such operations with bound checking logic which aborts the program when an
out-of-bounds access is detected.
Note that this is only intended to be used as a debugging measure, not as the primary
means of catching out-of-bounds accesses.

5.13. Debugging the compiler 259

https://gitlab.haskell.org/ghc/ghc/issues/11487

GHC User’s Guide Documentation, Release 9.2.6

5.13.5 Checking for determinism

-dinitial-unique=⟨s⟩
Start UniqSupply allocation from ⟨s⟩.

-dunique-increment=⟨i⟩
Set the increment for the generated Unique‘s to ⟨i⟩.
This is useful in combination with -dinitial-unique=⟨s⟩ (page 260) to test if the gen-
erated files depend on the order of Unique‘s.
Some interesting values:
•-dinitial-unique=0 -dunique-increment=1 - current sequential UniqSupply
•-dinitial-unique=16777215 -dunique-increment=-1 - UniqSupply that gener-
ates in decreasing order
•-dinitial-unique=1 -dunique-increment=PRIME - where PRIME big enough to
overflow often - nonsequential order

5.13.6 Other

-dno-typeable-binds
This avoid generating Typeable-related bindings for modules and types. This is useful
when debugging because it gives smaller modules and dumps, but the compiler will panic
if you try to use Typeable instances of things that you built with this flag.

260 Chapter 5. Using GHC

CHAPTER

SIX

LANGUAGE EXTENSIONS

6.1 Introduction

As with all known Haskell systems, GHC implements some extensions to the standard Haskell
language. They can all be enabled or disabled by command line flags or language pragmas.
By default GHC understands the most recent Haskell version it supports, plus a handful of
extensions.
Some of the extensions serve to give you access to the underlying facilities with which we
implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write some non-
portable code at a more primitive level. You need not be “stuck” on performance because
of the implementation costs of Haskell’s “high-level” features—you can always code “under”
them. In an extreme case, you can write all your time-critical code in C, and then just glue it
together with Haskell!

6.1.1 Controlling extensions

Language extensions can be controlled (i.e. allowed or not) in two ways:
• Every language extension can be switched on by a command-line flag “-X...”
(e.g. -XTemplateHaskell), and switched off by the flag “-XNo...”; (e.g. -
XNoTemplateHaskell).

• Language extensions can also be enabled using the LANGUAGE pragma, thus {-# LAN-
GUAGE TemplateHaskell #-} (see LANGUAGE pragma (page 556)).

GHC2021
GHC blesses a number of extensions, beyond Haskell 2010, to be suitable to turned on
by default. These extensions are considered to be stable and conservative.
GHC2021 is used by GHC if neither Haskell98 nor Haskell2010 is turned on explicitly.
Since later versions of GHC may use a later GHC20xx by default, users are advised to
declare the language set explicitly with -XGHC2021.
Note that, because GHC2021 includes a number of non-standardized extensions, the
stability guarantees it provides are not quite as strong as those provided by, e.g.,
Haskell2010 (page 262). While GHC does take pains to avoid changing the semantics
of these extensions, changes may still happen (e.g. the simplified subsumption change
introduced in GHC 9.0 which caused GHC to reject some programs using RankNTypes
(page 372)).
The GHC2021 language set comprises the following extensions:
•BangPatterns (page 498)

261

GHC User’s Guide Documentation, Release 9.2.6

•BinaryLiterals (page 454)
•ConstrainedClassMethods (page 436)
•ConstraintKinds (page 461)
•DeriveDataTypeable (page 411)
•DeriveFoldable (page 408)
•DeriveFunctor (page 405)
•DeriveGeneric (page 550)
•DeriveLift (page 412)
•DeriveTraversable (page 410)
•DoAndIfThenElse
•EmptyCase (page 288)
•EmptyDataDecls (page 308)
•EmptyDataDeriving (page 401)
•ExistentialQuantification (page 312)
•ExplicitForAll (page 466)
•FieldSelectors (page 392)
•FlexibleContexts (page 459)
•FlexibleInstances (page 446)
•ForeignFunctionInterface (page 515)
•GADTSyntax (page 316)
•GeneralisedNewtypeDeriving (page 413)
•HexFloatLiterals (page 454)
•ImplicitPrelude (page 285)
•ImportQualifiedPost (page 307)
•InstanceSigs (page 453)
•KindSignatures (page 471)
•MonomorphismRestriction (page 484)
•MultiParamTypeClasses (page 435)
•NamedFieldPuns (page 394)
•NamedWildCards (page 481)
•NumericUnderscores (page 455)
•PatternGuards (page 424)
•PolyKinds (page 346)
•PostfixOperators (page 286)
•RankNTypes (page 372)
•RelaxedPolyRec
•ScopedTypeVariables (page 472)
•StandaloneDeriving (page 403)
•StandaloneKindSignatures (page 352)
•StarIsType (page 360)
•TraditionalRecordSyntax (page 387)
•TupleSections (page 287)
•TypeApplications (page 366)
•TypeOperators (page 310)
•TypeSynonymInstances (page 445)

Haskell2010
Compile Haskell 2010 language variant. Enables the following language extensions:
•CUSKs (page 350)
•DatatypeContexts (page 309)
•DoAndIfThenElse
•EmptyDataDecls (page 308)
•FieldSelectors (page 392)
•ForeignFunctionInterface (page 515)

262 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

•ImplicitPrelude (page 285)
•MonomorphismRestriction (page 484)
•PatternGuards (page 424)
•RelaxedPolyRec
•StarIsType (page 360)
•TraditionalRecordSyntax (page 387)

Haskell98
Compile using Haskell 98 language variant. Enables the following language extensions:
•CUSKs (page 350)
•DatatypeContexts (page 309)
•FieldSelectors (page 392)
•ImplicitPrelude (page 285)
•MonomorphismRestriction (page 484)
•NPlusKPatterns (page 426)
•NondecreasingIndentation (page 648)
•StarIsType (page 360)
•TraditionalRecordSyntax (page 387)

Although not recommended, the deprecated -fglasgow-exts (page 263) flag enables a large
swath of the extensions supported by GHC at once.
-fglasgow-exts

The flag -fglasgow-exts is equivalent to enabling the following extensions:
•ConstrainedClassMethods (page 436)
•DeriveDataTypeable (page 411)
•DeriveFoldable (page 408)
•DeriveFunctor (page 405)
•DeriveGeneric (page 550)
•DeriveTraversable (page 410)
•EmptyDataDecls (page 308)
•ExistentialQuantification (page 312)
•ExplicitNamespaces (page 307)
•FlexibleContexts (page 459)
•FlexibleInstances (page 446)
•ForeignFunctionInterface (page 515)
•FunctionalDependencies (page 440)
•GeneralizedNewtypeDeriving (page 413)
•ImplicitParams (page 476)
•InterruptibleFFI (page 519)
•KindSignatures (page 471)
•LiberalTypeSynonyms (page 310)
•MagicHash (page 268)
•MultiParamTypeClasses (page 435)
•ParallelListComp (page 277)
•PatternGuards (page 424)
•PostfixOperators (page 286)
•RankNTypes (page 372)
•RecursiveDo (page 269)
•ScopedTypeVariables (page 472)
•StandaloneDeriving (page 403)
•TypeOperators (page 310)
•TypeSynonymInstances (page 445)
•UnboxedTuples (page 510)

6.1. Introduction 263

GHC User’s Guide Documentation, Release 9.2.6

•UnicodeSyntax (page 267)
•UnliftedFFITypes (page 517)

Enabling these options is the only effect of -fglasgow-exts. We are trying to move away
from this portmanteau flag, and towards enabling features individually.

6.1.2 Overview of all language extensions

GHC supports these language extensions:

Extension Description
AllowAmbiguousTypes (page 469) Allow the user to write ambiguous types, and the type inference engine to infer them.
ApplicativeDo (page 271) Enable Applicative do-notation desugaring
Arrows (page 299) Enable arrow notation extension
BangPatterns (page 498) Enable bang patterns.
BinaryLiterals (page 454) Enable support for binary literals.
BlockArguments (page 290) Allow do blocks and other constructs as function arguments.
CApiFFI (page 520) Enable the CAPI calling convention.
ConstrainedClassMethods (page 436) Enable constrained class methods.
ConstraintKinds (page 461) Enable a kind of constraints.
CPP (page 236) Enable the C preprocessor.
CUSKs (page 350) Enable detection of complete user-supplied kind signatures.
DataKinds (page 343) Enable datatype promotion.
DatatypeContexts (page 309) Allow contexts on data types.
DeepSubsumption (page 375) Enable deep subsumption
DefaultSignatures (page 437) Enable default signatures.
DeriveAnyClass (page 419) Enable deriving for any class.
DeriveDataTypeable (page 411) Enable deriving for the Data class. Implied by (deprecated) AutoDeriveTypeable.
DeriveFoldable (page 408) Enable deriving for the Foldable class. Implied by DeriveTraversable (page 410).
DeriveFunctor (page 405) Enable deriving for the Functor class. Implied by DeriveTraversable (page 410).
DeriveGeneric (page 550) Enable deriving for the Generic class.
DeriveLift (page 412) Enable deriving for the Lift class
DeriveTraversable (page 410) Enable deriving for the Traversable class. Implies DeriveFunctor (page 405) and DeriveFoldable (page 408).
DerivingStrategies (page 421) Enables deriving strategies.
DerivingVia (page 422) Enable deriving instances via types of the same runtime representation. Implies DerivingStrategies (page 421).
DisambiguateRecordFields (page 389) Enable record field disambiguation. Implied by RecordWildCards (page 395).
DuplicateRecordFields (page 390) Allow definition of record types with identically-named fields.
EmptyCase (page 288) Allow empty case alternatives.
EmptyDataDecls (page 308) Allow definition of empty data types.
EmptyDataDeriving (page 401) Allow deriving instances of standard type classes for empty data types.
ExistentialQuantification (page 312) Enable liberalised type synonyms.
ExplicitForAll (page 466) Enable explicit universal quantification. Implied by ScopedTypeVariables (page 472), LiberalTypeSynonyms (page 310), RankNTypes (page 372) and ExistentialQuantification (page 312).
ExplicitNamespaces (page 307) Enable using the keyword type to specify the namespace of entries in imports and exports (Explicit namespaces in import/export (page 307)). Implied by TypeOperators (page 310) and TypeFamilies (page 325).
ExtendedDefaultRules (page 46) Use GHCi’s extended default rules in a normal module.
FieldSelectors (page 392) Control visibility of field selector functions.
FlexibleContexts (page 459) Remove some restrictions on class contexts
FlexibleInstances (page 446) Enable flexible instances. Implies TypeSynonymInstances (page 445).
ForeignFunctionInterface (page 515) Enable foreign function interface.
FunctionalDependencies (page 440) Enable functional dependencies. Implies MultiParamTypeClasses (page 435).
GADTs (page 321) Enable generalised algebraic data types. Implies GADTSyntax (page 316) and MonoLocalBinds (page 485).
GADTSyntax (page 316) Enable generalised algebraic data type syntax.

Continued on next page

264 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Table 6.1 – continued from previous page
Extension Description
GeneralisedNewtypeDeriving (page 413) Enable newtype deriving.
GHC2021 (page 261) Use GHC’s set of default language extensions from 2021
GHCForeignImportPrim (page 519) Enable prim calling convention. Intended for internal use only.
Haskell2010 (page 262) Use the Haskell 2010 language variant.
Haskell98 (page 263) Use the Haskell 98 language variant.
HexFloatLiterals (page 454) Enable support for hexadecimal floating point literals (page 454).
ImplicitParams (page 476) Enable Implicit Parameters.
ImplicitPrelude (page 285) Don’t implicitly import Prelude. Implied by RebindableSyntax (page 285).
ImportQualifiedPost (page 307) ImportQualifiedPost allows the syntax import M qualified
ImpredicativeTypes (page 377) Enable impredicative types. Implies RankNTypes (page 372).
IncoherentInstances (page 450) Enable incoherent instances. Implies OverlappingInstances (page 449).
InstanceSigs (page 453) Enable instance signatures.
InterruptibleFFI (page 519) Enable interruptible FFI.
KindSignatures (page 471) Enable kind signatures. Implied by TypeFamilies (page 325) and PolyKinds (page 346).
LambdaCase (page 287) Enable lambda-case expressions.
LexicalNegation (page 305) Use whitespace to determine whether the minus sign stands for negation or subtraction.
LiberalTypeSynonyms (page 310) Enable liberalised type synonyms.
LinearTypes (page 378) Enable linear types.
MagicHash (page 268) Allow # as a postfix modifier on identifiers.
MonadComprehensions (page 280) Enable monad comprehensions.
MonoLocalBinds (page 485) Enable do not generalise local bindings. Implied by TypeFamilies (page 325) and GADTs (page 321).
MonomorphismRestriction (page 484) Disable the monomorphism restriction.
MultiParamTypeClasses (page 435) Enable multi parameter type classes. Implied by FunctionalDependencies (page 440).
MultiWayIf (page 289) Enable multi-way if-expressions.
NamedFieldPuns (page 394) Enable record puns.
NamedWildCards (page 481) Enable named wildcards.
NegativeLiterals (page 454) Enable support for negative literals.
NondecreasingIndentation (page 648) Allow nested contexts to be at the same indentation level as its enclosing context.
NPlusKPatterns (page 426) Enable support for n+k patterns. Implied by Haskell98 (page 263).
NullaryTypeClasses (page 440) Deprecated, does nothing. nullary (no parameter) type classes are now enabled using MultiParamTypeClasses (page 435).
NumDecimals (page 455) Enable support for ‘fractional’ integer literals.
NumericUnderscores (page 455) Enable support for numeric underscores (page 455).
OverlappingInstances (page 449) Enable overlapping instances.
OverloadedLabels (page 458) Enable overloaded labels.
OverloadedLists (page 282) Enable overloaded lists.
OverloadedRecordDot (page 399) Record ‘.’ syntax
OverloadedRecordUpdate (page 400) Record ‘.’ syntax record updates
OverloadedStrings (page 457) Enable overloaded string literals.
PackageImports (page 306) Enable package-qualified imports.
ParallelListComp (page 277) Enable parallel list comprehensions.
PartialTypeSignatures (page 479) Enable partial type signatures.
PatternGuards (page 424) Disable pattern guards. Implied by Haskell98 (page 263).
PatternSynonyms (page 427) Enable pattern synonyms.
PolyKinds (page 346) Enable kind polymorphism. Implies KindSignatures (page 471).
PostfixOperators (page 286) Enable postfix operators.
QualifiedDo (page 274) Enable qualified do-notation desugaring.
QuantifiedConstraints (page 462) Allow forall quantifiers in constraints.
QuasiQuotes (page 495) Enable quasiquotation.
Rank2Types (page 372) Enable rank-2 types. Synonym for RankNTypes (page 372).

Continued on next page

6.1. Introduction 265

GHC User’s Guide Documentation, Release 9.2.6

Table 6.1 – continued from previous page
Extension Description
RankNTypes (page 372) Enable rank-N types. Implied by ImpredicativeTypes (page 377).
RebindableSyntax (page 285) Employ rebindable syntax. Implies NoImplicitPrelude (page 285).
RecordWildCards (page 395) Enable record wildcards. Implies DisambiguateRecordFields (page 389).
RecursiveDo (page 269) Enable recursive do (mdo) notation.
RoleAnnotations (page 385) Enable role annotations.
Safe (page 539) Enable the Safe Haskell (page 530) Safe mode.
ScopedTypeVariables (page 472) Enable lexically-scoped type variables.
StandaloneDeriving (page 403) Enable standalone deriving.
StandaloneKindSignatures (page 352) Allow the use of standalone kind signatures.
StarIsType (page 360) Treat * as Data.Kind.Type.
StaticPointers (page 506) Enable static pointers.
Strict (page 500) Make bindings in the current module strict by default.
StrictData (page 499) Enable default strict datatype fields.
TemplateHaskell (page 486) Enable Template Haskell.
TemplateHaskellQuotes (page 486) Enable quotation subset of Template Haskell (page 486).
TraditionalRecordSyntax (page 387) Disable support for traditional record syntax (as supported by Haskell 98) C {f = x}
TransformListComp (page 278) Enable generalised list comprehensions.
Trustworthy (page 539) Enable the Safe Haskell (page 530) Trustworthy mode.
TupleSections (page 287) Enable tuple sections.
TypeApplications (page 366) Enable type application syntax in terms, patterns and types.
TypeFamilies (page 325) Enable type families. Implies ExplicitNamespaces (page 307), KindSignatures (page 471), and MonoLocalBinds (page 485).
TypeFamilyDependencies (page 341) Enable injective type families. Implies TypeFamilies (page 325).
TypeInType (page 346) Deprecated. Enable kind polymorphism and datatype promotion.
TypeOperators (page 310) Enable type operators. Implies ExplicitNamespaces (page 307).
TypeSynonymInstances (page 445) Enable type synonyms in instance heads. Implied by FlexibleInstances (page 446).
UnboxedSums (page 511) Enable unboxed sums.
UnboxedTuples (page 510) Enable the use of unboxed tuple syntax.
UndecidableInstances (page 448) Enable undecidable instances.
UndecidableSuperClasses (page 435) Allow all superclass constraints, including those that may result in non-termination of the typechecker.
UnicodeSyntax (page 267) Enable unicode syntax.
UnliftedDatatypes (page 514) Enable unlifted data types.
UnliftedFFITypes (page 517) Enable unlifted FFI types
UnliftedNewtypes (page 513) Enable unlifted newtypes.
Unsafe (page 540) Enable Safe Haskell (page 530) Unsafe mode.
ViewPatterns (page 424) Enable view patterns.

6.1.3 Summary of stolen syntax

Turning on an option that enables special syntax might cause working Haskell 98 code to
fail to compile, perhaps because it uses a variable name which has become a reserved word.
This section lists the syntax that is “stolen” by language extensions. We use notation and
nonterminal names from the Haskell 98 lexical syntax (see the Haskell 98 Report). We only
list syntax changes here that might affect existing working programs (i.e. “stolen” syntax).
Many of these extensions will also enable new context-free syntax, but in all cases programs
written to use the new syntax would not be compilable without the option enabled.
There are two classes of special syntax:
• New reserved words and symbols: character sequences which are no longer available
for use as identifiers in the program.

266 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Other special syntax: sequences of characters that have a different meaning when this
particular option is turned on.

The following syntax is stolen:
forall Stolen (in types) by default (see Lexical syntax (page 647)). forall is a reserved

keyword and never a type variable, in accordance with GHC Proposal #43.
mdo Stolen by: RecursiveDo (page 269)
foreign Stolen by: ForeignFunctionInterface (page 515)
rec, proc, -<, >-, -<<, >>-, (|, |) Stolen by: Arrows (page 299)
?varid Stolen by: ImplicitParams (page 476)
[|, [e|, [p|, [d|, [t|, [||, [e|| Stolen by: QuasiQuotes (page 495). Moreover, this intro-

duces an ambiguity with list comprehension syntax. See the discussion on quasi-quoting
(page 496) for details.

$(, $$(, $varid, $$varid Stolen by: TemplateHaskell (page 486)
[varid| Stolen by: QuasiQuotes (page 495)
⟨varid⟩, #⟨char⟩, #, ⟨string⟩, #, ⟨integer⟩, #, ⟨float⟩, #, ⟨float⟩, ## Stolen by: MagicHash

(page 268)
(#, #) Stolen by: UnboxedTuples (page 510)
⟨varid⟩, !, ⟨varid⟩ Stolen by: BangPatterns (page 498)
pattern Stolen by: PatternSynonyms (page 427)
static Stolen by: StaticPointers (page 506)

6.2 Syntax

6.2.1 Unicode syntax

UnicodeSyntax

Since 6.8.1
Enable the use of Unicode characters in place of their equivalent ASCII sequences.

The language extension UnicodeSyntax (page 267) enables Unicode characters to be used to
stand for certain ASCII character sequences. The following alternatives are provided:

6.2. Syntax 267

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0043-forall-keyword.rst

GHC User’s Guide Documentation, Release 9.2.6

ASCII Unicode
alternative

Code
point

Name

:: � 0x2237 PROPORTION
=> ⇒ 0x21D2 RIGHTWARDS DOUBLE ARROW
-> → 0x2192 RIGHTWARDS ARROW
<- ← 0x2190 LEFTWARDS ARROW
>- ⤚ 0x291a RIGHTWARDS ARROW-TAIL
-< ⤙ 0x2919 LEFTWARDS ARROW-TAIL
>>- ⤜ 0x291C RIGHTWARDS DOUBLE ARROW-TAIL
-<< ⤛ 0x291B LEFTWARDS DOUBLE ARROW-TAIL
* � 0x2605 BLACK STAR
forall ∀ 0x2200 FOR ALL
(| � 0x2987 Z NOTATION LEFT IMAGE BRACKET
|) � 0x2988 Z NOTATION RIGHT IMAGE BRACKET
[| � 0x27E6 MATHEMATICAL LEFT WHITE SQUARE

BRACKET
|] � 0x27E7 MATHEMATICAL RIGHT WHITE SQUARE

BRACKET

6.2.2 The magic hash

MagicHash

Since 6.8.1
Enables the use of the hash character (#) as an identifier suffix.

The language extension MagicHash (page 268) allows # as a postfix modifier to identifiers.
Thus, x# is a valid variable, and T# is a valid type constructor or data constructor.
The hash sign does not change semantics at all. We tend to use variable names ending in “#”
for unboxed values or types (e.g. Int#), but there is no requirement to do so; they are just
plain ordinary variables. Nor does the MagicHash (page 268) extension bring anything into
scope. For example, to bring Int# into scope you must import GHC.Prim (see Unboxed types
and primitive operations (page 509)); the MagicHash (page 268) extension then allows you to
refer to the Int# that is now in scope. Note that with this option, the meaning of x#y = 0 is
changed: it defines a function x# taking a single argument y; to define the operator #, put a
space: x # y = 0.
The MagicHash (page 268) also enables some new forms of literals (see Unboxed types
(page 509)):
• 'x'# has type Char#
• "foo"# has type Addr#
• 3# has type Int#. In general, any Haskell integer lexeme followed by a # is an Int#
literal, e.g. -0x3A# as well as 32#.

• 3## has type Word#. In general, any non-negative Haskell integer lexeme followed by ##
is a Word#.

• 3.2# has type Float#.
• 3.2## has type Double#

268 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.2.3 The recursive do-notation

RecursiveDo

Since 6.8.1
Allow the use of recursive do notation.

The do-notation of Haskell 98 does not allow recursive bindings, that is, the variables bound
in a do-expression are visible only in the textually following code block. Compare this to a
let-expression, where bound variables are visible in the entire binding group.
It turns out that such recursive bindings do indeed make sense for a variety of monads, but
not all. In particular, recursion in this sense requires a fixed-point operator for the underlying
monad, captured by the mfix method of the MonadFix class, defined in Control.Monad.Fix
as follows:

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

Haskell’s Maybe, [] (list), ST (both strict and lazy versions), IO, and many other monads have
MonadFix instances. On the negative side, the continuation monad, with the signature (a ->
r) -> r, does not.
For monads that do belong to the MonadFix class, GHC provides an extended version of the
do-notation that allows recursive bindings. The RecursiveDo (page 269) (language pragma:
RecursiveDo) provides the necessary syntactic support, introducing the keywords mdo and
rec for higher and lower levels of the notation respectively. Unlike bindings in a do expres-
sion, those introduced by mdo and rec are recursively defined, much like in an ordinary let-
expression. Due to the new keyword mdo, we also call this notation the mdo-notation.
Here is a simple (albeit contrived) example:

{-# LANGUAGE RecursiveDo #-}
justOnes = mdo { xs <- Just (1:xs)

; return (map negate xs) }

or equivalently

{-# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (1:xs) }

; return (map negate xs) }

As you can guess justOnes will evaluate to Just [-1,-1,-1,....
GHC’s implementation the mdo-notation closely follows the original translation as described
in the paper A recursive do for Haskell, which in turn is based on the work Value Recursion in
Monadic Computations. Furthermore, GHC extends the syntax described in the former paper
with a lower level syntax flagged by the rec keyword, as we describe next.

Recursive binding groups

The extension RecursiveDo (page 269) also introduces a new keyword rec, which wraps a
mutually-recursive group of monadic statements inside a do expression, producing a single
statement. Similar to a let statement inside a do, variables bound in the rec are visible
throughout the rec group, and below it. For example, compare

6.2. Syntax 269

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf

GHC User’s Guide Documentation, Release 9.2.6

do { a <- getChar do { a <- getChar
; let { r1 = f a r2 ; rec { r1 <- f a r2
; ; r2 = g r1 } ; ; r2 <- g r1 }
; return (r1 ++ r2) } ; return (r1 ++ r2) }

In both cases, r1 and r2 are available both throughout the let or rec block, and in the state-
ments that follow it. The difference is that let is non-monadic, while rec is monadic. (In
Haskell let is really letrec, of course.)
The semantics of rec is fairly straightforward. Whenever GHC finds a rec group, it will
compute its set of bound variables, and will introduce an appropriate call to the underlying
monadic value-recursion operator mfix, belonging to the MonadFix class. Here is an example:

rec { b <- f a c ===> (b,c) <- mfix (\ ~(b,c) -> do { b <- f a c
; c <- f b a } ; c <- f b a

; return (b,c) })

As usual, the meta-variables b, c etc., can be arbitrary patterns. In general, the statement
rec ss is desugared to the statement

vs <- mfix (\ ~vs -> do { ss; return vs })

where vs is a tuple of the variables bound by ss.
Note in particular that the translation for a rec block only involves wrapping a call to mfix: it
performs no other analysis on the bindings. The latter is the task for the mdo notation, which
is described next.

The mdo notation

A rec-block tells the compiler where precisely the recursive knot should be tied. It turns out
that the placement of the recursive knots can be rather delicate: in particular, we would like
the knots to be wrapped around as minimal groups as possible. This process is known as
segmentation, and is described in detail in Section 3.2 of A recursive do for Haskell. Seg-
mentation improves polymorphism and reduces the size of the recursive knot. Most impor-
tantly, it avoids unnecessary interference caused by a fundamental issue with the so-called
right-shrinking axiom for monadic recursion. In brief, most monads of interest (IO, strict
state, etc.) do not have recursion operators that satisfy this axiom, and thus not performing
segmentation can cause unnecessary interference, changing the termination behavior of the
resulting translation. (Details can be found in Sections 3.1 and 7.2.2 of Value Recursion in
Monadic Computations.)
The mdo notation removes the burden of placing explicit rec blocks in the code. Unlike an
ordinary do expression, in which variables bound by statements are only in scope for later
statements, variables bound in an mdo expression are in scope for all statements of the ex-
pression. The compiler then automatically identifies minimal mutually recursively dependent
segments of statements, treating them as if the user had wrapped a rec qualifier around
them.
The definition is syntactic:
• A generator ⟨g⟩ depends on a textually following generator ⟨g’⟩, if

– ⟨g’⟩ defines a variable that is used by ⟨g⟩, or
– ⟨g’⟩ textually appears between ⟨g⟩ and ⟨g’‘⟩, where ⟨g⟩ depends on ⟨g’‘⟩.

270 Chapter 6. Language extensions

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf

GHC User’s Guide Documentation, Release 9.2.6

• A segment of a given mdo-expression is a minimal sequence of generators such that no
generator of the sequence depends on an outside generator. As a special case, although
it is not a generator, the final expression in an mdo-expression is considered to form a
segment by itself.

Segments in this sense are related to strongly-connected components analysis, with the ex-
ception that bindings in a segment cannot be reordered and must be contiguous.
Here is an example mdo-expression, and its translation to rec blocks:

mdo { a <- getChar ===> do { a <- getChar
; b <- f a c ; rec { b <- f a c
; c <- f b a ; ; c <- f b a }
; z <- h a b ; z <- h a b
; d <- g d e ; rec { d <- g d e
; e <- g a z ; ; e <- g a z }
; putChar c } ; putChar c }

Note that a given mdo expression can cause the creation of multiple rec blocks. If there are no
recursive dependencies, mdowill introduce no rec blocks. In this latter case an mdo expression
is precisely the same as a do expression, as one would expect.
In summary, given an mdo expression, GHC first performs segmentation, introducing rec
blocks to wrap over minimal recursive groups. Then, each resulting rec is desugared, using
a call to Control.Monad.Fix.mfix as described in the previous section. The original mdo-
expression typechecks exactly when the desugared version would do so.
Here are some other important points in using the recursive-do notation:
• It is enabled with the extension RecursiveDo (page 269), or the LANGUAGE RecursiveDo
pragma. (The same extension enables both mdo-notation, and the use of rec blocks inside
do expressions.)

• rec blocks can also be used inside mdo-expressions, which will be treated as a single
statement. However, it is good style to either use mdo or rec blocks in a single expression.

• If recursive bindings are required for a monad, then that monad must be declared an
instance of the MonadFix class.

• The following instances of MonadFix are automatically provided: List, Maybe, IO. Fur-
thermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the in-
stances of the MonadFix class for Haskell’s internal state monad (strict and lazy, respec-
tively).

• Like let and where bindings, name shadowing is not allowed within an mdo-expression
or a rec-block; that is, all the names bound in a single rec must be distinct. (GHC will
complain if this is not the case.)

6.2.4 Applicative do-notation

ApplicativeDo

Since 8.0.1
Allow use of Applicative do notation.

The language option ApplicativeDo (page 271) enables an alternative translation for the do-
notation, which uses the operators <$>, <*>, along with join as far as possible. There are
two main reasons for wanting to do this:

6.2. Syntax 271

GHC User’s Guide Documentation, Release 9.2.6

• We can use do-notation with types that are an instance of Applicative and Functor, but
not Monad

• In some monads, using the applicative operators is more efficient than monadic bind.
For example, it may enable more parallelism.

Applicative do-notation desugaring preserves the original semantics, provided that the Ap-
plicative instance satisfies <*> = ap and pure = return (these are true of all the common
monadic types). Thus, you can normally turn on ApplicativeDo (page 271) without fear of
breaking your program. There is one pitfall to watch out for; see Things to watch out for
(page 274).
There are no syntactic changes with ApplicativeDo (page 271). The only way it shows up at
the source level is that you can have a do expression that doesn’t require a Monad constraint.
For example, in GHCi:

Prelude> :set -XApplicativeDo
Prelude> :t \m -> do { x <- m; return (not x) }
\m -> do { x <- m; return (not x) }
:: Functor f => f Bool -> f Bool

This example only requires Functor, because it is translated into (\x -> not x) <$> m. A
more complex example requires Applicative,

Prelude> :t \m -> do { x <- m 'a'; y <- m 'b'; return (x || y) }
\m -> do { x <- m 'a'; y <- m 'b'; return (x || y) }
:: Applicative f => (Char -> f Bool) -> f Bool

Here GHC has translated the expression into

(\x y -> x || y) <$> m 'a' <*> m 'b'

It is possible to see the actual translation by using -ddump-ds (page 253), but be warned, the
output is quite verbose.
Note that if the expression can’t be translated into uses of <$>, <*> only, then it will incur a
Monad constraint as usual. This happens when there is a dependency on a value produced by
an earlier statement in the do-block:

Prelude> :t \m -> do { x <- m True; y <- m x; return (x || y) }
\m -> do { x <- m True; y <- m x; return (x || y) }
:: Monad m => (Bool -> m Bool) -> m Bool

Here, m x depends on the value of x produced by the first statement, so the expression cannot
be translated using <*>.
In general, the rule for when a do statement incurs a Monad constraint is as follows. If the
do-expression has the following form:

do p1 <- E1; ...; pn <- En; return E

where none of the variables defined by p1...pn are mentioned in E1...En, and p1...pn are
all variables or lazy patterns, then the expression will only require Applicative. Otherwise,
the expression will require Monad. The block may return a pure expression E depending upon
the results p1...pn with either return or pure.
Note: the final statement must match one of these patterns exactly:
• return E

272 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• return $ E

• pure E

• pure $ E

otherwise GHC cannot recognise it as a return statement, and the transformation to use <$>
that we saw above does not apply. In particular, slight variations such as return . Just $
x or let x = e in return x would not be recognised.
If the final statement is not of one of these forms, GHC falls back to standard do desugaring,
and the expression will require a Monad constraint.
When the statements of a do expression have dependencies between them, and Applica-
tiveDo cannot infer an Applicative type, it uses a heuristic algorithm to try to use <*> as
much as possible. This algorithm usually finds the best solution, but in rare complex cases it
might miss an opportunity. There is an algorithm that finds the optimal solution, provided as
an option:
-foptimal-applicative-do

Since 8.0.1
Enables an alternative algorithm for choosing where to use <*> in conjunction with the
ApplicativeDo language extension. This algorithm always finds the optimal solution,
but it is expensive: O(n^3), so this option can lead to long compile times when there are
very large do expressions (over 100 statements). The default ApplicativeDo algorithm
is O(n^2).

Strict patterns

A strict pattern match in a bind statement prevents ApplicativeDo from transforming that
statement to use Applicative. This is because the transformation would change the seman-
tics by making the expression lazier.
For example, this code will require a Monad constraint:

> :t \m -> do { (x:xs) <- m; return x }
\m -> do { (x:xs) <- m; return x } :: Monad m => m [b] -> m b

but making the pattern match lazy allows it to have a Functor constraint:

> :t \m -> do { ~(x:xs) <- m; return x }
\m -> do { ~(x:xs) <- m; return x } :: Functor f => f [b] -> f b

A “strict pattern match” is any pattern match that can fail. For example, (), (x:xs), !z, and C
x are strict patterns, but x and ~(1,2) are not. For the purposes of ApplicativeDo, a pattern
match against a newtype constructor is considered strict.
When there’s a strict pattern match in a sequence of statements, ApplicativeDo places a
>>= between that statement and the one that follows it. The sequence may be transformed to
use <*> elsewhere, but the strict pattern match and the following statement will always be
connected with >>=, to retain the same strictness semantics as the standard do-notation. If
you don’t want this, simply put a ~ on the pattern match to make it lazy.

6.2. Syntax 273

GHC User’s Guide Documentation, Release 9.2.6

Things to watch out for

Your code should just work as before when ApplicativeDo (page 271) is enabled, provided
you use conventional Applicative instances. However, if you define a Functor or Applica-
tive instance using do-notation, then it will likely get turned into an infinite loop by GHC. For
example, if you do this:

instance Functor MyType where
fmap f m = do x <- m; return (f x)

Then applicative desugaring will turn it into

instance Functor MyType where
fmap f m = fmap (\x -> f x) m

And the program will loop at runtime. Similarly, an Applicative instance like this

instance Applicative MyType where
pure = return
x <*> y = do f <- x; a <- y; return (f a)

will result in an infinite loop when <*> is called.
Just as you wouldn’t define a Monad instance using the do-notation, you shouldn’t define Func-
tor or Applicative instance using do-notation (when using ApplicativeDo) either. The cor-
rect way to define these instances in terms of Monad is to use the Monad operations directly,
e.g.

instance Functor MyType where
fmap f m = m >>= return . f

instance Applicative MyType where
pure = return
(<*>) = ap

6.2.5 Qualified do-notation

QualifiedDo

Since 9.0.1
Allow the use of qualified do notation.

QualifiedDo enables qualifying a do block with a module name, to control which operations
to use for the monadic combinators that the do notation desugars to. When -XQualifiedDo is
enabled, you can qualify the do notation by writing modid.do, where modid is a module name
in scope:

{-# LANGUAGE QualifiedDo #-}
import qualified Some.Module.Monad as M

action :: M.SomeType a
action = M.do x <- u

res
M.return x

274 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The additional module name (here M) is called the qualifier of the do-expression.
The unqualified do syntax is convenient for writing monadic code, but it only works for data
types that provide an instance of the Monad type class. There are other types which are
“monad-like” but can’t provide an instance of Monad (e.g. indexed monads, graded monads or
relative monads), yet they could still use the do syntax if it weren’t hardwired to the methods
of the Monad type class. -XQualifiedDo comes to make the do syntax customizable in this
respect. It allows you to mix and match do blocks of different types with suitable operations
to use on each case:

{-# LANGUAGE QualifiedDo #-}
import qualified Control.Monad.Linear as L

import MAC (label, box, runMAC)
import qualified MAC as MAC

f :: IO ()
f = do
x <- runMAC $ -- (Prelude.>>=)

-- (runMAC $
MAC.do --
d <- label "y" -- label "y" MAC.>>= \d ->
box $ --

-- (box $
L.do --
r <- L.f d -- L.f d L.>>= \r ->
L.g r -- L.g r L.>>
L.return r -- L.return r

--) MAC.>>
MAC.return d -- (MAC.return d)

--)
print x -- (\x -> print x)

The semantics of do notation statements with -XQualifiedDo is as follows:
• The x <-u statement uses (M.>>=)

M.do { x <- u; stmts } = u M.>>= \x -> M.do { stmts }

• The u statement uses (M.>>)

M.do { u; stmts } = u M.>> M.do { stmts }

• The a pat <-u statement uses M.fail for the failing case, if such a case is needed

M.do { pat <- u; stmts } = u M.>>= \case
{ pat -> M.do { stmts }
; _ -> M.fail "…"
}

If the pattern cannot fail, then we don’t need to use M.fail.

M.do { pat <- u; stmts } = u M.>>= \case pat -> M.do { stmts }

• The desugaring of -XApplicativeDo uses M.fmap, (M.<*>), and M.join (after the the
applicative-do grouping has been performed)

6.2. Syntax 275

GHC User’s Guide Documentation, Release 9.2.6

M.do { (x1 <- u1 | … | xn <- un); M.return e } =
(\x1 … xn -> e) `M.fmap` u1 M.<*> … M.<*> un

M.do { (x1 <- u1 | … | xn <- un); stmts } =
M.join ((\x1 … xn -> M.do { stmts }) `M.fmap` u1 M.<*> … M.<*> un)

Note that M.join is only needed if the final expression is not identifiably a re-
turn. With -XQualifiedDo enabled, -XApplicativeDo looks only for the qualified
return/pure in a qualified do-block.

• With -XRecursiveDo, rec and mdo blocks use M.mfix and M.return:

M.do { rec { x1 <- u1; … ; xn <- un }; stmts } =
M.do
{ (x1, …, xn) <- M.mfix (\~(x1, …, xn) -> M.do { x1 <- u1; …; xn <- un; M.

↪→return (x1, …, xn)})
; stmts
}

If a name M.op is required by the desugaring process (and only if it’s required!) but the name
is not in scope, it is reported as an error.
The types of the operations picked for desugaring must produce an expression which is ac-
cepted by the typechecker. But other than that, there are no specific requirements on the
types.
If no qualifier is specified with -XQualifiedDo enabled, it defaults to the operations defined
in the Prelude, or, if -XRebindableSyntax is enabled, to whatever operations are in scope.
Note that the operations to be qualified must be in scope for QualifiedDo to work. I.e. import
MAC (label) in the example above would result in an error, since MAC.>>= and MAC.>> would
not be in scope.

Examples

-XQualifiedDo does not affect return in the monadic do notation.

import qualified Some.Monad.M as M

boolM :: (a -> M.M Bool) -> b -> b -> a -> M.M b
boolM p a b x = M.do

px <- p x -- M.>>=
if px then
return b -- Prelude.return

else
M.return a -- M.return

-XQualifiedDo does not affect explicit (>>=) in the monadic do notation.

import qualified Some.Monad.M as M
import Data.Bool (bool)

boolMM :: (a -> M.M Bool) -> M b -> M b -> a -> M.M b
boolMM p ma mb x = M.do

p x >>= bool ma mb -- Prelude.>>=

Nested do blocks do not affect each other’s meanings.

276 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

import qualified Some.Monad.M as M

f :: M.M SomeType
f = M.do

x <- f1 -- M.>>=
f2 (do y <- g1 -- Prelude.>>=

g2 x y)
where

f1 = ...
f2 m = ...
g1 = ...
g2 x y = ...

The type of (>>=) can also be modified, as seen here for a graded monad:

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
module Control.Monad.Graded (GradedMonad(..)) where

import Data.Kind (Constraint)

class GradedMonad (m :: k -> * -> *) where
type Unit m :: k
type Plus m (i :: k) (j :: k) :: k
type Inv m (i :: k) (j :: k) :: Constraint
(>>=) :: Inv m i j => m i a -> (a -> m j b) -> m (Plus m i j) b
return :: a -> m (Unit m) a

module M where

import Control.Monad.Graded as Graded

g :: GradedMonad m => a -> m SomeTypeIndex b
g a = Graded.do
b <- someGradedFunction a Graded.>>= someOtherGradedFunction
c <- anotherGradedFunction b
Graded.return c

6.2.6 Parallel List Comprehensions

ParallelListComp

Since 6.8.1
Allow parallel list comprehension syntax.

Parallel list comprehensions are a natural extension to list comprehensions. List comprehen-
sions can be thought of as a nice syntax for writing maps and filters. Parallel comprehensions
extend this to include the zipWith family.
A parallel list comprehension has multiple independent branches of qualifier lists, each sepa-
rated by a | symbol. For example, the following zips together two lists:

6.2. Syntax 277

GHC User’s Guide Documentation, Release 9.2.6

[(x, y) | x <- xs | y <- ys]

The behaviour of parallel list comprehensions follows that of zip, in that the resulting list will
have the same length as the shortest branch.
We can define parallel list comprehensions by translation to regular comprehensions. Here’s
the basic idea:
Given a parallel comprehension of the form:

[e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

where zipN is the appropriate zip for the given number of branches.

6.2.7 Generalised (SQL-like) List Comprehensions

TransformListComp

Since 6.10.1
Allow use of generalised list (SQL-like) comprehension syntax. This introduces the group,
by, and using keywords.

Generalised list comprehensions are a further enhancement to the list comprehension syn-
tactic sugar to allow operations such as sorting and grouping which are familiar from SQL.
They are fully described in the paper Comprehensive comprehensions: comprehensions with
“order by” and “group by”, except that the syntax we use differs slightly from the paper.
The extension is enabled with the extension TransformListComp (page 278).
Here is an example:

employees = [("Simon", "MS", 80)
, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60)]

output = [(the dept, sum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, then sortWith by (sum salary)
, then take 5]

In this example, the list output would take on the value:

[("Yale", 60), ("Ed", 85), ("MS", 180)]

278 Chapter 6. Language extensions

https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf

GHC User’s Guide Documentation, Release 9.2.6

There are three new keywords: group, by, and using. (The functions sortWith and groupWith
are not keywords; they are ordinary functions that are exported by GHC.Exts.)
There are five new forms of comprehension qualifier, all introduced by the (existing) keyword
then:

• then f

This statement requires that f have the type forall a. [a] -> [a] . You can see an example
of its use in the motivating example, as this form is used to apply take 5 .

• then f by e

This form is similar to the previous one, but allows you to create a function which will be
passed as the first argument to f. As a consequence f must have the type forall a. (a
-> t) -> [a] -> [a]. As you can see from the type, this function lets f “project out”
some information from the elements of the list it is transforming.
An example is shown in the opening example, where sortWith is supplied with a function
that lets it find out the sum salary for any item in the list comprehension it transforms.

• then group by e using f

This is the most general of the grouping-type statements. In this form, f is required to
have type forall a. (a -> t) -> [a] -> [[a]]. As with the then f by e case above,
the first argument is a function supplied to f by the compiler which lets it compute e on
every element of the list being transformed. However, unlike the non-grouping case, f
additionally partitions the list into a number of sublists: this means that at every point
after this statement, binders occurring before it in the comprehension refer to lists of
possible values, not single values. To help understand this, let’s look at an example:

-- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y -> f x == f y)

output = [(the x, y)
| x <- ([1..3] ++ [1..2])
, y <- [4..6]
, then group by x using groupRuns]

This results in the variable output taking on the value below:

[(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]

Note that we have used the the function to change the type of x from a list to its original
numeric type. The variable y, in contrast, is left unchanged from the list form introduced
by the grouping.

• then group using f

With this form of the group statement, f is required to simply have the type forall a.
[a] -> [[a]], which will be used to group up the comprehension so far directly. An
example of this form is as follows:

output = [x
| y <- [1..5]
, x <- "hello"
, then group using inits]

6.2. Syntax 279

GHC User’s Guide Documentation, Release 9.2.6

This will yield a list containing every prefix of the word “hello” written out 5 times:

["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell",
↪→"hellohello","hellohelloh",...]

6.2.8 Monad comprehensions

MonadComprehensions

Since 7.2.1
Enable list comprehension syntax for arbitrary monads.

Monad comprehensions generalise the list comprehension notation, including parallel com-
prehensions (Parallel List Comprehensions (page 277)) and transform comprehensions (Gen-
eralised (SQL-like) List Comprehensions (page 278)) to work for any monad.
Monad comprehensions support:
• Bindings:

[x + y | x <- Just 1, y <- Just 2]

Bindings are translated with the (>>=) and return functions to the usual do-notation:

do x <- Just 1
y <- Just 2
return (x+y)

• Guards:

[x | x <- [1..10], x <= 5]

Guards are translated with the guard function, which requires a MonadPlus instance:

do x <- [1..10]
guard (x <= 5)
return x

• Transform statements (as with TransformListComp (page 278)):

[x+y | x <- [1..10], y <- [1..x], then take 2]

This translates to:

do (x,y) <- take 2 (do x <- [1..10]
y <- [1..x]
return (x,y))

return (x+y)

• Group statements (as with TransformListComp (page 278)):

[x | x <- [1,1,2,2,3], then group by x using GHC.Exts.groupWith]
[x | x <- [1,1,2,2,3], then group using myGroup]

• Parallel statements (as with ParallelListComp (page 277)):

280 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

[(x+y) | x <- [1..10]
| y <- [11..20]
]

Parallel statements are translated using the mzip function, which requires a MonadZip
instance defined in Control.Monad.Zip:

do (x,y) <- mzip (do x <- [1..10]
return x)

(do y <- [11..20]
return y)

return (x+y)

All these features are enabled by default if the MonadComprehensions (page 280) extension is
enabled. The types and more detailed examples on how to use comprehensions are explained
in the previous chapters Generalised (SQL-like) List Comprehensions (page 278) and Parallel
List Comprehensions (page 277). In general you just have to replace the type [a] with the
type Monad m => m a for monad comprehensions.

Note: Even though most of these examples are using the list monad, monad comprehensions
work for any monad. The base package offers all necessary instances for lists, which make
MonadComprehensions (page 280) backward compatible to built-in, transform and parallel list
comprehensions.

More formally, the desugaring is as follows. We write D[e | Q] to mean the desugaring of
the monad comprehension [e | Q]:

Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S

-- Basic forms
D[e |] = return e
D[e | p <- e, Q] = e >>= \p -> D[e | Q]
D[e | e, Q] = guard e >> \p -> D[e | Q]
D[e | let d, Q] = let d in D[e | Q]

-- Parallel comprehensions (iterate for multiple parallel branches)
D[e | (Q | R), S] = mzip D[Qv | Q] D[Rv | R] >>= \(Qv,Rv) -> D[e | S]

-- Transform comprehensions
D[e | Q then f, R] = f D[Qv | Q] >>= \Qv -> D[e | R]

D[e | Q then f by b, R] = f (\Qv -> b) D[Qv | Q] >>= \Qv -> D[e | R]

D[e | Q then group using f, R] = f D[Qv | Q] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of
Qv -> D[e | R]

D[e | Q then group by b using f, R] = f (\Qv -> b) D[Qv | Q] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of

Qv -> D[e | R]

where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv

6.2. Syntax 281

GHC User’s Guide Documentation, Release 9.2.6

Operator Standard binding Expected type
--
return GHC.Base t1 -> m t2
(>>=) GHC.Base m1 t1 -> (t2 -> m2 t3) -> m3 t3
(>>) GHC.Base m1 t1 -> m2 t2 -> m3 t3
guard Control.Monad t1 -> m t2
fmap GHC.Base forall a b. (a->b) -> n a -> n b
mzip Control.Monad.Zip forall a b. m a -> m b -> m (a,b)

The comprehension should typecheck when its desugaring would typecheck, except that
(as discussed in Generalised (SQL-like) List Comprehensions (page 278)) in the “then f”
and “then group using f” clauses, when the “by b” qualifier is omitted, argument f should
have a polymorphic type. In particular, “then Data.List.sort” and “then group using
Data.List.group” are insufficiently polymorphic.
Monad comprehensions support rebindable syntax (Rebindable syntax and the implicit Pre-
lude import (page 285)). Without rebindable syntax, the operators from the “standard bind-
ing” module are used; with rebindable syntax, the operators are looked up in the current
lexical scope. For example, parallel comprehensions will be typechecked and desugared us-
ing whatever “mzip” is in scope.
The rebindable operators must have the “Expected type” given in the table above. These
types are surprisingly general. For example, you can use a bind operator with the type

(>>=) :: T x y a -> (a -> T y z b) -> T x z b

In the case of transform comprehensions, notice that the groups are parameterised over some
arbitrary type n (provided it has an fmap, as well as the comprehension being over an arbitrary
monad.

6.2.9 Overloaded lists

OverloadedLists

Since 7.8.1
Enable overloaded list syntax (e.g. desugaring of lists via the IsList class).

GHC supports overloading of the list notation. Let us recap the notation for constructing lists.
In Haskell, the list notation can be used in the following seven ways:

[] -- Empty list
[x] -- x : []
[x,y,z] -- x : y : z : []
[x ..] -- enumFrom x
[x,y ..] -- enumFromThen x y
[x .. y] -- enumFromTo x y
[x,y .. z] -- enumFromThenTo x y z

When the OverloadedLists extension is turned on, the aforementioned seven notations are
desugared as follows:

[] -- fromListN 0 []
[x] -- fromListN 1 (x : [])
[x,y,z] -- fromListN 3 (x : y : z : [])
[x ..] -- fromList (enumFrom x)
[x,y ..] -- fromList (enumFromThen x y)

282 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

[x .. y] -- fromList (enumFromTo x y)
[x,y .. z] -- fromList (enumFromThenTo x y z)

This extension allows programmers to use the list notation for construction of structures like:
Set, Map, IntMap, Vector, Text and Array. The following code listing gives a few examples:

['0' .. '9'] :: Set Char
[1 .. 10] :: Vector Int
[("default",0), (k1,v1)] :: Map String Int
['a' .. 'z'] :: Text

List patterns are also overloaded. When the OverloadedLists extension is turned on, these
definitions are desugared as follows

f [] = ... -- f (toList -> []) = ...
g [x,y,z] = ... -- g (toList -> [x,y,z]) = ...

(Here we are using view-pattern syntax for the translation, see View patterns (page 424).)

The IsList class

In the above desugarings, the functions toList, fromList and fromListN are all methods of
the IsList class, which is itself exported from the GHC.Extsmodule. The type class is defined
as follows:

class IsList l where
type Item l

fromList :: [Item l] -> l
toList :: l -> [Item l]

fromListN :: Int -> [Item l] -> l
fromListN _ = fromList

The IsList class and its methods are intended to be used in conjunction with the Overload-
edLists extension.
• The type function Item returns the type of items of the structure l.
• The function fromList constructs the structure l from the given list of Item l.
• The function fromListN takes the input list’s length as a hint. Its behaviour should be
equivalent to fromList. The hint can be used for more efficient construction of the
structure l compared to fromList. If the given hint is not equal to the input list’s length
the behaviour of fromListN is not specified.

• The function toList should be the inverse of fromList.
It is perfectly fine to declare new instances of IsList, so that list notation becomes useful for
completely new data types. Here are several example instances:

instance IsList [a] where
type Item [a] = a
fromList = id
toList = id

instance (Ord a) => IsList (Set a) where
type Item (Set a) = a

6.2. Syntax 283

GHC User’s Guide Documentation, Release 9.2.6

fromList = Set.fromList
toList = Set.toList

instance (Ord k) => IsList (Map k v) where
type Item (Map k v) = (k,v)
fromList = Map.fromList
toList = Map.toList

instance IsList (IntMap v) where
type Item (IntMap v) = (Int,v)
fromList = IntMap.fromList
toList = IntMap.toList

instance IsList Text where
type Item Text = Char
fromList = Text.pack
toList = Text.unpack

instance IsList (Vector a) where
type Item (Vector a) = a
fromList = Vector.fromList
fromListN = Vector.fromListN
toList = Vector.toList

Rebindable syntax

When desugaring list notation with OverloadedLists (page 282) GHC uses the fromList (etc)
methods from module GHC.Exts. You do not need to import GHC.Exts for this to happen.
However if you use RebindableSyntax (page 285), then GHC instead uses whatever is in
scope with the names of toList, fromList and fromListN. That is, these functions are re-
bindable; c.f. Rebindable syntax and the implicit Prelude import (page 285).

Defaulting

Currently, the IsList class is not accompanied with defaulting rules. Although feasible, not
much thought has gone into how to specify the meaning of the default declarations like:

default ([a])

Speculation about the future

The current implementation of the OverloadedLists extension can be improved by handling
the lists that are only populated with literals in a special way. More specifically, the com-
piler could allocate such lists statically using a compact representation and allow IsList
instances to take advantage of the compact representation. Equipped with this capability the
OverloadedLists extension will be in a good position to subsume the OverloadedStrings ex-
tension (currently, as a special case, string literals benefit from statically allocated compact
representation).

284 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.2.10 Rebindable syntax and the implicit Prelude import

NoImplicitPrelude

Since 6.8.1
Don’t import Prelude by default.

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a -
XNoImplicitPrelude option. The idea is that you can then import a Prelude of your own.
(But don’t call it Prelude; the Haskell module namespace is flat, and you must not conflict
with any Prelude module.)
RebindableSyntax

Implies NoImplicitPrelude (page 285)
Since 7.0.1

Enable rebinding of a variety of usually-built-in operations.
Suppose you are importing a Prelude of your own in order to define your own numeric class
hierarchy. It completely defeats that purpose if the literal “1” means “Prelude.fromInteger
1”, which is what theHaskell Report specifies. So the RebindableSyntax (page 285) extension
causes the following pieces of built-in syntax to refer to whatever is in scope, not the Prelude
versions:
• An integer literal 368 means “fromInteger (368::Integer)”, rather than
“Prelude.fromInteger (368::Integer)”.

• Fractional literals are handled in just the same way, except that the translation is from-
Rational (3.68::Rational).

• String literals are also handled the same way, except that the translation is fromString
("368"::String).

• The equality test in an overloaded numeric pattern uses whatever (==) is in scope.
• The subtraction operation, and the greater-than-or-equal test, in n+k patterns use what-
ever (-) and (>=) are in scope.

• Negation (e.g. “-(f x)”) means “negate (f x)”, both in numeric patterns, and expres-
sions.

• Conditionals (e.g. “if e1 then e2 else e3”) means “ifThenElse e1 e2 e3”. However
case expressions are unaffected.

• “Do” notation is translated using whatever functions (>>=), (>>), and fail, are in
scope (not the Prelude versions). List comprehensions, mdo (The recursive do-notation
(page 269)), and parallel array comprehensions, are unaffected.

• Arrow notation (see Arrow notation (page 299)) uses whatever arr, (>>>), first, app,
(|||) and loop functions are in scope. But unlike the other constructs, the types of these
functions must match the Prelude types very closely. Details are in flux; if you want to
use this, ask!

• List notation, such as [x,y] or [m..n] can also be treated via rebindable syntax if you
use -XOverloadedLists; see Overloaded lists (page 282).

• An overloaded label “#foo” means “fromLabel @"foo"”, rather than
“GHC.OverloadedLabels.fromLabel @"foo"” (see Overloaded labels (page 458)).

6.2. Syntax 285

GHC User’s Guide Documentation, Release 9.2.6

RebindableSyntax (page 285) implies NoImplicitPrelude (page 285).
In all cases (apart from arrow notation), the static semantics should be that of the desugared
form, even if that is a little unexpected. For example, the static semantics of the literal 368
is exactly that of fromInteger (368::Integer); it’s fine for fromInteger to have any of the
types:

fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use -dcore-lint
to typecheck the desugared program. If Core Lint is happy you should be all right.

Things unaffected by RebindableSyntax

RebindableSyntax (page 285) does not apply to any code generated from a deriving clause
or declaration. To see why, consider the following code:

{-# LANGUAGE RebindableSyntax, OverloadedStrings #-}
newtype Text = Text String

fromString :: String -> Text
fromString = Text

data Foo = Foo deriving Show

This will generate code to the effect of:

instance Show Foo where
showsPrec _ Foo = showString "Foo"

But because RebindableSyntax (page 285) and OverloadedStrings (page 457) are enabled,
the "Foo" string literal would now be of type Text, not String, which showString doesn’t
accept! This causes the generated Show instance to fail to typecheck. It’s hard to imagine
any scenario where it would be desirable have RebindableSyntax (page 285) behavior within
derived code, so GHC simply ignores RebindableSyntax (page 285) entirely when checking
derived code.

6.2.11 Postfix operators

PostfixOperators

Since 7.10.1
Allow the use of post-fix operators

The PostfixOperators (page 286) extension enables a small extension to the syntax of left
operator sections, which allows you to define postfix operators. The extension is this: the left
section

(e !)

is equivalent (from the point of view of both type checking and execution) to the expression

286 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

((!) e)

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section
is equivalent to

(\y -> (!) e y)

That is, the operator must be a function of two arguments. GHC allows it to take only one
argument, and that in turn allows you to write the function postfix.
The extension does not extend to the left-hand side of function definitions; you must define
such a function in prefix form.

6.2.12 Tuple sections

TupleSections

Since 6.12
Allow the use of tuple section syntax

The TupleSections (page 287) extension enables partially applied tuple constructors. For
example, the following program

(, True)

is considered to be an alternative notation for the more unwieldy alternative

\x -> (x, True)

You can omit any combination of arguments to the tuple, as in the following

(, "I", , , "Love", , 1337)

which translates to

\a b c d -> (a, "I", b, c, "Love", d, 1337)

If you have unboxed tuples (page ??) enabled, tuple sections will also be available for them,
like so

(# , True #)

Because there is no unboxed unit tuple, the following expression

(# #)

continues to stand for the unboxed singleton tuple data constructor.

6.2.13 Lambda-case

LambdaCase

Since 7.6.1
Allow the use of lambda-case syntax.

6.2. Syntax 287

GHC User’s Guide Documentation, Release 9.2.6

The LambdaCase (page 287) extension enables expressions of the form

\case { p1 -> e1; ...; pN -> eN }

which is equivalent to

\freshName -> case freshName of { p1 -> e1; ...; pN -> eN }

Note that \case starts a layout, so you can write

\case
p1 -> e1
...
pN -> eN

Additionally, since GHC 9.0.1, combining LambdaCase (page 287) with Arrows (page 299) al-
lows \case syntax to be used as a command in proc notation:

proc x -> (f -< x) `catchA` \case
p1 -> cmd1
...
pN -> cmdN

6.2.14 Empty case alternatives

EmptyCase

Since 7.8.1
Allow empty case expressions.

The EmptyCase (page 288) extension enables case expressions, or lambda-case expressions,
that have no alternatives, thus:

case e of { } -- No alternatives

or

\case { } -- -XLambdaCase is also required

This can be useful when you know that the expression being scrutinised has no non-bottom
values. For example:

data Void
f :: Void -> Int
f x = case x of { }

With dependently-typed features it is more useful (see #2431). For example, consider these
two candidate definitions of absurd:

data a :~: b where
Refl :: a :~: a

absurd :: True :~: False -> a
absurd x = error "absurd" -- (A)
absurd x = case x of {} -- (B)

288 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/2431

GHC User’s Guide Documentation, Release 9.2.6

We much prefer (B). Why? Because GHC can figure out that (True :~: False) is an empty
type. So (B) has no partiality and GHC is able to compile with -Wincomplete-patterns
(page 108) and -Werror (page 101). On the other hand (A) looks dangerous, and GHC doesn’t
check to make sure that, in fact, the function can never get called.

6.2.15 Multi-way if-expressions

MultiWayIf

Since 7.6.1
Allow the use of multi-way-if syntax.

With MultiWayIf (page 289) extension GHC accepts conditional expressions with multiple
branches:

if | guard1 -> expr1
| ...
| guardN -> exprN

which is roughly equivalent to

case () of
_ | guard1 -> expr1
...
_ | guardN -> exprN

Multi-way if expressions introduce a new layout context. So the example above is equivalent
to:

if { | guard1 -> expr1
; | ...
; | guardN -> exprN
}

The following behaves as expected:

if | guard1 -> if | guard2 -> expr2
| guard3 -> expr3

| guard4 -> expr4

because layout translates it as

if { | guard1 -> if { | guard2 -> expr2
; | guard3 -> expr3
}

; | guard4 -> expr4
}

Layout with multi-way if works in the same way as other layout contexts, except that the
semi-colons between guards in a multi-way if are optional. So it is not necessary to line up
all the guards at the same column; this is consistent with the way guards work in function
definitions and case expressions.

6.2. Syntax 289

GHC User’s Guide Documentation, Release 9.2.6

6.2.16 Local Fixity Declarations

A careful reading of the Haskell 98 Report reveals that fixity declarations (infix, infixl, and
infixr) are permitted to appear inside local bindings such those introduced by let and where.
However, the Haskell Report does not specify the semantics of such bindings very precisely.
In GHC, a fixity declaration may accompany a local binding:

let f = ...
infixr 3 `f`

in
...

and the fixity declaration applies wherever the binding is in scope. For example, in a let, it
applies in the right-hand sides of other let-bindings and the body of the letC. Or, in recursive
do expressions (The recursive do-notation (page 269)), the local fixity declarations of a let
statement scope over other statements in the group, just as the bound name does.
Moreover, a local fixity declaration must accompany a local binding of that name: it is not
possible to revise the fixity of name bound elsewhere, as in

let infixr 9 $ in ...

Because local fixity declarations are technically Haskell 98, no extension is necessary to en-
able them.

6.2.17 More liberal syntax for function arguments

BlockArguments

Since 8.6.1
Allow do expressions, lambda expressions, etc. to be directly used as a function argu-
ment.

In Haskell 2010, certain kinds of expressions can be used without parentheses as an argument
to an operator, but not as an argument to a function. They include do, lambda, if, case, and
let expressions. Some GHC extensions also define language constructs of this type: mdo
(The recursive do-notation (page 269)), \case (Lambda-case (page 287)), and proc (Arrow
notation (page 299)).
The BlockArguments (page 290) extension allows these constructs to be directly used as a
function argument. For example:

when (x > 0) do
print x
exitFailure

will be parsed as:

when (x > 0) (do
print x
exitFailure)

and

withForeignPtr fptr \ptr -> c_memcpy buf ptr size

290 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

will be parsed as:

withForeignPtr fptr (\ptr -> c_memcpy buf ptr size)

Changes to the grammar

The Haskell report defines the lexp nonterminal thus (* indicates a rule of interest)

lexp → \ apat1 … apatn -> exp (lambda abstraction, n ≥ 1) *
| let decls in exp (let expression) *
| if exp [;] then exp [;] else exp (conditional) *
| case exp of { alts } (case expression) *
| do { stmts } (do expression) *
| fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| (exp) (parenthesized expression)
| qcon { fbind1 … fbindn } (labeled construction)
| aexp { fbind1 … fbindn } (labelled update)
| …

The BlockArguments (page 290) extension moves these production rules under aexp

lexp → fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| (exp) (parenthesized expression)
| qcon { fbind1 … fbindn } (labeled construction)
| aexp { fbind1 … fbindn } (labelled update)
| \ apat1 … apatn -> exp (lambda abstraction, n ≥ 1) *
| let decls in exp (let expression) *
| if exp [;] then exp [;] else exp (conditional) *
| case exp of { alts } (case expression) *
| do { stmts } (do expression) *
| …

Now the lexp nonterminal is redundant and can be dropped from the grammar.
Note that this change relies on an existing meta-rule to resolve ambiguities:

The grammar is ambiguous regarding the extent of lambda abstractions, let expres-
sions, and conditionals. The ambiguity is resolved by the meta-rule that each of
these constructs extends as far to the right as possible.

For example, f \a -> a b will be parsed as f (\a -> a b), not as f (\a -> a) b.

6.2. Syntax 291

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-220003

GHC User’s Guide Documentation, Release 9.2.6

6.2.18 Typed Holes

Typed holes are a feature of GHC that allows special placeholders written with a leading
underscore (e.g., “_”, “_foo”, “_bar”), to be used as expressions. During compilation these
holes will generate an error message that describes which type is expected at the hole’s
location, information about the origin of any free type variables, and a list of local bindings
that might help fill the hole and bindings in scope that fit the type of the hole that might help
fill the hole with actual code. Typed holes are always enabled in GHC.
The goal of typed holes is to help with writing Haskell code rather than to change the type
system. Typed holes can be used to obtain extra information from the type checker, which
might otherwise be hard to get. Normally, using GHCi, users can inspect the (inferred) type
signatures of all top-level bindings. However, this method is less convenient with terms that
are not defined on top-level or inside complex expressions. Holes allow the user to check the
type of the term they are about to write.
For example, compiling the following module with GHC:

f :: a -> a
f x = _

will fail with the following error:

hole.hs:2:7:
Found hole `_' with type: a
Where: `a' is a rigid type variable bound by

the type signature for f :: a -> a at hole.hs:1:6
In the expression: _
In an equation for `f': f x = _
Relevant bindings include
x :: a (bound at hole.hs:2:3)
f :: a -> a (bound at hole.hs:2:1)

Valid hole fits include x :: a (bound at hole.hs:2:3)

Here are some more details:
• A “Found hole” error usually terminates compilation, like any other type error. After all,
you have omitted some code from your program. Nevertheless, you can run and test a
piece of code containing holes, by using the -fdefer-typed-holes (page 102) flag. This
flag defers errors produced by typed holes until runtime, and converts them into compile-
time warnings. These warnings can in turn be suppressed entirely by -Wno-typed-holes
(page 102).
The same behaviour for “Variable out of scope” errors, it terminates compilation by
default. You can defer such errors by using the -fdefer-out-of-scope-variables
(page 102) flag. This flag defers errors produced by out of scope variables until run-
time, and converts them into compile-time warnings. These warnings can in turn be
suppressed entirely by -Wno-deferred-out-of-scope-variables (page 102).
The result is that a hole or a variable will behave like undefined, but with the added
benefits that it shows a warning at compile time, and will show the same message if
it gets evaluated at runtime. This behaviour follows that of the -fdefer-type-errors
(page 102) option, which implies -fdefer-typed-holes (page 102) and -fdefer-out-
of-scope-variables (page 102). See Deferring type errors to runtime (page 381).

• All unbound identifiers are treated as typed holes, whether or not they start with an
underscore. The only difference is in the error message:

292 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

cons z = z : True : _x : y

yields the errors

Foo.hs:3:21: error:
Found hole: _x :: Bool
Or perhaps ‘_x’ is mis-spelled, or not in scope
In the first argument of ‘(:)’, namely ‘_x’
In the second argument of ‘(:)’, namely ‘_x : y’
In the second argument of ‘(:)’, namely ‘True : _x : y’
Relevant bindings include

z :: Bool (bound at Foo.hs:3:6)
cons :: Bool -> [Bool] (bound at Foo.hs:3:1)
Valid hole fits include

z :: Bool (bound at mpt.hs:2:6)
otherwise :: Bool

(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Base’))

False :: Bool
(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Types’))

True :: Bool
(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Types’))

maxBound :: forall a. Bounded a => a
with maxBound @Bool
(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Enum’))

minBound :: forall a. Bounded a => a
with minBound @Bool
(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Enum’))

Foo.hs:3:26: error:
Variable not in scope: y :: [Bool]

More information is given for explicit holes (i.e. ones that start with an underscore),
than for out-of-scope variables, because the latter are often unintended typos, so the
extra information is distracting. If you want the detailed information, use a leading
underscore to make explicit your intent to use a hole.

• Unbound identifiers with the same name are never unified, evenwithin the same function,
but shown individually. For example:

cons = _x : _x

results in the following errors:

unbound.hs:1:8:
Found hole '_x' with type: a
Where: `a' is a rigid type variable bound by

the inferred type of cons :: [a] at unbound.hs:1:1
In the first argument of `(:)', namely `_x'
In the expression: _x : _x
In an equation for `cons': cons = _x : _x
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)

unbound.hs:1:13:

6.2. Syntax 293

GHC User’s Guide Documentation, Release 9.2.6

Found hole: _x :: [a]
Where: ‘a’ is a rigid type variable bound by

the inferred type of cons :: [a]
at unbound.hs:3:1-12

Or perhaps ‘_x’ is mis-spelled, or not in scope
In the second argument of ‘(:)’, namely ‘_x’
In the expression: _x : _x
In an equation for ‘cons’: cons = _x : _x
Relevant bindings include cons :: [a] (bound at unbound.hs:3:1)
Valid hole fits include

cons :: forall a. [a]
with cons @a
(defined at mpt.hs:3:1)

mempty :: forall a. Monoid a => a
with mempty @[a]
(imported from ‘Prelude’ at mpt.hs:1:8-10
(and originally defined in ‘GHC.Base’))

Notice the two different types reported for the two different occurrences of _x.
• No language extension is required to use typed holes. The lexeme “_” was previously
illegal in Haskell, but now has a more informative error message. The lexeme “_x” is a
perfectly legal variable, and its behaviour is unchanged when it is in scope. For example

f _x = _x + 1

does not elicit any errors. Only a variable that is not in scope (whether or not it starts
with an underscore) is treated as an error (which it always was), albeit now with a more
informative error message.

• Unbound data constructors used in expressions behave exactly as above. However, un-
bound data constructors used in patterns cannot be deferred, and instead bring compi-
lation to a halt. (In implementation terms, they are reported by the renamer rather than
the type checker.)

• The list of valid hole fits is found by checking which bindings in scope would fit into the
hole. As an example, compiling the following module with GHC:

import Data.List (inits)

g :: [String]
g = _ "hello, world"

yields the errors:

• Found hole: _ :: [Char] -> [String]
• In the expression: _

In the expression: _ "hello, world"
In an equation for ‘g’: g = _ "hello, world"

• Relevant bindings include g :: [String] (bound at mpt.hs:6:1)
Valid hole fits include
lines :: String -> [String]

(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘base-4.11.0.0:Data.OldList’))

words :: String -> [String]
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘base-4.11.0.0:Data.OldList’))

inits :: forall a. [a] -> [[a]]

294 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

with inits @Char
(imported from ‘Data.List’ at mpt.hs:4:19-23
(and originally defined in ‘base-4.11.0.0:Data.OldList’))

repeat :: forall a. a -> [a]
with repeat @String
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘GHC.List’))

fail :: forall (m :: * -> *). Monad m => forall a. String -> m a
with fail @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘GHC.Base’))

return :: forall (m :: * -> *). Monad m => forall a. a -> m a
with return @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘GHC.Base’))

pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a
with pure @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘GHC.Base’))

read :: forall a. Read a => String -> a
with read @[String]
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘Text.Read’))

mempty :: forall a. Monoid a => a
with mempty @([Char] -> [String])
(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘GHC.Base’))

There are a few flags for controlling the amount of context information shown for typed holes:

-fshow-hole-constraints
When reporting typed holes, also print constraints that are in scope. Example:

f :: Eq a => a -> Bool
f x = _

results in the following message:

show_constraints.hs:4:7: error:
• Found hole: _ :: Bool
• In the expression: _

In an equation for ‘f’: f x = _
• Relevant bindings include

x :: a (bound at show_constraints.hs:4:3)
f :: a -> Bool (bound at show_constraints.hs:4:1)

Constraints include Eq a (from show_constraints.hs:3:1-22)
Valid hole fits include

otherwise :: Bool
False :: Bool
True :: Bool
maxBound :: forall a. Bounded a => a

with maxBound @Bool
minBound :: forall a. Bounded a => a

with minBound @Bool

6.2. Syntax 295

GHC User’s Guide Documentation, Release 9.2.6

Valid Hole Fits

GHC sometimes suggests valid hole fits for typed holes, which is configurable by a few flags.

-fno-show-valid-hole-fits

Default off
This flag can be toggled to turn off the display of valid hole fits entirely.

-fmax-valid-hole-fits=⟨n⟩

Default 6
The list of valid hole fits is limited by displaying up to 6 hole fits per hole. The number of
hole fits shown can be set by this flag. Turning the limit off with -fno-max-valid-hole-
fits (page 296) displays all found hole fits.

-fshow-type-of-hole-fits

Default on
By default, the hole fits show the type of the hole fit. This can be turned off by the reverse
of this flag.

-fshow-type-app-of-hole-fits

Default on
By default, the hole fits show the type application needed to make this hole fit fit the
type of the hole, e.g. for the hole (_ :: Int -> [Int]), mempty is a hole fit with mempty
@(Int -> [Int]). This can be toggled off with the reverse of this flag.

-fshow-docs-of-hole-fits

Default off
It can sometime be the case that the name and type of a valid hole fit is not enough to
realize what the fit stands for. This flag adds the documentation of the fit to the message,
if the documentation is available (and the module from which the function comes was
compiled with the -haddock flag).

-fshow-type-app-vars-of-hole-fits

Default on
By default, the hole fits show the type application needed to make this hole fit fit the
type of the hole, e.g. for the hole (_ :: Int -> [Int]), mempty :: Monoid a => a is
a hole fit with mempty @(Int -> [Int]). This flag toggles whether to show a ~ (Int
-> [Int]) instead of mempty @(Int -> [Int]) in the where clause of the valid hole fit
message.

-fshow-provenance-of-hole-fits

Default on
By default, each hole fit shows the provenance information of its hole fit, i.e. where it
was bound or defined, and what module it was originally defined in if it was imported.
This can be toggled off using the reverse of this flag.

-funclutter-valid-hole-fits

Default off

296 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

This flag can be toggled to decrease the verbosity of the valid hole fit suggestions by not
showing the provenance nor type application of the suggestions.

Refinement Hole Fits

When the flag -frefinement-level-hole-fits=⟨n⟩ (page 298) is set to an n larger than 0,
GHC will offer up a list of valid refinement hole fits, which are valid hole fits that need up to
n levels of additional refinement to be complete, where each level represents an additional
hole in the hole fit that requires filling in. As an example, consider the hole in

f :: [Integer] -> Integer
f = _

When the refinement level is not set, it will only offer valid hole fits suggestions:

Valid hole fits include
f :: [Integer] -> Integer
head :: forall a. [a] -> a

with head @Integer
last :: forall a. [a] -> a

with last @Integer
maximum :: forall (t :: * -> *).

Foldable t =>
forall a. Ord a => t a -> a

with maximum @[] @Integer
minimum :: forall (t :: * -> *).

Foldable t =>
forall a. Ord a => t a -> a

with minimum @[] @Integer
product :: forall (t :: * -> *).

Foldable t =>
forall a. Num a => t a -> a

with product @[] @Integer
sum :: forall (t :: * -> *).

Foldable t =>
forall a. Num a => t a -> a

with sum @[] @Integer

However, with -frefinement-level-hole-fits=⟨n⟩ (page 298) set to e.g. 1, it will addition-
ally offer up a list of refinement hole fits, in this case:

Valid refinement hole fits include
foldl1 (_ :: Integer -> Integer -> Integer)

with foldl1 @[] @Integer
where foldl1 :: forall (t :: * -> *).

Foldable t =>
forall a. (a -> a -> a) -> t a -> a

foldr1 (_ :: Integer -> Integer -> Integer)
with foldr1 @[] @Integer
where foldr1 :: forall (t :: * -> *).

Foldable t =>
forall a. (a -> a -> a) -> t a -> a

const (_ :: Integer)
with const @Integer @[Integer]
where const :: forall a b. a -> b -> a

($) (_ :: [Integer] -> Integer)
with ($) @GHC.Types.LiftedRep @[Integer] @Integer

6.2. Syntax 297

GHC User’s Guide Documentation, Release 9.2.6

where ($) :: forall a b. (a -> b) -> a -> b
fail (_ :: String)

with fail @((->) [Integer]) @Integer
where fail :: forall (m :: * -> *).

Monad m =>
forall a. String -> m a

return (_ :: Integer)
with return @((->) [Integer]) @Integer
where return :: forall (m :: * -> *). Monad m => forall a. a -> m a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Which shows that the hole could be replaced with e.g. foldl1 _. While not fixing the hole,
this can help users understand what options they have.
-frefinement-level-hole-fits=⟨n⟩

Default off
The list of valid refinement hole fits is generated by considering hole fits with a varying
amount of additional holes. The amount of holes in a refinement can be set by this flag.
If the flag is set to 0 or not set at all, no valid refinement hole fits will be suggested.

-fabstract-refinement-hole-fits

Default off
Valid list of valid refinement hole fits can often grow large when the refinement level is
>= 2, with holes like head _ _ or fst _ _, which are valid refinements, but which are
unlikely to be relevant since one or more of the holes are still completely open, in that
neither the type nor kind of those holes are constrained by the proposed identifier at all.
By default, such holes are not reported. By turning this flag on, such holes are included
in the list of valid refinement hole fits.

-fmax-refinement-hole-fits=⟨n⟩

Default 6
The list of valid refinement hole fits is limited by displaying up to 6 hole fits per hole. The
number of hole fits shown can be set by this flag. Turning the limit off with -fno-max-
refinement-hole-fits (page 298) displays all found hole fits.

-fshow-hole-matches-of-hole-fits

Default on
The types of the additional holes in refinement hole fits are displayed in the output, e.g.
foldl1 (_ :: a -> a -> a) is a refinement for the hole _ :: [a] -> a. If this flag is
toggled off, the output will display only foldl1 _, which can be used as a direct replace-
ment for the hole, without requiring -XScopedTypeVariables.

Sorting Valid Hole Fits

There are currently two ways to sort valid hole fits. Sorting can be toggled with -fsort-
valid-hole-fits (page 298)
-fno-sort-valid-hole-fits

Default off

298 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

By default the valid hole fits are sorted to show the most relevant hole fits at the top of
the list of valid hole fits. This can be toggled off with this flag.

-fsort-by-size-hole-fits

Default on
Sorts by how big the types the quantified type variables in the type of the function would
have to be in order to match the type of the hole.

-fsort-by-subsumption-hole-fits

Default off
An alternative sort. Sorts by checking which hole fits subsume other hole fits, such that
if hole fit a could be used as hole fits for hole fit b, then b appears before a in the output.
It is more precise than the default sort, but also a lot slower, since a subsumption check
has to be run for each pair of valid hole fits.

6.2.19 Arrow notation

Arrows

Since 6.8.1
Enable arrow notation.

Arrows are a generalisation of monads introduced by John Hughes. For more details, see
• “Generalising Monads to Arrows”, John Hughes, in Science of Computer Programming
37, pp. 67–111, May 2000. The paper that introduced arrows: a friendly introduction,
motivated with programming examples.

• “A New Notation for Arrows”, Ross Paterson, in ICFP, Sep 2001. Introduced the notation
described here.

• “Arrows and Computation”, Ross Paterson, in The Fun of Programming, Palgrave, 2003.
• “Programming with Arrows”, John Hughes, in 5th International Summer School on
Advanced Functional Programming, Lecture Notes in Computer Science vol. 3622,
Springer, 2004. This paper includes another introduction to the notation, with practi-
cal examples.

• “Type and Translation Rules for Arrow Notation in GHC”, Ross Paterson and Simon Pey-
ton Jones, September 16, 2004. A terse enumeration of the formal rules used (extracted
from comments in the source code).

• The arrows web page at http://www.haskell.org/arrows/ <http://www.haskell.org/
arrows/>‘__.

With the Arrows (page 299) extension, GHC supports the arrow notation described in the sec-
ond of these papers, translating it using combinators from the Control.Arrow module. What
follows is a brief introduction to the notation; it won’t make much sense unless you’ve read
Hughes’s paper.
The extension adds a new kind of expression for defining arrows:

exp10 ::= ...
| proc apat -> cmd

6.2. Syntax 299

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html
http://www.cse.chalmers.se/~rjmh/afp-arrows.pdf
http://www.haskell.org/ghc/docs/papers/arrow-rules.pdf
http://www.haskell.org/arrows/
http://www.haskell.org/arrows/

GHC User’s Guide Documentation, Release 9.2.6

where proc is a new keyword. The variables of the pattern are bound in the body of the proc-
expression, which is a new sort of thing called a command. The syntax of commands is as
follows:

cmd ::= exp10 -< exp
| exp10 -<< exp
| cmd0

with ⟨cmd⟩0 up to ⟨cmd⟩9 defined using infix operators as for expressions, and

cmd10 ::= \ apat ... apat -> cmd
| let decls in cmd
| if exp then cmd else cmd
| case exp of { calts }
| do { cstmt ; ... cstmt ; cmd }
| fcmd

fcmd ::= fcmd aexp
| (cmd)
| (| aexp cmd ... cmd |)

cstmt ::= let decls
| pat <- cmd
| rec { cstmt ; ... cstmt [;] }
| cmd

where ⟨calts⟩ are like ⟨alts⟩ except that the bodies are commands instead of expressions.
Commands produce values, but (like monadic computations) may yield more than one value,
or none, and may do other things as well. For the most part, familiarity with monadic notation
is a good guide to using commands. However the values of expressions, even monadic ones,
are determined by the values of the variables they contain; this is not necessarily the case for
commands.
A simple example of the new notation is the expression

proc x -> f -< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable x is
a new variable bound within the proc-expression. It refers to the input to the arrow. In the
above example, -< is not an identifier but a new reserved symbol used for building commands
from an expression of arrow type and an expression to be fed as input to that arrow. (The
weird look will make more sense later.) It may be read as analogue of application for arrows.
The above example is equivalent to the Haskell expression

arr (\ x -> x+1) >>> f

That would make no sense if the expression to the left of -< involves the bound variable x.
More generally, the expression to the left of -< may not involve any local variable, i.e. a
variable bound in the current arrow abstraction. For such a situation there is a variant -<<,
as in

proc x -> f x -<< x+1

which is equivalent to

arr (\ x -> (f x, x+1)) >>> app

300 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

so in this case the arrow must belong to the ArrowApply class. Such an arrow is equivalent
to a monad, so if you’re using this form you may find a monadic formulation more convenient.

do-notation for commands

Another form of command is a form of do-notation. For example, you can write

proc x -> do
y <- f -< x+1
g -< 2*y
let z = x+y
t <- h -< x*z
returnA -< t+z

You can read this much like ordinary do-notation, but with commands in place of monadic
expressions. The first line sends the value of x+1 as an input to the arrow f, and matches its
output against y. In the next line, the output is discarded. The arrow returnA is defined in
the Control.Arrow module as arr id. The above example is treated as an abbreviation for

arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y, x) -> (y, (x, y))) >>>
first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA

Note that variables not used later in the composition are projected out. After simplification
using rewrite rules (see Rewrite rules (page 541)) defined in the Control.Arrow module, this
reduces to

arr (\ x -> (x+1, x)) >>>
first f >>>
arr (\ (y, x) -> (2*y, (x, y))) >>>
first g >>>
arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
first h >>>
arr (\ (t, z) -> t+z)

which is what you might have written by hand. With arrow notation, GHC keeps track of all
those tuples of variables for you.
Note that although the above translation suggests that let-bound variables like z must be
monomorphic, the actual translation produces Core, so polymorphic variables are allowed.
It’s also possible to have mutually recursive bindings, using the new rec keyword, as in the
following example:

counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do

rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1

returnA -< output

The translation of such forms uses the loop combinator, so the arrow concerned must belong
to the ArrowLoop class.

6.2. Syntax 301

GHC User’s Guide Documentation, Release 9.2.6

Conditional commands

In the previous example, we used a conditional expression to construct the input for an arrow.
Sometimes we want to conditionally execute different commands, as in

proc (x,y) ->
if f x y
then g -< x+1
else h -< y+2

which is translated to

arr (\ (x,y) -> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> g) ||| (arr (\y -> y+2) >>> h)

Since the translation uses |||, the arrow concerned must belong to the ArrowChoice class.
There are also case commands, like

case input of
[] -> f -< ()
[x] -> g -< x+1
x1:x2:xs -> do

y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys

The syntax is the same as for case expressions, except that the bodies of the alternatives are
commands rather than expressions. The translation is similar to that of if commands.

Defining your own control structures

As we’re seen, arrow notation provides constructs, modelled on those for expressions, for
sequencing, value recursion and conditionals. But suitable combinators, which you can define
in ordinary Haskell, may also be used to build new commands out of existing ones. The basic
idea is that a command defines an arrow from environments to values. These environments
assign values to the free local variables of the command. Thus combinators that produce
arrows from arrows may also be used to build commands from commands. For example, the
ArrowPlus class includes a combinator

ArrowPlus a => (<+>) :: a b c -> a b c -> a b c

so we can use it to build commands:

expr' = proc x -> do
returnA -< x

<+> do
symbol Plus -< ()
y <- term -< ()
expr' -< x + y

<+> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y

(The do on the first line is needed to prevent the first <+> ... from being interpreted as part
of the expression on the previous line.) This is equivalent to

302 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

expr' = (proc x -> returnA -< x)
<+> (proc x -> do

symbol Plus -< ()
y <- term -< ()
expr' -< x + y)

<+> (proc x -> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y)

We are actually using <+> here with the more specific type

ArrowPlus a => (<+>) :: a (e,()) c -> a (e,()) c -> a (e,()) c

It is essential that this operator be polymorphic in e (representing the environment input
to the command and thence to its subcommands) and satisfy the corresponding naturality
property

arr (first k) >>> (f <+> g) = (arr (first k) >>> f) <+> (arr (first k) >>> g)

at least for strict k. (This should be automatic if you’re not using seq.) This ensures that
environments seen by the subcommands are environments of the whole command, and also
allows the translation to safely trim these environments. (The second component of the input
pairs can contain unnamed input values, as described in the next section.) The operator must
also not use any variable defined within the current arrow abstraction.
We could define our own operator

untilA :: ArrowChoice a => a (e,s) () -> a (e,s) Bool -> a (e,s) ()
untilA body cond = proc x -> do

b <- cond -< x
if b then returnA -< ()
else do

body -< x
untilA body cond -< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators;
there is also a more general syntax involving special brackets:

proc x -> do
y <- f -< x+1
(|untilA (increment -< x+y) (within 0.5 -< x)|)

Primitive constructs

Some operators will need to pass additional inputs to their subcommands. For example, in an
arrow type supporting exceptions, the operator that attaches an exception handler will wish
to pass the exception that occurred to the handler. Such an operator might have a type

handleA :: ... => a (e,s) c -> a (e,(Ex,s)) c -> a (e,s) c

where Ex is the type of exceptions handled. You could then use this with arrow notation by
writing a command

body `handleA` \ ex -> handler

6.2. Syntax 303

GHC User’s Guide Documentation, Release 9.2.6

so that if an exception is raised in the command body, the variable ex is bound to the value of
the exception and the command handler, which typically refers to ex, is entered. Though the
syntax here looks like a functional lambda, we are talking about commands, and something
different is going on. The input to the arrow represented by a command consists of values
for the free local variables in the command, plus a stack of anonymous values. In all the prior
examples, we made no assumptions about this stack. In the second argument to handleA, the
value of the exception has been added to the stack input to the handler. The command form
of lambda merely gives this value a name.
More concretely, the input to a command consists of a pair of an environment and a stack.
Each value on the stack is paired with the remainder of the stack, with an empty stack being
(). So operators like handleA that pass extra inputs to their subcommands can be designed
for use with the notation by placing the values on the stack paired with the environment in
this way. More precisely, the type of each argument of the operator (and its result) should
have the form

a (e, (t1, ... (tn, ())...)) t

where ⟨e⟩ is a polymorphic variable (representing the environment) and ⟨ti⟩ are the types of
the values on the stack, with ⟨t1⟩ being the “top”. The polymorphic variable ⟨e⟩ must not occur
in ⟨a⟩, ⟨ti⟩ or ⟨t⟩. However the arrows involved need not be the same. Here are some more
examples of suitable operators:

bracketA :: ... => a (e,s) b -> a (e,(b,s)) c -> a (e,(c,s)) d -> a (e,s) d
runReader :: ... => a (e,s) c -> a' (e,(State,s)) c
runState :: ... => a (e,s) c -> a' (e,(State,s)) (c,State)

We can supply the extra input required by commands built with the last two by applying them
to ordinary expressions, as in

proc x -> do
s <- ...
(|runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using runReader.
The command versions of lambda abstraction and application are analogous to the expression
versions. In particular, the beta and eta rules describe equivalences of commands. These
three features (operators, lambda abstraction and application) are the core of the notation;
everything else can be built using them, though the results would be somewhat clumsy. For
example, we could simulate do-notation by defining

bind :: Arrow a => a (e,s) b -> a (e,(b,s)) c -> a (e,s) c
u `bind` f = returnA &&& u >>> f

bind_ :: Arrow a => a (e,s) b -> a (e,s) c -> a (e,s) c
u `bind_` f = u `bind` (arr fst >>> f)

We could simulate if by defining

cond :: ArrowChoice a => a (e,s) b -> a (e,s) b -> a (e,(Bool,s)) b
cond f g = arr (\ (e,(b,s)) -> if b then Left (e,s) else Right (e,s)) >>> f ||| g

304 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Differences with the paper

• Instead of a single form of arrow application (arrow tail) with two translations, the im-
plementation provides two forms -< (first-order) and -<< (higher-order).

• User-defined operators are flagged with banana brackets instead of a new form keyword.
• In the paper and the previous implementation, values on the stack were paired to the
right of the environment in a single argument, but now the environment and stack are
separate arguments.

Portability

Although only GHC implements arrow notation directly, there is also a preprocessor (available
from the arrows web page) that translates arrow notation into Haskell 98 for use with other
Haskell systems. You would still want to check arrow programs with GHC; tracing type errors
in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor
must observe some additional restrictions:
• The module must import Control.Arrow.
• The preprocessor cannot cope with other Haskell extensions. These would have to go in
separate modules.

• Because the preprocessor targets Haskell (rather than Core), let-bound variables are
monomorphic.

6.2.20 Lexical negation

LexicalNegation

Since 9.0.1
Detect if the minus sign stands for negation during lexical analysis by checking for the
surrounding whitespace.

In Haskell 2010, the minus sign stands for negation when it has no left-hand side. Consider x
= -5 and y = 2 -5. In x, there’s no expression between the = and -, so the minus stands for
negation, whereas in y, there’s 2 to the left of the minus, therefore it stands for subtraction.
This leads to certain syntactic anomalies:
• (% x) is an operator section for any operator (%) except for (-). (-x) is negated x
rather than the right operator section of subtraction. Consequently, it is impossible to
write such a section, and users are advised to write (subtract x) instead.

• Negative numbers must be parenthesized when they appear in function argument posi-
tion. f (-5) is correct, whereas f -5 is parsed as (-) f 5.

The latter issue is partly mitigated by NegativeLiterals (page 454). When it is enabled, -5
is parsed as negative 5 regardless of context, so f -5 works as expected. However, it only
applies to literals, so f -x or f -(a*2) are still parsed as subtraction.
With LexicalNegation (page 305), both anomalies are resolved:
• (% x) is an operator section for any operator (%), no exceptions, as long as there’s
whitespace between % and x.

• In f -x, the -x is parsed as the negation of x for any syntactically atomic expression x
(variable, literal, or parenthesized expression).

6.2. Syntax 305

http://www.haskell.org/arrows/

GHC User’s Guide Documentation, Release 9.2.6

• The prefix - binds tighter than any infix operator. -a % b is parsed as (-a) % b regard-
less of the fixity of %.

This means that (-x) is the right operator section of subtraction, whereas (-x) is the negation
of x. Note that these expressions will often have different types ((-x) might have type Int
-> Int while (-x) will have type Int), and so users mistaking one for the other will likely get
a compile error.
Under LexicalNegation (page 305), negated literals are desugared without negate. That is,
-123 stands for fromInteger (-123) rather than negate (fromInteger 123). This makes
LexicalNegation (page 305) a valid replacement for NegativeLiterals (page 454).

6.3 Import and export

6.3.1 Hiding things the imported module doesn’t export

Technically in Haskell 2010 this is illegal:

module A(f) where
f = True

module B where
import A hiding(g) -- A does not export g
g = f

The import A hiding(g) in module B is technically an error (Haskell Report, 5.3.1) be-
cause A does not export g. However GHC allows it, in the interests of supporting backward
compatibility; for example, a newer version of A might export g, and you want B to work in
either case.
The warning -Wdodgy-imports (page 105), which is off by default but included with -W
(page 99), warns if you hide something that the imported module does not export.

6.3.2 Package-qualified imports

PackageImports

Since 6.10.1
Allow the use of package-qualified import syntax.

With the PackageImports (page 306) extension, GHC allows import declarations to be quali-
fied by the package name that the module is intended to be imported from. For example:

import "network" Network.Socket

would import the module Network.Socket from the package network (any version). This may
be used to disambiguate an import when the samemodule is available frommultiple packages,
or is present in both the current package being built and an external package.
The special package name this can be used to refer to the current package being built.

Note: You probably don’t need to use this feature, it was added mainly so that we can
build backwards-compatible versions of packages when APIs change. It can lead to fragile
dependencies in the common case: modules occasionally move from one package to another,

306 Chapter 6. Language extensions

http://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-1020005.3.1

GHC User’s Guide Documentation, Release 9.2.6

rendering any package-qualified imports broken. See also Thinning and renaming modules
(page 220) for an alternative way of disambiguating between module names.

6.3.3 Safe imports

With the Safe (page 539), Trustworthy (page 539) and Unsafe (page 540) language flags,
GHC extends the import declaration syntax to take an optional safe keyword after the import
keyword. This feature is part of the Safe Haskell GHC extension. For example:

import safe qualified Network.Socket as NS

would import the module Network.Socket with compilation only succeeding if Net-
work.Socket can be safely imported. For a description of when a import is considered safe
see Safe Haskell (page 530).

6.3.4 Explicit namespaces in import/export

ExplicitNamespaces

Since 7.6.1
Enable use of explicit namespaces in module export lists.

In an import or export list, such as

module M(f, (++)) where ...
import N(f, (++))
...

the entities f and (++) are values. However, with type operators (Type operators (page 310))
it becomes possible to declare (++) as a type constructor. In that case, how would you export
or import it?
The ExplicitNamespaces (page 307) extension allows you to prefix the name of a type con-
structor in an import or export list with “type” to disambiguate this case, thus:

module M(f, type (++)) where ...
import N(f, type (++))
...

module N(f, type (++)) where
data family a ++ b = L a | R b

The extension ExplicitNamespaces (page 307) is implied by TypeOperators (page 310) and
(for some reason) by TypeFamilies (page 325).
In addition, with PatternSynonyms (page 427) you can prefix the name of a data constructor
in an import or export list with the keyword pattern, to allow the import or export of a data
constructor without its parent type constructor (see Import and export of pattern synonyms
(page 430)).

6.3.5 Writing qualified in postpositive position

ImportQualifiedPost

Since 8.10.1

6.3. Import and export 307

GHC User’s Guide Documentation, Release 9.2.6

ImportQualifiedPost allows the syntax import M qualified, that is, to annotate a
module as qualified by writing qualified after the module name.

To import a qualified module usually you must specify qualified in prepositive position :
import qualified M. This often leads to a “hanging indent” (which is automatically inserted
by some autoformatters and common in many code bases. For example:

import qualified A
import B
import C

The ImportQualifiedPost extension allows qualified to appear in postpositive position :
import M qualified. With this extension enabled, one can write:

import A qualified
import B
import C

It is an error if qualified appears in both pre and postpositive positions.
The warning -Wprepositive-qualified-syntax (off by default) reports on any occurrences
of imports annotated qualified using prepositive syntax.

6.4 Types

6.4.1 Data types with no constructors

EmptyDataDecls

Since 6.8.1
Allow definition of empty data types.

With the EmptyDataDecls (page 308) extension, GHC lets you declare a data type with no
constructors.
You only need to enable this extension if the language you’re using is Haskell 98, in which
a data type must have at least one constructor. Haskell 2010 relaxed this rule to allow data
types with no constructors, and thus EmptyDataDecls (page 308) is enabled by default when
the language is Haskell 2010.
For example:

data S -- S :: Type
data T a -- T :: Type -> Type

Syntactically, the declaration lacks the “= constrs” part. The type can be parameterised over
types of any kind, but if the kind is not Type then an explicit kind annotation must be used
(see Explicitly-kinded quantification (page 471)).
Such data types have only one value, namely bottom. Nevertheless, they can be useful when
defining “phantom types”.
In conjunction with the EmptyDataDeriving (page 401) extension, empty data declarations
can also derive instances of standard type classes (see Deriving instances for empty data
types (page 401)).

308 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.4.2 Data type contexts

DatatypeContexts

Since 7.0.1
Allow contexts on data types.

Haskell allows datatypes to be given contexts, e.g.

data Eq a => Set a = NilSet | ConsSet a (Set a)

give constructors with types:

NilSet :: Set a
ConsSet :: Eq a => a -> Set a -> Set a

This is widely considered a misfeature, and is going to be removed from the language. In
GHC, it is controlled by the deprecated extension DatatypeContexts.

6.4.3 Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written
infix, very much like expressions. More specifically:
• A type constructor or class can be any non-reserved operator. Symbols used in types are
always like capitalized identifiers; they are never variables. Note that this is different
from the lexical syntax of data constructors, which are required to begin with a :.

• Data type and type-synonym declarations can be written infix, parenthesised if you want
further arguments. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) x = Baz a b x
type (a :++: b) y = Either (a,b) y

• Types, and class constraints, can be written infix. For example

x :: Int :*: Bool
f :: (a :=: b) => a -> b

• Back-quotes work as for expressions, both for type constructors and type variables; e.g.
Int `Either` Bool, or Int `a` Bool. Similarly, parentheses work the same; e.g. (:*:)
Int Bool.

• Fixities may be declared for type constructors, or classes, just as for data constructors.
However, one cannot distinguish between the two in a fixity declaration; a fixity decla-
ration sets the fixity for a data constructor and the corresponding type constructor. For
example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for :*:.
Int `a` Bool.

• The function arrow -> is infixr with fixity -1.

6.4. Types 309

GHC User’s Guide Documentation, Release 9.2.6

6.4.4 Type operators

TypeOperators

Implies ExplicitNamespaces (page 307)
Since 6.8.1

Allow the use and definition of types with operator names.
The language TypeOperators (page 310) allows you to use infix operators in types.
• Operator symbols are constructors rather than type variables (as they are in terms).
• Operator symbols in types can be written infix, both in definitions and uses. For example:

data a + b = Plus a b
type Foo = Int + Bool

• Alphanumeric type constructors can now be written infix, using backquote syntax:

x :: Int `Either` Bool
x = Left 5

• There is now some potential ambiguity in import and export lists; for example if you
write import M((+)) do you mean the function (+) or the type constructor (+)? The
default is the former, but with ExplicitNamespaces (page 307) (which is implied by
TypeOperators (page 310)) GHC allows you to specify the latter by preceding it with the
keyword type, thus:

import M(type (+))

See Explicit namespaces in import/export (page 307).
• The fixity of a type operator may be set using the usual fixity declarations but, as in
Infix type constructors, classes, and type variables (page 309), the function and type
constructor share a single fixity.

• There is now potential ambiguity in the traditional syntax for data constructor declara-
tions. For example:

type a :+: b = Either a b
data X = Int :+: Bool :+: Char

This code wants to declare both a type-level :+: and a term-level :+: (which is, generally,
allowed). But we cannot tell how to parenthesize the data constructor declaration in
X: either way makes sense. We might imagine that a fixity declaration could help us,
but it is awkward to apply the fixity declaration to the very definition of a new data
constructor. Instead of declaring delicate rules around this issue, GHC simply rejects
if the top level of a traditional-syntax data constructor declaration uses two operators
without parenthesizing.

6.4.5 Liberalised type synonyms

LiberalTypeSynonyms

Implies ExplicitForAll (page 466)
Since 6.8.1

310 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Relax many of the Haskell 98 rules on type synonym definitions.
Type synonyms are like macros at the type level, but Haskell 98 imposes many rules on in-
dividual synonym declarations. With the LiberalTypeSynonyms (page 310) extension, GHC
does validity checking on types only after expanding type synonyms. That means that GHC
can be very much more liberal about type synonyms than Haskell 98.
• You can write a forall (including overloading) in a type synonym, thus:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f x y = (x, show y)

g :: Discard Int -> (Int,String) -- A rank-2 type
g f = f 3 True

• If you also use UnboxedTuples (page 510), you can write an unboxed tuple in a type
synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

• You can apply a type synonym to a forall type:

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

• You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be
changed).
After expanding type synonyms, GHC does validity checking on types, looking for the following
malformedness which isn’t detected simply by kind checking:
• Type constructor applied to a type involving for-alls (if ImpredicativeTypes (page 377)
is off)

• Partially-applied type synonym.
So, for example, this will be rejected:

6.4. Types 311

GHC User’s Guide Documentation, Release 9.2.6

type Pr = forall a. a

h :: [Pr]
h = ...

because GHC does not allow type constructors applied to for-all types.

6.4.6 Existentially quantified data constructors

ExistentialQuantification

Implies ExplicitForAll (page 466)
Since 6.8.1

Allow existentially quantified type variables in types.
The idea of using existential quantification in data type declarations was suggested by Perry,
and implemented in Hope+ (Nigel Perry, The Implementation of Practical Functional Pro-
gramming Languages, PhD Thesis, University of London, 1991). It was later formalised by
Laufer and Odersky (Polymorphic type inference and abstract data types, TOPLAS, 16(5), pp.
1411-1430, 1994). It’s been in Lennart Augustsson’s hbc Haskell compiler for several years,
and proved very useful. Here’s the idea. Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself,
which is plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool;
and MkFoo 'c' isUpper packages a character with a compatible function. These two things
are each of type Foo and can be put in a list.
What can we do with a value of type Foo? In particular, what happens when we pattern-match
on MkFoo?

f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, the only (useful) thing we
can do with them is to apply fn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogeneous values together with a bunch of func-
tions that manipulate them, and then treat that collection of packages in a uniform manner.
You can express quite a bit of object-oriented-like programming this way.

312 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Why existential?

What has this to do with existential quantification? Simply that MkFoo has the (nearly) isomor-
phic type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given
above, thereby avoiding adding a new existential quantification construct.

Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and
when pattern matching on Baz2 the first matched value can be converted to a string (as well
as applying the function to it). So this program is legal:

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz2 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must
store the dictionaries for Eq and Show respectively, and extract it on pattern matching.

Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

Here tag is a public field, with a well-typed selector function tag :: Counter a -> a. See
Field selectors and TypeApplications (page 387) for a full description of how the types of
top-level field selectors are determined.
The self type is hidden from the outside; any attempt to apply _this, _inc or _display
as functions will raise a compile-time error. In other words, GHC defines a record selector
function only for fields whose type does not mention the existentially-quantified variables.
(This example used an underscore in the fields for which record selectors will not be defined,
but that is only programming style; GHC ignores them.)
To make use of these hidden fields, we need to create some helper functions:

6.4. Types 313

GHC User’s Guide Documentation, Release 9.2.6

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter

{ _this = i x, _inc = i, _display = d, tag = t }

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x

Now we can define counters with different underlying implementations:

counterA :: Counter String
counterA = NewCounter

{ _this = 0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counterB = NewCounter

{ _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }

main = do
display (inc counterA) -- prints "1"
display (inc (inc counterB)) -- prints "##"

Record update syntax is supported for existentials (and GADTs):

setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }

The rule for record update is this:
the types of the updated fields may mention only the universally-quantified type
variables of the data constructor. For GADTs, the field may mention only types that
appear as a simple type-variable argument in the constructor’s result type.

For example:

data T a b where { T1 { f1::a, f2::b, f3::(b,c) } :: T a b } -- c is existential
upd1 t x = t { f1=x } -- OK: upd1 :: T a b -> a' -> T a' b
upd2 t x = t { f3=x } -- BAD (f3's type mentions c, which is

-- existentially quantified)

data G a b where { G1 { g1::a, g2::c } :: G a [c] }
upd3 g x = g { g1=x } -- OK: upd3 :: G a b -> c -> G c b
upd4 g x = g { g2=x } -- BAD (g2's type mentions c, which is not a simple

-- type-variable argument in G1's result type)

Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can
be used.
• When pattern matching, each pattern match introduces a new, distinct, type for each
existential type variable. These types cannot be unified with any other type, nor can
they escape from the scope of the pattern match. For example, these fragments are
incorrect:

f1 (MkFoo a f) = a

314 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Here, the type bound by MkFoo “escapes”, because a is the result of f1. One way to see
why this is wrong is to ask what type f1 has:

f1 :: Foo -> a -- Weird!

What is this “a” in the result type? Clearly we don’t mean this:

f1 :: forall a. Foo -> a -- Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It’s ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types
arising from the two Baz1 constructors.

• You can’t pattern-match on an existentially quantified constructor in a let or where group
of bindings. So this is illegal:

f3 x = a==b where { Baz1 a b = x }

Instead, use a case expression:

f3 x = case x of Baz1 a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in a
case expression or in the patterns of a function definition. The reason for this restriction
is really an implementation one. Type-checking binding groups is already a nightmare
without existentials complicating the picture. Also an existential pattern binding at the
top level of a module doesn’t make sense, because it’s not clear how to prevent the
existentially-quantified type “escaping”. So for now, there’s a simple-to-state restriction.
We’ll see how annoying it is.

• You can’t use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and
a value of type t. That contradicts the idea that newtype should have no concrete rep-
resentation. You can get just the same efficiency and effect by using data instead of
newtype. If there is no overloading involved, then there is more of a case for allowing
an existentially-quantified newtype, because the data version does carry an implemen-
tation cost, but single-field existentially quantified constructors aren’t much use. So the
simple restriction (no existential stuff on newtype) stands, unless there are convincing
reasons to change it.

• You can’t use deriving to define instances of a data type with existentially quantified
data constructors. Reason: in most cases it would not make sense. For example:;

data T = forall a. MkT [a] deriving(Eq)

To derive Eq in the standard way we would need to have equality between the single
component of two MkT constructors:

instance Eq T where
(MkT a) == (MkT b) = ???

6.4. Types 315

GHC User’s Guide Documentation, Release 9.2.6

But a and b have distinct types, and so can’t be compared. It’s just about possible to imag-
ine examples in which the derived instance would make sense, but it seems altogether
simpler simply to prohibit such declarations. Define your own instances!

6.4.7 Declaring data types with explicit constructor signatures

GADTSyntax

Since 7.2.1
Allow the use of GADT syntax in data type definitions (but not GADTs themselves; for
this see GADTs (page 321))

When the GADTSyntax extension is enabled, GHC allows you to declare an algebraic data type
by giving the type signatures of constructors explicitly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

The form is called a “GADT-style declaration” because Generalised Algebraic Data Types, de-
scribed in Generalised Algebraic Data Types (GADTs) (page 321), can only be declared using
this form.
Notice that GADT-style syntax generalises existential types (Existentially quantified data con-
structors (page 312)). For example, these two declarations are equivalent:

data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }

Any data type that can be declared in standard Haskell 98 syntax can also be declared using
GADT-style syntax. The choice is largely stylistic, but GADT-style declarations differ in one
important respect: they treat class constraints on the data constructors differently. Specifi-
cally, if the constructor is given a type-class context, that context is made available by pattern
matching. For example:

data Set a where
MkSet :: Eq a => [a] -> Set a

makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a `elem` as = MkSet as

| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a)
constraint, as you would expect. The new feature is that pattern-matching on MkSet (as in the
definition of insert) makes available an (Eq a) context. In implementation terms, the MkSet
constructor has a hidden field that stores the (Eq a) dictionary that is passed to MkSet; so
when pattern-matching that dictionary becomes available for the right-hand side of the match.
In the example, the equality dictionary is used to satisfy the equality constraint generated by
the call to elem, so that the type of insert itself has no Eq constraint.
For example, one possible application is to reify dictionaries:

316 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a -> a -> a -> a
plus MkNumInst p q = p + q

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.
All this applies to constructors declared using the syntax of Existentials and type classes
(page 313). For example, the NumInst data type above could equivalently be declared like
this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existential, there is no forall, because the
Num constrains the data type’s universally quantified type variable a. A constructor may have
both universal and existential type variables: for example, the following two declarations are
equivalent:

data T1 a
= forall b. (Num a, Eq b) => MkT1 a b
data T2 a where
MkT2 :: (Num a, Eq b) => a -> b -> T2 a

All this behaviour contrasts with Haskell 98’s peculiar treatment of contexts on a data type
declaration (Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set' a = MkSet' [a]

gives MkSet' the same type as MkSet above. But instead of making available an (Eq a) con-
straint, pattern-matching on MkSet' requires an (Eq a) constraint! GHC faithfully imple-
ments this behaviour, odd though it is. But for GADT-style declarations, GHC’s behaviour is
much more useful, as well as much more intuitive.

Formal syntax for GADTs

Tomake more precise what is and what is not permitted inside of a GADT-style constructor, we
provide a BNF-style grammar for GADT below. Note that this grammar is subject to change
in the future.

gadt_con ::= conids '::' opt_forall opt_ctxt gadt_body

conids ::= conid
| conid ',' conids

opt_forall ::= <empty>
| 'forall' tv_bndrs '.'

tv_bndrs ::= <empty>
| tv_bndr tv_bndrs

tv_bndr ::= tyvar

6.4. Types 317

GHC User’s Guide Documentation, Release 9.2.6

| '(' tyvar '::' ctype ')'

opt_ctxt ::= <empty>
| btype '=>'
| '(' ctxt ')' '=>'

ctxt ::= ctype
| ctype ',' ctxt

gadt_body ::= prefix_gadt_body
| record_gadt_body

prefix_gadt_body ::= '(' prefix_gadt_body ')'
| return_type
| opt_unpack btype '->' prefix_gadt_body

record_gadt_body ::= '{' fieldtypes '}' '->' return_type

fieldtypes ::= <empty>
| fieldnames '::' opt_unpack ctype
| fieldnames '::' opt_unpack ctype ',' fieldtypes

fieldnames ::= fieldname
| fieldname ',' fieldnames

opt_unpack ::= opt_bang
: {-# UNPACK #-} opt_bang
| {-# NOUNPACK #-} opt_bang

opt_bang ::= <empty>
| '!'
| '~'

Where:
• btype is a type that is not allowed to have an outermost forall/=> unless it is surrounded
by parentheses. For example, forall a. a and Eq a => a are not legal btypes, but
(forall a. a) and (Eq a => a) are legal.

• ctype is a btype that has no restrictions on an outermost forall/=>, so forall a. a
and Eq a => a are legal ctypes.

• return_type is a type that is not allowed to have foralls, =>s, or ->s.
This is a simplified grammar that does not fully delve into all of the implementation details of
GHC’s parser (such as the placement of Haddock comments), but it is sufficient to attain an
understanding of what is syntactically allowed. Some further various observations about this
grammar:
• GADT constructor types are currently not permitted to have nested foralls or =>s.
(e.g., something like MkT :: Int -> forall a. a -> T would be rejected.) As a re-
sult, gadt_sig puts all of its quantification and constraints up front with opt_forall
and opt_context. Note that higher-rank foralls and =>s are only permitted if they do
not appear directly to the right of a function arrow in a prefix_gadt_body. (e.g., some-
thing like MkS :: Int -> (forall a. a) -> S is allowed, since parentheses separate
the forall from the ->.)

• Furthermore, GADT constructors do not permit outermost parentheses that surround the
opt_forall or opt_ctxt, if at least one of them are used. For example, MkU :: (forall

318 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

a. a -> U) would be rejected, since it would treat the forall as being nested.
Note that it is acceptable to use parentheses in a prefix_gadt_body. For instance, MkV1
:: forall a. (a) -> (V1) is acceptable, as is MkV2 :: forall a. (a -> V2).

• The function arrows in a prefix_gadt_body, as well as the function arrow in a
record_gadt_body, are required to be used infix. For example, MkA :: (->) Int A
would be rejected.

• GHC uses the function arrows in a prefix_gadt_body and prefix_gadt_body to syntac-
tically demarcate the function and result types. Note that GHC does not attempt to be
clever about looking through type synonyms here. If you attempt to do this, for instance:

type C = Int -> B

data B where
MkB :: C

Then GHC will interpret the return type of MkB to be C, and since GHC requires that the
return type must be headed by B, this will be rejected. On the other hand, it is acceptable
to use type synonyms within the argument and result types themselves, so the following
is permitted:

type B1 = Int
type B2 = B

data B where
MkB :: B1 -> B2

• GHC will accept any combination of !/~ and {-# UNPACK #-}/{-# NOUNPACK #-}, al-
though GHC will ignore some combinations. For example, GHC will produce a warning
if you write {-# UNPACK #-} ~Int and proceed as if you had written Int.

GADT syntax odds and ends

The rest of this section gives further details about GADT-style data type declarations.
• The result type of each data constructor must begin with the type constructor being
defined. If the result type of all constructors has the form T a1 ... an, where a1 ...
an are distinct type variables, then the data type is ordinary; otherwise is a generalised
data type (Generalised Algebraic Data Types (GADTs) (page 321)).

• As with other type signatures, you can give a single signature for several data construc-
tors. In this example we give a single signature for T1 and T2:

data T a where
T1,T2 :: a -> T a
T3 :: T a

• The type signature of each constructor is independent, and is implicitly universally quan-
tified as usual. In particular, the type variable(s) in the “data T a where” header have
no scope, and different constructors may have different universally-quantified type vari-
ables:

data T a where -- The 'a' has no scope
T1,T2 :: b -> T b -- Means forall b. b -> T b
T3 :: T a -- Means forall a. T a

6.4. Types 319

GHC User’s Guide Documentation, Release 9.2.6

• A constructor signaturemaymention type class constraints, which can differ for different
constructors. For example, this is fine:

data T a where
T1 :: Eq b => b -> b -> T b
T2 :: (Show c, Ix c) => c -> [c] -> T c

When pattern matching, these constraints are made available to discharge constraints
in the body of the match. For example:

f :: T a -> String
f (T1 x y) | x==y = "yes"

| otherwise = "no"
f (T2 a b) = show a

Note that f is not overloaded; the Eq constraint arising from the use of == is discharged
by the pattern match on T1 and similarly the Show constraint arising from the use of
show.

• Unlike a Haskell-98-style data type declaration, the type variable(s) in the “data Set a
where” header have no scope. Indeed, one can write a kind signature instead:

data Set :: Type -> Type where ...

or even a mixture of the two:

data Bar a :: (Type -> Type) -> Type where ...

The type variables (if given) may be explicitly kinded, so we could also write the header
for Foo like this:

data Bar a (b :: Type -> Type) where ...

• You can use strictness annotations, in the obvious places in the constructor type:

data Term a where
Lit :: !Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

• You can use a deriving clause on a GADT-style data type declaration. For example, these
two declarations are equivalent

data Maybe1 a where {
Nothing1 :: Maybe1 a ;
Just1 :: a -> Maybe1 a

} deriving(Eq, Ord)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eq, Ord)

• The type signature may have quantified type variables that do not appear in the result
type:

data Foo where
MkFoo :: a -> (a->Bool) -> Foo
Nil :: Foo

320 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Here the type variable a does not appear in the result type of either constructor. Although
it is universally quantified in the type of the constructor, such a type variable is often
called “existential”. Indeed, the above declaration declares precisely the same type as
the data Foo in Existentially quantified data constructors (page 312).
The type may contain a class context too, of course:

data Showable where
MkShowable :: Show a => a -> Showable

• You can use record syntax on a GADT-style data type declaration:

data Person where
Adult :: { name :: String, children :: [Person] } -> Person
Child :: Show a => { name :: !String, funny :: a } -> Person

As usual, for every constructor that has a field f, the type of field f must be the same
(modulo alpha conversion). The Child constructor above shows that the signature may
have a context, existentially-quantified variables, and strictness annotations, just as in
the non-record case. (NB: the “type” that follows the double-colon is not really a type,
because of the record syntax and strictness annotations. A “type” of this form can appear
only in a constructor signature.)

• Record updates are allowed with GADT-style declarations, only fields that have the fol-
lowing property: the type of the field mentions no existential type variables.

• As in the case of existentials declared using the Haskell-98-like record syntax (Record
Constructors (page 313)), record-selector functions are generated only for those fields
that have well-typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where
NewCounter :: { _this :: self

, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
} -> Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you
can still use all the field names in pattern matching and record construction.

• In a GADT-style data type declaration there is no obvious way to specify that a data con-
structor should be infix, which makes a difference if you derive Show for the type. (Data
constructors declared infix are displayed infix by the derived show.) So GHC implements
the following design: a data constructor declared in a GADT-style data type declaration
is displayed infix by Show iff (a) it is an operator symbol, (b) it has two arguments, (c) it
has a programmer-supplied fixity declaration. For example

infix 6 (:--:)
data T a where

(:--:) :: Int -> Bool -> T Int

6.4.8 Generalised Algebraic Data Types (GADTs)

GADTs

Implies MonoLocalBinds (page 485), GADTSyntax (page 316)
Since 6.8.1

6.4. Types 321

GHC User’s Guide Documentation, Release 9.2.6

Allow use of Generalised Algebraic Data Types (GADTs).
Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing con-
structors to have richer return types. Here is an example:

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with
ordinary data types. This generality allows us to write a well-typed eval function for these
Terms:

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero t) = eval t == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
eval (Pair e1 e2) = (eval e1, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in
the right hand side of the equation

eval :: Term a -> a
eval (Lit i) = ...

the type a is refined to Int. That’s the whole point! A precise specification of the type rules is
beyond what this user manual aspires to, but the design closely follows that described in the
paper Simple unification-based type inference for GADTs, (ICFP 2006). The general principle
is this: type refinement is only carried out based on user-supplied type annotations. So if no
type signature is supplied for eval, no type refinement happens, and lots of obscure error
messages will occur. However, the refinement is quite general. For example, if we had:

eval :: Term a -> a -> a
eval (Lit i) j = i+j

the pattern match causes the type a to be refined to Int (because of the type of the construc-
tor Lit), and that refinement also applies to the type of j, and the result type of the case
expression. Hence the addition i+j is legal.
These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is
a longer introduction on the wiki, and Ralf Hinze’s Fun with phantom types also has a number
of examples. Note that papers may use different notation to that implemented in GHC.
The rest of this section outlines the extensions to GHC that support GADTs. The extension
is enabled with GADTs (page 321). The GADTs (page 321) extension also sets GADTSyntax
(page 316) and MonoLocalBinds (page 485).
• A GADT can only be declared using GADT-style syntax (Declaring data types with explicit
constructor signatures (page 316)); the old Haskell 98 syntax for data declarations al-
ways declares an ordinary data type. The result type of each constructor must begin
with the type constructor being defined, but for a GADT the arguments to the type con-
structor can be arbitrary monotypes. For example, in the Term data type above, the type
of each constructor must end with Term ty, but the ty need not be a type variable (e.g.
the Lit constructor).

322 Chapter 6. Language extensions

http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://www.haskell.org/haskellwiki/GADT
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf

GHC User’s Guide Documentation, Release 9.2.6

• It is permitted to declare an ordinary algebraic data type using GADT-style syntax. What
makes a GADT into a GADT is not the syntax, but rather the presence of data constructors
whose result type is not just T a b.

• You cannot use a deriving clause for a GADT; only for an ordinary data type.
• As mentioned in Declaring data types with explicit constructor signatures (page 316),
record syntax is supported. For example:

data Term a where
Lit :: { val :: Int } -> Term Int
Succ :: { num :: Term Int } -> Term Int
Pred :: { num :: Term Int } -> Term Int
IsZero :: { arg :: Term Int } -> Term Bool
Pair :: { arg1 :: Term a

, arg2 :: Term b
} -> Term (a,b)

If :: { cnd :: Term Bool
, tru :: Term a
, fls :: Term a
} -> Term a

However, for GADTs there is the following additional constraint: every constructor that
has a field f must have the same result type (modulo alpha conversion) Hence, in the
above example, we cannot merge the num and arg fields above into a single name. Al-
though their field types are both Term Int, their selector functions actually have differ-
ent types:

num :: Term Int -> Term Int
arg :: Term Bool -> Term Int

See Field selectors and TypeApplications (page 387) for a full description of how the
types of top-level field selectors are determined.

• When pattern-matching against data constructors drawn from a GADT, for example in a
case expression, the following rules apply:
– The type of the scrutinee must be rigid.
– The type of the entire case expression must be rigid.
– The type of any free variable mentioned in any of the case alternatives must be rigid.

A type is “rigid” if it is completely known to the compiler at its binding site. The easiest
way to ensure that a variable a rigid type is to give it a type signature. For more precise
details see Simple unification-based type inference for GADTs. The criteria implemented
by GHC are given in the Appendix.

• When GHC typechecks multiple patterns in a function clause, it typechecks each pattern
in order from left to right. This has consequences for patterns that match on GADTs, such
as in this example:

data U a where
MkU :: U ()

v1 :: U a -> a -> a
v1 MkU () = ()

v2 :: a -> U a -> a
v2 () MkU = ()

6.4. Types 323

http://research.microsoft.com/%7Esimonpj/papers/gadt/

GHC User’s Guide Documentation, Release 9.2.6

Although v1 and v2 may appear to be the same function but with differently ordered
arguments, GHC will only typecheck v1. This is because in v1, GHC will first typecheck
the MkU pattern, which causes a to be refined to (). This refinement is what allows
the subsequent () pattern to typecheck at type a. In v2, however, GHC first tries to
typecheck the () pattern, and because a has not been refined to () yet, GHC concludes
that () is not of type a. v2 can be made to typecheck by matching on MkU before (), like
so:

v2 :: a -> U a -> a
v2 x MkU = case x of () -> ()

• Not only does GHC typecheck patterns from left to right, it also typechecks them from
the outside in. This can be seen in this example:

data F x y where
MkF :: y -> F (Maybe z) y

g :: F a a -> a
g (MkF Nothing) = Nothing

In the function clause for g, GHC first checks MkF, the outermost pattern, followed by the
inner Nothing pattern. This outside-in order can interact somewhat counterintuitively
with Pattern type signatures (page 474). Consider the following variation of g:

g2 :: F a a -> a
g2 (MkF Nothing :: F (Maybe z) (Maybe z)) = Nothing @z

The g2 function attempts to use the pattern type signature F (Maybe z) (Maybe z) to
bring the type variable z into scope so that it can be used on the right-hand side of the
definition with Visible type application (page 366). However, GHC will reject the pattern
type signature in g2:

• Couldn't match type ‘a’ with ‘Maybe z’
Expected: F a a
Actual: F (Maybe z) (Maybe z)

Again, this is because of the outside-in order GHC uses when typechecking patterns.
GHC first tries to check the pattern type signature F (Maybe z) (Maybe z), but at that
point, GHC has not refined a to be Maybe z, so GHC is unable to conclude that F a a
is equal to F (Maybe z) (Maybe z). Here, the MkF pattern is considered to be inside of
the pattern type signature, so GHC cannot use the type refinement from the MkF pattern
when typechecking the pattern type signature.
There are two possible ways to repair g2. One way is to use a case expression to write
a pattern signature after matching on MkF, like so:

g3 :: F a a -> a
g3 f@(MkF Nothing) =

case f of
(_ :: F (Maybe z) (Maybe z)) -> Nothing @z

Another way is to use Type Applications in Patterns (page 370) instead of a pattern type
signature:

g4 :: F a a -> a
g4 (MkF @(Maybe z) Nothing) = Nothing @z

324 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Here, the visible type argument @(Maybe z) indicates that the y in the type of MkF ::
y -> F (Maybe z) y should be instantiated to Maybe z. In addition, @(Maybe z) also
brings z into scope. Although g4 no longer uses a pattern type signature, it accomplishes
the same end result, as the right-hand side Nothing @z will typecheck successfully.

6.4.9 Type families

TypeFamilies

Implies MonoLocalBinds (page 485), KindSignatures (page 471), Explicit-
Namespaces (page 307)

Since 6.8.1
Allow use and definition of indexed type and data families.

Indexed type families form an extension to facilitate type-level programming. Type families
are a generalisation of associated data types [AssocDataTypes2005] (page 685) and associ-
ated type synonyms [AssocTypeSyn2005] (page 685) Type families themselves are described
in Schrijvers 2008 [TypeFamilies2008] (page 685). Type families essentially provide type-
indexed data types and named functions on types, which are useful for generic programming
and highly parameterised library interfaces as well as interfaces with enhanced static infor-
mation, much like dependent types. They might also be regarded as an alternative to func-
tional dependencies, but provide a more functional style of type-level programming than the
relational style of functional dependencies.
Indexed type families, or type families for short, are type constructors that represent sets
of types. Set members are denoted by supplying the type family constructor with type pa-
rameters, which are called type indices. The difference between vanilla parametrised type
constructors and family constructors is much like between parametrically polymorphic func-
tions and (ad-hoc polymorphic) methods of type classes. Parametric polymorphic functions
behave the same at all type instances, whereas class methods can change their behaviour
in dependence on the class type parameters. Similarly, vanilla type constructors imply the
same data representation for all type instances, but family constructors can have varying
representation types for varying type indices.
Indexed type families come in three flavours: data families, open type synonym families, and
closed type synonym families. They are the indexed family variants of algebraic data types and
type synonyms, respectively. The instances of data families can be data types and newtypes.
Type families are enabled by the language extension TypeFamilies (page 325). Additional
information on the use of type families in GHC is available on the Haskell wiki page on type
families.

Data families

Data families appear in two flavours: (1) they can be defined on the toplevel or (2) they can
appear inside type classes (in which case they are known as associated types). The former is
the more general variant, as it lacks the requirement for the type-indexes to coincide with the
class parameters. However, the latter can lead to more clearly structured code and compiler
warnings if some type instances were - possibly accidentally - omitted. In the following, we
always discuss the general toplevel form first and then cover the additional constraints placed
on associated types.

6.4. Types 325

http://www.haskell.org/haskellwiki/GHC/Indexed_types
http://www.haskell.org/haskellwiki/GHC/Indexed_types

GHC User’s Guide Documentation, Release 9.2.6

Data family declarations

Indexed data families are introduced by a signature, such as

data family GMap k :: Type -> Type

The special family distinguishes family from standard data declarations. The result kind
annotation is optional and, as usual, defaults to Type if omitted. An example is

data family Array e

Named arguments can also be given explicit kind signatures if needed. Just as with GADT
declarations (page 321) named arguments are entirely optional, so that we can declare Array
alternatively with

data family Array :: Type -> Type

Unlike with ordinary data definitions, the result kind of a data family does not need to be Type.
It can alternatively be:
• Of the form TYPE r for some r (see Levity polymorphism (page 363)). For example:

data family DF1 :: TYPE IntRep
data family DF2 (r :: RuntimeRep) :: TYPE r
data family DF3 :: Type -> TYPE WordRep

• A bare kind variable (with PolyKinds (page 346) enabled). For example:

data family DF4 :: k
data family DF5 (a :: k) :: k
data family DF6 :: (k -> Type) -> k

Data instances’ kinds must end in Type, however. This restriction is slightly relaxed when the
UnliftedNewtypes (page 513) extension is enabled, as it permits a newtype instance‘s kind
to end in TYPE r for some r.

Data instance declarations

Instance declarations of data and newtype families are very similar to standard data and new-
type declarations. The only two differences are that the keyword data or newtype is followed
by instance and that some or all of the type arguments can be non-variable types, but may
not contain forall types or type synonym families. However, data families are generally al-
lowed in type parameters, and type synonyms are allowed as long as they are fully applied
and expand to a type that is itself admissible - exactly as this is required for occurrences of
type synonyms in class instance parameters. For example, the Either instance for GMap is

data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)

In this example, the declaration has only one variant. In general, it can be any number.
When ExplicitForAll (page 466) is enabled, type and kind variables used on the left hand
side can be explicitly bound. For example:

data instance forall a (b :: Proxy a). F (Proxy b) = FProxy Bool

326 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

When an explicit forall is present, all type and kind variables mentioned which are not
already in scope must be bound by the forall:

data instance forall (a :: k). F a = FOtherwise -- rejected: k not in scope
data instance forall k (a :: k). F a = FOtherwise -- accepted

When the flag -Wunused-type-patterns (page 116) is enabled, type variables that are men-
tioned in the patterns on the left hand side, but not used on the right hand side are reported.
Variables that occur multiple times on the left hand side are also considered used. To suppress
the warnings, unused variables should be either replaced or prefixed with underscores. Type
variables starting with an underscore (_x) are otherwise treated as ordinary type variables.
This resembles the wildcards that can be used in Partial Type Signatures (page 479). However,
there are some differences. No error messages reporting the inferred types are generated,
nor does the extension PartialTypeSignatures (page 479) have any effect.
A type or kind variable explicitly bound using ExplicitForAll (page 466) but not used on the
left hand side will generate an error, not a warning.
Data and newtype instance declarations are only permitted when an appropriate family dec-
laration is in scope - just as a class instance declaration requires the class declaration to be
visible. Moreover, each instance declaration has to conform to the kind determined by its
family declaration. This implies that the number of parameters of an instance declaration
matches the arity determined by the kind of the family.
A data family instance declaration can use the full expressiveness of ordinary data or newtype
declarations:
• Although, a data family is introduced with the keyword “data”, a data family instance
can use either data or newtype. For example:

data family T a
data instance T Int = T1 Int | T2 Bool
newtype instance T Char = TC Bool

• A data instance can use GADT syntax for the data constructors, and indeed can define
a GADT. For example:

data family G a b
data instance G [a] b where

G1 :: c -> G [Int] b
G2 :: G [a] Bool

• You can use a deriving clause on a data instance or newtype instance declaration.
Even if data families are defined as toplevel declarations, functions that perform different
computations for different family instances may still need to be defined as methods of type
classes. In particular, the following is not possible:

data family T a
data instance T Int = A
data instance T Char = B
foo :: T a -> Int
foo A = 1
foo B = 2

Instead, you would have to write foo as a class operation, thus:

6.4. Types 327

GHC User’s Guide Documentation, Release 9.2.6

class Foo a where
foo :: T a -> Int

instance Foo Int where
foo A = 1

instance Foo Char where
foo B = 2

Given the functionality provided by GADTs (Generalised Algebraic Data Types), it might seem
as if a definition, such as the above, should be feasible. However, type families - in contrast
to GADTs - are open; i.e., new instances can always be added, possibly in other modules. Sup-
porting pattern matching across different data instances would require a form of extensible
case construct.

Overlap of data instances

The instance declarations of a data family used in a single program may not overlap at all,
independent of whether they are associated or not. In contrast to type class instances, this is
not only a matter of consistency, but one of type safety.

Synonym families

Type families appear in three flavours: (1) they can be defined as open families on the toplevel,
(2) they can be defined as closed families on the toplevel, or (3) they can appear inside type
classes (in which case they are known as associated type synonyms). Toplevel families are
more general, as they lack the requirement for the type-indexes to coincide with the class
parameters. However, associated type synonyms can lead to more clearly structured code
and compiler warnings if some type instances were - possibly accidentally - omitted. In the
following, we always discuss the general toplevel forms first and then cover the additional
constraints placed on associated types. Note that closed associated type synonyms do not
exist.

Type family declarations

Open indexed type families are introduced by a signature, such as

type family Elem c :: Type

The special family distinguishes family from standard type declarations. The result kind
annotation is optional and, as usual, defaults to Type if omitted. An example is

type family Elem c

Parameters can also be given explicit kind signatures if needed. We call the number of pa-
rameters in a type family declaration, the family’s arity, and all applications of a type family
must be fully saturated with respect to that arity. This requirement is unlike ordinary type
synonyms and it implies that the kind of a type family is not sufficient to determine a family’s
arity, and hence in general, also insufficient to determine whether a type family application
is well formed. As an example, consider the following declaration:

type family F a b :: Type -> Type
-- F's arity is 2,
-- although its overall kind is Type -> Type -> Type -> Type

328 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Given this declaration the following are examples of well-formed and malformed types:

F Char [Int] -- OK! Kind: Type -> Type
F Char [Int] Bool -- OK! Kind: Type
F IO Bool -- WRONG: kind mismatch in the first argument
F Bool -- WRONG: unsaturated application

The result kind annotation is optional and defaults to Type (like argument kinds) if omitted.
Polykinded type families can be declared using a parameter in the kind annotation:

type family F a :: k

In this case the kind parameter k is actually an implicit parameter of the type family.
At definition site, the arity determines what inputs can be matched on:

data PT (a :: Type)

type family F1 :: k -> Type
type instance F1 = PT
-- OK, 'k' can be matched on.

type family F0 :: forall k. k -> Type
type instance F0 = PT
-- Error:
-- • Expected kind ‘forall k. k -> Type’,
-- but ‘PT’ has kind ‘Type -> Type’
-- • In the type ‘PT’
-- In the type instance declaration for ‘F0’

Both F1 and F0 have kind forall k. k -> Type, but their arity differs.
At use sites, the arity determines if the definition can be used in a higher-rank scenario:

type HRK (f :: forall k. k -> Type) = (f Int, f Maybe, f True)

type H1 = HRK F0 -- OK
type H2 = HRK F1
-- Error:
-- • Expected kind ‘forall k. k -> Type’,
-- but ‘F1’ has kind ‘k0 -> Type’
-- • In the first argument of ‘HRK’, namely ‘F1’
-- In the type ‘HRK F1’
-- In the type declaration for ‘H2’

This is a consequence of the requirement that all applications of a type family must be fully
saturated with respect to their arity.

Type instance declarations

Instance declarations of type families are very similar to standard type synonym declarations.
The only two differences are that the keyword type is followed by instance and that some
or all of the type arguments can be non-variable types, but may not contain forall types or
type synonym families. However, data families are generally allowed, and type synonyms are
allowed as long as they are fully applied and expand to a type that is admissible - these are
the exact same requirements as for data instances. For example, the [e] instance for Elem is

6.4. Types 329

GHC User’s Guide Documentation, Release 9.2.6

type instance Elem [e] = e

Type arguments can be replaced with underscores (_) if the names of the arguments don’t
matter. This is the same as writing type variables with unique names. Unused type arguments
can be replaced or prefixed with underscores to avoid warnings when the -Wunused-type-
patterns (page 116) flag is enabled. The same rules apply as for Data instance declarations
(page 326).
Also in the same way as Data instance declarations (page 326), when ExplicitForAll
(page 466) is enabled, type and kind variables can be explicitly bound in a type instance
declaration.
Type family instance declarations are only legitimate when an appropriate family declaration
is in scope - just like class instances require the class declaration to be visible. Moreover,
each instance declaration has to conform to the kind determined by its family declaration,
and the number of type parameters in an instance declaration must match the number of
type parameters in the family declaration. Finally, the right-hand side of a type instance must
be a monotype (i.e., it may not include foralls) and after the expansion of all saturated vanilla
type synonyms, no synonyms, except family synonyms may remain.

Closed type families

A type family can also be declared with a where clause, defining the full set of equations for
that family. For example:

type family F a where
F Int = Double
F Bool = Char
F a = String

A closed type family’s equations are tried in order, from top to bottom, when simplifying a type
family application. In this example, we declare an instance for F such that F Int simplifies
to Double, F Bool simplifies to Char, and for any other type a that is known not to be Int or
Bool, F a simplifies to String. Note that GHC must be sure that a cannot unify with Int or
Bool in that last case; if a programmer specifies just F a in their code, GHC will not be able
to simplify the type. After all, a might later be instantiated with Int.
A closed type family’s equations have the same restrictions and extensions as the equations
for open type family instances. For instance, when ExplicitForAll (page 466) is enabled,
type or kind variables used on the left hand side of an equation can be explicitly bound, such
as in:

type family R a where
forall t a. R (t a) = [a]
forall a. R a = a

A closed type family may be declared with no equations. Such closed type families are opaque
type-level definitions that will never reduce, are not necessarily injective (unlike empty data
types), and cannot be given any instances. This is different from omitting the equations of
a closed type family in a hs-boot file, which uses the syntax where .., as in that case there
may or may not be equations given in the hs file.

330 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Type family examples

Here are some examples of admissible and illegal type instances:

type family F a :: Type
type instance F [Int] = Int -- OK!
type instance F String = Char -- OK!
type instance F (F a) = a -- WRONG: type parameter mentions a type family
type instance
F (forall a. (a, b)) = b -- WRONG: a forall type appears in a type parameter

type instance
F Float = forall a.a -- WRONG: right-hand side may not be a forall type

type family H a where -- OK!
H Int = Int
H Bool = Bool
H a = String

type instance H Char = Char -- WRONG: cannot have instances of closed family
type family K a where -- OK!

type family G a b :: Type -> Type
type instance G Int = (,) -- WRONG: must be two type parameters
type instance G Int Char Float = Double -- WRONG: must be two type parameters

Compatibility and apartness of type family equations

Theremust be some restrictions on the equations of type families, lest we define an ambiguous
rewrite system. So, equations of open type families are restricted to be compatible. Two type
patterns are compatible if
1. all corresponding types and implicit kinds in the patterns are apart, or
2. the two patterns unify producing a substitution, and the right-hand sides are equal under
that substitution.

Two types are considered apart if, for all possible substitutions, the types cannot reduce to a
common reduct.
The first clause of “compatible” is the more straightforward one. It says that the patterns of
two distinct type family instances cannot overlap. For example, the following is disallowed:

type instance F Int = Bool
type instance F Int = Char

The second clause is a little more interesting. It says that two overlapping type family in-
stances are allowed if the right-hand sides coincide in the region of overlap. Some examples
help here:

type instance F (a, Int) = [a]
type instance F (Int, b) = [b] -- overlap permitted

type instance G (a, Int) = [a]
type instance G (Char, a) = [a] -- ILLEGAL overlap, as [Char] /= [Int]

Note that this compatibility condition is independent of whether the type family is associated
or not, and it is not only a matter of consistency, but one of type safety.

6.4. Types 331

GHC User’s Guide Documentation, Release 9.2.6

For a polykinded type family, the kinds are checked for apartness just like types. For example,
the following is accepted:

type family J a :: k
type instance J Int = Bool
type instance J Int = Maybe

These instances are compatible because they differ in their implicit kind parameter; the first
uses Type while the second uses Type -> Type.
The definition for “compatible” uses a notion of “apart”, whose definition in turn relies on type
family reduction. This condition of “apartness”, as stated, is impossible to check, so we use
this conservative approximation: two types are considered to be apart when the two types
cannot be unified, even by a potentially infinite unifier. Allowing the unifier to be infinite
disallows the following pair of instances:

type instance H x x = Int
type instance H [x] x = Bool

The type patterns in this pair equal if x is replaced by an infinite nesting of lists. Rejecting
instances such as these is necessary for type soundness.
Compatibility also affects closed type families. When simplifying an application of a closed
type family, GHC will select an equation only when it is sure that no incompatible previous
equation will ever apply. Here are some examples:

type family F a where
F Int = Bool
F a = Char

type family G a where
G Int = Int
G a = a

In the definition for F, the two equations are incompatible – their patterns are not apart, and
yet their right-hand sides do not coincide. Thus, before GHC selects the second equation, it
must be sure that the first can never apply. So, the type F a does not simplify; only a type such
as F Double will simplify to Char. In G, on the other hand, the two equations are compatible.
Thus, GHC can ignore the first equation when looking at the second. So, G a will simplify to
a.
Incompatibilities between closed type family equations can be displayed in :info (page 65)
when -fprint-axiom-incomps (page 93) is enabled.
However see Type, class and other declarations (page 41) for the overlap rules in GHCi.

Decidability of type synonym instances

In order to guarantee that type inference in the presence of type families is decidable, we need
to place a number of additional restrictions on the formation of type instance declarations (c.f.,
Definition 5 (Relaxed Conditions) of “Type Checking with Open Type Functions”). Instance
declarations have the general form

type instance F t1 .. tn = t

where we require that for every type family application (G s1 .. sm) in t,

332 Chapter 6. Language extensions

http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html

GHC User’s Guide Documentation, Release 9.2.6

1. s1 .. sm do not contain any type family constructors,
2. the total number of symbols (data type constructors and type variables) in s1 .. sm is
strictly smaller than in t1 .. tn, and

3. for every type variable a, a occurs in s1 .. sm at most as often as in t1 .. tn.
These restrictions are easily verified and ensure termination of type inference. However, they
are not sufficient to guarantee completeness of type inference in the presence of, so called,
‘’loopy equalities’‘, such as a ~ [F a], where a recursive occurrence of a type variable is
underneath a family application and data constructor application - see the above mentioned
paper for details.
If the option UndecidableInstances (page 448) is passed to the compiler (see Instance termi-
nation rules (page 448)), the above restrictions are not enforced and it is on the programmer
to ensure termination of the normalisation of type families during type inference.

Reducing type family applications

-ffamily-application-cache
The flag -ffamily-application-cache (page 333) (on by default) instructs GHC to use
a cache when reducing type family applications. In most cases, this will speed up com-
pilation. The use of this flag will not affect runtime behaviour.

When GHC encounters a type family application (like F Int a) in a program, it must often
reduce it in order to complete type checking. Here is a simple example:

type family F a where
F Int = Bool
F (Maybe Double) = Char

g :: F Int -> Bool
g = not

Despite the fact that g‘s type mentions F Int, GHC must recognize that g‘s argument really
has type Bool. This is done by reducing F Int to become Bool. Sometimes, there is not
enough information to reduce a type family application; we say such an application is stuck.
Continuing this example, an occurrence of F (Maybe a) (for some type variable a) would be
stuck, as no equation applies.
During type checking, GHC uses heuristics to determine which type family application to re-
duce next; there is no predictable ordering among different type family applications. The
non-determinism rarely matters in practice. In most programs, type family reduction termi-
nates, and so these choices are immaterial. However, if a type family application does not
terminate, it is possible that type-checking may unpredictably diverge. (GHC will always take
the same path for a given source program, but small changes in that source program may in-
duce GHC to take a different path. Compiling a given, unchanged source program is still
deterministic.)
In order to speed up type family reduction, GHC normally uses a cache, remembering what
type family applications it has previously reduced. This feature can be disabled with -fno-
family-application-cache (page 333).

Wildcards on the LHS of data and type family instances

When the name of a type argument of a data or type instance declaration doesn’t matter, it
can be replaced with an underscore (_). This is the same as writing a type variable with a

6.4. Types 333

GHC User’s Guide Documentation, Release 9.2.6

unique name.

data family F a b :: Type
data instance F Int _ = Int
-- Equivalent to data instance F Int b = Int

type family T a :: Type
type instance T (a,_) = a
-- Equivalent to type instance T (a,b) = a

This use of underscore for wildcard in a type pattern is exactly like pattern matching in the
term language, but is rather different to the use of a underscore in a partial type signature
(see Type Wildcards (page 480)).
A type variable beginning with an underscore is not treated specially in a type or data instance
declaration. For example:

data instance F Bool _a = _a -> Int
-- Equivalent to data instance F Bool a = a -> Int

Contrast this with the special treatment of named wildcards in type signatures (Named Wild-
cards (page 481)).

Associated data and type families

A data or type synonym family can be declared as part of a type class, thus:

class GMapKey k where
data GMap k :: Type -> Type
...

class Collects ce where
type Elem ce :: Type
...

When doing so, we (optionally) may drop the “family” keyword.
The type parameters must all be type variables, of course, and some (but not necessarily all)
of then can be the class parameters. Each class parameter may only be used at most once
per associated type, but some may be omitted and they may be in an order other than in the
class head. Hence, the following contrived example is admissible:

class C a b c where
type T c a x :: Type

Here c and a are class parameters, but the type is also indexed on a third parameter x.

Associated instances

When an associated data or type synonym family instance is declared within a type class
instance, we (optionally) may drop the instance keyword in the family instance:

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...

334 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

instance Eq (Elem [e]) => Collects [e] where
type Elem [e] = e
...

The data or type family instance for an associated type must follow the rule that the type
indexes corresponding to class parameters must be precisely the same as types given in the
instance head. For example:

class Collects ce where
type Elem ce :: Type

instance Eq (Elem [e]) => Collects [e] where
-- Choose one of the following alternatives:
type Elem [e] = e -- OK
type Elem [x] = x -- BAD; '[x]' is different to '[e]' from head
type Elem x = x -- BAD; 'x' is different to '[e]'
type Elem [Maybe x] = x -- BAD: '[Maybe x]' is different to '[e]'

Note the following points:
• An instance for an associated family can only appear as part of an instance declarations
of the class in which the family was declared, just as with the equations of the methods
of a class.

• The type variables on the right hand side of the type family equation must, as usual,
be explicitly bound by the left hand side. This restriction is relaxed for kind variables,
however, as the right hand side is allowed to mention kind variables that are implicitly
bound. For example, these are legitimate:

data family Nat :: k -> k -> Type
-- k is implicitly bound by an invisible kind pattern
newtype instance Nat :: (k -> Type) -> (k -> Type) -> Type where

Nat :: (forall xx. f xx -> g xx) -> Nat f g

class Funct f where
type Codomain f :: Type

instance Funct ('KProxy :: KProxy o) where
-- o is implicitly bound by the kind signature
-- of the LHS type pattern ('KProxy)
type Codomain 'KProxy = NatTr (Proxy :: o -> Type)

• The instance for an associated type can be omitted in class instances. In that case,
unless there is a default instance (see Associated type synonym defaults (page 336)), the
corresponding instance type is not inhabited; i.e., only diverging expressions, such as
undefined, can assume the type.

• Although it is unusual, there (currently) can be multiple instances for an associated fam-
ily in a single instance declaration. For example, this is legitimate:

instance GMapKey Flob where
data GMap Flob [v] = G1 v
data GMap Flob Int = G2 Int
...

Here we give two data instance declarations, one in which the last parameter is [v], and
one for which it is Int. Since you cannot give any subsequent instances for (GMap Flob
...), this facility is most useful when the free indexed parameter is of a kind with a finite
number of alternatives (unlike Type).

6.4. Types 335

GHC User’s Guide Documentation, Release 9.2.6

• When ExplicitForAll (page 466) is enabled, type and kind variables can be explic-
itly bound in associated data or type family instances in the same way (and with the
same restrictions) as Data instance declarations (page 326) or Type instance declara-
tions (page 329). For example, adapting the above, the following is accepted:

instance Eq (Elem [e]) => Collects [e] where
type forall e. Elem [e] = e

Associated type synonym defaults

It is possible for the class defining the associated type to specify a default for associated type
instances. So for example, this is OK:

class IsBoolMap v where
type Key v
type instance Key v = Int

lookupKey :: Key v -> v -> Maybe Bool

instance IsBoolMap [(Int, Bool)] where
lookupKey = lookup

In an instance declaration for the class, if no explicit type instance declaration is given for
the associated type, the default declaration is used instead, just as with default class methods.
Note the following points:
• The instance keyword is optional.
• There can be at most one default declaration for an associated type synonym.
• A default declaration is not permitted for an associated data type.
• The default declaration must mention only type variables on the left hand side, and type
variables may not be repeated on the left-hand side. The right hand side must mention
only type variables that are explicitly bound on the left hand side. This restriction is
relaxed for kind variables, however, as the right hand side is allowed to mention kind
variables that are implicitly bound on the left hand side.
Like with Associated instances (page 334), it is possible to explicitly bind type and kind
variables in default declarations with a forall by using the ExplicitForAll (page 466)
language extension.

• Unlike the associated type family declaration itself, the type variables of the default
instance are independent of those of the parent class.

Here are some examples:

class C (a :: Type) where
type F1 a :: Type
type instance F1 a = [a] -- OK
type instance F1 a = a->a -- BAD; only one default instance is allowed

type F2 b a -- OK; note the family has more type
-- variables than the class

type instance F2 c d = c->d -- OK; you don't have to use 'a' in the type instance

type F3 a
type F3 [b] = b -- BAD; only type variables allowed on the

336 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

-- LHS, and the argument to F3 is
-- instantiated to [b], which is not
-- a bare type variable

type F4 x y
type F4 x x = x -- BAD; the type variable x is repeated on

-- the LHS

type F5 a
type F5 b = a -- BAD; 'a' is not in scope in the RHS

type F6 a :: [k]
type F6 a = ('[] :: [x]) -- OK; the kind variable x is implicitly

-- bound by an invisible kind pattern
-- on the LHS

type F7 a
type F7 a =

Proxy ('[] :: [x]) -- BAD; the kind variable x is not bound,
-- even by an invisible kind pattern

type F8 (x :: a) :: [a]
type F8 x = ('[] :: [a]) -- OK; the kind variable a is implicitly

-- bound by the kind signature of the
-- LHS type pattern

type F9 (a :: k)
type F9 a = Maybe a -- BAD; the kind variable k is

-- instantiated to Type, which is not
-- a bare kind variable

type F10 (a :: j) (b :: k)
type F10 (a :: z) (b :: z)

= Proxy a -- BAD; the kind variable z is repeated,
-- as both j and k are instantiated to z

type F11 a b
type forall a b. F11 a b = a -- OK; LHS type variables can be

-- explicitly bound with 'forall'

type F12 (a :: k)
type F12 @k a = Proxy a -- OK; visible kind application syntax is

-- permitted in default declarations

Scoping of class parameters

The visibility of class parameters in the right-hand side of associated family instances depends
solely on the parameters of the family. As an example, consider the simple class declaration

class C a b where
data T a

Only one of the two class parameters is a parameter to the data family. Hence, the following
instance declaration is invalid:

6.4. Types 337

GHC User’s Guide Documentation, Release 9.2.6

instance C [c] d where
data T [c] = MkT (c, d) -- WRONG!! 'd' is not in scope

Here, the right-hand side of the data instance mentions the type variable d that does not occur
in its left-hand side. We cannot admit such data instances as they would compromise type
safety.
Bear in mind that it is also possible for the right-hand side of an associated family instance
to contain kind parameters (by using the PolyKinds (page 346) extension). For instance, this
class and instance are perfectly admissible:

class C k where
type T :: k

instance C (Maybe a) where
type T = (Nothing :: Maybe a)

Here, although the right-hand side (Nothing :: Maybe a) mentions a kind variable a which
does not occur on the left-hand side, this is acceptable, because a is implicitly bound by T‘s
kind pattern.
A kind variable can also be bound implicitly in a LHS type pattern, as in this example:

class C a where
type T (x :: a) :: [a]

instance C (Maybe a) where
type T x = ('[] :: [Maybe a])

In ('[] :: [Maybe a]), the kind variable a is implicitly bound by the kind signature of the
LHS type pattern x.

Instance contexts and associated type and data instances

Associated type and data instance declarations do not inherit any context specified on the
enclosing instance. For type instance declarations, it is unclear what the context would mean.
For data instance declarations, it is unlikely a user would want the context repeated for every
data constructor. The only place where the context might likely be useful is in a deriving
clause of an associated data instance. However, even here, the role of the outer instance
context is murky. So, for clarity, we just stick to the rule above: the enclosing instance context
is ignored. If you need to use a non-trivial context on a derived instance, use a standalone
deriving (page 403) clause (at the top level).

Import and export

The rules for export lists (Haskell Report Section 5.2) need adjustment for type families:
• The form T(..), where T is a data family, names the family T and all the in-scope con-
structors (whether in scope qualified or unqualified) that are data instances of T.

• The form T(..,ci,..,fj,..), where T is a data family, names T and the specified con-
structors ci and fields fj as usual. The constructors and field names must belong to
some data instance of T, but are not required to belong to the same instance.

• The form C(..), where C is a class, names the class C and all its methods and associated
types.

338 Chapter 6. Language extensions

http://www.haskell.org/onlinereport/modules.html#sect5.2

GHC User’s Guide Documentation, Release 9.2.6

• The form C(..,mi,..,type Tj,..), where C is a class, names the class C, and the speci-
fied methods mi and associated types Tj. The types need a keyword “type” to distinguish
them from data constructors.

• Whenever there is no export list and a data instance is defined, the corresponding data
family type constructor is exported along with the new data constructors, regardless of
whether the data family is defined locally or in another module.

Examples

Recall our running GMapKey class example:

class GMapKey k where
data GMap k :: Type -> Type
insert :: GMap k v -> k -> v -> GMap k v
lookup :: GMap k v -> k -> Maybe v
empty :: GMap k v

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...method declarations...

Here are some export lists and their meaning:

• module GMap(GMapKey)

Exports just the class name.

• module GMap(GMapKey(..))

Exports the class, the associated type GMap and the member functions empty, lookup,
and insert. The data constructors of GMap (in this case GMapEither) are not exported.

• module GMap(GMapKey(type GMap, empty, lookup, insert))

Same as the previous item. Note the “type” keyword.

• module GMap(GMapKey(..), GMap(..))

Same as previous item, but also exports all the data constructors for GMap, namely
GMapEither.

• module GMap (GMapKey(empty, lookup, insert), GMap(..))

Same as previous item.

• module GMap (GMapKey, empty, lookup, insert, GMap(..))

Same as previous item.
Two things to watch out for:
• You cannot write GMapKey(type GMap(..)) — i.e., sub-component specifications cannot
be nested. To specify GMap‘s data constructors, you have to list it separately.

• Consider this example:

6.4. Types 339

GHC User’s Guide Documentation, Release 9.2.6

module X where
data family D

module Y where
import X
data instance D Int = D1 | D2

Module Y exports all the entities defined in Y, namely the data constructors D1 and D2,
and implicitly the data family D, even though it’s defined in X. This means you can write
import Y(D(D1,D2)) without giving an explicit export list like this:

module Y(D(..)) where ...
or module Y(module Y, D) where ...

Instances

Family instances are implicitly exported, just like class instances. However, this applies only
to the heads of instances, not to the data constructors an instance defines.

Type families and instance declarations

Type families require us to extend the rules for the form of instance heads, which are given
in Relaxed rules for the instance head (page 445). Specifically:
• Data type families may appear in an instance head
• Type synonym families may not appear (at all) in an instance head

The reason for the latter restriction is that there is no way to check for instance matching.
Consider

type family F a
type instance F Bool = Int

class C a

instance C Int
instance C (F a)

Now a constraint (C (F Bool)) would match both instances. The situation is especially bad
because the type instance for F Bool might be in another module, or even in a module that
is not yet written.
However, type class instances of instances of data families can be defined much like any other
data type. For example, we can say

data instance T Int = T1 Int | T2 Bool
instance Eq (T Int) where
(T1 i) == (T1 j) = i==j
(T2 i) == (T2 j) = i==j
_ == _ = False

Note that class instances are always for particular instances of a data family and never for
an entire family as a whole. This is for essentially the same reasons that we cannot define
a toplevel function that performs pattern matching on the data constructors of different in-
stances of a single type family. It would require a form of extensible case construct.

340 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Data instance declarations can also have deriving clauses. For example, we can write

data GMap () v = GMapUnit (Maybe v)
deriving Show

which implicitly defines an instance of the form

instance Show v => Show (GMap () v) where ...

Injective type families

TypeFamilyDependencies

Implies TypeFamilies (page 325)
Since 8.0.1

Allow functional dependency annotations on type families. This allows one to define
injective type families.

Starting with GHC 8.0 type families can be annotated with injectivity information. This infor-
mation is then used by GHC during type checking to resolve type ambiguities in situations
where a type variable appears only under type family applications. Consider this contrived
example:

type family Id a
type instance Id Int = Int
type instance Id Bool = Bool

id :: Id t -> Id t
id x = x

Here the definition of id will be rejected because type variable t appears only under type
family applications and is thus ambiguous. But this code will be accepted if we tell GHC that
Id is injective, which means it will be possible to infer t at call sites from the type of the
argument:

type family Id a = r | r -> a

Injective type families are enabled with -XTypeFamilyDependencies language extension.
This extension implies -XTypeFamilies.
For full details on injective type families refer to Haskell Symposium 2015 paper Injective
type families for Haskell.

Syntax of injectivity annotation

The injectivity annotation is added after the type family head and consists of two parts:
• a type variable that names the result of a type family. Syntax: = tyvar or = (tyvar ::
kind). The type variable must be fresh.

• an injectivity annotation of the form | A -> B, where A is the result type variable (see
previous bullet) and B is a list of argument type and kind variables in which type family is
injective. It is possible to omit some variables if the type family is not injective in them.

Examples:

6.4. Types 341

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf

GHC User’s Guide Documentation, Release 9.2.6

type family Id a = result | result -> a where
type family F a b c = d | d -> a c b
type family G (a :: k) b c = foo | foo -> k b where

For open and closed type families it is OK to name the result but skip the injectivity annotation.
This is not the case for associated type synonyms, where the named result without injectivity
annotation will be interpreted as associated type synonym default.

Verifying the injectivity annotation against type family equations

Once the user declares type family to be injective GHC must verify that this declaration is
correct, i.e., that type family equations don’t violate the injectivity annotation. A general idea
is that if at least one equation (bullets (1), (2) and (3) below) or a pair of equations (bullets (4)
and (5) below) violates the injectivity annotation then a type family is not injective in a way
the user claims and an error is reported. In the bullets below RHS refers to the right-hand
side of the type family equation being checked for injectivity. LHS refers to the arguments of
that type family equation. Below are the rules followed when checking injectivity of a type
family:
1. If a RHS of a type family equation is a type family application GHC reports that the type
family is not injective.

2. If a RHS of a type family equation is a bare type variable we require that all LHS variables
(including implicit kind variables) are also bare. In other words, this has to be a sole
equation of that type family and it has to cover all possible patterns. If the patterns are
not covering GHC reports that the type family is not injective.

3. If a LHS type variable that is declared as injective is not mentioned on injective position in
the RHS GHC reports that the type family is not injective. Injective position means either
argument to a type constructor or injective argument to a type family. Type inference can
potentially loop when looking under injective type families in the RHS, so this requires
UndecidableInstances (page 448); GHC suggests enabling the flag when it is necessary.

4. Open type families Open type families are typechecked incrementally. This means that
when a module is imported type family instances contained in that module are checked
against instances present in already imported modules.
A pair of an open type family equations is checked by attempting to unify their RHSs.
If the RHSs don’t unify this pair does not violate injectivity annotation. If unification
succeeds with a substitution then LHSs of unified equations must be identical under
that substitution. If they are not identical then GHC reports that the type family is not
injective.

5. In a closed type family all equations are ordered and in one place. Equations are also
checked pair-wise but this time an equation has to be paired with all the preceding
equations. Of course a single-equation closed type family is trivially injective (unless (1),
(2) or (3) above holds).
When checking a pair of closed type family equations GHC tried to unify their RHSs. If
they don’t unify this pair of equations does not violate injectivity annotation. If the RHSs
can be unified under some substitution (possibly empty) then either the LHSs unify under
the same substitution or the LHS of the latter equation is subsumed by earlier equations.
If neither condition is met GHC reports that a type family is not injective.

Note that for the purpose of injectivity check in bullets (4) and (5) GHC uses a special variant
of unification algorithm that treats type family applications as possibly unifying with anything.

342 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.4.10 Datatype promotion

DataKinds

Since 7.4.1
Allow promotion of data types to kind level.

This section describes data type promotion, an extension to the kind system that complements
kind polymorphism. It is enabled by DataKinds (page 343), and described in more detail in
the paper Giving Haskell a Promotion, which appeared at TLDI 2012.

Motivation

Standard Haskell has a rich type language. Types classify terms and serve to avoid many
common programming mistakes. The kind language, however, is relatively simple, distin-
guishing only regular types (kind Type) and type constructors (e.g. kind Type -> Type ->
Type). In particular when using advanced type system features, such as type families (Type
families (page 325)) or GADTs (Generalised Algebraic Data Types (GADTs) (page 321)), this
simple kind system is insufficient, and fails to prevent simple errors. Consider the example
of type-level natural numbers, and length-indexed vectors:

data Ze
data Su n

data Vec :: Type -> Type -> Type where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)

The kind of Vec is Type -> Type -> Type. This means that, e.g., Vec Int Char is a well-
kinded type, even though this is not what we intend when defining length-indexed vectors.
With DataKinds (page 343), the example above can then be rewritten to:

data Nat = Ze | Su Nat

data Vec :: Type -> Nat -> Type where
Nil :: Vec a 'Ze
Cons :: a -> Vec a n -> Vec a ('Su n)

With the improved kind of Vec, things like Vec Int Char are now ill-kinded, and GHC will
report an error.

Overview

With DataKinds (page 343), GHC automatically promotes every datatype to be a kind and its
(value) constructors to be type constructors. The following types

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data Pair a b = Pair a b

data Sum a b = L a | R b

6.4. Types 343

http://dreixel.net/research/pdf/ghp.pdf

GHC User’s Guide Documentation, Release 9.2.6

give rise to the following kinds and type constructors (where promoted constructors are pre-
fixed by a tick '):

Nat :: Type
'Zero :: Nat
'Succ :: Nat -> Nat

List :: Type -> Type
'Nil :: forall k. List k
'Cons :: forall k. k -> List k -> List k

Pair :: Type -> Type -> Type
'Pair :: forall k1 k2. k1 -> k2 -> Pair k1 k2

Sum :: Type -> Type -> Type
'L :: k1 -> Sum k1 k2
'R :: k2 -> Sum k1 k2

Virtually all data constructors, even those with rich kinds, can be promoted. There are only
a couple of exceptions to this rule:
• Data family instance constructors cannot be promoted at the moment. GHC’s type theory
just isn’t up to the task of promoting data families, which requires full dependent types.

• Data constructors with contexts that contain non-equality constraints cannot be pro-
moted. For example:

data Foo :: Type -> Type where
MkFoo1 :: a ~ Int => Foo a -- promotable
MkFoo2 :: a ~~ Int => Foo a -- promotable
MkFoo3 :: Show a => Foo a -- not promotable

MkFoo1 and MkFoo2 can be promoted, since their contexts only involve equality-oriented
constraints. However, MkFoo3‘s context contains a non-equality constraint Show a, and
thus cannot be promoted.

Distinguishing between types and constructors

In the examples above, all promoted constructors are prefixed with a single quote mark '.
This mark tells GHC to look in the data constructor namespace for a name, not the type
(constructor) namespace. Consider

data P = MkP -- 1

data Prom = P -- 2

We can thus distinguish the type P (which has a constructor MkP) from the promoted data
constructor 'P (of kind Prom).
As a convenience, GHC allows you to omit the quote mark when the name is unambiguous.
However, our experience has shown that the quote mark helps to make code more readable
and less error-prone. GHC thus supports -Wunticked-promoted-constructors (page 114)
that will warn you if you use a promoted data constructor without a preceding quote mark.
Just as in the case of Template Haskell (Syntax (page 486)), GHC gets confused if you put a
quote mark before a data constructor whose second character is a quote mark. In this case,
just put a space between the promotion quote and the data constructor:

344 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data T = A'
type S = 'A' -- ERROR: looks like a character
type R = ' A' -- OK: promoted `A'`

Type-level literals

DataKinds (page 343) enables the use of numeric and string literals at the type level. For
more information, see Type-Level Literals (page 364).

Promoted list and tuple types

With DataKinds (page 343), Haskell’s list and tuple types are natively promoted to kinds, and
enjoy the same convenient syntax at the type level, albeit prefixed with a quote:

data HList :: [Type] -> Type where
HNil :: HList '[]
HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (Type,Type) -> Type where
Tuple :: a -> b -> Tuple '(a,b)

foo0 :: HList '[]
foo0 = HNil

foo1 :: HList '[Int]
foo1 = HCons (3::Int) HNil

foo2 :: HList [Int, Bool]
foo2 = ...

For type-level lists of two or more elements, such as the signature of foo2 above, the quote
may be omitted because the meaning is unambiguous. But for lists of one or zero elements
(as in foo0 and foo1), the quote is required, because the types [] and [Int] have existing
meanings in Haskell.

Note: The declaration for HCons also requires TypeOperators (page 310) because of infix
type operator (':)

Promoting existential data constructors

Note that we do promote existential data constructors that are otherwise suitable. For exam-
ple, consider the following:

data Ex :: Type where
MkEx :: forall a. a -> Ex

Both the type Ex and the data constructor MkEx get promoted, with the polymorphic kind 'MkEx
:: forall k. k -> Ex. Somewhat surprisingly, you can write a type family to extract the
member of a type-level existential:

6.4. Types 345

GHC User’s Guide Documentation, Release 9.2.6

type family UnEx (ex :: Ex) :: k
type instance UnEx (MkEx x) = x

At first blush, UnEx seems poorly-kinded. The return kind k is not mentioned in the arguments,
and thus it would seem that an instance would have to return a member of k for any k. How-
ever, this is not the case. The type family UnEx is a kind-indexed type family. The return kind
k is an implicit parameter to UnEx. The elaborated definitions are as follows (where implicit
parameters are denoted by braces):

type family UnEx {k :: Type} (ex :: Ex) :: k
type instance UnEx {k} (MkEx @k x) = x

Thus, the instance triggers only when the implicit parameter to UnEx matches the implicit
parameter to MkEx. Because k is actually a parameter to UnEx, the kind is not escaping the
existential, and the above code is valid.
See also #7347.

Constraints in kinds

Kinds can (with DataKinds (page 343)) contain type constraints. However, only equality con-
straints are supported.
Here is an example of a constrained kind:

type family IsTypeLit a where
IsTypeLit Nat = 'True
IsTypeLit Symbol = 'True
IsTypeLit a = 'False

data T :: forall a. (IsTypeLit a ~ 'True) => a -> Type where
MkNat :: T 42
MkSymbol :: T "Don't panic!"

The declarations above are accepted. However, if we add MkOther :: T Int, we get an error
that the equality constraint is not satisfied; Int is not a type literal. Note that explicitly quan-
tifying with forall a is necessary in order for T to typecheck (see Complete user-supplied
kind signatures and polymorphic recursion (page 350)).

6.4.11 Kind polymorphism

TypeInType

Implies PolyKinds (page 346), DataKinds (page 343), KindSignatures
(page 471)

Since 8.0.1
The extension TypeInType (page 346) is now deprecated: its sole effect is to switch
on PolyKinds (page 346) (and hence KindSignatures (page 471)) and DataKinds
(page 343).

PolyKinds

Implies KindSignatures (page 471)
Since 7.4.1

346 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/7347

GHC User’s Guide Documentation, Release 9.2.6

Allow kind polymorphic types.
This section describes GHC’s kind system, as it appears in version 8.0 and beyond. The kind
system as described here is always in effect, with or without extensions, although it is a con-
servative extension beyond standard Haskell. The extensions above simply enable syntax and
tweak the inference algorithm to allow users to take advantage of the extra expressiveness
of GHC’s kind system.

Overview of kind polymorphism

Consider inferring the kind for

data App f a = MkApp (f a)

In Haskell 98, the inferred kind for App is (Type -> Type) -> Type -> Type. But this
is overly specific, because another suitable Haskell 98 kind for App is ((Type -> Type) -
> Type) -> (Type -> Type) -> Type, where the kind assigned to a is Type -> Type. In-
deed, without kind signatures (KindSignatures (page 471)), it is necessary to use a dummy
constructor to get a Haskell compiler to infer the second kind. With kind polymorphism
(PolyKinds (page 346)), GHC infers the kind forall k. (k -> Type) -> k -> Type for App,
which is its most general kind.
Thus, the chief benefit of kind polymorphism is that we can now infer these most general
kinds and use App at a variety of kinds:

App Maybe Int -- `k` is instantiated to Type

data T a = MkT (a Int) -- `a` is inferred to have kind (Type -> Type)
App T Maybe -- `k` is instantiated to (Type -> Type)

Overview of Type-in-Type

GHC 8 extends the idea of kind polymorphism by declaring that types and kinds are indeed
one and the same. Nothing within GHC distinguishes between types and kinds. Another way
of thinking about this is that the type Bool and the “promoted kind” Bool are actually identical.
(Note that term True and the type 'True are still distinct, because the former can be used
in expressions and the latter in types.) This lack of distinction between types and kinds is a
hallmark of dependently typed languages. Full dependently typed languages also remove the
difference between expressions and types, but doing that in GHC is a story for another day.
One simplification allowed by combining types and kinds is that the type of Type is just Type.
It is true that the Type :: Type axiom can lead to non-termination, but this is not a problem in
GHC, as we already have other means of non-terminating programs in both types and expres-
sions. This decision (among many, many others) does mean that despite the expressiveness
of GHC’s type system, a “proof” you write in Haskell is not an irrefutable mathematical proof.
GHC promises only partial correctness, that if your programs compile and run to completion,
their results indeed have the types assigned. It makes no claim about programs that do not
finish in a finite amount of time.
To learn more about this decision and the design of GHC under the hood please see the paper
introducing this kind system to GHC/Haskell.

6.4. Types 347

http://www.seas.upenn.edu/~sweirich/papers/fckinds.pdf

GHC User’s Guide Documentation, Release 9.2.6

Principles of kind inference

Generally speaking, when PolyKinds (page 346) is on, GHC tries to infer the most general
kind for a declaration. In many cases (for example, in a datatype declaration) the definition
has a right-hand side to inform kind inference. But that is not always the case. Consider

type family F a

Type family declarations have no right-hand side, but GHC must still infer a kind for F. Since
there are no constraints, it could infer F :: forall k1 k2. k1 -> k2, but that seems too
polymorphic. So GHC defaults those entirely-unconstrained kind variables to Type and we get
F :: Type -> Type. You can still declare F to be kind-polymorphic using kind signatures:

type family F1 a -- F1 :: Type -> Type
type family F2 (a :: k) -- F2 :: forall k. k -> Type
type family F3 a :: k -- F3 :: forall k. Type -> k
type family F4 (a :: k1) :: k2 -- F4 :: forall k1 k2. k1 -> k2

The general principle is this:
• When there is a right-hand side, GHC infers the most polymorphic kind consistent with
the right-hand side. Examples: ordinary data type and GADT declarations, class decla-
rations. In the case of a class declaration the role of “right hand side” is played by the
class method signatures.

• When there is no right hand side, GHC defaults argument and result kinds to Type, except
when directed otherwise by a kind signature. Examples: data and open type family
declarations.

This rule has occasionally-surprising consequences (see #10132).

class C a where -- Class declarations are generalised
-- so C :: forall k. k -> Constraint

data D1 a -- No right hand side for these two family
type F1 a -- declarations, but the class forces (a :: k)

-- so D1, F1 :: forall k. k -> Type

data D2 a -- No right-hand side so D2 :: Type -> Type
type F2 a -- No right-hand side so F2 :: Type -> Type

The kind-polymorphism from the class declaration makes D1 kind-polymorphic, but not so D2;
and similarly F1, F2.

Kind inference in type signatures

When kind-checking a type, GHC considers only what is written in that type when figuring
out how to generalise the type’s kind.
For example, consider these definitions (with ScopedTypeVariables (page 472)):

data Proxy a -- Proxy :: forall k. k -> Type
p :: forall a. Proxy a
p = Proxy :: Proxy (a :: Type)

GHC reports an error, saying that the kind of a should be a kind variable k, not Type. This is
because, by looking at the type signature forall a. Proxy a, GHC assumes a‘s kind should
be generalised, not restricted to be Type. The function definition is then rejected for being
more specific than its type signature.

348 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/10132

GHC User’s Guide Documentation, Release 9.2.6

Explicit kind quantification

Enabled by PolyKinds (page 346), GHC supports explicit kind quantification, as in these
examples:

data Proxy :: forall k. k -> Type
f :: (forall k (a :: k). Proxy a -> ()) -> Int

Note that the second example has a forall that binds both a kind k and a type variable a of
kind k. In general, there is no limit to how deeply nested this sort of dependency can work.
However, the dependency must be well-scoped: forall (a :: k) k. ... is an error.

Inferring the order of variables in a type/class declaration

It is possible to get intricate dependencies among the type variables introduced in a type or
class declaration. Here is an example:

data T a (b :: k) c = MkT (a c)

After analysing this declaration, GHC will discover that a and c can be kind-polymorphic, with
a :: k2 -> Type and c :: k2. We thus infer the following kind:

T :: forall {k2 :: Type} (k :: Type). (k2 -> Type) -> k -> k2 -> Type

Note that k2 is placed before k, and that k is placed before a. Also, note that k2 is written
here in braces. As explained with TypeApplications (page 366) (Inferred vs. specified type
variables (page 367)), type and kind variables that GHC generalises over, but not written in
the original program, are not available for visible type application. (These are called inferred
variables.) Such variables are written in braces.
The general principle is this:
• Variables not available for type application come first.
• Then come variables the user has written, implicitly brought into scope in a type vari-
able’s kind.

• Lastly come the normal type variables of a declaration.
• Variables not given an explicit ordering by the user are sorted according to ScopedSort
(Ordering of specified variables (page 368)).

With the T example above, we could bind k after a; doing so would not violate dependency
concerns. However, it would violate our general principle, and so k comes first.
Sometimes, this ordering does not respect dependency. For example:

data T2 k (a :: k) (c :: Proxy '[a, b])

It must be that a and b have the same kind. Note also that b is implicitly declared in c‘s kind.
Thus, according to our general principle, b must come before k. However, b depends on k.
We thus reject T2 with a suitable error message.
In associated types, we order the type variables as if the type family was a top-level declara-
tion, ignoring the visibilities of the class’s type variable binders. Here is an example:

class C (a :: k) b where
type F (c :: j) (d :: Proxy m) a b

6.4. Types 349

GHC User’s Guide Documentation, Release 9.2.6

We infer these kinds:

C :: forall {k1 :: Type} (k :: Type). k -> k1 -> Constraint
F :: forall {k1 :: Type} {k2 :: Type} {k3 :: Type} j (m :: k1).

j -> Proxy m -> k2 -> k3 -> Type

Note that the kind of a is specified in the kind of C but inferred in the kind of F.
The “general principle” described here is meant to make all this more predictable for users.
It would not be hard to extend GHC to relax this principle. If you should want a change here,
consider writing a proposal to do so.

Complete user-supplied kind signatures and polymorphic recursion

CUSKs

Since 8.10.1
NB! This is a legacy feature, see StandaloneKindSignatures (page 352) for the modern re-
placement.
Just as in type inference, kind inference for recursive types can only use monomorphic recur-
sion. Consider this (contrived) example:

data T m a = MkT (m a) (T Maybe (m a))
-- GHC infers kind T :: (Type -> Type) -> Type -> Type

The recursive use of T forced the second argument to have kind Type. However, just as in
type inference, you can achieve polymorphic recursion by giving a complete user-supplied
kind signature (or CUSK) for T. A CUSK is present when all argument kinds and the result
kind are known, without any need for inference. For example:

data T (m :: k -> Type) :: k -> Type where
MkT :: m a -> T Maybe (m a) -> T m a

The complete user-supplied kind signature specifies the polymorphic kind for T, and this sig-
nature is used for all the calls to T including the recursive ones. In particular, the recursive
use of T is at kind Type.
What exactly is considered to be a “complete user-supplied kind signature” for a type con-
structor? These are the forms:
• For a datatype, every type variable must be annotated with a kind. In a GADT-style
declaration, there may also be a kind signature (with a top-level :: in the header), but
the presence or absence of this annotation does not affect whether or not the declaration
has a complete signature.

data T1 :: (k -> Type) -> k -> Type where ...
-- Yes; T1 :: forall k. (k->Type) -> k -> Type

data T2 (a :: k -> Type) :: k -> Type where ...
-- Yes; T2 :: forall k. (k->Type) -> k -> Type

data T3 (a :: k -> Type) (b :: k) :: Type where ...
-- Yes; T3 :: forall k. (k->Type) -> k -> Type

data T4 (a :: k -> Type) (b :: k) where ...
-- Yes; T4 :: forall k. (k->Type) -> k -> Type

350 Chapter 6. Language extensions

https://github.com/ghc-proposals/ghc-proposals/

GHC User’s Guide Documentation, Release 9.2.6

data T5 a (b :: k) :: Type where ...
-- No; kind is inferred

data T6 a b where ...
-- No; kind is inferred

• For a datatype with a top-level ::: all kind variables introduced after the :: must be
explicitly quantified.

data T1 :: k -> Type -- No CUSK: `k` is not explicitly quantified
data T2 :: forall k. k -> Type -- CUSK: `k` is bound explicitly
data T3 :: forall (k :: Type). k -> Type -- still a CUSK

• For a newtype, the rules are the same as they are for a data type unless UnliftedNew-
types (page 513) is enabled. With UnliftedNewtypes (page 513), the type constructor
only has a CUSK if a kind signature is present. As with a datatype with a top-level ::, all
kind variables introduced after the :: must be explicitly quantified

{-# LANGUAGE UnliftedNewtypes #-}
newtype N1 where -- No; missing kind signature
newtype N2 :: TYPE 'IntRep where -- Yes; kind signature present
newtype N3 (a :: Type) where -- No; missing kind signature
newtype N4 :: k -> Type where -- No; `k` is not explicitly quantified
newtype N5 :: forall (k :: Type). k -> Type where -- Yes; good signature

• For a class, every type variable must be annotated with a kind.
• For a type synonym, every type variable and the result type must all be annotated with
kinds:

type S1 (a :: k) = (a :: k) -- Yes S1 :: forall k. k -> k
type S2 (a :: k) = a -- No kind is inferred
type S3 (a :: k) = Proxy a -- No kind is inferred

Note that in S2 and S3, the kind of the right-hand side is rather apparent, but it is still
not considered to have a complete signature – no inference can be done before detecting
the signature.

• An un-associated open type or data family declaration always has a CUSK; un-annotated
type variables default to kind Type:

data family D1 a -- D1 :: Type -> Type
data family D2 (a :: k) -- D2 :: forall k. k -> Type
data family D3 (a :: k) :: Type -- D3 :: forall k. k -> Type
type family S1 a :: k -> Type -- S1 :: forall k. Type -> k -> Type

• An associated type or data family declaration has a CUSK precisely if its enclosing class
has a CUSK.

class C a where -- no CUSK
type AT a b -- no CUSK, b is defaulted

class D (a :: k) where -- yes CUSK
type AT2 a b -- yes CUSK, b is defaulted

• A closed type family has a complete signature when all of its type variables are annotated
and a return kind (with a top-level ::) is supplied.

6.4. Types 351

GHC User’s Guide Documentation, Release 9.2.6

It is possible to write a datatype that syntactically has a CUSK (according to the rules above)
but actually requires some inference. As a very contrived example, consider

data Proxy a -- Proxy :: forall k. k -> Type
data X (a :: Proxy k)

According to the rules above X has a CUSK. Yet, the kind of k is undetermined. It is thus
quantified over, giving X the kind forall k1 (k :: k1). Proxy k -> Type.
The detection of CUSKs is enabled by the CUSKs (page 350) flag, which is switched on by
default. This extension is scheduled for deprecation to be replaced with StandaloneKindSig-
natures (page 352).

Standalone kind signatures and polymorphic recursion

StandaloneKindSignatures

Implies NoCUSKs (page 350)
Since 8.10.1

Just as in type inference, kind inference for recursive types can only use monomorphic recur-
sion. Consider this (contrived) example:

data T m a = MkT (m a) (T Maybe (m a))
-- GHC infers kind T :: (Type -> Type) -> Type -> Type

The recursive use of T forced the second argument to have kind Type. However, just as in
type inference, you can achieve polymorphic recursion by giving a standalone kind signature
for T:

type T :: (k -> Type) -> k -> Type
data T m a = MkT (m a) (T Maybe (m a))

The standalone kind signature specifies the polymorphic kind for T, and this signature is used
for all the calls to T including the recursive ones. In particular, the recursive use of T is at
kind Type.
While a standalone kind signature determines the kind of a type constructor, it does not deter-
mine its arity. This is of particular importance for type families and type synonyms, as they
cannot be partially applied. See Type family declarations (page 328) for more information
about arity.
The arity can be specified using explicit binders and inline kind annotations:

-- arity F0 = 0
type F0 :: forall k. k -> Type
type family F0 :: forall k. k -> Type

-- arity F1 = 1
type F1 :: forall k. k -> Type
type family F1 :: k -> Type

-- arity F2 = 2
type F2 :: forall k. k -> Type
type family F2 a :: Type

In absence of an inline kind annotation, the inferred arity includes all explicitly bound param-
eters and all immediately following invisible parameters:

352 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

-- arity FD1 = 1
type FD1 :: forall k. k -> Type
type FD1

-- arity FD2 = 2
type FD2 :: forall k. k -> Type
type FD2 a

Note that F0, F1, F2, FD1, and FD2 all have identical standalone kind signatures. The arity is
inferred from the type family header.
The kind variables bound by an outermost forall in a standalone kind signature scope only
over the kind in that signature. Unlike term-level type signatures (see Declaration type sig-
natures (page 473)), the outermost kind variables do not scope over the corresponding dec-
laration. For example, given this class declaration:

class C (a :: k) where
m :: Proxy k -> Proxy a -> String

The following would not be an equivalent definition of C:

type C :: forall k. k -> Constraint
class C a where
m :: Proxy k -> Proxy a -> String

Because the k from the standalone kind signature does not scope over C‘s definition, the k in
m‘s type signature is no longer the kind of a, but rather a completely distinct kind. It’s as if
you had written this:

type C :: forall k. k -> Constraint
class C (a :: kindOfA) where
m :: forall k. Proxy k -> Proxy (a :: kindOfA) -> String

To avoid this issue, C‘s definition must be given an inline kind annotation like so:

type C :: forall k. k -> Constraint
class C (a :: k) where
m :: Proxy k -> Proxy a -> String

Standalone kind signatures and declaration headers

GHC requires that in the presence of a standalone kind signature, data declarations must
bind all their inputs. For example:

type Prox1 :: k -> Type
data Prox1 a = MkProx1
-- OK.

type Prox2 :: k -> Type
data Prox2 = MkProx2
-- Error:
-- • Expected a type, but found something with kind ‘k -> Type’
-- • In the data type declaration for ‘Prox2’

GADT-style data declarationsmay either bind their inputs or use an inline signature in addition
to the standalone kind signature:

6.4. Types 353

GHC User’s Guide Documentation, Release 9.2.6

type GProx1 :: k -> Type
data GProx1 a where MkGProx1 :: GProx1 a
-- OK.

type GProx2 :: k -> Type
data GProx2 where MkGProx2 :: GProx2 a
-- Error:
-- • Expected a type, but found something with kind ‘k -> Type’
-- • In the data type declaration for ‘GProx2’

type GProx3 :: k -> Type
data GProx3 :: k -> Type where MkGProx3 :: GProx3 a
-- OK.

type GProx4 :: k -> Type
data GProx4 :: w where MkGProx4 :: GProx4 a
-- OK, w ~ (k -> Type)

Classes are subject to the same rules:

type C1 :: Type -> Constraint
class C1 a
-- OK.

type C2 :: Type -> Constraint
class C2
-- Error:
-- • Couldn't match expected kind ‘Constraint’
-- with actual kind ‘Type -> Constraint’
-- • In the class declaration for ‘C2’

On the other hand, type families are exempt from this rule:

type F :: Type -> Type
type family F
-- OK.

Data families are tricky territory. Their headers are exempt from this rule, but their instances
are not:

type T :: k -> Type
data family T
-- OK.

data instance T Int = MkT1
-- OK.

data instance T = MkT3
-- Error:
-- • Expecting one more argument to ‘T’
-- Expected a type, but ‘T’ has kind ‘k0 -> Type’
-- • In the data instance declaration for ‘T’

This also applies to GADT-style data instances:

data instance T (a :: Nat) where MkN4 :: T 4
MKN9 :: T 9

-- OK.

354 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data instance T :: Symbol -> Type where MkSN :: T "Neptune"
MkSJ :: T "Jupiter"

-- OK.

data instance T where MkT4 :: T x
-- Error:
-- • Expecting one more argument to ‘T’
-- Expected a type, but ‘T’ has kind ‘k0 -> Type’
-- • In the data instance declaration for ‘T’

Kind inference in data type declarations

Consider the declaration

data T1 f a = MkT1 (f a)
data T2 f a where
MkT2 :: f a -> T f a

In both cases GHC looks at the data constructor declarations to give constraints on the kind
of T, yielding

T1, T2 :: forall k. (k -> Type) -> k -> Type

Consider the type

type G :: forall k. k -> Type
data G (a :: k) where
GInt :: G Int
GMaybe :: G Maybe

This datatype G is GADT-like in both its kind and its type. Suppose you have g :: G a, where
a :: k. Then pattern matching to discover that g is in fact GMaybe tells you both that k ~
(Type -> Type) and a ~ Maybe. The definition for G requires that PolyKinds (page 346) be
in effect, but pattern-matching on G requires no extension beyond GADTs (page 321). That
this works is actually a straightforward extension of regular GADTs and a consequence of the
fact that kinds and types are the same.
Note that the datatype G is used at different kinds in its body, and therefore that kind-indexed
GADTs use a form of polymorphic recursion. It is thus only possible to use this feature if you
have provided a complete user-supplied kind signature (CUSK) for the datatype (Complete
user-supplied kind signatures and polymorphic recursion (page 350)), or a standalone kind
signature (Standalone kind signatures and polymorphic recursion (page 352)); in the case of
G we both. If you wish to see the kind indexing explicitly, you can do so by enabling -fprint-
explicit-kinds (page 92) and querying G with GHCi’s :info (page 65) command:

> :set -fprint-explicit-kinds
> :info G
type role G nominal nominal
type G :: forall k. k -> Type
data G @k a where
GInt :: G @Type Int
GMaybe :: G @(Type -> Type) Maybe

where you can see the GADT-like nature of the two constructors.

6.4. Types 355

GHC User’s Guide Documentation, Release 9.2.6

Kind inference for data/newtype instance declarations

Consider these declarations

data family T :: forall k. (k->Type) -> k -> Type

data instance T p q where
MkT :: forall r. r Int -> T r Int

Here T has an invisible kind argument; and perhaps it is instantiated to Type in the instance,
thus:

data instance T @Type (p :: Type->Type) (q :: Type) where
MkT :: forall r. r Int -> T r Int

Or perhaps we intended the specialisation to be in the GADT data constructor, thus:

data instance T @k (p :: k->Type) (q :: k) where
MkT :: forall r. r Int -> T @Type r Int

It gets more complicated if there are multiple constructors. In general, there is no princi-
pled way to tell which type specialisation comes from the data instance, and which from the
individual GADT data constructors.
So GHC implements this rule: in data/newtype instance declararations (unlike ordinary
data/newtype declarations) we do not look at the constructor declarations when inferring
the shape of the instance header. The principle is that the instantiation of the data instance
should be apparent from the header alone. This principle makes the program easier to under-
stand, and avoids the swamp of complexity indicated above.

Kind inference in class instance declarations

Consider the following example of a poly-kinded class and an instance for it:

class C a where
type F a

instance C b where
type F b = b -> b

In the class declaration, nothing constrains the kind of the type a, so it becomes a poly-kinded
type variable (a :: k). Yet, in the instance declaration, the right-hand side of the associated
type instance b -> b says that b must be of kind Type. GHC could theoretically propagate
this information back into the instance head, and make that instance declaration apply only
to type of kind Type, as opposed to types of any kind. However, GHC does not do this.
In short: GHC does not propagate kind information from the members of a class instance
declaration into the instance declaration head.
This lack of kind inference is simply an engineering problemwithin GHC, but getting it to work
would make a substantial change to the inference infrastructure, and it’s not clear the payoff
is worth it. If you want to restrict b‘s kind in the instance above, just use a kind signature in
the instance head.

356 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Kind inference in type synonyms and type family instances

Consider the scoping rules for type synonyms and type family instances, such as these:

type TS a (b :: k) = <rhs>
type instance TF a (b :: k) = <rhs>

The basic principle is that all variables mentioned on the right hand side <rhs>must be bound
on the left hand side:

type TS a (b :: k) = (k, a, Proxy b) -- accepted
type TS a (b :: k) = (k, a, Proxy b, z) -- rejected: z not in scope

But there is one exception: free variables mentioned in the outermost kind signature on the
right hand side are quantified implicitly. Thus, in the following example the variables a, b,
and k are all in scope on the right hand side of S:

type S a b = <rhs> :: k -> k

The reason for this exception is that there may be no other way to bind k. For example,
suppose we wanted S to have the following kind with an invisible parameter k:

S :: forall k. Type -> Type -> k -> k

In this case, we could not simply bind k on the left-hand side, as k would become a visible
parameter:

type S k a b = <rhs> :: k -> k
S :: forall k -> Type -> Type -> k -> k

Note that we only look at the outermost kind signature to decide which variables to quantify
implicitly. As a counter-example, consider M1:

type M1 = 'Just ('Nothing :: Maybe k) -- rejected: k not in scope

Here, the kind signature is hidden inside 'Just, and there is no outermost kind signature. We
can fix this example by providing an outermost kind signature:

type M2 = 'Just ('Nothing :: Maybe k) :: Maybe (Maybe k)

Here, k is brought into scope by :: Maybe (Maybe k).
A kind signature is considered to be outermost regardless of redundant parentheses:

type P = 'Nothing :: Maybe a -- accepted
type P = ((('Nothing :: Maybe a))) -- accepted

Closed type family instances are subject to the same rules:

type family F where
F = 'Nothing :: Maybe k -- accepted

type family F where
F = 'Just ('Nothing :: Maybe k) -- rejected: k not in scope

type family F where
F = 'Just ('Nothing :: Maybe k) :: Maybe (Maybe k) -- accepted

6.4. Types 357

GHC User’s Guide Documentation, Release 9.2.6

type family F :: Maybe (Maybe k) where
F = 'Just ('Nothing :: Maybe k) -- rejected: k not in scope

type family F :: Maybe (Maybe k) where
F @k = 'Just ('Nothing :: Maybe k) -- accepted

Kind variables can also be quantified in visible positions. Consider the following two exam-
ples:

data ProxyKInvis (a :: k)
data ProxyKVis k (a :: k)

In the first example, the kind variable k is an invisible argument to ProxyKInvis. In other
words, a user does not need to instantiate k explicitly, as kind inference automatically deter-
mines what k should be. For instance, in ProxyKInvis True, k is inferred to be Bool. This is
reflected in the kind of ProxyKInvis:

ProxyKInvis :: forall k. k -> Type

In the second example, k is a visible argument to ProxyKVis. That is to say, k is an argument
that users must provide explicitly when applying ProxyKVis. For example, ProxyKVis Bool
True is a well formed type.
What is the kind of ProxyKVis? One might say forall k. Type -> k -> Type, but this isn’t
quite right, since this would allow incorrect things like ProxyKVis Bool Int, which should
be rejected due to the fact that Int is not of kind Bool. The key observation is that the kind of
the second argument depends on the first argument. GHC indicates this dependency in the
syntax that it gives for the kind of ProxyKVis:

ProxyKVis :: forall k -> k -> Type

This kind is similar to the kind of ProxyKInvis, but with a key difference: the type variables
quantified by the forall are followed by an arrow (->), not a dot (.). This is a visible, de-
pendent quantifier. It is visible in that the user must pass in a type for k explicitly, and it is
dependent in the sense that k appears later in the kind of ProxyKVis. As a counterpart, the
k binder in forall k. k -> Type can be thought of as an invisible, dependent quantifier.
GHC permits writing kinds with this syntax, provided that the ExplicitForAll and PolyKinds
language extensions are enabled. Just like the invisible forall, one can put explicit kind
signatures on visibly bound kind variables, so the following is syntactically valid:

ProxyKVis :: forall (k :: Type) -> k -> Type

Currently, the ability to write visible, dependent quantifiers is limited to kinds. Consequently,
visible dependent quantifiers are rejected in any context that is unambiguously the type of a
term. They are also rejected in the types of data constructors.

Kind inference in closed type families

Although all open type families are considered to have a complete user-supplied kind signa-
ture (Complete user-supplied kind signatures and polymorphic recursion (page 350)), we can
relax this condition for closed type families, where we have equations on which to perform
kind inference. GHC will infer kinds for the arguments and result types of a closed type
family.

358 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

GHC supports kind-indexed type families, where the family matches both on the kind and
type. GHC will not infer this behaviour without a complete user-supplied kind signature
or standalone kind signature (see Standalone kind signatures and polymorphic recursion
(page 352)), because doing so would sometimes infer non-principal types. Indeed, we can
see kind-indexing as a form of polymorphic recursion, where a type is used at a kind other
than its most general in its own definition.
For example:

type family F1 a where
F1 True = False
F1 False = True
F1 x = x

-- F1 fails to compile: kind-indexing is not inferred

type family F2 (a :: k) where
F2 True = False
F2 False = True
F2 x = x

-- F2 fails to compile: no complete signature

type family F3 (a :: k) :: k where
F3 True = False
F3 False = True
F3 x = x

-- OK

Higher-rank kinds

In concert with RankNTypes (page 372), GHC supports higher-rank kinds. Here is an example:

-- Heterogeneous propositional equality
data (a :: k1) :~~: (b :: k2) where
HRefl :: a :~~: a

class HTestEquality (t :: forall k. k -> Type) where
hTestEquality :: forall k1 k2 (a :: k1) (b :: k2). t a -> t b -> Maybe (a :~~: b)

Note that hTestEquality takes two arguments where the type variable t is applied to types
of different kinds. That type variable must then be polykinded. Accordingly, the kind of
HTestEquality (the class) is (forall k. k -> Type) -> Constraint, a higher-rank kind.
A big difference with higher-rank kinds as compared with higher-rank types is that foralls
in kinds cannot be moved. This is best illustrated by example. Suppose we want to have an
instance of HTestEquality for (:~~:).

instance HTestEquality ((:~~:) a) where
hTestEquality HRefl HRefl = Just HRefl

With the declaration of (:~~:) above, it gets kind forall k1 k2. k1 -> k2 -> Type. Thus,
the type (:~~:) a has kind k2 -> Type for some k2. GHC cannot then regeneralize this kind
to become forall k2. k2 -> Type as desired. Thus, the instance is rejected as ill-kinded.
To allow for such an instance, we would have to define (:~~:) as follows:

data (:~~:) :: forall k1. k1 -> forall k2. k2 -> Type where
HRefl :: a :~~: a

6.4. Types 359

GHC User’s Guide Documentation, Release 9.2.6

In this redefinition, we give an explicit kind for (:~~:), deferring the choice of k2 until after
the first argument (a) has been given. With this declaration for (:~~:), the instance for
HTestEquality is accepted.

The kind Type

StarIsType

Since 8.6.1
Treat the unqualified uses of the * type operator as nullary and desugar to
Data.Kind.Type.

The kind Type (imported from Data.Kind) classifies ordinary types. With StarIsType
(page 360) (currently enabled by default), * is desugared to Type, but using this legacy syntax
is not recommended due to conflicts with TypeOperators (page 310). This also applies to ★,
the Unicode variant of *.

Inferring dependency in datatype declarations

If a type variable a in a datatype, class, or type family declaration depends on another such
variable k in the same declaration, two properties must hold:
• a must appear after k in the declaration, and
• k must appear explicitly in the kind of some type variable in that declaration.

The first bullet simply means that the dependency must be well-scoped. The second bullet
concerns GHC’s ability to infer dependency. Inferring this dependency is difficult, and GHC
currently requires the dependency to be made explicit, meaning that k must appear in the
kind of a type variable, making it obvious to GHC that dependency is intended. For example:

data Proxy k (a :: k) -- OK: dependency is "obvious"
data Proxy2 k a = P (Proxy k a) -- ERROR: dependency is unclear

In the second declaration, GHC cannot immediately tell that k should be a dependent variable,
and so the declaration is rejected.
It is conceivable that this restriction will be relaxed in the future, but it is (at the time of writ-
ing) unclear if the difficulties around this scenario are theoretical (inferring this dependency
would mean our type system does not have principal types) or merely practical (inferring
this dependency is hard, given GHC’s implementation). So, GHC takes the easy way out and
requires a little help from the user.

Inferring dependency in user-written foralls

A programmer may use forall in a type to introduce new quantified type variables. These
variables may depend on each other, even in the same forall. However, GHC requires that
the dependency be inferrable from the body of the forall. Here are some examples:

data Proxy k (a :: k) = MkProxy -- just to use below

f :: forall k a. Proxy k a -- This is just fine. We see that (a :: k).
f = undefined

g :: Proxy k a -> () -- This is to use below.

360 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

g = undefined

data Sing a
h :: forall k a. Sing k -> Sing a -> () -- No obvious relationship between k and a
h _ _ = g (MkProxy :: Proxy k a) -- This fails. We didn't know that a should have␣

↪→kind k.

Note that in the last example, it’s impossible to learn that a depends on k in the body of the
forall (that is, the Sing k -> Sing a -> ()). And so GHC rejects the program.

Kind defaulting without PolyKinds

Without PolyKinds (page 346), GHC refuses to generalise over kind variables. It thus defaults
kind variables to Type when possible; when this is not possible, an error is issued.
Here is an example of this in action:

{-# LANGUAGE PolyKinds #-}
import Data.Kind (Type)
data Proxy a = P -- inferred kind: Proxy :: k -> Type
data Compose f g x = MkCompose (f (g x))
-- inferred kind: Compose :: (b -> Type) -> (a -> b) -> a -> Type

-- separate module having imported the first
{-# LANGUAGE NoPolyKinds, DataKinds #-}
z = Proxy :: Proxy 'MkCompose

In the last line, we use the promoted constructor 'MkCompose, which has kind

forall (a :: Type) (b :: Type) (f :: b -> Type) (g :: a -> b) (x :: a).
f (g x) -> Compose f g x

Now we must infer a type for z. To do so without generalising over kind variables, we must
default the kind variables of 'MkCompose. We can easily default a and b to Type, but f and g
would be ill-kinded if defaulted. The definition for z is thus an error.

Pretty-printing in the presence of kind polymorphism

With kind polymorphism, there is quite a bit going on behind the scenes that may be invisible
to a Haskell programmer. GHC supports several flags that control how types are printed in
error messages and at the GHCi prompt. See the discussion of type pretty-printing options
(page 92) for further details. If you are using kind polymorphism and are confused as to
why GHC is rejecting (or accepting) your program, we encourage you to turn on these flags,
especially -fprint-explicit-kinds (page 92).

Datatype return kinds

With KindSignatures (page 471), we can give the kind of a datatype written in GADT-syntax
(see GADTSyntax (page 316)). For example:

data T :: Type -> Type where ...

6.4. Types 361

GHC User’s Guide Documentation, Release 9.2.6

There are a number of restrictions around these return kinds. The text below considers Un-
liftedNewtypes (page 513) and data families (enabled by TypeFamilies (page 325)). The
discussion also assumes familiarity with levity polymorphism (page 363).
1. data and data instance declarations must have return kinds that end in TYPE Lifte-

dRep. (Recall that Type is just a synonym for TYPE LiftedRep.) By “end in”, we refer to
the kind left over after all arguments (introduced either by forall or ->) are stripped
off and type synonyms expanded. Note that no type family expansion is done when per-
forming this check.

2. If UnliftedNewtypes (page 513) is enabled, then newtype and newtype instance decla-
rations must have return kinds that end in TYPE rep for some rep. The repmay mention
type families, but the TYPE must be apparent without type family expansion. (Type syn-
onym expansion is acceptable.)
If UnliftedNewtypes (page 513) is not enabled, then newtype and newtype instance
declarations have the same restrictions as data declarations.

3. A data or newtype instance actually can have two return kinds. The first is the kind
derived by applying the data family to the patterns provided in the instance declaration.
The second is given by a kind annotation. Both return kinds must satisfy the restrictions
above.

Examples:

data T1 :: Type -- good: Type expands to TYPE LiftedRep
data T2 :: TYPE LiftedRep -- good
data T3 :: forall k. k -> Type -> Type -- good: arguments are dropped

type LR = LiftedRep
data T3 :: TYPE LR -- good: we look through type synonyms

type family F a where
F Int = LiftedRep

data T4 :: TYPE (F Int) -- bad: we do not look through type families

type family G a where
G Int = Type

data T5 :: G Int -- bad: we do not look through type families

-- assume -XUnliftedNewtypes
newtype T6 :: Type where ... -- good
newtype T7 :: TYPE (F Int) where ... -- good
newtype T8 :: G Int where ... -- bad

data family DF a :: Type
data instance DF Int :: Type -- good
data instance DF Bool :: TYPE LiftedRep -- good
data instance DF Char :: G Int -- bad

data family DF2 k :: k -- good
data family DF2 Type -- good
data family DF2 Bool -- bad
data family DF2 (G Int) -- bad for 2 reasons:

-- a type family can't be in a pattern, and
-- the kind fails the restrictions here

362 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.4.12 Levity polymorphism

In order to allow full flexibility in how kinds are used, it is necessary to use the kind system
to differentiate between boxed, lifted types (normal, everyday types like Int and [Bool]) and
unboxed, primitive types (Unboxed types and primitive operations (page 509)) like Int#. We
thus have so-called levity polymorphism.
Here are the key definitions, all available from GHC.Exts:

TYPE :: RuntimeRep -> Type -- highly magical, built into GHC

data Levity = Lifted -- for things like `Int`
| Unlifted -- for things like `Array#`

data RuntimeRep = BoxedRep Levity -- for anything represented by a GC-managed pointer
| IntRep -- for `Int#`
| TupleRep [RuntimeRep] -- unboxed tuples, indexed by the␣

↪→representations of the elements
| SumRep [RuntimeRep] -- unboxed sums, indexed by the␣

↪→representations of the disjuncts
| ...

type LiftedRep = BoxedRep Lifted

type Type = TYPE LiftedRep -- Type is just an ordinary type synonym

The idea is that we have a new fundamental type constant TYPE, which is parameterised by
a RuntimeRep. We thus get Int# :: TYPE 'IntRep and Bool :: TYPE LiftedRep. Anything
with a type of the form TYPE x can appear to either side of a function arrow ->. We can thus
say that -> has type TYPE r1 -> TYPE r2 -> TYPE LiftedRep. The result is always lifted
because all functions are lifted in GHC.

No levity-polymorphic variables or arguments

If GHC didn’t have to compile programs that run in the real world, that would be the end of
the story. But representation polymorphism can cause quite a bit of trouble for GHC’s code
generator. Consider

bad :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).

(a -> b) -> a -> b
bad f x = f x

This seems like a generalisation of the standard $ operator. If we think about compiling this to
runnable code, though, problems appear. In particular, when we call bad, we must somehow
pass x into bad. How wide (that is, how many bits) is x? Is it a pointer? What kind of
register (floating-point or integral) should x go in? It’s all impossible to say, because x‘s type,
a :: TYPE r1 is levity polymorphic. We thus forbid such constructions, via the following
straightforward rule:

No variable may have a levity-polymorphic type.
This eliminates bad because the variable x would have a representation-polymorphic type.
However, not all is lost. We can still do this:

6.4. Types 363

GHC User’s Guide Documentation, Release 9.2.6

($) :: forall r (a :: Type) (b :: TYPE r).
(a -> b) -> a -> b

f $ x = f x

Here, only b is levity polymorphic. There are no variables with a levity-polymorphic type. And
the code generator has no trouble with this. Indeed, this is the true type of GHC’s $ operator,
slightly more general than the Haskell 98 version.
Because the code generator must store and move arguments as well as variables, the logic
above applies equally well to function arguments, which may not be levity-polymorphic.

Levity-polymorphic bottoms

We can use levity polymorphism to good effect with error and undefined, whose types are
given here:

undefined :: forall (r :: RuntimeRep) (a :: TYPE r).
HasCallStack => a

error :: forall (r :: RuntimeRep) (a :: TYPE r).
HasCallStack => String -> a

These functions do not bind a levity-polymorphic variable, and so are accepted. Their poly-
morphism allows users to use these to conveniently stub out functions that return unboxed
types.

Printing levity-polymorphic types

-fprint-explicit-runtime-reps
Print RuntimeRep parameters as they appear; otherwise, they are defaulted to Lifte-
dRep.

Most GHC users will not need to worry about levity polymorphism or unboxed types. For
these users, seeing the levity polymorphism in the type of $ is unhelpful. And thus, by default,
it is suppressed, by supposing all type variables of type RuntimeRep to be LiftedRep when
printing, and printing TYPE LiftedRep as Type (or * when StarIsType (page 360) is on).
Should you wish to see levity polymorphism in your types, enable the flag -fprint-explicit-
runtime-reps (page 364). For example,

ghci> :t ($)
($) :: (a -> b) -> a -> b
ghci> :set -fprint-explicit-runtime-reps
ghci> :t ($)
($)

:: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).
(a -> b) -> a -> b

6.4.13 Type-Level Literals

GHC supports numeric, string, and character literals at the type level, giving convenient
access to a large number of predefined type-level constants. Numeric literals are of kind
Natural, string literals are of kind Symbol, and character literals are of kind Char. This
feature is enabled by the DataKinds (page 343) language extension.

364 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The kinds of the literals and all other low-level operations for this feature are defined in
modules GHC.TypeLits and GHC.TypeNats. Note that these modules define some type-level
operators that clash with their value-level counterparts (e.g. (+)). Import and export decla-
rations referring to these operators require an explicit namespace annotation (see Explicit
namespaces in import/export (page 307)).
Here is an example of using type-level numeric literals to provide a safe interface to a low-level
function:

import GHC.TypeLits
import Data.Word
import Foreign

newtype ArrPtr (n :: Natural) a = ArrPtr (Ptr a)

clearPage :: ArrPtr 4096 Word8 -> IO ()
clearPage (ArrPtr p) = ...

Also type-level naturals could be promoted from the Natural data type using DataKinds, for
example:

data Point = MkPoint Natural Natural
type MyCoordinates = MkPoint 95 101

Here is an example of using type-level string literals to simulate simple record operations:

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y

example = from (Point 1 2) (Get :: Label "x")

Runtime Values for Type-Level Literals

Sometimes it is useful to access the value-level literal associated with a type-level literal. This
is done with the functions natVal and symbolVal. For example:

GHC.TypeLits> natVal (Proxy :: Proxy 2)
2

These functions are overloaded because they need to return a different result, depending on
the type at which they are instantiated.

natVal :: KnownNat n => proxy n -> Natural -- from GHC.TypeNats
natVal :: KnownNat n => proxy n -> Integer -- from GHC.TypeLits

-- instance KnownNat 0
-- instance KnownNat 1
-- instance KnownNat 2
-- ...

6.4. Types 365

GHC User’s Guide Documentation, Release 9.2.6

GHC discharges the constraint as soon as it knows what concrete type-level literal is being
used in the program. Note that this works only for literals and not arbitrary type expressions.
For example, a constraint of the form KnownNat (a + b) will not be simplified to (KnownNat
a,KnownNat b); instead, GHC will keep the constraint as is, until it can simplify a + b to a
constant value.
It is also possible to convert a run-time integer or string value to the corresponding type-level
literal. Of course, the resulting type literal will be unknown at compile-time, so it is hidden
in an existential type. The conversion may be performed using someNatVal for integers and
someSymbolVal for strings:

someNatVal :: Natural -> Maybe SomeNat -- from GHC.TypeNats
someNatVal :: Integer -> Maybe SomeNat -- from GHC.TypeLits

SomeNat :: KnownNat n => Proxy n -> SomeNat

The operations on strings are similar.

Computing With Type-Level Naturals

GHC 7.8 can evaluate arithmetic expressions involving type-level natural numbers. Such
expressions may be constructed using the type-families (+),(*),(^) for addition, multiplica-
tion, and exponentiation. Numbers may be compared using (<=?), which returns a promoted
boolean value, or (<=), which compares numbers as a constraint. For example:

GHC.TypeLits> natVal (Proxy :: Proxy (2 + 3))
5

At present, GHC is quite limited in its reasoning about arithmetic: it will only evaluate the
arithmetic type functions and compare the results— in the same way that it does for any other
type function. In particular, it does not know more general facts about arithmetic, such as
the commutativity and associativity of (+), for example.
However, it is possible to perform a bit of “backwards” evaluation. For example, here is how
we could get GHC to compute arbitrary logarithms at the type level:

lg :: Proxy base -> Proxy (base ^ pow) -> Proxy pow
lg _ _ = Proxy

GHC.TypeLits> natVal (lg (Proxy :: Proxy 2) (Proxy :: Proxy 8))
3

6.4.14 Visible type application

TypeApplications

Since 8.0.1
Allow the use of type application syntax.

The TypeApplications (page 366) extension allows you to use visible type application in
expressions. Here is an example: show (read @Int "5"). The @Int is the visible type appli-
cation; it specifies the value of the type variable in read‘s type.
A visible type application is preceded with an @ sign. (To disambiguate the syntax, the @ must
be preceded with a non-identifier letter, usually a space. For example, read@Int 5 would

366 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

not parse.) It can be used whenever the full polymorphic type of the function is known. If
the function is an identifier (the common case), its type is considered known only when the
identifier has been given a type signature. If the identifier does not have a type signature,
visible type application cannot be used.
GHC also permits visible kind application, where users can declare the kind arguments to
be instantiated in kind-polymorphic cases. Its usage parallels visible type application in the
term level, as specified above.
In addition to visible type application in terms and types, the type application syntax can be
used in patterns matching a data constructor to bind type variables in that constructor’s type.

Inferred vs. specified type variables

GHC tracks a distinction between what we call inferred and specified type variables. Only
specified type variables are available for instantiation with visible type application. An exam-
ple illustrates this well:

f :: (Eq b, Eq a) => a -> b -> Bool
f x y = (x == x) && (y == y)

g x y = (x == x) && (y == y)

The functions f and g have the same body, but only f is given a type signature. When GHC
is figuring out how to process a visible type application, it must know what variable to in-
stantiate. It thus must be able to provide an ordering to the type variables in a function’s
type.
If the user has supplied a type signature, as in f, then this is easy: we just take the ordering
from the type signature, going left to right and using the first occurrence of a variable to
choose its position within the ordering. Thus, the variables in f will be b, then a.
In contrast, there is no reliable way to do this for g; we will not know whether Eq a or Eq b
will be listed first in the constraint in g‘s type. In order to have visible type application be
robust between releases of GHC, we thus forbid its use with g.
We say that the type variables in f are specified, while those in g are inferred. The general
rule is this: if the user has written a type variable in the source program, it is specified; if not,
it is inferred.
This rule applies in datatype declarations, too. For example, if we have data Proxy a =
Proxy (and PolyKinds (page 346) is enabled), then a will be assigned kind k, where k is a
fresh kind variable. Because k was not written by the user, it will be unavailable for type
application in the type of the constructor Proxy; only the a will be available.
Inferred variables are printed in braces. Thus, the type of the data constructor Proxy from
the previous example is forall {k} (a :: k). Proxy a. We can observe this behavior in a
GHCi session:

> :set -XTypeApplications -fprint-explicit-foralls
> let myLength1 :: Foldable f => f a -> Int; myLength1 = length
> :type +v myLength1
myLength1 :: forall (f :: * -> *) a. Foldable f => f a -> Int
> let myLength2 = length
> :type +v myLength2
myLength2 :: forall {a} {t :: * -> *}. Foldable t => t a -> Int
> :type +v myLength2 @[]

6.4. Types 367

GHC User’s Guide Documentation, Release 9.2.6

<interactive>:1:1: error:
• Cannot apply expression of type ‘t0 a0 -> Int’
to a visible type argument ‘[]’

• In the expression: myLength2 @[]

Notice that since myLength1 was defined with an explicit type signature, :type +v (page 72)
reports that all of its type variables are available for type application. On the other hand,
myLength2 was not given a type signature. As a result, all of its type variables are surrounded
with braces, and trying to use visible type application with myLength2 fails.
Also note the use of :type +v (page 72) in the GHCi session above instead of :type (page 72).
This is because :type (page 72) gives you the type that would be inferred for a variable
assigned to the expression provided (that is, the type of x in let x = <expr>). As we saw
above with myLength2, this type will have no variables available to visible type application.
On the other hand, :type +v (page 72) gives you the actual type of the expression provided.
To illustrate this:

> :type myLength1
myLength1 :: forall {a} {f :: * -> *}. Foldable f => f a -> Int
> :type myLength2
myLength2 :: forall {a} {t :: * -> *}. Foldable t => t a -> Int

Using :type (page 72) might lead one to conclude that none of the type variables in
myLength1‘s type signature are available for type application. This isn’t true, however! Be
sure to use :type +v (page 72) if you want the most accurate information with respect to
visible type application properties.

Ordering of specified variables

In the simple case of the previous section, we can say that specified variables appear in left-
to-right order. However, not all cases are so simple. Here are the rules in the subtler cases:
• If an identifier’s type has a forall, then the order of type variables as written in the
forall is retained.

• If any of the variables depend on other variables (that is, if some of the variables are kind
variables), the variables are reordered so that kind variables come before type variables,
preserving the left-to-right order as much as possible. That is, GHC performs a stable
topological sort on the variables. Example:

h :: Proxy (a :: (j, k)) -> Proxy (b :: Proxy a) -> ()
-- as if h :: forall j k a b. ...

In this example, a depends on j and k, and b depends on a. Even though a appears
lexically before j and k, j and k are quantified first, because a depends on j and k. Note
further that j and k are not reordered with respect to each other, even though doing so
would not violate dependency conditions.
A “stable topological sort” here, we mean that we perform this algorithm (which we call
ScopedSort):
– Work left-to-right through the input list of type variables, with a cursor.
– If variable v at the cursor is depended on by any earlier variable w, move v immedi-
ately before the leftmost such w.

368 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Class methods’ type arguments include the class type variables, followed by any vari-
ables an individual method is polymorphic in. So, class Monad m where return :: a
-> m a means that return‘s type arguments are m,a.
• With the RankNTypes (page 372) extension (Lexically scoped type variables (page 472)),
it is possible to declare type arguments somewhere other than the beginning of a type.
For example, we can have pair :: forall a. a -> forall b. b -> (a,b) and then
say pair @Bool True @Char which would have type Char -> (Bool,Char).

• Partial type signatures (Partial Type Signatures (page 479)) work nicely with visible type
application. If you want to specify only the second type argument to wurble, then you
can say wurble @_ @Int. The first argument is a wildcard, just like in a partial type
signature. However, if used in a visible type application/visible kind application, it is not
necessary to specify PartialTypeSignatures (page 479) and your code will not generate
a warning informing you of the omitted type.

The section in this manual on kind polymorphism describes how variables in type and
class declarations are ordered (Inferring the order of variables in a type/class declaration
(page 349)).

Manually defining inferred variables

While user-written type or kind variables are specified by default, GHC permits labelling these
variables as inferred. By writing the type variable binder in braces as {tyvar} or {tyvar
:: kind}, the new variable will be classified as inferred, not specified. Doing so gives the
programmer control over which variables can be manually instantiated and which can’t. Note
that the braces do not influence scoping: variables in braces are still brought into scope just
the same. Consider for example:

myConst :: forall {a} b. a -> b -> a
myConst x _ = x

In this example, despite both variables appearing in a type signature, a is an inferred variable
while b is specified. This means that the expression myConst @Int has type forall {a}. a
-> Int -> a.
The braces are allowed in the following places:
• In the type signatures of functions, variables, class methods, as well as type annotations
on expressions. Consider the example above.

• In data constructor declarations, using the GADT syntax. Consider:

data T a where MkT :: forall {k} (a :: k). Proxy a -> T a

The constructor MkT defined in this example is kind polymorphic, which is emphasized
to the reader by explicitly abstracting over the k variable. As this variable is marked as
inferred, it can not be manually instantiated.

• In existential variable quantifications, e.g.:

data HList = HNil
| forall {a}. HCons a HList

• In pattern synonym signatures. Consider for instance:

6.4. Types 369

GHC User’s Guide Documentation, Release 9.2.6

data T a where MkT :: forall a b. a -> b -> T a

pattern Pat :: forall {c}. () => forall {d}. c -> d -> T c
pattern Pat x y = MkT x y

Note that in this example, a is a universal variable in the data type T, where b is exis-
tential. When writing the pattern synonym, both types are allowed to be specified or
inferred.

• On the right-hand side of a type synonym, e.g.:

type Foo = forall a {b}. Either a b

• In type signatures on variables bound in RULES, e.g.:

{-# RULES "parametricity" forall (f :: forall {a}. a -> a). map f = id #-}

The braces are not allowed in the following places:
• In visible dependent quantifiers. Consider:

data T :: forall {k} -> k -> Type

This example is rejected, as a visible argument should by definition be explicitly applied.
Making them inferred (and thus not appliable) would be conflicting.

• In SPECIALISE pragmas or in instance declaration heads, e.g.:

instance forall {a}. Eq (Maybe a) where ...

The reason for this is, essentially, that none of these define a new construct. This means
that no new type is being defined where specificity could play a role.

• On the left-hand sides of type declarations, such as classes, data types, etc.
Note that while specified and inferred type variables have different properties vis-à-vis vis-
ible type application, they do not otherwise affect GHC’s notion of equality over types. For
example, given the following definitions:

id1 :: forall a. a -> a
id1 x = x

id2 :: forall {a}. a -> a
id2 x = x

app1 :: (forall a. a -> a) -> b -> b
app1 g x = g x

app2 :: (forall {a}. a -> a) -> b -> b
app2 g x = g x

GHC will deem all of app1 id1, app1 id2, app2 id1, and app2 id2 to be well typed.

Type Applications in Patterns

The type application syntax can be used in patterns that match a data constructor. The syntax
can’t be used with record patterns or infix patterns. This is useful in particular to bind exis-
tential type variables associated with a GADT data constructor as in the following example:

370 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeApplications #-}
import Data.Proxy

data Foo where
Foo :: forall a. (Show a, Num a) => Foo

test :: Foo -> String
test x = case x of
Foo @t -> show @t 0

main :: IO ()
main = print $ test (Foo @Float)

In this example, the case in test` is binding an existential variable introduced by Foo that
otherwise could not be named and used.
It’s possible to bind variables to any part of the type arguments to a constructor; there is no
need for them to be existential. In addition, it’s possible to “match” against part of the type
argument using type constructors.
For a somewhat-contrived example:

foo :: (Num a) => Maybe [a] -> String
foo (Nothing @[t]) = show (0 :: t)
foo (Just @[t] xs) = show (sum xs :: t)

Here, we’re binding the type variable t to be the type of the elements of the list type which is
itself the argument to Maybe.
The order of the type arguments specified by the type applications in a pattern is the same
as that for an expression: either the order as given by the user in an explicit forall in the
definition of the data constructor, or if that is not present, the order in which the type variables
appear in its type signature from left to right.
For example if we have the following declaration in GADT syntax:

data Foo :: * -> * where
A :: forall s t. [(t,s)] -> Foo (t,s)
B :: (t,s) -> Foo (t,s)

Then the type arguments to A will match first s and then t, while the type arguments to B will
match first t and then s.
Type arguments appearing in patterns can influence the inferred type of a definition:

foo (Nothing @Int) = 0
foo (Just x) = x

will have inferred type:

foo :: Maybe Int -> Int

which is more restricted than what it would be without the application:

foo :: Num a => Maybe a -> a

6.4. Types 371

GHC User’s Guide Documentation, Release 9.2.6

For more information and detail regarding type applications in patterns, see the paper Type
variables in patterns by Eisenberg, Breitner and Peyton Jones. Relative to that paper, the
implementation in GHC for now at least makes one additional conservative restriction, that
type variables occurring in patterns must not already be in scope, and so are always new
variables that only bind whatever type is matched, rather than ever referring to a variable
from an outer scope. Type wildcards _may be used in any place where no new variable needs
binding.

6.4.15 Arbitrary-rank polymorphism

RankNTypes

Implies ExplicitForAll (page 466)
Since 6.8.1

Allow types of arbitrary rank.
Rank2Types

Since 6.8.1
A deprecated alias of RankNTypes (page 372).

GHC’s type system supports arbitrary-rank explicit universal quantification in types. For ex-
ample, all the following types are legal:

f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a

f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool

f4 :: Int -> (forall a. a -> a)

Here, f1 and g1 are rank-1 types, and can be written in standard Haskell (e.g. f1 :: a-
>b->a). The forall makes explicit the universal quantification that is implicitly added by
Haskell.
The functions f2 and g2 have rank-2 types; the forall is on the left of a function arrow. As
g2 shows, the polymorphic type on the left of the function arrow can be overloaded.
The function f3 has a rank-3 type; it has rank-2 types on the left of a function arrow.
The language option RankNTypes (page 372) (which implies ExplicitForAll (page 466)) en-
ables higher-rank types. That is, you can nest foralls arbitrarily deep in function arrows.
For example, a forall-type (also called a “type scheme”), including a type-class context, is
legal:
• On the left or right (see f4, for example) of a function arrow
• As the argument of a constructor, or type of a field, in a data type declaration. For
example, any of the f1,f2,f3,g1,g2 above would be valid field type signatures.

• As the type of an implicit parameter
• In a pattern type signature (see Lexically scoped type variables (page 472))

372 Chapter 6. Language extensions

https://arxiv.org/pdf/1806.03476
https://arxiv.org/pdf/1806.03476

GHC User’s Guide Documentation, Release 9.2.6

The RankNTypes (page 372) option is also required for any type with a forall or context to
the right of an arrow (e.g. f :: Int -> forall a. a->a, or g :: Int -> Ord a => a ->
a). Such types are technically rank 1, but are clearly not Haskell-98, and an extra extension
did not seem worth the bother.
In particular, in data and newtype declarations the constructor arguments may be polymor-
phic types of any rank; see examples in Examples (page 373). Note that the declared types
are nevertheless always monomorphic. This is important because by default GHC will not
instantiate type variables to a polymorphic type (Impredicative polymorphism (page 377)).
The obsolete language option Rank2Types (page 372) is a synonym for RankNTypes (page 372).
They used to specify finer distinctions that GHC no longer makes.

Examples

These are examples of data and newtype declarations whose data constructors have polymor-
phic argument types:

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (forall a. Ord a => [a] -> [a])

The constructors have rank-2 types:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a

MkMonad :: forall m. (forall a. a -> m a)
-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (forall a. Ord a => [a] -> [a]) -> Swizzle

In earlier versions of GHC, it was possible to omit the forall in the type of the constructor if
there was an explicit context. For example:

newtype Swizzle' = MkSwizzle' (Ord a => [a] -> [a])

Since GHC 8.0 declarations such as MkSwizzle' will cause an out-of-scope error.
You construct values of types T1,MonadT,Swizzle by applying the constructor to suitable
values, just as usual. For example,

a1 :: T Int
a1 = T1 (\x y->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x

b m k = case m of
Just y -> k y
Nothing -> Nothing

6.4. Types 373

GHC User’s Guide Documentation, Release 9.2.6

in
MkMonad r b

mkTs :: (forall b. b -> b -> b) -> a -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

The type of the argument can, as usual, be more general than the type required, as (MkSwiz-
zle reverse) shows. (reverse does not need the Ord constraint.)
When you use pattern matching, the bound variables may now have polymorphic types. For
example:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

In the function hwe use the record selectors return and bind to extract the polymorphic bind
and return functions from the MonadT data structure, rather than using pattern matching.

Subsumption

Suppose:

f1 :: (forall a b. Int -> a -> b -> b) -> Bool
g1 :: forall x y. Int -> y -> x -> x

f2 :: (forall a. (Eq a, Show a) => a -> a) -> Bool
g2 :: forall x. (Show x, Eq x) => x -> x

then f1 g1 and f2 g2 are both well typed, despite the different order of type variables and
constraints. What happens is that the argument is instantiated, and then re-generalised to
match the type expected by the function.
But this instantiation and re-generalisation happens only at the top level of a type. In partic-
ular, none of this happens if the foralls are underneath an arrow. For example:

f3 :: (Int -> forall a b. a -> b -> b) -> Bool
g3a :: Int -> forall x y. x -> y -> y
g3b :: forall x. Int -> forall y. x -> y -> y
g3c :: Int -> forall x y. y -> x -> x

f4 :: (Int -> forall a. (Eq a, Show a) => a -> a) -> Bool
g4 :: Int -> forall x. (Show x, Eq x) => x -> x) -> Bool

Then the application f3 g3a is well-typed, because g3a has a type that matches the type
expected by f3. But f3 g3b is not well typed, because the foralls are in different places. Nor
is f3 g3c, where the foralls are in the same place but the variables are in a different order.
Similarly f4 g4 is not well typed, because the constraints appear in a different order.

374 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

These examples can be made to typecheck by eta-expansion. For example f3 (\x -> g3b x)
is well typed, and similarly f3 (\x -> g3c x) and f4 (\x -> g4 x).
A similar phenomenon occurs for operator sections. For example, (\`g3a\` "hello") is not
well typed, but it can be made to typecheck by eta expanding it to \x -> x \`g3a\` "hello".

DeepSubsumption

Since 9.2.4
Relax the simple subsumption rules, implicitly inserting eta-expansions when matching
up function types with different quantification structures.

The DeepSubsumption (page 375) extension relaxes the aforementioned requirement that
foralls must appear in the same place. GHCwill instead automatically rewrite expressions like
f x of type ty1 -> ty2 to become (\ (y :: ty1) -> f x y); this is called eta-expansion.
See Section 4.6 of Practical type inference for arbitrary-rank types, where this process is
called “deep skolemisation”.
Note that these eta-expansions may silently change the semantics of the user’s program:

h1 :: Int -> forall a. a -> a
h1 = undefined
h2 :: forall b. Int -> b -> b
h2 = h1

With DeepSubsumption (page 375), GHC will accept these definitions, inserting an implicit
eta-expansion:

h2 = \ i -> h1 i

This means that h2 `seq` () will not crash, even though h1 `seq` () does crash.
Historical note: Deep skolemisation was initially removed from the language by GHC Proposal
#287, but was re-introduced as part of the DeepSubsumption (page 375) extension following
GHC Proposal #511.

Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm
proposed by Odersky and Laufer (“Putting type annotations to work”, POPL‘96) to get a de-
cidable algorithm by requiring some help from the programmer. We do not yet have a formal
specification of “some help” but the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an
explicit polymorphic type for x, or GHC’s type inference will assume that x’s type
has no foralls in it.

What does it mean to “provide” an explicit type for x? You can do that by giving a type signa-
ture for x directly, using a pattern type signature (Lexically scoped type variables (page 472)),
thus:

\ f :: (forall a. a->a) -> (f True, f 'c')

Alternatively, you can give a type signature to the enclosing context, which GHC can “push
down” to find the type for the variable:

6.4. Types 375

https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst

GHC User’s Guide Documentation, Release 9.2.6

(\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for
f. Similarly, and more commonly, one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f 'c')

You don’t need to give a type signature if the lambda bound variable is a constructor argument.
Here is an example we saw earlier:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')

Here we do not need to give a type signature to w, because it is an argument of constructor
T1 and that tells GHC all it needs to know.

Implicit quantification

GHC performs implicit quantification as follows. At the outermost level (only) of user-written
types, if and only if there is no explicit forall, GHC finds all the type variables mentioned
in the type that are not already in scope, and universally quantifies them. For example, the
following pairs are equivalent:

f :: a -> a
f :: forall a. a -> a

g (x::a) = let
h :: a -> b -> b
h x y = y

in ...
g (x::a) = let

h :: forall b. a -> b -> b
h x y = y

in ...

Notice that GHC always adds implicit quantifiers at the outermost level of a user-written type;
it does not find the inner-most possible quantification point. For example:

f :: (a -> a) -> Int
-- MEANS

f :: forall a. (a -> a) -> Int
-- NOT

f :: (forall a. a -> a) -> Int

g :: (Ord a => a -> a) -> Int
-- MEANS

g :: forall a. (Ord a => a -> a) -> Int
-- NOT

g :: (forall a. Ord a => a -> a) -> Int

If you want the latter type, you can write your foralls explicitly. Indeed, doing so is strongly
advised for rank-2 types.
Sometimes there is no “outermost level”, in which case no implicit quantification happens:

376 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data PackMap a b s t = PackMap (Monad f => (a -> f b) -> s -> f t)

This is rejected because there is no “outermost level” for the types on the RHS (it would obvi-
ously be terrible to add extra parameters to PackMap), so no implicit quantification happens,
and the declaration is rejected (with “f is out of scope”). Solution: use an explicit forall:

data PackMap a b s t = PackMap (forall f. Monad f => (a -> f b) -> s -> f t)

6.4.16 Impredicative polymorphism

ImpredicativeTypes

Implies RankNTypes (page 372)
Since 6.10.1

Allow impredicative polymorphic types.
In general, GHC will only instantiate a polymorphic function at a monomorphic type (one with
no foralls). For example,

runST :: (forall s. ST s a) -> a
id :: forall b. b -> b

foo = id runST -- Rejected

The definition of foo is rejected because one would have to instantiate id‘s type with b :=
(forall s. ST s a) -> a, and that is not allowed. Instantiating polymorphic type variables
with polymorphic types is called impredicative polymorphism.
GHC has robust support for impredicative polymorphism, enabled with ImpredicativeTypes
(page 377), using the so-called Quick Look inference algorithm. It is described in the paper
A quick look at impredicativity (Serrano et al, ICFP 2020).
Switching on ImpredicativeTypes (page 377)
• Switches on :extension: RankNTypes
• Allows user-written types to have foralls under type constructors, not just under arrows.
For example f :: Maybe (forall a. [a] -> [a]) is a legal type signature.

• Allows polymorphic types in Visible Type Application (when :extension: TypeApplications
is enabled). For example, you can write reverse @(forall b. b->b) xs. Using VTA
with a polymorphic type argument is useful in cases when Quick Look cannot infer the
correct instantiation.

• Switches on the Quick Look type inference algorithm, as described in the paper. This al-
lows the compiler to infer impredicative instantiations of polymorphic functions in many
cases. For example, reverse xs will typecheck even if xs :: [forall a. a->a], by
instantiating reverse at type forall a. a->a.

For many years GHC has a special case for the function ($), that allows it to typecheck an
application like runST $ (do { ... }), even though that instantiation may be impredicative.
This special case remains: even without ImpredicativeTypes (page 377) GHC switches on
Quick Look for applications of ($).

6.4. Types 377

https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/

GHC User’s Guide Documentation, Release 9.2.6

6.4.17 Linear types

LinearTypes

Since 9.0.1
Enable the linear arrow a %1 -> b and the multiplicity-polymorphic arrow a %m -> b.

This extension is currently considered experimental, expect bugs, warts, and bad
error messages; everything down to the syntax is subject to change. See, in particular,
Limitations (page 379) below. We encourage you to experiment with this extension and report
issues in the GHC bug tracker the GHC bug tracker, adding the tag LinearTypes.
A function f is linear if: when its result is consumed exactly once, then its argument is con-
sumed exactly once. Intuitively, it means that in every branch of the definition of f, its argu-
ment x must be used exactly once. Which can be done by
• Returning x unmodified
• Passing x to a linear function
• Pattern-matching on x and using each argument exactly once in the same fashion.
• Calling it as a function and using the result exactly once in the same fashion.

With -XLinearTypes, you can write f :: a %1 -> b to mean that f is a linear function from
a to b. If UnicodeSyntax (page 267) is enabled, the %1 -> arrow can be written as ⊸.
To allow uniform handling of linear a %1 -> b and unrestricted a -> b functions, there is a
new function type a %m -> b. Here, m is a type of new kind Multiplicity. We have:

data Multiplicity = One | Many -- Defined in GHC.Types

type a %1 -> b = a %One -> b
type a -> b = a %Many -> b

(See Datatype promotion (page 343)).
We say that a variable whose multiplicity constraint is Many is unrestricted.
Themultiplicity-polymorphic arrow a %m -> b is available in a prefix version as GHC.Exts.FUN
m a b, which can be applied partially. See, however Limitations (page 379).
Linear and multiplicity-polymorphic arrows are always declared, never inferred. That is, if
you don’t give an appropriate type signature to a function, it will be inferred as being a regular
function of type a -> b.

Data types

By default, all fields in algebraic data types are linear (even if -XLinearTypes is not turned
on). Given

data T1 a = MkT1 a

the value MkT1 x can be constructed and deconstructed in a linear context:

construct :: a %1 -> T1 a
construct x = MkT1 x

deconstruct :: T1 a %1 -> a
deconstruct (MkT1 x) = x -- must consume `x` exactly once

378 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues

GHC User’s Guide Documentation, Release 9.2.6

When used as a value, MkT1 is given a multiplicity-polymorphic type: MkT1 :: forall {m}
a. a %m -> T1 a. This makes it possible to use MkT1 in higher order functions. The addi-
tional multiplicity argument m is marked as inferred (see Inferred vs. specified type variables
(page 367)), so that there is no conflict with visible type application. When displaying types,
unless -XLinearTypes is enabled, multiplicity polymorphic functions are printed as regular
functions (see Printing multiplicity-polymorphic types (page 379)); therefore constructors ap-
pear to have regular function types.

mkList :: [a] -> [T1 a]
mkList xs = map MkT1 xs

Hence the linearity of type constructors is invisible when -XLinearTypes is off.
Whether a data constructor field is linear or not can be customized using the GADT syntax.
Given

data T2 a b c where
MkT2 :: a -> b %1 -> c %1 -> T2 a b c -- Note unrestricted arrow in the first␣

↪→argument

the value MkT2 x y z can be constructed only if x is unrestricted. On the other hand, a linear
function which is matching on MkT2 x y z must consume y and z exactly once, but there is
no restriction on x.
It is also possible to define a multiplicity-polymorphic field:
::

data T3 a m where MkT3 :: a %m -> T3 a m
While linear fields are generalized (MkT1 :: forall {m} a. a %m -> T1 a in the previous
example), multiplicity-polymorphic fields are not; it is not possible to directly use MkT3 as a
function a -> T3 a 'One.
If LinearTypes (page 378) is disabled, all fields are considered to be linear fields, including
GADT fields defined with the -> arrow.
In a newtype declaration, the field must be linear. Attempting to write an unrestricted new-
type constructor with GADT syntax results in an error.

Printing multiplicity-polymorphic types

If LinearTypes (page 378) is disabled, multiplicity variables in types are defaulted to
Many when printing, in the same manner as described in Printing levity-polymorphic types
(page 364). In other words, without LinearTypes (page 378), multiplicity-polymorphic func-
tions a %m -> b are printed as normal Haskell2010 functions a -> b. This allows existing
libraries to be generalized to linear types in a backwards-compatible manner; the general
types are visible only if the user has enabled LinearTypes (page 378). (Note that a library
can declare a linear function in the contravariant position, i.e. take a linear function as an
argument. In this case, linearity cannot be hidden; it is an essential part of the exposed
interface.)

Limitations

Linear types are still considered experimental and come with several limitations. If you have
read the full design in the proposal (see Design and further reading (page 380) below), here
is a run down of the missing pieces.

6.4. Types 379

GHC User’s Guide Documentation, Release 9.2.6

• Multiplicity polymorphism is incomplete and experimental. You may have success using
it, or you may not. Expect it to be really unreliable.

• There is currently no support for multiplicity annotations such as x :: a %p, \(x :: a
%p) ->

• A case expression may consume its scrutinee One time, or Many times. But the inference
is still experimental, and may over-eagerly guess that it ought to consume the scrutinee
Many times.

• All let and where statements consume their right hand side Many times. That is, the
following will not type check:

g :: A %1 -> (A, B)
h :: A %1 -> B %1 -> C

f :: A %1 -> C
f x =

let (y, z) = g x in h y z

This can be worked around by defining extra functions which are specified to be linear,
such as:

g :: A %1 -> (A, B)
h :: A %1 -> B %1 -> C

f :: A %1 -> C
f x = f' (g x)

where
f' :: (A, B) %1 -> C
f' (y, z) = h y z

• There is no support for linear pattern synonyms.
• @-patterns and view patterns are not linear.
• The projection function for a record with a single linear field should be multiplicity-
polymorphic; currently it’s unrestricted.

• Attempting to use of linear types in Template Haskell will probably not work.

Design and further reading

• The design for this extension is described in details in the Linear types proposal
• This extension has been originally conceived of in the paper Linear Haskell: practical
linearity in a higher-order polymorphic language (POPL 2018)

• There is a wiki page dedicated to the linear types extension

6.4.18 Custom compile-time errors

When designing embedded domain specific languages in Haskell, it is useful to have some-
thing like error at the type level. In this way, the EDSL designer may show a type error that
is specific to the DSL, rather than the standard GHC type error.
For example, consider a type class that is not intended to be used with functions, but the user
accidentally used it at a function type, perhaps because they missed an argument to some

380 Chapter 6. Language extensions

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0111-linear-types.rst
https://www.microsoft.com/en-us/research/publication/linear-haskell-practical-linearity-higher-order-polymorphic-language/
https://www.microsoft.com/en-us/research/publication/linear-haskell-practical-linearity-higher-order-polymorphic-language/
https://gitlab.haskell.org/ghc/ghc/-/wikis/linear-types

GHC User’s Guide Documentation, Release 9.2.6

function. Then, instead of getting the standard GHC message about a missing instance, it
would be nicer to emit a more friendly message specific to the EDSL. Similarly, the reduction
of a type-level function may get stuck due to an error, at which point it would be nice to report
an EDSL specific error, rather than a generic error about an ambiguous type.
To solve this, GHC provides a single type-level function,

type family TypeError (msg :: ErrorMessage) :: k

along with a small type-level language (via DataKinds (page 343)) for constructing pretty-
printed error messages,

-- ErrorMessage is intended to be used as a kind
data ErrorMessage =

Text Symbol -- Show this text as is
| forall t. ShowType t -- Pretty print a type
| ErrorMessage :<>: ErrorMessage -- Put two chunks of error message next to␣

↪→each other
| ErrorMessage :$$: ErrorMessage -- Put two chunks of error message above␣

↪→each other

in the GHC.TypeLits module.
For instance, we might use this interface to provide a more useful error message for applica-
tions of show on unsaturated functions like this,

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance TypeError (Text "Cannot 'Show' functions." :$$:
Text "Perhaps there is a missing argument?")

=> Show (a -> b) where
showsPrec = error "unreachable"

main = print negate

Which will produce the following compile-time error,

Test.hs:12:8: error:
• Cannot 'Show' functions.
Perhaps there is a missing argument?

• In the expression: print negate
In an equation for ‘main’: main = print negate

6.4.19 Deferring type errors to runtime

While developing, sometimes it is desirable to allow compilation to succeed even if there are
type errors in the code. Consider the following case:

module Main where

a :: Int
a = 'a'

6.4. Types 381

GHC User’s Guide Documentation, Release 9.2.6

main = print "b"

Even though a is ill-typed, it is not used in the end, so if all that we’re interested in is main it
can be useful to be able to ignore the problems in a.
For more motivation and details please refer to the Wiki page or the original paper.

Enabling deferring of type errors

The flag -fdefer-type-errors (page 102) controls whether type errors are deferred to run-
time. Type errors will still be emitted as warnings, but will not prevent compilation. You can
use -Wno-deferred-type-errors (page 102) to suppress these warnings.
This flag implies the -fdefer-typed-holes (page 102) and -fdefer-out-of-scope-
variables (page 102) flags, which enables this behaviour for typed holes (page ??) and vari-
ables. Should you so wish, it is possible to enable -fdefer-type-errors (page 102) without
enabling -fdefer-typed-holes (page 102) or -fdefer-out-of-scope-variables (page 102),
by explicitly specifying -fno-defer-typed-holes (page 102) or -fno-defer-out-of-scope-
variables (page 102) on the command-line after the -fdefer-type-errors (page 102) flag.
At runtime, whenever a term containing a type error would need to be evaluated, the error is
converted into a runtime exception of type TypeError. Note that type errors are deferred as
much as possible during runtime, but invalid coercions are never performed, even when they
would ultimately result in a value of the correct type. For example, given the following code:

x :: Int
x = 0

y :: Char
y = x

z :: Int
z = y

evaluating z will result in a runtime TypeError.

Deferred type errors in GHCi

The flag -fdefer-type-errors (page 102) works in GHCi as well, with one exception: for
“naked” expressions typed at the prompt, type errors don’t get delayed, so for example:

Prelude> fst (True, 1 == 'a')

<interactive>:2:12:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the first argument of `fst', namely `(True, 1 == 'a')'

Otherwise, in the common case of a simple type error such as typing reverse True at the
prompt, you would get a warning and then an immediately-following type error when the
expression is evaluated.
This exception doesn’t apply to statements, as the following example demonstrates:

382 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/wikis/defer-errors-to-runtime
http://dreixel.net/research/pdf/epdtecp.pdf

GHC User’s Guide Documentation, Release 9.2.6

Prelude> let x = (True, 1 == 'a')

<interactive>:3:16: Warning:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the expression: (True, 1 == 'a')

Prelude> fst x
True

Limitations of deferred type errors

The errors that can be deferred are:
• Out of scope term variables
• Equality constraints; e.g. ord True gives rise to an insoluble equality constraint Char ~
Bool, which can be deferred.

• Type-class and implicit-parameter constraints
All other type errors are reported immediately, and cannot be deferred; for example, an ill-
kinded type signature, an instance declaration that is non-terminating or ill-formed, a type-
family instance that does not obey the declared injectivity constraints, etc etc.
In a few cases, equality constraints cannot be deferred. Specifically:
• Kind errors in a type or kind signature, partial type signatures, or pattern signature. e.g.

f :: Int Bool -> Char

This type signature contains a kind error which cannot be deferred.
• Type equalities under a forall (c.f. #14605).
• Kind errors in a visible type application. e.g.

reverse @Maybe xs

• Kind errors in a default declaration. e.g.

default(Double, Int Int)

6.4.20 Roles

Using GeneralizedNewtypeDeriving (page 413) (Generalised derived instances for newtypes
(page 413)), a programmer can take existing instances of classes and “lift” these into instances
of that class for a newtype. However, this is not always safe. For example, consider the
following:

newtype Age = MkAge { unAge :: Int }

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool

6.4. Types 383

https://gitlab.haskell.org/ghc/ghc/issues/14605

GHC User’s Guide Documentation, Release 9.2.6

class BadIdea a where
bad :: a -> Inspect a

instance BadIdea Int where
bad = (> 0)

deriving instance BadIdea Age -- not allowed!

If the derived instance were allowed, what would the type of its method bad be? It would
seem to be Age -> Inspect Age, which is equivalent to Age -> Int, according to the type
family Inspect. Yet, if we simply adapt the implementation from the instance for Int, the
implementation for bad produces a Bool, and we have trouble.
The way to identify such situations is to have roles assigned to type variables of datatypes,
classes, and type synonyms.
Roles as implemented in GHC are a from a simplified version of the work described in Gener-
ative type abstraction and type-level computation, published at POPL 2011.

Nominal, Representational, and Phantom

The goal of the roles system is to track when two types have the same underlying representa-
tion. In the example above, Age and Int have the same representation. But, the correspond-
ing instances of BadIdea would not have the same representation, because the types of the
implementations of bad would be different.
Suppose we have two uses of a type constructor, each applied to the same parameters except
for one difference. (For example, T Age Bool c and T Int Bool c for some type T.) The
role of a type parameter says what we need to know about the two differing type arguments
in order to know that the two outer types have the same representation (in the example,
what must be true about Age and Int in order to show that T Age Bool c has the same
representation as T Int Bool c).
GHC supports three different roles for type parameters: nominal, representational, and phan-
tom. If a type parameter has a nominal role, then the two types that differ must not actually
differ at all: they must be identical (after type family reduction). If a type parameter has
a representational role, then the two types must have the same representation. (If T‘s first
parameter’s role is representational, then T Age Bool c and T Int Bool c would have the
same representation, because Age and Int have the same representation.) If a type parameter
has a phantom role, then we need no further information.
Here are some examples:

data Simple a = MkSimple a -- a has role representational

type family F
type instance F Int = Bool
type instance F Age = Char

data Complex a = MkComplex (F a) -- a has role nominal

data Phant a = MkPhant Bool -- a has role phantom

The type Simple has its parameter at role representational, which is generally the most com-
mon case. Simple Agewould have the same representation as Simple Int. The type Complex,
on the other hand, has its parameter at role nominal, because Complex Age and Complex Int

384 Chapter 6. Language extensions

http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf
http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf

GHC User’s Guide Documentation, Release 9.2.6

are not the same. Lastly, Phant Age and Phant Bool have the same representation, even
though Age and Bool are unrelated.

Role inference

What role should a given type parameter should have? GHC performs role inference to de-
termine the correct role for every parameter. It starts with a few base facts: (->) has two
representational parameters; (~) has two nominal parameters; all type families’ parameters
are nominal; and all GADT-like parameters are nominal. Then, these facts are propagated
to all places where these types are used. The default role for datatypes and synonyms is
phantom; the default role for classes is nominal. Thus, for datatypes and synonyms, any pa-
rameters unused in the right-hand side (or used only in other types in phantom positions) will
be phantom. Whenever a parameter is used in a representational position (that is, used as
a type argument to a constructor whose corresponding variable is at role representational),
we raise its role from phantom to representational. Similarly, when a parameter is used in a
nominal position, its role is upgraded to nominal. We never downgrade a role from nominal
to phantom or representational, or from representational to phantom. In this way, we infer
the most-general role for each parameter.
Classes have their roles default to nominal to promote coherence of class instances. If a C
Int were stored in a datatype, it would be quite bad if that were somehow changed into a C
Age somewhere, especially if another C Age had been declared!
There is one particularly tricky case that should be explained:

data Tricky a b = MkTricky (a b)

What should Tricky‘s roles be? At first blush, it would seem that both a and b should be at
role representational, since both are used in the right-hand side and neither is involved in a
type family. However, this would be wrong, as the following example shows:

data Nom a = MkNom (F a) -- type family F from example above

Is Tricky Nom Age representationally equal to Tricky Nom Int? No! The former stores a
Char and the latter stores a Bool. The solution to this is to require all parameters to type
variables to have role nominal. Thus, GHC would infer role representational for a but role
nominal for b.

Role annotations

RoleAnnotations

Since 7.8.1
Allow role annotation syntax.

Sometimes the programmer wants to constrain the inference process. For example, the base
library contains the following definition:

data Ptr a = Ptr Addr#

The idea is that a should really be a representational parameter, but role inference assigns it
to phantom. This makes some level of sense: a pointer to an Int really is representationally
the same as a pointer to a Bool. But, that’s not at all how we want to use Ptrs! So, we want
to be able to say

6.4. Types 385

GHC User’s Guide Documentation, Release 9.2.6

type role Ptr representational
data Ptr a = Ptr Addr#

The type role (enabled with RoleAnnotations (page 385)) declaration forces the parameter
a to be at role representational, not role phantom. GHC then checks the user-supplied roles
to make sure they don’t break any promises. It would be bad, for example, if the user could
make BadIdea‘s role be representational.
As another example, we can consider a type Set a that represents a set of data, ordered
according to a‘s Ord instance. While it would generally be type-safe to consider a to be at
role representational, it is possible that a newtype and its base type have different orderings
encoded in their respective Ord instances. This would lead to misbehavior at runtime. So,
the author of the Set datatype would like its parameter to be at role nominal. This would be
done with a declaration

type role Set nominal

Role annotations can also be used should a programmer wish to write a class with a repre-
sentational (or phantom) role. However, as a class with non-nominal roles can quickly lead to
class instance incoherence, it is necessary to also specify IncoherentInstances (page 450)
to allow non-nominal roles for classes.
The other place where role annotations may be necessary are in hs-boot files (How to compile
mutually recursive modules (page 205)), where the right-hand sides of definitions can be omit-
ted. As usual, the types/classes declared in an hs-boot file must match up with the definitions
in the hs file, including down to the roles. The default role for datatypes is representational
in hs-boot files, corresponding to the common use case.
Role annotations are allowed on data, newtype, and class declarations. A role annotation
declaration starts with type role and is followed by one role listing for each parameter of
the type. (This parameter count includes parameters implicitly specified by a kind signature
in a GADT-style data or newtype declaration.) Each role listing is a role (nominal, repre-
sentational, or phantom) or a _. Using a _ says that GHC should infer that role. The role
annotation may go anywhere in the same module as the datatype or class definition (much
like a value-level type signature). Here are some examples:

type role T1 _ phantom
data T1 a b = MkT1 a -- b is not used; annotation is fine but unnecessary

type role T2 _ phantom
data T2 a b = MkT2 b -- ERROR: b is used and cannot be phantom

type role T3 _ nominal
data T3 a b = MkT3 a -- OK: nominal is higher than necessary, but safe

type role T4 nominal
data T4 a = MkT4 (a Int) -- OK, but nominal is higher than necessary

type role C representational _ -- OK, with -XIncoherentInstances
class C a b where ... -- OK, b will get a nominal role

type role X nominal
type X a = ... -- ERROR: role annotations not allowed for type synonyms

386 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.5 Records

6.5.1 Traditional record syntax

NoTraditionalRecordSyntax

Since 7.4.1
Disallow use of record syntax.

Traditional record syntax, such as C {f = x}, is enabled by default. To disable it, you can
use the NoTraditionalRecordSyntax (page 387) extension.
Under NoTraditionalRecordSyntax (page 387), it is not permitted to define a record
datatype or use record syntax in an expression. For example, the following all require Tradi-
tionalRecordSyntax (page 387):

data T = MkT { foo :: Int } -- record datatype definition

x = MkT { foo = 3 } -- construction

y = x { foo = 3 } -- update

f (MkT { foo = i }) = i -- pattern matching

However, if a field selector function is in scope, it may be used normally. (This arises if
a module using NoTraditionalRecordSyntax (page 387) imports a module that defined a
record with TraditionalRecordSyntax (page 387) enabled). If you wish to suppress field
selector functions, use the NoFieldSelectors (page 392) extension.

6.5.2 Field selectors and TypeApplications

Field selectors can be used in conjunction with TypeApplications (page 366), as described
in Visible type application (page 366). The type of a field selector is constructed by using the
surrounding definition as context. This section provides a specification for how this construc-
tion works. We will explain it by considering three different forms of field selector, each of
which is a minor variation of the same general theme.

Field selectors for Haskell98-style data constructors

Consider the following example:

data T a b = MkT { unT :: forall e. Either e a }

This data type uses a Haskell98-style declaration. The only part of this data type that is
not Haskell98 code is unT, whose type uses higher-rank polymorphism (Arbitrary-rank poly-
morphism (page 372)). To construct the type of the unT field selector, we will assemble the
following:
1. The type variables quantified by the data type head (forall a b. <...>).
2. The return type of the data constructor (<...> T a b -> <...>). By virtue of this being
a Haskell98-style declaration, the order of type variables in the return type will always
coincide with the order in which they are quantified.

3. The type of the field (<...> forall e. Either e a).

6.5. Records 387

GHC User’s Guide Documentation, Release 9.2.6

The final type of unT is therefore forall a b. T a b -> forall e. Either e a. As a result,
one way to use unT with TypeApplications (page 366) is unT @Int @Bool (MkT (Right 1))
@Char.

Field selectors for GADT constructors

Field selectors for GADT constructors (Declaring data types with explicit constructor signa-
tures (page 316)) are slightly more involved. Consider the following example:

data G a b where
MkG :: forall x n a. (Eq a, Show n)

=> { unG1 :: forall e. Either e (a, x), unG2 :: n } -> G a (Maybe x)

The MkG GADT constructor has two records, unG1 and unG2. However, only unG1 can be used
as a top-level field selector. unG2 cannot because it is a “hidden” selector (see Record Con-
structors (page 313)); its type mentions a free variable n that does not appear in the result
type G a (Maybe x). On the other hand, the only free type variables in the type of unG1 are
a and x, so unG1 is fine to use as a top-level function.
To construct the type of the unG1 field selector, we will assemble the following:
1. The subset of type variables quantified by the GADT constructor that are mentioned in
the return type. Note that the order of these variables follows the same principles as
in Ordering of specified variables (page 368). If the constructor explicitly quantifies its
type variables at the beginning of the type, then the field selector type will quantify them
in the same order (modulo any variables that are dropped due to not being mentioned in
the return type). If the constructor implicitly quantifies its type variables, then the field
selector type will quantify them in the left-to-right order that they appear in the field
itself.
In this example, MkG explicitly quantifies forall x n a., and of those type variables, a
and x are mentioned in the return type. Therefore, the type of unG1 starts as forall x
a. <...>. If MkG had not used an explicit forall, then they would have instead been
ordered as forall a x. <...>, since a appears to the left of x in the field type.

2. The GADT return type (<...> G a (Maybe x) -> ...).
3. The type of the field (<...> -> forall e. Either e (a,x)).

The final type of unG1 is therefore forall x a. G a (Maybe x) -> forall e. Either e
(a,x). As a result, one way to use unG1 with TypeApplications (page 366) is unG1 @Int
@Bool (MkG (Right (True,42)) ()) @Char.

Field selectors for pattern synonyms

Certain record pattern synonyms (Record Pattern Synonyms (page 429)) can give rise to top-
level field selectors. Consider the following example:

pattern P :: forall a. Read a
=> forall n. (Eq a, Show n)
=> (forall e. Either e (a, Bool)) -> n -> G a (Maybe Bool)

pattern P {unP1, unP2} = MkG unP1 unP2

We can only make field selectors for pattern synonym records that do not mention any existen-
tial type variables whatsoever in their types, per Record Pattern Synonyms (page 429). (This
is a stronger requirement than for GADT records, whose types can mention existential type
variables provided that they are also mentioned in the return type.) We can see that unP2

388 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

cannot be used as a top-level field selector since its type has a free type variable n, which is
existential. unP1 is fine, on the other hand, as its type only has one free variable, the universal
type variable a.
To construct the type of the unP1 field selector, we will assemble the following:
1. The universal type variables (forall a. <...>).
2. The required constraints (<...> Read a => <...>).
3. The pattern synonym return type (<...> G a (Maybe Bool) -> <...>).
4. The type of the field (<...> -> forall e. Either e (a,Bool)).

The final type of unP1 is therefore forall a. Read a => G a (Maybe Bool) -> forall e.
Either e (a,Bool). As a result, one way to use unP1 with TypeApplications (page 366) is
unP1 @Double (MkG (Right (4.5,True)) ()) @Char.

6.5.3 Record field disambiguation

DisambiguateRecordFields

Since 6.8.1
Implied by RecordWildCards (page 395), DuplicateRecordFields (page 390)

Allow the compiler to automatically choose between identically-named record fields (if
the choice is unambiguous).

In record construction and record pattern matching it is entirely unambiguous which field is
referred to, even if there are two different data types in scope with a common field name. For
example:

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where
import M

data T = MkT { x :: Int }

ok1 (MkS { x = n }) = n+1 -- Unambiguous
ok2 n = MkT { x = n+1 } -- Unambiguous

bad1 k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous

Even though there are two x‘s in scope, it is clear that the x in the pattern in the definition
of ok1 can only mean the field x from type S. Similarly for the function ok2. However, in the
record update in bad1 and the record selection in bad2 it is not clear which of the two types
is intended.
Haskell 98 regards all four as ambiguous, but with the DisambiguateRecordFields (page 389)
extension, GHC will accept the former two. The rules are precisely the same as those for
instance declarations in Haskell 98, where the method names on the left-hand side of the
method bindings in an instance declaration refer unambiguously to the method of that class
(provided they are in scope at all), even if there are other variables in scope with the same
name. This reduces the clutter of qualified names when you import two records from different
modules that use the same field name.

6.5. Records 389

GHC User’s Guide Documentation, Release 9.2.6

Since version 9.2.1, record fields in updates are disambiguated by ignoring non-field names in
scope. For example, the following is accepted under DisambiguateRecordFields (page 389):

module Bar where
import M -- imports the field x

x = ()

e r = r { x = 0 } -- unambiguously refers to the field

Some details:
• Field disambiguation can be combined with punning (see Record puns (page 394)). For
example:

module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 -- Uses both disambiguation and punning

• With DisambiguateRecordFields (page 389) you can use unqualified field names even
if the corresponding selector is only in scope qualified For example, assuming the same
module M as in our earlier example, this is legal:

module Foo where
import qualified M -- Note qualified

ok4 (M.MkS { x = n }) = n+1 -- Unambiguous

Since the constructor MkS is only in scope qualified, you must name it M.MkS, but the field
x does not need to be qualified even though M.x is in scope but x is not (In effect, it is
qualified by the constructor).

6.5.4 Duplicate record fields

DuplicateRecordFields

Implies DisambiguateRecordFields (page 389)
Since 8.0.1

Allow definition of record types with identically-named fields.
Going beyond DisambiguateRecordFields (page 389) (see Record field disambiguation
(page 389)), the DuplicateRecordFields (page 390) extension allows multiple datatypes to
be declared using the same field names in a single module. For example, it allows this:

module M where
data S = MkS { x :: Int }
data T = MkT { x :: Bool }

Uses of fields that are always unambiguous because they mention the constructor, including
construction and pattern-matching, may freely use duplicated field names. For example, the
following are permitted (just as with DisambiguateRecordFields (page 389)):

s = MkS { x = 3 }

f (MkT { x = b }) = b

390 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Field names used as selector functions or in record updates must be unambiguous, either
because there is only one such field in scope, or because a type signature is supplied, as
described in the following sections.
While DuplicateRecordFields (page 390) permits multiple fields with the same name in a
single module, it does not permit a field and a normal value binding to have the same name.
For that, use NoFieldSelectors (page 392).

Selector functions

Fields may be used as selector functions only if they are unambiguous, so this is still not
allowed if both S(x) and T(x) are in scope:

bad r = x r

Warning: the type-based disambiguation rules described in the remainder of this section
are being removed (see the proposal DuplicateRecordFields without ambiguous field access).
The -Wambiguous-fields (page 120) option will warn about code that relies on these rules.
In a future GHC release, such code will produce ambiguity errors.
An ambiguous selector may be disambiguated by the type being “pushed down” to the occur-
rence of the selector (see Type inference (page 375) for more details on what “pushed down”
means). For example, the following are permitted:

ok1 = x :: S -> Int

ok2 :: S -> Int
ok2 = x

ok3 = k x -- assuming we already have k :: (S -> Int) -> _

In addition, the datatype that is meant may be given as a type signature on the argument to
the selector:

ok4 s = x (s :: S)

However, we do not infer the type of the argument to determine the datatype, or have any
way of deferring the choice to the constraint solver. Thus the following is ambiguous:

bad :: S -> Int
bad s = x s

Even though a field label is duplicated in its defining module, it may be possible to use the
selector unambiguously elsewhere. For example, another module could import S(x) but not
T(x), and then use x unambiguously.

Record updates

In a record update such as e { x = 1 }, if there are multiple x fields in scope, then the type of
the context must fix which record datatype is intended, or a type annotation must be supplied.
Consider the following definitions:

data S = MkS { foo :: Int }
data T = MkT { foo :: Int, bar :: Int }
data U = MkU { bar :: Int, baz :: Int }

6.5. Records 391

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst

GHC User’s Guide Documentation, Release 9.2.6

Without DuplicateRecordFields (page 390), an update mentioning foo will always be am-
biguous if all these definitions were in scope. When the extension is enabled, and there is
exactly one type that has all the fields being updated, that type will be used. For example:

f x = x { foo = 3, bar = 2 }

Here f must be updating T because neither S nor U have both fields.
If there are multiple types with all the fields, type information may be used to disambiguate
which record type is meant. Warning: the following rules are being removed (see the
proposal DuplicateRecordFields without ambiguous field access). The -Wambiguous-fields
(page 120) option will warn about code that relies on these rules. In a future GHC release,
such code will produce ambiguity errors.
• Use the type being pushed in to the record update, as in the following:

g1 :: T -> T
g1 x = x { foo = 3 }

g2 x = x { foo = 3 } :: T

g3 = k (x { foo = 3 }) -- assuming we already have k :: T -> _

• Use an explicit type signature on the record expression, as in:

h x = (x :: T) { foo = 3 }

The type of the expression being updated will not be inferred, and no constraint-solving will
be performed, so the following will be rejected as ambiguous:

let x :: T
x = blah

in x { foo = 3 }

\x -> [x { foo = 3 }, blah :: T]

\ (x :: T) -> x { foo = 3 }

Import and export of record fields

When DuplicateRecordFields (page 390) is enabled, an ambiguous field must be exported
as part of its datatype, rather than at the top level. For example, the following is legal:

module M (S(x), T(..)) where
data S = MkS { x :: Int }
data T = MkT { x :: Bool }

However, this would not be permitted, because x is ambiguous:

module M (x) where ...

Similar restrictions apply on import.

6.5.5 Field selectors

FieldSelectors

392 Chapter 6. Language extensions

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst

GHC User’s Guide Documentation, Release 9.2.6

Since 9.2.1
Make record field selector functions visible in expressions.

By default, the FieldSelectors (page 392) extension is enabled, so defining a record
datatype brings a selector function into scope for each field in the record. NoFieldSelec-
tors (page 392) negates this feature, making it possible to:
• declare a top-level binding with the same name as a field, and
• refer to this top-level binding unambiguously in expressions.

Field labels are still usable within record construction, updates and pattern matching.
For example, given a datatype definition

data Foo = MkFoo { bar :: Int, baz :: String }

The following will be available:
1. the type constructor Foo;
2. the data constructor MkFoo;
3. the fields bar and baz for record construction, update, and pattern matching; and
4. the selector functions bar :: Foo -> Int and baz :: Foo -> String.

If the NoFieldSelectors (page 392) extension is enabled at the datatype definition site, items
(1), (2), and (3) will still be available, but (4) will not. Correspondingly, it is permitted to
define a top-level binding with the same name as a field, and using this name in an expression
unambiguously refers to the non-field. For exmaple, the following is permitted:

data Foo = MkFoo { bar :: Int, baz :: String }
bar = () -- does not conflict with `bar` field
baz = bar -- unambiguously refers to `bar` the unit value, not the field

If you have multiple datatypes with the same field name, you need to enable DuplicateRe-
cordFields (page 390) to allow them to be declared simultaneously. It is never permitted for
a single module to define multiple top-level bindings with the same name.
The DisambiguateRecordFields (page 389) extension (implied by DuplicateRecordFields
(page 390)) is useful in conjunction with NoFieldSelectors (page 392), because it excludes
non-fields from consideration when resolving field names in record construction, update and
pattern matching.

Import and export of selector functions

Under FieldSelectors (page 392), these modules are equivalent:

module A (Foo(MkFoo, bar, baz)) where
data Foo = MkFoo { bar :: Int, baz :: Int }

module B (Foo(MkFoo, bar), baz) where
data Foo = MkFoo { bar :: Int, baz :: Int }

Under NoFieldSelectors (page 392), these two export statements are now different. The
first one will export the field baz, but not the top-level binding baz, while the second one
would export the top-level binding baz (if one were defined), but not the field baz.

6.5. Records 393

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-500003.15.1

GHC User’s Guide Documentation, Release 9.2.6

Because of this change, using NoFieldSelectors (page 392) and writing out selector func-
tions explicitly is different to using FieldSelectors (page 392): in the former case the fields
and functions must be exported separately. For example, here the selector functions are not
exported:

{-# LANGUAGE NoFieldSelectors #-}
module M (Foo(MkFoo, bar, baz)) where
data Foo = MkFoo { bar :: Int, baz :: Int }

bar (MkFoo x _) = x
baz (MkFoo _ x) = x

whereas here the selector functions are exported:

{-# LANGUAGE FieldSelectors #-}
module M (Foo(MkFoo, bar, baz)) where
data Foo = MkFoo { bar :: Int, baz :: Int }

Wildcard exports will export the field labels, but will not export a top-level binding that hap-
pens to have the same name. In the examples above, exporting Foo(..) is (still) equivalent
to exporting Foo(MkFoo,bar,baz).

6.5.6 Record puns

NamedFieldPuns

Since 6.10.1
Allow use of record puns.

Record puns are enabled by the language extension NamedFieldPuns (page 394).
When using records, it is common to write a pattern that binds a variable with the same name
as a record field, such as:

data C = C {a :: Int}
f (C {a = a}) = a

Record punning permits the variable name to be elided, so one can simply write

f (C {a}) = a

to mean the same pattern as above. That is, in a record pattern, the pattern a expands into
the pattern a = a for the same name a.
Note that:
• Record punning can also be used in an expression, writing, for example,

let a = 1 in C {a}

instead of

let a = 1 in C {a = a}

The expansion is purely syntactic, so the expanded right-hand side expression refers to
the nearest enclosing variable that is spelled the same as the field name.

• Puns and other patterns can be mixed in the same record:

394 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data C = C {a :: Int, b :: Int}
f (C {a, b = 4}) = a

• Puns can be used wherever record patterns occur (e.g. in let bindings or at the top-
level).

• A pun on a qualified field name is expanded by stripping off the module qualifier. For
example:

f (C {M.a}) = a

means

f (M.C {M.a = a}) = a

(This is useful if the field selector a for constructor M.C is only in scope in qualified form.)

6.5.7 Record wildcards

RecordWildCards

Implies DisambiguateRecordFields (page 389).
Since 6.8.1

Allow the use of wildcards in record construction and pattern matching.
Record wildcards are enabled by the language extension RecordWildCards (page 395). This
extension implies DisambiguateRecordFields (page 389).
For records with many fields, it can be tiresome to write out each field individually in a record
pattern, as in

data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
f (C {a = 1, b = b, c = c, d = d}) = b + c + d

Record wildcard syntax permits a “..” in a record pattern, where each elided field f is re-
placed by the pattern f = f. For example, the above pattern can be written as

f (C {a = 1, ..}) = b + c + d

More details:
• Record wildcards in patterns can be mixed with other patterns, including puns (Record
puns (page 394)); for example, in a pattern (C {a = 1,b,..}). Additionally, record
wildcards can be used wherever record patterns occur, including in let bindings and at
the top-level. For example, the top-level binding

C {a = 1, ..} = e

defines b, c, and d.
• Record wildcards can also be used in an expression, when constructing a record. For
example,

let {a = 1; b = 2; c = 3; d = 4} in C {..}

in place of

6.5. Records 395

GHC User’s Guide Documentation, Release 9.2.6

let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}

The expansion is purely syntactic, so the record wildcard expression refers to the nearest
enclosing variables that are spelled the same as the omitted field names.

• For both pattern and expression wildcards, the “..” expands to the missing in-scope
record fields. Specifically the expansion of “C {..}” includes f if and only if:
– f is a record field of constructor C.
– The record field f is in scope somehow (either qualified or unqualified).

These rules restrict record wildcards to the situations in which the user could have writ-
ten the expanded version. For example

module M where
data R = R { a,b,c :: Int }

module X where
import M(R(R,a,c))
f a b = R { .. }

The R{..} expands to R{a=a}, omitting b since the record field is not in scope, and
omitting c since the variable c is not in scope (apart from the binding of the record
selector c, of course).

• When record wildcards are use in record construction, a field f is initialised only if f is
in scope, and is not imported or bound at top level. For example, f can be bound by an
enclosing pattern match or let/where-binding. For example

module M where
import A(a)

data R = R { a,b,c,d :: Int }

c = 3 :: Int

f b = R { .. } -- Expands to R { b = b, d = d }
where

d = b+1

Here, a is imported, and c is bound at top level, so neither contribute to the expansion of
the “..”. The motivation here is that it should be easy for the reader to figure out what
the “..” expands to.

• Record wildcards cannot be used (a) in a record update construct, and (b) for data con-
structors that are not declared with record fields. For example:

f x = x { v=True, .. } -- Illegal (a)

data T = MkT Int Bool
g = MkT { .. } -- Illegal (b)
h (MkT { .. }) = True -- Illegal (b)

6.5.8 Record field selector polymorphism

The module GHC.Records defines the following:

396 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

class HasField (x :: k) r a | x r -> a where
getField :: r -> a

A HasField x r a constraint represents the fact that x is a field of type a belonging to a
record type r. The getField method gives the record selector function.
This allows definitions that are polymorphic over record types with a specified field. For
example, the following works with any record type that has a field name :: String:

foo :: HasField "name" r String => r -> String
foo r = reverse (getField @"name" r)

HasField is a magic built-in typeclass (similar to Coercible, for example). It is given special
treatment by the constraint solver (see Solving HasField constraints (page 397)). Users may
define their own instances of HasField also (see Virtual record fields (page 398)).

Solving HasField constraints

If the constraint solver encounters a constraint HasField x r a where r is a concrete
datatype with a field x in scope, it will automatically solve the constraint using the field
selector as the dictionary, unifying a with the type of the field if necessary. This happens
irrespective of which extensions are enabled.
For example, if the following datatype is in scope

data Person = Person { name :: String }

the end result is rather like having an instance

instance HasField "name" Person String where
getField = name

except that this instance is not actually generated anywhere, rather the constraint is solved
directly by the constraint solver.
A field must be in scope for the corresponding HasField constraint to be solved. This retains
the existing representation hiding mechanism, whereby a module may choose not to export
a field, preventing client modules from accessing or updating it directly.
Solving HasField constraints depends on the field selector functions that are generated for
each datatype definition:
• If a record field does not have a selector function because its type would allow an exis-
tential variable to escape, the corresponding HasField constraint will not be solved. For
example,

{-# LANGUAGE ExistentialQuantification #-}
data Exists t = forall x . MkExists { unExists :: t x }

does not give rise to a selector unExists :: Exists t -> t x and we will not solve
HasField "unExists" (Exists t) a automatically.

• If a record field has a polymorphic type (and hence the selector function is higher-rank),
the corresponding HasField constraint will not be solved, because doing so would violate
the functional dependency on HasField and/or require impredicativity. For example,

6.5. Records 397

GHC User’s Guide Documentation, Release 9.2.6

{-# LANGUAGE RankNTypes #-}
data Higher = MkHigher { unHigher :: forall t . t -> t }

gives rise to a selector unHigher :: Higher -> (forall t . t -> t) but does not
lead to solution of the constraint HasField "unHigher" Higher a.

• A record GADT may have a restricted type for a selector function, which may lead to
additional unification when solving HasField constraints. For example,

{-# LANGUAGE GADTs #-}
data Gadt t where

MkGadt :: { unGadt :: Maybe v } -> Gadt [v]

gives rise to a selector unGadt :: Gadt [v] -> Maybe v, so the solver will reduce the
constraint HasField "unGadt" (Gadt t) b by unifying t ~ [v] and b ~ Maybe v for
some fresh metavariable v, rather as if we had an instance

instance (t ~ [v], b ~ Maybe v) => HasField "unGadt" (Gadt t) b

• If a record type has an old-fashioned datatype context, the HasField constraint will be
reduced to solving the constraints from the context. For example,

{-# LANGUAGE DatatypeContexts #-}
data Eq a => Silly a = MkSilly { unSilly :: a }

gives rise to a selector unSilly :: Eq a => Silly a -> a, so the solver will reduce
the constraint HasField "unSilly" (Silly a) b to Eq a (and unify a with b), rather as
if we had an instance

instance (Eq a, a ~ b) => HasField "unSilly" (Silly a) b

See Overloaded record dot (page 399) for an application of solving HasField constraints to
implementing “record dot syntax”.

Virtual record fields

Users may define their own instances of HasField, provided they do not conflict with the built-
in constraint solving behaviour. This allows “virtual” record fields to be defined for datatypes
that do not otherwise have them.
For example, this instance would make the name field of Person accessible using #fullname
as well:

instance HasField "fullname" Person String where
getField = name

More substantially, an anonymous records library could provide HasField instances for its
anonymous records, and thus be compatible with the polymorphic record selectors introduced
by this proposal. For example, something like this makes it possible to use getField to access
Record values with the appropriate string in the type-level list of fields:

data Record (xs :: [(k, Type)]) where
Nil :: Record '[]
Cons :: Proxy x -> a -> Record xs -> Record ('(x, a) ': xs)

instance HasField x (Record ('(x, a) ': xs)) a where

398 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

getField (Cons _ v _) = v
instance HasField x (Record xs) a => HasField x (Record ('(y, b) ': xs)) a where
getField (Cons _ _ r) = getField @x r

r :: Record '['("name", String)]
r = Cons Proxy "R" Nil)

x = getField @"name" r

Since representations such as this can support field labels with kinds other than Symbol, the
HasField class is poly-kinded (even though the built-in constraint solving works only at kind
Symbol). In particular, this allows users to declare scoped field labels such as in the following
example:

data PersonFields = Name

s :: Record '['(Name, String)]
s = Cons Proxy "S" Nil

y = getField @Name s

In order to avoid conflicting with the built-in constraint solving, the following user-defined
HasField instances are prohibited (in addition to the usual rules, such as the prohibition on
type families appearing in instance heads):
• HasField _ r _ where r is a variable;
• HasField _ (T ...) _ if T is a data family (because it might have fields introduced later,
using data instance declarations);

• HasField x (T ...) _ if x is a variable and T has any fields at all (but this instance is
permitted if T has no fields);

• HasField "foo" (T ...) _ if T has a field foo (but this instance is permitted if it does
not).

If a field has a higher-rank or existential type, the corresponding HasField constraint will
not be solved automatically (as described above), but in the interests of simplicity we do not
permit users to define their own instances either. If a field is not in scope, the corresponding
instance is still prohibited, to avoid conflicts in downstream modules.

6.5.9 Overloaded record dot

OverloadedRecordDot

Since 9.2.0
Provides record ‘.’ syntax e.g. x.foo

When OverloadedRecordDot is enabled one can write a.b to mean the b field of the a record
expression.
Example:

{-# LANGUAGE OverloadedRecordDot #-}
{-# LANGUAGE DuplicateRecordFields #-}

data Person = Person { name :: String }
data Company = Company { name :: String, owner :: Person }

6.5. Records 399

GHC User’s Guide Documentation, Release 9.2.6

main = do
let c = Company { name = "Acme Corp."

, owner = Person { name = "Wile E. Coyote" } }
print $ c.name ++ " is run by " ++ c.owner.name

You may also write (.b) to mean a function that “projects the b field from its argument”. For
example, (.b) a means the same thing as a.b).
OverloadedRecordDot is normally implemented by desugaring record . expressions to
GHC.Records.getField expressions. By enabling OverloadedRecordDot and RebindableSyn-
tax together it is possible to desugar . expressions into your own getField implementations.
When considering a.b, the b field that is meant is determined by solving HasField constraints.
See Solving HasField constraints (page 397).

6.5.10 Overloaded record update

OverloadedRecordUpdate

Since 9.2.0
Provides record ‘.’ syntax in record updates e.g. x{foo.bar = 1}.

EXPERIMENTAL This design of this extension may well change in the future. It would be
inadvisable to start using this extension for long-lived libraries just yet.
It’s usual (but not required) that this extension be used in conjunction with Overloaded record
dot (page 399).
Example:

{-# LANGUAGE AllowAmbiguousTypes, FunctionalDependencies, ScopedTypeVariables,␣
↪→PolyKinds, TypeApplications, DataKinds, FlexibleInstances #-}

{-# LANGUAGE NamedFieldPuns, RecordWildCards #-}
{-# LANGUAGE OverloadedRecordDot, OverloadedRecordUpdate, RebindableSyntax #-}

import Prelude

class HasField x r a | x r -> a where
hasField :: r -> (a -> r, a)

getField :: forall x r a . HasField x r a => r -> a
getField = snd . hasField @x -- Note: a.x = is getField @"x" a.
setField :: forall x r a . HasField x r a => r -> a -> r
setField = fst . hasField @x -- Note : a{x = b} is setField @"x" a b.

data Person = Person { name :: String } deriving Show
instance HasField "name" Person String where

hasField r = (\x -> case r of Person { .. } -> Person { name = x, .. }, name r)

data Company = Company { company :: String, owner :: Person } deriving Show
instance HasField "company" Company String where

hasField r = (\x -> case r of Company { .. } -> Company { company = x, .. },␣
↪→company r)

instance HasField "owner" Company Person where
hasField r = (\x -> case r of Company { .. } -> Company { owner = x, .. }, owner␣

↪→r)

400 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

main = do
let c = Company {company = "Acme Corp.", owner = Person { name = "Wile E. Coyote" }}

-- Top-level update
print $ c{company = "Acme United"} -- Company {company = "Acme United", owner =␣

↪→Person {name = "Wile E. Coyote"}}

-- Nested update
print $ c{owner.name = "Walter C. Johnsen"} -- Company {company = "Acme Corp.",␣

↪→owner = Person {name = "Walter C. Johnsen"}}

-- Punned update
let name = "Walter C. Johnsen"
print $ c{owner.name} -- Company {company = "Acme Corp.", owner = Person {name =

↪→"Walter C. Johnsen"}}

OverloadedRecordUpdate works by desugaring record . update expressions to expressions
involving the functions setField and getField. Note that all record updates will be desug-
ared to setField expressions whether they use . notation or not.
At this time, RebindableSyntaxmust be enabled when OverloadedRecordUpdate is and users
are required to provide definitions for getField and setField. We anticipate this restriction
to be lifted in a future release of GHC with builtin support for setField.

6.6 Deriving mechanism

Haskell 98 allows the programmer to add a deriving clause to a data type declaration, to
generate a standard instance declaration for specified class. GHC extends this mechanism
along several axes:
• The derivation mechanism can be used separately from the data type declaration, using
the standalone deriving mechanism (page 403).

• In Haskell 98, the only derivable classes are Eq, Ord, Enum, Ix, Bounded, Read, and Show.
Various language extensions (page 404) extend this list.

• Besides the stock approach to deriving instances by generating all method definitions,
GHC supports two additional deriving strategies, which can derive arbitrary classes:
– Generalised newtype deriving (page 413) for newtypes and
– deriving any class (page 419) using an empty instance declaration.

The user can optionally declare the desired deriving strategy (page 421), especially if
the compiler chooses the wrong one by default (page 422).

6.6.1 Deriving instances for empty data types

EmptyDataDeriving

Since 8.4.1
Allow deriving instances of standard type classes for empty data types.

One can write data types with no constructors using the EmptyDataDecls (page 308) flag (see
Data types with no constructors (page 308)), which is on by default in Haskell 2010. What is
not on by default is the ability to derive type class instances for these types. This ability is

6.6. Deriving mechanism 401

GHC User’s Guide Documentation, Release 9.2.6

enabled through use of the EmptyDataDeriving (page 401) flag. For instance, this lets one
write:

data Empty deriving (Eq, Ord, Read, Show)

This would generate the following instances:

instance Eq Empty where
_ == _ = True

instance Ord Empty where
compare _ _ = EQ

instance Read Empty where
readPrec = pfail

instance Show Empty where
showsPrec _ x = case x of {}

The EmptyDataDeriving (page 401) flag is only required to enable deriving of these four
“standard” type classes (which are mentioned in the Haskell Report). Other extensions to
the deriving mechanism, which are explained below in greater detail, do not require Empty-
DataDeriving (page 401) to be used in conjunction with empty data types. These include:
• StandaloneDeriving (page 403) (see Stand-alone deriving declarations (page 403))
• Type classes which require their own extensions to be enabled to be derived, such as De-
riveFunctor (page 405) (see Deriving instances of extra classes (Data, etc.) (page 404))

• DeriveAnyClass (page 419) (see Deriving any other class (page 419))

6.6.2 Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

data T0 f a = MkT0 a deriving(Eq)
data T1 f a = MkT1 (f a) deriving(Eq)
data T2 f a = MkT2 (f (f a)) deriving(Eq)

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is still fine, although less obviously. The third
is not Haskell 98, and risks losing termination of instances.
GHC takes a conservative position: it accepts the first two, but not the third. The rule is this:
each constraint in the inferred instance context must consist only of type variables, with no
repetitions.
This rule is applied regardless of flags. If you want a more exotic context, you can write it
yourself, using the standalone deriving mechanism (page ??).

402 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.6.3 Stand-alone deriving declarations

StandaloneDeriving

Since 6.8.1
Allow the use of stand-alone deriving declarations.

GHC allows stand-alone deriving declarations, enabled by StandaloneDeriving (page 403):

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
deriving, and (b) the absence of the where part.
However, standalone deriving differs from a deriving clause in a number of important ways:
• The standalone deriving declaration does not need to be in the same module as the data
type declaration. (But be aware of the dangers of orphan instances (Orphan modules
and instance declarations (page 215)).

• In most cases, you must supply an explicit context (in the example the context is (Eq
a)), exactly as you would in an ordinary instance declaration. (In contrast, in a deriving
clause attached to a data type declaration, the context is inferred.)
The exception to this rule is that the context of a standalone deriving declaration can
infer its context when a single, extra-wildcards constraint is used as the context, such
as in:

deriving instance _ => Eq (Foo a)

This is essentially the same as if you had written deriving Eq after the declaration for
data Foo a. Using this feature requires the use of PartialTypeSignatures (page 479)
(Partial Type Signatures (page 479)).

• Unlike a deriving declaration attached to a data declaration, the instance can be more
specific than the data type (assuming you also use FlexibleInstances (page 446), In-
stance termination rules (page 448)). Consider for example

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo [a])
deriving instance Eq a => Eq (Foo (Maybe a))

This will generate a derived instance for (Foo [a]) and (Foo (Maybe a)), but other
types such as (Foo (Int,Bool)) will not be an instance of Eq.

• Unlike a deriving declaration attached to a data declaration, GHC does not restrict the
form of the data type. Instead, GHC simply generates the appropriate boilerplate code
for the specified class, and typechecks it. If there is a type error, it is your problem.
(GHC will show you the offending code if it has a type error.)
The merit of this is that you can derive instances for GADTs and other exotic data types,
providing only that the boilerplate code does indeed typecheck. For example:

data T a where
T1 :: T Int
T2 :: T Bool

6.6. Deriving mechanism 403

GHC User’s Guide Documentation, Release 9.2.6

deriving instance Show (T a)

In this example, you cannot say ... deriving(Show) on the data type declaration for
T, because T is a GADT, but you can generate the instance declaration using stand-alone
deriving.
The down-side is that, if the boilerplate code fails to typecheck, you will get an error
message about that code, which you did not write. Whereas, with a deriving clause the
side-conditions are necessarily more conservative, but any error message may be more
comprehensible.

• Under most circumstances, you cannot use standalone deriving to create an instance for
a data type whose constructors are not all in scope. This is because the derived instance
would generate code that uses the constructors behind the scenes, which would break
abstraction.
The one exception to this rule is DeriveAnyClass (page 419), since deriving an instance
via DeriveAnyClass (page 419) simply generates an empty instance declaration, which
does not require the use of any constructors. See the deriving any class (page ??) section
for more details.

In other ways, however, a standalone deriving obeys the same rules as ordinary deriving:
• A deriving instance declaration must obey the same rules concerning form and ter-
mination as ordinary instance declarations, controlled by the same flags; see Instance
declarations and resolution (page 445).

• The stand-alone syntax is generalised for newtypes in exactly the same way that or-
dinary deriving clauses are generalised (Generalised derived instances for newtypes
(page 413)). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

GHC always treats the last parameter of the instance (Foo in this example) as the type
whose instance is being derived.

6.6.4 Deriving instances of extra classes (Data, etc.)

Haskell 98 allows the programmer to add “deriving(Eq,Ord)” to a data type declaration,
to generate a standard instance declaration for classes specified in the deriving clause. In
Haskell 98, the only classes that may appear in the deriving clause are the standard classes
Eq, Ord, Enum, Ix, Bounded, Read, and Show.
GHC extends this list with several more classes that may be automatically derived:
• With DeriveGeneric (page 550), you can derive instances of the classes Generic and
Generic1, defined in GHC.Generics. You can use these to define generic functions, as
described in Generic programming (page 549).

• With DeriveFunctor (page 405), you can derive instances of the class Functor, defined
in GHC.Base.

• With DeriveDataTypeable (page 411), you can derive instances of the class Data, defined
in Data.Data.

404 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• With DeriveFoldable (page 408), you can derive instances of the class Foldable, defined
in Data.Foldable.

• With DeriveTraversable (page 410), you can derive instances of the class Traversable,
defined in Data.Traversable. Since the Traversable instance dictates the instances of
Functor and Foldable, you’ll probably want to derive them too, so DeriveTraversable
(page 410) implies DeriveFunctor (page 405) and DeriveFoldable (page 408).

• With DeriveLift (page 412), you can derive instances of the class Lift, defined in the
Language.Haskell.TH.Syntax module of the template-haskell package.

You can also use a standalone deriving declaration instead (see Stand-alone deriving declara-
tions (page 403)).
In each case the appropriate classmust be in scope before it can bementioned in the deriving
clause.

Deriving Functor instances

DeriveFunctor

Since 7.10.1
Allow automatic deriving of instances for the Functor typeclass.

With DeriveFunctor (page 405), one can derive Functor instances for data types of kind Type
-> Type. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving Functor

would generate the following instance:

instance Functor Example where
fmap f (Ex a1 a2 a3 a4) = Ex (f a1) a2 (fmap f a3) a4

The basic algorithm for DeriveFunctor (page 405) walks the arguments of each constructor
of a data type, applying a mapping function depending on the type of each argument. If a
plain type variable is found that is syntactically equivalent to the last type parameter of the
data type (a in the above example), then we apply the function f directly to it. If a type is
encountered that is not syntactically equivalent to the last type parameter but does mention
the last type parameter somewhere in it, then a recursive call to fmap is made. If a type is
found which doesn’t mention the last type parameter at all, then it is left alone.
The second of those cases, in which a type is unequal to the type parameter but does contain
the type parameter, can be surprisingly tricky. For example, the following example compiles:

newtype Right a = Right (Either Int a) deriving Functor

Modifying the code slightly, however, produces code which will not compile:

newtype Wrong a = Wrong (Either a Int) deriving Functor

The difference involves the placement of the last type parameter, a. In the Right case, a
occurs within the type Either Int a, and moreover, it appears as the last type argument of
Either. In the Wrong case, however, a is not the last type argument to Either; rather, Int is.
This distinction is important because of the way DeriveFunctor (page 405) works. The de-
rived Functor Right instance would be:

6.6. Deriving mechanism 405

GHC User’s Guide Documentation, Release 9.2.6

instance Functor Right where
fmap f (Right a) = Right (fmap f a)

Given a value of type Right a, GHC must produce a value of type Right b. Since the argu-
ment to the Right constructor has type Either Int a, the code recursively calls fmap on it
to produce a value of type Either Int b, which is used in turn to construct a final value of
type Right b.
The generated code for the Functor Wrong instance would look exactly the same, except with
Wrong replacing every occurrence of Right. The problem is now that fmap is being applied
recursively to a value of type Either a Int. This cannot possibly produce a value of type
Either b Int, as fmap can only change the last type parameter! This causes the generated
code to be ill-typed.
As a general rule, if a data type has a derived Functor instance and its last type parameter
occurs on the right-hand side of the data declaration, then either it must (1) occur bare (e.g.,
newtype Id a = Id a), or (2) occur as the last argument of a type constructor (as in Right
above).
There are two exceptions to this rule:
1. Tuple types. When a non-unit tuple is used on the right-hand side of a data declaration,

DeriveFunctor (page 405) treats it as a product of distinct types. In other words, the
following code:

newtype Triple a = Triple (a, Int, [a]) deriving Functor

Would result in a generated Functor instance like so:

instance Functor Triple where
fmap f (Triple a) =
Triple (case a of

(a1, a2, a3) -> (f a1, a2, fmap f a3))

That is, DeriveFunctor (page 405) pattern-matches its way into tuples and maps over
each type that constitutes the tuple. The generated code is reminiscent of what would
be generated from data Triple a = Triple a Int [a], except with extra machinery
to handle the tuple.

2. Function types. The last type parameter can appear anywhere in a function type as long
as it occurs in a covariant position. To illustrate what this means, consider the following
three examples:

newtype CovFun1 a = CovFun1 (Int -> a) deriving Functor
newtype CovFun2 a = CovFun2 ((a -> Int) -> a) deriving Functor
newtype CovFun3 a = CovFun3 (((Int -> a) -> Int) -> a) deriving Functor

All three of these examples would compile without issue. On the other hand:

newtype ContraFun1 a = ContraFun1 (a -> Int) deriving Functor
newtype ContraFun2 a = ContraFun2 ((Int -> a) -> Int) deriving Functor
newtype ContraFun3 a = ContraFun3 (((a -> Int) -> a) -> Int) deriving Functor

While these examples look similar, none of them would successfully compile. This is
because all occurrences of the last type parameter a occur in contravariant positions,
not covariant ones.

406 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Intuitively, a covariant type is produced, and a contravariant type is consumed. Most
types in Haskell are covariant, but the function type is special in that the lefthand side
of a function arrow reverses variance. If a function type a -> b appears in a covariant
position (e.g., CovFun1 above), then a is in a contravariant position and b is in a covariant
position. Similarly, if a -> b appears in a contravariant position (e.g., CovFun2 above),
then a is in a covariant position and b is in a contravariant position.
To see why a data type with a contravariant occurrence of its last type parameter can-
not have a derived Functor instance, let’s suppose that a Functor ContraFun1 instance
exists. The implementation would look something like this:

instance Functor ContraFun1 where
fmap f (ContraFun g) = ContraFun (\x -> _)

We have f :: a -> b, g :: a -> Int, and x :: b. Using these, we must somehow fill
in the hole (denoted with an underscore) with a value of type Int. What are our options?
We could try applying g to x. This won’t work though, as g expects an argument of type
a, and x :: b. Even worse, we can’t turn x into something of type a, since f also needs
an argument of type a! In short, there’s no good way to make this work.
On the other hand, a derived Functor instances for the CovFuns are within the realm of
possibility:

instance Functor CovFun1 where
fmap f (CovFun1 g) = CovFun1 (\x -> f (g x))

instance Functor CovFun2 where
fmap f (CovFun2 g) = CovFun2 (\h -> f (g (\x -> h (f x))))

instance Functor CovFun3 where
fmap f (CovFun3 g) = CovFun3 (\h -> f (g (\k -> h (\x -> f (k x)))))

There are some other scenarios in which a derived Functor instance will fail to compile:
1. A data type has no type parameters (e.g., data Nothing = Nothing).
2. A data type’s last type variable is used in a DatatypeContexts (page 309) constraint
(e.g., data Ord a => O a = O a).

3. A data type’s last type variable is used in an ExistentialQuantification (page 312)
constraint, or is refined in a GADT. For example,

data T a b where
T4 :: Ord b => b -> T a b
T5 :: b -> T b b
T6 :: T a (b,b)

deriving instance Functor (T a)

would not compile successfully due to the way in which b is constrained.
When the last type parameter has a phantom role (see Roles (page 383)), the derived Functor
instance will not be produced using the usual algorithm. Instead, the entire value will be
coerced.

data Phantom a = Z | S (Phantom a) deriving Functor

will produce the following instance:

6.6. Deriving mechanism 407

GHC User’s Guide Documentation, Release 9.2.6

instance Functor Phantom where
fmap _ = coerce

When a type has no constructors, the derived Functor instance will simply force the (bottom)
value of the argument using EmptyCase (page 288).

data V a deriving Functor
type role V nominal

will produce

instance Functor V where
fmap _ z = case z of

Deriving Foldable instances

DeriveFoldable

Since 7.10.1
Allow automatic deriving of instances for the Foldable typeclass.

With DeriveFoldable (page 408), one can derive Foldable instances for data types of kind
Type -> Type. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving Foldable

would generate the following instance:

instance Foldable Example where
foldr f z (Ex a1 a2 a3 a4) = f a1 (foldr f z a3)
foldMap f (Ex a1 a2 a3 a4) = mappend (f a1) (foldMap f a3)

The algorithm for DeriveFoldable (page 408) is adapted from the DeriveFunctor (page 405)
algorithm, but it generates definitions for foldMap, foldr, and null instead of fmap. In addi-
tion, DeriveFoldable (page 408) filters out all constructor arguments on the RHS expression
whose types do not mention the last type parameter, since those arguments do not need to
be folded over.
When the type parameter has a phantom role (see Roles (page 383)), DeriveFoldable
(page 408) derives a trivial instance. For example, this declaration:

data Phantom a = Z | S (Phantom a)

will generate the following instance.

instance Foldable Phantom where
foldMap _ _ = mempty

Similarly, when the type has no constructors, DeriveFoldable (page 408) will derive a trivial
instance:

data V a deriving Foldable
type role V nominal

will generate the following.

408 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

instance Foldable V where
foldMap _ _ = mempty

Here are the differences between the generated code for Functor and Foldable:
#. When a bare type variable a is encountered, DeriveFunctor (page 405) would generate
f a for an fmap definition. DeriveFoldable (page 408) would generate f a z for foldr, f a
for foldMap, and False for null.
1. When a type that is not syntactically equivalent to a, but which does contain a, is encoun-
tered, DeriveFunctor (page 405) recursively calls fmap on it. Similarly, DeriveFoldable
(page 408) would recursively call foldr and foldMap. Depending on the context, null
may recursively call null or all null. For example, given

data F a = F (P a)
data G a = G (P (a, Int))
data H a = H (P (Q a))

Foldable deriving will produce

null (F x) = null x
null (G x) = null x
null (H x) = all null x

2. DeriveFunctor (page 405) puts everything back together again at the end by invoking
the constructor. DeriveFoldable (page 408), however, builds up a value of some type.
For foldr, this is accomplished by chaining applications of f and recursive foldr calls
on the state value z. For foldMap, this happens by combining all values with mappend.
For null, the values are usually combined with &&. However, if any of the values is known
to be False, all the rest will be dropped. For example,

data SnocList a = Nil | Snoc (SnocList a) a

will not produce

null (Snoc xs _) = null xs && False

(which would walk the whole list), but rather

null (Snoc _ _) = False

There are some other differences regarding what data types can have derived Foldable in-
stances:
1. Data types containing function types on the right-hand side cannot have derived Fold-

able instances.
2. Foldable instances can be derived for data types in which the last type parameter is
existentially constrained or refined in a GADT. For example, this data type:

data E a where
E1 :: (a ~ Int) => a -> E a
E2 :: Int -> E Int
E3 :: (a ~ Int) => a -> E Int
E4 :: (a ~ Int) => Int -> E a

deriving instance Foldable E

6.6. Deriving mechanism 409

GHC User’s Guide Documentation, Release 9.2.6

would have the following generated Foldable instance:

instance Foldable E where
foldr f z (E1 e) = f e z
foldr f z (E2 e) = z
foldr f z (E3 e) = z
foldr f z (E4 e) = z

foldMap f (E1 e) = f e
foldMap f (E2 e) = mempty
foldMap f (E3 e) = mempty
foldMap f (E4 e) = mempty

Notice how every constructor of E utilizes some sort of existential quantification, but
only the argument of E1 is actually “folded over”. This is because we make a deliberate
choice to only fold over universally polymorphic types that are syntactically equivalent
to the last type parameter. In particular:

• We don’t fold over the arguments of E1 or E4 because even though (a ~ Int), Int is not
syntactically equivalent to a.

• We don’t fold over the argument of E3 because a is not universally polymorphic. The a in
E3 is (implicitly) existentially quantified, so it is not the same as the last type parameter
of E.

Deriving Traversable instances

DeriveTraversable

Implies DeriveFoldable (page 408), DeriveFunctor (page 405)
Since 7.10.1

Allow automatic deriving of instances for the Traversable typeclass.
With DeriveTraversable (page 410), one can derive Traversable instances for data types of
kind Type -> Type. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving (Functor, Foldable, Traversable)

would generate the following Traversable instance:

instance Traversable Example where
traverse f (Ex a1 a2 a3 a4)

= fmap (\b1 b3 -> Ex b1 a2 b3 a4) (f a1) <*> traverse f a3

The algorithm for DeriveTraversable (page 410) is adapted from the DeriveFunctor
(page 405) algorithm, but it generates a definition for traverse instead of fmap. In addition,
DeriveTraversable (page 410) filters out all constructor arguments on the RHS expression
whose types do not mention the last type parameter, since those arguments do not produce
any effects in a traversal.
When the type parameter has a phantom role (see Roles (page 383)), DeriveTraversable
(page 410) coerces its argument. For example, this declaration:

data Phantom a = Z | S (Phantom a) deriving Traversable

will generate the following instance:

410 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

instance Traversable Phantom where
traverse _ z = pure (coerce z)

When the type has no constructors, DeriveTraversable (page 410) will derive the laziest
instance it can.

data V a deriving Traversable
type role V nominal

will generate the following, using EmptyCase (page 288):

instance Traversable V where
traverse _ z = pure (case z of)

Here are the differences between the generated code in each extension:
1. When a bare type variable a is encountered, both DeriveFunctor (page 405) and De-

riveTraversable (page 410) would generate f a for an fmap and traverse definition,
respectively.

2. When a type that is not syntactically equivalent to a, but which does contain a, is en-
countered, DeriveFunctor (page 405) recursively calls fmap on it. Similarly, Derive-
Traversable (page 410) would recursively call traverse.

3. DeriveFunctor (page 405) puts everything back together again at the end by invoking
the constructor. DeriveTraversable (page 410) does something similar, but it works in
an Applicative context by chaining everything together with (<*>).

Unlike DeriveFunctor (page 405), DeriveTraversable (page 410) cannot be used on data
types containing a function type on the right-hand side.
For a full specification of the algorithms used in DeriveFunctor (page 405), DeriveFoldable
(page 408), and DeriveTraversable (page 410), see this wiki page.

Deriving Data instances

DeriveDataTypeable

Since 6.8.1
Enable automatic deriving of instances for the Data typeclass

Deriving Typeable instances

The class Typeable is very special:
• Typeable is kind-polymorphic (see Kind polymorphism (page 346)).
• GHC has a custom solver for discharging constraints that involve class Typeable, and
handwritten instances are forbidden. This ensures that the programmer cannot subvert
the type system by writing bogus instances.

• Derived instances of Typeable may be declared if the DeriveDataTypeable (page 411)
extension is enabled, but they are ignored, and they may be reported as an error in a
later version of the compiler.

• The rules for solving Typeable constraints are as follows:

6.6. Deriving mechanism 411

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/derive-functor

GHC User’s Guide Documentation, Release 9.2.6

– A concrete type constructor applied to some types.

instance (Typeable t1, .., Typeable t_n) =>
Typeable (T t1 .. t_n)

This rule works for any concrete type constructor, including type constructors with
polymorphic kinds. The only restriction is that if the type constructor has a polymor-
phic kind, then it has to be applied to all of its kinds parameters, and these kinds
need to be concrete (i.e., they cannot mention kind variables).

– A type variable applied to some types:

instance (Typeable f, Typeable t1, .., Typeable t_n) =>
Typeable (f t1 .. t_n)

– A concrete type literal.:

instance Typeable 0 -- Type natural literals
instance Typeable "Hello" -- Type-level symbols

Deriving Lift instances

DeriveLift

Since 8.0.1
Enable automatic deriving of instances for the Lift typeclass for Template Haskell.

The class Lift, unlike other derivable classes, lives in template-haskell instead of base.
Having a data type be an instance of Lift permits its values to be promoted to Template
Haskell expressions (of type ExpQ and Code Q a), which can then be spliced into Haskell
source code.
Here is an example of how one can derive Lift:

{-# LANGUAGE DeriveLift #-}
module Bar where

import Language.Haskell.TH.Syntax

data Foo a = Foo a | a :^: a deriving Lift

{-
instance (Lift a) => Lift (Foo a) where

lift (Foo a) = [| Foo a |]
lift ((:^:) u v) = [| (:^:) u v |]

liftTyped (Foo a) = [|| Foo a ||]
liftTyped ((:^:) u v) = [|| (:^:) u v ||]

-}

{-# LANGUAGE TemplateHaskell #-}
module Baz where

import Bar
import Language.Haskell.TH.Lift

412 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

foo :: Foo String
foo = $(lift $ Foo "foo")

fooExp :: Lift a => Foo a -> Q Exp
fooExp f = [| f |]

Note that the Lift typeclass takes advantage of Levity polymorphism (page 363) in order to
support instances involving unboxed types. This means DeriveLift (page 412) also works
for these types:

{-# LANGUAGE DeriveLift, MagicHash #-}
module Unboxed where

import GHC.Exts
import Language.Haskell.TH.Syntax

data IntHash = IntHash Int# deriving Lift

{-
instance Lift IntHash where

lift (IntHash i) = [| IntHash i |]
liftTyped (IntHash i) = [|| IntHash i ||]

-}

6.6.5 Generalised derived instances for newtypes

GeneralisedNewtypeDeriving
GeneralizedNewtypeDeriving

Since 6.8.1. British spelling since 8.6.1.
Enable GHC’s cunning generalised deriving mechanism for newtypes

When you define an abstract type using newtype, you may want the new type to inherit some
instances from its representation. In Haskell 98, you can inherit instances of Eq, Ord, Enum
and Bounded by deriving them, but for any other classes you have to write an explicit instance
declaration. For example, if you define

newtype Dollars = Dollars Int

and you want to use arithmetic on Dollars, you have to explicitly define an instance of Num:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...

All the instance does is apply and remove the newtype constructor. It is particularly galling
that, since the constructor doesn’t appear at run-time, this instance declaration defines a
dictionary which is wholly equivalent to the Int dictionary, only slower!
DerivingVia (page 422) (see Deriving via (page 422)) is a generalization of this idea.

Generalising the deriving clause

GHC now permits such instances to be derived instead, using the extension GeneralizedNew-
typeDeriving (page 413), so one can write

6.6. Deriving mechanism 413

GHC User’s Guide Documentation, Release 9.2.6

newtype Dollars = Dollars { getDollars :: Int } deriving (Eq,Show,Num)

and the implementation uses the same Num dictionary for Dollars as for Int. In other words,
GHC will generate something that resembles the following code

instance Num Int => Num Dollars

and then attempt to simplify the Num Int context as much as possible. GHC knows that there
is a Num Int instance in scope, so it is able to discharge the Num Int constraint, leaving the
code that GHC actually generates

instance Num Dollars

One can think of this instance being implemented with the same code as the Num Int instance,
but with Dollars and getDollars added wherever necessary in order to make it typecheck.
(In practice, GHC uses a somewhat different approach to code generation. See the A more
precise specification (page 415) section below for more details.)
We can also derive instances of constructor classes in a similar way. For example, suppose
we have implemented state and failure monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension,
we can make the parser type abstract, without needing to write an instance of class Monad,
via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, since Monad is a constructor class, the instance is a partial application of the
newtype, not the entire left hand side. We can imagine that the type declaration is “eta-
converted” to generate the context of the instance declaration.
We can even derive instances of multi-parameter classes, provided the newtype is the last
class parameter. In this case, a “partial application” of the class appears in the deriving
clause. For example, given the class

class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...

then we can derive an instance of StateMonad for Parser by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

414 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

As a result of this extension, all derived instances in newtype declarations are treated uni-
formly (and implemented just by reusing the dictionary for the representation type), except
Show and Read, which really behave differently for the newtype and its representation.

Note: It is sometimes necessary to enable additional language extensions when deriving
instances via GeneralizedNewtypeDeriving (page 413). For instance, consider a simple class
and instance using UnboxedTuples (page 510) syntax:

{-# LANGUAGE UnboxedTuples #-}

module Lib where

class AClass a where
aMethod :: a -> (# Int, a #)

instance AClass Int where
aMethod x = (# x, x #)

The following will fail with an “Illegal unboxed tuple” error, since the derived instance pro-
duced by the compiler makes use of unboxed tuple syntax,

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Lib

newtype Int' = Int' Int
deriving (AClass)

However, enabling the UnboxedTuples (page 510) extension allows the module to compile.
Similar errors may occur with a variety of extensions, including:
• UnboxedTuples (page 510)
• PolyKinds (page 346)
• MultiParamTypeClasses (page 435)
• FlexibleContexts (page 459)

A more precise specification

A derived instance is derived only for declarations of these forms (after expansion of any type
synonyms)

newtype T v1..vn = MkT (t vk+1..vn) deriving (C t1..tj)
newtype instance T s1..sk vk+1..vn = MkT (t vk+1..vn) deriving (C t1..tj)

where
• v1..vn are type variables, and t, s1..sk, t1..tj are types.
• The (C t1..tj) is a partial applications of the class C, where the arity of C is exactly
j+1. That is, C lacks exactly one type argument.

6.6. Deriving mechanism 415

GHC User’s Guide Documentation, Release 9.2.6

• k is chosen so that C t1..tj (T v1...vk) is well-kinded. (Or, in the case of a data
instance, so that C t1..tj (T s1..sk) is well kinded.)

• The type t is an arbitrary type.
• The type variables vk+1...vn do not occur in the types t, s1..sk, or t1..tj.
• C is not Read, Show, Typeable, or Data. These classes should not “look through” the
type or its constructor. You can still derive these classes for a newtype, but it happens
in the usual way, not via this new mechanism. Confer with Default deriving strategy
(page 422).

• It is safe to coerce each of the methods of C. That is, the missing last argument to C is
not used at a nominal role in any of the C‘s methods. (See Roles (page 383).)

• C is allowed to have associated type families, provided they meet the requirements laid
out in the section on GND and associated types (page 416).

Then the derived instance declaration is of the form

instance C t1..tj t => C t1..tj (T v1...vk)

Note that if C does not contain any class methods, the instance context is wholly unnecessary,
and as such GHC will instead generate:

instance C t1..tj (T v1..vk)

As an example which does not work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variable s occurs in State s m, and so cannot be “eta-converted” away. It
is a good thing that this deriving clause is rejected, because NonMonad m is not, in fact, a
monad — for the same reason. Try defining >>= with the correct type: you won’t be able to.
Notice also that the order of class parameters becomes important, since we can only derive
instances for the last one. If the StateMonad class above were instead defined as

class StateMonad m s | m -> s where ...

then we would not have been able to derive an instance for the Parser type above. We hy-
pothesise that multi-parameter classes usually have one “main” parameter for which deriving
new instances is most interesting.
Lastly, all of this applies only for classes other than Read, Show, Typeable, and Data, for
which the stock derivation applies (section 4.3.3. of the Haskell Report). (For the standard
classes Eq, Ord, Ix, and Bounded it is immaterial whether the stock method is used or the one
described here.)

Associated type families

GeneralizedNewtypeDeriving (page 413) also works for some type classes with associated
type families. Here is an example:

416 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

class HasRing a where
type Ring a

newtype L1Norm a = L1Norm a
deriving HasRing

The derived HasRing instance would look like

instance HasRing (L1Norm a) where
type Ring (L1Norm a) = Ring a

To be precise, if the class being derived is of the form

class C c_1 c_2 ... c_m where
type T1 t1_1 t1_2 ... t1_n
...
type Tk tk_1 tk_2 ... tk_p

and the newtype is of the form

newtype N n_1 n_2 ... n_q = MkN <rep-type>

then you can derive a C c_1 c_2 ... c_(m-1) instance for N n_1 n_2 ... n_q, provided
that:
• The type parameter c_m occurs once in each of the type variables of T1 through Tk.
Imagine a class where this condition didn’t hold. For example:

class Bad a b where
type B a

instance Bad Int a where
type B Int = Char

newtype Foo a = Foo a
deriving (Bad Int)

For the derived Bad Int instance, GHC would need to generate something like this:

instance Bad Int (Foo a) where
type B Int = B ???

Now we’re stuck, since we have no way to refer to a on the right-hand side of the B family
instance, so this instance doesn’t really make sense in a GeneralizedNewtypeDeriving
(page 413) setting.

• C does not have any associated data families (only type families). To see why data families
are forbidden, imagine the following scenario:

class Ex a where
data D a

instance Ex Int where
data D Int = DInt Bool

newtype Age = MkAge Int deriving Ex

For the derived Ex instance, GHC would need to generate something like this:

6.6. Deriving mechanism 417

GHC User’s Guide Documentation, Release 9.2.6

instance Ex Age where
data D Age = ???

But it is not clear what GHC would fill in for ???, as each data family instance must
generate fresh data constructors.

If both of these conditions are met, GHC will generate this instance:

instance C c_1 c_2 ... c_(m-1) <rep-type> =>
C c_1 c_2 ... c_(m-1) (N n_1 n_2 ... n_q) where

type T1 t1_1 t1_2 ... (N n_1 n_2 ... n_q) ... t1_n
= T1 t1_1 t1_2 ... <rep-type> ... t1_n

...
type Tk tk_1 tk_2 ... (N n_1 n_2 ... n_q) ... tk_p

= Tk tk_1 tk_2 ... <rep-type> ... tk_p

Again, if C contains no class methods, the instance context will be redundant, so GHC will
instead generate instance C c_1 c_2 ... c_(m-1) (N n_1 n_2 ... n_q).
Beware that in some cases, you may need to enable the UndecidableInstances (page 448)
extension in order to use this feature. Here’s a pathological case that illustrates why this
might happen:

class C a where
type T a

newtype Loop = MkLoop Loop
deriving C

This will generate the derived instance:

instance C Loop where
type T Loop = T Loop

Here, it is evident that attempting to use the type T Loop will throw the typechecker into
an infinite loop, as its definition recurses endlessly. In other cases, you might need to enable
UndecidableInstances (page 448) even if the generated code won’t put the typechecker into
a loop. For example:

instance C Int where
type C Int = Int

newtype MyInt = MyInt Int
deriving C

This will generate the derived instance:

instance C MyInt where
type T MyInt = T Int

Although typechecking T MyIntwill terminate, GHC’s termination checker isn’t sophisticated
enough to determine this, so you’ll need to enable UndecidableInstances (page 448) in order
to use this derived instance. If you do go down this route, make sure you can convince yourself
that all of the type family instances you’re deriving will eventually terminate if used!
Note that DerivingVia (page 422) (see Deriving via (page 422)) uses essentially the same
specification to derive instances of associated type families as well (except that it uses the
via type instead of the underlying rep-type of a newtype).

418 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.6.6 Deriving any other class

DeriveAnyClass

Since 7.10.1
Allow use of any typeclass in deriving clauses.

With DeriveAnyClass (page 419) you can derive any other class. The compiler will simply
generate an instance declaration with no explicitly-defined methods. This is mostly useful in
classes whose minimal set (page ??) is empty, and especially when writing generic functions
(page ??).
As an example, consider a simple pretty-printer class SPretty, which outputs pretty strings:

{-# LANGUAGE DefaultSignatures, DeriveAnyClass #-}

class SPretty a where
sPpr :: a -> String
default sPpr :: Show a => a -> String
sPpr = show

If a user does not provide a manual implementation for sPpr, then it will default to show. Now
we can leverage the DeriveAnyClass (page 419) extension to easily implement a SPretty
instance for a new data type:

data Foo = Foo deriving (Show, SPretty)

The above code is equivalent to:

data Foo = Foo deriving Show
instance SPretty Foo

That is, an SPretty Foo instance will be created with empty implementations for all methods.
Since we are using DefaultSignatures (page 437) in this example, a default implementation
of sPpr is filled in automatically.
Note the following details
• In case you try to derive some class on a newtype, and GeneralizedNewtypeDeriving
(page 413) is also on, DeriveAnyClass (page 419) takes precedence.

• The instance context is determined by the type signatures of the derived class’s methods.
For instance, if the class is:

class Foo a where
bar :: a -> String
default bar :: Show a => a -> String
bar = show

baz :: a -> a -> Bool
default baz :: Ord a => a -> a -> Bool
baz x y = compare x y == EQ

And you attempt to derive it using DeriveAnyClass (page 419):

instance Eq a => Eq (Option a) where ...
instance Ord a => Ord (Option a) where ...
instance Show a => Show (Option a) where ...

6.6. Deriving mechanism 419

GHC User’s Guide Documentation, Release 9.2.6

data Option a = None | Some a deriving Foo

Then the derived Foo instance will be:

instance (Show a, Ord a) => Foo (Option a)

Since the default type signatures for bar and baz require Show a and Ord a constraints,
respectively.
Constraints on the non-default type signatures can play a role in inferring the instance
context as well. For example, if you have this class:

class HigherEq f where
(==#) :: f a -> f a -> Bool
default (==#) :: Eq (f a) => f a -> f a -> Bool
x ==# y = (x == y)

And you tried to derive an instance for it:

instance Eq a => Eq (Option a) where ...
data Option a = None | Some a deriving HigherEq

Then it will fail with an error to the effect of:

No instance for (Eq a)
arising from the 'deriving' clause of a data type declaration

That is because we require an Eq (Option a) instance from the default type signature
for (==#), which in turn requires an Eq a instance, which we don’t have in scope. But if
you tweak the definition of HigherEq slightly:

class HigherEq f where
(==#) :: Eq a => f a -> f a -> Bool
default (==#) :: Eq (f a) => f a -> f a -> Bool
x ==# y = (x == y)

Then it becomes possible to derive a HigherEq Option instance. Note that the only dif-
ference is that now the non-default type signature for (==#) brings in an Eq a constraint.
Constraints from non-default type signatures never appear in the derived instance con-
text itself, but they can be used to discharge obligations that are demanded by the default
type signatures. In the example above, the default type signature demanded an Eq a in-
stance, and the non-default signature was able to satisfy that request, so the derived
instance is simply:

instance HigherEq Option

• DeriveAnyClass (page 419) can be used with partially applied classes, such as

data T a = MKT a deriving(D Int)

which generates

instance D Int a => D Int (T a) where {}

• DeriveAnyClass (page 419) can be used to fill in default instances for associated type
families:

420 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

{-# LANGUAGE DeriveAnyClass, TypeFamilies #-}

class Sizable a where
type Size a
type Size a = Int

data Bar = Bar deriving Sizable

doubleBarSize :: Size Bar -> Size Bar
doubleBarSize s = 2*s

The deriving(Sizable) is equivalent to saying

instance Sizeable Bar where {}

and then the normal rules for filling in associated types from the default will apply, mak-
ing Size Bar equal to Int.

6.6.7 Deriving strategies

DerivingStrategies

Since 8.2.1
Allow multiple deriving, each optionally qualified with a strategy.

In most scenarios, every deriving statement generates a typeclass instance in an unambigu-
ous fashion. There is a corner case, however, where simultaneously enabling both the Gen-
eralizedNewtypeDeriving (page 413) and DeriveAnyClass (page 419) extensions can make
deriving become ambiguous. Consider the following example

{-# LANGUAGE DeriveAnyClass, GeneralizedNewtypeDeriving #-}
newtype Foo = MkFoo Bar deriving C

One could either pick the DeriveAnyClass approach to deriving C or the GeneralizedNew-
typeDeriving approach to deriving C, both of which would be equally as valid. GHC defaults
to favoring DeriveAnyClass in such a dispute, but this is not a satisfying solution, since that
leaves users unable to use both language extensions in a single module.
To make this more robust, GHC has a notion of deriving strategies, which allow the user to
explicitly request which approach to use when deriving an instance. To enable this feature,
onemust enable the DerivingStrategies (page 421) language extension. A deriving strategy
can be specified in a deriving clause

newtype Foo = MkFoo Bar
deriving newtype C

Or in a standalone deriving declaration

deriving anyclass instance C Foo

DerivingStrategies (page 421) also allows the use of multiple deriving clauses per data
declaration so that a user can derive some instance with one deriving strategy and other
instances with another deriving strategy. For example

6.6. Deriving mechanism 421

GHC User’s Guide Documentation, Release 9.2.6

newtype Baz = Baz Quux
deriving (Eq, Ord)
deriving stock (Read, Show)
deriving newtype (Num, Floating)
deriving anyclass C

Currently, the deriving strategies are:
• stock: Have GHC implement a “standard” instance for a data type, if possible (e.g., Eq,
Ord, Generic, Data, Functor, etc.)

• anyclass: Use DeriveAnyClass (page 419) (see Deriving any other class (page 419))
• newtype: Use GeneralizedNewtypeDeriving (page 413) (see Generalised derived in-

stances for newtypes (page 413))
• via: Use DerivingVia (page 422) (see Deriving via (page 422))

Default deriving strategy

If an explicit deriving strategy is not given, multiple strategies may apply. In that case, GHC
chooses the strategy as follows:
1. Stock type classes, i.e. those specified in the report and those enabled by language
extensions (page ??), are derived using the stock strategy, with the following exception:
• For newtypes, Eq, Ord, Ix and Bounded are always derived using the newtype strat-
egy, even without GeneralizedNewtypeDeriving enabled. (There should be no ob-
servable difference to instances derived using the stock strategy.)

• Also for newtypes, Functor, Foldable and Enum are derived using the newtype strat-
egy if GeneralizedNewtypeDeriving is enabled and the derivation succeeds.

2. For other any type class:
(a) When DeriveAnyClass (page 419) is enabled, use anyclass.
(b) When GeneralizedNewtypeDeriving (page 413) is enabled and we are deriving for

a newtype, then use newtype.
If both rules apply to a deriving clause, then anyclass is used and the user is warned
about the ambiguity. The warning can be avoided by explicitly stating the desired deriv-
ing strategy.

6.6.8 Deriving via

DerivingVia

Implies DerivingStrategies (page 421)
Since 8.6.1

This allows deriving a class instance for a type by specifying another type of equal runtime
representation (such that there exists a Coercible instance between the two: see The Co-
ercible constraint (page 461)) that is already an instance of the that class.
DerivingVia (page 422) is indicated by the use of the via deriving strategy. via requires
specifying another type (the via type) to coerce through. For example, this code:

422 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

{-# LANGUAGE DerivingVia #-}

import Numeric

newtype Hex a = Hex a

instance (Integral a, Show a) => Show (Hex a) where
show (Hex a) = "0x" ++ showHex a ""

newtype Unicode = U Int
deriving Show

via (Hex Int)

-- >>> euroSign
-- 0x20ac
euroSign :: Unicode
euroSign = U 0x20ac

Generates the following instance

instance Show Unicode where
show :: Unicode -> String
show = Data.Coerce.coerce

@(Hex Int -> String)
@(Unicode -> String)
show

This extension generalizes GeneralizedNewtypeDeriving (page 413). To derive Num Unicode
with GND (deriving newtype Num) it must reuse the Num Int instance. With DerivingVia,
we can explicitly specify the representation type Int:

newtype Unicode = U Int
deriving Num

via Int

deriving Show
via (Hex Int)

euroSign :: Unicode
euroSign = 0x20ac

Code duplication is common in instance declarations. A familiar pattern is lifting operations
over an Applicative functor. Instead of having catch-all instances for f awhich overlap with
all other such instances, like so:

instance (Applicative f, Semigroup a) => Semigroup (f a) ..
instance (Applicative f, Monoid a) => Monoid (f a) ..

We can instead create a newtype App (where App f a and f a are represented the same in
memory) and use DerivingVia (page 422) to explicitly enable uses of this pattern:

{-# LANGUAGE DerivingVia, DeriveFunctor, GeneralizedNewtypeDeriving #-}

import Control.Applicative

newtype App f a = App (f a) deriving newtype (Functor, Applicative)

6.6. Deriving mechanism 423

GHC User’s Guide Documentation, Release 9.2.6

instance (Applicative f, Semigroup a) => Semigroup (App f a) where
(<>) = liftA2 (<>)

instance (Applicative f, Monoid a) => Monoid (App f a) where
mempty = pure mempty

data Pair a = MkPair a a
deriving stock

Functor

deriving (Semigroup, Monoid)
via (App Pair a)

instance Applicative Pair where
pure a = MkPair a a

MkPair f g <*> MkPair a b = MkPair (f a) (g b)

Note that the via type does not have to be a newtype. The only restriction is that it is coercible
with the original data type. This means there can be arbitrary nesting of newtypes, as in the
following example:

newtype Kleisli m a b = Kleisli (a -> m b)
deriving (Semigroup, Monoid)

via (a -> App m b)

Here we make use of the Monoid ((->) a) instance.
When used in combination with StandaloneDeriving (page 403) we swap the order for the
instance we base our derivation on and the instance we define e.g.:

deriving via (a -> App m b) instance Monoid (Kleisli m a b)

6.7 Patterns

6.7.1 Pattern guards

NoPatternGuards

Implied by Haskell98 (page 263)
Since 6.8.1

Disable pattern guards.

6.7.2 View patterns

ViewPatterns

Since 6.10.1
Allow use of view pattern syntax.

View patterns are enabled by the language extension ViewPatterns (page 424). More infor-
mation and examples of view patterns can be found on the Wiki page.

424 Chapter 6. Language extensions

http://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-460003.13
https://gitlab.haskell.org/ghc/ghc/wikis/view-patterns

GHC User’s Guide Documentation, Release 9.2.6

View patterns are somewhat like pattern guards that can be nested inside of other patterns.
They are a convenient way of pattern-matching against values of abstract types. For example,
in a programming language implementation, we might represent the syntax of the types of
the language as follows:

type Typ

data TypView = Unit
| Arrow Typ Typ

view :: Typ -> TypView

-- additional operations for constructing Typ's ...

The representation of Typ is held abstract, permitting implementations to use a fancy repre-
sentation (e.g., hash-consing to manage sharing). Without view patterns, using this signature
is a little inconvenient:

size :: Typ -> Integer
size t = case view t of
Unit -> 1
Arrow t1 t2 -> size t1 + size t2

It is necessary to iterate the case, rather than using an equational function definition. And the
situation is even worse when the matching against t is buried deep inside another pattern.
View patterns permit calling the view function inside the pattern and matching against the
result:

size (view -> Unit) = 1
size (view -> Arrow t1 t2) = size t1 + size t2

That is, we add a new form of pattern, written ⟨expression⟩ -> ⟨pattern⟩ that means “apply
the expression to whatever we’re trying to match against, and then match the result of that
application against the pattern”. The expression can be any Haskell expression of function
type, and view patterns can be used wherever patterns are used.
The semantics of a pattern (⟨exp⟩ -> ⟨pat⟩) are as follows:
• Scoping: The variables bound by the view pattern are the variables bound by ⟨pat⟩.
Any variables in ⟨exp⟩ are bound occurrences, but variables bound “to the left” in a
pattern are in scope. This feature permits, for example, one argument to a function to
be used in the view of another argument. For example, the function clunky from Pattern
guards (page 424) can be written using view patterns as follows:

clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
...other equations for clunky...

More precisely, the scoping rules are:
– In a single pattern, variables bound by patterns to the left of a view pattern expres-
sion are in scope. For example:

example :: Maybe ((String -> Integer,Integer), String) -> Bool
example (Just ((f,_), f -> 4)) = True

Additionally, in function definitions, variables bound by matching earlier curried ar-
guments may be used in view pattern expressions in later arguments:

6.7. Patterns 425

GHC User’s Guide Documentation, Release 9.2.6

example :: (String -> Integer) -> String -> Bool
example f (f -> 4) = True

That is, the scoping is the same as it would be if the curried arguments were collected
into a tuple.

– In mutually recursive bindings, such as let, where, or the top level, view patterns
in one declaration may not mention variables bound by other declarations. That is,
each declaration must be self-contained. For example, the following program is not
allowed:

let {(x -> y) = e1 ;
(y -> x) = e2 } in x

(For some amplification on this design choice see #4061.
• Typing: If ⟨exp⟩ has type ⟨T1⟩ -> ⟨T2⟩ and ⟨pat⟩ matches a ⟨T2⟩, then the whole view
pattern matches a ⟨T1⟩.

• Matching: To the equations in Section 3.17.3 of the Haskell 98 Report, add the following:

case v of { (e -> p) -> e1 ; _ -> e2 }
=
case (e v) of { p -> e1 ; _ -> e2 }

That is, to match a variable ⟨v⟩ against a pattern (⟨exp⟩ -> ⟨pat⟩), evaluate (⟨exp⟩ ⟨v⟩)
and match the result against ⟨pat⟩.

• Efficiency: When the same view function is applied in multiple branches of a function
definition or a case expression (e.g., in size above), GHC makes an attempt to collect
these applications into a single nested case expression, so that the view function is only
applied once. Pattern compilation in GHC follows the matrix algorithm described in
Chapter 4 of The Implementation of Functional Programming Languages. When the top
rows of the first column of a matrix are all view patterns with the “same” expression,
these patterns are transformed into a single nested case. This includes, for example,
adjacent view patterns that line up in a tuple, as in

f ((view -> A, p1), p2) = e1
f ((view -> B, p3), p4) = e2

The current notion of when two view pattern expressions are “the same” is very re-
stricted: it is not even full syntactic equality. However, it does include variables, literals,
applications, and tuples; e.g., two instances of view ("hi","there") will be collected.
However, the current implementation does not compare up to alpha-equivalence, so two
instances of (x,view x -> y) will not be coalesced.

6.7.3 n+k patterns

NPlusKPatterns

Implied by Haskell98 (page 263)
Since 6.12.1

Enable use of n+k patterns.

426 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/4061
http://www.haskell.org/onlinereport/
http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/

GHC User’s Guide Documentation, Release 9.2.6

6.7.4 Pattern synonyms

PatternSynonyms

Since 7.8.1
Allow the definition of pattern synonyms.

Pattern synonyms are enabled by the language extension PatternSynonyms (page 427), which
is required for defining them, but not for using them. More information and examples of
pattern synonyms can be found on the Wiki page.
Pattern synonyms enable giving names to parametrized pattern schemes. They can also be
thought of as abstract constructors that don’t have a bearing on data representation. For ex-
ample, in a programming language implementation, wemight represent types of the language
as follows:

data Type = App String [Type]

Here are some examples of using said representation. Consider a few types of the Type
universe encoded like this:

App "->" [t1, t2] -- t1 -> t2
App "Int" [] -- Int
App "Maybe" [App "Int" []] -- Maybe Int

This representation is very generic in that no types are given special treatment. However,
some functions might need to handle some known types specially, for example the following
two functions collect all argument types of (nested) arrow types, and recognize the Int type,
respectively:

collectArgs :: Type -> [Type]
collectArgs (App "->" [t1, t2]) = t1 : collectArgs t2
collectArgs _ = []

isInt :: Type -> Bool
isInt (App "Int" []) = True
isInt _ = False

Matching on App directly is both hard to read and error prone to write. And the situation is
even worse when the matching is nested:

isIntEndo :: Type -> Bool
isIntEndo (App "->" [App "Int" [], App "Int" []]) = True
isIntEndo _ = False

Pattern synonyms permit abstracting from the representation to expose matchers that be-
have in a constructor-like manner with respect to pattern matching. We can create pattern
synonyms for the known types we care about, without committing the representation to them
(note that these don’t have to be defined in the same module as the Type type):

pattern Arrow t1 t2 = App "->" [t1, t2]
pattern Int = App "Int" []
pattern Maybe t = App "Maybe" [t]

Which enables us to rewrite our functions in a much cleaner style:

6.7. Patterns 427

https://gitlab.haskell.org/ghc/ghc/wikis/pattern-synonyms

GHC User’s Guide Documentation, Release 9.2.6

collectArgs :: Type -> [Type]
collectArgs (Arrow t1 t2) = t1 : collectArgs t2
collectArgs _ = []

isInt :: Type -> Bool
isInt Int = True
isInt _ = False

isIntEndo :: Type -> Bool
isIntEndo (Arrow Int Int) = True
isIntEndo _ = False

In general there are three kinds of pattern synonyms. Unidirectional, bidirectional and explic-
itly bidirectional. The examples given so far are examples of bidirectional pattern synonyms.
A bidirectional synonym behaves the same as an ordinary data constructor. We can use it in
a pattern context to deconstruct values and in an expression context to construct values. For
example, we can construct the value intEndo using the pattern synonyms Arrow and Int as
defined previously.

intEndo :: Type
intEndo = Arrow Int Int

This example is equivalent to the much more complicated construction if we had directly used
the Type constructors.

intEndo :: Type
intEndo = App "->" [App "Int" [], App "Int" []]

Unidirectional synonyms can only be used in a pattern context and are defined as follows:

pattern Head x <- x:xs

In this case, Head ⟨x⟩ cannot be used in expressions, only patterns, since it wouldn’t specify
a value for the ⟨xs⟩ on the right-hand side. However, we can define an explicitly bidirectional
pattern synonym by separately specifying how to construct and deconstruct a type. The syntax
for doing this is as follows:

pattern HeadC x <- x:xs where
HeadC x = [x]

We can then use HeadC in both expression and pattern contexts. In a pattern context it will
match the head of any list with length at least one. In an expression context it will construct
a singleton list.
Explicitly bidirectional pattern synonyms offer greater flexibility than implicitly bidirectional
ones in terms of the syntax that is permitted. For instance, the following is not a legal implic-
itly bidirectional pattern synonym:

pattern StrictJust a = Just !a

This is illegal because the use of BangPatterns (page 498) on the right-hand sides prevents
it from being a well formed expression. However, constructing a strict pattern synonym is
quite possible with an explicitly bidirectional pattern synonym:

pattern StrictJust a <- Just !a where
StrictJust !a = Just a

428 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Constructing an explicitly bidirectional pattern synonym also:
• can create different data constructors from the underlying data type, not just the one
appearing in the pattern match;

• can call any functions or conditional logic, especially validation, of course providing it
constructs a result of the right type;

• can use guards on the lhs of the =;
• can have multiple equations.

For example:

data PosNeg = Pos Int | Neg Int
pattern Smarter{ nonneg } <- Pos nonneg where
Smarter x = if x >= 0 then (Pos x) else (Neg x)

Or using guards:

pattern Smarter{ nonneg } <- Pos nonneg where
Smarter x | x >= 0 = (Pos x)

| otherwise = (Neg x)

There is an extensive Haskell folk art of smart constructors, essentially functions that wrap
validation around a constructor, and avoid exposing its representation. The downside is that
the underlying constructor can’t be used as a matcher. Pattern synonyms can be used as
genuinely smart constructors, for both validation and matching.
The table below summarises where each kind of pattern synonym can be used.
Context Unidirectional Bidirectional Explicitly Bidirectional
Pattern Yes Yes Yes
Expression No Yes (Inferred) Yes (Explicit)

Record Pattern Synonyms

It is also possible to define pattern synonyms which behave just like record constructors. The
syntax for doing this is as follows:

pattern Point :: Int -> Int -> (Int, Int)
pattern Point{x, y} = (x, y)

The idea is that we can then use Point just as if we had defined a new datatype MyPoint with
two fields x and y.

data MyPoint = Point { x :: Int, y :: Int }

Whilst a normal pattern synonym can be used in two ways, there are then seven ways in which
to use Point. Precisely the ways in which a normal record constructor can be used.
Usage Example
As a constructor zero = Point 0 0
As a constructor with record syntax zero = Point { x = 0,y = 0}
In a pattern context isZero (Point 0 0) = True
In a pattern context with record syntax isZero (Point { x = 0,y = 0 }
In a pattern context with field puns getX (Point {x}) = x
In a record update (0,0) { x = 1 } == (1,0)
Using record selectors x (0,0) == 0

6.7. Patterns 429

https://wiki.haskell.org/Smart_constructor

GHC User’s Guide Documentation, Release 9.2.6

For a unidirectional record pattern synonym we define record selectors but do not allow
record updates or construction.
The syntax and semantics of pattern synonyms are elaborated in the following subsections.
There are also lots more details in the paper.
See the Wiki page for more details.

Syntax and scoping of pattern synonyms

A pattern synonym declaration can be either unidirectional, bidirectional or explicitly bidirec-
tional. The syntax for unidirectional pattern synonyms is:

pattern pat_lhs <- pat

the syntax for bidirectional pattern synonyms is:

pattern pat_lhs = pat

and the syntax for explicitly bidirectional pattern synonyms is:

pattern pat_lhs <- pat where
pat_lhs = expr -- lhs restricted, see below

We can define either prefix, infix or record pattern synonyms by modifying the form of pat_lhs.
The syntax for these is as follows:
Prefix Name args
Infix arg1 `Name` arg2 or arg1 op arg2
Record Name{arg1,arg2,...,argn}

The pat_lhs for explicitly bidirectional construction cannot use Record syntax. (Because the
rhs expr might be constructing different data constructors.) It can use guards with multiple
equations.
Pattern synonym declarations can only occur in the top level of a module. In particular, they
are not allowed as local definitions.
The variables in the left-hand side of the definition are bound by the pattern on the right-hand
side. For bidirectional pattern synonyms, all the variables of the right-hand side must also
occur on the left-hand side; also, wildcard patterns and view patterns are not allowed. For
unidirectional and explicitly bidirectional pattern synonyms, there is no restriction on the
right-hand side pattern.
Pattern synonyms cannot be defined recursively.
COMPLETE pragmas (page 567) can be specified in order to tell the pattern match exhaus-
tiveness checker that a set of pattern synonyms is complete.

Import and export of pattern synonyms

The name of the pattern synonym is in the same namespace as proper data constructors. Like
normal data constructors, pattern synonyms can be imported and exported through associa-
tion with a type constructor or independently.
To export them on their own, in an export or import specification, you must prefix pattern
names with the pattern keyword, e.g.:

430 Chapter 6. Language extensions

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/pattern-synonyms-Haskell16.pdf
https://gitlab.haskell.org/ghc/ghc/wikis/pattern-synonyms

GHC User’s Guide Documentation, Release 9.2.6

module Example (pattern Zero) where

data MyNum = MkNum Int

pattern Zero :: MyNum
pattern Zero = MkNum 0

Without the pattern prefix, Zero would be interpreted as a type constructor in the export list.
You may also use the pattern keyword in an import/export specification to import or export
an ordinary data constructor. For example:

import Data.Maybe(pattern Just)

would bring into scope the data constructor Just from the Maybe type, without also bringing
the type constructor Maybe into scope.
As of GHC 8.0.1 you may also “bundle” pattern synonyms with an exported type constructor,
making that pattern appear as a data constructor of that type. To bundle a pattern synonym,
we list the pattern synonym in the export list of a module which exports the type constructor.
For example, to bundle Zero with MyNum we could write the following:

module Example (MyNum(Zero)) where

If a module was then to import MyNum from Example, it would also import the pattern synonym
Zero.
It is also possible to use the special token .. in an export list to mean all currently bundled
constructors. For example, we could write:

module Example (MyNum(.., Zero)) where

in which case, Example would export the type constructor MyNum with the data constructor
MkNum and also the pattern synonym Zero.
Bundled pattern synonyms are type checked to ensure that they are of the same type as the
type constructor which they are bundled with. A pattern synonym P can not be bundled with
a type constructor T if P‘s type is visibly incompatible with T.
A module which imports MyNum(..) from Example and then re-exports MyNum(..) will also
export any pattern synonyms bundled with MyNum in Example. A more complete specification
can be found on the wiki.

Typing of pattern synonyms

Given a pattern synonym definition of the form

pattern P var1 var2 ... varN <- pat

it is assigned a pattern type of the form

pattern P :: CReq => CProv => t1 -> t2 -> ... -> tN -> t

where ⟨CReq⟩ and ⟨CProv⟩ are type contexts, and ⟨t1⟩, ⟨t2⟩, ..., ⟨tN⟩ and ⟨t⟩ are types. Notice
the unusual form of the type, with two contexts ⟨CReq⟩ and ⟨CProv⟩:
• ⟨CReq⟩ are the constraints required to match the pattern.

6.7. Patterns 431

https://gitlab.haskell.org/ghc/ghc/wikis/pattern-synonyms/associating-synonyms

GHC User’s Guide Documentation, Release 9.2.6

• ⟨CProv⟩ are the constraints made available (provided) by a successful pattern match.
For example, consider

data T a where
MkT :: (Show b) => a -> b -> T a

f1 :: (Num a, Eq a) => T a -> String
f1 (MkT 42 x) = show x

pattern ExNumPat :: (Num a, Eq a) => (Show b) => b -> T a
pattern ExNumPat x = MkT 42 x

f2 :: (Eq a, Num a) => T a -> String
f2 (ExNumPat x) = show x

Here f1 does not use pattern synonyms. To match against the numeric pattern 42 requires
the caller to satisfy the constraints (Num a,Eq a), so they appear in f1‘s type. The call to
show generates a (Show b) constraint, where b is an existentially type variable bound by the
pattern match on MkT. But the same pattern match also provides the constraint (Show b) (see
MkT‘s type), and so all is well.
Exactly the same reasoning applies to ExNumPat: matching against ExNumPat requires the
constraints (Num a,Eq a), and provides the constraint (Show b).
Note also the following points
• In the common case where CProv is empty, (i.e., ()), it can be omitted altogether in the
above pattern type signature for P.

• However, if CProv is non-empty, while CReq is, the above pattern type signature for P
must be specified as

P :: () => CProv => t1 -> t2 -> .. -> tN -> t

• The GHCi :info (page 65) command shows pattern types in this format.
• You may specify an explicit pattern signature, as we did for ExNumPat above, to specify
the type of a pattern, just as you can for a function. As usual, the type signature can be
less polymorphic than the inferred type. For example

-- Inferred type would be 'a -> [a]'
pattern SinglePair :: (a, a) -> [(a, a)]
pattern SinglePair x = [x]

Just like signatures on value-level bindings, pattern synonym signatures can apply to
more than one pattern. For instance,

pattern Left', Right' :: a -> Either a a
pattern Left' x = Left x
pattern Right' x = Right x

• The rules for lexically-scoped type variables (see Lexically scoped type variables
(page 472)) apply to pattern-synonym signatures. As those rules specify, only the type
variables from an explicit, syntactically-visible outer forall (the universals) scope over
the definition of the pattern synonym; the existentials, bound by the inner forall, do not.
For example

432 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

data T a where
MkT :: Bool -> b -> (b->Int) -> a -> T a

pattern P :: forall a. forall b. b -> (b->Int) -> a -> T a
pattern P x y v <- MkT True x y (v::a)

Here the universal type variable a scopes over the definition of P, but the existential b
does not. (c.f. discussion on #14998.)

• For a bidirectional pattern synonym, a use of the pattern synonym as an expression has
the type

(CReq, CProv) => t1 -> t2 -> ... -> tN -> t

So in the previous example, when used in an expression, ExNumPat has type

ExNumPat :: (Num a, Eq a, Show b) => b -> T t

Notice that this is a tiny bit more restrictive than the expression MkT 42 x which would
not require (Eq a).

• Consider these two pattern synonyms:

data S a where
S1 :: Bool -> S Bool

pattern P1 :: Bool -> Maybe Bool
pattern P1 b = Just b

pattern P2 :: () => (b ~ Bool) => Bool -> S b
pattern P2 b = S1 b

f :: Maybe a -> String
f (P1 x) = "no no no" -- Type-incorrect

g :: S a -> String
g (P2 b) = "yes yes yes" -- Fine

Pattern P1 can only match against a value of type Maybe Bool, so function f is rejected
because the type signature is Maybe a. (To see this, imagine expanding the pattern
synonym.)
On the other hand, function g works fine, because matching against P2 (which wraps the
GADT S) provides the local equality (a~Bool). If you were to give an explicit pattern
signature P2 :: Bool -> S Bool, then P2 would become less polymorphic, and would
behave exactly like P1 so that g would then be rejected.
In short, if you want GADT-like behaviour for pattern synonyms, then (unlike concrete
data constructors like S1) you must write its type with explicit provided equalities. For a
concrete data constructor like S1 you can write its type signature as either S1 :: Bool
-> S Bool or S1 :: (b~Bool) => Bool -> S b; the two are equivalent. Not so for pat-
tern synonyms: the two forms are different, in order to distinguish the two cases above.
(See #9953 for discussion of this choice.)

6.7. Patterns 433

https://gitlab.haskell.org/ghc/ghc/issues/9953

GHC User’s Guide Documentation, Release 9.2.6

Matching of pattern synonyms

A pattern synonym occurrence in a pattern is evaluated by first matching against the pattern
synonym itself, and then on the argument patterns.
More precisely, the semantics of pattern matching is given in Section 3.17 of the Haskell 2010
report. To the informal semantics in Section 3.17.2 we add this extra rule:
• If the pattern is a constructor pattern (P p1 ... pn), where P is a pattern synonym
defined by P x1 ... xn = p or P x1 ... xn <-p, then:
1. Match the value v against p. If this match fails or diverges, so does the whole (pat-
tern synonym) match. Otherwise the match against pmust bind the variables x1 ...
xn; let them be bound to values v1 ... vn.

2. Match v1 against p1, v2 against p2 and so on. If any of these matches fail or diverge,
so does the whole match.

3. If all the matches against the pi succeed, the match succeeds, binding the variables
bound by the pi . (The xi are not bound; they remain local to the pattern synonym
declaration.)

For example, in the following program, f and f' are equivalent:

pattern Pair x y <- [x, y]

f (Pair True True) = True
f _ = False

f' [x, y] | True <- x, True <- y = True
f' _ = False

Note that the strictness of f differs from that of g defined below:

g [True, True] = True
g _ = False

*Main> f (False:undefined)
*** Exception: Prelude.undefined
*Main> g (False:undefined)
False

Pragmas for pattern synonyms

The INLINABLE pragma (page 560), INLINE pragma (page 559) and NOINLINE pragma
(page 561) are supported for pattern synonyms. For example:

patternInlinablePattern x = [x]
{-# INLINABLE InlinablePattern #-}
pattern InlinedPattern x = [x]
{-# INLINE InlinedPattern #-}
pattern NonInlinedPattern x = [x]
{-# NOINLINE NonInlinedPattern #-}

As with other INLINABLE, INLINE and NOINLINE pragmas, it’s possible to specify to which
phase the pragma applies:

434 Chapter 6. Language extensions

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-580003.17
https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-580003.17

GHC User’s Guide Documentation, Release 9.2.6

pattern Q x = [x]
{-# NOINLINE[1] Q #-}

The pragmas are applied both when the pattern is used as amatcher, and as a data constructor.
For explicitly bidirectional pattern synonyms, the pragma must be at top level, not nested in
the where clause. For example, this won’t compile:

pattern HeadC x <- x:xs where
HeadC x = [x]
{-# INLINE HeadC #-}

but this will:

pattern HeadC x <- x:xs where
HeadC x = [x]

{-# INLINE HeadC #-}

When no pragma is provided for a pattern, the inlining decision is made by GHC’s own inlining
heuristics.

6.8 Class and instances declarations

This section documents GHC’s type-class extensions. There’s lots of background in the paper
Type classes: exploring the design space (Simon Peyton Jones, Mark Jones, Erik Meijer).

6.8.1 Multi-parameter type classes

MultiParamTypeClasses

Implies ConstrainedClassMethods (page 436)
Since 6.8.1

Allow the definition of typeclasses with more than one parameter.
Multi-parameter type classes are permitted, with extension MultiParamTypeClasses
(page 435). For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

6.8.2 Undecidable (or recursive) superclasses

UndecidableSuperClasses

Since 8.0.1
Allow all superclass constraints, including those that may result in non-termination of
the typechecker.

The language extension UndecidableSuperClasses (page 435) allows much more flexible
constraints in superclasses.
A class cannot generally have itself as a superclass. So this is illegal

6.8. Class and instances declarations 435

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/

GHC User’s Guide Documentation, Release 9.2.6

class C a => D a where ...
class D a => C a where ...

GHC implements this test conservatively when type functions, or type variables, are involved.
For example

type family F a :: Constraint
class F a => C a where ...

GHC will complain about this, because you might later add

type instance F Int = C Int

and now we’d be in a superclass loop. Here’s an example involving a type variable

class f (C f) => C f
class c => Id c

If we expanded the superclasses of C Id we’d get first Id (C Id) and thence C Id again.
But superclass constraints like these are sometimes useful, and the conservative check is
annoying where no actual recursion is involved.
Moreover genuinely-recursive superclasses are sometimes useful. Here’s a real-life example
(#10318)

class (Frac (Frac a) ~ Frac a,
Fractional (Frac a),
IntegralDomain (Frac a))

=> IntegralDomain a where
type Frac a :: Type

Here the superclass cycle does terminate but it’s not entirely straightforward to see that it
does.
With the language extension UndecidableSuperClasses (page 435) GHC lifts all restrictions
on superclass constraints. If there really is a loop, GHC will only expand it to finite depth.

6.8.3 Constrained class method types

ConstrainedClassMethods

Since 6.8.1
Allows the definition of further constraints on individual class methods.

Haskell 98 prohibits class method types to mention constraints on the class type variable,
thus:

class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool

The type of elem is illegal in Haskell 98, because it contains the constraint Eq a, which con-
strains only the class type variable (in this case a). More precisely, a constraint in a class
method signature is rejected if
• The constraint mentions at least one type variable. So this is allowed:

436 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

class C a where
op1 :: HasCallStack => a -> a
op2 :: (?x::Int) => Int -> a

• All of the type variables mentioned are bound by the class declaration, and none is locally
quantified. Examples:

class C a where
op3 :: Eq a => a -> a -- Rejected: constrains class variable only
op4 :: D b => a -> b -- Accepted: constrains a locally-quantified variable␣

↪→`b`
op5 :: D (a,b) => a -> b -- Accepted: constrains a locally-quantified variable␣

↪→`b`

GHC lifts this restriction with language extension ConstrainedClassMethods (page 436). The
restriction is a pretty stupid one in the first place, so ConstrainedClassMethods (page 436)
is implied by MultiParamTypeClasses (page 435).

6.8.4 Default method signatures

DefaultSignatures

Since 7.2.1
Allows the definition of default method signatures in class definitions.

Haskell 98 allows you to define a default implementation when declaring a class:

class Enum a where
enum :: [a]
enum = []

The type of the enum method is [a], and this is also the type of the default method. You can
change the type of the default method by requiring a different context using the extension
DefaultSignatures (page 437). For instance, if you have written a generic implementation
of enumeration in a class GEnum with method genum, you can specify a default method that
uses that generic implementation. But your default implementation can only be used if the
constraints are satisfied, therefore you need to change the type of the default method

class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [a]
enum = map to genum

We reuse the keyword default to signal that a signature applies to the default method only;
when defining instances of the Enum class, the original type [a] of enum still applies. When
giving an empty instance, however, the default implementation (map to genum) is filled-in,
and type-checked with the type (Generic a,GEnum (Rep a)) => [a].
The type signature for a default method of a type class must take on the same form as the
corresponding main method’s type signature. Otherwise, the typechecker will reject that
class’s definition. By “take on the same form”, we mean that the default type signature should
differ from the main type signature only in their outermost contexts. Therefore, if you have a
method bar:

6.8. Class and instances declarations 437

GHC User’s Guide Documentation, Release 9.2.6

class Foo a where
bar :: forall b. C => a -> b -> b

Then a default method for bar must take on the form:

default bar :: forall b. C' => a -> b -> b
bar = ...

C is allowed to be different from C', but the right-hand sides of the type signatures must
coincide. We require this because when you declare an empty instance for a class that uses
DefaultSignatures (page 437), GHC implicitly fills in the default implementation like this:

instance Foo Int where
bar = default_bar

Where default_bar is a top-level function based on the default type signature and implemen-
tation for bar:

default_bar :: forall a b. (Foo a, C') => a -> b -> b
default_bar = ...

In order for this approach to work, the default type signature for bar should be the same as
the non-default signature, modulo the outermost context (with some caveats—see Detailed
requirements for default type signatures (page 438)). There is no obligation for C and C'
to be the same, and indeed, the Enum example above relies on enum‘s default type signature
having a more specific context than the original type signature.
We use default signatures to simplify generic programming in GHC (Generic programming
(page 549)).

6.8.5 Detailed requirements for default type signatures

The rest of this section gives further details about what constitutes valid default type signa-
tures.
• Ignoring outermost contexts, a default type signature must match the original type sig-
nature according to GHC’s subsumption rules (page 374). As a result, the order of type
variables in the default signature is important. Recall the Foo example from the previous
section:

class Foo a where
bar :: forall b. C => a -> b -> b

default bar :: forall b. C' => a -> b -> b
bar = ...

This is legal because if you remove the outermost contexts C and C', then the two type
signatures are the same. It is not necessarily the case that the default signature has to
be exactly the same, however. For instance, this would also be an acceptable default
type signature, as it is alpha-equivalent to the original type signature:

default bar :: forall x. C' => a -> x -> x

On the other hand, this is not an acceptable default type signature, since the type variable
a is in the wrong place:

438 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

default bar :: forall b. C' => b -> a -> b

• The only place where a default type signature is allowed to more precise than the original
type signature is in the outermost context. For example, this would not be an acceptable
default type signature, since we can’t match the type variable b with the concrete type
Int:

default bar :: C' => a -> Int -> Int

You can, however, use type equalities to achieve the same result:

default bar :: forall b. (C', b ~ Int) => a -> b -> b

• Because of GHC’s subsumption rules (page 374) rules, there are relatively tight re-
strictions concerning nested or higher-rank foralls (see Arbitrary-rank polymorphism
(page 372)). Consider this class:

class C x where
m :: x -> forall a b. a -> b

GHC would not permit the following default type signature for m:

default m :: x -> forall b a. a -> b

This is because the default signature quantifies the nested foralls in a different order
than the original type signature. In order for this to typecheck, the default signature
must preserve the original order:

default m :: x -> forall a b. a -> b

Note that unlike nested or higher-rank foralls, outermost foralls have more flexibility
in how they are ordered. As a result, GHC will permit the following:

class C' x where
m' :: forall a b. x -> a -> b
default m' :: forall b a. x -> a -> b
m' = ...

• Just as the order of nested or higher-rank foralls is restricted, a similar restriction
applies to the order in which nested or higher-rank contexts appear. As a result, GHC
will not permit the following:

class D a where
n :: a -> forall b. (Eq b, Show b) => b -> String
default n :: a -> forall b. (Show b, Eq b) => b -> String
n = ...

GHC will permit reordering constraints within an outermost context, however, as demon-
strated by the fact that GHC accepts the following:

class D' a where
n' :: (Eq b, Show b) => a -> b -> String
default n' :: (Show b, Eq b) => a -> b -> String
n' = ...

6.8. Class and instances declarations 439

GHC User’s Guide Documentation, Release 9.2.6

• Because a default signature is only ever allowed to differ from its original type signature
in the outermost context, not in nested or higher-rank contexts, there are certain defaults
that cannot be written without reordering forall s. Consider this example:

class E a where
p :: Int -> forall b. b -> String

Suppose one wishes to write a default signature for p where the context must mention
both a and b. While the natural thing to do would be to write this default:

default p :: Int -> forall b. DefaultClass a b => b -> String

This will not typecheck, since the default type signature now differs from the original type
signature in its use of nested contexts. The only way to make such a default signature
work is to change the order in which b is quantified:

default p :: forall b. DefaultClass a b => Int -> b -> String

This works, but at the expense of changing p‘s behavior with respect to Visible type
application (page 366).

6.8.6 Nullary type classes

NullaryTypeClasses

Since 7.8.1
Allow use and definition of type classes with no parameters. This extension has been
replaced by MultiParamTypeClasses (page 435).

Nullary (no parameter) type classes are enabled with MultiParamTypeClasses (page 435);
historically, they were enabled with the (now deprecated) NullaryTypeClasses (page 440).
Since there are no available parameters, there can be at most one instance of a nullary class.
A nullary type class might be used to document some assumption in a type signature (such as
reliance on the Riemann hypothesis) or add some globally configurable settings in a program.
For example,

class RiemannHypothesis where
assumeRH :: a -> a

-- Deterministic version of the Miller test
-- correctness depends on the generalised Riemann hypothesis
isPrime :: RiemannHypothesis => Integer -> Bool
isPrime n = assumeRH (...)

The type signature of isPrime informs users that its correctness depends on an unproven
conjecture. If the function is used, the user has to acknowledge the dependence with:

instance RiemannHypothesis where
assumeRH = id

6.8.7 Functional dependencies

FunctionalDependencies

Implies MultiParamTypeClasses (page 435)

440 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Since 6.8.1
Allow use of functional dependencies in class declarations.

Functional dependencies are implemented as described by Mark Jones in [Jones2000]
(page 685).
Functional dependencies are introduced by a vertical bar in the syntax of a class declaration;
e.g.

class (Monad m) => MonadState s m | m -> s where ...

class Foo a b c | a b -> c where ...

More documentation can be found in the Haskell Wiki.

Rules for functional dependencies

In a class declaration, all of the class type variables must be reachable (in the sensementioned
in Loosening restrictions on class contexts (page 459)) from the free variables of each method
type. For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type of empty doesn’t mention a. Functional dependencies can make
the type variable reachable:

class Coll s a | s -> a where
empty :: s
insert :: s -> a -> s

Alternatively Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

which makes the connection between the type of a collection of a‘s (namely (s a)) and the
element type a. Occasionally this really doesn’t work, in which case you can split the class
like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from
the Hugs user manual, reproduced here (with minor changes) by kind permission of Mark
Jones.
Consider the following class, intended as part of a library for collection types:

6.8. Class and instances declarations 441

https://wiki.haskell.org/Functional_dependencies

GHC User’s Guide Documentation, Release 9.2.6

class Collects e ce where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of the container
itself. Within this framework, we might want to define instances of this class for lists or
characteristic functions (both of which can be used to represent collections of any equality
type), bit sets (which can be used to represent collections of characters), or hash tables (which
can be used to represent any collection whose elements have a hash function). Omitting
standard implementation details, this would lead to the following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting implementations.
Unfortunately, there are some serious problems with the class declaration. First, the empty
function has an ambiguous type:

empty :: Collects e ce => ce

By “ambiguous” we mean that there is a type variable e that appears on the left of the =>
symbol, but not on the right. The problem with this is that, according to the theoretical
foundations of Haskell overloading, we cannot guarantee a well-defined semantics for any
term with an ambiguous type.
We can sidestep this specific problem by removing the empty member from the class declara-
tion. However, although the remaining members, insert and member, do not have ambiguous
types, we still run into problems when we try to use them. For example, consider the following
two functions:

f x y = insert x . insert y
g = f True 'a'

for which GHC infers the following types:

f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for f allows the two parameters x and y to be assigned different types,
even though it attempts to insert each of the two values, one after the other, into the same
collection. If we’re trying to model collections that contain only one type of value, then this
is clearly an inaccurate type. Worse still, the definition for g is accepted, without causing a
type error. As a result, the error in this code will not be flagged at the point where it appears.
Instead, it will show up only when we try to use g, which might even be in a different module.

An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to
use something like the following version of the class declaration:

442 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor c that is used to form the
collection type c e, and not over that collection type itself, represented by ce in the original
class declaration. This avoids the immediate problems that we mentioned above: empty has
type Collects e c => c e, which is not ambiguous.
The function f from the previous section has a more accurate type:

f :: (Collects e c) => e -> e -> c e -> c e

The function g from the previous section is now rejected with a type error as we would hope
because the type of f does not allow the two arguments to have different types. This, then,
is an example of a multiple parameter class that does actually work quite well in practice,
without ambiguity problems. There is, however, a catch. This version of the Collects class is
nowhere near as general as the original class seemed to be: only one of the four instances for
Collects given above can be used with this version of Collects because only one of them—
the instance for lists—has a collection type that can be written in the form c e, for some type
constructor c, and element type e.

Adding functional dependencies

To get a more useful version of the Collects class, GHC provides a mechanism that allows
programmers to specify dependencies between the parameters of a multiple parameter class
(For readers with an interest in theoretical foundations and previous work: The use of depen-
dency information can be seen both as a generalisation of the proposal for “parametric type
classes” that was put forward by Chen, Hudak, and Odersky, or as a special case of Mark
Jones’s later framework for “improvement” of qualified types. The underlying ideas are also
discussed in a more theoretical and abstract setting in a manuscript [Jones1999] (page 685),
where they are identified as one point in a general design space for systems of implicit pa-
rameterisation). To start with an abstract example, consider a declaration such as:

class C a b where ...

which tells us simply that C can be thought of as a binary relation on types (or type construc-
tors, depending on the kinds of a and b). Extra clauses can be included in the definition
of classes to add information about dependencies between parameters, as in the following
examples:

class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...

The notation a -> b used here between the | and where symbols — not to be confused with
a function type — indicates that the a parameter uniquely determines the b parameter, and
might be read as “a determines b.” Thus D is not just a relation, but actually a (partial) function.
Similarly, from the two dependencies that are included in the definition of E, we can see that
E represents a (partial) one-to-one mapping between types.
More generally, dependencies take the form x1 ... xn -> y1 ... ym, where x1, ..., xn, and
y1, ..., yn are type variables with n>0 and m>=0, meaning that the y parameters are uniquely
determined by the x parameters. Spaces can be used as separators if more than one variable

6.8. Class and instances declarations 443

GHC User’s Guide Documentation, Release 9.2.6

appears on any single side of a dependency, as in t -> a b. Note that a class may be anno-
tated with multiple dependencies using commas as separators, as in the definition of E above.
Some dependencies that we can write in this notation are redundant, and will be rejected
because they don’t serve any useful purpose, and may instead indicate an error in the pro-
gram. Examples of dependencies like this include a -> a, a -> a a, a ->, etc. There can
also be some redundancy if multiple dependencies are given, as in a->b, b->c, a->c, and in
which some subset implies the remaining dependencies. Examples like this are not treated as
errors. Note that dependencies appear only in class declarations, and not in any other part of
the language. In particular, the syntax for instance declarations, class constraints, and types
is completely unchanged.
By including dependencies in a class declaration, we provide a mechanism for the program-
mer to specify each multiple parameter class more precisely. The compiler, on the other hand,
is responsible for ensuring that the set of instances that are in scope at any given point in
the program is consistent with any declared dependencies. For example, the following pair
of instance declarations cannot appear together in the same scope because they violate the
dependency for D, even though either one on its own would be acceptable:

instance D Bool Int where ...
instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to be asso-
ciated with more than one choice for b, which contradicts the dependency specified in the
definition of D. More generally, this means that, in any instance of the form:

instance D t s where ...

for some particular types t and s, the only variables that can appear in s are the ones that
appear in t, and hence, if the type t is known, then s will be uniquely determined.
The benefit of including dependency information is that it allows us to define more general
multiple parameter classes, without ambiguity problems, and with the benefit of more accu-
rate types. To illustrate this, we return to the collection class example, and annotate the
original definition of Collects with a simple dependency:

class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The dependency ce -> e here specifies that the type e of elements is uniquely determined by
the type of the collection ce. Note that both parameters of Collects are of kind Type; there
are no constructor classes here. Note too that all of the instances of Collects that we gave
earlier can be used together with this new definition.
What about the ambiguity problems that we encountered with the original definition? The
empty function still has type Collects e ce => ce, but it is no longer necessary to regard
that as an ambiguous type: Although the variable e does not appear on the right of the =>
symbol, the dependency for class Collects tells us that it is uniquely determined by ce, which
does appear on the right of the => symbol. Hence the context in which empty is used can
still give enough information to determine types for both ce and e, without ambiguity. More
generally, we need only regard a type as ambiguous if it contains a variable on the left of the
=> that is not uniquely determined (either directly or indirectly) by the variables on the right.

444 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Dependencies also help to produce more accurate types for user defined functions, and hence
to provide earlier detection of errors, and less cluttered types for programmers to work with.
Recall the previous definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a c, Collects b c) => a -> b -> c -> c

Given the dependency information that we have for Collects, however, we can deduce that
a and b must be equal because they both appear as the second parameter in a Collects
constraint with the same first parameter c. Hence we can infer a shorter and more accurate
type for f:

f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of g will now be flagged as a type error.
Although we have given only a few examples here, it should be clear that the addition of
dependency information can help to make multiple parameter classes more useful in practice,
avoiding ambiguity problems, and allowing more general sets of instance declarations.

6.8.8 Instance declarations and resolution

An instance declaration has the form

instance (assertion1, ..., assertionn) => class type1 ... typem where ...

The part before the “=>” is the context, while the part after the “=>” is the head of the instance
declaration.
When GHC tries to resolve, say, the constraint C Int Bool, it tries to match every instance
declaration against the constraint, by instantiating the head of the instance declaration. Con-
sider these declarations:

instance context1 => C Int a where ... -- (A)
instance context2 => C a Bool where ... -- (B)

GHC’s default behaviour is that exactly one instance must match the constraint it is trying to
resolve. For example, the constraint C Int Bool matches instances (A) and (B), and hence
would be rejected; while C Int Char matches only (A) and hence (A) is chosen.
Notice that
• When matching, GHC takes no account of the context of the instance declaration
(context1 etc).

• It is fine for there to be a potential of overlap (by including both declarations (A) and (B),
say); an error is only reported if a particular constraint matches more than one.

See also Overlapping instances (page 449) for flags that loosen the instance resolution rules.

Relaxed rules for the instance head

TypeSynonymInstances

6.8. Class and instances declarations 445

GHC User’s Guide Documentation, Release 9.2.6

Since 6.8.1
Allow definition of type class instances for type synonyms.

FlexibleInstances

Implies TypeSynonymInstances (page 445)
Since 6.8.1

Allow definition of type class instances with arbitrary nested types in the instance head.
In Haskell 98 the head of an instance declarationmust be of the form C (T a1 ... an), where
C is the class, T is a data type constructor, and the a1 ... an are distinct type variables. In
the case of multi-parameter type classes, this rule applies to each parameter of the instance
head (Arguably it should be okay if just one has this form and the others are type variables,
but that’s the rules at the moment).
GHC relaxes this rule in two ways:
• With the TypeSynonymInstances (page 445) extension, instance heads may use type
synonyms. As always, using a type synonym is just shorthand for writing the RHS of the
type synonym definition. For example:

type Point a = (a,a)
instance C (Point a) where ...

is legal. The instance declaration is equivalent to

instance C (a,a) where ...

As always, type synonyms must be fully applied. You cannot, for example, write:

instance Monad Point where ...

• The FlexibleInstances (page 446) extension allows the head of the instance decla-
ration to mention arbitrary nested types. For example, this becomes a legal instance
declaration

instance C (Maybe Int) where ...

See also the rules on overlap (page 449).
The FlexibleInstances (page 446) extension implies TypeSynonymInstances
(page 445).

However, the instance declaration must still conform to the rules for instance termination:
see Instance termination rules (page 448).

Formal syntax for instance declaration types

The top of an instance declaration only permits very specific forms of types. To make more
precise what forms of types are or are not permitted, we provide a BNF-style grammar for
the tops of instance declarations below.

inst_top ::= 'instance' opt_forall opt_ctxt inst_head opt_where

opt_forall ::= <empty>
| 'forall' tv_bndrs '.'

446 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

tv_bndrs ::= <empty>
| tv_bndr tv_bndrs

tv_bndr ::= tyvar
| '(' tyvar '::' ctype ')'

opt_ctxt ::= <empty>
| btype '=>'
| '(' ctxt ')' '=>'

ctxt ::= ctype
| ctype ',' ctxt

inst_head ::= '(' inst_head ')'
| prefix_cls_tycon arg_types
| arg_type infix_cls_tycon arg_type
| '(' arg_type infix_cls_tycon arg_type ')' arg_types

arg_type ::= <empty>
| arg_type arg_types

opt_where ::= <empty>
| 'where'

Where:
• btype is a type that is not allowed to have an outermost forall/=> unless it is surrounded
by parentheses. For example, forall a. a and Eq a => a are not legal btypes, but
(forall a. a) and (Eq a => a) are legal.

• ctype is a btype that has no restrictions on an outermost forall/=>, so forall a. a
and Eq a => a are legal ctypes.

• arg_type is a type that is not allowed to have foralls or =>s
• prefix_cls_tycon is a class type constructor written prefix (e.g., Show or (&&&)), while
infix_cls_tycon is a class type constructor written infix (e.g., \`Show\` or &&&).

This is a simplified grammar that does not fully delve into all of the implementation details of
GHC’s parser (such as the placement of Haddock comments), but it is sufficient to attain an
understanding of what is syntactically allowed. Some further various observations about this
grammar:
• Instance declarations are not allowed to be declared with nested foralls or =>s. For
example, this would be rejected:

instance forall a. forall b. C (Either a b) where ...

As a result, inst_top puts all of its quantification and constraints up front with
opt_forall and opt_context.

• Furthermore, instance declarations types do not permit outermost parentheses that sur-
round the opt_forall or opt_ctxt, if at least one of them are used. For example, in-
stance (forall a. C a)would be rejected, since GHCwould treat the forall as being
nested.
Note that it is acceptable to use parentheses in a inst_head. For instance, instance (C
a) is accepted, as is instance forall a. (C a).

6.8. Class and instances declarations 447

GHC User’s Guide Documentation, Release 9.2.6

Instance termination rules

UndecidableInstances

Since 6.8.1
Permit definition of instances which may lead to type-checker non-termination.

Regardless of FlexibleInstances (page 446) and FlexibleContexts (page 459), instance
declarations must conform to some rules that ensure that instance resolution will terminate.
The restrictions can be lifted with UndecidableInstances (page 448) (see Instance termina-
tion rules (page 448)).
The rules are these:
1. The Paterson Conditions: for each class constraint (C t1 ... tn) in the context

(a) No type variable has more occurrences in the constraint than in the head
(b) The constraint has fewer constructors and variables (taken together and counting

repetitions) than the head
(c) The constraint mentions no type functions. A type function application can in prin-

ciple expand to a type of arbitrary size, and so are rejected out of hand
2. The Coverage Condition. For each functional dependency, ⟨tvs⟩left -> ⟨tvs⟩right, of the
class, every type variable in S(⟨tvs⟩right) must appear in S(⟨tvs⟩left), where S is the substi-
tution mapping each type variable in the class declaration to the corresponding type in
the instance head.

These restrictions ensure that instance resolution terminates: each reduction step makes
the problem smaller by at least one constructor. You can find lots of background material
about the reason for these restrictions in the paper Understanding functional dependencies
via Constraint Handling Rules.
For example, these are okay:

instance C Int [a] -- Multiple parameters
instance Eq (S [a]) -- Structured type in head

-- Repeated type variable in head
instance C4 a a => C4 [a] [a]
instance Stateful (ST s) (MutVar s)

-- Head can consist of type variables only
instance C a
instance (Eq a, Show b) => C2 a b

-- Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b

But these are not:

-- Context assertion no smaller than head
instance C a => C a where ...

-- (C b b) has more occurrences of b than the head
instance C b b => Foo [b] where ...

448 Chapter 6. Language extensions

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/jfp06.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/jfp06.pdf

GHC User’s Guide Documentation, Release 9.2.6

The same restrictions apply to instances generated by deriving clauses. Thus the following
is accepted:

data MinHeap h a = H a (h a)
deriving (Show)

because the derived instance

instance (Show a, Show (h a)) => Show (MinHeap h a)

conforms to the above rules.
The restrictions on functional dependencies (Functional dependencies (page 440)) are par-
ticularly troublesome. It is tempting to introduce type variables in the context that do not
appear in the head, something that is excluded by the normal rules. For example:

class HasConverter a b | a -> b where
convert :: a -> b

data Foo a = MkFoo a

instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)

This is dangerous territory, however. Here, for example, is a program that would make the
typechecker loop:

class D a
class F a b | a->b
instance F [a] [[a]]
instance (D c, F a c) => D [a] -- 'c' is not mentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul a b c | a b -> c where
(.*.) :: a -> b -> c

instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v

The third instance declaration does not obey the coverage condition; and indeed the (some-
what strange) definition:

f = \ b x y -> if b then x .*. [y] else y

makes instance inference go into a loop, because it requires the constraint (Mul a [b] b).
The UndecidableInstances (page 448) extension is also used to lift some of the restrictions
imposed on type family instances. See Decidability of type synonym instances (page 332).

Overlapping instances

OverlappingInstances

Since 6.8.1

6.8. Class and instances declarations 449

GHC User’s Guide Documentation, Release 9.2.6

Deprecated extension to weaken checks intended to ensure instance resolution termina-
tion.

IncoherentInstances

Since 6.8.1
Deprecated extension to weaken checks intended to ensure instance resolution termina-
tion.

In general, as discussed in Instance declarations and resolution (page 445), GHC requires
that it be unambiguous which instance declaration should be used to resolve a type-class
constraint. GHC also provides a way to loosen the instance resolution, by allowing more than
one instance to match, provided there is a most specific one. Moreover, it can be loosened
further, by allowing more than one instance to match irrespective of whether there is a most
specific one. This section gives the details.
To control the choice of instance, it is possible to specify the overlap behavior for individ-
ual instances with a pragma, written immediately after the instance keyword. The pragma
may be one of: {-# OVERLAPPING #-}, {-# OVERLAPPABLE #-}, {-# OVERLAPS #-}, or {-#
INCOHERENT #-}.
The matching behaviour is also influenced by two module-level language extension flags:
OverlappingInstances (page 449) and IncoherentInstances (page 450). These extensions
are now deprecated (since GHC 7.10) in favour of the fine-grained per-instance pragmas.
A more precise specification is as follows. The willingness to be overlapped or incoherent is
a property of the instance declaration itself, controlled as follows:
• An instance is incoherent if: it has an INCOHERENT pragma; or if the instance has no
pragma and it appears in a module compiled with IncoherentInstances (page 450).

• An instance is overlappable if: it has an OVERLAPPABLE or OVERLAPS pragma; or if the in-
stance has no pragma and it appears in a module compiled with OverlappingInstances
(page 449); or if the instance is incoherent.

• An instance is overlapping if: it has an OVERLAPPING or OVERLAPS pragma; or if the in-
stance has no pragma and it appears in a module compiled with OverlappingInstances
(page 449); or if the instance is incoherent.

Now suppose that, in some client module, we are searching for an instance of the target
constraint (C ty1 .. tyn). The search works like this:
• Find all instances I that match the target constraint; that is, the target constraint is a
substitution instance of I. These instance declarations are the candidates.

• If no candidates remain, the search fails
• Eliminate any candidate IX for which there is another candidate IY such that both of
the following hold:
– IY is strictly more specific than IX. That is, IY is a substitution instance of IX but
not vice versa.

– Either IX is overlappable, or IY is overlapping. (This “either/or” design, rather than
a “both/and” design, allow a client to deliberately override an instance from a library,
without requiring a change to the library.)

• If all the remaining candidates are incoherent, the search succeeds, returning an arbi-
trary surviving candidate.

• If more than one non-incoherent candidate remains, the search fails.

450 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Otherwise there is exactly one non-incoherent candidate; call it the “prime candidate”.
• Now find all instances, or in-scope given constraints, that unify with the target con-
straint, but do not match it. Such non-candidate instances might match when the target
constraint is further instantiated. If all of them are incoherent top-level instances, the
search succeeds, returning the prime candidate. Otherwise the search fails.

Notice that these rules are not influenced by flag settings in the client module, where the
instances are used. These rules make it possible for a library author to design a library that
relies on overlapping instances without the client having to know.
Errors are reported lazily (when attempting to solve a constraint), rather than eagerly (when
the instances themselves are defined). Consider, for example

instance C Int b where ..
instance C a Bool where ..

These potentially overlap, but GHC will not complain about the instance declarations them-
selves, regardless of flag settings. If we later try to solve the constraint (C Int Char) then
only the first instance matches, and all is well. Similarly with (C Bool Bool). But if we try
to solve (C Int Bool), both instances match and an error is reported.
As a more substantial example of the rules in action, consider

instance {-# OVERLAPPABLE #-} context1 => C Int b where ... -- (A)
instance {-# OVERLAPPABLE #-} context2 => C a Bool where ... -- (B)
instance {-# OVERLAPPABLE #-} context3 => C a [b] where ... -- (C)
instance {-# OVERLAPPING #-} context4 => C Int [Int] where ... -- (D)

(These all need FlexibleInstances (page 446).) Now suppose that the type inference engine
needs to solve the constraint C Int [Int]. This constraint matches instances (A), (C) and (D),
but the last is more specific, and hence is chosen.
If (D) did not exist then (A) and (C) would still be matched, but neither is most specific. In that
case, the program would be rejected, unless IncoherentInstances (page 450) is enabled, in
which case it would be accepted and (A) or (C) would be chosen arbitrarily.
An instance declaration is more specific than another iff the head of former is a substitution
instance of the latter. For example (D) is “more specific” than (C) because you can get from
(C) to (D) by substituting a := Int and b := Int.
The final bullet (about unifying instances) makes GHC conservative about committing to an
overlapping instance. For example:

f :: [b] -> [b]
f x = ...

Suppose that from the RHS of f we get the constraint C b [b]. But GHC does not commit to
instance (C), because in a particular call of f, b might be instantiated to Int, in which case
instance (D) would be more specific still. So GHC rejects the program.
If, however, you enable the extension IncoherentInstances (page 450) when compiling the
module that contains (D), GHC will instead pick (C), without complaining about the problem
of subsequent instantiations.
Notice that we gave a type signature to f, so GHC had to check that f has the specified type.
Suppose instead we do not give a type signature, asking GHC to infer it instead. In this case,
GHC will refrain from simplifying the constraint C Int [b] (for the same reason as before)
but, rather than rejecting the program, it will infer the type

6.8. Class and instances declarations 451

GHC User’s Guide Documentation, Release 9.2.6

f :: C b [b] => [b] -> [b]

That postpones the question of which instance to pick to the call site for f by which time more
is known about the type b. You will need the FlexibleContexts (page 459) extension.
Exactly the same situation can arise in instance declarations themselves. Suppose we have

class Foo a where
f :: a -> a

instance Foo [b] where
f x = ...

and, as before, the constraint C Int [b] arises from f‘s right hand side. GHC will reject the
instance, complaining as before that it does not know how to resolve the constraint C Int
[b], because it matches more than one instance declaration. The solution is to postpone the
choice by adding the constraint to the context of the instance declaration, thus:

instance C Int [b] => Foo [b] where
f x = ...

(You need FlexibleContexts (page 459) to do this.)
In the unification check in the final bullet, GHC also uses the “in-scope given constraints”.
Consider for example

instance C a Int

g :: forall b c. C b Int => blah
g = ...needs (C c Int)...

Here GHC will not solve the constraint (C c Int) from the top-level instance, because a
particular call of g might instantiate both b and c to the same type, which would allow the
constraint to be solved in a different way. This latter restriction is principally to make the
constraint-solver complete. (Interested folk can read Note [Instance and Given overlap]
in TcInteract.) It is easy to avoid: in a type signature avoid a constraint that matches a top-
level instance. The flag -Wsimplifiable-class-constraints (page 113) warns about such
signatures.

Warning: Overlapping instances must be used with care. They can give rise to inco-
herence (i.e. different instance choices are made in different parts of the program) even
without IncoherentInstances (page 450). Consider:
{-# LANGUAGE OverlappingInstances #-}
module Help where

class MyShow a where
myshow :: a -> String

instance MyShow a => MyShow [a] where
myshow xs = concatMap myshow xs

showHelp :: MyShow a => [a] -> String
showHelp xs = myshow xs

{-# LANGUAGE FlexibleInstances, OverlappingInstances #-}
module Main where

import Help

data T = MkT

instance MyShow T where
myshow x = "Used generic instance"

instance MyShow [T] where
myshow xs = "Used more specific instance"

main = do { print (myshow [MkT]); print (showHelp [MkT]) }

452 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

In function showHelp GHC sees no overlapping instances, and so uses the MyShow [a]
instance without complaint. In the call to myshow in main, GHC resolves the MyShow [T]
constraint using the overlapping instance declaration in module Main. As a result, the
program prints
"Used more specific instance"
"Used generic instance"

(An alternative possible behaviour, not currently implemented, would be to reject module
Help on the grounds that a later instance declaration might overlap the local one.)

Instance signatures: type signatures in instance declarations

InstanceSigs

Since 7.6.1
Allow type signatures for members in instance definitions.

In Haskell, you can’t write a type signature in an instance declaration, but it is sometimes
convenient to do so, and the language extension InstanceSigs (page 453) allows you to do
so. For example:

data T a = MkT a a
instance Eq a => Eq (T a) where
(==) :: T a -> T a -> Bool -- The signature
(==) (MkT x1 x2) (MkTy y1 y2) = x1==y1 && x2==y2

Some details
• The type signature in the instance declaration must be more polymorphic than (or the
same as) the one in the class declaration, instantiated with the instance type. For exam-
ple, this is fine:

instance Eq a => Eq (T a) where
(==) :: forall b. b -> b -> Bool
(==) x y = True

Here the signature in the instance declaration is more polymorphic than that required
by the instantiated class method.

• The code for the method in the instance declaration is typechecked against the type
signature supplied in the instance declaration, as you would expect. So if the instance
signature is more polymorphic than required, the code must be too.

• One stylistic reason for wanting to write a type signature is simple documentation. An-
other is that you may want to bring scoped type variables into scope. For example:

class C a where
foo :: b -> a -> (a, [b])

instance C a => C (T a) where
foo :: forall b. b -> T a -> (T a, [b])
foo x (T y) = (T y, xs)

where
xs :: [b]
xs = [x,x,x]

6.8. Class and instances declarations 453

GHC User’s Guide Documentation, Release 9.2.6

Provided that you also specify ScopedTypeVariables (page 472) (Lexically scoped type
variables (page 472)), the forall b scopes over the definition of foo, and in particular
over the type signature for xs.

6.9 Literals

6.9.1 Negative literals

NegativeLiterals

Since 7.8.1
Enable negative numeric literals.

The literal -123 is, according to Haskell98 and Haskell 2010, two tokens, a unary minus (-)
and the number 123, and is desugared as negate (fromInteger 123). The language exten-
sion NegativeLiterals (page 454) causes it to be treated as a single token and desugared
as fromInteger (-123).
This can be useful when the positive and negative range of a numeric data type don’t match up.
For example, in 8-bit arithmetic -128 is representable, but +128 is not. So negate (fromInte-
ger 128) will elicit an unexpected integer-literal-overflow message.
Whitespace can be inserted, as in -123, to force interpretation as two tokens.
In 9.0, the behavior of this extension changed, and now we require that a negative literal must
not be preceded by a closing token (see GHC Proposal #229 for the definition of a closing
token). In other words, we parse f -123 as f (-123), but x-123 as (-) x 123. Before this
amendment, NegativeLiterals (page 454) caused x-123 to be parsed as x(-123).
NegativeLiterals (page 454) is a subset of LexicalNegation (page 305). That is, enabling
both of those extensions has the same effect as enabling LexicalNegation (page 305) alone.

6.9.2 Binary integer literals

BinaryLiterals

Since 7.10.1
Allow the use of binary notation in integer literals.

Haskell 2010 and Haskell 98 allows for integer literals to be given in decimal, octal (prefixed
by 0o or 0O), or hexadecimal notation (prefixed by 0x or 0X).
The language extension BinaryLiterals (page 454) adds support for expressing integer lit-
erals in binary notation with the prefix 0b or 0B. For instance, the binary integer literal
0b11001001 will be desugared into fromInteger 201 when BinaryLiterals (page 454) is
enabled.

6.9.3 Hexadecimal floating point literals

HexFloatLiterals

Since 8.4.1
Allow writing floating point literals using hexadecimal notation.

454 Chapter 6. Language extensions

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.2.6

The hexadecimal notation for floating point literals is useful when you need to specify floating
point constants precisely, as the literal notation corresponds closely to the underlying bit-
encoding of the number.
In this notation floating point numbers are written using hexadecimal digits, and so the digits
are interpreted using base 16, rather then the usual 10. This means that digits left of the
decimal point correspond to positive powers of 16, while the ones to the right correspond to
negative ones.
You may also write an explicit exponent, which is similar to the exponent in decimal notation
with the following differences:
• the exponent begins with p instead of e
• the exponent is written in base 10 (not 16)
• the base of the exponent is 2 (not 16).

In terms of the underlying bit encoding, each hexadecimal digit corresponds to 4 bits, and
you may think of the exponent as “moving” the floating point by one bit left (negative) or right
(positive). Here are some examples:
• 0x0.1 is the same as 1/16
• 0x0.01 is the same as 1/256
• 0xF.FF is the same as 15 + 15/16 + 15/256

• 0x0.1p4 is the same as 1
• 0x0.1p-4 is the same as 1/256
• 0x0.1p12 is the same as 256

6.9.4 Fractional looking integer literals

NumDecimals

Since 7.8.1
Allow the use of floating-point literal syntax for integral types.

Haskell 2010 and Haskell 98 define floating literals with the syntax 1.2e6. These literals have
the type Fractional a => a.
The language extension NumDecimals (page 455) allows you to also use the floating literal
syntax for instances of Integral, and have values like (1.2e6 :: Num a => a)

6.9.5 Numeric underscores

NumericUnderscores

Since 8.6.1
Allow the use of underscores in numeric literals.

GHC allows for numeric literals to be given in decimal, octal, hexadecimal, binary, or float
notation.
The language extension NumericUnderscores (page 455) adds support for expressing under-
scores in numeric literals. For instance, the numeric literal 1_000_000 will be parsed into

6.9. Literals 455

GHC User’s Guide Documentation, Release 9.2.6

1000000 when NumericUnderscores (page 455) is enabled. That is, underscores in numeric
literals are ignored when NumericUnderscores (page 455) is enabled. See also #14473.
For example:

-- decimal
million = 1_000_000
billion = 1_000_000_000
lightspeed = 299_792_458
version = 8_04_1
date = 2017_12_31

-- hexadecimal
red_mask = 0xff_00_00
size1G = 0x3fff_ffff

-- binary
bit8th = 0b01_0000_0000
packbits = 0b1_11_01_0000_0_111
bigbits = 0b1100_1011__1110_1111__0101_0011

-- float
pi = 3.141_592_653_589_793
faraday = 96_485.332_89
avogadro = 6.022_140_857e+23

-- function
isUnderMillion = (< 1_000_000)

clip64M x
| x > 0x3ff_ffff = 0x3ff_ffff
| otherwise = x

test8bit x = (0b01_0000_0000 .&. x) /= 0

About validity:

x0 = 1_000_000 -- valid
x1 = 1__000000 -- valid
x2 = 1000000_ -- invalid
x3 = _1000000 -- invalid

e0 = 0.0001 -- valid
e1 = 0.000_1 -- valid
e2 = 0_.0001 -- invalid
e3 = _0.0001 -- invalid
e4 = 0._0001 -- invalid
e5 = 0.0001_ -- invalid

f0 = 1e+23 -- valid
f1 = 1_e+23 -- valid
f2 = 1__e+23 -- valid
f3 = 1e_+23 -- invalid

g0 = 1e+23 -- valid
g1 = 1e+_23 -- invalid
g2 = 1e+23_ -- invalid

h0 = 0xffff -- valid

456 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/14473

GHC User’s Guide Documentation, Release 9.2.6

h1 = 0xff_ff -- valid
h2 = 0x_ffff -- valid
h3 = 0x__ffff -- valid
h4 = _0xffff -- invalid

6.9.6 Overloaded string literals

OverloadedStrings

Since 6.8.1
Enable overloaded string literals (e.g. string literals desugared via the IsString class).

GHC supports overloaded string literals. Normally a string literal has type String, but with
overloaded string literals enabled (with OverloadedStrings (page 457)) a string literal has
type (IsString a) => a.
This means that the usual string syntax can be used, e.g., for ByteString, Text, and other
variations of string like types. String literals behave very much like integer literals, i.e., they
can be used in both expressions and patterns. If used in a pattern the literal will be replaced
by an equality test, in the same way as an integer literal is.
The class IsString is defined as:

class IsString a where
fromString :: String -> a

The only predefined instance is the obvious one to make strings work as usual:

instance IsString [Char] where
fromString cs = cs

The class IsString is not in scope by default. If you want to mention it explicitly (for example,
to give an instance declaration for it), you can import it from module Data.String.
Haskell’s defaulting mechanism (Haskell Report, Section 4.3.4) is extended to cover string
literals, when OverloadedStrings (page 457) is specified. Specifically:
• Each type in a default declaration must be an instance of Num or of IsString.
• If no default declaration is given, then it is just as if the module contained the declara-
tion default(Integer,Double,String).

• The standard defaulting rule is extended thus: defaulting applies when all the unresolved
constraints involve standard classes or IsString; and at least one is a numeric class or
IsString.

So, for example, the expression length "foo" will give rise to an ambiguous use of IsString
a0 which, because of the above rules, will default to String.
A small example:

module Main where

import Data.String(IsString(..))

newtype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where

fromString = MyString

6.9. Literals 457

http://www.haskell.org/onlinereport/decls.html#sect4.3.4

GHC User’s Guide Documentation, Release 9.2.6

greet :: MyString -> MyString
greet "hello" = "world"
greet other = other

main = do
print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets translated
into an equality comparison.

6.9.7 Overloaded labels

OverloadedLabels

Since 8.0.1
Enable use of the #foo overloaded label syntax.

GHC supports overloaded labels, a form of identifier whose interpretationmay depend both on
its type and on its literal text. When the OverloadedLabels (page 458) extension is enabled,
an overloaded label can be written with a prefix hash, for example #foo. The type of this
expression is IsLabel "foo" a => a.
The class IsLabel is defined as:

class IsLabel (x :: Symbol) a where
fromLabel :: a

This is rather similar to the class IsString (see Overloaded string literals (page 457)), but
with an additional type parameter that makes the text of the label available as a type-level
string (see Type-Level Literals (page 364)). Note that fromLabel had an extra Proxy# x
argument in GHC 8.0, but this was removed in GHC 8.2 as a type application (see Visible type
application (page 366)) can be used instead.
There are no predefined instances of this class. It is not in scope by default, but can be
brought into scope by importing GHC.OverloadedLabels. Unlike IsString, there are no spe-
cial defaulting rules for IsLabel.
During typechecking, GHC will replace an occurrence of an overloaded label like #foo with
fromLabel @"foo". This will have some type alpha and require the solution of a class con-
straint IsLabel "foo" alpha.
The intention is for IsLabel to be used to support overloaded record fields and perhaps anony-
mous records. Thus, it may be given instances for base datatypes (in particular (->)) in the
future.
If RebindableSyntax (page 285) is enabled, overloaded labels will be desug-
ared using whatever fromLabel function is in scope, rather than always using
GHC.OverloadedLabels.fromLabel.
When writing an overloaded label, there must be no space between the hash sign and the
following identifier. The MagicHash (page 268) extension makes use of postfix hash signs; if
OverloadedLabels (page 458) and MagicHash (page 268) are both enabled then x#y means
x# y, but if only OverloadedLabels (page 458) is enabled then it means x #y. The Unboxed-
Tuples (page 510) extension makes (# a single lexeme, so when UnboxedTuples (page 510)
is enabled you must write a space between an opening parenthesis and an overloaded label.

458 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

To avoid confusion, you are strongly encouraged to put a space before the hash when using
OverloadedLabels (page 458).
When using OverloadedLabels (page 458) (or other extensions that make use of hash signs) in
a .hsc file (see Writing Haskell interfaces to C code: hsc2hs (page 635)), the hash signs must
be doubled (write ##foo instead of #foo) to avoid them being treated as hsc2hs directives.
Here is an extension of the record access example in Type-Level Literals (page 364) showing
how an overloaded label can be used as a record selector:

{-# LANGUAGE DataKinds, KindSignatures, MultiParamTypeClasses,
FunctionalDependencies, FlexibleInstances,
OverloadedLabels, ScopedTypeVariables #-}

import GHC.OverloadedLabels (IsLabel(..))
import GHC.TypeLits (Symbol)

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y

instance Has a l b => IsLabel l (a -> b) where
fromLabel x = from x (Get :: Label l)

example = #x (Point 1 2)

6.10 Constraints

6.10.1 Loosening restrictions on class contexts

FlexibleContexts

Since 6.8.1
Remove the type-variable restriction on class contexts.

The FlexibleContexts (page 459) extension lifts the Haskell 98 restriction that the type-class
constraints (anywhere they appear) must have the form (class type-variable) or (class (type-
variable type1 type2 ... typen)). With FlexibleContexts (page 459) these type signatures
are perfectly okay:

g :: Eq [a] => ...
g :: Ord (T a ()) => ...

This extension does not affect equality constraints in an instance context; they are permitted
by TypeFamilies (page 325) or GADTs (page 321).
Note that FlexibleContexts (page 459) affects usages of class constraints, in type signatures
and other contexts. In contrast, FlexibleInstances (page 446) loosens a similar restriction
in place when declaring a new instance.

6.10. Constraints 459

GHC User’s Guide Documentation, Release 9.2.6

6.10.2 Equality constraints and Coercible constraint

Equality constraints

A type context can include equality constraints of the form t1 ~ t2, which denote that the
types t1 and t2 need to be the same. In the presence of type families, whether two types are
equal cannot generally be decided locally. Hence, the contexts of function signatures may
include equality constraints, as in the following example:

sumCollects :: (Collects c1, Collects c2, Elem c1 ~ Elem c2) => c1 -> c2 -> c2

where we require that the element type of c1 and c2 are the same. In general, the types t1
and t2 of an equality constraint may be arbitrary monotypes; i.e., they may not contain any
quantifiers, independent of whether higher-rank types are otherwise enabled.
Equality constraints can also appear in class and instance contexts. The former enable a
simple translation of programs using functional dependencies into programs using family
synonyms instead. The general idea is to rewrite a class declaration of the form

class C a b | a -> b

to

class (F a ~ b) => C a b where
type F a

That is, we represent every functional dependency (FD) a1 .. an -> b by an FD type family
F a1 .. an and a superclass context equality F a1 .. an ~ b, essentially giving a name to
the functional dependency. In class instances, we define the type instances of FD families in
accordance with the class head. Method signatures are not affected by that process.

Heterogeneous equality

GHC also supports kind-heterogeneous equality, which relates two types of potentially differ-
ent kinds. Heterogeneous equality is spelled ~~. Here are the kinds of ~ and ~~ to better
understand their difference:

(~) :: forall k. k -> k -> Constraint
(~~) :: forall k1 k2. k1 -> k2 -> Constraint

Users will most likely want ~, but ~~ is available if GHC cannot know, a priori, that the two
types of interest have the same kind. Evidence that (a :: k1) ~~ (b :: k2) tells GHC both
that k1 and k2 are the same and that a and b are the same.
Because ~ is the more common equality relation, GHC prints out ~~ like ~ unless -fprint-
equality-relations (page 93) is set.

Unlifted heterogeneous equality

Internal to GHC is yet a third equality relation (~#). It is heterogeneous (like ~~) and is
used only internally. It may appear in error messages and other output only when -fprint-
equality-relations (page 93) is enabled.

460 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The Coercible constraint

The constraint Coercible t1 t2 is similar to t1 ~ t2, but denotes representational equality
between t1 and t2 in the sense of Roles (Roles (page 383)). It is exported by Data.Coerce,
which also contains the documentation. More details and discussion can be found in the paper
“Safe Coercions”.

6.10.3 The Constraint kind

ConstraintKinds

Since 7.4.1
Allow types of kind Constraint to be used in contexts.

Normally, constraints (which appear in types to the left of the => arrow) have a very restricted
syntax. They can only be:
• Class constraints, e.g. Show a

• Implicit parameter (page 476) constraints, e.g. ?x::Int (with the ImplicitParams
(page 476) extension)

• Equality constraints (page 460), e.g. a ~ Int (with the TypeFamilies (page 325) or
GADTs (page 321) extensions)

With the ConstraintKinds (page 461) extension, GHC becomes more liberal in what it ac-
cepts as constraints in your program. To be precise, with this flag any type of the new kind
Constraint can be used as a constraint. The following things have kind Constraint:
• Anything which is already valid as a constraint without the flag: saturated applications
to type classes, implicit parameter and equality constraints.

• Tuples, all of whose component types have kind Constraint. So for example the type
(Show a,Ord a) is of kind Constraint.

• Anythingwhose form is not yet known, but the user has declared to have kind Constraint
(for which they need to import it from Data.Kind). So for example type Foo (f :: Type
-> Constraint) = forall b. f b => b -> b is allowed, as well as examples involving
type families:

type family Typ a b :: Constraint
type instance Typ Int b = Show b
type instance Typ Bool b = Num b

func :: Typ a b => a -> b -> b
func = ...

Note that because constraints are just handled as types of a particular kind, this extension
allows type constraint synonyms:

type Stringy a = (Read a, Show a)
foo :: Stringy a => a -> (String, String -> a)
foo x = (show x, read)

Presently, only standard constraints, tuples and type synonyms for those two sorts of con-
straint are permitted in instance contexts and superclasses (without extra flags). The reason
is that permitting more general constraints can cause type checking to loop, as it would with
these two programs:

6.10. Constraints 461

https://www.microsoft.com/en-us/research/uploads/prod/2018/05/coercible-JFP.pdf

GHC User’s Guide Documentation, Release 9.2.6

type family Clsish u a
type instance Clsish () a = Cls a
class Clsish () a => Cls a where

class OkCls a where

type family OkClsish u a
type instance OkClsish () a = OkCls a
instance OkClsish () a => OkCls a where

You may write programs that use exotic sorts of constraints in instance contexts and super-
classes, but to do so you must use UndecidableInstances (page 448) to signal that you don’t
mind if the type checker fails to terminate.

6.10.4 Quantified constraints

QuantifiedConstraints

Since 8.6.1
Allow constraints to quantify over types.

The extension QuantifiedConstraints (page 462) introduces quantified constraints,
which give a new level of expressiveness in constraints. For example, consider

data Rose f a = Branch a (f (Rose f a))

instance (Eq a, ???) => Eq (Rose f a)
where

(Branch x1 c1) == (Branch x2 c2)
= x1==x1 && c1==c2

From the x1==x2 we need Eq a, which is fine. From c1==c2 we need Eq (f (Rose f a))
which is not fine in Haskell today; we have no way to solve such a constraint.
QuantifiedConstraints (page 462) lets us write this

instance (Eq a, forall b. (Eq b) => Eq (f b))
=> Eq (Rose f a)

where
(Branch x1 c1) == (Branch x2 c2)

= x1==x1 && c1==c2

Here, the quantified constraint forall b. (Eq b) => Eq (f b) behaves a bit like a local
instance declaration, and makes the instance typeable.
The paper Quantified class constraints (by Bottu, Karachalias, Schrijvers, Oliveira, Wadler,
Haskell Symposium 2017) describes this feature in technical detail, with examples, and so is
a primary reference source for this feature.

Motivation

Introducing quantified constraints offers two main benefits:
• Firstly, they enable terminating resolution where this was not possible before. Consider
for instance the following instance declaration for the general rose datatype

462 Chapter 6. Language extensions

https://homepages.inf.ed.ac.uk/wadler/papers/quantcc/quantcc.pdf

GHC User’s Guide Documentation, Release 9.2.6

data Rose f x = Rose x (f (Rose f x))

instance (Eq a, forall b. Eq b => Eq (f b)) => Eq (Rose f a) where
(Rose x1 rs1) == (Rose x2 rs2) = x1 == x2 && rs1 == rs2

This extension allows us to write constraints of the form forall b. Eq b => Eq (f b),
which is needed to solve the Eq (f (Rose f x)) constraint arising from the second
usage of the (==) method.

• Secondly, quantified constraints allow for more concise and precise specifications. As
an example, consider the MTL type class for monad transformers:

class Trans t where
lift :: Monad m => m a -> (t m) a

The developer knows that a monad transformer takes a monad m into a new monad t
m. But this property is not formally specified in the above declaration. This omission
becomes an issue when defining monad transformer composition:

newtype (t1 * t2) m a = C { runC :: t1 (t2 m) a }

instance (Trans t1, Trans t2) => Trans (t1 * t2) where
lift = C . lift . lift

The goal here is to lift from monad m to t2 m and then lift this again into t1 (t2 m).
However, this second lift can only be accepted when (t2 m) is a monad and there is
no way of establishing that this fact universally holds.
Quantified constraints enable this property to be made explicit in the Trans class decla-
ration:

class (forall m. Monad m => Monad (t m)) => Trans t where
lift :: Monad m => m a -> (t m) a

This idea is very old; see Section 7 of Derivable type classes.

Syntax changes

Haskell 2010 defines a context (the bit to the left of => in a type) like this

context ::= class
| (class1, ..., classn)

class ::= qtycls tyvar
| qtycls (tyvar atype1 ... atypen)

We extend class (warning: this is a rather confusingly named non-terminal symbol) with two
extra forms, namely precisely what can appear in an instance declaration

class ::= ...
| [context =>] qtycls inst
| [context =>] tyvar inst

The definition of inst is unchanged from the Haskell Report (roughly, just a type). The con-
text => part is optional. That is the only syntactic change to the language.
Notes:

6.10. Constraints 463

https://www.microsoft.com/en-us/research/publication/derivable-type-classes/
https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-18000010.5

GHC User’s Guide Documentation, Release 9.2.6

• Where GHC allows extensions in instance declarations we allow exactly the same ex-
tensions to this new form of class. Specifically, with ExplicitForAll (page 466) and
MultiParamTypeClasses (page 435) the syntax becomes

class ::= ...
| [forall tyvars .] [context =>] qtycls inst1 ... instn
| [forall tyvars .] [context =>] tyvar inst1 ... instn

Note that an explicit forall is often absolutely essential. Consider the rose-tree example

instance (Eq a, forall b. Eq b => Eq (f b)) => Eq (Rose f a) where ...

Without the forall b, the type variable b would be quantified over the whole instance
declaration, which is not what is intended.

• One of these new quantified constraints can appear anywhere that any other constraint
can, not just in instance declarations. Notably, it can appear in a type signature for a
value binding, data constructor, or expression. For example

f :: (Eq a, forall b. Eq b => Eq (f b)) => Rose f a -> Rose f a -> Bool
f t1 t2 = not (t1 == t2)

• The form with a type variable at the head allows this:

instance (forall xx. c (Free c xx)) => Monad (Free c) where
Free f >>= g = f g

See Iceland Jack’s summary. The key point is that the bit to the right of the => may be
headed by a type variable (c in this case), rather than a class. It should not be one of the
forall’d variables, though.
(NB: this goes beyond what is described in the paper, but does not seem to introduce
any new technical difficulties.)

Typing changes

See the paper.

Superclasses

Suppose we have:

f :: forall m. (forall a. Ord a => Ord (m a)) => m Int -> Bool
f x = x == x

From the x==xwe need an Eq (m Int) constraint, but the context only gives us a way to figure
out Ord (m a) constraints. But from the given constraint forall a. Ord a => Ord (m a)
we derive a second given constraint forall a. Ord a => Eq (m a), and from that we can
readily solve Eq (m Int). This process is very similar to the way that superclasses already
work: given an Ord a constraint we derive a second given Eq a constraint.
NB: This treatment of superclasses goes beyond the paper, but is specifically desired by users.

464 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/14733#note_148352
http://i.cs.hku.hk/~bruno//papers/hs2017.pdf
http://i.cs.hku.hk/~bruno//papers/hs2017.pdf
http://i.cs.hku.hk/~bruno//papers/hs2017.pdf

GHC User’s Guide Documentation, Release 9.2.6

Overlap

Quantified constraints can potentially lead to overlapping local axioms. Consider for instance
the following example:

class A a where {}
class B a where {}
class C a where {}
class (A a => C a) => D a where {}
class (B a => C a) => E a where {}

class C a => F a where {}
instance (B a, D a, E a) => F a where {}

When type checking the instance declaration for F a, we need to check that the superclass C
of F holds. We thus try to entail the constraint C a under the theory containing:
• The instance axioms : (B a,D a,E a) => F a

• The local axioms from the instance context : B a, D a and E a

• The closure of the superclass relation over these local axioms : A a => C a and B a =>
C a

However, the A a => C a and B a => C a axioms both match the wanted constraint C a.
There are several possible approaches for handling these overlapping local axioms:
• Pick first. We can simply select the first matching axiom we encounter. In the above
example, this would be A a => C a. We’d then need to entail A a, for which we have no
matching axioms available, causing the above program to be rejected.
But suppose we made a slight adjustment to the order of the instance context, putting E
a before D a:

instance (B a, E a, D a) => F a where {}

The first matching axiom we encounter while entailing C a, is B a => C a. We have a
local axiom B a available, so now the program is suddenly accepted. This behaviour,
where the ordering of an instance context determines whether or not the program is
accepted, seems rather confusing for the developer.

• Reject if in doubt. An alternative approach would be to check for overlapping axioms,
when solving a constraint. When multiple matching axioms are discovered, we reject
the program. This approach is a bit conservative, in that it may reject working pro-
grams. But it seemmuchmore transparent towards the developer, who can be presented
with a clear message, explaining why the program is rejected.

• Backtracking. Lastly, a simple form of backtracking could be introduced. We simply
select the first matching axiomwe encounter andwhen the entailment fails, we backtrack
and look for other axioms that might match the wanted constraint.
This seems the most intuitive and transparent approach towards the developer, who no
longer needs to concern himself with the fact that his code might contain overlapping
axioms or with the ordering of his instance contexts. But backtracking would apply
equally to ordinary instance selection (in the presence of overlapping instances), so it
is a much more pervasive change, with substantial consequences for the type inference
engine.

GHC adopts Reject if in doubt for now. We can see how painful it is in practice, and try
something more ambitious if necessary.

6.10. Constraints 465

GHC User’s Guide Documentation, Release 9.2.6

Instance lookup

In the light of the overlap decision, instance lookup works like this when trying to solve a
class constraint C t

1. First see if there is a given un-quantified constraint C t. If so, use it to solve the con-
straint.

2. If not, look at all the available given quantified constraints; if exactly one matches C t,
choose it; if more than one matches, report an error.

3. If no quantified constraints match, look up in the global instances, as described in In-
stance declarations and resolution (page 445) and Overlapping instances (page 449).

Termination

GHC uses the Paterson Conditions (page 448) to ensure that instance resolution terminates.
How are those rules modified for quantified constraints? In two ways.
• Each quantified constraint, taken by itself, must satisfy the termination rules for an in-
stance declaration.

• After “for each class constraint (C t1 ... tn)”, add “or each quantified constraint
(forall as. context => C t1 .. tn)“

Note that the second item only at the head of the quantified constraint, not its context. Reason:
the head is the new goal that has to be solved if we use the instance declaration.
Of course, UndecidableInstances lifts the Paterson Conditions, as now.

Coherence

Although quantified constraints are a little like local instance declarations, they differ in one
big way: the local instances are written by the compiler, not the user, and hence cannot
introduce incoherence. Consider

f :: (forall a. Eq a => Eq (f a)) => f b -> f Bool
f x = ...rhs...

In ...rhs... there is, in effect a local instance for Eq (f a) for any a. But at a call site for f
the compiler itself produces evidence to pass to f. For example, if we called f Nothing, then
f is Maybe and the compiler must prove (at the call site) that forall a. Eq a => Eq (Maybe
a) holds. It can do this easily, by appealing to the existing instance declaration for Eq (Maybe
a).
In short, quantified constraints do not introduce incoherence.

6.11 Type signatures

6.11.1 Explicit universal quantification (forall)

ExplicitForAll

Since 6.12.1
Allow use of the forall keyword in places where universal quantification is implicit.

466 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Haskell type signatures are implicitly quantified. When the language option ExplicitForAll
(page 466) is used, the keyword forall allows us to say exactly what this means. For example:

g :: b -> b

means this:

g :: forall b. (b -> b)

The two are treated identically, except that the latter may bring type variables into scope (see
Lexically scoped type variables (page 472)).
This extension also enables explicit quantification of type and kind variables in Data in-
stance declarations (page 326), Type instance declarations (page 329), Closed type families
(page 330), Associated instances (page 334), and Rewrite rules (page 541).
Notes:
• As well as in type signatures, you can also use an explicit forall in an instance declara-
tion:

instance forall a. Eq a => Eq [a] where ...

Note that the use of foralls in instance declarations is somewhat restricted in com-
parison to other types. For example, instance declarations are not allowed to contain
nested foralls. See Formal syntax for instance declaration types (page 446) for more
information.

• If the -Wunused-foralls (page 116) flag is enabled, a warning will be emitted when
you write a type variable in an explicit forall statement that is otherwise unused. For
instance:

g :: forall a b. (b -> b)

would warn about the unused type variable a.

The forall-or-nothing rule

In certain forms of types, type variables obey what is known as the “forall-or-nothing” rule:
if a type has an outermost, explicit, invisible forall, then all of the type variables in the type
must be explicitly quantified. These two examples illustrate how the rule works:

f :: forall a b. a -> b -> b -- OK, `a` and `b` are explicitly bound
g :: forall a. a -> forall b. b -> b -- OK, `a` and `b` are explicitly bound
h :: forall a. a -> b -> b -- Rejected, `b` is not in scope

The type signatures for f, g, and h all begin with an outermost invisible forall, so every type
variable in these signatures must be explicitly bound by a forall. Both f and g obey the
forall-or-nothing rule, since they explicitly quantify a and b. On the other hand, h does not
explicitly quantify b, so GHC will reject its type signature for being improperly scoped.
In places where the forall-or-nothing rule takes effect, if a type does not have an outermost
invisible forall, then any type variables that are not explicitly bound by a forall become
implicitly quantified. For example:

i :: a -> b -> b -- `a` and `b` are implicitly quantified
j :: a -> forall b. b -> b -- `a` is implicitly quantified

6.11. Type signatures 467

GHC User’s Guide Documentation, Release 9.2.6

k :: (forall a. a -> b -> b) -- `b` is implicitly quantified
type L :: forall a -> b -> b -- `b` is implicitly quantified

GHC will accept i, j, and k‘s type signatures, as well as L‘s kind signature. Note that:
• j‘s signature is accepted despite its mixture of implicit and explicit quantification. As
long as a forall is not an outermost one, it is fine to use it among implicitly bound type
variables.

• k‘s signature is accepted because the outermost parentheses imply that the forall is
not an outermost forall. The forall-or-nothing rule is one of the few places in GHC
where the presence or absence of parentheses can be semantically significant!

• L‘s signature begins with an outermost forall, but it is a visible forall, not an invisible
forall, and therefore does not trigger the forall-or-nothing rule.

The forall-or-nothing rule takes effect in the following places:
• Type signature declarations for functions, values, and class methods
• Expression type annotations
• Instance declarations
• Default method signatures (page 437)
• Type signatures in a SPECIALIZE pragma (page 563) or SPECIALIZE instance pragma
(page 566)

• Standalone kind signatures and polymorphic recursion (page 352)
• Type signatures for Generalised Algebraic Data Types (GADTs) (page 321) constructors
• Type signatures for Pattern synonyms (page 427)
• Data instance declarations (page 326), Type instance declarations (page 329), Closed
type families (page 330), and Associated instances (page 334)

• Rewrite rules (page 541) in which the type variables are explicitly quantified
Notes:
• Pattern type signatures (page 474) are a notable example of a place where types do not
obey the forall-or-nothing rule. For example, GHC will accept the following:

f (g :: forall a. a -> b) x = g x :: b

Furthermore, Rewrite rules (page 541) do not obey the forall-or-nothing rule when
their type variables are not explicitly quantified:

{-# RULES "f" forall (g :: forall a. a -> b) x. f g x = g x :: b #-}

• GADT constructors are extra particular about their foralls. In addition to adhering to
the forall-or-nothing rule, GADT constructors also forbid nested foralls. For example,
GHC would reject the following GADT:

data T where
MkT :: (forall a. a -> b -> T)

Because of the lack of an outermost forall in the type of MkT, the b would be implicitly
quantified. In effect, it would be as if one had written MkT :: forall b. (forall a. a
-> b -> T), which contains nested foralls. See Formal syntax for GADTs (page 317).

468 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.11.2 Ambiguous types and the ambiguity check

AllowAmbiguousTypes

Since 7.8.1
Allow type signatures which appear that they would result in an unusable binding.

Each user-written type signature is subjected to an ambiguity check. The ambiguity check
rejects functions that can never be called. For example:

f :: C a => Int

The idea is there can be no legal calls to f because every call will give rise to an ambiguous
constraint. Indeed, the only purpose of the ambiguity check is to report functions that cannot
possibly be called. We could soundly omit the ambiguity check on type signatures entirely,
at the expense of delaying ambiguity errors to call sites. Indeed, the language extension
AllowAmbiguousTypes (page 469) switches off the ambiguity check.
Ambiguity can be subtle. Consider this example which uses functional dependencies:

class D a b | a -> b where ..
h :: D Int b => Int

The Intmay well fix b at the call site, so that signature should not be rejected. Moreover, the
dependencies might be hidden. Consider

class X a b where ...
class D a b | a -> b where ...
instance D a b => X [a] b where...
h :: X a b => a -> a

Here h‘s type looks ambiguous in b, but here’s a legal call:

...(h [True])...

That gives rise to a (X [Bool] beta) constraint, and using the instance means we need (D
Bool beta) and that fixes beta via D‘s fundep!
Behind all these special cases there is a simple guiding principle. Consider

f :: type
f = ...blah...

g :: type
g = f

You would think that the definition of g would surely typecheck! After all f has exactly the
same type, and g=f. But in fact f‘s type is instantiated and the instantiated constraints are
solved against the constraints bound by g‘s signature. So, in the case an ambiguous type,
solving will fail. For example, consider the earlier definition f :: C a => Int:

f :: C a => Int
f = ...blah...

g :: C a => Int
g = f

6.11. Type signatures 469

GHC User’s Guide Documentation, Release 9.2.6

In g‘s definition, we’ll instantiate to (C alpha) and try to deduce (C alpha) from (C a), and
fail.
So in fact we use this as our definition of ambiguity: a type ty is ambiguous if and only if
((undefined :: ty) :: ty) would fail to typecheck. We use a very similar test for inferred
types, to ensure that they too are unambiguous.
Switching off the ambiguity check. Even if a function has an ambiguous type according to the
“guiding principle”, it is possible that the function is callable. For example:

class D a b where ...
instance D Bool b where ...

strange :: D a b => a -> a
strange = ...blah...

foo = strange True

Here strange‘s type is ambiguous, but the call in foo is OK because it gives rise to a constraint
(D Bool beta), which is soluble by the (D Bool b) instance.
Another way of getting rid of the ambiguity at the call site is to use the TypeApplications
(page 366) extension to specify the types. For example:

class D a b where
h :: b

instance D Int Int where ...

main = print (h @Int @Int)

Here a is ambiguous in the definition of D but later specified to be Int using type applications.
AllowAmbiguousTypes (page 469) allows you to switch off the ambiguity check. However,
even with ambiguity checking switched off, GHC will complain about a function that can
never be called, such as this one:

f :: (Int ~ Bool) => a -> a

Sometimes AllowAmbiguousTypes (page 469) does not mix well with RankNTypes (page 372).
For example:

foo :: forall r. (forall i. (KnownNat i) => r) -> r
foo f = f @1

boo :: forall j. (KnownNat j) => Int
boo =

h :: Int
h = foo boo

This program will be rejected as ambiguous because GHC will not unify the type variables j
and i.
Unlike the previous examples, it is not currently possible to resolve the ambiguity manually
by using TypeApplications (page 366).

Note: A historical note. GHC used to impose some more restrictive and less principled
conditions on type signatures. For type forall tv1..tvn (c1,...,cn) => type GHC used
to require

470 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

1. that each universally quantified type variable tvi must be “reachable” from type, and
2. that every constraint cimentions at least one of the universally quantified type variables

tvi. These ad-hoc restrictions are completely subsumed by the new ambiguity check.

6.11.3 Explicitly-kinded quantification

KindSignatures

Since 6.8.1
Allow explicit kind signatures on type variables.

Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind
explicitly as (machine-checked) documentation, just as it is nice to give a type signature for
a function. On some occasions, it is essential to do so. For example, in his paper “Restricted
Data Types in Haskell” (Haskell Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for the Unused constructor was to force the correct kind for the type variable
cxt.
GHC now instead allows you to specify the kind of a type variable directly, wherever a type
variable is explicitly bound, with the extension KindSignatures (page 471).
This extension enables kind signatures in the following places:
• data declarations:

data Set (cxt :: Type -> Type) a = Set [a]

• type declarations:

type T (f :: Type -> Type) = f Int

• class declarations:

class (Eq a) => C (f :: Type -> Type) a where ...

• forall‘s in type signatures:

f :: forall (cxt :: Type -> Type). Set cxt Int

The parentheses are required.
As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: Type) -> Int
g :: forall a. a -> (a :: Type)

The syntax is

atype ::= '(' ctype '::' kind ')

The parentheses are required.

6.11. Type signatures 471

GHC User’s Guide Documentation, Release 9.2.6

6.11.4 Lexically scoped type variables

ScopedTypeVariables

Implies ExplicitForAll (page 466)
Since 6.8.1

Enable lexical scoping of type variables explicitly introduced with forall.

Tip: ScopedTypeVariables (page 472) breaks GHC’s usual rule that explicit forall is op-
tional and doesn’t affect semantics. For the Declaration type signatures (page 473) (or Ex-
pression type signatures (page 474)) examples in this section, the explicit forall is required.
(If omitted, usually the program will not compile; in a few cases it will compile but the func-
tions get a different signature.) To trigger those forms of ScopedTypeVariables (page 472),
the forall must appear against the top-level signature (or outer expression) but not against
nested signatures referring to the same type variables.
Explicit forall is not always required – see pattern signature equivalent (page 472) for the
example in this section, or Pattern type signatures (page 474).

GHC supports lexically scoped type variables, without which some type signatures are simply
impossible to write. For example:

f :: forall a. [a] -> [a]
f xs = ys ++ ys

where
ys :: [a]
ys = reverse xs

The type signature for f brings the type variable a into scope, because of the explicit forall
(Declaration type signatures (page 473)). The type variables bound by a forall scope over
the entire definition of the accompanying value declaration. In this example, the type variable
a scopes over the whole definition of f, including over the type signature for ys. In Haskell
98 it is not possible to declare a type for ys; a major benefit of scoped type variables is that
it becomes possible to do so. An equivalent form for that example, avoiding explicit forall
uses Pattern type signatures (page 474):

f :: [a] -> [a]
f (xs :: [aa]) = xs ++ ys
where

ys :: [aa]
ys = reverse xs

Unlike the forall form, type variable a from f‘s signature is not scoped over f‘s equation(s).
Type variable aa bound by the pattern signature is scoped over the right-hand side of f‘s equa-
tion. (Therefore there is no need to use a distinct type variable; using a would be equivalent.)

Overview

The design follows the following principles
• A scoped type variable stands for a type variable, and not for a type. (This is a change
from GHC’s earlier design.)

472 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Furthermore, distinct lexical type variables stand for distinct type variables. This means
that every programmer-written type signature (including one that contains free scoped
type variables) denotes a rigid type; that is, the type is fully known to the type checker,
and no inference is involved.

• Lexical type variables may be alpha-renamed freely, without changing the program.
A lexically scoped type variable can be bound by:
• A declaration type signature (Declaration type signatures (page 473))
• An expression type signature (Expression type signatures (page 474))
• A pattern type signature (Pattern type signatures (page 474))
• Class and instance declarations (Class and instance declarations (page 475))

In Haskell, a programmer-written type signature is implicitly quantified over its free type
variables (Section 4.1.2 of the Haskell Report). Lexically scoped type variables affect this
implicit quantification rules as follows: any type variable that is in scope is not universally
quantified. For example, if type variable a is in scope, then

(e :: a -> a) means (e :: a -> a)
(e :: b -> b) means (e :: forall b. b->b)
(e :: a -> b) means (e :: forall b. a->b)

Declaration type signatures

A declaration type signature that has explicit quantification (using forall) brings into scope
the explicitly-quantified type variables, in the definition of the named function. For example:

f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [x :: a]

The “forall a” brings “a” into scope in the definition of “f”.
This only happens if:
• The quantification in f‘s type signature is explicit. For example:

g :: [a] -> [a]
g (x:xs) = xs ++ [x :: a]

This program will be rejected, because “a” does not scope over the definition of “g”, so
“x::a” means “x::forall a. a” by Haskell’s usual implicit quantification rules.

• The type variable is quantified by the single, syntactically visible, outermost forall of
the type signature. For example, GHC will reject all of the following examples:

f1 :: forall a. forall b. a -> [b] -> [b]
f1 _ (x:xs) = xs ++ [x :: b]

f2 :: forall a. a -> forall b. [b] -> [b]
f2 _ (x:xs) = xs ++ [x :: b]

type Foo = forall b. [b] -> [b]

f3 :: Foo
f3 (x:xs) = xs ++ [x :: b]

6.11. Type signatures 473

http://www.haskell.org/onlinereport/decls.html#sect4.1.2

GHC User’s Guide Documentation, Release 9.2.6

In f1 and f2, the type variable b is not quantified by the outermost forall, so it is not
in scope over the bodies of the functions. Neither is b in scope over the body of f3, as
the forall is tucked underneath the Foo type synonym.

• The signature gives a type for a function binding or a bare variable binding, not a pattern
binding. For example:

f1 :: forall a. [a] -> [a]
f1 (x:xs) = xs ++ [x :: a] -- OK

f2 :: forall a. [a] -> [a]
f2 = \(x:xs) -> xs ++ [x :: a] -- OK

f3 :: forall a. [a] -> [a]
Just f3 = Just (\(x:xs) -> xs ++ [x :: a]) -- Not OK!

f1 is a function binding, and f2 binds a bare variable; in both cases the type signature
brings a into scope. However the binding for f3 is a pattern binding, and so f3 is a fresh
variable brought into scope by the pattern, not connected with top level f3. Then type
variable a is not in scope of the right-hand side of Just f3 =

Expression type signatures

An expression type signature that has explicit quantification (using forall) brings into scope
the explicitly-quantified type variables, in the annotated expression. For example:

f = runST ((op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool)

Here, the type signature forall s. ST s Bool brings the type variable s into scope, in the
annotated expression (op >>= \(x :: STRef s Int) -> g x).

Pattern type signatures

A type signature may occur in any pattern; this is a pattern type signature. For example:

-- f and g assume that 'a' is already in scope
f = \(x::Int, y::a) -> x

g (x::a) = x

h ((x,y) :: (Int,Bool)) = (y,x)

In the case where all the type variables in the pattern type signature are already in scope (i.e.
bound by the enclosing context), matters are simple: the signature simply constrains the type
of the pattern in the obvious way.
Unlike expression and declaration type signatures, pattern type signatures are not implicitly
generalised. The pattern in a pattern bindingmay onlymention type variables that are already
in scope. For example:

f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
where

(ys::[a], n) = (reverse xs, length xs) -- OK
(zs::[a]) = xs ++ ys -- OK

474 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Just (v::b) = ... -- Not OK; b is not in scope

Here, the pattern signatures for ys and zs are fine, but the one for v is not because b is not
in scope.
However, in all patterns other than pattern bindings, a pattern type signature may mention
a type variable that is not in scope; in this case, the signature brings that type variable into
scope. For example:

-- same f and g as above, now assuming that 'a' is not already in scope
f = \(x::Int, y::a) -> x -- 'a' is in scope on RHS of ->

g (x::a) = x :: a

hh (Just (v :: b)) = v :: b

The pattern type signature makes the type variable available on the right-hand side of the
equation.
Bringing type variables into scope is particularly important for existential data constructors.
For example:

data T = forall a. MkT [a]

k :: T -> T
k (MkT [t::a]) =

MkT t3
where

(t3::[a]) = [t,t,t]

Here, the pattern type signature [t::a] mentions a lexical type variable that is not already
in scope. Indeed, it must not already be in scope, because it is bound by the pattern match.
The effect is to bring it into scope, standing for the existentially-bound type variable.
It does seem odd that the existentially-bound type variable must not be already in scope.
Contrast that usually name-bindings merely shadow (make a ‘hole’) in a same-named outer
variable’s scope. But we must have some way to bring such type variables into scope, else
we could not name existentially-bound type variables in subsequent type signatures.
Compare the two (identical) definitions for examples f, g; they are both legal whether or not
a is already in scope. They differ in that if a is already in scope, the signature constrains the
pattern, rather than the pattern binding the variable.

Class and instance declarations

ScopedTypeVariables (page 472) allow the type variables bound by the top of a class or
instance declaration to scope over the methods defined in the where part. Unlike :ref‘decl-
type-sigs‘, type variables from class and instance declarations can be lexically scoped without
an explicit forall (although you are allowed an explicit forall in an instance declaration;
see Explicit universal quantification (forall) (page 466)). For example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

6.11. Type signatures 475

GHC User’s Guide Documentation, Release 9.2.6

in
head ys

instance C b => C [b] where
op xs = reverse (head (xs :: [[b]]))

-- Alternatively, one could write the instance above as:
instance forall b. C b => C [b] where
op xs = reverse (head (xs :: [[b]]))

While ScopedTypeVariables (page 472) is required for type variables from the top of a class
or instance declaration to scope over the /bodies/ of the methods, it is not required for the
type variables to scope over the /type signatures/ of the methods. For example, the following
will be accepted without explicitly enabling ScopedTypeVariables (page 472):

class D a where
m :: [a] -> a

instance D [a] where
m :: [a] -> [a]
m = reverse

Note that writing m :: [a] -> [a] requires the use of the InstanceSigs (page 453) exten-
sion.
Similarly, ScopedTypeVariables (page 472) is not required for type variables from the top of
the class or instance declaration to scope over associated type families, which only requires
the TypeFamilies (page 325) extension. For instance, the following will be accepted without
explicitly enabling ScopedTypeVariables (page 472):

class E a where
type T a

instance E [a] where
type T [a] = a

See Scoping of class parameters (page 337) for further information.

6.11.5 Implicit parameters

ImplicitParams

Since 6.8.1
Allow definition of functions expecting implicit parameters.

Implicit parameters are implemented as described in [Lewis2000] (page 685) and enabled
with the option ImplicitParams (page 476). (Most of the following, still rather incomplete,
documentation is due to Jeff Lewis.)
A variable is called dynamically bound when it is bound by the calling context of a function and
statically bound when bound by the callee’s context. In Haskell, all variables are statically
bound. Dynamic binding of variables is a notion that goes back to Lisp, but was later discarded
in more modern incarnations, such as Scheme. Dynamic binding can be very confusing in an
untyped language, and unfortunately, typed languages, in particular Hindley-Milner typed
languages like Haskell, only support static scoping of variables.

476 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

However, by a simple extension to the type class system of Haskell, we can support dynamic
binding. Basically, we express the use of a dynamically bound variable as a constraint on the
type. These constraints lead to types of the form (?x::t') => t, which says “this function
uses a dynamically-bound variable ?x of type t'”. For example, the following expresses the
type of a sort function, implicitly parameterised by a comparison function named cmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.
An implicit parameter occurs in an expression using the special form ?x, where x is any valid
identifier (e.g. ord ?x is a valid expression). Use of this construct also introduces a new
dynamic-binding constraint in the type of the expression. For example, the following def-
inition shows how we can define an implicitly parameterised sort function in terms of an
explicitly parameterised sortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are
automatically propagated. Thus, when a function is used, its implicit parameters are inherited
by the function that called it. For example, our sort function might be used to pick out the
least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = head (sort xs)

Without lifting a finger, the ?cmp parameter is propagated to become a parameter of least
as well. With explicit parameters, the default is that parameters must always be explicit
propagated. With implicit parameters, the default is to always propagate them.
An implicit-parameter type constraint differs from other type class constraints in the following
way: All uses of a particular implicit parameter must have the same type. This means that
the type of (?x,?x) is (?x::a) => (a,a), and not (?x::a,?x::b) => (a,b), as would be
the case for type class constraints.
You can’t have an implicit parameter in the context of a class or instance declaration. For
example, both these declarations are illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke
a function. But the “invocation” of instance declarations is done behind the scenes by the
compiler, so it’s hard to figure out exactly where it is done. Easiest thing is to outlaw the
offending types.
Implicit-parameter constraints do not cause ambiguity. For example, consider:

f :: (?x :: [a]) => Int -> Int
f n = n + length ?x

6.11. Type signatures 477

GHC User’s Guide Documentation, Release 9.2.6

g :: (Read a, Show a) => String -> String
g s = show (read s)

Here, g has an ambiguous type, and is rejected, but f is fine. The binding for ?x at f‘s call
site is quite unambiguous, and fixes the type a.

Implicit-parameter bindings

An implicit parameter is bound using the standard let or where binding forms. For example,
we define the min function by binding cmp.

min :: Ord a => [a] -> a
min = let ?cmp = (<=) in least

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bind-
ings can occur, except at top level. That is, they can occur in a let (including in a list com-
prehension, or do-notation, or pattern guards), or a where clause. Note the following points:
• An implicit-parameter binding group must be a collection of simple bindings to implicit-
style variables (no function-style bindings, and no type signatures); these bindings are
neither polymorphic or recursive.

• You may not mix implicit-parameter bindings with ordinary bindings in a single let ex-
pression; use two nested lets instead. (In the case of where you are stuck, since you
can’t nest where clauses.)

• You may put multiple implicit-parameter bindings in a single binding group; but they are
not treated as a mutually recursive group (as ordinary let bindings are). Instead they
are treated as a non-recursive group, simultaneously binding all the implicit parameter.
The bindings are not nested, and may be re-ordered without changing the meaning of
the program. For example, consider:

f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y

The use of ?x in the binding for ?y does not “see” the binding for ?x, so the type of f is

f :: (?x::Int) => Int -> Int

Implicit parameters and polymorphic recursion

Consider these two definitions:

len1 :: [a] -> Int
len1 xs = let ?acc = 0 in len_acc1 xs

len_acc1 [] = ?acc
len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs

len2 :: [a] -> Int
len2 xs = let ?acc = 0 in len_acc2 xs

len_acc2 :: (?acc :: Int) => [a] -> Int

478 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

len_acc2 [] = ?acc
len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs

The only difference between the two groups is that in the second group len_acc is given a
type signature. In the former case, len_acc1 is monomorphic in its own right-hand side, so
the implicit parameter ?acc is not passed to the recursive call. In the latter case, because
len_acc2 has a type signature, the recursive call is made to the polymorphic version, which
takes ?acc as an implicit parameter. So we get the following results in GHCi:

Prog> len1 "hello"
0
Prog> len2 "hello"
5

Adding a type signature dramatically changes the result! This is a rather counter-intuitive
phenomenon, worth watching out for.

Implicit parameters and monomorphism

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to
implicit parameters. For example, consider:

f :: Int -> Int
f v = let ?x = 0 in

let y = ?x + v in
let ?x = 5 in
y

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the
type of y is simply Int, not (?x::Int) => Int. Hence, (f 9) returns result 9. If you add a
type signature for y, then y will get type (?x::Int) => Int, so the occurrence of y in the
body of the let will see the inner binding of ?x, so (f 9) will return 14.

6.11.6 Partial Type Signatures

PartialTypeSignatures

Since 7.10.1
Type checker will allow inferred types for holes.

A partial type signature is a type signature containing special placeholders called wildcards.
A wildcard is written as an underscore (e.g. “_”) or, if NamedWildCards (page 481) is enabled,
any identifier with a leading underscore (e.g. “_foo”, “_bar”). Partial type signatures are to
type signatures what Typed Holes (page 292) are to expressions. During compilation these
wildcards or holes will generate an error message that describes which type was inferred at
the hole’s location, and information about the origin of any free type variables. GHC reports
such error messages by default.
Unlike Typed Holes (page 292), which make the program incomplete and will generate errors
when they are evaluated, this needn’t be the case for holes in type signatures. The type
checker is capable (in most cases) of type-checking a binding with or without a type signature.
A partial type signature bridges the gap between the two extremes, the programmer can
choose which parts of a type to annotate and which to leave over to the type-checker to infer.

6.11. Type signatures 479

GHC User’s Guide Documentation, Release 9.2.6

By default, the type-checker will report an error message for each hole in a partial type sig-
nature, informing the programmer of the inferred type. When the PartialTypeSignatures
(page 479) extension is enabled, the type-checker will accept the inferred type for each hole,
generating warnings instead of errors. Additionally, these warnings can be silenced with the
-Wno-partial-type-signatures (page 102) flag.
However, because GHC must infer the type when part of a type is left out, it is unable to use
polymorphic recursion. The same restriction takes place when the type signature is omitted
completely.
A partial type signature als makes GHC generalise the binding even if MonoLocalBinds
(page 485) is on; see Let-generalisation (page 485).

Syntax

A (partial) type signature has the following form: forall a b .. . (C1,C2,..) => tau. It
consists of three parts:
• The type variables: a b ..

• The constraints: (C1,C2,..)
• The (mono)type: tau

We distinguish three kinds of wildcards.

Type Wildcards

Wildcards occurring within the monotype (tau) part of the type signature are type wildcards
(“type” is often omitted as this is the default kind of wildcard). Type wildcards can be instanti-
ated to any monotype like Bool or Maybe [Bool], including functions and higher-kinded types
like (Int -> Bool) or Maybe.

not' :: Bool -> _
not' x = not x
-- Inferred: Bool -> Bool

maybools :: _
maybools = Just [True]
-- Inferred: Maybe [Bool]

just1 :: _ Int
just1 = Just 1
-- Inferred: Maybe Int

filterInt :: _ -> _ -> [Int]
filterInt = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (Int -> Bool) -> [Int] -> [Int]

For instance, the first wildcard in the type signature not' would produce the following error
message:

Test.hs:4:17: error:
• Found type wildcard ‘_’ standing for ‘Bool’
To use the inferred type, enable PartialTypeSignatures

• In the type signature:
not' :: Bool -> _

480 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Relevant bindings include
not' :: Bool -> Bool (bound at Test.hs:5:1)

When a wildcard is not instantiated to a monotype, it will be generalised over, i.e. replaced
by a fresh type variable, e.g.

foo :: _ -> _
foo x = x
-- Inferred: forall t. t -> t

filter' :: _
filter' = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (a -> Bool) -> [a] -> [a]

Named Wildcards

NamedWildCards

Since 7.10.1
Allow naming of wildcards (e.g. _x) in type signatures.

Type wildcards can also be named by giving the underscore an identifier as suffix, i.e. _a.
These are called named wildcards. All occurrences of the same named wildcard within one
type signature will unify to the same type. For example:

f :: _x -> _x
f ('c', y) = ('d', error "Urk")
-- Inferred: forall t. (Char, t) -> (Char, t)

The named wildcard forces the argument and result types to be the same. Lacking a signature,
GHC would have inferred forall a b. (Char,a) -> (Char,b). A named wildcard can be
mentioned in constraints, provided it also occurs in the monotype part of the type signature
to make sure that it unifies with something:

somethingShowable :: Show _x => _x -> _
somethingShowable x = show x
-- Inferred type: Show a => a -> String

somethingShowable' :: Show _x => _x -> _
somethingShowable' x = show (not x)
-- Inferred type: Bool -> String

Besides an extra-constraints wildcard (see Extra-Constraints Wildcard (page 482)), only
named wildcards can occur in the constraints, e.g. the _x in Show _x.
When ScopedTypeVariables (page 472) is on, the named wildcards of a function signature
scope over the function body just like explicitly-forall’d type variables (Lexically scoped type
variables (page 472)), even though there is no explicit forall. For example:

f :: _a -> _a
f x = let g :: _a -> _a

g = ...
in ...

Here the named wildcard _a scopes over the body of f, thereby binding the occurrences of
_a in the signature of g. All four occurrences stand for the same type.

6.11. Type signatures 481

GHC User’s Guide Documentation, Release 9.2.6

Named wildcards should not be confused with type variables. Even though syntactically sim-
ilar, named wildcards can unify with monotypes as well as be generalised over (and behave
as type variables).
In the first example above, _x is generalised over (and is effectively replaced by a fresh type
variable a). In the second example, _x is unified with the Bool type, and as Bool implements
the Show type class, the constraint Show Bool can be simplified away.
By default, GHC (as the Haskell 2010 standard prescribes) parses identifiers starting with
an underscore in a type as type variables. To treat them as named wildcards, the Named-
WildCards (page 481) extension should be enabled. The example below demonstrated the
effect.

foo :: _a -> _a
foo _ = False

Compiling this program without enabling NamedWildCards (page 481) produces the following
error message complaining about the type variable _a no matching the actual type Bool.

Test.hs:5:9: error:
• Couldn't match expected type ‘_a’ with actual type ‘Bool’
‘_a’ is a rigid type variable bound by

the type signature for:
foo :: forall _a. _a -> _a

at Test.hs:4:8
• In the expression: False

In an equation for ‘foo’: foo _ = False
• Relevant bindings include foo :: _a -> _a (bound at Test.hs:5:1)

Compiling this programwith NamedWildCards (page 481) (as well as PartialTypeSignatures
(page 479)) enabled produces the following error message reporting the inferred type of the
named wildcard _a.

Test.hs:4:8: warning: [-Wpartial-type-signatures]
• Found type wildcard ‘_a’ standing for ‘Bool’
• In the type signature:

foo :: _a -> _a
• Relevant bindings include

foo :: Bool -> Bool (bound at Test.hs:5:1)

Extra-Constraints Wildcard

The third kind of wildcard is the extra-constraints wildcard. The presence of an extra-
constraints wildcard indicates that an arbitrary number of extra constraints may be inferred
during type checking and will be added to the type signature. In the example below, the
extra-constraints wildcard is used to infer three extra constraints.

arbitCs :: _ => a -> String
arbitCs x = show (succ x) ++ show (x == x)
-- Inferred:
-- forall a. (Enum a, Eq a, Show a) => a -> String
-- Error:
Test.hs:5:12: error:

Found constraint wildcard ‘_’ standing for ‘(Show a, Eq a, Enum a)’
To use the inferred type, enable PartialTypeSignatures

482 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

In the type signature:
arbitCs :: _ => a -> String

An extra-constraints wildcard shouldn’t prevent the programmer from already listing the con-
straints they know or want to annotate, e.g.

-- Also a correct partial type signature:
arbitCs' :: (Enum a, _) => a -> String
arbitCs' x = arbitCs x
-- Inferred:
-- forall a. (Enum a, Show a, Eq a) => a -> String
-- Error:
Test.hs:9:22: error:

Found constraint wildcard ‘_’ standing for ‘()’
To use the inferred type, enable PartialTypeSignatures
In the type signature:
arbitCs' :: (Enum a, _) => a -> String

An extra-constraints wildcard can also lead to zero extra constraints to be inferred, e.g.

noCs :: _ => String
noCs = "noCs"
-- Inferred: String
-- Error:
Test.hs:13:9: error:

Found constraint wildcard ‘_’ standing for ‘()’
To use the inferred type, enable PartialTypeSignatures
In the type signature:
noCs :: _ => String

As a single extra-constraints wildcard is enough to infer any number of constraints, only one
is allowed in a type signature and it should come last in the list of constraints.
Extra-constraints wildcards cannot be named.

Where can they occur?

Partial type signatures are allowed for bindings, pattern and expression signatures, except
that extra-constraints wildcards are not supported in pattern or expression signatures. In the
following example a wildcard is used in each of the three possible contexts.

{-# LANGUAGE ScopedTypeVariables #-}
foo :: _
foo (x :: _) = (x :: _)
-- Inferred: forall w_. w_ -> w_

Anonymous and named wildcards can occur on the left hand side of a type or data instance
declaration; see Wildcards on the LHS of data and type family instances (page 333).
Anonymous wildcards are also allowed in visible type applications/ visible kind applications
(Visible type application (page 366)). If you want to specify only the second type argument to
wurble, then you can say wurble @_ @Int where the first argument is a wildcard.
Standalone deriving declarations permit the use of a single, extra-constraints wildcard, like
so:

6.11. Type signatures 483

GHC User’s Guide Documentation, Release 9.2.6

deriving instance _ => Eq (Foo a)

This denotes a derived Eq (Foo a) instance where the context is inferred, in much the same
way that ordinary deriving clauses do. Any other use of wildcards in a standalone deriving
declaration is prohibited.
In all other contexts, type wildcards are disallowed, and a named wildcard is treated as an
ordinary type variable. For example:

class C _ where ... -- Illegal
instance Eq (T _) -- Illegal (currently; would actually make sense)
instance Eq _a => Eq (T _a) -- Perfectly fine, same as Eq a => Eq (T a)

Partial type signatures can also be used in Template Haskell (page 486) splices.
• Declaration splices: partial type signature are fully supported.

{-# LANGUAGE TemplateHaskell, NamedWildCards #-}
$([d| foo :: _ => _a -> _a -> _

foo x y = x == y|])

• Expression splices: anonymous and named wildcards can be used in expression signa-
tures. Extra-constraints wildcards are not supported, just like in regular expression
signatures.

{-# LANGUAGE TemplateHaskell, NamedWildCards #-}
$([e| foo = (Just True :: _m _) |])

• Typed expression splices: the same wildcards as in (untyped) expression splices are
supported.

• Pattern splices: anonymous and named wildcards can be used in pattern signatures.
Note that ScopedTypeVariables (page 472) has to be enabled to allow pattern signa-
tures. Extra-constraints wildcards are not supported, just like in regular pattern signa-
tures.

{-# LANGUAGE TemplateHaskell, ScopedTypeVariables #-}
foo $([p| (x :: _) |]) = x

• Type splices: only anonymous wildcards are supported in type splices. Named and extra-
constraints wildcards are not.

{-# LANGUAGE TemplateHaskell #-}
foo :: $([t| _ |]) -> a
foo x = x

6.12 Bindings and generalisation

6.12.1 Switching off the Monomorphism Restriction

NoMonomorphismRestriction

Default on
Since 6.8.1

484 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Prevents the compiler from applying the monomorphism restriction to bindings lacking
explicit type signatures.

Haskell’s monomorphism restriction (see Section 4.5.5 of the Haskell Report) can be com-
pletely switched off by NoMonomorphismRestriction (page 484). Since GHC 7.8.1, the
monomorphism restriction is switched off by default in GHCi’s interactive options (see Setting
options for interactive evaluation only (page 74)).

6.12.2 Let-generalisation

MonoLocalBinds

Since 6.12.1
Infer less polymorphic types for local bindings by default.

An ML-style language usually generalises the type of any let-bound or where-bound variable,
so that it is as polymorphic as possible. With the extension MonoLocalBinds (page 485) GHC
implements a slightly more conservative policy, for reasons descibed in Section 4.2 of Out-
sideIn(X): Modular type inference with local assumptions, and a related blog post.
The extension MonoLocalBinds (page 485) is implied by TypeFamilies (page 325) and GADTs
(page 321). You can switch it off again with NoMonoLocalBinds (page 485) but type inference
becomes less predictable if you do so. (Read the paper!)
To a first approximation, with MonoLocalBinds (page 485) top-level bindings are generalised,
but local (i.e. nested) bindings are not. The idea is that, at top level, the type environment
has no free type variables, and so the difficulties described in these papers do not arise. But
GHC implements a slightly more complicated rule, for two reasons:
• The Monomorphism Restriction can cause even top-level bindings not to be generalised,
and hence even the top-level type environment can have free type variables.

• For stylistic reasons, programmers sometimes write local bindings that make no use of
local variables, so the binding could equally well be top-level. It seems reasonable to
generalise these.

So here are the exact rules used by MonoLocalBinds. With MonoLocalBinds, a binding group
will be generalised if and only if
• Each of its free variables (excluding the variables bound by the group itself) is closed
(see next bullet), or

• Any of its binders has a partial type signature (see Partial Type Signatures). Adding a
partial type signature f :: _, (or, more generally, f :: _ => _) provides a per-binding
way to ask GHC to perform let-generalisation, even though MonoLocalBinds is on.

A variable f is called closed if and only if
• The variable f is imported from another module, or
• The variable f is let-bound, and one of the following holds: * f has an explicit, complete
(i.e. not partial) type signature that has no free type variables, or * its binding group is
generalised over all its free type variables, so that f‘s type has no free type variables.

The key idea is that: if a variable is closed, then its type definitely has no free type variables.
Note that: * A signature like f :: a -> a is equivalent to f :: forall a. a -> a, assuming a is
not in scope. Hence f is closed, since it has a complete type signature with no free variables.

6.12. Bindings and generalisation 485

http://www.haskell.org/onlinereport/decls.html#sect4.5.5
https://www.microsoft.com/en-us/research/publication/outsideinx-modular-type-inference-with-local-assumptions/
https://www.microsoft.com/en-us/research/publication/outsideinx-modular-type-inference-with-local-assumptions/
https://www.haskell.org/ghc/blog/20100930-LetGeneralisationInGhc7.html

GHC User’s Guide Documentation, Release 9.2.6

• Even if the binding is generalised, it may not be generalised over all its free type vari-
ables, either because it mentions locally-bound variables, or because of the monomor-
phism restriction (Haskell Report, Section 4.5.5)

Example 1

f1 x = x+1
f2 y = f1 (y*2)

f1 has free variable (+), but it is imported and hence closd. So f1‘s binding is generalised.
As a result, its type f1 :: forall a. Num a => a -> a has no free type variables, so f1
is closed. Hence f2‘s binding is generalised (since its free variables, f1 and (*) are both
closed).
These comments apply whether the bindings for f1 and f2 are at top level or nested.
Example 2

f3 x = let g y = x+y in

The binding for g has a free variable x that is lambda-bound, and hence not closed. So g‘s
binding is not generalised.

6.13 Template Haskell

Template Haskell allows you to do compile-time meta-programming in Haskell. The back-
ground to the main technical innovations is discussed in “Template Meta-programming for
Haskell” (Proc Haskell Workshop 2002).
The Template Haskell page on the GHCWiki has a wealth of information. You may also consult
the Haddock reference documentation Language.Haskell.TH. Many changes to the original
design are described in Notes on Template Haskell version 2. Not all of these changes are in
GHC, however.
The first example from that paper is set out below (A Template Haskell Worked Example
(page 493)) as a worked example to help get you started.
The documentation here describes the realisation of Template Haskell in GHC. It is not de-
tailed enough to understand Template Haskell; see the Wiki page.

6.13.1 Syntax

TemplateHaskell

Implies TemplateHaskellQuotes (page 486)
Since 6.0. Typed splices introduced in GHC 7.8.1.

Enable Template Haskell’s splice and quotation syntax.
TemplateHaskellQuotes

Since 8.0.1
Enable only Template Haskell’s quotation syntax.

Template Haskell has the following new syntactic constructions. You need to use the exten-
sion TemplateHaskell (page 486) to switch these syntactic extensions on. Alternatively, the

486 Chapter 6. Language extensions

http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
https://www.haskell.org/ghc/docs/papers/th2.ps
http://haskell.org/haskellwiki/Template_Haskell

GHC User’s Guide Documentation, Release 9.2.6

TemplateHaskellQuotes (page 486) extension can be used to enable the quotation subset of
Template Haskell (i.e. without top-level splices). The TemplateHaskellQuotes (page 486) ex-
tension is considered safe under Safe Haskell (page 530) while TemplateHaskell (page 486)
is not.
• A splice is written $x, where x is an arbitrary expression. There must be no space be-
tween the “$” and the expression. This use of “$” overrides its meaning as an infix
operator, just as “M.x” overrides the meaning of ”.” as an infix operator. If you want the
infix operator, put spaces around it.
A top-level splice can occur in place of
– an expression; the spliced expression must have type Q Exp

– a pattern; the spliced pattern must have type Q Pat

– a type; the spliced expression must have type Q Type

– a list of declarations at top level; the spliced expression must have type Q [Dec]

Inside a splice you can only call functions defined in imported modules, not functions
defined elsewhere in the same module. Note that declaration splices are not allowed
anywhere except at top level (outside any other declarations).
The Qmonad is a monad defined in Language.Haskell.TH.Syntax which supports several
useful operations during code generation such as reporting errors or looking up identi-
fiers in the environment.

• A expression quotation is written in Oxford brackets, thus:
– [| ... |], or [e| ... |], where the ”...” is an expression; the quotation has type
Quote m => m Exp.

– [d| ... |], where the ”...” is a list of top-level declarations; the quotation has type
Quote m => m [Dec].

– [t| ... |], where the ”...” is a type; the quotation has type Quote m => m Type.
– [p| ... |], where the ”...” is a pattern; the quotation has type Quote m => m Pat.

The Quote type class (Language.Haskell.TH.Syntax.Quote) is the minimal interface nec-
essary to implement the desugaring of quotations. The Q monad is an instance of Quote
but contains many more operations which are not needed for defining quotations.
See Where can they occur? (page 483) for using partial type signatures in quotations.

• Splices can be nested inside quotation brackets. For example the fragment representing
1 + 2 can be constructed using nested splices:

oneC, twoC, plusC :: Quote m => m Exp
oneC = [| 1 |]

twoC = [| 2 |]

plusC = [| $oneC + $twoC |]

• The precise type of a quotation depends on the types of the nested splices inside it:

-- Add a redundant constraint to demonstrate that constraints on the
-- monad used to build the representation are propagated when using nested
-- splices.
f :: (Quote m, C m) => m Exp
f = [| 5 |]

6.13. Template Haskell 487

GHC User’s Guide Documentation, Release 9.2.6

-- f is used in a nested splice so the constraint on f, namely C, is propagated
-- to a constraint on the whole representation.
g :: (Quote m, C m) => m Exp
g = [| $f + $f |]

Remember, a top-level splice still requires its argument to be of type Q Exp. So then
splicing in g will cause m to be instantiated to Q:

h :: Int
h = $(g) -- m ~ Q

• A typed expression splice is written $$x, where x is is an arbitrary expression.
A top-level typed expression splice can occur in place of an expression; the spliced ex-
pression must have type Code Q a

• A typed expression quotation is written as [|| ... ||], or [e|| ... ||], where the
”...” is an expression; if the ”...” expression has type a, then the quotation has type
Quote m => Code m a.
It is possible to extract a value of type m Exp from Code m a using the unTypeCode ::
Code m a -> m Exp function.

• A quasi-quotation can appear in a pattern, type, expression, or declaration context and
is also written in Oxford brackets:
– [varid| ... |], where the ”...” is an arbitrary string; a full description of the quasi-
quotation facility is given in Template Haskell Quasi-quotation (page 495).

• A name can be quoted with either one or two prefix single quotes:
– 'f has type Name, and names the function f. Similarly 'C has type Name and names
the data constructor C. In general '⟨thing⟩ interprets ⟨thing⟩ in an expression con-
text.
A name whose second character is a single quote (sadly) cannot be quoted in this
way, because it will be parsed instead as a quoted character. For example, if the
function is called f'7 (which is a legal Haskell identifier), an attempt to quote it as
'f'7 would be parsed as the character literal 'f' followed by the numeric literal 7.
There is no current escape mechanism in this (unusual) situation.

– ''T has type Name, and names the type constructor T. That is, ''⟨thing⟩ interprets
⟨thing⟩ in a type context.

These Names can be used to construct Template Haskell expressions, patterns, declara-
tions etc. They may also be given as an argument to the reify function.

• It is possible for a splice to expand to an expression that contain names which are not in
scope at the site of the splice. As an example, consider the following code:

module Bar where

import Language.Haskell.TH

add1 :: Quote m => Int -> m Exp
add1 x = [| x + 1 |]

Now consider a splice using add1 in a separate module:

488 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

module Foo where

import Bar

two :: Int
two = $(add1 1)

Template Haskell cannot know what the argument to add1 will be at the function’s def-
inition site, so a lifting mechanism is used to promote x into a value of type Quote m
=> m Exp. This functionality is exposed to the user as the Lift typeclass in the Lan-
guage.Haskell.TH.Syntax module. If a type has a Lift instance, then any of its values
can be lifted to a Template Haskell expression:

class Lift t where
lift :: Quote m => t -> m Exp
liftTyped :: Quote m => t -> Code m t

In general, if GHC sees an expression within Oxford brackets (e.g., [| foo bar |], then
GHC looks up each name within the brackets. If a name is global (e.g., suppose foo
comes from an import or a top-level declaration), then the fully qualified name is used
directly in the quotation. If the name is local (e.g., suppose bar is bound locally in the
function definition mkFoo bar = [| foo bar |]), then GHC uses lift on it (so GHC pre-
tends [| foo bar |] actually contains [| foo $(lift bar) |]). Local names, which
are not in scope at splice locations, are actually evaluated when the quotation is pro-
cessed.
The template-haskell library provides Lift instances for many common data types.
Furthermore, it is possible to derive Lift instances automatically by using the Deriv-
eLift (page 412) language extension. See Deriving Lift instances (page 412) for more
information.

• You may omit the $(...) in a top-level declaration splice. Simply writing an expression
(rather than a declaration) implies a splice. For example, you can write

module Foo where
import Bar

f x = x

$(deriveStuff 'f) -- Uses the $(...) notation

g y = y+1

deriveStuff 'g -- Omits the $(...)

h z = z-1

This abbreviation makes top-level declaration slices quieter and less intimidating.
• Pattern splices introduce variable binders but scoping of variables in expressions inside
the pattern’s scope is only checked when a splice is run. Note that pattern splices that oc-
cur outside of any quotation brackets are run at compile time. Pattern splices occurring
inside a quotation bracket are not run at compile time; they are run when the bracket is
spliced in, sometime later. For example,

mkPat :: Quote m => m Pat
mkPat = [p| (x, y) |]

6.13. Template Haskell 489

GHC User’s Guide Documentation, Release 9.2.6

-- in another module:
foo :: (Char, String) -> String
foo $(mkPat) = x : z

bar :: Quote m => m Exp
bar = [| \ $(mkPat) -> x : w |]

will fail with z being out of scope in the definition of foo but it will not fail with w being
out of scope in the definition of bar. That will only happen when bar is spliced.

• A pattern quasiquoter may generate binders that scope over the right-hand side of a
definition because these binders are in scope lexically. For example, given a quasiquoter
haskell that parses Haskell, in the following code, the y in the right-hand side of f refers
to the y bound by the haskell pattern quasiquoter, not the top-level y = 7.

y :: Int
y = 7

f :: Int -> Int -> Int
f n = \ [haskell|y|] -> y+n

• Top-level declaration splices break up a source file into declaration groups. A declaration
group is the group of declarations created by a top-level declaration splice, plus those
following it, down to but not including the next top-level declaration splice. N.B. only
top-level splices delimit declaration groups, not expression splices. The first declaration
group in a module includes all top-level definitions down to but not including the first
top-level declaration splice.
Each declaration group is mutually recursive only within the group. Declaration groups
can refer to definitions within previous groups, but not later ones.
Accordingly, the type environment seen by reify includes all the top-level declarations
up to the end of the immediately preceding declaration group, but no more.
Unlike normal declaration splices, declaration quasiquoters do not cause a break. These
quasiquoters are expanded before the rest of the declaration group is processed, and
the declarations they generate are merged into the surrounding declaration group. Con-
sequently, the type environment seen by reify from a declaration quasiquoter will not
include anything from the quasiquoter’s declaration group.
Concretely, consider the following code

module M where

import ...

f x = x

$(th1 4)

h y = k y y $(blah1)

[qq|blah|]

k x y z = x + y + z

$(th2 10)

490 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

w z = $(blah2)

In this example, a reify inside...
1. The splice $(th1 ...) would see the definition of f - the splice is top-level and thus
all definitions in the previous declaration group are visible (that is, all definitions in
the module up-to, but not including, the splice itself).

2. The splice $(blah1) cannot refer to the function w - w is part of a later declaration
group, and thus invisible, similarly, $(blah1) cannot see the definition of h (since it
is part of the same declaration group as $(blah1). However, the splice $(blah1) can
see the definition of f (since it is in the immediately preceding declaration group).

3. The splice $(th2 ...) would see the definition of f, all the bindings created by
$(th1 ...), the definition of h and all bindings created by [qq|blah|] (they are all
in previous declaration groups).

4. The body of h can refer to the function k appearing on the other side of the decla-
ration quasiquoter, as quasiquoters do not cause a declaration group to be broken
up.

5. The qq quasiquoter would be able to see the definition of f from the preceding dec-
laration group, but not the definitions of h or k, or any definitions from subsequent
declaration groups.

6. The splice $(blah2) would see the same definitions as the splice $(th2 ...) (but
not any bindings it creates).

Note that since an expression splice is unable to refer to declarations in the same dec-
laration group, we can introduce a top-level (empty) splice to break up the declaration
group

module M where

data D = C1 | C2

f1 = $(th1 ...)

$(return [])

f2 = $(th2 ...)

Here
1. The splice $(th1 ...) cannot refer to D - it is in the same declaration group.
2. The declaration group containing D is terminated by the empty top-level declaration
splice $(return []) (recall, Q is a Monad, so we may simply return the empty list
of declarations).

3. Since the declaration group containing D is in the previous declaration group, the
splice $(th2 ...) can refer to D.

• Expression quotations accept most Haskell language constructs. However, there are
some GHC-specific extensions which expression quotations currently do not support, in-
cluding
– Type holes in typed splices (see #10945 and #10946)

6.13. Template Haskell 491

https://gitlab.haskell.org/ghc/ghc/issues/10945
https://gitlab.haskell.org/ghc/ghc/issues/10946

GHC User’s Guide Documentation, Release 9.2.6

(Compared to the original paper, there are many differences of detail. The syntax for a dec-
laration splice uses “$” not “splice”. The type of the enclosed expression must be Quote m
=> m [Dec], not [Q Dec]. Typed expression splices and quotations are supported.)
-fenable-th-splice-warnings

Template Haskell splices won’t be checked for warnings, because the code causing
the warning might originate from a third-party library and possibly was not written by
the user. If you want to have warnings for splices anyway, pass -fenable-th-splice-
warnings (page 492).

6.13.2 Using Template Haskell

• The data types and monadic constructor functions for Template Haskell are in the library
Language.Haskell.TH.Syntax.

• You can only run a function at compile time if it is imported from another module. That
is, you can’t define a function in a module, and call it from within a splice in the same
module. (It would make sense to do so, but it’s hard to implement.)

• You can only run a function at compile time if it is imported from another module that
is not part of a mutually-recursive group of modules that includes the module currently
being compiled. Furthermore, all of the modules of the mutually-recursive group must
be reachable by non-SOURCE imports from the module where the splice is to be run.
For example, when compiling module A, you can only run Template Haskell functions
imported from B if B does not import A (directly or indirectly). The reason should be
clear: to run B we must compile and run A, but we are currently type-checking A.

• If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
run Template Haskell splices and quasi-quotes. A stage-1 compiler will only accept regu-
lar quotes of Haskell. Reason: TH splices and quasi-quotes compile and run a program,
and then looks at the result. So it’s important that the program it compiles produces
results whose representations are identical to those of the compiler itself.

Template Haskell works in any mode (--make (page 86), --interactive (page 86), or file-
at-a-time). There used to be a restriction to the former two, but that restriction has been
lifted.

6.13.3 Viewing Template Haskell generated code

The flag -ddump-splices (page 252) shows the expansion of all top-level declaration splices,
both typed and untyped, as they happen. As with all dump flags, the default is for this output
to be sent to stdout. For a non-trivial program, you may be interested in combining this
with the -ddump-to-file (page 251) flag (see Dumping out compiler intermediate structures
(page 251). For each file using Template Haskell, this will show the output in a .dump-splices
file.
The flag -dth-dec-file (page 253) dumps the expansions of all top-level TH declaration
splices, both typed and untyped, in the file M.th.hs for each module M being compiled. Note
that other types of splices (expressions, types, and patterns) are not shown. Application
developers can check this into their repository so that they can grep for identifiers that were
defined in Template Haskell. This is similar to using -ddump-to-file (page 251) with -ddump-
splices (page 252) but it always generates a file instead of being coupled to -ddump-to-file
(page 251). The format is also different: it does not show code from the original file, instead
it only shows generated code and has a comment for the splice location of the original file.

492 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Below is a sample output of -ddump-splices (page 252)

TH_pragma.hs:(6,4)-(8,26): Splicing declarations
[d| foo :: Int -> Int

foo x = x + 1 |]
======>
foo :: Int -> Int
foo x = (x + 1)

Below is the output of the same sample using -dth-dec-file (page 253)

-- TH_pragma.hs:(6,4)-(8,26): Splicing declarations
foo :: Int -> Int
foo x = (x + 1)

6.13.4 A Template Haskell Worked Example

To help you get over the confidence barrier, try out this skeletal worked example. First cut
and paste the two modules below into Main.hs and Printf.hs:

{- Main.hs -}
module Main where

-- Import our template "pr"
import Printf (pr)

-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ($(pr "Hello"))

{- Printf.hs -}
module Printf where

-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.

-- Import some Template Haskell syntax
import Language.Haskell.TH

-- Describe a format string
data Format = D | S | L String

-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s = [L s]

-- Generate Haskell source code from a parsed representation
-- of the format string. This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: Quote m => [Format] -> m Exp
gen [D] = [| \n -> show n |]
gen [S] = [| \s -> s |]

6.13. Template Haskell 493

GHC User’s Guide Documentation, Release 9.2.6

gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- from an input format string.
pr :: Quote m => String -> m Exp
pr s = gen (parse s)

Now run the compiler,

$ ghc --make -XTemplateHaskell main.hs -o main

Run main and here is your output:

$./main
Hello

6.13.5 Template Haskell quotes and Rebindable Syntax

Rebindable syntax does not play well with untyped TH quotes: applying the rebindable syntax
rules would go against the lax nature of untyped quotes that are accepted even in the presence
of unbound identifiers (see #18102). Applying the rebindable syntax rules to them would
force the code that defines the said quotes to have all the necessary functions (e.g ifThenElse
or fromInteger) in scope, instead of delaying the resolution of those symbols to the code that
splices the quoted Haskell syntax, as is usually done with untyped TH. For this reason, even if
a module has untyped TH quotes with RebindableSyntax enabled, GHC turns off rebindable
syntax while processing the quotes. The code that splices the quotes is however free to turn
on RebindableSyntax to have the usual rules applied to the resulting code.
Typed TH quotes on the other hand are perfectly compatible with the eager application of
rebindable syntax rules, and GHC will therefore process any such quotes according to the re-
bindable syntax rules whenever the RebindableSyntax extension is turned on in the modules
where such quotes appear.

6.13.6 Using Template Haskell with Profiling

Template Haskell relies on GHC’s built-in bytecode compiler and interpreter to run the splice
expressions. The bytecode interpreter runs the compiled expression on top of the same run-
time on which GHC itself is running; this means that the compiled code referred to by the
interpreted expression must be compatible with this runtime, and in particular this means
that object code that is compiled for profiling cannot be loaded and used by a splice expres-
sion, because profiled object code is only compatible with the profiling version of the runtime.
This causes difficulties if you have a multi-module program containing Template Haskell code
and you need to compile it for profiling, because GHC cannot load the profiled object code
and use it when executing the splices.
Fortunately GHC provides two workarounds.
The first option is to compile the program twice:
1. Compile the program or library first the normal way, without -prof (page 597).
2. Then compile it again with -prof (page 597), and additionally use -osuf p_o to name
the object files differently (you can choose any suffix that isn’t the normal object suffix
here). GHC will automatically load the object files built in the first step when executing

494 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/18102

GHC User’s Guide Documentation, Release 9.2.6

splice expressions. If you omit the -osuf ⟨suffix⟩ (page 202) flag when building with
-prof (page 597) and Template Haskell is used, GHC will emit an error message.

The second option is to add the flag -fexternal-interpreter (page 77) (see Running the
interpreter in a separate process (page 77)), which runs the interpreter in a separate process,
wherein it can load and run the profiled code directly. There’s no need to compile the code
twice, just add -fexternal-interpreter (page 77) and it should just work. (this option is
experimental in GHC 8.0.x, but it may become the default in future releases).

6.13.7 Template Haskell Quasi-quotation

QuasiQuotes

Since 6.10.1
Enable Template Haskell Quasi-quotation syntax.

Quasi-quotation allows patterns and expressions to be written using programmer-defined con-
crete syntax; the motivation behind the extension and several examples are documented in
“Why It’s Nice to be Quoted: Quasiquoting for Haskell” (Proc Haskell Workshop 2007). The
example below shows how to write a quasiquoter for a simple expression language.
Here are the salient features
• A quasi-quote has the form [quoter| string |].

– The ⟨quoter⟩ must be the name of an imported quoter, either qualified or unqualified;
it cannot be an arbitrary expression.

– The ⟨quoter⟩ cannot be “e”, “t”, “d”, or “p”, since those overlap with Template
Haskell quotations.

– There must be no spaces in the token [quoter|.
– The quoted ⟨string⟩ can be arbitrary, and may contain newlines.
– The quoted ⟨string⟩ finishes at the first occurrence of the two-character sequence
"|]". Absolutely no escaping is performed. If you want to embed that character
sequence in the string, you must invent your own escape convention (such as, say,
using the string "|~]" instead), and make your quoter function interpret "|~]" as
"|]". One way to implement this is to compose your quoter with a pre-processing
pass to perform your escape conversion. See the discussion in #5348 for details.

• A quasiquote may appear in place of
– An expression
– A pattern
– A type
– A top-level declaration

(Only the first two are described in the paper.)
• A quoter is a value of type Language.Haskell.TH.Quote.QuasiQuoter, which is defined
thus:

data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp,
quotePat :: String -> Q Pat,
quoteType :: String -> Q Type,
quoteDec :: String -> Q [Dec] }

6.13. Template Haskell 495

http://www.cs.tufts.edu/comp/150FP/archive/geoff-mainland/quasiquoting.pdf
https://gitlab.haskell.org/ghc/ghc/issues/5348

GHC User’s Guide Documentation, Release 9.2.6

That is, a quoter is a tuple of four parsers, one for each of the contexts in which a quasi-
quote can occur.

• A quasi-quote is expanded by applying the appropriate parser to the string enclosed by
the Oxford brackets. The context of the quasi-quote (expression, pattern, type, declara-
tion) determines which of the parsers is called.

• Unlike normal declaration splices of the form $(...), declaration quasi-quotes do not
cause a declaration group break. See Syntax (page 486) for more information.

Warning: QuasiQuotes (page 495) introduces an unfortunate ambiguity with list com-
prehension syntax. Consider the following,
let x = [v| v <- [0..10]]

Without QuasiQuotes (page 495) this is parsed as a list comprehension. With QuasiQuotes
(page 495) this is parsed as a quasi-quote; however, this parse will fail due to the lack of a
closing |]. See #11679.

The example below shows quasi-quotation in action. The quoter expr is bound to a value of
type QuasiQuoter defined in module Expr. The example makes use of an antiquoted variable
n, indicated by the syntax 'int:n (this syntax for anti-quotation was defined by the parser’s
author, not by GHC). This binds n to the integer value argument of the constructor IntExpr
when pattern matching. Please see the referenced paper for further details regarding anti-
quotation as well as the description of a technique that uses SYB to leverage a single parser
of type String -> a to generate both an expression parser that returns a value of type Q Exp
and a pattern parser that returns a value of type Q Pat.
Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in the example,
expr cannot be defined in Main.hs where it is used, but must be imported.

{- ------------- file Main.hs --------------- -}
module Main where

import Expr

main :: IO ()
main = do { print $ eval [expr|1 + 2|]

; case IntExpr 1 of
{ [expr|'int:n|] -> print n
; _ -> return ()
}

}

{- ------------- file Expr.hs --------------- -}
module Expr where

import qualified Language.Haskell.TH as TH
import Language.Haskell.TH.Quote

data Expr = IntExpr Integer
| AntiIntExpr String
| BinopExpr BinOp Expr Expr
| AntiExpr String

deriving(Show, Typeable, Data)

496 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/11679

GHC User’s Guide Documentation, Release 9.2.6

data BinOp = AddOp
| SubOp
| MulOp
| DivOp

deriving(Show, Typeable, Data)

eval :: Expr -> Integer
eval (IntExpr n) = n
eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)
where

opToFun AddOp = (+)
opToFun SubOp = (-)
opToFun MulOp = (*)
opToFun DivOp = div

expr = QuasiQuoter { quoteExp = parseExprExp, quotePat = parseExprPat }

-- Parse an Expr, returning its representation as
-- either a Q Exp or a Q Pat. See the referenced paper
-- for how to use SYB to do this by writing a single
-- parser of type String -> Expr instead of two
-- separate parsers.

parseExprExp :: String -> Q Exp
parseExprExp ...

parseExprPat :: String -> Q Pat
parseExprPat ...

Now run the compiler:

$ ghc --make -XQuasiQuotes Main.hs -o main

Run “main” and here is your output:

$./main
3
1

6.14 Bang patterns and Strict Haskell

In high-performance Haskell code (e.g. numeric code) eliminating thunks from an inner loop
can be a huge win. GHC supports three extensions to allow the programmer to specify use of
strict (call-by-value) evaluation rather than lazy (call-by-need) evaluation.
• Bang patterns (BangPatterns (page 498)) makes pattern matching and let bindings
stricter.

• Strict data types (StrictData (page 499)) makes constructor fields strict by default, on
a per-module basis.

• Strict pattern (Strict (page 500)) makes all patterns and let bindings strict by default,
on a per-module basis.

The latter two extensions are simply a way to avoid littering high-performance code with bang
patterns, making it harder to read.

6.14. Bang patterns and Strict Haskell 497

GHC User’s Guide Documentation, Release 9.2.6

Bang patterns and strict matching do not affect the type system in any way.

6.14.1 Bang patterns

BangPatterns

Since 6.8.1
Allow use of bang pattern syntax.

GHC supports an extension of pattern matching called bang patterns, written !pat. Bang
patterns are under consideration for Haskell Prime. The Haskell prime feature description
contains more discussion and examples than the material below.
The main idea is to add a single new production to the syntax of patterns:

pat ::= !pat

Matching an expression e against a pattern !p is done by first evaluating e (to WHNF) and
then matching the result against p. Example:

f1 !x = True

This definition makes f1 is strict in x, whereas without the bang it would be lazy. Bang
patterns can be nested of course:

f2 (!x, y) = [x,y]

Here, f2 is strict in x but not in y.
Note the following points:
• A bang only really has an effect if it precedes a variable or wild-card pattern:

f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]

Here, f3 and f4 are identical; putting a bang before a pattern that forces evaluation
anyway does nothing.

• A bang pattern is allowed in a let or where clause, and makes the binding strict. For
example:

let !x = e in body
let !(p,q) = e in body

In both cases e is evaluated before starting to evaluate body.
However, nested bangs in a let/where pattern binding behave uniformly with all other
forms of pattern matching. For example

let (!x,[y]) = e in b

is equivalent to this:

let { t = case e of (x,[y]) -> x `seq` (x,y)
x = fst t
y = snd t }

in b

498 Chapter 6. Language extensions

https://gitlab.haskell.org/haskell/prime/-/wikis/BangPatterns

GHC User’s Guide Documentation, Release 9.2.6

The binding is lazy, but when either x or y is evaluated by b the entire pattern is matched,
including forcing the evaluation of x.
See Semantics of let bindings with bang patterns (page 502) for the detailed semantics.

• A pattern with a bang at the outermost level is not allowed at the top level of a module.
• Bang patterns work in case expressions too, of course:

g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (f x), binds y
to the result, and then evaluates body.

• There is one problem with syntactic ambiguity. Consider:

f !x = 3

Is this a definition of the infix function “(!)”, or of the “f” with a bang pattern? GHC
resolves this ambiguity by looking at the surrounding whitespace:

a ! b = ... -- infix operator
a !b = ... -- bang pattern

See GHC Proposal #229 for the precise rules.

6.14.2 Strict-by-default data types

StrictData

Since 8.0.1
Make fields of data types defined in the current module strict by default.

Informally the StrictData language extension switches data type declarations to be strict by
default allowing fields to be lazy by adding a ~ in front of the field.
When the user writes

data T = C a
data T' = C' ~a

we interpret it as if they had written

data T = C !a
data T' = C' a

The extension only affects definitions in this module.
The ~ annotation must be written in prefix form:

data T = MkT ~Int -- valid
data T = MkT ~ Int -- invalid

See GHC Proposal #229 for the precise rules.

6.14. Bang patterns and Strict Haskell 499

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.2.6

6.14.3 Strict-by-default pattern bindings

Strict

Implies StrictData (page 499)
Since 8.0.1

Make bindings in the current module strict by default.
Informally the Strict language extension switches functions, data types, and bindings to be
strict by default, allowing optional laziness by adding ~ in front of a variable. This essentially
reverses the present situation where laziness is default and strictness can be optionally had
by adding ! in front of a variable.
Strict implies StrictData (page 499).
• Function definitions
When the user writes

f x = ...

we interpret it as if they had written

f !x = ...

Adding ~ in front of x gives the regular lazy behavior.
Turning patterns into irrefutable ones requires ~(~p) when Strict is enabled.

• Let/where bindings
When the user writes

let x = ...
let pat = ...

we interpret it as if they had written

let !x = ...
let !pat = ...

Adding ~ in front of x gives the regular lazy behavior. The general rule is that we add an
implicit bang on the outermost pattern, unless disabled with ~.

• Pattern matching in case expressions, lambdas, do-notation, etc
The outermost pattern of all pattern matches gets an implicit bang, unless disabled with
~. This applies to case expressions, patterns in lambda, do-notation, list comprehension,
and so on. For example

case x of (a,b) -> rhs

is interpreted as

case x of !(a,b) -> rhs

Since the semantics of pattern matching in case expressions is strict, this usually has no
effect whatsoever. But it does make a difference in the degenerate case of variables and
newtypes. So

500 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

case x of y -> rhs

is lazy in Haskell, but with Strict is interpreted as

case x of !y -> rhs

which evaluates x. Similarly, if newtype Age = MkAge Int, then

case x of MkAge i -> rhs

is lazy in Haskell; but with Strict the added bang makes it strict.
Similarly

\ x -> body
do { x <- rhs; blah }
[e | x <- rhs; blah }

all get implicit bangs on the x pattern.
• Nested patterns
Notice that we do not put bangs on nested patterns. For example

let (p,q) = if flob then (undefined, undefined) else (True, False)
in ...

will behave like

let !(p,q) = if flob then (undefined, undefined) else (True,False)
in ...

which will strictly evaluate the right hand side, and bind p and q to the components of
the pair. But the pair itself is lazy (unless we also compile the Prelude with Strict; see
Modularity (page 502) below). So p and q may end up bound to undefined. See also
Dynamic semantics of bang patterns (page 502) below.

• Top level bindings
are unaffected by Strict. For example:

x = factorial 20
(y,z) = if x > 10 then True else False

Here x and the pattern binding (y,z) remain lazy. Reason: there is no good moment to
force them, until first use.

• Newtypes
There is no effect on newtypes, which simply rename existing types. For example:

newtype T = C a
f (C x) = rhs1
g !(C x) = rhs2

In ordinary Haskell, f is lazy in its argument and hence in x; and g is strict in its argument
and hence also strict in x. With Strict, both become strict because f‘s argument gets
an implicit bang.

6.14. Bang patterns and Strict Haskell 501

GHC User’s Guide Documentation, Release 9.2.6

6.14.4 Modularity

Strict and StrictData only affects definitions in the module they are used in. Functions
and data types imported from other modules are unaffected. For example, we won’t evaluate
the argument to Just before applying the constructor. Similarly we won’t evaluate the first
argument to Data.Map.findWithDefault before applying the function.
This is crucial to preserve correctness. Entities defined in other modules might rely on lazi-
ness for correctness (whether functional or performance).
Tuples, lists, Maybe, and all the other types from Prelude continue to have their existing, lazy,
semantics.

6.14.5 Dynamic semantics of bang patterns

The semantics of Haskell patternmatching is described in Section 3.17.2 of theHaskell Report.
To this description add one extra item 10, saying:
• Matching the pattern !pat against a value v behaves as follows:

– if v is bottom, the match diverges
– otherwise, pat is matched against v

Similarly, in Figure 4 of Section 3.17.3, add a new case (t):

case v of { !pat -> e; _ -> e' }
= v `seq` case v of { pat -> e; _ -> e' }

That leaves let expressions, whose translation is given in Section 3.12 of the Haskell Report.
Replace the “Translation” there with the following one. Given let { bind1 ... bindn } in
body:

FORCE
Replace any binding !p = e with v = case e of p -> (x1,...,xn); (x1,...,xn) = v
and replace body with v seq body, where v is fresh. This translation works fine if p is al-
ready a variable x, but can obviously be optimised by not introducing a fresh variable v.

SPLIT
Replace any binding p = e, where p is not a variable, with v = e; x1 = case v of p ->
x1; ...; xn = case v of p -> xn, where v is fresh and x1.. xn are the bound variables of
p. Again if e is a variable, this can be optimised by not introducing a fresh variable.

The result will be a (possibly) recursive set of bindings, binding only simple variables on the
left hand side. (One could go one step further, as in the Haskell Report andmake the recursive
bindings non-recursive using fix, but we do not do so in Core, and it only obfuscates matters,
so we do not do so here.)
The translation is carefully crafted to make bang patterns meaningful for recursive and poly-
morphic bindings as well as straightforward non-recursive bindings.
Here are some examples of how this translation works. The first expression of each sequence
is Haskell source; the subsequent ones are Core.

502 Chapter 6. Language extensions

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12

GHC User’s Guide Documentation, Release 9.2.6

Here is a simple non-recursive case:

let x :: Int -- Non-recursive
!x = factorial y

in body

===> (FORCE)
let x = factorial y in x `seq` body

===> (inline seq)
let x = factorial y in case x of x -> body

===> (inline x)
case factorial y of x -> body

Same again, only with a pattern binding:

let !(Just x, Left y) = e in body

===> (FORCE)
let v = case e of (Just x, Left y) -> (x,y)

(x,y) = v
in v `seq` body

===> (SPLIT)
let v = case e of (Just x, Left y) -> (x,y)

x = case v of (x,y) -> x
y = case v of (x,y) -> y

in v `seq` body

===> (inline seq, float x,y bindings inwards)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v -> let x = case v of (x,y) -> x

y = case v of (x,y) -> y
in body

===> (fluff up v's pattern; this is a standard Core optimisation)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v@(p,q) -> let x = case v of (x,y) -> x

y = case v of (x,y) -> y
in body

===> (case of known constructor)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v@(p,q) -> let x = p

y = q
in body

===> (inline x,y, v)
case (case e of (Just x, Left y) -> (x,y) of

(p,q) -> body[p/x, q/y]

===> (case of case)
case e of (Just x, Left y) -> body[p/x, q/y]

The final form is just what we want: a simple case expression.
Here is a recursive case

6.14. Bang patterns and Strict Haskell 503

GHC User’s Guide Documentation, Release 9.2.6

letrec xs :: [Int] -- Recursive
!xs = factorial y : xs

in body

===> (FORCE)
letrec xs = factorial y : xs in xs `seq` body

===> (inline seq)
letrec xs = factorial y : xs in case xs of xs -> body

===> (eliminate case of value)
letrec xs = factorial y : xs in body

and a polymorphic one:

let f :: forall a. [a] -> [a] -- Polymorphic
!f = fst (reverse, True)

in body

===> (FORCE)
let f = /\a. fst (reverse a, True) in f `seq` body

===> (inline seq, inline f)
case (/\a. fst (reverse a, True)) of f -> body

Notice that the seq is added only in the translation to Core If we did it in Haskell source, thus

let f = ... in f `seq` body

then f‘s polymorphic type would get instantiated, so the Core translation would be

let f = ... in f Any `seq` body

When overloading is involved, the results might be slightly counter intuitive:

let f :: forall a. Eq a => a -> [a] -> Bool -- Overloaded
!f = fst (member, True)

in body

===> (FORCE)
let f = /\a \(d::Eq a). fst (member, True) in f `seq` body

===> (inline seq, case of value)
let f = /\a \(d::Eq a). fst (member, True) in body

Note that the bang has no effect at all in this case

6.15 Parallel and Concurrent

GHC implements some major extensions to Haskell to support concurrent and parallel pro-
gramming. Let us first establish terminology:
• Parallelism means running a Haskell program on multiple processors, with the goal of
improving performance. Ideally, this should be done invisibly, and with no semantic
changes.

504 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Concurrency means implementing a program by using multiple I/O-performing threads.
While a concurrent Haskell program can run on a parallel machine, the primary goal of
using concurrency is not to gain performance, but rather because that is the simplest
and most direct way to write the program. Since the threads perform I/O, the semantics
of the program is necessarily non-deterministic.

GHC supports both concurrency and parallelism.

6.15.1 Concurrent and Parallel Haskell

Concurrent Haskell

Concurrent Haskell is the name given to GHC’s concurrency extension. It is enabled by de-
fault, so no special flags are required. The Concurrent Haskell paper is still an excellent
resource, as is Tackling the awkward squad.
To the programmer, Concurrent Haskell introduces no new language constructs; rather, it ap-
pears simply as a library, Control.Concurrent. The functions exported by this library include:
• Forking and killing threads.
• Sleeping.
• Synchronised mutable variables, called MVars
• Support for bound threads; see the paper Extending the FFI with concurrency.

Parallel Haskell

GHC includes support for running Haskell programs in parallel on symmetric, shared-memory
multi-processor (SMP). By default GHC runs your program on one processor; if you want it
to run in parallel you must link your program with the -threaded (page 244), and run it with
the RTS -N ⟨x⟩ (page 137) option; see Using SMP parallelism (page 136)). The runtime will
schedule the running Haskell threads among the available OS threads, running as many in
parallel as you specified with the -N ⟨x⟩ (page 137) RTS option.

Annotating pure code for parallelism

Ordinary single-threaded Haskell programs will not benefit from enabling SMP parallelism
alone: you must expose parallelism to the compiler. One way to do so is forking threads
using Concurrent Haskell (Concurrent Haskell (page 505)), but the simplest mechanism for
extracting parallelism from pure code is to use the par combinator, which is closely related
to (and often used with) seq. Both of these are available from the parallel library:

infixr 0 `par`
infixr 1 `pseq`

par :: a -> b -> b
pseq :: a -> b -> b

The expression (x `par` y) sparks the evaluation of x (to weak head normal form) and re-
turns y. Sparks are queued for execution in FIFO order, but are not executed immediately.
If the runtime detects that there is an idle CPU, then it may convert a spark into a real
thread, and run the new thread on the idle CPU. In this way the available parallelism is
spread amongst the real CPUs.

6.15. Parallel and Concurrent 505

https://www.haskell.org/ghc/docs/papers/concurrent-haskell.ps.gz
http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/
http://community.haskell.org/~simonmar/papers/conc-ffi.pdf
http://hackage.haskell.org/package/parallel

GHC User’s Guide Documentation, Release 9.2.6

For example, consider the following parallel version of our old nemesis, nfib:

import Control.Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (pseq n2 (n1 + n2))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values of n greater than 1, we use par to spark a thread to evaluate nfib (n-1), and
then we use pseq to force the parent thread to evaluate nfib (n-2) before going on to add
together these two subexpressions. In this divide-and-conquer approach, we only spark a new
thread for one branch of the computation (leaving the parent to evaluate the other branch).
Also, we must use pseq to ensure that the parent will evaluate n2 before n1 in the expression
(n1 + n2 + 1). It is not sufficient to reorder the expression as (n2 + n1 + 1), because the
compiler may not generate code to evaluate the addends from left to right.
Note that we use pseq rather than seq. The two are almost equivalent, but differ in their
runtime behaviour in a subtle way: seq can evaluate its arguments in either order, but pseq
is required to evaluate its first argument before its second, which makes it more suitable for
controlling the evaluation order in conjunction with par.
When using par, the general rule of thumb is that the sparked computation should be required
at a later time, but not too soon. Also, the sparked computation should not be too small,
otherwise the cost of forking it in parallel will be too large relative to the amount of parallelism
gained. Getting these factors right is tricky in practice.
It is possible to glean a little information about how well par is working from the runtime
statistics; see RTS options to control the garbage collector (page 183).
More sophisticated combinators for expressing parallelism are available from the Con-
trol.Parallel.Strategiesmodule in the parallel package. This module builds functionality
around par, expressing more elaborate patterns of parallel computation, such as parallel map.

6.15.2 Software Transactional Memory

GHC now supports a new way to coordinate the activities of Concurrent Haskell threads,
called Software Transactional Memory (STM). The STM papers are an excellent introduction
to what STM is, and how to use it.
The main library you need to use is the stm library. The main features supported are these:
• Atomic blocks.
• Transactional variables.
• Operations for composing transactions: retry, and orElse.
• Data invariants.

All these features are described in the papers mentioned earlier.

6.15.3 Static pointers

StaticPointers

Since 7.10.1

506 Chapter 6. Language extensions

http://hackage.haskell.org/package/parallel
https://wiki.haskell.org/Research_papers/Parallelism_and_concurrency#Lock_free_data_structures_and_transactional_memory
http://hackage.haskell.org/package/stm

GHC User’s Guide Documentation, Release 9.2.6

Allow use of static pointer syntax.
The language extension StaticPointers (page 506) adds a new syntactic form static e,
which stands for a reference to the closed expression ⟨e⟩. This reference is stable and portable,
in the sense that it remains valid across different processes on possibly different machines.
Thus, a process can create a reference and send it to another process that can resolve it to
⟨e⟩.
With this extension turned on, static is no longer a valid identifier.
Static pointers were first proposed in the paper Towards Haskell in the cloud, Jeff Epstein,
Andrew P. Black and Simon Peyton-Jones, Proceedings of the 4th ACM Symposium on Haskell,
pp. 118-129, ACM, 2011.

Using static pointers

Each reference is given a key which can be used to locate it at runtime with
GHC.StaticPtr.unsafeLookupStaticPtr which uses a global and immutable table called the
Static Pointer Table. The compiler includes entries in this table for all static forms
found in the linked modules. The value can be obtained from the reference via
GHC.StaticPtr.deRefStaticPtr.
The body e of a static e expressionmust be a closed expression. Where we say an expression
is closed when all of its free (type) variables are closed. And a variable is closed if it is let-
bound to a closed expression and its type is closed as well. And a type is closed if it has no
free variables.
All of the following are permissible:

inc :: Int -> Int
inc x = x + 1

ref1 = static 1
ref2 = static inc
ref3 = static (inc 1)
ref4 = static ((\x -> x + 1) (1 :: Int))
ref5 y = static (let x = 1 in x)
ref6 y = let x = 1 in static x

While the following definitions are rejected:

ref7 y = let x = y in static x -- x is not closed
ref8 y = static (let x = 1 in y) -- y is not let-bound
ref8 (y :: a) = let x = undefined :: a

in static x -- x has a non-closed type

Note: While modules loaded in GHCi with the :load (page 67) command may use Static-
Pointers (page 506) and static expressions, statements entered on the REPL may not. This
is a limitation of GHCi; see #12356 for details.

Note: The set of keys used for locating static pointers in the Static Pointer Table is not
guaranteed to remain stable for different program binaries. Or in other words, only processes
launched from the same program binary are guaranteed to use the same set of keys.

6.15. Parallel and Concurrent 507

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf
https://gitlab.haskell.org/ghc/ghc/issues/12356

GHC User’s Guide Documentation, Release 9.2.6

Static semantics of static pointers

Informally, if we have a closed expression

e :: forall a_1 ... a_n . t

the static form is of type

static e :: (IsStatic p, Typeable a_1, ... , Typeable a_n) => p t

A static form determines a value of type StaticPtr t, but just like OverloadedLists and
OverloadedStrings, this literal expression is overloaded to allow lifting a StaticPtr into
another type implicitly, via the IsStatic class:

class IsStatic p where
fromStaticPtr :: StaticPtr a -> p a

The only predefined instance is the obvious one that does nothing:

instance IsStatic StaticPtr where
fromStaticPtr sptr = sptr

See GHC.StaticPtr.IsStatic.
Furthermore, type t is constrained to have a Typeable instance. The following are therefore
illegal:

static show -- No Typeable instance for (Show a => a -> String)
static Control.Monad.ST.runST -- No Typeable instance for ((forall s. ST s a) -> a)

That being said, with the appropriate use of wrapper datatypes, the above limitations induce
no loss of generality:

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StaticPointers #-}

import Control.Monad.ST
import Data.Typeable
import GHC.StaticPtr

data Dict c = c => Dict

g1 :: Typeable a => StaticPtr (Dict (Show a) -> a -> String)
g1 = static (\Dict -> show)

data Rank2Wrapper f = R2W (forall s. f s)
deriving Typeable

newtype Flip f a s = Flip { unFlip :: f s a }
deriving Typeable

g2 :: Typeable a => StaticPtr (Rank2Wrapper (Flip ST a) -> a)
g2 = static (\(R2W f) -> runST (unFlip f))

508 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.16 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; “primitive” in the sense that
they cannot be defined in Haskell itself. While you really can use this stuff to write fast code,
we generally find it a lot less painful, and more satisfying in the long run, to use higher-level
language features and libraries. With any luck, the code you write will be optimised to the
efficient unboxed version in any case. And if it isn’t, we’d like to know about it.
All these primitive data types and operations are exported by the library GHC.Prim. (This
documentation is generated from the file compiler/GHC/Builtin/primops.txt.pp.)
If you want to mention any of the primitive data types or operations in your program, you
must first import GHC.Prim to bring them into scope. Many of them have names ending in #,
and to mention such names you need the MagicHash (page 268) extension.
The primops make extensive use of unboxed types (page 509) and unboxed tuples (page 510),
which we briefly summarise here.

6.16.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a
pointer to a heap object. The representation of a Haskell Int, for example, is a two-word
heap object. An unboxed type, however, is represented by the value itself, no pointers or
heap allocation are involved.
Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int),
Double# (double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are
what you might expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we
all know and love—usually one instruction.
Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the lan-
guage and compiler. Primitive types are always unlifted; that is, a value of a primitive type
cannot be bottom. (Note: a “boxed” type means that a value is represented by a pointer to a
heap object; a “lifted” type means that terms of that type may be bottom. See the next para-
graph for an example.) We use the convention (but it is only a convention) that primitive types,
values, and operations have a # suffix (see The magic hash (page 268)). For some primitive
types we have special syntax for literals, also described in the same section (page ??).
Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#.
But this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples include Array#, the type of primitive arrays. Thus, Array#
is an unlifted, boxed type. A primitive array is heap-allocated because it is too big a value to
fit in a register, and would be too expensive to copy around; in a sense, it is accidental that it
is represented by a pointer. If a pointer represents a primitive value, then it really does point
to that value: no unevaluated thunks, no indirections. Nothing can be at the other end of the
pointer than the primitive value. A numerically-intensive program using unboxed types can
go a lot faster than its “standard” counterpart—we saw a threefold speedup on one example.

6.16.2 Unboxed type kinds

Because unboxed types are represented without the use of pointers, we cannot store them in
a polymorphic data type. For example, the Just node of Just 42# would have to be different
from the Just node of Just 42; the former stores an integer directly, while the latter stores
a pointer. GHC currently does not support this variety of Just nodes (nor for any other data
type). Accordingly, the kind of an unboxed type is different from the kind of a boxed type.

6.16. Unboxed types and primitive operations 509

GHC User’s Guide Documentation, Release 9.2.6

The Haskell Report describes that * (spelled Type and imported from Data.Kind in the GHC
dialect of Haskell) is the kind of ordinary data types, such as Int. Furthermore, type con-
structors can have kinds with arrows; for example, Maybe has kind Type -> Type. Unboxed
types have a kind that specifies their runtime representation. For example, the type Int#
has kind TYPE 'IntRep and Double# has kind TYPE 'DoubleRep. These kinds say that the
runtime representation of an Int# is a machine integer, and the runtime representation of a
Double# is a machine double-precision floating point. In contrast, the kind Type is actually
just a synonym for TYPE 'LiftedRep. More details of the TYPE mechanisms appear in the
section on runtime representation polymorphism (page ??).
Given that Int#‘s kind is not Type, then it follows that Maybe Int# is disallowed. Similarly,
because type variables tend to be of kind Type (for example, in (.) :: (b -> c) -> (a ->
b) -> a -> c, all the type variables have kind Type), polymorphism tends not to work over
primitive types. Stepping back, this makes some sense, because a polymorphic function needs
to manipulate the pointers to its data, and most primitive types are unboxed.
There are some restrictions on the use of primitive types:
• You cannot define a newtype whose representation type (the argument type of the data
constructor) is an unboxed type. Thus, this is illegal:

newtype A = MkA Int#

However, this restriction can be relaxed by enabling UnliftedNewtypes (page 513). The
section on unlifted newtypes (page 513) details the behavior of such types.

• You cannot bind a variable with an unboxed type in a top-level binding.
• You cannot bind a variable with an unboxed type in a recursive binding.
• You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding,
but you must make any such pattern-match strict. (Failing to do so emits a warning
-Wunbanged-strict-patterns (page 118).) For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

6.16.3 Unboxed tuples

UnboxedTuples

Since 6.8.1
Unboxed tuples aren’t really exported by GHC.Exts; they are a syntactic extension (Unboxed-
Tuples (page 510)). An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an
unboxed tuple looks the same.

510 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Note that when unboxed tuples are enabled, (# is a single lexeme, so for example when using
operators like # and #- you need to write (#) and (#-) rather than (#) and (#-).
Unboxed tuples are used for functions that need to return multiple values, but they avoid the
heap allocation normally associated with using fully-fledged tuples. When an unboxed tuple
is returned, the components are put directly into registers or on the stack; the unboxed tuple
itself does not have a composite representation. Many of the primitive operations listed in
primops.txt.pp return unboxed tuples. In particular, the IO and ST monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
There are some restrictions on the use of unboxed tuples:
• The typical use of unboxed tuples is simply to return multiple values, binding those mul-
tiple results with a case expression, thus:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

You can have an unboxed tuple in a pattern binding, thus

f x = let (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell
pattern binding. The above example desugars like this:

f x = let t = case h x of { (# p,q #) -> (p,q) }
p = fst t
q = snd t

in ..body..

Indeed, the bindings can even be recursive.

6.16.4 Unboxed sums

UnboxedSums

Since 8.2.1
Enable the use of unboxed sum syntax.

-XUnboxedSums enables new syntax for anonymous, unboxed sum types. The syntax for an
unboxed sum type with N alternatives is

(# t_1 | t_2 | ... | t_N #)

where t_1 ... t_N are types (which can be unlifted, including unboxed tuples and sums).
Unboxed tuples can be used for multi-arity alternatives. For example:

(# (# Int, String #) | Bool #)

The term level syntax is similar. Leading and preceding bars (|) indicate which alternative it
is. Here are two terms of the type shown above:

(# (# 1, "foo" #) | #) -- first alternative

(# | True #) -- second alternative

6.16. Unboxed types and primitive operations 511

GHC User’s Guide Documentation, Release 9.2.6

The pattern syntax reflects the term syntax:

case x of
(# (# i, str #) | #) -> ...
(# | bool #) -> ...

Unboxed sums are “unboxed” in the sense that, instead of allocating sums in the heap and
representing values as pointers, unboxed sums are represented as their components, just like
unboxed tuples. These “components” depend on alternatives of a sum type. Like unboxed
tuples, unboxed sums are lazy in their lifted components.
The code generator tries to generate as compact layout as possible for each unboxed sum. In
the best case, size of an unboxed sum is size of its biggest alternative plus one word (for a
tag). The algorithm for generating the memory layout for a sum type works like this:
• All types are classified as one of these classes: 32bit word, 64bit word, 32bit float, 64bit
float, pointer.

• For each alternative of the sum type, a layout that consists of these fields is generated.
For example, if an alternative has Int, Float# and String fields, the layout will have an
32bit word, 32bit float and pointer fields.

• Layout fields are then overlapped so that the final layout will be as compact as possible.
For example, suppose we have the unboxed sum:

(# (# Word32#, String, Float# #)
| (# Float#, Float#, Maybe Int #) #)

The final layout will be something like

Int32, Float32, Float32, Word32, Pointer

The first Int32 is for the tag. There are two Float32 fields because floating point types
can’t overlap with other types, because of limitations of the code generator that we’re
hoping to overcome in the future. The second alternative needs two Float32 fields:
The Word32 field is for the Word32# in the first alternative. The Pointer field is shared
between String and Maybe Int values of the alternatives.
As another example, this is the layout for the unboxed version of Maybe a type, (# (#
#) | a #):

Int32, Pointer

The Pointer field is not used when tag says that it’s Nothing. Otherwise Pointer points
to the value in Just. As mentioned above, this type is lazy in its lifted field. Therefore,
the type

data Maybe' a = Maybe' (# (# #) | a #)

is precisely isomorphic to the type Maybe a, although its memory representation is dif-
ferent.
In the degenerate case where all the alternatives have zero width, such as the Bool-
like (# (# #) | (# #) #), the unboxed sum layout only has an Int32 tag field (i.e., the
whole thing is represented by an integer).

512 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.16.5 Unlifted Newtypes

UnliftedNewtypes

Since 8.10.1
Enable the use of newtypes over types with non-lifted runtime representations.

GHC implements an UnliftedNewtypes (page 513) extension as specified in this GHC pro-
posal. UnliftedNewtypes (page 513) relaxes the restrictions around what types can appear
inside of a newtype. For example, the type

newtype A = MkA Int#

is accepted when this extension is enabled. This creates a type A :: TYPE 'IntRep and a data
constructor MkA :: Int# -> A. Although the kind of A is inferred by GHC, there is nothing
visually distinctive about this type that indicated that is it not of kind Type like newtypes
typically are. GADTSyntax (page ??) can be used to provide a kind signature for additional
clarity

newtype A :: TYPE 'IntRep where
MkA :: Int# -> A

The Coercible machinery works with unlifted newtypes just like it does with lifted types. In
either of the equivalent formulations of A given above, users would additionally have access
to a coercion between A and Int#.
As a consequence of the levity-polymorphic binder restriction (page ??), levity-polymorphic
fields are disallowed in data constructors of data types declared using data. However, since
newtype data constructor application is implemented as a coercion instead of as function
application, this restriction does not apply to the field inside a newtype data constructor. Thus,
the type checker accepts

newtype Identity# :: forall (r :: RuntimeRep). TYPE r -> TYPE r where
MkIdentity# :: forall (r :: RuntimeRep) (a :: TYPE r). a -> Identity# a

And with UnboxedSums (page 511) enabled

newtype Maybe# :: forall (r :: RuntimeRep). TYPE r -> TYPE (SumRep '[r, TupleRep
↪→'[]]) where
MkMaybe# :: forall (r :: RuntimeRep) (a :: TYPE r). (# a | (# #) #) -> Maybe# a

This extension also relaxes some of the restrictions around data family instances. In particu-
lar, UnliftedNewtypes (page 513) permits a newtype instance to be given a return kind of
TYPE r, not just Type. For example, the following newtype instance declarations would be
permitted:

class Foo a where
data FooKey a :: TYPE 'IntRep

class Bar (r :: RuntimeRep) where
data BarType r :: TYPE r

instance Foo Bool where
newtype FooKey Bool = FooKeyBoolC Int#

instance Bar 'WordRep where
newtype BarType 'WordRep = BarTypeWordRepC Word#

6.16. Unboxed types and primitive operations 513

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst

GHC User’s Guide Documentation, Release 9.2.6

It is worth noting that UnliftedNewtypes (page 513) is not required to give the data families
themselves return kinds involving TYPE, such as the FooKey and BarType examples above.
The extension is only required for newtype instance declarations, such as FooKeyBoolC and
BarTypeWorkRepC above.
This extension impacts the determination of whether or not a newtype has a Complete
User-Specified Kind Signature (CUSK). The exact impact is specified the section on CUSKs
(page ??).

6.16.6 Unlifted Datatypes

UnliftedDatatypes

Implies DataKinds (page 343), StandaloneKindSignatures (page 352)
Since 9.2.1

Enable the declaration of data types with unlifted or levity-polymorphic result kind.
GHC implements the UnliftedDatatypes (page 514) extension as specified in this GHC pro-
posal. UnliftedDatatypes (page 514) relaxes the restrictions around what result kinds are
allowed in data declarations. For example, the type

data UList a :: UnliftedType where
UCons :: a -> UList a -> UList a
UNil :: UList a

defines a list type that lives in kind UnliftedType (e.g., TYPE (BoxedRep Unlifted)). As
such, each occurrence of a term of that type is assumed to be evaluated (and the compiler
makes sure that is indeed the case). In other words: Unlifted data types behave like data
types in strict languages such as OCaml or Idris. However unlike StrictData (page 499),
this extension will not change whether the fields of a (perhaps unlifted) data type are strict
or lazy. For example, UCons is lazy in its first argument as its field has kind Type.
The fact that unlifted types are always evaluated allows GHC to elide evaluatedness checks
at runtime. See the Motivation section of the proposal for how this can improve performance
for some programs.
The above data declaration in GADT syntax correctly suggests that unlifted data types are
compatible with the full GADT feature set. Somewhat conversely, you can also declare un-
lifted data types in Haskell98 syntax, which requires you to specify the result kind via Stan-
daloneKindSignatures (page 352):

type UList :: Type -> UnliftedType
data UList a = UCons a (UList a) | UNil

You may even declare levity-polymorphic data types:

type PEither :: Type -> Type -> TYPE (BoxedRep l)
data PEither l r = PLeft l | PRight r

f :: PEither @Unlifted Int Bool -> Bool
f (PRight b) = b
f _ = False

While f above could reasonably be levity-polymorphic (as it evaluates its argument either
way), GHC currently disallows the more general type PEither @l Int Bool -> Bool. This
is a consequence of the levity-polymorphic binder restriction (page ??),

514 Chapter 6. Language extensions

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst

GHC User’s Guide Documentation, Release 9.2.6

Due to ticket 19487 <https://gitlab.haskell.org/ghc/ghc/-/issues/19487>, it’s currently not
possible to declare levity-polymorphic data types with nullary data constructors. There’s a
workaround, though:

type T :: TYPE (BoxedRep l)
data T where
MkT :: forall l. (() :: Constraint) => T @l

The use of =>makes the type of MkT lifted. If you want a zero-runtime-cost alternative, use MkT
:: Proxy# () -> T @l instead and bear with the additional proxy# argument at construction
sites.
This extension also relaxes some of the restrictions around data family instances. In particu-
lar, UnliftedDatatypes (page 514) permits a data instance to be given a return kind that
unifies with TYPE (BoxedRep l), not just Type. For example, the following data instance
declarations would be permitted:

data family F a :: UnliftedType
data instance F Int = FInt

data family G a :: TYPE (BoxedRep l)
data instance G Int = GInt Int -- defaults to Type
data instance G Bool :: UnliftedType where
GBool :: Bool -> G Bool

data instance G Char :: Type where
GChar :: Char -> G Char

data instance G Double :: forall l. TYPE (BoxedRep l) where
GDouble :: Int -> G @l Double

It is worth noting that UnliftedDatatypes (page 514) is not required to give the data families
themselves return kinds involving TYPE, such as the G example above. The extension is only
required for data instance declarations, such as FInt and GBool above.

6.17 Foreign function interface (FFI)

ForeignFunctionInterface

Since 6.8.1
Allow use of the Haskell foreign function interface.

GHC (mostly) conforms to the Haskell Foreign Function Interface as specified in the Haskell
Report. Refer to the relevant chapter of the Haskell Report for more details.
FFI support is enabled by default, but can be enabled or disabled explicitly with the Foreign-
FunctionInterface (page 515) flag.
GHC implements a number of GHC-specific extensions to the FFI Chapter of the Haskell 2010
Report. These extensions are described in GHC extensions to the FFI Chapter (page 517), but
please note that programs using these features are not portable. Hence, these features should
be avoided where possible.
The FFI libraries are documented in the accompanying library documentation; see for exam-
ple the Foreign module.

6.17.1 GHC differences to the FFI Chapter

6.17. Foreign function interface (FFI) 515

https://www.haskell.org/onlinereport/haskell2010/haskellch8.html

GHC User’s Guide Documentation, Release 9.2.6

Guaranteed call safety

The Haskell 2010 Report specifies that safe FFI calls must allow foreign calls to safely call
into Haskell code. In practice, this means that called functions also have to assume heap-
allocated Haskell values may move around arbitrarily in order to allow for GC.
This greatly constrains library authors since it implies that it is not safe to pass any heap object
reference to a safe foreign function call. For instance, it is often desirable to pass unpinned
(page 530) ByteArray#s directly to native code to avoid making an otherwise-unnecessary
copy. However, this can not be done safely for safe calls since the array might be moved by
the garbage collector in the middle of the call.
The Chapter does allow for implementations to move objects around during unsafe calls as
well. So strictly Haskell 2010-conforming programs cannot pass heap-allocated references
to unsafe FFI calls either.
GHC, since version 8.4, guarantees that garbage collection will never occur during an un-
safe call, even in the bytecode interpreter, and further guarantees that unsafe calls will
be performed in the calling thread. Making it safe to pass heap-allocated objects to unsafe
functions.
In previous releases, GHC would take advantage of the freedom afforded by the Chapter by
performing safe foreign calls in place of unsafe calls in the bytecode interpreter. This meant
that some packages which worked when compiled would fail under GHCi (e.g. #13730). But
this is no longer the case in recent releases.

Interactions between safe calls and bound threads

A safe call calling into haskell is run on a bound thread by the RTS. This means any nesting
of safe calls will be executed on the same operating system thread. Sequential safe calls
however do not enjoy this luxury and may be run on arbitrary OS threads.
This behaviour is considered an implementation detail and code relying on thread local state
should instead use one of the interfaces provided in Control.Concurrent to make this explicit.
For information on what bound threads are, see the documentation for the Con-
trol.Concurrent.
For more details on the implementation see the Paper: “Extending the Haskell Foreign Func-
tion Interface with Concurrency”. Last known to be accessible here.

Varargs not supported by ccall calling convention

Note that functions requiring varargs arguments are unsupported by the ccall calling con-
vention. Foreign imports needing to call such functions should rather use the capi convention,
giving an explicit signature for the needed call-pattern. For instance, one could write:

foreign import "capi" "printf"
my_printf :: Ptr CChar -> CInt -> IO ()

printInt :: CInt -> IO ()
printInt n = my_printf "printed number %d" n

516 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/13730
https://www.microsoft.com/en-us/research/wp-content/uploads/2004/09/conc-ffi.pdf

GHC User’s Guide Documentation, Release 9.2.6

6.17.2 GHC extensions to the FFI Chapter

The FFI features that are described in this section are specific to GHC. Your code will not be
portable to other compilers if you use them.

Unlifted FFI Types

UnliftedFFITypes

Since 6.8.1
The following unlifted unboxed types may be used as basic foreign types (see FFI Chapter,
Section 8.6) for both safe and unsafe foreign calls: Int#, Word#, Char#, Float#, Double#,
Addr#, and StablePtr# a. Several unlifted boxed types may be used as arguments to FFI
calls, subject to these restrictions:
• Valid arguments for foreign import unsafe FFI calls: Array#, SmallArray#, Arra-
yArray#, ByteArray#, and the mutable counterparts of these types.

• Valid arguments for foreign import safe FFI calls: ByteArray# and MutableByteAr-
ray#. The byte array must be pinned (page 530).

• Mutation: In both foreign import unsafe and foreign import safe FFI calls, it is
safe to mutate a MutableByteArray. Mutating any other type of array leads to unde-
fined behavior. Reason: Mutable arrays of heap objects record writes for the purpose of
garbage collection. An array of heap objects is passed to a foreign C function, the run-
time does not record any writes. Consequently, it is not safe to write to an array of heap
objects in a foreign function. Since the runtime has no facilities for tracking mutation of
a MutableByteArray#, these can be safely mutated in any foreign function.

None of these restrictions are enforced at compile time. Failure to heed these restrictions
will lead to runtime errors that can be very difficult to track down. (The errors likely will not
manifest until garbage collection happens.) In tabular form, these restrictions are:

Table 6.2: Restrictions on unlifted boxed arguments passed to foreign C calls. Cells
marked as “Unsound” represent combinations that lead to undefined runtime behavior.
GHC does not reject such unsound programs at compile time.

When value is used as argument to FFI call that is
foreign import safe foreign import unsafe

Argument Type reads are writes are reads are writes are
Array# Unsound Unsound Sound Unsound
MutableArray# Unsound Unsound Sound Unsound
SmallArray# Unsound Unsound Sound Unsound
MutableSmallArray# Unsound Unsound Sound Unsound
ArrayArray# Unsound Unsound Sound Unsound
MutableArrayArray# Unsound Unsound Sound Unsound
unpinned ByteArray# Unsound Unsound Sound Unsound
unpinned MutableByteArray# Unsound Unsound Sound Sound
pinned ByteArray# Sound Unsound Sound Unsound
pinned MutableByteArray# Sound Sound Sound Sound

When passing any of the unlifted array types as an argument to a foreign C call, a for-
eign function sees a pointer that refers to the payload of the array, not to the StgAr-

6.17. Foreign function interface (FFI) 517

GHC User’s Guide Documentation, Release 9.2.6

rBytes/StgMutArrPtrs/StgSmallMutArrPtrs heap object containing it 1. By contrast, a for-
eign Cmm call (page 519), introduced by foreign import prim, sees the heap object, not
just the payload. This means that, in some situations, the foreign C function might not need
any knowledge of the RTS closure types. The following example sums the first three bytes in
a MutableByteArray# 2 without using anything from Rts.h:

// C source
uint8_t add_triplet(uint8_t* arr) {
return (arr[0] + arr[1] + arr[2]);

}

-- Haskell source
foreign import ccall unsafe "add_triplet"
addTriplet :: MutableByteArray# RealWorld -> IO Word8

In other situations, the C function may need knowledge of the RTS closure types. The follow-
ing example sums the first element of each ByteArray# (interpreting the bytes as an array of
CInt) element of an ArrayArray## 3:

// C source, must include the RTS to make the struct StgArrBytes
// available along with its fields: ptrs and payload.
#include "Rts.h"
int sum_first (StgArrBytes **bufs) {
StgArrBytes **bufs = (StgArrBytes**)bufsTmp;
int res = 0;
for(StgWord ix = 0;ix < arr->ptrs;ix++) {

res = res + ((int*)(bufs[ix]->payload))[0];
}
return res;

}

-- Haskell source, all elements in the argument array must be
-- either ByteArray# or MutableByteArray#. This is not enforced
-- by the type system in this example since ArrayArray is untyped.
foreign import ccall unsafe "sum_first"
sumFirst :: ArrayArray# -> IO CInt

Although GHC allows the user to pass all unlifted boxed types to foreign functions, some of
them are not amenable to useful work. Although Array# is unlifted, the elements in its payload
are lifted, and a foreign C function cannot safely force thunks. Consequently, a foreign C
function may not dereference any of the addresses that comprise the payload of the Array#.

Newtype wrapping of the IO monad

The FFI spec requires the IO monad to appear in various places, but it can sometimes be
convenient to wrap the IO monad in a newtype, thus:

newtype MyIO a = MIO (IO a)

(A reason for doing so might be to prevent the programmer from calling arbitrary IO proce-
dures in some part of the program.)

1 Prior to GHC 8.10, when passing an ArrayArray# argument to a foreign function, the foreign function would see
a pointer to the StgMutArrPtrs rather than just the payload.

2 In practice, the FFI should not be used for a task as simple as reading bytes from a MutableByteArray#. Users
should prefer GHC.Exts.readWord8Array# for this.

3 As in 2, the FFI is not actually needed for this. GHC.Exts includes primitives for reading from on ArrayArray#.

518 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The Haskell FFI already specifies that arguments and results of foreign imports and exports
will be automatically unwrapped if they are newtypes (Section 3.2 of the FFI addendum).
GHC extends the FFI by automatically unwrapping any newtypes that wrap the IO monad
itself. More precisely, wherever the FFI specification requires an IO type, GHC will accept
any newtype-wrapping of an IO type. For example, these declarations are OK:

foreign import foo :: Int -> MyIO Int
foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int

Explicit “forall”s in foreign types

The type variables in the type of a foreign declaration may be quantified with an explicit
forall by using the ExplicitForAll (page 466) language extension, as in the following ex-
ample:

{-# LANGUAGE ExplicitForAll #-}
foreign import ccall "mmap" c_mmap :: forall a. CSize -> IO (Ptr a)

Note that an explicit forallmust appear at the front of the type signature and is not permitted
to appear nested within the type, as in the following (erroneous) examples:

foreign import ccall "mmap" c_mmap' :: CSize -> forall a. IO (Ptr a)
foreign import ccall quux :: (forall a. Ptr a) -> IO ()

Primitive imports

GHCForeignImportPrim

Since 6.12.1
With GHCForeignImportPrim (page 519), GHC extends the FFI with an additional calling con-
vention prim, e.g.:

foreign import prim "foo" foo :: ByteArray# -> (# Int#, Int# #)

This is used to import functions written in Cmm code that follow an internal GHC calling
convention. The arguments and results must be unboxed types, except that an argument may
be of type Any (by way of unsafeCoerce#) and the result type is allowed to be an unboxed
tuple or the type Any.
This feature is not intended for use outside of the core libraries that come with GHC. For more
details see the GHC developer wiki.

Interruptible foreign calls

InterruptibleFFI

Since 7.2.1
This concerns the interaction of foreign calls with Control.Concurrent.throwTo. Normally
when the target of a throwTo is involved in a foreign call, the exception is not raised until the
call returns, and in the meantime the caller is blocked. This can result in unresponsiveness,
which is particularly undesirable in the case of user interrupt (e.g. Control-C). The default
behaviour when a Control-C signal is received (SIGINT on Unix) is to raise the UserInterrupt

6.17. Foreign function interface (FFI) 519

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/prim-ops

GHC User’s Guide Documentation, Release 9.2.6

exception in the main thread; if the main thread is blocked in a foreign call at the time, then
the program will not respond to the user interrupt.
The problem is that it is not possible in general to interrupt a foreign call safely. However,
GHC does provide a way to interrupt blocking system calls which works for most system calls
on both Unix and Windows.
When the InterruptibleFFI extension is enabled, a foreign call can be annotated with in-
terruptible instead of safe or unsafe:

foreign import ccall interruptible
"sleep" sleepBlock :: CUint -> IO CUint

interruptible behaves exactly as safe, except that when a throwTo is directed at a thread
in an interruptible foreign call, irrespective of the masking state, the exception is added to
the blocked exceptions queue of the target thread and an OS-specific mechanism will be used
to attempt to cause the foreign call to return:
Unix systems The thread making the foreign call is sent a SIGPIPE signal using

pthread_kill(). This is usually enough to cause a blocking system call to return with
EINTR (GHC by default installs an empty signal handler for SIGPIPE, to override the
default behaviour which is to terminate the process immediately).

Windows systems [Vista and later only] The RTS calls the Win32 function CancelSyn-
chronousIo, which will cause a blocking I/O operation to return with the error ER-
ROR_OPERATION_ABORTED.

Once the system call is successfully interrupted, the surrounding code must return control
out of the foreign import, back into Haskell code, so that any blocked exception can be
raised if the masking state of the thread allows it. Being under mask gives the Haskell code
an opportunity to detect and react to the interrupt error code from the c call.
If the foreign code simply retries the system call directly without returning back to
Haskell, then the intended effect of interruptible disappears and functions like Sys-
tem.Timeout.timeout will not work.
Finally, after the interruptible foreign call returns into Haskell, the Haskell code should
allow exceptions to be raised (Control.Exception‘s allowInterrupt, or interruptible
yield for non--threaded, see https://gitlab.haskell.org/ghc/ghc/issues/8684), and implement
the EINTR-retrying in Haskell (e.g. using e.g. Foreign.C.Error.throwErrnoIfMinus1Retry).
Be especially careful when using interruptible to check that the called foreign function is
prepared to deal with the consequences of the call being interrupted. On Unix it is considered
good practice to always check for EINTR after system calls, so you can expect it not to crash
(but in that case interruptiblewill not work as intended unless the code then returns all the
way up to Haskell as described above). But on Windows it is not typically common practice
to handle ERROR_OPERATION_ABORTED.
The approach works only for foreign code that does I/O (system calls), not for CPU-intensive
computations that do not do any system calls. This is because the only way by which the
foreign code can observe interruption is by system calls returning interruption error codes.
To be able to interrupt long-running foreign code doing no system calls, the code must likely
be changed to explicitly check for intended early termination.

The CAPI calling convention

CApiFFI

Since 7.6.1

520 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/8684

GHC User’s Guide Documentation, Release 9.2.6

The CApiFFI extension allows a calling convention of capi to be used in foreign declarations,
e.g.

foreign import capi "header.h f" f :: CInt -> IO CInt

Rather than generating code to call f according to the platform’s ABI, we instead call f using
the C API defined in the header header.h. Thus f can be called even if it may be defined as
a CPP #define rather than a proper function.
When using capi, it is also possible to import values, rather than functions. For example,

foreign import capi "pi.h value pi" c_pi :: CDouble

will work regardless of whether pi is defined as

const double pi = 3.14;

or with

#define pi 3.14

In order to tell GHC the C type that a Haskell type corresponds to when it is used with the
CAPI, a CTYPE pragma can be used on the type definition. The header which defines the type
can optionally also be specified. The syntax looks like:

data {-# CTYPE "unistd.h" "useconds_t" #-} T = ...
newtype {-# CTYPE "useconds_t" #-} T = ...

hs_thread_done()

void hs_thread_done(void);

GHC allocates a small amount of thread-local memory when a thread calls a Haskell function
via a foreign export. This memory is not normally freed until hs_exit(); the memory is
cached so that subsequent calls into Haskell are fast. However, if your application is long-
running and repeatedly creates new threads that call into Haskell, you probably want to
arrange that this memory is freed in those threads that have finished calling Haskell functions.
To do this, call hs_thread_done() from the thread whose memory you want to free.
Calling hs_thread_done() is entirely optional. You can call it as often or as little as you like.
It is safe to call it from a thread that has never called any Haskell functions, or one that never
will. If you forget to call it, the worst that can happen is that some memory remains allocated
until hs_exit() is called. If you call it too often, the worst that can happen is that the next
call to a Haskell function incurs some extra overhead.

Freeing many stable pointers efficiently

The standard function hs_free_stable_ptr locks the stable pointer table, frees the given
stable pointer, and then unlocks the stable pointer table again. When freeing many stable
pointers at once, it is usually more efficient to lock and unlock the table only once.

extern void hs_lock_stable_ptr_table (void);

extern void hs_unlock_stable_ptr_table (void);

6.17. Foreign function interface (FFI) 521

GHC User’s Guide Documentation, Release 9.2.6

extern void hs_free_stable_ptr_unsafe (HsStablePtr sp);

hs_free_stable_ptr_unsafe must be used only when the table has been
locked using hs_lock_stable_ptr_table. It must be unlocked afterwards using
hs_unlock_stable_ptr_table. The Haskell garbage collector cannot run while the ta-
ble is locked, so it should be unlocked promptly. The following operations are forbidden
while the stable pointer table is locked:
• Calling any Haskell function, whether or not that function manipulates stable pointers.
• Calling any FFI function that deals with the stable pointer table except for
arbitrarily many calls to hs_free_stable_ptr_unsafe and the final call to
hs_unlock_stable_ptr_table.

• Calling hs_free_fun_ptr.

Note: GHC versions before 8.8 defined undocumented functions hs_lock_stable_tables
and hs_unlock_stable_tables instead of hs_lock_stable_ptr_table and
hs_unlock_stable_ptr_table. Those names are now deprecated.

6.17.3 Using the FFI with GHC

The following sections also give some hints and tips on the use of the foreign function interface
in GHC.

Using foreign export and foreign import ccall "wrapper" with GHC

When GHC compiles a module (say M.hs) which uses foreign export or foreign import
"wrapper", it generates a M_stub.h for use by C programs.
For a plain foreign export, the file M_stub.h contains a C prototype for the foreign exported
function. For example, if we compile the following module:

module Foo where

foreign export ccall foo :: Int -> IO Int

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))

Then Foo_stub.h will contain something like this:

#include "HsFFI.h"
extern HsInt foo(HsInt a0);

To invoke foo() from C, just #include "Foo_stub.h" and call foo().
The Foo_stub.h file can be redirected using the -stubdir option; see Redirecting the compi-
lation output(s) (page 200).

522 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Using your own main()

Normally, GHC’s runtime system provides a main(), which arranges to invoke Main.main in
the Haskell program. However, you might want to link some Haskell code into a program
which has a main function written in another language, say C. In order to do this, you have
to initialize the Haskell runtime system explicitly.
Let’s take the example from above, and invoke it from a standalone C program. Here’s the C
code:

#include <stdio.h>
#include "HsFFI.h"

#if defined(__GLASGOW_HASKELL__)
#include "Foo_stub.h"
#endif

int main(int argc, char *argv[])
{
int i;

hs_init(&argc, &argv);

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();
return 0;

}

We’ve surrounded the GHC-specific bits with #if defined(__GLASGOW_HASKELL__); the rest
of the code should be portable across Haskell implementations that support the FFI standard.
The call to hs_init() initializes GHC’s runtime system. Do NOT try to invoke any Haskell
functions before calling hs_init(): bad things will undoubtedly happen.
We pass references to argc and argv to hs_init() so that it can separate out any arguments
for the RTS (i.e. those arguments between +RTS...-RTS).
After we’ve finished invoking our Haskell functions, we can call hs_exit(), which terminates
the RTS.
There can be multiple calls to hs_init(), but each one should be matched by one (and only
one) call to hs_exit(). The outermost hs_exit() will actually de-initialise the system. Note
that currently GHC’s runtime cannot reliably re-initialise after this has happened; see The
Foreign Function Interface (page 653).

Note: When linking the final program, it is normally easiest to do the link using GHC,
although this isn’t essential. If you do use GHC, then don’t forget the flag -no-hs-main
(page 243), otherwise GHC will try to link to the Main Haskell module.

Note: OnWindows hs_init treats argv as UTF8-encoded. Passing other encodings might lead
to unexpected results. Passing NULL as argv is valid but can lead to <unknown> showing up
in error messages instead of the name of the executable.

6.17. Foreign function interface (FFI) 523

GHC User’s Guide Documentation, Release 9.2.6

To use +RTS flags with hs_init(), we have to modify the example slightly. By default, GHC’s
RTS will only accept “safe” +RTS flags (see Options affecting linking (page 241)), and the
-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) link-time flag overrides this.
However, -rtsopts[=⟨none|some|all|ignore|ignoreAll⟩] (page 244) has no effect when
-no-hs-main (page 243) is in use (and the same goes for -with-rtsopts=⟨opts⟩ (page 245)).
To set these options we have to call a GHC-specific API instead of hs_init():

#include <stdio.h>
#include "HsFFI.h"

#if defined(__GLASGOW_HASKELL__)
#include "Foo_stub.h"
#include "Rts.h"
#endif

int main(int argc, char *argv[])
{
int i;

#if __GLASGOW_HASKELL__ >= 703
{

RtsConfig conf = defaultRtsConfig;
conf.rts_opts_enabled = RtsOptsAll;
hs_init_ghc(&argc, &argv, conf);

}
#else
hs_init(&argc, &argv);

#endif

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();
return 0;

}

Note two changes: we included Rts.h, which defines the GHC-specific external RTS interface,
and we called hs_init_ghc() instead of hs_init(), passing an argument of type RtsConfig.
RtsConfig is a struct with various fields that affect the behaviour of the runtime system. Its
definition is:

typedef struct {
RtsOptsEnabledEnum rts_opts_enabled;
const char *rts_opts;

} RtsConfig;

extern const RtsConfig defaultRtsConfig;

typedef enum {
RtsOptsNone, // +RTS causes an error
RtsOptsSafeOnly, // safe RTS options allowed; others cause an error
RtsOptsAll // all RTS options allowed

} RtsOptsEnabledEnum;

There is a default value defaultRtsConfig that should be used to initialise variables of type
RtsConfig. More fields will undoubtedly be added to RtsConfig in the future, so in order to
keep your code forwards-compatible it is best to initialise with defaultRtsConfig and then

524 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

modify the required fields, as in the code sample above.

Making a Haskell library that can be called from foreign code

The scenario here is much like in Using your own main() (page 523), except that the aim is
not to link a complete program, but to make a library from Haskell code that can be deployed
in the same way that you would deploy a library of C code.
The main requirement here is that the runtime needs to be initialized before any Haskell code
can be called, so your library should provide initialisation and deinitialisation entry points,
implemented in C or C++. For example:

#include <stdlib.h>
#include "HsFFI.h"

HsBool mylib_init(void){
int argc = 3;
char *argv[] = { "mylib", "+RTS", "-A32m", NULL };
char **pargv = argv;

// Initialize Haskell runtime
hs_init(&argc, &pargv);

// do any other initialization here and
// return false if there was a problem
return HS_BOOL_TRUE;

}

void mylib_end(void){
hs_exit();

}

The initialisation routine, mylib_init, calls hs_init() as normal to initialise the Haskell
runtime, and the corresponding deinitialisation function mylib_end() calls hs_exit() to shut
down the runtime.

Using header files

C functions are normally declared using prototypes in a C header file. Earlier versions of GHC
(6.8.3 and earlier) #included the header file in the C source file generated from the Haskell
code, and the C compiler could therefore check that the C function being called via the FFI
was being called at the right type.
GHC no longer includes external header files when compiling via C, so this checking is not
performed. The change was made for compatibility with the native code generator (page 233)
(-fasm (page 240)) and to comply strictly with the FFI specification, which requires that FFI
calls are not subject to macro expansion and other CPP conversions that may be applied when
using C header files. This approach also simplifies the inlining of foreign calls across module
and package boundaries: there’s no need for the header file to be available when compiling
an inlined version of a foreign call, so the compiler is free to inline foreign calls in any context.
The -#include option is now deprecated, and the include-files field in a Cabal package
specification is ignored.

6.17. Foreign function interface (FFI) 525

GHC User’s Guide Documentation, Release 9.2.6

Memory Allocation

The FFI libraries provide several ways to allocate memory for use with the FFI, and it isn’t
always clear which way is the best. This decision may be affected by how efficient a particular
kind of allocation is on a given compiler/platform, so this section aims to shed some light on
how the different kinds of allocation perform with GHC.
alloca Useful for short-term allocation when the allocation is intended to scope over a given

IO computation. This kind of allocation is commonly used when marshalling data to and
from FFI functions.
In GHC, alloca is implemented using MutableByteArray#, so allocation and deallocation
are fast: much faster than C’s malloc/free, but not quite as fast as stack allocation in
C. Use alloca whenever you can.

mallocForeignPtr Useful for longer-term allocation which requires garbage collection. If
you intend to store the pointer to the memory in a foreign data structure, then malloc-
ForeignPtr is not a good choice, however.
In GHC, mallocForeignPtr is also implemented using MutableByteArray#. Although
the memory is pointed to by a ForeignPtr, there are no actual finalizers involved (unless
you add one with addForeignPtrFinalizer), and the deallocation is done using GC, so
mallocForeignPtr is normally very cheap.

malloc/free If all else fails, then you need to resort to Foreign.malloc and Foreign.free.
These are just wrappers around the C functions of the same name, and their efficiency
will depend ultimately on the implementations of these functions in your platform’s C
library. We usually find malloc and free to be significantly slower than the other forms
of allocation above.

Foreign.Marshal.Pool Pools are currently implemented using malloc/free, so while they
might be a more convenient way to structure your memory allocation than using one of
the other forms of allocation, they won’t be any more efficient. We do plan to provide an
improved-performance implementation of Pools in the future, however.

Multi-threading and the FFI

In order to use the FFI in a multi-threaded setting, you must use the -threaded (page 244)
option (see Options affecting linking (page 241)).

Foreign imports and multi-threading

When you call a foreign imported function that is annotated as safe (the default), and the
programwas linked using -threaded (page 244), then the call will run concurrently with other
running Haskell threads. If the program was linked without -threaded (page 244), then the
other Haskell threads will be blocked until the call returns.
This means that if you need to make a foreign call to a function that takes a long time or
blocks indefinitely, then you should mark it safe and use -threaded (page 244). Some library
functions make such calls internally; their documentation should indicate when this is the
case.
If you are making foreign calls frommultiple Haskell threads and using -threaded (page 244),
make sure that the foreign code you are calling is thread-safe. In particularly, some GUI
libraries are not thread-safe and require that the caller only invokes GUI methods from a
single thread. If this is the case, you may need to restrict your GUI operations to a single

526 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Haskell thread, and possibly also use a bound thread (see The relationship between Haskell
threads and OS threads (page 527)).
Note that foreign calls made by different Haskell threads may execute in parallel, even when
the +RTS -N flag is not being used (RTS options for SMP parallelism (page 137)). The -N ⟨x⟩
(page 137) flag controls parallel execution of Haskell threads, but there may be an arbitrary
number of foreign calls in progress at any one time, regardless of the +RTS -N value.
If a call is annotated as interruptible and the program was multithreaded, the call may be
interrupted in the event that the Haskell thread receives an exception. The mechanism by
which the interrupt occurs is platform dependent, but is intended to cause blocking system
calls to return immediately with an interrupted error code. The underlying operating system
thread is not to be destroyed. See Interruptible foreign calls (page 519) for more details.

The relationship between Haskell threads and OS threads

Normally there is no fixed relationship between Haskell threads and OS threads. This means
that when you make a foreign call, that call may take place in an unspecified OS thread.
Furthermore, there is no guarantee that multiple calls made by one Haskell thread will be
made by the same OS thread.
This usually isn’t a problem, and it allows the GHC runtime system to make efficient use of
OS thread resources. However, there are cases where it is useful to have more control over
which OS thread is used, for example when calling foreign code that makes use of thread-
local state. For cases like this, we provide bound threads, which are Haskell threads tied
to a particular OS thread. For information on bound threads, see the documentation for the
Control.Concurrent module.

Foreign exports and multi-threading

When the program is linked with -threaded (page 244), then you may invoke foreign ex-
ported functions from multiple OS threads concurrently. The runtime system must be ini-
tialised as usual by calling hs_init(), and this call must complete before invoking any for-
eign exported functions.

On the use of hs_exit()

hs_exit() normally causes the termination of any running Haskell threads in the system,
and when hs_exit() returns, there will be no more Haskell threads running. The runtime
will then shut down the system in an orderly way, generating profiling output and statistics if
necessary, and freeing all the memory it owns.
It isn’t always possible to terminate a Haskell thread forcibly: for example, the thread might
be currently executing a foreign call, and we have no way to force the foreign call to complete.
What’s more, the runtime must assume that in the worst case the Haskell code and runtime
are about to be removed from memory (e.g. if this is a Windows DLL (page 642), hs_exit()
is normally called before unloading the DLL). So hs_exit() must wait until all outstanding
foreign calls return before it can return itself.
The upshot of this is that if you have Haskell threads that are blocked in foreign calls, then
hs_exit() may hang (or possibly busy-wait) until the calls return. Therefore it’s a good idea
to make sure you don’t have any such threads in the system when calling hs_exit(). This
includes any threads doing I/O, because I/O may (or may not, depending on the type of I/O
and the platform) be implemented using blocking foreign calls.

6.17. Foreign function interface (FFI) 527

GHC User’s Guide Documentation, Release 9.2.6

The GHC runtime treats program exit as a special case, to avoid the need to wait for blocked
threads when a standalone executable exits. Since the program and all its threads are about
to terminate at the same time that the code is removed from memory, it isn’t necessary to
ensure that the threads have exited first. If you want this fast and loose version of hs_exit(),
you can call:

void hs_exit_nowait(void);

instead. This is particularly useful if you have foreign libraries that need to call hs_exit() at
program exit (perhaps via a C++ destructor): in this case you should use hs_exit_nowait(),
because the thread that called exit() and is running C++ destructors is in a foreign call
from Haskell that will never return, so hs_exit() would deadlock.

Waking up Haskell threads from C

Sometimes we want to be able to wake up a Haskell thread from some C code. For example,
when using a callback-based C API, we register a C callback and then we need to wait for the
callback to run.
One way to do this is to create a foreign export that will do whatever needs to be done to
wake up the Haskell thread - perhaps putMVar - and then call this from our C callback. There
are a couple of problems with this:
1. Calling a foreign export has a lot of overhead: it creates a complete new Haskell thread,
for example.

2. The call may block for a long time if a GC is in progress. We can’t use this method if the
C API we’re calling doesn’t allow blocking in the callback.

For these reasons GHC provides an external API to tryPutMVar, hs_try_putmvar, which you
can use to cheaply and asynchronously wake up a Haskell thread from C/C++.

void hs_try_putmvar (int capability, HsStablePtr sp);

The C call hs_try_putmvar(cap,mvar) is equivalent to the Haskell call tryPutMVar mvar (),
except that it is
• non-blocking: takes a bounded, short, amount of time
• asynchronous: the actual putMVar may be performed after the call returns (for example,
if the RTS is currently garbage collecting). That’s why hs_try_putmvar() doesn’t return
a result to say whether the put succeeded. It is your responsibility to ensure that the
MVar is empty; if it is full, hs_try_putmvar() will have no effect.

Example. Suppose we have a C/C++ function to call that will return and then invoke a
callback at some point in the future, passing us some data. We want to wait in Haskell for the
callback to be called, and retrieve the data. We can do it like this:

import GHC.Conc (newStablePtrPrimMVar, PrimMVar)

makeExternalCall = mask_ $ do
mvar <- newEmptyMVar
sp <- newStablePtrPrimMVar mvar
fp <- mallocForeignPtr
withForeignPtr fp $ \presult -> do

cap <- threadCapability =<< myThreadId
scheduleCallback sp cap presult
takeMVar mvar `onException`

528 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

forkIO (do takeMVar mvar; touchForeignPtr fp)
peek presult

foreign import ccall "scheduleCallback"
scheduleCallback :: StablePtr PrimMVar

-> Int
-> Ptr Result
-> IO ()

And inside scheduleCallback, we create a callback that will in due course store the result
data in the Ptr Result, and then call hs_try_putmvar().
There are a few things to note here.
• There’s a special function to create the StablePtr: newStablePtrPrimMVar, because the
RTS needs a StablePtr to the primitive MVar# object, and we can’t create that directly.
Do not just use newStablePtr on the MVar: your program will crash.

• The StablePtr is freed by hs_try_putmvar(). This is because it would otherwise be
difficult to arrange to free the StablePtr reliably: we can’t free it in Haskell, because
if the takeMVar is interrupted by an asynchronous exception, then the callback will fire
at a later time. We can’t free it in C, because we don’t know when to free it (not when
hs_try_putmvar() returns, because that is an async call that uses the StablePtr at
some time in the future).

• The mask_ is to avoid asynchronous exceptions before the scheduleCallback call, which
would leak the StablePtr.

• We find out the current capability number and pass it to C. This is passed back to
hs_try_putmvar, and helps the RTS to know which capability it should try to perform the
tryPutMVar on. If you don’t care, you can pass -1 for the capability to hs_try_putmvar,
and it will pick an arbitrary one.
Picking the right capability will help avoid unnecessary context switches. Ideally you
should pass the capability that the thread that will be woken up last ran on, which you
can find by calling threadCapability in Haskell.

• If you want to also pass some data back from the C callback to Haskell, this is best done
by first allocating some memory in Haskell to receive the data, and passing the address
to C, as we did in the above example.

• takeMVar can be interrupted by an asynchronous exception. If this happens, the callback
in C will still run at some point in the future, will still write the result, and will still call
hs_try_putmvar(). Therefore we have to arrange that the memory for the result stays
alive until the callback has run, so if an exception is thrown during takeMVar we fork an-
other thread to wait for the callback and hold the memory alive using touchForeignPtr.

For a fully working example, see testsuite/tests/concurrent/should_run/hs_try_putmvar001.hs
in the GHC source tree.

Floating point and the FFI

The standard C99 fenv.h header provides operations for inspecting and modifying the state
of the floating point unit. In particular, the rounding mode used by floating point operations
can be changed, and the exception flags can be tested.
In Haskell, floating-point operations have pure types, and the evaluation order is unspecified.
So strictly speaking, since the fenv.h functions let you change the results of, or observe

6.17. Foreign function interface (FFI) 529

GHC User’s Guide Documentation, Release 9.2.6

the effects of floating point operations, use of fenv.h renders the behaviour of floating-point
operations anywhere in the program undefined.
Having said that, we can document exactly what GHC does with respect to the floating point
state, so that if you really need to use fenv.h then you can do so with full knowledge of the
pitfalls:
• GHC completely ignores the floating-point environment, the runtime neither modifies
nor reads it.

• The floating-point environment is not saved over a normal thread context-switch. So if
you modify the floating-point state in one thread, those changes may be visible in other
threads. Furthermore, testing the exception state is not reliable, because a context
switch may change it. If you need to modify or test the floating point state and use
threads, then you must use bound threads (Control.Concurrent.forkOS), because a
bound thread has its own OS thread, and OS threads do save and restore the floating-
point state.

• It is safe to modify the floating-point unit state temporarily during a foreign call, because
foreign calls are never pre-empted by GHC.

Pinned Byte Arrays

A pinned byte array is one that the garbage collector is not allowed to move. Consequently,
it has a stable address that can be safely requested with byteArrayContents#. There are
a handful of primitive functions in GHC.Prim used to enforce or check for pinnedness: is-
ByteArrayPinned#, isMutableByteArrayPinned#, and newPinnedByteArray#. A byte array
can be pinned as a result of three possible causes:
1. It was allocated by newPinnedByteArray#.
2. It is large. Currently, GHC defines large object to be one that is at least as large as 80%
of a 4KB block (i.e. at least 3277 bytes).

3. It has been copied into a compact region. The documentation for ghc-compact and com-
pact describes this process.

6.18 Safe Haskell

Safe Haskell is an extension to the Haskell language that is implemented in GHC as of version
7.2. It allows for unsafe code to be securely included in a trusted code base by restricting
the features of GHC Haskell the code is allowed to use. Put simply, it makes the types of
programs trustable.
While a primary use case of Safe Haskell is running untrusted code, Safe Haskell doesn’t
provide this directly. Instead, Safe Haskell provides strict type safety. Without Safe Haskell,
GHC allows many exceptions to the type system which can subvert any abstractions. By
providing strict type safety, Safe Haskell enables developers to build their own library level
sandbox mechanisms to run untrusted code.
While Safe Haskell is an extension, it actually runs in the background for every compila-
tion with GHC. It does this to track the type violations of modules to infer their safety, even
when they aren’t explicitly using Safe Haskell. Please refer to section Safe Haskell Inference
(page 539) for more details of this.
The design of Safe Haskell covers the following aspects:

530 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• A safe language (page 533) dialect of Haskell that provides stricter guarantees about
the code. It allows types and module boundaries to be trusted.

• A safe import extension that specifies that the module being imported must be trusted.
• A definition of trust (or safety) and how it operates, along with ways of defining and
changing the trust of modules and packages.

Safe Haskell, however, does not offer compilation safety. During compilation time it is possible
for arbitrary processes to be launched, using for example the custom pre-processor (page 239)
flag. This can be manipulated to either compromise a user’s system at compilation time, or
to modify the source code just before compilation to try to alter Safe Haskell flags. This is
discussed further in section Safe Compilation (page 541).

6.18.1 Uses of Safe Haskell

Safe Haskell has been designed with two use cases in mind:
• Enforcing strict type safety at compile time
• Compiling and executing untrusted code

Strict type-safety (good style)

Haskell offers a powerful type system and separation of pure and effectual functions through
the IO monad. However, there are several loop holes in the type system, the most obvious be-
ing the unsafePerformIO :: IO a -> a function. The safe language dialect of Safe Haskell
disallows the use of such functions. This can be useful restriction as it makes Haskell code
easier to analyse and reason about. It also codifies the existing culture in the Haskell com-
munity of trying to avoid unsafe functions unless absolutely necessary. As such, using the
safe language (through the -XSafe flag) can be thought of as a way of enforcing good style,
similar to the function of -Wall.

Building secure systems (restricted IO Monads)

Systems such as information flow control security, capability based security systems and DSLs
for working with encrypted data.. etc can be built in the Haskell language as a library. How-
ever they require guarantees about the properties of Haskell that aren’t true in general due to
the presence of functions like unsafePerformIO. Safe Haskell gives users enough guarantees
about the type system to allow them to build such secure systems.
As an example, let’s define an interface for a plugin system where the plugin authors are
untrusted, possibly malicious third-parties. We do this by restricting the plugin interface to
pure functions or to a restricted IO monad that we have defined. The restricted IO monad
will only allow a safe subset of IO actions to be executed. We define the plugin interface so
that it requires the plugin module, Danger, to export a single computation, Danger.runMe, of
type RIO (), where RIO is a monad defined as follows:

-- While we use `Safe', the `Trustworthy' pragma would also be
-- fine. We simply want to ensure that:
-- 1) The module exports an interface that untrusted code can't
-- abuse.
-- 2) Untrusted code can import this module.
--
{-# LANGUAGE Safe #-}

6.18. Safe Haskell 531

GHC User’s Guide Documentation, Release 9.2.6

module RIO (RIO(), runRIO, rioReadFile, rioWriteFile) where

-- Notice that symbol UnsafeRIO is not exported from this module!
newtype RIO a = UnsafeRIO { runRIO :: IO a }

instance Monad RIO where
return = UnsafeRIO . return
(UnsafeRIO m) >>= k = UnsafeRIO $ m >>= runRIO . k

-- Returns True iff access is allowed to file name
pathOK :: FilePath -> IO Bool
pathOK file = {- Implement some policy based on file name -}

rioReadFile :: FilePath -> RIO String
rioReadFile file = UnsafeRIO $ do

ok <- pathOK file
if ok then readFile file else return ""

rioWriteFile :: FilePath -> String -> RIO ()
rioWriteFile file contents = UnsafeRIO $ do

ok <- pathOK file
if ok then writeFile file contents else return ()

We then compile the Danger plugin using the new Safe Haskell -XSafe flag:

{-# LANGUAGE Safe #-}
module Danger (runMe) where

runMe :: RIO ()
runMe = ...

Before going into the Safe Haskell details, let’s point out some of the reasons this security
mechanism would fail without Safe Haskell:
• The design attempts to restrict the operations that Danger can perform by using types,
specifically the RIO type wrapper around IO . The author of Danger can subvert this
though by simply writing arbitrary IO actions and using unsafePerformIO :: IO a ->
a to execute them as pure functions.

• The design also relies on Danger not being able to access the UnsafeRIO constructor.
Unfortunately Template Haskell can be used to subvert module boundaries and so could
be used to gain access to this constructor.

• There is no way to place restrictions on the modules that Danger can import. This gives
the author of Danger a very large attack surface, essentially any package currently in-
stalled on the system. Should any of these packages have a vulnerability, then the Danger
module can exploit it.

Safe Haskell prevents all these attacks. This is done by compiling the RIO module with
the Safe (page 539) or Trustworthy (page 539) flag and compiling Danger with the Safe
(page 539) flag. We explain each below.
The use of Safe (page 539) to compile Danger restricts the features of Haskell that can be used
to a safe subset (page 533). This includes disallowing unsafePerformIO, Template Haskell,
pure FFI functions, RULES and restricting the operation of Overlapping Instances. The Safe
(page 539) flag also restricts the modules can be imported by Danger to only those that are
considered trusted. Trusted modules are those compiled with Safe (page 539), where GHC

532 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

provides a mechanical guarantee that the code is safe. Or those modules compiled with
Trustworthy (page 539), where the module author claims that the module is Safe.
This is why the RIO module is compiled with Safe (page 539) or Trustworthy (page 539)>,
to allow the Danger module to import it. The Trustworthy (page 539) flag doesn’t place any
restrictions on the module like Safe (page 539) does (expect to restrict overlapping instances
to safe overlapping instances (page 534)). Instead the module author claims that while code
may use unsafe features internally, it only exposes an API that can used in a safe manner.
However, the unrestricted use of Trustworthy (page 539) is a problem as an arbitrary module
can use it to mark themselves as trusted, yet Trustworthy (page 539) doesn’t offer any guar-
antees about the module, unlike Safe (page 539). To control the use of trustworthy modules it
is recommended to use the -fpackage-trust (page 540) flag. This flag adds an extra require-
ment to the trust check for trustworthy modules. It requires that for a trustworthy modules to
be considered trusted, and allowed to be used in Safe (page 539) compiled code, the client C
compiling the code must tell GHC that they trust the package the trustworthy module resides
in. This is essentially a way of for C to say, while this package contains trustworthy modules
that can be used by untrusted modules compiled with Safe (page 539), I trust the author(s)
of this package and trust the modules only expose a safe API. The trust of a package can be
changed at any time, so if a vulnerability found in a package, C can declare that package
untrusted so that any future compilation against that package would fail. For a more detailed
overview of this mechanism see Trust and Safe Haskell Modes (page 536).
In the example, Danger can import module RIO because RIO is compiled with Safe (page 539).
Thus, Danger can make use of the rioReadFile and rioWriteFile functions to access per-
mitted file names. The main application then imports both RIO and Danger. To run the plugin,
it calls RIO.runRIO Danger.runMe within the IO monad. The application is safe in the knowl-
edge that the only IO to ensue will be to files whose paths were approved by the pathOK
test.
The Safe Haskell checks can be disabled for a module by passing the -fno-safe-haskell
(page 540) flag. This is useful in particular when compiling with source plugins as running a
plugin marks the module as unsafe and can then cause downstream modules to fail the safety
checks.

6.18.2 Safe Language

The Safe Haskell safe language (enabled by -XSafe) guarantees the following properties:
• Referential transparency — The types can be trusted. Any pure function, is guaranteed
to be pure. Evaluating them is deterministic and won’t cause any side effects. Functions
in the IO monad are still allowed and behave as usual. So, for example, the unsafePer-
formIO :: IO a -> a function is disallowed in the safe language to enforce this prop-
erty.

• Module boundary control — Only symbols that are publicly available through other mod-
ule export lists can be accessed in the safe language. Values using data constructors not
exported by the defining module, cannot be examined or created. As such, if a module
M establishes some invariants through careful use of its export list, then code written in
the safe language that imports M is guaranteed to respect those invariants.

• Semantic consistency — For any module that imports a module written in the safe lan-
guage, expressions that compile both with and without the safe import have the same
meaning in both cases. That is, importing a module written in the safe language cannot
change the meaning of existing code that isn’t dependent on that module. So, for exam-
ple, there are some restrictions placed on the use of OverlappingInstances (page 449),
as these can violate this property.

6.18. Safe Haskell 533

GHC User’s Guide Documentation, Release 9.2.6

• Strict subset — The safe language is strictly a subset of Haskell as implemented by GHC.
Any expression that compiles in the safe language has the same meaning as it does when
compiled in normal Haskell.

These four properties guarantee that in the safe language you can trust the types, can trust
that module export lists are respected, and can trust that code that successfully compiles has
the same meaning as it normally would.
To achieve these properties, in the safe language dialect we disable completely the following
features:
• TemplateHaskell (page 486) — Can be used to gain access to constructors and abstract
data types that weren’t exported by a module, subverting module boundaries.

Furthermore, we restrict the following features:
• ForeignFunctionInterface (page 515) — Foreign import declarations that import a
function with a non-IO type are disallowed.

• RULES—Rewrite rules defined in amoduleM compiled with Safe (page 539) are dropped.
Rules defined in Trustworthy modules that M imports are still valid and will fire as usual.

• OverlappingInstances (page 449) — There is no restriction on the creation of overlap-
ping instances, but we do restrict their use at a particular call site. This is a detailed
restriction, please refer to Safe Overlapping Instances (page 534) for details.

• GeneralisedNewtypeDeriving (page 413) — GND is not allowed in the safe language.
This is due to the ability of it to violate module boundaries when module authors for-
get to put nominal role annotations on their types as appropriate. For this reason, the
Data.Coerce module is also considered unsafe. We are hoping to find a better solution
here in the future.

• GHC.Generics — Hand crafted instances of the Generic type class are not allowed in
Safe Haskell. Such instances aren’t strictly unsafe, but there is an important invariant
that a Generic instance should adhere to the structure of the data type for which the
instance is defined, and allowing manually implemented Generic instances would break
that invariant. Derived instances (through the DeriveGeneric (page 550) extension)
are still allowed. Note that the only allowed deriving strategy (page 421) for deriving
Generic under Safe Haskell is stock, as another strategy (e.g., anyclass) would produce
an instance that violates the invariant.
Refer to the generic programming (page 549) section for more details.

Safe Overlapping Instances

Due to the semantic consistency guarantee of Safe Haskell, we must restrict the function
of overlapping instances. We don’t restrict their ability to be defined, as this is a global
property and not something we can determine by looking at a single module. Instead, when
a module calls a function belonging to a type-class, we check that the instance resolution
done is considered ‘safe’. This check is enforced for modules compiled with both -XSafe and
-XTrustworthy.
More specifically, consider the following modules:

{-# LANGUAGE Safe #-}
module Class (TC(..)) where
class TC a where { op :: a -> String }

{-# LANGUAGE Safe #-}

534 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

module Dangerous (TC(..)) where
import Class

instance
{-# OVERLAPS #-}
TC [Int] where { op _ = "[Int]" }

{-# LANGUAGE Safe #-}
module TCB_Runner where
import Class
import Dangerous

instance
TC [a] where { op _ = "[a]" }

f :: String
f = op ([1,2,3,4] :: [Int])

Both module Class and module Dangerous will compile under Safe (page 539) without issue.
However, in module TCB_Runner, we must check if the call to op in function f is safe.
What does it mean to be Safe? That importing a module compiled with Safe (page 539)
shouldn’t change the meaning of code that compiles fine without importing the module. This
is the Safe Haskell property known as semantic consistency.
In our situation, module TCB_Runner compiles fine without importing module Dangerous. So
when deciding which instance to use for the call to op, if we determine the instance TC [Int]
from module Dangerous is the most specific, this is unsafe. This prevents code written by
third-parties we don’t trust (which is compiled using -XSafe in Safe Haskell) from changing
the behaviour of our existing code.
Specifically, we apply the following rule to determine if a type-class method call is unsafe
when overlapping instances are involved:
• Most specific instance, Ix, defined in an -XSafe compiled module.
• Ix is an orphan instance or a multi-parameter-type-class.
• At least one overlapped instance, Iy, is both:

– From a different module than Ix

– Iy is not marked OVERLAPPABLE
This is a slightly involved heuristic, but captures the situation of an imported module N chang-
ing the behaviour of existing code. For example, if the second condition isn’t violated, then
the module author M must depend either on a type-class or type defined in N.
When a particular type-class method call is considered unsafe due to overlapping instances,
and the module being compiled is using Safe (page 539) or Trustworthy (page 539), then
compilation will fail. For Unsafe (page 540), no restriction is applied, and for modules using
safe inference, they will be inferred unsafe.

6.18.3 Safe Imports

Safe Haskell enables a small extension to the usual import syntax of Haskell, adding a safe
keyword:

6.18. Safe Haskell 535

GHC User’s Guide Documentation, Release 9.2.6

impdecl -> import [safe] [qualified] modid [as modid] [impspec]

When used, the module being imported with the safe keyword must be a trusted module,
otherwise a compilation error will occur. The safe import extension is enabled by either of
the -XSafe , -XTrustworthy , or -XUnsafe flags. When the -XSafe flag is used, the safe
keyword is allowed but meaningless, as every import is treated as a safe import.

6.18.4 Trust and Safe Haskell Modes

Safe Haskell introduces the following three language flags:
• Safe (page 539) — Enables the safe language dialect, asking GHC to guarantee trust.
The safe language dialect requires that all imports be trusted or a compilation error
will occur. Safe Haskell will also infer this safety type for modules automatically when
possible. Please refer to section Safe Haskell Inference (page 539) for more details of
this.

• Trustworthy (page 539) — Means that while this module may invoke unsafe functions
internally, the module’s author claims that it exports an API that can’t be used in an
unsafe way. This doesn’t enable the safe language. It does however restrict the resolu-
tion of overlapping instances to only allow safe overlapping instances (page 534). The
trust guarantee is provided by the module author, not GHC. An import statement with
the safe keyword results in a compilation error if the imported module is not trusted.
An import statement without the keyword behaves as usual and can import any module
whether trusted or not.

• Unsafe (page 540) — Marks the module being compiled as unsafe so that modules com-
piled using Safe (page 539) can’t import it. You may want to explicitly mark a module
unsafe when it exports internal constructors that can be used to violate invariants.

While these are flags, they also correspond to Safe Haskell module types that a module can
have. You can think of using these as declaring an explicit contract (or type) that a module
must have. If it is invalid, then compilation will fail. GHC will also infer the correct type for
Safe Haskell, please refer to section Safe Haskell Inference (page 539) for more details.
The procedure to check if a module is trusted or not depends on if the -fpackage-trust
(page 540) flag is present. The check is similar in both cases with the -fpackage-trust
(page 540) flag enabling an extra requirement for trustworthy modules to be regarded as
trusted.

Trust check (-fpackage-trust disabled)

A module M in a package P is trusted by a client C if and only if:
• Both of these hold:

– The module was compiled with Safe (page 539)
– All of M’s direct imports are trusted by C

• or all of these hold:
– The module was compiled with Trustworthy (page 539)
– All of M‘s direct safe imports are trusted by C

536 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The above definition of trust has an issue. Any module can be compiled with Trustworthy
(page 539) and it will be trusted. To control this, there is an additional definition of package
trust (enabled with the -fpackage-trust (page 540) flag). The point of package trust is to
require that the client C explicitly say which packages are allowed to contain trustworthy
modules. Trustworthy packages are only trusted if they reside in a package trusted by C.

Trust check (-fpackage-trust enabled)

When the -fpackage-trust (page 540) flag is enabled, whether or not a module is trusted
depends on if certain packages are trusted. Package trust is determined by the client C
invoking GHC (i.e. you).
Specifically, a package P is trusted when one of these hold:
• C’s package database records that P is trusted (and no command-line arguments override
this)

• C’s command-line flags say to trust P regardless of what is recorded in the package
database.

In either case, C is the only authority on package trust. It is up to the client to decide which
packages they trust (page 538).
When the -fpackage-trust (page 540) flag is used a module M from package P is trusted by
a client C if and only if:
• Both of these hold:

– The module was compiled with Safe (page 539)
– All of M‘s direct imports are trusted by C

• or all of these hold:
– The module was compiled with Trustworthy (page 539)
– All of M‘s direct safe imports are trusted by C
– Package P is trusted by C

For the first trust definition the trust guarantee is provided by GHC through the restrictions
imposed by the safe language. For the second definition of trust, the guarantee is provided
initially by the module author. The client C then establishes that they trust the module author
by indicating they trust the package the module resides in. This trust chain is required as
GHC provides no guarantee for Trustworthy (page 539) compiled modules.
The reason there are two modes of checking trust is that the extra requirement enabled by -
fpackage-trust (page 540) causes the design of Safe Haskell to be invasive. Packages using
Safe Haskell when the flag is enabled may or may not compile depending on the state of
trusted packages on a user’s machine. This is both fragile, and causes compilation failures
for everyone, even if they aren’t trying to use any of the guarantees provided by Safe Haskell.
Disabling -fpackage-trust (page 540) by default and turning it into a flagmakes Safe Haskell
an opt-in extension rather than an always on feature.

Example

Package Wuggle:
{-# LANGUAGE Safe #-}
module Buggle where

6.18. Safe Haskell 537

GHC User’s Guide Documentation, Release 9.2.6

import Prelude
f x = ...blah...

Package P:
{-# LANGUAGE Trustworthy #-}
module M where

import System.IO.Unsafe
import safe Buggle

Suppose a client C decides to trust package P and package base. Then does C trust module
M? Well M is marked Trustworthy (page 539), so we don’t restrict the language. However, we
still must check M‘s imports:
• First, M imports System.IO.Unsafe. This is an unsafe module, however M was compiled
with Trustworthy (page 539) , so P‘s author takes responsibility for that import. C trusts
P‘s author, so this import is fine.

• Second, M safe imports Buggle. For this import P‘s author takes no responsibility for the
safety, instead asking GHC to check whether Buggle is trusted by C. Is it?

• Buggle, is compiled with -XSafe, so the code is machine-checked to be OK, but again
under the assumption that all of Buggle‘s imports are trusted by C. We must recursively
check all imports!

• Buggle only imports Prelude, which is compiled with Trustworthy (page 539). Prelude
resides in the base package, which C trusts, and (we’ll assume) all of Prelude‘s imports
are trusted. So C trusts Prelude, and so C also trusts Buggle. (While Prelude is typically
imported implicitly, it still obeys the same rules outlined here).

Notice that C didn’t need to trust package Wuggle; the machine checking is enough. C only
needs to trust packages that contain Trustworthy (page 539) modules.

Trustworthy Requirements

Module authors using the Trustworthy (page 539) language extension for a module M should
ensure that M‘s public API (the symbols exposed by its export list) can’t be used in an un-
safe manner. This mean that symbols exported should respect type safety and referential
transparency.

Package Trust

Safe Haskell gives packages a new Boolean property, that of trust. Several new options are
available at the GHC command-line to specify the trust property of packages:
-trust ⟨pkg⟩

Exposes package ⟨pkg⟩ if it was hidden and considers it a trusted package regardless of
the package database.

-distrust ⟨pkg⟩
Exposes package ⟨pkg⟩ if it was hidden and considers it an untrusted package regardless
of the package database.

-distrust-all-packages
Considers all packages distrusted unless they are explicitly set to be trusted by subse-
quent command-line options.

To set a package’s trust property in the package database please refer to Packages (page 216).

538 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.18.5 Safe Haskell Inference

In the case where a module is compiled without one of Safe (page 539), Trustworthy
(page 539) or Unsafe (page 540) being used, GHC will try to figure out itself if the mod-
ule can be considered safe. This safety inference will never mark a module as trustworthy,
only as either unsafe or as safe. GHC uses a simple method to determine this for a module M:
If M would compile without error under the Safe (page 539) flag, then M is marked as safe.
Otherwise, it is marked as unsafe.
When should you use Safe Haskell inference and when should you use an explicit Safe
(page 539) flag? The later case should be used when you have a hard requirement that the
module be safe. This is most useful for the Uses of Safe Haskell (page 531) of Safe Haskell:
running untrusted code. Safe inference is meant to be used by ordinary Haskell programmers.
Users who probably don’t care about Safe Haskell.
Haskell library authors have a choice. Most should just use Safe inference. Assuming you
avoid any unsafe features of the language then your modules will be marked safe. Inferred
vs. Explicit has the following trade-offs:
• Inferred — This works well and adds no dependencies on the Safe Haskell type of any
modules in other packages. It does mean that the Safe Haskell type of your own modules
could change without warning if a dependency changes. One way to deal with this is
through the use of Safe Haskell warning flags (page 539) that will warn if GHC infers a
Safe Haskell type different from expected.

• Explicit — This gives your library a stable Safe Haskell type that others can depend on.
However, it will increase the chance of compilation failure when your package depen-
dencies change.

6.18.6 Safe Haskell Flag Summary

In summary, Safe Haskell consists of the following three language flags:
Safe

Since 7.2.1
Restricts the module to the safe language. All of the module’s direct imports must be
trusted, but the module itself need not reside in a trusted package, because the compiler
vouches for its trustworthiness. The “safe” keyword is allowed but meaningless in import
statements, as regardless, every import is required to be safe.
•Module Trusted — Yes
•Haskell Language — Restricted to Safe Language
•Imported Modules — All forced to be safe imports, all must be trusted.

Trustworthy

Since 7.2.1
This establishes that the module is trusted, but the guarantee is provided by the mod-
ule’s author. A client of this module then specifies that they trust the module author
by specifying they trust the package containing the module. Trustworthy (page 539)
doesn’t restrict the module to the safe language. It does however restrict the resolution
of overlapping instances to only allow safe overlapping instances (page 534). It also
allows the use of the safe import keyword.
•Module Trusted — Yes.

6.18. Safe Haskell 539

GHC User’s Guide Documentation, Release 9.2.6

•Module Trusted (-fpackage-trust (page 540) enabled) — Yes but only if the pack-
age the module resides in is also trusted.
•Haskell Language — Unrestricted, except only safe overlapping instances allowed.
•Imported Modules — Under control of module author which ones must be trusted.

Unsafe

Since 7.4.1
Mark a module as unsafe so that it can’t be imported by code compiled with Safe
(page 539). Also enable the Safe Import extension so that a module can require a de-
pendency to be trusted.
•Module Trusted — No
•Haskell Language — Unrestricted
•Imported Modules — Under control of module author which ones must be trusted.

A flag to disable Safe Haskell checks:
-fno-safe-haskell

This flag can be enabled to override any declared safety property of the module (Safe,
Unsafe, Trustworthy) so compilation proceeds as if none of these flags were specified.
This is particularly useful when compiling using plugins, which usually results in the
compiled modules being marked as unsafe.

And one general flag:
-fpackage-trust

When enabled, turn on an extra check for a trustworthy module M, requiring the package
that M resides in be considered trusted, for M to be considered trusted.

And five warning flags:
-Wunsafe

Issue a warning if the module being compiled is regarded to be unsafe. Should be used
to check the safety type of modules when using safe inference.

-Wsafe
Issue a warning if the module being compiled is regarded to be safe. Should be used to
check the safety type of modules when using safe inference. If the module is explicitly
marked as safe then no warning will be issued.

-Wtrustworthy-safe
Issue a warning if the module being compiled is marked as -XTrustworthy but it could
instead be marked as -XSafe , a more informative bound. Can be used to detect once a
Safe Haskell bound can be improved as dependencies are updated.

-Winferred-safe-imports

Since 8.10.1
The module A below is annotated to be explicitly Safe, but it imports Safe-Inferred
module.

{-# LANGUAGE Safe #-}
module A where

import B (double)

quad :: Int -> Int

540 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

quad = double . double

module B where

double :: Int -> Int
double n = n + n

The inferred status is volatile: if an unsafe import is added to the module B, it will cause
compilation error of A. When -Winferred-safe-imports (page 540) is enabled, the com-
piler will emit a warning about this. This option is off by default.

-Wmissing-safe-haskell-mode

Since 8.10.1
The compiler will warn when none of Safe (page 539), Trustworthy (page 539) or Unsafe
(page 540) is specified. This option is off by default.

6.18.7 Safe Compilation

GHC includes a variety of flags that allow arbitrary processes to be run at compilation time.
One such example is the custom pre-processor (page 239) flag. Another is the ability of
Template Haskell to execute Haskell code at compilation time, including IO actions. Safe
Haskell does not address this danger (although, Template Haskell is a disallowed feature).
Due to this, it is suggested that when compiling untrusted source code that has had no manual
inspection done, the following precautions be taken:
• Compile in a sandbox, such as a chroot or similar container technology. Or simply as a
user with very reduced system access.

• Compile untrusted code with the -XSafe flag being specified on the command line. This
will ensure that modifications to the source being compiled can’t disable the use of the
Safe Language as the command line flag takes precedence over a source level pragma.

• Ensure that all untrusted code is imported as a safe import (page 535) and that the
-fpackage-trust (page 540) flag (see flag (page 538)) is used with packages from un-
trusted sources being marked as untrusted.

There is a more detailed discussion of the issues involved in compilation safety and some
potential solutions on the GHC Wiki.
Additionally, the use of annotations (page 571) is forbidden, as that would allow bypassing
Safe Haskell restrictions. See #10826 for details.

6.19 Miscellaneous

6.19.1 Rewrite rules

{-# RULES "⟨name⟩" forall ⟨binder⟩ ⟨expr⟩ = ⟨expr⟩ ... #-}

Where top-level
Define a rewrite rule to be used to optimize a source program.

6.19. Miscellaneous 541

https://gitlab.haskell.org/ghc/ghc/wikis/safe-haskell/safe-compilation
https://gitlab.haskell.org/ghc/ghc/issues/10826

GHC User’s Guide Documentation, Release 9.2.6

The programmer can specify rewrite rules as part of the source program (in a pragma). Here
is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

Use the debug flag -ddump-simpl-stats (page 253) to see what rules fired. If you need more
information, then -ddump-rule-firings (page 253) shows you each individual rule firing and
-ddump-rule-rewrites (page 253) also shows what the code looks like before and after the
rewrite.
-fenable-rewrite-rules

Allow the compiler to apply rewrite rules to the source program.

Syntax

From a syntactic point of view:
• There may be zero or more rules in a RULES (page 541) pragma, separated by semicolons
(which may be generated by the layout rule).

• The layout rule applies in a pragma. Currently no new indentation level is set, so if you
put several rules in single RULES pragma and wish to use layout to separate them, you
must lay out the starting in the same column as the enclosing definitions.

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
"map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys

#-}

Furthermore, the closing #-} should start in a column to the right of the opening {-#.
• Each rule has a name, enclosed in double quotes. The name itself has no significance at
all. It is only used when reporting how many times the rule fired.

• A rule may optionally have a phase-control number (see Phase control (page 561)), im-
mediately after the name of the rule. Thus:

{-# RULES
"map/map" [2] forall f g xs. map f (map g xs) = map (f.g) xs

#-}

The [2] means that the rule is active in Phase 2 and subsequent phases. The inverse
notation [~2] is also accepted, meaning that the rule is active up to, but not including,
Phase 2.
Rules support the special phase-control notation [~], which means the rule is never ac-
tive. This feature supports plugins (see Compiler Plugins (page 573)), by making it possi-
ble to define a RULE that is never run by GHC, but is nevertheless parsed, typechecked
etc, so that it is available to the plugin.

• Each (term) variable mentioned in a rule must either be in scope (e.g. map), or bound
by the forall (e.g. f, g, xs). The variables bound by the forall are called the pattern
variables. They are separated by spaces, just like in a type forall.

• A pattern variablemay optionally have a type signature. If the type of the pattern variable
is polymorphic, it must have a type signature. For example, here is the foldr/build rule:

542 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Since g has a polymorphic type, it must have a type signature.
• If ExplicitForAll (page 466) is enabled, type/kind variables can also be explicitly bound.
For example:

{-# RULES "id" forall a. forall (x :: a). id @a x = x #-}

When a type-level explicit forall is present, each type/kind variable mentioned must
now also be either in scope or bound by the forall. In particular, unlike some other
places in Haskell, this means free kind variables will not be implicitly bound. For exam-
ple:

"this_is_bad" forall (c :: k). forall (x :: Proxy c) ...
"this_is_ok" forall k (c :: k). forall (x :: Proxy c) ...

When bound type/kind variables are needed, both foralls must always be included,
though if no pattern variables are needed, the second can be left empty. For example:

{-# RULES "map/id" forall a. forall. map (id @a) = id @[a] #-}

• The left hand side of a rule must consist of a top-level variable applied to arbitrary ex-
pressions. For example, this is not OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True
"wrong3" forall x. Just x = Nothing

In "wrong1", the LHS is not an application; in "wrong2", the LHS has a pattern variable in
the head. In "wrong3", the LHS consists of a constructor, rather than a variable, applied
to an argument.

• A rule does not need to be in the same module as (any of) the variables it mentions,
though of course they need to be in scope.

• All rules are implicitly exported from the module, and are therefore in force in any mod-
ule that imports the module that defined the rule, directly or indirectly. (That is, if A
imports B, which imports C, then C’s rules are in force when compiling A.) The situation
is very similar to that for instance declarations.

• Inside a RULES (page 541) “forall” is treated as a keyword, regardless of any other
flag settings. Furthermore, inside a RULES (page 541), the language extension Scoped-
TypeVariables (page 472) is automatically enabled; see Lexically scoped type variables
(page 472).

• Like other pragmas, RULES (page 541) pragmas are always checked for scope errors, and
are typechecked. Typechecking means that the LHS and RHS of a rule are typechecked,
and must have the same type. However, rules are only enabled if the -fenable-rewrite-
rules (page 542) flag is on (see Semantics (page 543)).

Semantics

From a semantic point of view:

6.19. Miscellaneous 543

GHC User’s Guide Documentation, Release 9.2.6

• Rules are enabled (that is, used during optimisation) by the -fenable-rewrite-rules
(page 542) flag. This flag is implied by -O (page 121), and may be switched off (as usual)
by -fno-enable-rewrite-rules (page 542). (NB: enabling -fenable-rewrite-rules
(page 542) without -O (page 121) may not do what you expect, though, because without
-O (page 121) GHC ignores all optimisation information in interface files; see -fignore-
interface-pragmas (page 125)). Note that -fenable-rewrite-rules (page 542) is an
optimisation flag, and has no effect on parsing or typechecking.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a
substitution instance of the LHS of a rule, it replaces the expression by the (appropriately-
substituted) RHS. By “a substitution instance” we mean that the LHS can be made equal
to the expression by substituting for the pattern variables.

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the
same meaning. That is undecidable in general, and infeasible in most interesting cases.
The responsibility is entirely the programmer’s!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For
example:

"loop" forall x y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.
• If more than one rule matches a call, GHC will choose one arbitrarily to apply.
• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule
LHS with an expression. It seeks a substitution which makes the LHS and expression
syntactically equal modulo alpha conversion. The pattern (rule), but not the expression,
is eta-expanded if necessary. (Eta-expanding the expression can lead to laziness bugs.)
But not beta conversion (that’s called higher-order matching).
Matching is carried out on GHC’s intermediate language, which includes type abstrac-
tions and applications. So a rule only matches if the types match too. See Specialisation
(page 548) below.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s = map f
t = map g

in
s (t xs)

The expression s (t xs) does not match the rule "map/map", but GHC will substitute
for s and t, giving an expression which does match. If s or t was (a) used more than
once, and (b) large or a redex, then it would not be substituted, and the rule would not
fire.

• GHC will never match a forall’d variable in a template with an expression which contains
locally bound variables. For example, it is permitted to write a rule which contains a case
expression:

{-# RULES
"test/case-tup" forall (x :: (Int, Int)) (y :: Int) (z :: Int).
test (case x of (l, r) -> y) z = case x of (l, r) -> test y z

#-}

But the rule will not match when y contains either of l or r because they are locally
bound. Therefore the following application will fail to trigger the rule:

544 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

prog :: (Int, Int) -> (Int, Int)
prog x = test (case x of (p, q) -> p) 0

because y would have to match against p (which is locally bound) but it will fire for:

prog :: (Int, Int) -> (Int, Int)
prog x = test (case x of (p, q) -> 0) 0

because y can match against 0.
• A rule that has a forall binder with a polymorphic type, is likely to fail to fire. E. g.,

{-# RULES forall (x :: forall a. Num a => a -> a). f x = blah #-}

Here x has a polymorphic type. This applies to a forall’d binder with a type class con-
straint, such as:

{-# RULES forall @m (x :: KnownNat m => Proxy m). g x = blah #-}

See #21093 for discussion.

How rules interact with INLINE/NOINLINE pragmas

Ordinary inlining happens at the same time as rule rewriting, which may lead to unexpected
results. Consider this (artificial) example

f x = x
g y = f y
h z = g True

{-# RULES "f" f True = False #-}

Since f‘s right-hand side is small, it is inlined into g, to give

g y = y

Now g is inlined into h, but f‘s RULE has no chance to fire. If instead GHC had first inlined g
into h then there would have been a better chance that f‘s RULES (page 541) might fire.
The way to get predictable behaviour is to use a NOINLINE (page 561) pragma, or an IN-
LINE[⟨phase⟩] pragma, on f, to ensure that it is not inlined until its RULES (page 541) have
had a chance to fire. The warning flag -Winline-rule-shadowing (page 117) (see Warnings
and sanity-checking (page 98)) warns about this situation.

How rules interact with CONLIKE pragmas

GHC is very cautious about duplicating work. For example, consider

f k z xs = let xs = build g
in ...(foldr k z xs)...sum xs...

{-# RULES "foldr/build" forall k z g. foldr k z (build g) = g k z #-}

Since xs is used twice, GHC does not fire the foldr/build rule. Rightly so, because it might
take a lot of work to compute xs, which would be duplicated if the rule fired.

6.19. Miscellaneous 545

https://gitlab.haskell.org/ghc/ghc/-/issues/21093

GHC User’s Guide Documentation, Release 9.2.6

Sometimes, however, this approach is over-cautious, and we do want the rule to fire, even
though doing so would duplicate redex. There is no way that GHC can work out when this is
a good idea, so we provide the CONLIKE pragma to declare it, thus:

{-# INLINE CONLIKE [1] f #-}
f x = blah

CONLIKE is a modifier to an INLINE or NOINLINE pragma. It specifies that an application of
f to one argument (in general, the number of arguments to the left of the = sign) should
be considered cheap enough to duplicate, if such a duplication would make rule fire. (The
name “CONLIKE” is short for “constructor-like”, because constructors certainly have such
a property.) The CONLIKE (page 561) pragma is a modifier to INLINE (page 559)/NOINLINE
(page 561) because it really only makes sense to match f on the LHS of a rule if you are sure
that f is not going to be inlined before the rule has a chance to fire.

How rules interact with class methods

Giving a RULE for a class method is a bad idea:

class C a where
op :: a -> a -> a

instance C Bool where
op x y = ...rhs for op at Bool...

{-# RULES "f" op True y = False #-}

In this example, op is not an ordinary top-level function; it is a class method. GHC rapidly
rewrites any occurrences of op-used-at-type-Bool to a specialised function, say opBool, where

opBool :: Bool -> Bool -> Bool
opBool x y = ..rhs for op at Bool...

So the RULE never has a chance to fire, for just the same reasons as in How rules interact
with INLINE/NOINLINE pragmas (page 545).
The solution is to define the instance-specific function yourself, with a pragma to prevent it
being inlined too early, and give a RULE for it:

instance C Bool where
op = opBool

opBool :: Bool -> Bool -> Bool
{-# NOINLINE [1] opBool #-}
opBool x y = ..rhs for op at Bool...

{-# RULES "f" opBool True y = False #-}

If you want a RULE that truly applies to the overloaded class method, the only way to do it is
like this:

class C a where
op_c :: a -> a -> a

op :: C a => a -> a -> a
{-# NOINLINE [1] op #-}
op = op_c

546 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

{-# RULES "reassociate" op (op x y) z = op x (op y z) #-}

Now the inlining of op is delayed until the rule has a chance to fire. The down-side is that
instance declarations must define op_c, but all other uses should go via op.

List fusion

The RULES mechanism is used to implement fusion (deforestation) of common list functions.
If a “good consumer” consumes an intermediate list constructed by a “good producer”, the
intermediate list should be eliminated entirely.
The following are good producers:
• List comprehensions
• Enumerations of Int, Integer and Char (e.g. ['a'..'z']).
• Explicit lists (e.g. [True,False])
• The cons constructor (e.g 3:4:[])
• ++

• map

• take, filter
• iterate, repeat
• zip, zipWith

The following are good consumers:
• List comprehensions
• array (on its second argument)
• ++ (on its first argument)
• foldr

• map

• take, filter
• concat

• unzip, unzip2, unzip3, unzip4
• zip, zipWith (but on one argument only; if both are good producers, zip will fuse with
one but not the other)

• partition

• head

• and, or, any, all
• sequence_

• msum

So, for example, the following should generate no intermediate lists:

6.19. Miscellaneous 547

GHC User’s Guide Documentation, Release 9.2.6

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are
not included, please tell us.
If you want to write your own good consumers or producers, look at the Prelude definitions
of the above functions to see how to do so.

Specialisation

Rewrite rules can be used to get the same effect as a feature present in earlier versions of
GHC. For example, suppose that:

genericLookup :: Ord a => Table a b -> a -> b
intLookup :: Table Int b -> Int -> b

where intLookup is an implementation of genericLookup that works very fast for keys of type
Int. You might wish to tell GHC to use intLookup instead of genericLookup whenever the
latter was called with type Table Int b -> Int -> b. It used to be possible to write

{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}

This feature is no longer in GHC, but rewrite rules let you do the same thing:

{-# RULES "genericLookup/Int" genericLookup = intLookup #-}

This slightly odd-looking rule instructs GHC to replace genericLookup by intLookup when-
ever the types match. What is more, this rule does not need to be in the same file as gener-
icLookup, unlike the SPECIALIZE pragmas which currently do (so that they have an original
definition available to specialise).
It is Your Responsibility to make sure that intLookup really behaves as a specialised version
of genericLookup!!!
An example in which using RULES for specialisation will Win Big:

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an interme-
diate Rational-is obscenely expensive by comparison.

Controlling what’s going on in rewrite rules

• Use -ddump-rules (page 253) to see the rules that are defined in this module. This
includes rules generated by the specialisation pass, but excludes rules imported from
other modules.

• Use -ddump-simpl-stats (page 253) to see what rules are being fired. If you add -dppr-
debug (page 251) you get a more detailed listing.

548 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

• Use -ddump-rule-firings (page 253) or -ddump-rule-rewrites (page 253) to see in
great detail what rules are being fired. If you add -dppr-debug (page 251) you get a still
more detailed listing.

• The definition of (say) build in GHC/Base.hs looks like this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []

Notice the INLINE (page 559)! That prevents (:) from being inlined when compiling
PrelBase, so that an importing module will “see” the (:), and can match it on the LHS
of a rule. INLINE prevents any inlining happening in the RHS of the INLINE thing. I
regret the delicacy of this.

• In libraries/base/GHC/Base.hs look at the rules for map to see how to write rules that
will do fusion and yet give an efficient program even if fusion doesn’t happen. More rules
in GHC/List.hs.

6.19.2 Special built-in functions

GHC has a few built-in functions with special behaviour. In particular:
• GHC.Exts.inline allows control over inlining on a per-call-site basis.
• GHC.Exts.lazy restrains the strictness analyser.
• GHC.Exts.oneShot gives a hint to the compiler about how often a function is being called.

6.19.3 Generic programming

Using a combination of DeriveGeneric (page 550), DefaultSignatures (page 437), and
DeriveAnyClass (page 419), you can easily do datatype-generic programming using the
GHC.Generics framework. This section gives a very brief overview of how to do it.
Generic programming support in GHC allows defining classes with methods that do not need
a user specification when instantiating: the method body is automatically derived by GHC.
This is similar to what happens for standard classes such as Read and Show, for instance, but
now for user-defined classes.

Note: GHC used to have an implementation of generic classes as defined in the paper
“Derivable type classes”, Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal
Sept 2000, pp. 94-105. These have been removed and replaced by the more general support
for generic programming.

Deriving representations

The first thing we need is generic representations. The GHC.Genericsmodule defines a couple
of primitive types that are used to represent Haskell datatypes:

-- | Unit: used for constructors without arguments
data U1 p = U1

-- | Constants, additional parameters and recursion of kind Type

6.19. Miscellaneous 549

GHC User’s Guide Documentation, Release 9.2.6

newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

The Generic and Generic1 classes mediate between user-defined datatypes and their internal
representation as a sum-of-products:

class Generic a where
-- Encode the representation of a user datatype
type Rep a :: Type -> Type
-- Convert from the datatype to its representation
from :: a -> (Rep a) x
-- Convert from the representation to the datatype
to :: (Rep a) x -> a

class Generic1 (f :: k -> Type) where
type Rep1 f :: k -> Type

from1 :: f a -> Rep1 f a
to1 :: Rep1 f a -> f a

Generic1 is used for functions that can only be defined over type containers, such as map.
Note that Generic1 ranges over types of kind Type -> Type by default, but if the PolyKinds
(page 346) extension is enabled, then it can range of types of kind k -> Type, for any kind k.

DeriveGeneric

Since 7.2.1
Allow automatic deriving of instances for the Generic typeclass.

Instances of these classes can be derived by GHC with the DeriveGeneric (page 550) exten-
sion, and are necessary to be able to define generic instances automatically.
For example, a user-defined datatype of trees

data UserTree a = Node a (UserTree a) (UserTree a) | Leaf

in a Main module in a package named foo will get the following representation:

instance Generic (UserTree a) where
-- Representation type
type Rep (UserTree a) =

M1 D ('MetaData "UserTree" "Main" "package-name" 'False) (
M1 C ('MetaCons "Node" 'PrefixI 'False) (

M1 S ('MetaSel 'Nothing
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

550 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

(K1 R a)
:*: M1 S ('MetaSel 'Nothing

'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

(K1 R (UserTree a))
:*: M1 S ('MetaSel 'Nothing

'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

(K1 R (UserTree a)))
:+: M1 C ('MetaCons "Leaf" 'PrefixI 'False) U1)

-- Conversion functions
from (Node x l r) = M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))
from Leaf = M1 (R1 (M1 U1))
to (M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))) = Node x l r
to (M1 (R1 (M1 U1))) = Leaf

This representation is generated automatically if a deriving Generic clause is attached to
the datatype. Standalone deriving (page ??) can also be used.

Writing generic functions

A generic function is defined by creating a class and giving instances for each of the repre-
sentation types of GHC.Generics. As an example we show generic serialization:

data Bin = O | I

class GSerialize f where
gput :: f a -> [Bin]

instance GSerialize U1 where
gput U1 = []

instance (GSerialize a, GSerialize b) => GSerialize (a :*: b) where
gput (x :*: y) = gput x ++ gput y

instance (GSerialize a, GSerialize b) => GSerialize (a :+: b) where
gput (L1 x) = O : gput x
gput (R1 x) = I : gput x

instance (GSerialize a) => GSerialize (M1 i c a) where
gput (M1 x) = gput x

instance (Serialize a) => GSerialize (K1 i a) where
gput (K1 x) = put x

A caveat: this encoding strategy may not be reliable across different versions of GHC. When
deriving a Generic instance is free to choose any nesting of :+: and :*: it chooses, so if GHC
chooses (a :+: b) :+: c, then the encoding for a would be [O,O], b would be [O,I], and c
would be [I]. However, if GHC chooses a :+: (b :+: c), then the encoding for a would be
[O], bwould be [I,O], and cwould be [I,I]. (In practice, the current implementation tries to
produce a more-or-less balanced nesting of :+: and :*: so that the traversal of the structure
of the datatype from the root to a particular component can be performed in logarithmic
rather than linear time.)

6.19. Miscellaneous 551

GHC User’s Guide Documentation, Release 9.2.6

Typically this GSerialize class will not be exported, as it only makes sense to have instances
for the representation types.

Unlifted representation types

The data family URec is provided to enable generic programming over datatypes with certain
unlifted arguments. There are six instances corresponding to common unlifted types:

data family URec a p

data instance URec (Ptr ()) p = UAddr { uAddr# :: Addr# }
data instance URec Char p = UChar { uChar# :: Char# }
data instance URec Double p = UDouble { uDouble# :: Double# }
data instance URec Int p = UInt { uInt# :: Int# }
data instance URec Float p = UFloat { uFloat# :: Float# }
data instance URec Word p = UWord { uWord# :: Word# }

Six type synonyms are provided for convenience:

type UAddr = URec (Ptr ())
type UChar = URec Char
type UDouble = URec Double
type UFloat = URec Float
type UInt = URec Int
type UWord = URec Word

As an example, this data declaration:

data IntHash = IntHash Int#
deriving Generic

results in the following Generic instance:

instance 'Generic' IntHash where
type 'Rep' IntHash =

'D1' ('MetaData "IntHash" "Main" "package-name" 'False)
('C1' ('MetaCons "IntHash" 'PrefixI 'False)

('S1' ('MetaSel 'Nothing
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)

'UInt'))

A user could provide, for example, a GSerialize UInt instance so that a Serialize IntHash
instance could be easily defined in terms of GSerialize.

Generic defaults

The only thing left to do now is to define a “front-end” class, which is exposed to the user:

class Serialize a where
put :: a -> [Bin]

default put :: (Generic a, GSerialize (Rep a)) => a -> [Bin]
put = gput . from

552 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Here we use a default signature (page ??) to specify that the user does not have to provide
an implementation for put, as long as there is a Generic instance for the type to instantiate.
For the UserTree type, for instance, the user can just write:

instance (Serialize a) => Serialize (UserTree a)

The default method for put is then used, corresponding to the generic implementation of
serialization. If you are using DeriveAnyClass (page 419), the same instance is generated
by simply attaching a deriving Serialize clause to the UserTree datatype declaration. For
more examples of generic functions please refer to the generic-deriving package on Hackage.

More information

For more details please refer to the Haskell Wiki page or the original paper [Generics2010]
(page 685).

6.19.4 Assertions

If you want to make use of assertions in your standard Haskell code, you could define a
function like the following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message – an assertion failed, but
which and where?
One way out is to define an extended assert function which also takes a descriptive string to
include in the error message and perhaps combine this with the use of a pre-processor which
inserts the source location where assert was used.
GHC offers a helping hand here, doing all of this for you. For every use of assert in the user’s
source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k-273.15)

GHC will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Con-
trol.Exception.assert, so you can still define and use your own versions of assert, should
you so wish. If not, import Control.Exception to make use assert in your code.
GHC ignores assertions when optimisation is turned on with the -O (page 121) flag. That is,
expressions of the form assert pred e will be rewritten to e. You can also disable assertions
using the -fignore-asserts (page 125) option. The option -fno-ignore-asserts (page 125)
allows enabling assertions even when optimisation is turned on.
Assertion failures can be caught, see the documentation for the Control.Exception library for
the details.

6.19. Miscellaneous 553

http://hackage.haskell.org/package/generic-deriving
http://www.haskell.org/haskellwiki/GHC.Generics

GHC User’s Guide Documentation, Release 9.2.6

6.19.5 HasCallStack

GHC.Stack.HasCallStack is a lightweight method of obtaining a partial call-stack at any point
in the program.
A function can request its call-site with the HasCallStack constraint and access it as a Haskell
value by using callStack.
One can then use functions from GHC.Stack to inspect or pretty print (as is done in f below)
the call stack.

f :: HasCallStack => IO ()
f = putStrLn (prettyCallStack callStack)

g :: HasCallStack => IO ()
g = f

Evaluating f directly shows a call stack with a single entry, while evaluating g, which also
requests its call-site, shows two entries, one for each computation “annotated” with HasCall-
Stack.

ghci> f
CallStack (from HasCallStack):
f, called at <interactive>:19:1 in interactive:Ghci1

ghci> g
CallStack (from HasCallStack):
f, called at <interactive>:17:5 in main:Main
g, called at <interactive>:20:1 in interactive:Ghci2

The error function from the Prelude supports printing the call stack that led to the error in
addition to the usual error message:

ghci> error "bad"
*** Exception: bad
CallStack (from HasCallStack):
error, called at <interactive>:25:1 in interactive:Ghci5

The call stack here consists of a single entry, pinpointing the source of the call to error.
However, by annotating several computations with HasCallStack, figuring out the exact cir-
cumstances and sequences of calls that lead to a call to error becomes a lot easier, as demon-
strated with the simple example below.

f :: HasCallStack => IO ()
f = error "bad bad bad"

g :: HasCallStack => IO ()
g = f

h :: HasCallStack => IO ()
h = g

ghci> h
*** Exception: bad bad bad
CallStack (from HasCallStack):
error, called at call-stack.hs:4:5 in main:Main
f, called at call-stack.hs:7:5 in main:Main
g, called at call-stack.hs:10:5 in main:Main
h, called at <interactive>:28:1 in interactive:Ghci1

554 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

The CallStack will only extend as far as the types allow it, for example

myHead :: HasCallStack => [a] -> a
myHead [] = errorWithCallStack "empty"
myHead (x:xs) = x

bad :: Int
bad = myHead []

ghci> bad
*** Exception: empty
CallStack (from HasCallStack):
errorWithCallStack, called at Bad.hs:8:15 in main:Bad
myHead, called at Bad.hs:12:7 in main:Bad

includes the call-site of errorWithCallStack in myHead, and of myHead in bad, but not the
call-site of bad at the GHCi prompt.
GHC solves HasCallStack constraints in two steps:
1. If there is a CallStack in scope – i.e. the enclosing definition has a HasCallStack con-
straint – GHC will push the new call-site onto the existing CallStack.

2. Otherwise GHC will solve the HasCallStack constraint for the singleton CallStack con-
taining just the current call-site.

Importantly, GHC will never infer a HasCallStack constraint, you must request it explicitly.
CallStack is kept abstract, but GHC provides a function

getCallStack :: CallStack -> [(String, SrcLoc)]

to access the individual call-sites in the stack. The String is the name of the function that
was called, and the SrcLoc provides the package, module, and file name, as well as the line
and column numbers.
GHC.Stack additionally exports a function withFrozenCallStack that allows users to freeze
the current CallStack, preventing any future push operations from having an effect. This can
be used by library authors to prevent CallStacks from exposing unnecessary implementation
details. Consider the myHead example above, the errorWithCallStack line in the printed
stack is not particularly enlightening, so we might choose to suppress it by freezing the Call-
Stack that we pass to errorWithCallStack.

myHead :: HasCallStack => [a] -> a
myHead [] = withFrozenCallStack (errorWithCallStack "empty")
myHead (x:xs) = x

ghci> myHead []
*** Exception: empty
CallStack (from HasCallStack):
myHead, called at Bad.hs:12:7 in main:Bad

NOTE: The intrepid user may notice that HasCallStack is just an alias for an implicit pa-
rameter ?callStack :: CallStack. This is an implementation detail and should not be
considered part of the CallStack API, we may decide to change the implementation in the
future.

6.19. Miscellaneous 555

GHC User’s Guide Documentation, Release 9.2.6

Compared with other sources of stack traces

HasCallStack does not interact with the RTS and does not require compilation with -prof.
On the other hand, as the CallStack is built up explicitly via the HasCallStack constraints,
it will generally not contain as much information as the simulated call-stacks maintained by
the RTS.

6.20 Pragmas

GHC supports several pragmas, or instructions to the compiler placed in the source code.
Pragmas don’t normally affect themeaning of the program, but theymight affect the efficiency
of the generated code.
Pragmas all take the form {-# word ... #-} where ⟨word⟩ indicates the type of pragma, and
is followed optionally by information specific to that type of pragma. Case is ignored in ⟨word⟩.
The various values for ⟨word⟩ that GHC understands are described in the following sections;
any pragma encountered with an unrecognised ⟨word⟩ is ignored. The layout rule applies in
pragmas, so the closing #-} should start in a column to the right of the opening {-#.
Certain pragmas are file-header pragmas:
• A file-header pragma must precede the module keyword in the file.
• There can be as many file-header pragmas as you please, and they can be preceded or
followed by comments.

• File-header pragmas are read once only, before pre-processing the file (e.g. with cpp).
• The file-header pragmas are: {-# LANGUAGE #-}, {-# OPTIONS_GHC #-}, and {-# IN-
CLUDE #-}.

6.20.1 LANGUAGE pragma

{-# LANGUAGE ⟨ext⟩, ⟨ext⟩, ... #-}

Where file header
Enable or disable a set of language extensions.

The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the
intention that all Haskell compilers support the LANGUAGE pragma with the same syntax, al-
though not all extensions are supported by all compilers, of course. The LANGUAGE pragma
should be used instead of OPTIONS_GHC, if possible.
For example, to enable the FFI and preprocessing with CPP:

{-# LANGUAGE ForeignFunctionInterface, CPP #-}

LANGUAGE is a file-header pragma (see Pragmas (page 556)).
Every language extension can also be turned into a command-line flag by prefixing it with
“-X”; for example -XForeignFunctionInterface. (Similarly, all “-X” flags can be written as
LANGUAGE pragmas.)
A list of all supported language extensions can be obtained by invoking ghc --supported-
extensions (see --supported-extensions (page 87)).

556 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

Any extension from the Extension type defined in Language.Haskell.Extension may be used.
GHC will report an error if any of the requested extensions are not supported.

6.20.2 OPTIONS_GHC pragma

{-# OPTIONS_GHC ⟨flags⟩ #-}

Where file header
The OPTIONS_GHC pragma is used to specify additional options that are given to the compiler
when compiling this source file. See Command line options in source files (page 84) for details.
Previous versions of GHC accepted OPTIONS rather than OPTIONS_GHC, but that is now depre-
cated.
OPTIONS_GHC is a file-header pragma (see Pragmas (page 556)).

6.20.3 INCLUDE pragma

The INCLUDE used to be necessary for specifying header files to be included when using the
FFI and compiling via C. It is no longer required for GHC, but is accepted (and ignored) for
compatibility with other compilers.

6.20.4 WARNING and DEPRECATED pragmas

{-# WARNING #-}

Where declaration
The WARNING pragma allows you to attach an arbitrary warning to a particular function,
class, or type.

{-# DEPRECATED #-}

Where declaration
A DEPRECATED pragma lets you specify that a particular function, class, or type is depre-
cated.

There are two ways of using these pragmas.
• You can work on an entire module thus:

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...

Or:

module Wibble {-# WARNING "This is an unstable interface." #-} where
...

When you compile any module that import Wibble, GHC will print the specified message.
• You can attach a warning to a function, class, type, or data constructor, with the following
top-level declarations:

{-# DEPRECATED f, C, T "Don't use these" #-}
{-# WARNING unsafePerformIO "This is unsafe; I hope you know what you're doing" #-

↪→}

6.20. Pragmas 557

GHC User’s Guide Documentation, Release 9.2.6

When you compile any module that imports and uses any of the specified entities, GHC
will print the specified message.
You can only attach to entities declared at top level in the module being compiled, and
you can only use unqualified names in the list of entities. A capitalised name, such as T
refers to either the type constructor T or the data constructor T, or both if both are in
scope. If both are in scope, there is currently no way to specify one without the other
(c.f. fixities Infix type constructors, classes, and type variables (page 309)).

Also note that the argument to DEPRECATED and WARNING can also be a list of strings, in which
case the strings will be presented on separate lines in the resulting warning message,

{-# DEPRECATED foo, bar ["Don't use these", "Use gar instead"] #-}

Warnings and deprecations are not reported for (a) uses within the defining module, (b) defin-
ing a method in a class instance, and (c) uses in an export list. The latter reduces spurious
complaints within a library in which one module gathers together and re-exports the exports
of several others.
You can suppress the warnings with the flag -Wno-warnings-deprecations (page 103).

6.20.5 MINIMAL pragma

{-# MINIMAL ⟨name⟩ | ⟨name⟩ , ... #-}

Where in class body
Define the methods needed for a minimal complete instance of a class.

The MINIMAL pragma is used to specify the minimal complete definition of a class, i.e. specify
which methods must be implemented by all instances. If an instance does not satisfy the
minimal complete definition, then a warning is generated. This can be useful when a class
has methods with circular defaults. For example

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
{-# MINIMAL (==) | (/=) #-}

Without the MINIMAL pragma no warning would be generated for an instance that implements
neither method.
The syntax for minimal complete definition is:

mindef ::= name
| '(' mindef ')'
| mindef '|' mindef
| mindef ',' mindef

A vertical bar denotes disjunction, i.e. one of the two sides is required. A comma denotes
conjunction, i.e. both sides are required. Conjunction binds stronger than disjunction.
If no MINIMAL pragma is given in the class declaration, it is just as if a pragma {-# MINIMAL
op1,op2,...,opn #-} was given, where the opi are the methods that lack a default method

558 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

in the class declaration (c.f. -Wmissing-methods (page 110), Warnings and sanity-checking
(page 98)).
This warning can be turned off with the flag -Wno-missing-methods (page 110).

6.20.6 INLINE and NOINLINE pragmas

These pragmas control the inlining of function definitions.

INLINE pragma

{-# INLINE ⟨name⟩ #-}

Where top-level
Force GHC to inline a value.

GHC (with -O (page 121), as always) tries to inline (or “unfold”) functions/values that are
“small enough,” thus avoiding the call overhead and possibly exposing other more-wonderful
optimisations. GHC has a set of heuristics, tuned over a long period of time using many
benchmarks, that decide when it is beneficial to inline a function at its call site. The heuristics
are designed to inline functions when it appears to be beneficial to do so, but without incurring
excessive code bloat. If a function looks too big, it won’t be inlined, and functions larger than
a certain size will not even have their definition exported in the interface file. Some of the
thresholds that govern these heuristic decisions can be changed using flags, see -f*: platform-
independent flags (page 121).
Normally GHC will do a reasonable job of deciding by itself when it is a good idea to inline a
function. However, sometimes youmight want to override the default behaviour. For example,
if you have a key function that is important to inline because it leads to further optimisations,
but GHC judges it to be too big to inline.
The sledgehammer you can bring to bear is the INLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)
{-# INLINE key_function #-}

The major effect of an INLINE pragma is to declare a function’s “cost” to be very low. The
normal unfolding machinery will then be very keen to inline it. However, an INLINE pragma
for a function “f” has a number of other effects:
• While GHC is keen to inline the function, it does not do so blindly. For example, if you
write

map key_function xs

there really isn’t any point in inlining key_function to get

map (\x -> body) xs

In general, GHC only inlines the function if there is some reason (no matter how slight)
to suppose that it is useful to do so.

• Moreover, GHC will only inline the function if it is fully applied, where “fully applied”
means applied to as many arguments as appear (syntactically) on the LHS of the function
definition. For example:

6.20. Pragmas 559

GHC User’s Guide Documentation, Release 9.2.6

comp1 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp1 #-}
comp1 f g = \x -> f (g x)

comp2 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp2 #-}
comp2 f g x = f (g x)

The two functions comp1 and comp2 have the same semantics, but comp1 will be inlined
when applied to two arguments, while comp2 requires three. This might make a big
difference if you say

map (not `comp1` not) xs

which will optimise better than the corresponding use of comp2.
• It is useful for GHC to optimise the definition of an INLINE function f just like any other
non-INLINE function, in case the non-inlined version of f is ultimately called. But we
don’t want to inline the optimised version of f; a major reason for INLINE pragmas is to
expose functions in f‘s RHS that have rewrite rules, and it’s no good if those functions
have been optimised away.
So GHC guarantees to inline precisely the code that you wrote, no more and no less.
It does this by capturing a copy of the definition of the function to use for inlining (we
call this the “inline-RHS”), which it leaves untouched, while optimising the ordinarily
RHS as usual. For externally-visible functions the inline-RHS (not the optimised RHS) is
recorded in the interface file.

• An INLINE function is not worker/wrappered by strictness analysis. It’s going to be
inlined wholesale instead.

GHC ensures that inlining cannot go on forever: every mutually-recursive group is cut by
one or more loop breakers that is never inlined (see Secrets of the GHC inliner, JFP 12(4)
July 2002). GHC tries not to select a function with an INLINE pragma as a loop breaker, but
when there is no choice even an INLINE function can be selected, in which case the INLINE
pragma is ignored. For example, for a self-recursive function, the loop breaker can only be
the function itself, so an INLINE pragma is always ignored.
Syntactically, an INLINE pragma for a function can be put anywhere its type signature could
be put.
INLINE pragmas are a particularly good idea for the then/return (or bind/unit) functions in
a monad. For example, in GHC’s own UniqueSupply monad code, we have:

{-# INLINE thenUs #-}
{-# INLINE returnUs #-}

See also the NOINLINE (NOINLINE pragma (page 561)) and INLINABLE (INLINABLE pragma
(page 560)) pragmas.

INLINABLE pragma

{-# INLINABLE ⟨name⟩ #-}

Where top-level
Suggest that the compiler always consider inlining name.

560 Chapter 6. Language extensions

http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm
http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm

GHC User’s Guide Documentation, Release 9.2.6

An {-# INLINABLE f #-} pragma on a function f has the following behaviour:
• While INLINE says “please inline me”, the INLINABLE says “feel free to inline me; use
your discretion”. In other words the choice is left to GHC, which uses the same rules as
for pragma-free functions. Unlike INLINE, that decision is made at the call site, and will
therefore be affected by the inlining threshold, optimisation level etc.

• Like INLINE, the INLINABLE pragma retains a copy of the original RHS for inlining pur-
poses, and persists it in the interface file, regardless of the size of the RHS.

• One way to use INLINABLE is in conjunction with the special function inline (Special
built-in functions (page 549)). The call inline f tries very hard to inline f. To make
sure that f can be inlined, it is a good idea to mark the definition of f as INLINABLE,
so that GHC guarantees to expose an unfolding regardless of how big it is. Moreover,
by annotating f as INLINABLE, you ensure that f‘s original RHS is inlined, rather than
whatever random optimised version of f GHC’s optimiser has produced.

• The INLINABLE pragma also works with SPECIALISE: if youmark function f as INLINABLE,
then you can subsequently SPECIALISE in another module (see SPECIALIZE pragma
(page 563)).

• Unlike INLINE, it is OK to use an INLINABLE pragma on a recursive function. The princi-
pal reason do to so to allow later use of SPECIALISE

The alternative spelling INLINEABLE is also accepted by GHC.

NOINLINE pragma

{-# NOINLINE ⟨name⟩ #-}

Where top-level
Instructs the compiler not to inline a value.

The NOINLINE (page 561) pragma does exactly what you’d expect: it stops the named function
from being inlined by the compiler. You shouldn’t ever need to do this, unless you’re very
cautious about code size.
NOTINLINE is a synonym for NOINLINE (NOINLINE is specified by Haskell 98 as the standard
way to disable inlining, so it should be used if you want your code to be portable).

CONLIKE modifier

{-# CONLIKE #-}

Where modifies INLINE (page 559) or NOINLINE (page 561) pragma
Instructs GHC to consider a value to be especially cheap to inline.

An INLINE (page 559) or NOINLINE (page 561) pragma may have a CONLIKE (page 561) modi-
fier, which affects matching in RULE (page 541)s (only). See How rules interact with CONLIKE
pragmas (page 545).

Phase control

Sometimes you want to control exactly when in GHC’s pipeline the INLINE (page 559) pragma
is switched on. Inlining happens only during runs of the simplifier. Each run of the simpli-
fier has a different phase number; the phase number decreases towards zero. If you use

6.20. Pragmas 561

GHC User’s Guide Documentation, Release 9.2.6

-dverbose-core2core (page 253) you will see the sequence of phase numbers for successive
runs of the simplifier. In an INLINE (page 559) pragma you can optionally specify a phase
number, thus:
• “INLINE[k] f” means: do not inline f until phase k, but from phase k onwards be very
keen to inline it.

• “INLINE[~k] f” means: be very keen to inline f until phase k, but from phase k onwards
do not inline it.

• “NOINLINE[k] f” means: do not inline f until phase k, but from phase k onwards be
willing to inline it (as if there was no pragma).

• “NOINLINE[~k] f” means: be willing to inline f until phase k, but from phase k onwards
do not inline it.

The same information is summarised here:

-- Before phase 2 Phase 2 and later
{-# INLINE [2] f #-} -- No Yes
{-# INLINE [~2] f #-} -- Yes No
{-# NOINLINE [2] f #-} -- No Maybe
{-# NOINLINE [~2] f #-} -- Maybe No

{-# INLINE f #-} -- Yes Yes
{-# NOINLINE f #-} -- No No

By “Maybe” we mean that the usual heuristic inlining rules apply (if the function body is
small, or it is applied to interesting-looking arguments etc). Another way to understand the
semantics is this:
• For both INLINE (page 559) and NOINLINE (page 561), the phase number says when
inlining is allowed at all.

• The INLINE (page 559) pragma has the additional effect of making the function body look
small, so that when inlining is allowed it is very likely to happen.

The same phase-numbering control is available for RULE (page 541)s (Rewrite rules
(page 541)).

6.20.7 LINE pragma

{-# LINE ⟨lineno⟩ "⟨file⟩" #-}

Where anywhere
Generated by preprocessors to convey source line numbers of the original source.

This pragma is similar to C’s #line pragma, and is mainly for use in automatically generated
Haskell code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you’d generated the current file from something called Foo.vhs and this line corresponds
to line 42 in the original. GHC will adjust its error messages to refer to the line/file named in
the LINE pragma.
LINE pragmas generated from Template Haskell set the file and line position for the duration
of the splice and are limited to the splice. Note that because Template Haskell splices abstract
syntax, the file positions are not automatically advanced.

562 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

6.20.8 COLUMN pragma

This is the analogue of the LINE pragma and is likewise intended for use in automatically gen-
erated Haskell code. It lets you specify the column number of the original code; for example

foo = do
{-# COLUMN 42 #-}pure ()
pure ()

This adjusts all column numbers immediately after the pragma to start at 42. The presence
of this pragma only affects the quality of the diagnostics and does not change the syntax of
the code itself.

6.20.9 RULES pragma

The RULES (page 541) pragma lets you specify rewrite rules. It is described in Rewrite rules
(page 541).

6.20.10 SPECIALIZE pragma

{-# SPECIALIZE ⟨name⟩ :: ⟨type⟩ #-}
Ask that GHC specialize a polymorphic value to a particular type.

(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB:
at the cost of larger code) specialised to particular types. Thus, if you have an overloaded
function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists with Widget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

• A SPECIALIZE pragma for a function can be put anywhere its type signature could be
put. Moreover, you can also SPECIALIZE an imported function provided it was given an
INLINABLE pragma at its definition site (INLINABLE pragma (page 560)).

• A SPECIALIZE has the effect of generating (a) a specialised version of the function and
(b) a rewrite rule (see Rewrite rules (page 541)) that rewrites a call to the un-specialised
function into a call to the specialised one. Moreover, given a SPECIALIZE pragma for a
function f, GHC will automatically create specialisations for any type-class-overloaded
functions called by f, if they are in the same module as the SPECIALIZE pragma, or if
they are INLINABLE; and so on, transitively.

• You can add phase control (Phase control (page 561)) to the RULE generated by a SPE-
CIALIZE pragma, just as you can if you write a RULE directly. For example:

{-# SPECIALIZE [0] hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

generates a specialisation rule that only fires in Phase 0 (the final phase). If you do not
specify any phase control in the SPECIALIZE pragma, the phase control is inherited from
the inline pragma (if any) of the function. For example:

6.20. Pragmas 563

GHC User’s Guide Documentation, Release 9.2.6

foo :: Num a => a -> a
foo = ...blah...
{-# NOINLINE [0] foo #-}
{-# SPECIALIZE foo :: Int -> Int #-}

The NOINLINE pragma tells GHC not to inline foo until Phase 0; and this property is
inherited by the specialisation RULE, which will therefore only fire in Phase 0.
The main reason for using phase control on specialisations is so that you can write opti-
misation RULES that fire early in the compilation pipeline, and only then specialise the
calls to the function. If specialisation is done too early, the optimisation rules might fail
to fire.

• The type in a SPECIALIZE pragma can be any type that is less polymorphic than the type
of the original function. In concrete terms, if the original function is f then the pragma

{-# SPECIALIZE f :: <type> #-}

is valid if and only if the definition

f_spec :: <type>
f_spec = f

is valid. Here are some examples (where we only give the type signature for the original
function, not its code):

f :: Eq a => a -> b -> b
{-# SPECIALISE f :: Int -> b -> b #-}

g :: (Eq a, Ix b) => a -> b -> b
{-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}

h :: Eq a => a -> a -> a
{-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}

The last of these examples will generate a RULE with a somewhat-complex left-hand side
(try it yourself), so it might not fire very well. If you use this kind of specialisation, let us
know how well it works.

SPECIALIZE INLINE

{-# SPECIALIZE INLINE ⟨name⟩ :: ⟨type⟩ #-}

Where top-level
A SPECIALIZE pragma can optionally be followed with a INLINE or NOINLINE pragma, option-
ally followed by a phase, as described in INLINE and NOINLINE pragmas (page 559). The
INLINE pragma affects the specialised version of the function (only), and applies even if the
function is recursive. The motivating example is this:

-- A GADT for arrays with type-indexed representation
data Arr e where
ArrInt :: !Int -> ByteArray# -> Arr Int
ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)

(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}

564 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i)

Here, (!:) is a recursive function that indexes arrays of type Arr e. Consider a call to (!:)
at type (Int,Int). The second specialisation will fire, and the specialised function will be
inlined. It has two calls to (!:), both at type Int. Both these calls fire the first specialisation,
whose body is also inlined. The result is a type-based unrolling of the indexing function.
You can add explicit phase control (Phase control (page 561)) to SPECIALISE INLINE pragma,
just like on an INLINE (page 559) pragma; if you do so, the same phase is used for the rewrite
rule and the INLINE control of the specialised function.

Warning: You can make GHC diverge by using SPECIALISE INLINE on an ordinarily-
recursive function.

SPECIALIZE for imported functions

Generally, you can only give a SPECIALIZE (page 563) pragma for a function defined in the
same module. However if a function f is given an INLINABLE (page 560) pragma at its def-
inition site, then it can subsequently be specialised by importing modules (see INLINABLE
pragma (page 560)). For example

module Map(lookup, blah blah) where
lookup :: Ord key => [(key,a)] -> key -> Maybe a
lookup = ...
{-# INLINABLE lookup #-}

module Client where
import Map(lookup)

data T = T1 | T2 deriving(Eq, Ord)
{-# SPECIALISE lookup :: [(T,a)] -> T -> Maybe a

Here, lookup is declared INLINABLE (page 560), but it cannot be specialised for type T at its
definition site, because that type does not exist yet. Instead a client module can define T and
then specialise lookup at that type.
Moreover, every module that imports Client (or imports a module that imports Client, tran-
sitively) will “see”, and make use of, the specialised version of lookup. You don’t need to put
a SPECIALIZE (page 563) pragma in every module.
Moreover you often don’t even need the SPECIALIZE (page 563) pragma in the first place.
When compiling a module M, GHC’s optimiser (when given the -O (page 121) flag) automat-
ically considers each top-level overloaded function declared in M, and specialises it for the
different types at which it is called in M. The optimiser also considers each imported INLIN-
ABLE (page 560) overloaded function, and specialises it for the different types at which it is
called in M. So in our example, it would be enough for lookup to be called at type T:

module Client where
import Map(lookup)

data T = T1 | T2 deriving(Eq, Ord)

6.20. Pragmas 565

GHC User’s Guide Documentation, Release 9.2.6

findT1 :: [(T,a)] -> Maybe a
findT1 m = lookup m T1 -- A call of lookup at type T

However, sometimes there are no such calls, in which case the pragma can be useful.

6.20.11 SPECIALIZE instance pragma

{-# SPECIALIZE instance ⟨instance head⟩ #-}

Where instance body
Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...

}

The pragma must occur inside the where part of the instance declaration.

6.20.12 UNPACK pragma

{-# UNPACK #-}

Where data constructor field
Instructs the compiler to unpack the contents of a constructor field into the constructor
itself.

The UNPACK indicates to the compiler that it should unpack the contents of a constructor field
into the constructor itself, removing a level of indirection. For example:

data T = T {-# UNPACK #-} !Float
{-# UNPACK #-} !Float

will create a constructor T containing two unboxed floats. This may not always be an opti-
misation: if the T constructor is scrutinised and the floats passed to a non-strict function for
example, they will have to be reboxed (this is done automatically by the compiler).
Unpacking constructor fields should only be used in conjunction with -O (page 121) 1, in order
to expose unfoldings to the compiler so the reboxing can be removed as often as possible. For
example:

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxing f1 and f2 by inlining + on floats, but only when -O (page 121)
is on.
Any single-constructor data is eligible for unpacking; for example

data T = T {-# UNPACK #-} !(Int,Int)

will store the two Ints directly in the T constructor, by flattening the pair. Multi-level unpack-
ing is also supported:

1 In fact, UNPACK (page 566) has no effect without -O (page 121), for technical reasons (see #5252).

566 Chapter 6. Language extensions

https://gitlab.haskell.org/ghc/ghc/issues/5252

GHC User’s Guide Documentation, Release 9.2.6

data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int

will store two unboxed Int#s directly in the T constructor. The unpacker can see through
newtypes, too.
See also the -funbox-strict-fields (page 134) flag, which essentially has the effect of
adding {-# UNPACK #-} to every strict constructor field.

6.20.13 NOUNPACK pragma

{-# NOUNPACK #-}

Where top-level
Instructs the compiler not to unpack a constructor field.

The NOUNPACK pragma indicates to the compiler that it should not unpack the contents of a
constructor field. Example:

data T = T {-# NOUNPACK #-} !(Int,Int)

Even with the flags -funbox-strict-fields (page 134) and -O (page 121), the field of the
constructor T is not unpacked.

6.20.14 SOURCE pragma

{-# SOURCE #-}

Where after import statement
Import a module by hs-boot file to break a module loop.

The {-# SOURCE #-} pragma is used only in import declarations, to break a module loop. It
is described in detail in How to compile mutually recursive modules (page 205).

6.20.15 COMPLETE pragmas

{-# COMPLETE #-}

Where at top level
Specify the set of constructors or pattern synonyms which constitute a total match.

The COMPLETE pragma is used to inform the pattern match checker that a certain set of pat-
terns is complete and that any function which matches on all the specified patterns is total.
The most common usage of COMPLETE pragmas is with Pattern synonyms (page 427). On its
own, the checker is very naive and assumes that any match involving a pattern synonym will
fail. As a result, any pattern match on a pattern synonym is regarded as incomplete unless
the user adds a catch-all case.
For example, the data types 2 * A and A + A are isomorphic but some computations are more
naturally expressed in terms of one or the other. To get the best of both worlds, we can choose
one as our implementation and then provide a set of pattern synonyms so that users can use
the other representation if they desire. We can then specify a COMPLETE pragma in order to

6.20. Pragmas 567

GHC User’s Guide Documentation, Release 9.2.6

inform the pattern match checker that a function which matches on both LeftChoice and
RightChoice is total.

data Choice a = Choice Bool a

pattern LeftChoice :: a -> Choice a
pattern LeftChoice a = Choice False a

pattern RightChoice :: a -> Choice a
pattern RightChoice a = Choice True a

{-# COMPLETE LeftChoice, RightChoice #-}

foo :: Choice Int -> Int
foo (LeftChoice n) = n * 2
foo (RightChoice n) = n - 2

COMPLETE pragmas are only used by the pattern match checker. If a function definition
matches on all the constructors specified in the pragma then the compiler will produce no
warning.
COMPLETE pragmas can contain any data constructors or pattern synonyms which are in scope,
but must mention at least one data constructor or pattern synonym defined in the same mod-
ule. COMPLETE pragmas may only appear at the top level of a module. Once defined, they are
automatically imported and exported from modules. COMPLETE pragmas should be thought of
as asserting a universal truth about a set of patterns and as a result, should not be used to
silence context specific incomplete match warnings.
It is also possible to restrict the types to which a COMPLETE pragma applies by putting a double
colon :: after the list of constructors, followed by a result type constructor, which will be used
to restrict the cases in which the pragma applies. GHC will compare the annotated result type
constructor with the type constructor in the head of the scrutinee type in a pattern match to
see if the COMPLETE pragma is meant to apply to it.
This is especially useful in cases that the constructors specified are polymorphic, e.g.:

data Proxy a = Proxy

class IsEmpty a where
isEmpty :: a -> Bool

class IsCons a where
type Elt a
isCons :: a -> Maybe (Elt a, a)

pattern Empty :: IsEmpty a => a
pattern Empty <- (isEmpty -> True)

pattern Cons :: IsCons a => Elt a -> a -> a
pattern Cons x xs <- (isCons -> Just (x,xs))

instance IsEmpty (Proxy a) where
isEmpty Proxy = True

instance IsEmpty [a] where
isEmpty = null

instance IsCons [a] where
type Elt [a] = a

568 Chapter 6. Language extensions

GHC User’s Guide Documentation, Release 9.2.6

isCons [] = Nothing
isCons (x:xs) = Just (x,xs)

{-# COMPLETE Empty :: Proxy #-}
{-# COMPLETE Empty, Cons :: [] #-}

foo :: Proxy a -> Int
foo Empty = 0

bar :: [a] -> Int
bar Empty = 0
bar (Cons _ _) = 1

baz :: [a] -> Int
baz Empty = 0

In this example, foo and bar will not be warned about, as their pattern matches are covered
by the two COMPLETE pragmas above, but baz will be warned about as incomplete.

6.20.16 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas

{-# OVERLAPPING #-}

{-# OVERLAPPABLE #-}

{-# OVERLAPS #-}

{-# INCOHERENT #-}

Where on instance head
The pragmas OVERLAPPING, OVERLAPPABLE, OVERLAPS, INCOHERENT are used to specify the
overlap behavior for individual instances, as described in Section Overlapping instances
(page 449). The pragmas are written immediately after the instance keyword, like this:

instance {-# OVERLAPPING #-} C t where ...

6.20. Pragmas 569

GHC User’s Guide Documentation, Release 9.2.6

570 Chapter 6. Language extensions

CHAPTER

SEVEN

EXTENDING AND USING GHC AS A LIBRARY

GHC exposes its internal APIs to users through the built-in ghc package. It allows you to
write programs that leverage GHC’s entire compilation driver, in order to analyze or compile
Haskell code programmatically. Furthermore, GHC gives users the ability to load compiler
plugins during compilation - modules which are allowed to view and change GHC’s internal
intermediate representation, Core. Plugins are suitable for things like experimental optimiza-
tions or analysis, and offer a lower barrier of entry to compiler development for many common
cases.
Furthermore, GHC offers a lightweight annotation mechanism that you can use to annotate
your source code with metadata, which you can later inspect with either the compiler API or
a compiler plugin.

7.1 Source annotations

Annotations are small pragmas that allow you to attach data to identifiers in source code,
which are persisted when compiled. These pieces of data can then inspected and utilized
when using GHC as a library or writing a compiler plugin.

7.1.1 Annotating values

Any expression that has both Typeable and Data instances may be attached to a top-level
value binding using an ANN pragma. In particular, this means you can use ANN to annotate
data constructors (e.g. Just) as well as normal values (e.g. take). By way of example, to
annotate the function foo with the annotation Just "Hello" you would do this:

{-# ANN foo (Just "Hello") #-}
foo = ...

A number of restrictions apply to use of annotations:
• The binder being annotated must be at the top level (i.e. no nested binders)
• The binder being annotated must be declared in the current module
• The expression you are annotating with must have a type with Typeable and Data in-
stances

• The Template Haskell staging restrictions (page 492) apply to the expression being an-
notated with, so for example you cannot run a function from the module being compiled.

571

GHC User’s Guide Documentation, Release 9.2.6

To be precise, the annotation {-# ANN x e #-} is well staged if and only if $(e) would
be (disregarding the usual type restrictions of the splice syntax, and the usual restriction
on splicing inside a splice - $([|1|]) is fine as an annotation, albeit redundant).

If you feel strongly that any of these restrictions are too onerous, please give the GHC team
a shout.
However, apart from these restrictions, many things are allowed, including expressions which
are not fully evaluated! Annotation expressions will be evaluated by the compiler just like
Template Haskell splices are. So, this annotation is fine:

{-# ANN f SillyAnnotation { foo = (id 10) + $([| 20 |]), bar = 'f } #-}
f = ...

7.1.2 Annotating types

You can annotate types with the ANN pragma by using the type keyword. For example:

{-# ANN type Foo (Just "A `Maybe String' annotation") #-}
data Foo = ...

7.1.3 Annotating modules

You can annotate modules with the ANN pragma by using the module keyword. For example:

{-# ANN module (Just "A `Maybe String' annotation") #-}

7.2 Using GHC as a Library

The ghc package exposes most of GHC’s frontend to users, and thus allows you to write
programs that leverage it. This library is actually the same library used by GHC’s internal,
frontend compilation driver, and thus allows you to write tools that programmatically compile
source code and inspect it. Such functionality is useful in order to write things like IDE or
refactoring tools. As a simple example, here’s a program which compiles a module, much like
ghc itself does by default when invoked:

import GHC
import GHC.Paths (libdir)
import GHC.Driver.Session (defaultFatalMessager, defaultFlushOut)

main =
defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
runGhc (Just libdir) $ do

dflags <- getSessionDynFlags
setSessionDynFlags dflags
target <- guessTarget "test_main.hs" Nothing
setTargets [target]
load LoadAllTargets

The argument to runGhc is a bit tricky. GHC needs this to find its libraries, so the argument
must refer to the directory that is printed by ghc --print-libdir for the same version of

572 Chapter 7. Extending and using GHC as a Library

https://gitlab.haskell.org/ghc/ghc/wikis/mailing-lists-and-irc
https://gitlab.haskell.org/ghc/ghc/wikis/mailing-lists-and-irc

GHC User’s Guide Documentation, Release 9.2.6

GHC that the program is being compiled with. Above we therefore use the ghc-paths package
which provides this for us.
Compiling it results in:

$ cat test_main.hs
main = putStrLn "hi"
$ ghc -package ghc simple_ghc_api.hs
[1 of 1] Compiling Main (simple_ghc_api.hs, simple_ghc_api.o)
Linking simple_ghc_api ...
$./simple_ghc_api
$./test_main
hi
$

For more information on using the API, as well as more samples and references, please see
this Haskell.org wiki page.

7.3 Compiler Plugins

GHC has the ability to load compiler plugins at compile time. The feature is similar to the
one provided by GCC, and allows users to write plugins that can adjust the behaviour of
the constraint solver, inspect and modify the compilation pipeline, as well as transform and
inspect GHC’s intermediate language, Core. Plugins are suitable for experimental analysis
or optimization, and require no changes to GHC’s source code to use.
Plugins cannot optimize/inspect C-\-, nor can they implement things like parser/front-endmod-
ifications like GCC, apart from limited changes to the constraint solver. If you feel strongly
that any of these restrictions are too onerous, please give the GHC team a shout.
Plugins do not work with -fexternal-interpreter. If you need to run plugins with -
fexternal-interpreter let GHC developers know in #14335.

7.3.1 Using compiler plugins

Plugins can be added on the command line with the -fplugin=⟨module⟩ (page 573) option
where ⟨module⟩ is a module in a registered package that exports the plugin. Arguments can
be passed to the plugins with the -fplugin-opt=⟨module⟩:⟨args⟩ (page 573) option. The
list of enabled plugins can be reset with the -fclear-plugins (page 573) option.
-fplugin=⟨module⟩

Load the plugin in the given module. The module must be a member of a package regis-
tered in GHC’s package database.

-fplugin-opt=⟨module⟩:⟨args⟩
Give arguments to a plugin module; module must be specified with -fplugin=⟨module⟩
(page 573).

-fplugin-trustworthy
By default, when a module is compiled with plugins, it will be marked as unsafe. With
this flag passed, all plugins are treated as trustworthy and the safety inference will no
longer be affected.

-fclear-plugins
Clear the list of plugins previously specified with -fplugin (page 573). This is useful in

7.3. Compiler Plugins 573

http://haskell.org/haskellwiki/GHC/As_a_library
http://gcc.gnu.org/wiki/plugins
https://gitlab.haskell.org/ghc/ghc/wikis/mailing-lists-and-irc
https://gitlab.haskell.org/ghc/ghc/issues/14335

GHC User’s Guide Documentation, Release 9.2.6

GHCi where simply removing the -fplugin (page 573) options from the command line
is not possible. Instead :set -fclear-plugins can be used.

As an example, in order to load the plugin exported by Foo.Plugin in the package foo-ghc-
plugin, and give it the parameter “baz”, we would invoke GHC like this:

$ ghc -fplugin Foo.Plugin -fplugin-opt Foo.Plugin:baz Test.hs
[1 of 1] Compiling Main (Test.hs, Test.o)
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Loading package foo-ghc-plugin-0.1 ... linking ... done.
...
Linking Test ...
$

Alternatively, core plugins can be specified with Template Haskell.

addCorePlugin "Foo.Plugin"

This inserts the plugin as a core-to-core pass. Unlike -fplugin=(module), the
plugin module can’t reside in the same package as the module calling Lan-
guage.Haskell.TH.Syntax.addCorePlugin. This way, the implementation can expect the
plugin to be built by the time it is needed.
Plugin modules live in a separate namespace from the user import namespace. By default,
these two namespaces are the same; however, there are a few command line options which
control specifically plugin packages:
-plugin-package ⟨pkg⟩

This option causes the installed package ⟨pkg⟩ to be exposed for plugins, such as -
fplugin=⟨module⟩ (page 573). The package ⟨pkg⟩ can be specified in full with its version
number (e.g. network-1.0) or the version number can be omitted if there is only one
version of the package installed. If there are multiple versions of ⟨pkg⟩ installed and
-hide-all-plugin-packages (page 574) was not specified, then all other versions will
become hidden. -plugin-package ⟨pkg⟩ (page 574) supports thinning and renaming
described in Thinning and renaming modules (page 220).
Unlike -package ⟨pkg⟩ (page 218), this option does NOT cause package ⟨pkg⟩ to be
linked into the resulting executable or shared object.

-plugin-package-id ⟨pkg-id⟩
Exposes a package in the plugin namespace like -plugin-package ⟨pkg⟩ (page 574), but
the package is named by its installed package ID rather than by name. This is a more
robust way to name packages, and can be used to select packages that would otherwise
be shadowed. Cabal passes -plugin-package-id ⟨pkg-id⟩ (page 574) flags to GHC.
-plugin-package-id ⟨pkg-id⟩ (page 574) supports thinning and renaming described
in Thinning and renaming modules (page 220).

-hide-all-plugin-packages
By default, all exposed packages in the normal, source import namespace are also avail-
able for plugins. This causes those packages to be hidden by default. If you use this
flag, then any packages with plugins you require need to be explicitly exposed using
-plugin-package ⟨pkg⟩ (page 574) options.

At the moment, the only way to specify a dependency on a plugin in Cabal is to put it in build-
depends (which uses the conventional -package-id ⟨unit-id⟩ (page 219) flag); however, in
the future there will be a separate field for specifying plugin dependencies specifically.

574 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

7.3.2 Writing compiler plugins

Plugins are modules that export at least a single identifier, plugin, of type
GHC.Plugins.Plugin. All plugins should import GHC.Plugins as it defines the interface to
the compilation pipeline.
A Plugin effectively holds a function which installs a compilation pass into the
compiler pipeline. By default there is the empty plugin which does nothing,
GHC.Plugins.defaultPlugin, which you should override with record syntax to specify your
installation function. Since the exact fields of the Plugin type are open to change, this is the
best way to ensure your plugins will continue to work in the future with minimal interface
impact.
Plugin exports a field, installCoreToDos which is a function of type [CommandLineOption]
-> [CoreToDo] -> CoreM [CoreToDo]. A CommandLineOption is effectively just String, and
a CoreToDo is basically a function of type Core -> Core. A CoreToDo gives your pass a name
and runs it over every compiled module when you invoke GHC.
As a quick example, here is a simple plugin that just does nothing and just returns the original
compilation pipeline, unmodified, and says ‘Hello’:

module DoNothing.Plugin (plugin) where
import GHC.Plugins

plugin :: Plugin
plugin = defaultPlugin {
installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do
putMsgS "Hello!"
return todo

Provided you compiled this plugin and registered it in a package (with cabal for instance,)
you can then use it by just specifying -fplugin=DoNothing.Plugin on the command line,
and during the compilation you should see GHC say ‘Hello’.
Running multiple plugins is also supported, by passing multiple -fplugin=... options. GHC
will load the plugins in the order in which they are specified on the command line and, when
appropriate, compose their effects in the same order. That is, if we had two Core plugins,
Plugin1 and Plugin2, each defining an install function like the one above, then GHC would
first run Plugin1.install on the default [CoreToDo], take the result and feed it to Plu-
gin2.install. -fplugin=Plugin1 -fplugin=Plugin2 will update the Core pipeline by ap-
plying Plugin1.install opts1 >=> Plugin2.install opts2 (where opts1 and opts2 are
the options passed to each plugin using -fplugin-opt=...). This is not specific to Core plu-
gins but holds for all the types of plugins that can be composed or sequenced in some way:
the first plugin to appear on the GHC command line will always act first.

7.3.3 Core plugins in more detail

CoreToDo is effectively a data type that describes all the kinds of optimization passes GHC
does on Core. There are passes for simplification, CSE, etc. There is a specific case for
plugins, CoreDoPluginPass :: String -> PluginPass -> CoreToDo which should be what
you always use when inserting your own pass into the pipeline. The first parameter is the
name of the plugin, and the second is the pass you wish to insert.

7.3. Compiler Plugins 575

GHC User’s Guide Documentation, Release 9.2.6

CoreM is a monad that all of the Core optimizations live and operate inside of.
A plugin’s installation function (install in the above example) takes a list of CoreToDos and
returns a list of CoreToDo. Before GHC begins compiling modules, it enumerates all the
needed plugins you tell it to load, and runs all of their installation functions, initially on a list
of passes that GHC specifies itself. After doing this for every plugin, the final list of passes is
given to the optimizer, and are run by simply going over the list in order.
You should be careful with your installation function, because the list of passes you give back
isn’t questioned or double checked by GHC at the time of this writing. An installation function
like the following:

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ _ = return []

is certainly valid, but also certainly not what anyone really wants.

Manipulating bindings

In the last section we saw that besides a name, a CoreDoPluginPass takes a pass of type
PluginPass. A PluginPass is a synonym for (ModGuts -> CoreM ModGuts). ModGuts is a
type that represents the one module being compiled by GHC at any given time.
A ModGuts holds all of the module’s top level bindings which we can examine. These bindings
are of type CoreBind and effectively represent the binding of a name to body of code. Top-
level module bindings are part of a ModGuts in the field mg_binds. Implementing a pass
that manipulates the top level bindings merely needs to iterate over this field, and return a
new ModGuts with an updated mg_binds field. Because this is such a common case, there
is a function provided named bindsOnlyPass which lifts a function of type ([CoreBind] ->
CoreM [CoreBind]) to type (ModGuts -> CoreM ModGuts).
Continuing with our example from the last section, we can write a simple plugin that just
prints out the name of all the non-recursive bindings in a module it compiles:

module SayNames.Plugin (plugin) where
import GHC.Plugins

plugin :: Plugin
plugin = defaultPlugin {
installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do
return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass guts = do dflags <- getDynFlags

bindsOnlyPass (mapM (printBind dflags)) guts
where printBind :: DynFlags -> CoreBind -> CoreM CoreBind

printBind dflags bndr@(NonRec b _) = do
putMsgS $ "Non-recursive binding named " ++ showSDoc dflags (ppr b)
return bndr

printBind _ bndr = return bndr

576 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

Using Annotations

Previously we discussed annotation pragmas (Source annotations (page 571)), which we men-
tioned could be used to give compiler plugins extra guidance or information. Annotations for
a module can be retrieved by a plugin, but you must go through the modules ModGuts in order
to get it. Because annotations can be arbitrary instances of Data and Typeable, you need to
give a type annotation specifying the proper type of data to retrieve from the interface file,
and you need to make sure the annotation type used by your users is the same one your plugin
uses. For this reason, we advise distributing annotations as part of the package which also
provides compiler plugins if possible.
To get the annotations of a single binder, you can use getAnnotations and specify the proper
type. Here’s an example that will print out the name of any top-level non-recursive binding
with the SomeAnn annotation:

{-# LANGUAGE DeriveDataTypeable #-}
module SayAnnNames.Plugin (plugin, SomeAnn(..)) where
import GHC.Plugins
import Control.Monad (unless)
import Data.Data

data SomeAnn = SomeAnn deriving Data

plugin :: Plugin
plugin = defaultPlugin {
installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do
return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass g = do

dflags <- getDynFlags
mapM_ (printAnn dflags g) (mg_binds g) >> return g

where printAnn :: DynFlags -> ModGuts -> CoreBind -> CoreM CoreBind
printAnn dflags guts bndr@(NonRec b _) = do
anns <- annotationsOn guts b :: CoreM [SomeAnn]
unless (null anns) $ putMsgS $ "Annotated binding found: " ++ showSDoc␣

↪→dflags (ppr b)
return bndr

printAnn _ _ bndr = return bndr

annotationsOn :: Data a => ModGuts -> CoreBndr -> CoreM [a]
annotationsOn guts bndr = do
anns <- getAnnotations deserializeWithData guts
return $ lookupWithDefaultUFM anns [] (varUnique bndr)

Please see the GHC API documentation for more about how to use internal APIs, etc.

7.3.4 Typechecker plugins

In addition to Core plugins, GHC has experimental support for typechecker plugins, which al-
low the behaviour of the constraint solver to be modified. For example, they make it possible
to interface the compiler to an SMT solver, in order to support a richer theory of type-level

7.3. Compiler Plugins 577

GHC User’s Guide Documentation, Release 9.2.6

arithmetic expressions than the theory built into GHC (see Computing With Type-Level Natu-
rals (page 366)).
The Plugin type has a field tcPlugin of type [CommandLineOption] -> Maybe TcPlugin,
where the TcPlugin type is defined thus:

data TcPlugin = forall s . TcPlugin
{ tcPluginInit :: TcPluginM s
, tcPluginSolve :: s -> TcPluginSolver
, tcPluginStop :: s -> TcPluginM ()
}

type TcPluginSolver = [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult

data TcPluginResult = TcPluginContradiction [Ct] | TcPluginOk [(EvTerm,Ct)] [Ct]

(The details of this representation are subject to change as we gain more experience writing
typechecker plugins. It should not be assumed to be stable between GHC releases.)
The basic idea is as follows:
• When type checking a module, GHC calls tcPluginInit once before constraint solving
starts. This allows the plugin to look things up in the context, initialise mutable state or
open a connection to an external process (e.g. an external SMT solver). The plugin can
return a result of any type it likes, and the result will be passed to the other two fields.

• During constraint solving, GHC repeatedly calls tcPluginSolve. This function is pro-
vided with the current set of constraints, and should return a TcPluginResult that in-
dicates whether a contradiction was found or progress was made. If the plugin solver
makes progress, GHC will re-start the constraint solving pipeline, looping until a fixed
point is reached.

• Finally, GHC calls tcPluginStop after constraint solving is finished, allowing the plugin
to dispose of any resources it has allocated (e.g. terminating the SMT solver process).

Plugin code runs in the TcPluginM monad, which provides a restricted interface to GHC
API functionality that is relevant for typechecker plugins, including IO and reading the en-
vironment. If you need functionality that is not exposed in the TcPluginM module, you can
use unsafeTcPluginTcM :: TcM a -> TcPluginM a, but are encouraged to contact the GHC
team to suggest additions to the interface. Note that TcPluginM can perform arbitrary IO via
tcPluginIO :: IO a -> TcPluginM a, although some care must be taken with side effects
(particularly in tcPluginSolve). In general, it is up to the plugin author to make sure that
any IO they do is safe.

Constraint solving with plugins

The key component of a typechecker plugin is a function of type TcPluginSolver, like this:

solve :: [Ct] -> [Ct] -> [Ct] -> TcPluginM TcPluginResult
solve givens deriveds wanteds = ...

This function will be invoked at two points in the constraint solving process: after simplifica-
tion of given constraints, and after unflattening of wanted constraints. The two phases can
be distinguished because the deriveds and wanteds will be empty in the first case. In each
case, the plugin should either
• return TcPluginContradiction with a list of impossible constraints (which must be a
subset of those passed in), so they can be turned into errors; or

578 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

• return TcPluginOk with lists of solved and new constraints (the former must be a subset
of those passed in and must be supplied with corresponding evidence terms).

If the plugin cannot make any progress, it should return TcPluginOk [] []. Otherwise, if
there were any new constraints, the main constraint solver will be re-invoked to simplify
them, then the plugin will be invoked again. The plugin is responsible for making sure that
this process eventually terminates.
Plugins are provided with all available constraints (including equalities and typeclass con-
straints), but it is easy for them to discard those that are not relevant to their domain, because
they need return only those constraints for which they have made progress (either by solving
or contradicting them).
Constraints that have been solved by the plugin must be provided with evidence in the form
of an EvTerm of the type of the constraint. This evidence is ignored for given and derived
constraints, which GHC “solves” simply by discarding them; typically this is used when they
are uninformative (e.g. reflexive equations). For wanted constraints, the evidence will form
part of the Core term that is generated after typechecking, and can be checked by -dcore-
lint. It is possible for the plugin to create equality axioms for use in evidence terms, but
GHC does not check their consistency, and inconsistent axiom sets may lead to segfaults or
other runtime misbehaviour.

7.3.5 Source plugins

In addition to core and type checker plugins, you can install plugins that can access different
representations of the source code. The main purpose of these plugins is to make it easier to
implement development tools.
There are several different access points that you can use for defining plugins that access
the representations. All these fields receive the list of CommandLineOption strings that are
passed to the compiler using the -fplugin-opt=⟨module⟩:⟨args⟩ (page 573) flags.

plugin :: Plugin
plugin = defaultPlugin {

parsedResultAction = parsed
, typeCheckResultAction = typechecked
, spliceRunAction = spliceRun
, interfaceLoadAction = interfaceLoad
, renamedResultAction = renamed
}

Parsed representation

When you want to define a plugin that uses the syntax tree of the source code, you would
like to override the parsedResultAction field. This access point enables you to get access to
information about the lexical tokens and comments in the source code as well as the original
syntax tree of the compiled module.

parsed :: [CommandLineOption] -> ModSummary -> HsParsedModule
-> Hsc HsParsedModule

The ModSummary contains useful meta-information about the compiled module. The HsParsed-
Module contains the lexical and syntactical information we mentioned before. The result that
you return will change the result of the parsing. If you don’t want to change the result, just
return the HsParsedModule that you received as the argument.

7.3. Compiler Plugins 579

GHC User’s Guide Documentation, Release 9.2.6

Type checked representation

When you want to define a plugin that needs semantic information about the source code, use
the typeCheckResultAction field. For example, if your plugin have to decide if two names are
referencing the same definition or it has to check the type of a function it is using semantic
information. In this case you need to access the renamed or type checked version of the
syntax tree with typeCheckResultAction or renamedResultAction.

typechecked :: [CommandLineOption] -> ModSummary -> TcGblEnv -> TcM TcGblEnv
renamed :: [CommandLineOption] -> TcGblEnv -> HsGroup GhcRn -> TcM (TcGblEnv, HsGroup␣

↪→GhcRn)

By overriding the renamedResultAction field we can modify each HsGroup after it has been
renamed. A source file is separated into groups depending on the location of template haskell
splices so the contents of these groups may not be intuitive. In order to save the entire
renamed AST for inspection at the end of typechecking you can set renamedResultAction
to keepRenamedSource which is provided by the Plugins module. This is important because
some parts of the renamed syntax tree (for example, imports) are not found in the typechecked
one.

Evaluated code

When the compiler type checks the source code, Template Haskell (page 486) Splices and
Template Haskell Quasi-quotation (page 495) will be replaced by the syntax tree fragments
generated from them. However for tools that operate on the source code the code generator
is usually more interesting than the generated code. For this reason we included spliceRun-
Action. This field is invoked on each expression before they are evaluated. The input is type
checked, so semantic information is available for these syntax tree fragments. If you return
a different expression you can change the code that is generated.

spliceRun :: [CommandLineOption] -> LHsExpr GhcTc -> TcM (LHsExpr GhcTc)

However take care that the generated definitions are still in the input of typeCheckResultAc-
tion. If your don’t take care to filter the typechecked input, the behavior of your tool might
be inconsistent.

Interface files

Sometimes when you are writing a tool, knowing the source code is not enough, you also
have to know details about the modules that you import. In this case we suggest using the
interfaceLoadAction. This will be called each time when the code of an already compiled
module is loaded. It will be invoked for modules from installed packages and even modules
that are installed with GHC. It will NOT be invoked with your own modules.

interfaceLoad :: forall lcl . [CommandLineOption] -> ModIface
-> IfM lcl ModIface

In the ModIface datatype you can find lots of useful information, including the exported defi-
nitions and type class instances.
The ModIface datatype also contains facilities for extending it with extra data, stored in a
Map of serialised fields, indexed by field names and using GHC’s internal Binary class. The
interface to work with these fields is:

580 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

readIfaceField :: Binary a => FieldName -> ModIface -> IO (Maybe a)
writeIfaceField :: Binary a => FieldName -> a -> ModIface -> IO ModIface
deleteIfaceField :: FieldName -> ModIface -> ModIface

The FieldName is open-ended, but typically it should contain the producing package name,
along with the actual field name. Then, the version number can either be attached to the
serialised data for that field, or in cases where multiple versions of a field could exist in the
same interface file, included in the field name.
Depending on if the field version advances with the package version, or independently, the
version can be attached to either the package name or the field name. Examples of each case:

package/field
ghc-n.n.n/core
package/field-n

To read an interface file from an external tool without linking to GHC, the format is described
at Extensible Interface Files.

Source plugin example

In this example, we inspect all available details of the compiled source code. We don’t change
any of the representation, but write out the details to the standard output. The pretty printed
representation of the parsed, renamed and type checked syntax tree will be in the output as
well as the evaluated splices and quasi quotes. The name of the interfaces that are loaded
will also be displayed.

module SourcePlugin where

import Control.Monad.IO.Class
import GHC.Driver.Session (getDynFlags)
import GHC.Driver.Plugins
import GHC.Driver.Types
import GHC.Tc.Types
import Language.Haskell.Syntax.Extension
import GHC.Hs.Decls
import GHC.Hs.Expr
import GHC.Hs.ImpExp
import GHC.Types.Avail
import GHC.Utils.Outputable
import GHC.Hs.Doc

plugin :: Plugin
plugin = defaultPlugin
{ parsedResultAction = parsedPlugin
, renamedResultAction = renamedAction
, typeCheckResultAction = typecheckPlugin
, spliceRunAction = metaPlugin
, interfaceLoadAction = interfaceLoadPlugin
}

parsedPlugin :: [CommandLineOption] -> ModSummary -> HsParsedModule -> Hsc␣
↪→HsParsedModule

parsedPlugin _ _ pm
= do dflags <- getDynFlags

liftIO $ putStrLn $ "parsePlugin: \n" ++ (showSDoc dflags $ ppr $ hpm_module␣
↪→pm)

7.3. Compiler Plugins 581

https://gitlab.haskell.org/ghc/ghc/wikis/Extensible-Interface-Files

GHC User’s Guide Documentation, Release 9.2.6

return pm

renamedAction :: [CommandLineOption] -> TcGblEnv -> HsGroup GhcRn -> TcM (TcGblEnv,␣
↪→HsGroup GhcRn)

renamedAction _ tc gr = do
dflags <- getDynFlags
liftIO $ putStrLn $ "typeCheckPlugin (rn): " ++ (showSDoc dflags $ ppr gr)
return (tc, gr)

typecheckPlugin :: [CommandLineOption] -> ModSummary -> TcGblEnv -> TcM TcGblEnv
typecheckPlugin _ _ tc
= do dflags <- getDynFlags

liftIO $ putStrLn $ "typeCheckPlugin (rn): \n" ++ (showSDoc dflags $ ppr $ tcg_
↪→rn_decls tc)

liftIO $ putStrLn $ "typeCheckPlugin (tc): \n" ++ (showSDoc dflags $ ppr $ tcg_
↪→binds tc)

return tc

metaPlugin :: [CommandLineOption] -> LHsExpr GhcTc -> TcM (LHsExpr GhcTc)
metaPlugin _ meta
= do dflags <- getDynFlags

liftIO $ putStrLn $ "meta: " ++ (showSDoc dflags $ ppr meta)
return meta

interfaceLoadPlugin :: [CommandLineOption] -> ModIface -> IfM lcl ModIface
interfaceLoadPlugin _ iface
= do dflags <- getDynFlags

liftIO $ putStrLn $ "interface loaded: " ++ (showSDoc dflags $ ppr $ mi_module␣
↪→iface)

return iface

When you compile a simple module that contains Template Haskell splice

{-# OPTIONS_GHC -fplugin SourcePlugin #-}
{-# LANGUAGE TemplateHaskell #-}
module A where

a = ()

$(return [])

with the compiler flags -fplugin SourcePlugin it will give the following output:

parsePlugin:
module A where
a = ()
$(return [])
typeCheckPlugin (rn): a = ()
interface loaded: Language.Haskell.TH.Lib.Internal
meta: return []
typeCheckPlugin (rn):
typeCheckPlugin (rn):
Nothing
typeCheckPlugin (tc):
{$trModule = Module (TrNameS "main"#) (TrNameS "A"#), a = ()}

582 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

7.3.6 Hole fit plugins

Hole-fit plugins are plugins that are called when a typed-hole error message is being gener-
ated, and allows you to access information about the typed-hole at compile time, and allows
you to customize valid hole fit suggestions.
Using hole-fit plugins, you can extend the behavior of valid hole fit suggestions to use e.g.
Hoogle or other external tools to find and/or synthesize valid hole fits, with the same informa-
tion about the typed-hole that GHC uses.
There are two access points are bundled together for defining hole fit plugins, namely a candi-
date plugin and a fit plugin, for modifying the candidates to be checked and fits respectively.

type CandPlugin = TypedHole -> [HoleFitCandidate] -> TcM [HoleFitCandidate]

type FitPlugin = TypedHole -> [HoleFit] -> TcM [HoleFit]

data HoleFitPlugin = HoleFitPlugin
{ candPlugin :: CandPlugin

-- ^ A plugin for modifying hole fit candidates before they're checked
, fitPlugin :: FitPlugin

-- ^ A plugin for modifying valid hole fits after they've been found.
}

Where TypedHole contains all the information about the hole available to GHC at error gen-
eration.

data TypedHole = TyH { tyHRelevantCts :: Cts
-- ^ Any relevant Cts to the hole

, tyHImplics :: [Implication]
-- ^ The nested implications of the hole with the
-- innermost implication first.

, tyHCt :: Maybe Ct
-- ^ The hole constraint itself, if available.

}

HoleFitPlugins are then defined as follows

plugin :: Plugin
plugin = defaultPlugin {

holeFitPlugin = (fmap . fmap) fromPureHFPlugin hfPlugin
}

hfPlugin :: [CommandLineOption] -> Maybe HoleFitPlugin

Where fromPureHFPlugin :: HoleFitPlugin -> HoleFitPluginR is a convenience func-
tion provided in the GHC.Tc.Errors.Hole module, for defining plugins that do not require
internal state.

Stateful hole fit plugins

HoleFitPlugins are wrapped in a HoleFitPluginR, which provides a TcRef for the plugin
to use to track internal state, and to facilitate communication between the candidate and fit
plugin.

7.3. Compiler Plugins 583

GHC User’s Guide Documentation, Release 9.2.6

-- | HoleFitPluginR adds a TcRef to hole fit plugins so that plugins can
-- track internal state. Note the existential quantification, ensuring that
-- the state cannot be modified from outside the plugin.
data HoleFitPluginR = forall s. HoleFitPluginR
{ hfPluginInit :: TcM (TcRef s)

-- ^ Initializes the TcRef to be passed to the plugin
, hfPluginRun :: TcRef s -> HoleFitPlugin

-- ^ The function defining the plugin itself
, hfPluginStop :: TcRef s -> TcM ()

-- ^ Cleanup of state, guaranteed to be called even on error
}

The plugin is then defined as by providing a value for the holeFitPlugin field, a function that
takes the CommandLineOption strings that are passed to the compiler using the -fplugin-
opt=⟨module⟩:⟨args⟩ (page 573) flags and returns a HoleFitPluginR. This function can be
used to pass the CommandLineOption strings along to the candidate and fit plugins respec-
tively.

Hole fit plugin example

The following plugins allows users to limit the search for valid hole fits to certain modules,
to sort the hole fits by where they originated (in ascending or descending order), as well as
allowing users to put a limit on how much time is spent on searching for valid hole fits, after
which new searches are aborted.

{-# LANGUAGE TypeApplications, RecordWildCards #-}
module HolePlugin where

import GHC.Plugins hiding ((<>))

import GHC.Tc.Errors.Hole

import Data.List (stripPrefix, sortOn)

import GHC.Tc.Types

import GHC.Tc.Utils.Monad

import Data.Time (UTCTime, NominalDiffTime)
import qualified Data.Time as Time

import Text.Read

data HolePluginState = HPS { timeAlloted :: Maybe NominalDiffTime
, elapsedTime :: NominalDiffTime
, timeCurStarted :: UTCTime }

bumpElapsed :: NominalDiffTime -> HolePluginState -> HolePluginState
bumpElapsed ad (HPS a e t) = HPS a (e + ad) t

setAlloted :: Maybe NominalDiffTime -> HolePluginState -> HolePluginState
setAlloted a (HPS _ e t) = HPS a e t

setCurStarted :: UTCTime -> HolePluginState -> HolePluginState
setCurStarted nt (HPS a e _) = HPS a e nt

584 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

hpStartState :: HolePluginState
hpStartState = HPS Nothing zero undefined
where zero = fromInteger @NominalDiffTime 0

initPlugin :: [CommandLineOption] -> TcM (TcRef HolePluginState)
initPlugin [msecs] = newTcRef $ hpStartState { timeAlloted = alloted }
where

errMsg = "Invalid amount of milliseconds given to plugin: " <> show msecs
alloted = case readMaybe @Integer msecs of
Just millisecs -> Just $ fromInteger @NominalDiffTime millisecs / 1000
_ -> error errMsg

initPlugin _ = newTcRef hpStartState

fromModule :: HoleFitCandidate -> [String]
fromModule (GreHFCand gre) =
map (moduleNameString . importSpecModule) $ gre_imp gre

fromModule _ = []

toHoleFitCommand :: TypedHole -> String -> Maybe String
toHoleFitCommand TyH{tyHCt = Just (CHoleCan _ h)} str

= stripPrefix ("_" <> str) $ occNameString $ holeOcc h
toHoleFitCommand _ _ = Nothing

-- | This candidate plugin filters the candidates by module,
-- using the name of the hole as module to search in
modFilterTimeoutP :: [CommandLineOption] -> TcRef HolePluginState -> CandPlugin
modFilterTimeoutP _ ref hole cands = do
curTime <- liftIO Time.getCurrentTime
HPS {..} <- readTcRef ref
updTcRef ref (setCurStarted curTime)
return $ case timeAlloted of

-- If we're out of time we remove all the candidates. Then nothing is checked.
Just sofar | elapsedTime > sofar -> []
_ -> case toHoleFitCommand hole "only_" of

Just modName -> filter (inScopeVia modName) cands
_ -> cands

where inScopeVia modNameStr cand@(GreHFCand _) =
elem (toModName modNameStr) $ fromModule cand

inScopeVia _ _ = False
toModName = replace '_' '.'
replace :: Eq a => a -> a -> [a] -> [a]
replace _ _ [] = []
replace a b (x:xs) = (if x == a then b else x):replace a b xs

modSortP :: [CommandLineOption] -> TcRef HolePluginState -> FitPlugin
modSortP _ ref hole hfs = do
curTime <- liftIO Time.getCurrentTime
HPS {..} <- readTcRef ref
updTcRef ref $ bumpElapsed (Time.diffUTCTime curTime timeCurStarted)
return $ case timeAlloted of

-- If we're out of time, remove any candidates, so nothing is checked.
Just sofar | elapsedTime > sofar -> [RawHoleFit $ text msg]
_ -> case toHoleFitCommand hole "sort_by_mod" of

-- If only_ is on, the fits will all be from the same module.
Just ('_':'d':'e':'s':'c':_) -> reverse hfs
Just _ -> orderByModule hfs

7.3. Compiler Plugins 585

GHC User’s Guide Documentation, Release 9.2.6

_ -> hfs
where orderByModule :: [HoleFit] -> [HoleFit]

orderByModule = sortOn (fmap fromModule . mbHFCand)
mbHFCand :: HoleFit -> Maybe HoleFitCandidate
mbHFCand HoleFit {hfCand = c} = Just c
mbHFCand _ = Nothing
msg = hang (text "Error: The time ran out, and the search was aborted for␣

↪→this hole.")
7 $ text "Try again with a longer timeout."

plugin :: Plugin
plugin = defaultPlugin { holeFitPlugin = holeFitP, pluginRecompile = purePlugin}

holeFitP :: [CommandLineOption] -> Maybe HoleFitPluginR
holeFitP opts = Just (HoleFitPluginR initP pluginDef stopP)
where initP = initPlugin opts

stopP = const $ return ()
pluginDef ref = HoleFitPlugin { candPlugin = modFilterTimeoutP opts ref

, fitPlugin = modSortP opts ref }

When you then compile a module containing the following

{-# OPTIONS -fplugin=HolePlugin
-fplugin-opt=HolePlugin:600
-funclutter-valid-hole-fits #-}

module Main where

import Prelude hiding (head, last)

import Data.List (head, last)

f, g, h, i, j :: [Int] -> Int
f = _too_long
j = _
i = _sort_by_mod_desc
g = _only_Data_List
h = _only_Prelude

main :: IO ()
main = return ()

The output is as follows:

Main.hs:12:5: error:
• Found hole: _too_long :: [Int] -> Int
Or perhaps ‘_too_long’ is mis-spelled, or not in scope

• In the expression: _too_long
In an equation for ‘f’: f = _too_long

• Relevant bindings include
f :: [Int] -> Int (bound at Main.hs:12:1)

Valid hole fits include
Error: The time ran out, and the search was aborted for this hole.

Try again with a longer timeout.
|

12 | f = _too_long
| ^^^^^^^^^

586 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

Main.hs:13:5: error:
• Found hole: _ :: [Int] -> Int
• In the expression: _
In an equation for ‘j’: j = _

• Relevant bindings include
j :: [Int] -> Int (bound at Main.hs:13:1)

Valid hole fits include
j :: [Int] -> Int
f :: [Int] -> Int
g :: [Int] -> Int
h :: [Int] -> Int
i :: [Int] -> Int
head :: forall a. [a] -> a
(Some hole fits suppressed; use -fmax-valid-hole-fits=N or -fno-max-valid-hole-

↪→fits)
|

13 | j = _
| ^

Main.hs:14:5: error:
• Found hole: _sort_by_mod_desc :: [Int] -> Int
Or perhaps ‘_sort_by_mod_desc’ is mis-spelled, or not in scope

• In the expression: _sort_by_mod_desc
In an equation for ‘i’: i = _sort_by_mod_desc

• Relevant bindings include
i :: [Int] -> Int (bound at Main.hs:14:1)

Valid hole fits include
sum :: forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product :: forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
minimum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
length :: forall (t :: * -> *) a. Foldable t => t a -> Int
last :: forall a. [a] -> a
(Some hole fits suppressed; use -fmax-valid-hole-fits=N or -fno-max-valid-hole-

↪→fits)
|

14 | i = _sort_by_mod_desc
| ^^^^^^^^^^^^^^^^^

Main.hs:15:5: error:
• Found hole: _only_Data_List :: [Int] -> Int
Or perhaps ‘_only_Data_List’ is mis-spelled, or not in scope

• In the expression: _only_Data_List
In an equation for ‘g’: g = _only_Data_List

• Relevant bindings include
g :: [Int] -> Int (bound at Main.hs:15:1)

Valid hole fits include
head :: forall a. [a] -> a
last :: forall a. [a] -> a

|
15 | g = _only_Data_List
| ^^^^^^^^^^^^^^^

Main.hs:16:5: error:
• Found hole: _only_Prelude :: [Int] -> Int
Or perhaps ‘_only_Prelude’ is mis-spelled, or not in scope

• In the expression: _only_Prelude
In an equation for ‘h’: h = _only_Prelude

7.3. Compiler Plugins 587

GHC User’s Guide Documentation, Release 9.2.6

• Relevant bindings include
h :: [Int] -> Int (bound at Main.hs:16:1)

Valid hole fits include
length :: forall (t :: * -> *) a. Foldable t => t a -> Int
maximum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
product :: forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum :: forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a

|
16 | h = _only_Prelude

| ^^^^^^^^^^^^^

7.3.7 Controlling Recompilation

By default, modules compiled with plugins are always recompiled even if the source file is
unchanged. This most conservative option is taken due to the ability of plugins to perform
arbitrary IO actions. In order to control the recompilation behaviour you can modify the
pluginRecompile field in Plugin.

plugin :: Plugin
plugin = defaultPlugin {
installCoreToDos = install,
pluginRecompile = purePlugin
}

By inspecting the example plugin defined above, we can see that it is pure. This means that if
the two modules have the same fingerprint then the plugin will always return the same result.
Declaring a plugin as pure means that the plugin will never cause a module to be recompiled.
In general, the pluginRecompile field has the following type:

pluginRecompile :: [CommandLineOption] -> IO PluginRecompile

The PluginRecompile data type is an enumeration determining how the plugin should affect
recompilation.

data PluginRecompile = ForceRecompile | NoForceRecompile | MaybeRecompile Fingerprint

A plugin which declares itself impure using ForceRecompile will always trigger a recompila-
tion of the current module. NoForceRecompile is used for “pure” plugins which don’t need
to be rerun unless a module would ordinarily be recompiled. MaybeRecompile computes a
Fingerprint and if this Fingerprint is different to a previously computed Fingerprint for
the plugin, then we recompile the module.
As such, purePlugin is defined as a function which always returns NoForceRecompile.

purePlugin :: [CommandLineOption] -> IO PluginRecompile
purePlugin _ = return NoForceRecompile

Users can use the same functions that GHC uses internally to compute fingerprints. The
GHC.Fingerprint module provides useful functions for constructing fingerprints. For example,
combining together fingerprintFingerprints and fingerprintString provides an easy to
to naively fingerprint the arguments to a plugin.

588 Chapter 7. Extending and using GHC as a Library

https://hackage.haskell.org/package/base-4.10.1.0/docs/GHC-Fingerprint.html

GHC User’s Guide Documentation, Release 9.2.6

pluginFlagRecompile :: [CommandLineOption] -> IO PluginRecompile
pluginFlagRecompile =
return . MaybeRecompile . fingerprintFingerprints . map fingerprintString . sort

defaultPlugin defines pluginRecompile to be impurePlugin which is the most conservative
and backwards compatible option.

impurePlugin :: [CommandLineOption] -> IO PluginRecompile
impurePlugin _ = return ForceRecompile

7.3.8 Frontend plugins

A frontend plugin allows you to add new major modes to GHC. You may prefer this over a
traditional program which calls the GHC API, as GHC manages a lot of parsing flags and
administrative nonsense which can be difficult to manage manually. To load a frontend plu-
gin exported by Foo.FrontendPlugin, we just invoke GHC with the --frontend ⟨module⟩
(page 86) flag as follows:

$ ghc --frontend Foo.FrontendPlugin ...other options...

Frontend plugins, like compiler plugins, are exported by registered plugins. However, un-
like compiler modules, frontend plugins are modules that export at least a single identifier
frontendPlugin of type GHC.Plugins.FrontendPlugin.
FrontendPlugin exports a field frontend, which is a function [String] -> [(String,Maybe
Phase)] -> Ghc (). The first argument is a list of extra flags passed to the frontend with
-ffrontend-opt; the second argument is the list of arguments, usually source files and mod-
ule names to be compiled (the Phase indicates if an -x flag was set), and a frontend simply
executes some operation in the Ghc monad (which, among other things, has a Session).
As a quick example, here is a frontend plugin that prints the arguments that were passed to
it, and then exits.

module DoNothing.FrontendPlugin (frontendPlugin) where
import GHC.Plugins

frontendPlugin :: FrontendPlugin
frontendPlugin = defaultFrontendPlugin {
frontend = doNothing
}

doNothing :: [String] -> [(String, Maybe Phase)] -> Ghc ()
doNothing flags args = do

liftIO $ print flags
liftIO $ print args

Provided you have compiled this plugin and registered it in a package, you can just use it by
specifying --frontend DoNothing.FrontendPlugin on the command line to GHC.

7.3.9 DynFlags plugins

A DynFlags plugin allows you to modify the DynFlags that GHC is going to use when pro-
cessing a given (set of) file(s). DynFlags is a record containing all sorts of configuration
and command line data, from verbosity level to the integer library to use, including compiler

7.3. Compiler Plugins 589

GHC User’s Guide Documentation, Release 9.2.6

hooks, plugins and pretty-printing options. DynFlags plugins allow plugin authors to update
any of those values before GHC starts doing any actual work, effectively meaning that the
updates specified by the plugin will be taken into account and influence GHC’s behaviour.
One of the motivating examples was the ability to register compiler hooks from a plugin.
For example, one might want to modify the way Template Haskell code is executed. This is
achievable by updating the hooks field of the DynFlags type, recording our custom “meta
hook” in the right place. A simple application of this idea can be seen below:

module DynFlagsPlugin (plugin) where

import BasicTypes
import GHC.Plugins
import GHC.Hs.Expr
import Language.Haskell.Syntax.Extension
import GHC.Hs.Lit
import Hooks
import GHC.Tc.Utils.Monad

plugin :: Plugin
plugin = driverPlugin { driverPlugin = hooksP }

hooksP :: [CommandLineOption] -> HscEnv -> IO HscEnv
hooksP opts hsc_env = do

let dflags = hsc_dflags hsc_env
dflags' = dflags

{ hooks = (hooks dflags)
{ runMetaHook = Just (fakeRunMeta opts) }

}
hsc_env' = hsc_env { hsc_dflags = dflags' }

return hsc_env'

-- This meta hook doesn't actually care running code in splices,
-- it just replaces any expression splice with the "0"
-- integer literal, and errors out on all other types of
-- meta requests.
fakeRunMeta :: [CommandLineOption] -> MetaHook TcM
fakeRunMeta opts (MetaE r) _ = do
liftIO . putStrLn $ "Options = " ++ show opts
pure $ r zero

where zero :: LHsExpr GhcPs
zero = L noSrcSpan $ HsLit NoExtField $
HsInt NoExtField (mkIntegralLit (0 :: Int))

fakeRunMeta _ _ _ = error "fakeRunMeta: unimplemented"

This simple plugin takes over the execution of Template Haskell code, replacing any expres-
sion splice it encounters by 0 (at type Int), and errors out on any other type of splice.
Therefore, if we run GHC against the following code using the plugin from above:

{-# OPTIONS -fplugin=DynFlagsPlugin #-}
{-# LANGUAGE TemplateHaskell #-}
module Main where

main :: IO ()
main = print $([|1|])

590 Chapter 7. Extending and using GHC as a Library

GHC User’s Guide Documentation, Release 9.2.6

This will not actually evaluate [|1|], but instead replace it with the 0 :: Int literal.
Just like the other types of plugins, you can write DynFlags plugins that can take andmake use
of some options that you can then specify using the -fplugin-opt flag. In the DynFlagsPlugin
code from above, the said options would be available in the opts argument of hooksP.
Finally, since those DynFlags updates happen after the plugins are loaded, you cannot from a
DynFlags plugin register other plugins by just adding them to the plugins field of DynFlags.
In order to achieve this, you would have to load them yourself and store the result into the
cachedPlugins field of DynFlags.

7.3. Compiler Plugins 591

GHC User’s Guide Documentation, Release 9.2.6

592 Chapter 7. Extending and using GHC as a Library

CHAPTER

EIGHT

PROFILING

GHC comes with a time and space profiling system, so that you can answer questions like
“why is my program so slow?”, or “why is my program using so much memory?”.
Profiling a program is a three-step process:
1. Re-compile your program for profiling with the -prof (page 597) option, and probably
one of the options for adding automatic annotations: -fprof-auto (page 598) is the most
common 1.
If you are using external packages with cabal, you may need to reinstall these pack-
ages with profiling support; typically this is done with cabal install -p package --
reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile.
For example, a simple time profile can be generated by running the program with +RTS
-p (see -p (page 599)), which generates a file named prog.profwhere ⟨prog⟩ is the name
of your program (without the .exe extension, if you are on Windows).
There are many different kinds of profile that can be generated, selected by different
RTS options. We will be describing the various kinds of profile throughout the rest of this
chapter. Some profiles require further processing using additional tools after running
the program.

3. Examine the generated profiling information, use the information to optimise your pro-
gram, and repeat as necessary.

8.1 Cost centres and cost-centre stacks

GHC’s profiling system assigns costs to cost centres. A cost is simply the time or space
(memory) required to evaluate an expression. Cost centres are program annotations around
expressions; all costs incurred by the annotated expression are assigned to the enclosing cost
centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given
expression at run-time and generate a call-tree of cost attributions.
Let’s take a look at an example:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

1 -fprof-auto (page 598) was known as -auto-all prior to GHC 7.4.1.

593

GHC User’s Guide Documentation, Release 9.2.6

$ ghc -prof -fprof-auto -rtsopts Main.hs
$./Main +RTS -p
121393
$

When a GHC-compiled program is run with the -p (page 599) RTS option, it generates a file
called prog.prof. In this case, the file will contain something like this:

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.68 secs (34 ticks @ 20 ms)
total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total
memory allocation measured during the run of the program (note that the total memory al-
location figure isn’t the same as the amount of live memory needed by the program at any
one time; the latter can be determined using heap profiling, which we will describe later in
Profiling memory usage (page 602)).
The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namely fib,
and it was responsible for 100% of both the time and allocation costs of the program.
The third and final section of the file gives a profile break-down by cost-centre stack. This is
roughly a call-tree profile of the program. In the example above, it is clear that the costly call
to fib came from main.
The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone,
and “inherited”, which includes the costs incurred by all the children of this node.
The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 30 + g 30)
where

f n = fib n
g n = fib (n `div` 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

594 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main.f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

Now although we had two calls to fib in the program, it is immediately clear that it was the
call from f which took all the time. The functions f and g which are defined in the where
clause in main are given their own cost centres, main.f and main.g respectively.
The actual meaning of the various columns in the output is:

The number of times this particular point in the call tree was entered.
The percentage of the total run time of the program spent at this point in the call
tree.
The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call.
The percentage of the total run time of the program spent below this point in the
call tree.
The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call and all of its sub-calls.

In addition you can use the -P (page 599) RTS option to get the following additional informa-
tion:
ticks The raw number of time “ticks” which were attributed to this cost-centre; from this,

we get the %time figure mentioned above.
bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw

number from which we get the %alloc figure mentioned above.
What about recursive functions, and mutually recursive groups of functions? Where are the
costs attributed? Well, although GHC does keep information about which groups of functions
called each other recursively, this information isn’t displayed in the basic time and allocation
profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs
elsewhere on the current stack does not push another entry on the stack, instead the costs
for this call are aggregated into the caller 2.

8.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say -fprof-auto to the compiler, it
automatically inserts a cost centre annotation around every binding not marked INLINE in
your program, but you are entirely free to add cost centre annotations yourself.
The syntax of a cost centre annotation for expressions is

2 Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further,
feedback is welcome.

8.1. Cost centres and cost-centre stacks 595

GHC User’s Guide Documentation, Release 9.2.6

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it ap-
pears in the profiling output, and <expression> is any Haskell expression. An SCC annotation
extends as far to the right as possible when parsing, having the same precedence as lambda
abstractions, let expressions, and conditionals. Additionally, an annotation may not appear
in a position where it would change the grouping of subexpressions:

a = 1 / 2 / 2 -- accepted (a=0.25)
b = 1 / {-# SCC "name" #-} / 2 / 2 -- rejected (instead of b=1.0)

This restriction is required tomaintain the property that inserting a pragma, just like inserting
a comment, does not have unintended effects on the semantics of the program, in accordance
with GHC Proposal #176.
SCC stands for “Set Cost Centre”. The double quotes can be omitted if name is a Haskell
identifier starting with a lowercase letter, for example:

{-# SCC id #-} <expression>

Cost centre annotations can also appear in the top-level or in a declaration context. In that
case you need to pass a function name defined in the same module or scope with the annota-
tion. Example:

f x y = ...
where

g z = ...
{-# SCC g #-}

{-# SCC f #-}

If you want to give a cost centre different name than the function name, you can pass a string
to the annotation

f x y = ...
{-# SCC f "cost_centre_name" #-}

Here is an example of a program with a couple of SCCs:

main :: IO ()
main = do let xs = [1..1000000]

let ys = [1..2000000]
print $ {-# SCC last_xs #-} last xs
print $ {-# SCC last_init_xs #-} last (init xs)
print $ {-# SCC last_ys #-} last ys
print $ {-# SCC last_init_ys #-} last (init ys)

which gives this profile when run:

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0

596 Chapter 8. Profiling

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0176-scc-parsing.rst

GHC User’s Guide Documentation, Release 9.2.6

last_init_ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last_init_xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

8.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind
the scenes, and attributes any costs (memory allocation and time) to whatever the current
cost-centre stack is at the time the cost is incurred.
The mechanism is simple: whenever the program evaluates an expression with an SCC an-
notation, {-# SCC c -#} E, the cost centre c is pushed on the current stack, and the entry
count for this stack is incremented by one. The stack also sometimes has to be saved and
restored; in particular when the program creates a thunk (a lazy suspension), the current
cost-centre stack is stored in the thunk, and restored when the thunk is evaluated. In this
way, the cost-centre stack is independent of the actual evaluation order used by GHC at run-
time.
At a function call, GHC takes the stack stored in the function being called (which for a top-
level function will be empty), and appends it to the current stack, ignoring any prefix that is
identical to a prefix of the current stack.
Wementioned earlier that lazy computations, i.e. thunks, capture the current stack when they
are created, and restore this stack when they are evaluated. What about top-level thunks?
They are “created” when the program is compiled, so what stack should we give them? The
technical name for a top-level thunk is a CAF (“Constant Applicative Form”). GHC assigns
every CAF in a module a stack consisting of the single cost centre M.CAF, where M is the name
of the module. It is also possible to give each CAF a different stack, using the option -fprof-
cafs (page 598). This is especially useful when compiling with -ffull-laziness (page 125)
(as is default with -O (page 121) and higher), as constants in function bodies will be lifted to
the top-level and become CAFs. You will probably need to consult the Core (-ddump-simpl
(page 254)) in order to determine what these CAFs correspond to.

8.2 Compiler options for profiling

-prof
To make use of the profiling system all modules must be compiled and linked with the
-prof (page 597) option. Any SCC annotations you’ve put in your source will spring to
life.
Without a -prof (page 597) option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

-fno-prof-count-entries
Tells GHC not to collect information about how often functions are entered at runtime
(the “entries” column of the time profile), for this module. This tends to make the profiled
code run faster, and hence closer to the speed of the unprofiled code, because GHC is
able to optimise more aggressively if it doesn’t have to maintain correct entry counts.
This option can be useful if you aren’t interested in the entry counts (for example, if you
only intend to do heap profiling).

8.2. Compiler options for profiling 597

GHC User’s Guide Documentation, Release 9.2.6

There are a few other profiling-related compilation options. Use them in addition to -prof
(page 597). These do not have to be used consistently for all modules in a program.

8.2.1 Automatically placing cost-centres

GHC has a number of flags for automatically inserting cost-centres into the compiled program.

-fprof-callers=⟨name⟩
Automatically enclose all occurrences of the named function in an SCC. Note that these
cost-centres are added late in compilation (after simplification) and consequently the
names may be slightly different than they appear in the source program (e.g. a call to f
may inlined with its wrapper, resulting in an occurrence of its worker, $wf).
In addition to plain module-qualified names (e.g. GHC.Base.map), ⟨name⟩ also accepts a
small globbing language using * as a wildcard symbol:

pattern := <module> '.' <identifier>
module := '*'

| <Haskell module name>
identifier := <ident_char>
ident

For instance, the following are all valid patterns:
•Data.List.map
•*.map
•*.parse*
•*.<*>

The * character can be used literally by escaping (e.g. *).
-fprof-auto

All bindings not marked INLINE (page 559), whether exported or not, top level or nested,
will be given automatic SCC annotations. Functions marked INLINE (page 559) must be
given a cost centre manually.

-fprof-auto-top
GHC will automatically add SCC annotations for all top-level bindings not marked INLINE
(page 559). If you want a cost centre on an INLINE (page 559) function, you have to add
it manually.

-fprof-auto-exported
GHCwill automatically add SCC annotations for all exported functions not marked INLINE
(page 559). If you want a cost centre on an INLINE (page 559) function, you have to add
it manually.

-fprof-auto-calls
Adds an automatic SCC annotation to all call sites. This is particularly useful when
using profiling for the purposes of generating stack traces; see the function De-
bug.Trace.traceShow, or the -xc (page 196) RTS flag (RTS options for hackers, debug-
gers, and over-interested souls (page 195)) for more details.

-fprof-cafs
The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre.
With this option, all CAFs get their own cost-centre. An “if all else fails” option…

598 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

-auto-all
Deprecated alias for -fprof-auto (page 598)

-auto
Deprecated alias for -fprof-auto-exported (page 598)

-caf-all
Deprecated alias for -fprof-cafs (page 598)

-no-auto-all
Deprecated alias for -fno-prof-auto (page 598)

-no-auto
Deprecated alias for -fno-prof-auto (page 598)

-no-caf-all
Deprecated alias for -fno-prof-cafs (page 598)

8.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled
program when you run it (RTS options should be enclosed between +RTS ... -RTS as usual):

-p
-P
-pa

The -p (page 599) option produces a standard time profile report. It is written into
the file <stem>.prof; the stem is taken to be the program name by default, but can be
overridden by the -po ⟨stem⟩ (page 599) flag.
The -P (page 599) option produces a more detailed report containing the actual time and
allocation data as well. (Not used much.)
The -pa (page 599) option produces the most detailed report containing all cost centres
in addition to the actual time and allocation data.

-pj
The -pj (page 599) option produces a time/allocation profile report in JSON format writ-
ten into the file <program>.prof.

-po ⟨stem⟩
The -po ⟨stem⟩ (page 599) option overrides the stem used to form the output file paths
for the cost-centre profiler (see -p (page 599) and -pj (page 599) flags above) and heap
profiler (see -h (page 193)).
For instance, running a program with +RTS -h -p -pohello-world would produce a
heap profile named hello-world.hp and a cost-centre profile named hello-world.prof.

-V ⟨secs⟩

Default 0.02
Sets the interval that the RTS clock ticks at, which is also the sampling interval of the
time and allocation profile. The default is 0.02 seconds. The runtime uses a single timer
signal to count ticks; this timer signal is used to control the context switch timer (Using
Concurrent Haskell (page 136)) and the heap profiling timer RTS options for heap profil-
ing (page 603). Also, the time profiler uses the RTS timer signal directly to record time
profiling samples.

8.3. Time and allocation profiling 599

GHC User’s Guide Documentation, Release 9.2.6

Normally, setting the -V ⟨secs⟩ (page 599) option directly is not necessary: the reso-
lution of the RTS timer is adjusted automatically if a short interval is requested with
the -C ⟨s⟩ (page 136) or -i ⟨secs⟩ (page 605) options. However, setting -V ⟨secs⟩
(page 599) is required in order to increase the resolution of the time profiler.
Using a value of zero disables the RTS clock completely, and has the effect of disabling
timers that depend on it: the context switch timer and the heap profiling timer. Context
switches will still happen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it eliminates a source of
non-determinism at runtime.

-xc
This option causes the runtime to print out the current cost-centre stack whenever an
exception is raised. This can be particularly useful for debugging the location of ex-
ceptions, such as the notorious Prelude.head: empty list error. See RTS options for
hackers, debuggers, and over-interested souls (page 195).

8.3.1 JSON profile format

When invoked with the -pj (page 599) flag the runtime will emit the cost-centre profile in a
machine-readable JSON format. The top-level object of this format has the following proper-
ties,
program (string) The name of the program
arguments (list of strings) The command line arguments passed to the program
rts_arguments (list of strings) The command line arguments passed to the runtime system
initial_capabilities (integral number) Howmany capabilities the programwas started

with (e.g. using the -N ⟨x⟩ (page 137) option). Note that the number of capabilities may
change during execution due to the setNumCapabilities function.

total_time (number) The total wall time of the program’s execution in seconds.
total_ticks (integral number) How many profiler “ticks” elapsed over the course of the

program’s execution.
end_time (number) The approximate time when the program finished execution as a UNIX

epoch timestamp.
tick_interval (float) How much time between profiler ticks.
total_alloc (integer) The cumulative allocations of the program in bytes.
cost_centres (list of objects) A list of the program’s cost centres
profile (object) The profile tree itself
Each entry in cost_centres is an object describing a cost-centre of the program having the
following properties,
id (integral number) A unique identifier used to refer to the cost-centre
is_caf (boolean) Whether the cost-centre is a Constant Applicative Form (CAF)
label (string) A descriptive string roughly identifying the cost-centre.
src_loc (string) A string describing the source span enclosing the cost-centre.
The profile data itself is described by the profile field, which contains a tree-like object
(which we’ll call a “cost-centre stack” here) with the following properties,

600 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

id (integral number) The id of a cost-centre listed in the cost_centres list.
entries (integral number) How many times was this cost-centre entered?
ticks (integral number) How many ticks was the program’s execution inside of this cost-

centre? This does not include child cost-centres.
alloc (integral number) Howmany bytes did the program allocate while inside of this cost-

centre? This does not include allocations while in child cost-centres.
children (list) A list containing child cost-centre stacks.
For instance, a simple profile might look like this,

{
"program": "Main",
"arguments": [

"nofib/shootout/n-body/Main",
"50000"

],
"rts_arguments": [

"-pj",
"-hy"

],
"end_time": "Thu Feb 23 17:15 2017",
"initial_capabilities": 0,
"total_time": 1.7,
"total_ticks": 1700,
"tick_interval": 1000,
"total_alloc": 3770785728,
"cost_centres": [

{
"id": 168,
"label": "IDLE",
"module": "IDLE",
"src_loc": "<built-in>",
"is_caf": false

},
{
"id": 156,
"label": "CAF",
"module": "GHC.Integer.Logarithms.Internals",
"src_loc": "<entire-module>",
"is_caf": true

},
{
"id": 155,
"label": "CAF",
"module": "GHC.Integer.Logarithms",
"src_loc": "<entire-module>",
"is_caf": true

},
{
"id": 154,
"label": "CAF",
"module": "GHC.Event.Array",
"src_loc": "<entire-module>",
"is_caf": true

}
],

8.3. Time and allocation profiling 601

GHC User’s Guide Documentation, Release 9.2.6

"profile": {
"id": 162,
"entries": 0,
"alloc": 688,
"ticks": 0,
"children": [
{

"id": 1,
"entries": 0,
"alloc": 208,
"ticks": 0,
"children": [
{

"id": 22,
"entries": 1,
"alloc": 80,
"ticks": 0,
"children": []

}
]

},
{

"id": 42,
"entries": 1,
"alloc": 1632,
"ticks": 0,
"children": []

}
]

}
}

8.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also gen-
erate a graph of its memory usage over time. This is useful for detecting the causes of space
leaks, when your program holds on to more memory at run-time that it needs to. Space leaks
lead to slower execution due to heavy garbage collector activity, and may even cause the
program to run out of memory altogether.
To generate a heap profile from your program:
1. Compile the program for profiling (Compiler options for profiling (page 597)).
2. Run it with one of the heap profiling options described below (eg. -hc (page 603) for a
basic producer profile). This generates the file prog.hp.
If the event log (page 193) is enabled (with the -l ⟨flags⟩ (page 194) runtime system
flag) heap samples will additionally be emitted to the GHC event log (see Heap profiler
event log output (page 666) for details about event format).

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail
in hp2ps – Rendering heap profiles to PostScript (page 607).

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a
Postscript-capable printer.

602 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

For example, here is a heap profile produced for the sphere program from GHC’s nofib
benchmark suite,

Main 100 +RTS -hc 9,661 bytes x seconds Fri Oct 2 15:01 2015

seconds0.0 0.1 0.1 0.2 0.2 0.2

by
te

s

0k

5k

10k

15k

20k

25k

30k

OTHER

(112)tracepixel/ray.f/ray/...

(122)sphereintersect/trace...

(183)rbg.eight_bit/rbg/pix...

(108)pixels/ppm/run/main.\...

(221)vecadd/vecsum/shade.d...

(147)vecscale/camparams.sc...

(157)vecscale/camparams.sc...

(140)vecsub/camparams.firs...

(110)rbg/pixels/ppm/run/ma...

(80)GHC.IO.Encoding.Iconv.CAF

(217)vecsum/Main.CAF

(119)testspheres/Main.CAF

(185)shade/tracepixel/ray....

(109)ray/run/main.\/main/M...

(103)Main.CAF

(84)GHC.Conc.Signal.CAF

(77)GHC.IO.Handle.FD.CAF

(92)GHC.IO.Encoding.CAF

(54)PINNED

You might also want to take a look at hp2any, a more advanced suite of tools (not distributed
with GHC) for displaying heap profiles.
Note that there might be a big difference between the OS reported memory usage of your
program and the amount of live data as reported by heap profiling. The reasons for the
difference are explained in Understanding how OS memory usage corresponds to live data
(page 632).

8.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile
types yield a graph of live heap against time, but they differ in how the live heap is broken
down into bands. The following RTS options select which break-down to use:
-hT

Breaks down the graph by heap closure type.
-hc
-h

Requires -prof (page 597). Breaks down the graph by the cost-centre stack which pro-
duced the data.

Note: The meaning of the shortened -h (page 193) is dependent on whether your
program was compiled for profiling. When compiled for profiling, -h (page 193) is equiv-
alent to -hc (page 603), but otherwise is equivalent to -hT (page 193) (see RTS options

8.4. Profiling memory usage 603

http://www.haskell.org/haskellwiki/Hp2any

GHC User’s Guide Documentation, Release 9.2.6

for profiling (page 193)). The -h (page 193) is deprecated and will be removed in a future
release.

-hm
Requires -prof (page 597). Break down the live heap by the module containing the code
which produced the data.

-hd
Requires -prof (page 597). Breaks down the graph by closure description. For actual
data, the description is just the constructor name, for other closures it is a compiler-
generated string identifying the closure.

-hy
Requires -prof (page 597). Breaks down the graph by type. For closures which have
function type or unknown/polymorphic type, the string will represent an approximation
to the actual type.

-hr
Requires -prof (page 597). Break down the graph by retainer set. Retainer profiling is
described in more detail below (Retainer Profiling (page 605)).

-hb
Requires -prof (page 597). Break down the graph by biography. Biographical profiling
is described in more detail below (Biographical Profiling (page 606)).

-hi
Break down the graph by the address of the info table of a closure. For this to produce
useful output the program must have been compiled with -finfo-table-map (page 622).

-l
Emit profile samples to the GHC event log (page 193). This format is both more expres-
sive than the old .hp format and can be correlated with other events over the program’s
runtime. See Heap profiler event log output (page 666) for details on the produced event
structure.

In addition, the profile can be restricted to heap data which satisfies certain criteria - for
example, you might want to display a profile by type but only for data produced by a certain
module, or a profile by retainer for a certain type of data. Restrictions are specified as follows:
-hc ⟨name⟩

Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres at the top.

-hC ⟨name⟩
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres anywhere in the stack.

-hm ⟨module⟩
Restrict the profile to closures produced by the specified modules.

-hd ⟨desc⟩
Restrict the profile to closures with the specified description strings.

-hy ⟨type⟩
Restrict the profile to closures with the specified types.

-hr ⟨cc⟩
Restrict the profile to closures with retainer sets containing cost-centre stacks with one
of the specified cost centres at the top.

604 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

-hb ⟨bio⟩
Restrict the profile to closures with one of the specified biographies, where ⟨bio⟩ is one
of lag, drag, void, or use.

For example, the following options will generate a retainer profile restricted to Branch and
Leaf constructors:

prog +RTS -hr -hdBranch,Leaf

There can only be one “break-down” option (eg. -hr (page 604) in the example above), but
there is no limit on the number of further restrictions that may be applied. All the options may
be combined, with one exception: GHC doesn’t currently support mixing the -hr (page 604)
and -hb (page 604) options.
There are three more options which relate to heap profiling:
-i ⟨secs⟩

Set the profiling (sampling) interval to ⟨secs⟩ seconds (the default is 0.1 second). Frac-
tions are allowed: for example -i0.2 will get 5 samples per second. This only affects
heap profiling; time profiles are always sampled with the frequency of the RTS clock.
See Time and allocation profiling (page 599) for changing that.

--no-automatic-heap-samples

Since 9.2.1
Don’t start heap profiling from the start of program execution. If this option is enabled,
it’s expected that the user will manually start heap profiling or request specific samples
using functions from GHC.Profiling.

--null-eventlog-writer

Since 9.2.2
Don’t output eventlog to file, only configure tracing events. Meant to be used with cus-
tomized event log writer.

-L ⟨num⟩
Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

8.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?”.
We start by defining what we mean by a retainer:

A retainer is either the system stack, an unevaluated closure (thunk), or an explicitly
mutable object.

In particular, constructors are not retainers.
An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by re-
cursively following pointers starting from object B, but not meeting any other retainer objects
on the way. Each live object is retained by one or more retainer objects, collectively called
its retainer set, or its retainer set, or its retainers.
When retainer profiling is requested by giving the program the -hr option, a graph is gener-
ated which is broken down by retainer set. A retainer set is displayed as a set of cost-centre
stacks; because this is usually too large to fit on the profile graph, each retainer set is num-
bered and shown abbreviated on the graph along with its number, and the full list of retainer
sets is dumped into the file prog.prof.

8.4. Profiling memory usage 605

GHC User’s Guide Documentation, Release 9.2.6

Retainer profiling requires multiple passes over the live heap in order to discover the full
retainer set for each object, which can be quite slow. So we set a limit on the maximum
size of a retainer set, where all retainer sets larger than the maximum retainer set size are
replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with
the -R ⟨size⟩ (page 606) RTS option:
-R ⟨size⟩

Restrict the number of elements in a retainer set to ⟨size⟩ (default 8).

Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large struc-
ture is retained by an unevaluated computation, and will be released once the computation
is forced. A good example is looking up a value in a finite map, where unless the lookup is
forced in a timely manner the unevaluated lookup will cause the whole mapping to be retained.
These kind of space leaks can often be eliminated by forcing the relevant computations to be
performed eagerly, using seq or strictness annotations on data constructor fields.
Often a particular data structure is being retained by a chain of unevaluated closures, only
the nearest of which will be reported by retainer profiling - for example A retains B, B retains
C, and C retains a large structure. There might be a large number of Bs but only a single A,
so A is really the one we’re interested in eliminating. However, retainer profiling will in this
case report B as the retainer of the large structure. To move further up the chain of retainers,
we can ask for another retainer profile but this time restrict the profile to B objects, so we get
a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the
retainers we are interested in, but we’ve found this to be a useful technique in most cases.

8.4.3 Biographical Profiling

A typical heap object may be in one of the following four states at each point in its lifetime:
• The lag stage, which is the time between creation and the first use of the object,
• the use stage, which lasts from the first use until the last use of the object, and
• The drag stage, which lasts from the final use until the last reference to the object is
dropped.

• An object which is never used is said to be in the void state for its whole lifetime.
A biographical heap profile displays the portion of the live heap in each of the four states
listed above. Usually the most interesting states are the void and drag states: live heap in
these states is more likely to be wasted space than heap in the lag or use states.
It is also possible to break down the heap in one or more of these states by a different criteria,
by restricting a profile by biography. For example, to show the portion of the heap in the drag
or void state by producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step
is usually to find the retainer(s):

606 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

prog +RTS -hr -hccc...

Note: This two stage process is required because GHC cannot currently profile using both
biographical and retainer information simultaneously.

8.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory res-
idency of your program when you run it? You might see a large discrepancy between the
residency reported by the heap profiler, and the residency reported by tools on your system
(eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:
• There is an overhead of profiling itself, which is subtracted from the residency figures
by the profiler. This overhead goes away when compiling without profiling support, of
course. The space overhead is currently 2 extra words per heap object, which probably
results in about a 30% overhead.

• Garbage collection requires more memory than the actual residency. The factor depends
on the kind of garbage collection algorithm in use: a major GC in the standard generation
copying collector will usually require 3L bytes of memory, where L is the amount of live
data. This is because by default (see the RTS -F ⟨factor⟩ (page 185) option) we allow
the old generation to grow to twice its size (2L) before collecting it, and we require
additionally L bytes to copy the live data into. When using compacting collection (see
the -c (page 185) option), this is reduced to 2L, and can further be reduced by tweaking
the -F ⟨factor⟩ (page 185) option. Also add the size of the allocation area (see -A
⟨size⟩ (page 184)).

• The program text itself, the C stack, any non-heap data (e.g. data allocated by foreign
libraries, and data allocated by the RTS), and mmap()‘d memory are not counted in the
heap profile.

8.5 hp2ps – Rendering heap profiles to PostScript

Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps program converts a .hp file produced by the -h<break-down> runtime
option into a PostScript graph of the heap profile. By convention, the file to be processed by
hp2ps has a .hp extension. The PostScript output is written to file@.ps. If <file> is omitted
entirely, then the program behaves as a filter.
hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally de-
veloped by Dave Wakeling as part of the HBC/LML heap profiler.
The flags are:
-d

In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier.
The default sort ordering is for the bands with the largest area to be stacked on top of the
smaller ones. The -d option causes rougher bands (those representing series of values
with the largest standard deviations) to be stacked on top of smoother ones.

8.5. hp2ps – Rendering heap profiles to PostScript 607

GHC User’s Guide Documentation, Release 9.2.6

-b
Normally, hp2ps puts the title of the graph in a small box at the top of the page. However,
if the JOB string is too long to fit in a small box (more than 35 characters), then hp2ps
will choose to use a big box instead. The -b option forces hp2ps to use a big box.

-e⟨float⟩[in|mm|pt]
Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually,
the PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches
high, and hp2ps arranges for this area to be approximately centred on a sheet of a4 paper.
This format is convenient of studying the graph in detail, but it is unsuitable for inclusion
in LaTeX documents. The -e option causes the graph to be drawn in portrait mode, with
float specifying the width in inches, millimetres or points (the default). The resulting
PostScript file conforms to the Encapsulated PostScript (EPS) convention, and it can be
included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

-g
Create output suitable for the gs PostScript previewer (or similar). In this case the graph
is printed in portrait mode without scaling. The output is unsuitable for a laser printer.

-l
Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -l flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with
many bands.

-m⟨int⟩
Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -m flag specifies an alternative band limit (the maximum is 20).
-m0 requests the band limit to be removed. As many bands as necessary are produced.
However no key is produced as it won’t fit! It is useful for displaying creation time
profiles with many bands.

-p
Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series
of graphs for use in a presentation, it is often useful to draw a new graph using the
same scale, shading and ordering as a previous one. The -p flag causes the graph to be
drawn using the parameters determined by a previous run of hp2ps on file. These are
extracted from file@.aux.

-s
Use a small box for the title.

-t⟨float⟩
Normally trace elements which sum to a total of less than 1% of the profile are removed
from the profile. The -t option allows this percentage to be modified (maximum 5%).
-t0 requests no trace elements to be removed from the profile, ensuring that all the data
will be displayed.

-c
Generate colour output.

-y
Ignore marks.

-?
Print out usage information.

608 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

8.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)
The FOO.hp file produced when you ask for the heap profile of a program FOO is a text file with
a particularly simple structure. Here’s a representative example, with much of the actual
data omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07
... sample data ...

END_SAMPLE 15.07
BEGIN_SAMPLE 30.23
... sample data ...

END_SAMPLE 30.23
... etc.
BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE_UNIT, VALUE_UNIT) form a header. Each block of lines
starting with BEGIN_SAMPLE and ending with END_SAMPLE forms a single sample (you can think
of this as a vertical slice of your heap profile). The hp2ps utility should accept any input with
a properly-formatted header followed by a series of complete samples.

8.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the .hp file into
a text editor and deleting the unwanted samples. The resulting .hp file can be run through
hp2ps and viewed or printed.

8.5.3 Viewing the heap profile of a running program

The .hp file is generated incrementally as your program runs. In principle, running hp2ps on
the incomplete file should produce a snapshot of your program’s heap usage. However, the
last sample in the filemay be incomplete, causing hp2ps to fail. If you are using amachine with
UNIX utilities installed, it’s not too hard to work around this problem (though the resulting
command line looks rather Byzantine):

head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in
FOO.hp, and labels each sample with its ending line number. We then select the line num-
ber of the last complete sample using tail and cut. This is used as a parameter to head; the
result is as if we deleted the final incomplete sample from FOO.hp. This results in a properly-
formatted .hp file which we feed directly to hp2ps.

8.5. hp2ps – Rendering heap profiles to PostScript 609

GHC User’s Guide Documentation, Release 9.2.6

8.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a “watch file” option can be used to view an up-to-
date heap profile of your program as it runs. Simply generate an incremental heap profile as
described in the previous section. Run gv on your profile:

gv -watch -orientation=seascape FOO.ps

If you forget the -watch flag you can still select “Watch file” from the “State” menu. Now
each time you generate a new profile FOO.ps the view will update automatically.
This can all be encapsulated in a little script:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

gv -watch -orientation=seascape FOO.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \

| hp2ps > FOO.ps
done

Occasionally gv will choke as it tries to read an incomplete copy of FOO.ps (because hp2ps
is still running as an update occurs). A slightly more complicated script works around this
problem, by using the fact that sending a SIGHUP to gv will cause it to re-read its input file:

#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps

gv FOO.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \

| hp2ps > FOO.ps
kill -HUP $gvpsnum

done

8.6 Profiling Parallel and Concurrent Programs

Combining -threaded (page 244) and -prof (page 597) is perfectly fine, and indeed it is
possible to profile a program running on multiple processors with the RTS -N ⟨x⟩ (page 137)
option. 3

Some caveats apply, however. In the current implementation, a profiled program is likely to
scale much less well than the unprofiled program, because the profiling implementation uses
some shared data structures which require locking in the runtime system. Furthermore, the
memory allocation statistics collected by the profiled program are stored in shared memory
but not locked (for speed), which means that these figures might be inaccurate for parallel
programs.
We strongly recommend that you use -fno-prof-count-entries (page 597) when compiling
a program to be profiled on multiple cores, because the entry counts are also stored in shared

3 This feature was added in GHC 7.4.1.

610 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

memory, and continuously updating them on multiple cores is extremely slow.
We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for
visualising parallel execution, and is complementary to the time and space profiling features
provided with GHC.

8.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been
actually executed, and which parts have never actually been invoked. GHC has an option
for generating instrumented code that records code coverage as part of the Haskell Program
Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the
generated code coverage information into human understandable format.
Correctly instrumented code provides coverage information of two kinds: source coverage
and boolean-control coverage. Source coverage is the extent to which every part of the pro-
gram was used, measured at three different levels: declarations (both top-level and local),
alternatives (among several equations or case branches) and expressions (at every level).
Boolean coverage is the extent to which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition, qualifier).
HPC displays both kinds of information in two primary ways: textual reports with summary
statistics (hpc report) and sources with color mark-up (hpc markup). For boolean coverage,
there are four possible outcomes for each guard, condition or qualifier: both True and False
values occur; only True; only False; never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the program that was never evaluated; a green
background indicates an always-True expression and a red background indicates an always-
False one.

8.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal repre-
sentations of reciprocals, with recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = ('0' : '.' : digits, recur)

| otherwise = error
"attempting to compute reciprocal of number <= 1"

where
(digits, recur) = divide n 1 []

divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | c `elem` cs = ([], position c cs)

| r == 0 = (show q, 0)
| r /= 0 = (show q ++ digits, recur)

where
(q, r) = (c*10) `quotRem` n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n==x = 1

| otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++

8.7. Observing Code Coverage 611

http://www.haskell.org/haskellwiki/ThreadScope

GHC User’s Guide Documentation, Release 9.2.6

if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p = length d - r
(d, r) = reciprocal n

main = do
number <- readLn
putStrLn (showRecip number)
main

HPC instrumentation is enabled with the -fhpc (page 613) flag:

$ ghc -fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in
there, one for each module compiled. You don’t need to worry about these files: they contain
information needed by the hpc tool to generate the coverage data for compiled modules after
the program is run.

$./Recip
1/3
= 0.(3)

Running the program generates a file with the .tix suffix, in this case Recip.tix, which
contains the coverage data for this run of the program. The program may be run multiple
times (e.g. with different test data), and the coverage data from the separate runs is accumu-
lated in the .tix file. To reset the coverage data and start again, just remove the .tix file.
You can control where the .tix file is generated using the environment variable HPCTIXFILE
(page 612).
HPCTIXFILE

Set the HPC .tix file output path.
Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)

14% guards (1/7), 3 always True,
1 always False,
2 unevaluated

0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)

55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html,
hpc_index_alt.html, hpc_index_exp.html, hpc_index_fun.html.

612 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

8.7.2 Options for instrumenting code for coverage

-fhpc
Enable code coverage for the current module or modules being compiled.
Modules compiled with this option can be freely mixed with modules compiled without
it; indeed, most libraries will typically be compiled without -fhpc (page 613). When
the program is run, coverage data will only be generated for those modules that were
compiled with -fhpc (page 613), and the hpc tool will only show information about those
modules.

8.7.3 The hpc toolkit

The hpc command has several sub-commands:

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command

Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage

Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file

Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage

Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a .tix file after an instrumented binary has generated it.
The hpc tool assumes you are in the top-level directory of the location where you built your
application, and the .tix file is in the same top-level directory. You can use the flag --srcdir
to use hpc for any other directory, and use --srcdir multiple times to analyse programs
compiled from difference locations, as is typical for packages.
We now explain in more details the major modes of hpc.

hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are
considered in generating report, unless include or exclude are used. The report is a summary
unless the --per-module flag is used. The --xml-output option allows for tools to use hpc to
glean coverage.

$ hpc help report
Usage: hpc report [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--per-module show module level detail

8.7. Observing Code Coverage 613

GHC User’s Guide Documentation, Release 9.2.6

--decl-list show unused decls
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--xml-output show output in XML

hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--fun-entry-count show top-level function entry counts
--highlight-covered highlight covered code, rather that code gaps
--destdir=DIR path to write output to

hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not
change the original .tix file; it generates a new .tix file.

$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX_FILE> [<TIX_FILE> [<TIX_FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--union use the union of the module namespace (default is␣

↪→intersection)

hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between
.tix files, to subtract one .tix file from another, or to add two .tix files. hpc combine does
not change the original .tix file; it generates a new .tix file.

614 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 9.2.6

$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX_FILE> <TIX_FILE>
Combine two .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD

FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is␣

↪→intersection)

hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it
generates a new .tix file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX_FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID

FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is␣

↪→intersection)

hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is
used to generate a draft overlay from a .tix file, and hpc overlay generates a .tix files from an
overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY_FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]

--reset-hpcdirs empty the list of hpcdir's
[rarely used]

--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX_FILE>

Options:

8.7. Observing Code Coverage 615

GHC User’s Guide Documentation, Release 9.2.6

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--output=FILE output FILE

8.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the
same directory will exhibit a race condition. At compile time, there is no way to change
the name of the .tix file generated; at runtime, the name of the generated .tix file can
be changed using HPCTIXFILE (page 612); the name of the .tix file will also change if you
rename the binary. HPC does not work with GHCi.

8.8 Using “ticky-ticky” profiling (for implementors)

-ticky
Enable ticky-ticky profiling. By default this only tracks the allocations by each closure
type. See -ticky-allocd (page 616) to keep track of allocations of each closure type as
well.

-ticky-allocd
Keep track of how much each closure type is allocated.

-ticky-dyn-thunk
Track allocations of dynamic thunks.

Because ticky-ticky profiling requires a certain familiarity with GHC internals, we have moved
the documentation to the GHC developers wiki. Take a look at its overview of the profiling
options, which includes a link to the ticky-ticky profiling page.

616 Chapter 8. Profiling

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/profiling
https://gitlab.haskell.org/ghc/ghc/wikis/commentary/profiling

CHAPTER

NINE

DEBUGGING COMPILED PROGRAMS

Since the 7.10 release GHC can emit a debugging information to help debugging tools un-
derstand the code that GHC produces. This debugging information is useable by most UNIX
debugging tools.
-g
-g⟨n⟩

Since 7.10, numeric levels since 8.0
Implies -fexpose-internal-symbols (page 241) when ⟨n⟩ >= 2.

Emit debug information in object code. Currently only DWARF debug information is
supported on x86-64 and i386. Currently debug levels 0 through 3 are accepted:
•-g0: no debug information produced
•-g1: produces stack unwinding records for top-level functions (sufficient for basic
backtraces)
•-g2: produces stack unwinding records for top-level functions as well as inner blocks
(allowing more precise backtraces than with -g1).
•-g3: produces GHC-specific DWARF information for use by more sophisticated
Haskell-aware debugging tools (see Debugging information entities (page 621) for
details)

If ⟨n⟩ is omitted, level 2 is assumed.

9.1 Tutorial

Let’s consider a simple example,

1 -- fib.hs
2 fib :: Int -> Int
3 fib 0 = 0
4 fib 1 = 1
5 fib n = fib (n-1) + fib (n-2)
6

7 main :: IO ()
8 main = print $ fib 50

Let’s first see how execution flows through this program. We start by telling GHC that we
want debug information,

617

GHC User’s Guide Documentation, Release 9.2.6

$ ghc -g -rtsopts fib.hs

Here we used the -g option to inform GHC that it should add debugging information in the pro-
duced binary. There are three levels of debugging output: -g0 (no debugging information,
the default), -g1 (sufficient for basic backtraces), -g2 (or just -g for short; emitting every-
thing GHC knows). Note that this debugging information does not affect the optimizations
performed by GHC.

Tip: Under Mac OS X debug information is kept apart from the executable. After compiling
the executable you’ll need to use the dsymutil utility to extract the debugging information
and place them in the debug archive,

$ dsymutil fib

This should produce a file named fib.dSYM.

Now let’s have a look at the flow of control. For this we can just start our program under gdb
(or an equivalent debugger) as we would any other native executable,

$ gdb --args ./Fib +RTS -V0
Reading symbols from Fib...done.
(gdb) run
Starting program: /opt/exp/ghc/ghc-dwarf/Fib
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
^C
Program received signal SIGINT, Interrupt.
0x000000000064fc7c in cfy4_info () at libraries/integer-gmp/src/GHC/Integer/Type.hs:

↪→424
424 minusInteger x y = inline plusInteger x (inline negateInteger y)
(gdb)

Here we have used the runtime system’s -V0 option to disable the RTS’s periodic timer which
may interfere with our debugging session. Upon breaking into the program gdb shows us a
location in our source program corresponding to the current point of execution.
Moreover, we can ask gdb to tell us the flow of execution that lead us to this point in the
program,

(gdb) bt
#0 0x000000000064fc7c in cfy4_info () at libraries/integer-gmp/src/GHC/Integer/Type.

↪→hs:424
#1 0x00000000006eb0c0 in ?? ()
#2 0x000000000064301c in cbuV_info () at libraries/integer-gmp/src/GHC/Integer/Type.

↪→hs:323
#3 0x000000000064311b in integerzmgmp_GHCziIntegerziType_eqInteger_info () at␣

↪→libraries/integer-gmp/src/GHC/Integer/Type.hs:312
#4 0x0000000000406eca in roz_info () at Fib.hs:2
#5 0x00000000006eb0c0 in ?? ()
#6 0x000000000064f075 in cfru_info () at libraries/integer-gmp/src/GHC/Integer/Type.

↪→hs:412
#7 0x00000000006eb0c0 in ?? ()
#8 0x000000000064f075 in cfru_info () at libraries/integer-gmp/src/GHC/Integer/Type.

↪→hs:412
#9 0x00000000006eb0c0 in ?? ()
#10 0x000000000064eefe in integerzmgmp_GHCziIntegerziType_plusInteger_info () at␣

↪→libraries/integer-gmp/src/GHC/Integer/Type.hs:393

618 Chapter 9. Debugging compiled programs

GHC User’s Guide Documentation, Release 9.2.6

...
#64 0x0000000000643ac8 in integerzmgmp_GHCziIntegerziType_ltIntegerzh_info () at␣

↪→libraries/integer-gmp/src/GHC/Integer/Type.hs:343
#65 0x00000000004effcc in base_GHCziShow_zdwintegerToString_info () at libraries/base/

↪→GHC/Show.hs:443
#66 0x00000000004f0795 in base_GHCziShow_zdfShowIntegerzuzdcshow_info () at libraries/

↪→base/GHC/Show.hs:145
#67 0x000000000048892b in cdGW_info () at libraries/base/GHC/IO/Handle/Text.hs:595
#68 0x0000000000419cb2 in base_GHCziBase_thenIO1_info () at libraries/base/GHC/Base.hs:

↪→1072

Hint: Here we notice the first bit of the stack trace has many unidentified stack frames at
address 0x006eb0c0. If we ask gdb about this location, we find that these frames are actually
STG update closures,

(gdb) print/a 0x006eb0c0
$1 = 0x6eb0c0 <stg_upd_frame_info>

The reason gdb doesn’t show this symbol name in the backtrace output is an infidelity in its in-
terpretation of debug information, which assumes an invariant preserved in C but not Haskell
programs. Unfortunately it is necessary to work around this manually until this behavior is
fixed upstream.

Note: Because of the aggressive optimization that GHC performs to the programs it compiles
it is quite difficult to pin-point exactly which point in the source program a given machine
instruction should be attributed to. In fact, internally GHC associates each instruction with
a set of source locations. When emitting the standard debug information used by gdb and
other language-agnostic debugging tools, GHC is forced to heuristically choose one location
from among this set.
For this reason we should be cautious when interpreting the source locations provided by
GDB. While these locations will usually be in some sense “correct”, they aren’t always useful.
This is why profiling tools targeting Haskell should supplement the standard source location
information with GHC-specific annotations (emitted with -g2) when assigning costs.

Indeed, we can even set breakpoints,

(gdb) break fib.hs:4
Breakpoint 1 at 0x406c60: fib.hs:4. (5 locations)
(gdb) run
Starting program: /opt/exp/ghc/ghc-dwarf/Fib

Breakpoint 1, c1RV_info () at Fib.hs:4
4 fib n = fib (n-1) + fib (n-2)
(gdb) bt
#0 c1RV_info () at Fib.hs:4
#1 0x00000000006eb0c0 in ?? ()
#2 0x0000000000643ac8 in integerzmgmp_GHCziIntegerziType_ltIntegerzh_info () at␣

↪→libraries/integer-gmp/src/GHC/Integer/Type.hs:343
#3 0x00000000004effcc in base_GHCziShow_zdwintegerToString_info () at libraries/base/

↪→GHC/Show.hs:443
#4 0x00000000004f0795 in base_GHCziShow_zdfShowIntegerzuzdcshow_info () at libraries/

↪→base/GHC/Show.hs:145

9.1. Tutorial 619

GHC User’s Guide Documentation, Release 9.2.6

#5 0x000000000048892b in cdGW_info () at libraries/base/GHC/IO/Handle/Text.hs:595
#6 0x0000000000419cb2 in base_GHCziBase_thenIO1_info () at libraries/base/GHC/Base.hs:

↪→1072
#7 0x00000000006ebcb0 in ?? () at rts/Exception.cmm:332
#8 0x00000000006e7320 in ?? ()
(gdb)

Due to the nature of GHC’s heap and the heavy optimization that it performs, it is quite
difficult to probe the values of bindings at runtime. In this way, the debugging experience
of a Haskell program with DWARF support is still a bit impoverished compared to typical
imperative debuggers.

9.2 Requesting a stack trace from Haskell code

GHC’s runtime system has built-in support for collecting stack trace information from a run-
ning Haskell program. This currently requires that the libdw library from the elfutils pack-
age is available. Of course, the backtrace will be of little use unless debug information is
available in the executable and its dependent libraries.
Stack trace functionality is exposed for use by Haskell programs in the GHC.ExecutionStack
module. See the Haddock documentation in this module for details regarding usage.

9.3 Requesting a stack trace with SIGQUIT

On POSIX-compatible platforms GHC’s runtime system (when built with libdw support) will
produce a stack trace on stderr when a SIGQUIT signal is received (on many systems this
signal can be sent using Ctrl-\). For instance (using the same fib.hs as above),

$./fib & killall -SIGQUIT fib

Caught SIGQUIT; Backtrace:
0x7f3176b15dd8 dwfl_thread_getframes (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b1582f (null) (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b15b57 dwfl_getthreads (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)
0x7f3176b16150 dwfl_getthread_frames (/usr/lib/x86_64-linux-gnu/libdw-0.163.so)

0x6dc857 libdwGetBacktrace (rts/Libdw.c:248.0)
0x6e6126 backtrace_handler (rts/posix/Signals.c:541.0)

0x7f317677017f (null) (/lib/x86_64-linux-gnu/libc-2.19.so)
0x642e1c integerzmgmp_GHCziIntegerziType_eqIntegerzh_info (libraries/integer-

↪→gmp/src/GHC/Integer/Type.hs:320.1)
0x643023 integerzmgmp_GHCziIntegerziType_eqInteger_info (libraries/integer-

↪→gmp/src/GHC/Integer/Type.hs:312.1)
0x406eca roz_info (/opt/exp/ghc/ghc-dwarf//Fib.hs:2.1)
0x6eafc0 stg_upd_frame_info (rts/Updates.cmm:31.1)
0x64ee06 integerzmgmp_GHCziIntegerziType_plusInteger_info (libraries/integer-

↪→gmp/src/GHC/Integer/Type.hs:393.1)
0x6eafc0 stg_upd_frame_info (rts/Updates.cmm:31.1)

...
0x6439d0 integerzmgmp_GHCziIntegerziType_ltIntegerzh_info (libraries/integer-

↪→gmp/src/GHC/Integer/Type.hs:343.1)
0x4efed4 base_GHCziShow_zdwintegerToString_info (libraries/base/GHC/Show.hs:

↪→442.1)
0x4f069d base_GHCziShow_zdfShowIntegerzuzdcshow_info (libraries/base/GHC/Show.

↪→hs:145.5)

620 Chapter 9. Debugging compiled programs

GHC User’s Guide Documentation, Release 9.2.6

0x488833 base_GHCziIOziHandleziText_zdwa8_info (libraries/base/GHC/IO/Handle/
↪→Text.hs:582.1)

0x6ebbb0 stg_catch_frame_info (rts/Exception.cmm:370.1)
0x6e7220 stg_stop_thread_info (rts/StgStartup.cmm:42.1)

9.4 Implementor’s notes: DWARF annotations

Note: Most users don’t need to worry about the details described in this section. This
discussion is primarily targeted at tooling authors who need to interpret the GHC-specific
DWARF annotations contained in compiled binaries.

When invoked with the -g flag GHC will produce standard DWARF v4 debugging information.
This format is used by nearly all POSIX-compliant targets and can be used by debugging and
performance tools (e.g. gdb, lldb, and perf) to understand the structure of GHC-compiled
programs.
In particular GHC produces the following DWARF sections,
.debug_info Debug information entities (DIEs) describing all of the basic blocks in the com-

piled program.
.debug_line Line number information necessary to map instruction addresses to line num-

bers in the source program.
Note that the line information in this section is not nearly as rich as the information pro-
vided in .debug_info. Whereas .debug_line requires that each instruction is assigned
exactly one source location, the DIEs in .debug_info can be used to identify all relevant
sources locations.

.debug_frames Call frame information (CFI) necessary for stack unwinding to produce a call
stack trace.

.debug_arange Address range information necessary for efficient lookup in debug informa-
tion.

9.4.1 Debugging information entities

GHC may produce the following standard DIEs in the .debug_info section,
DW_TAG_compile_unit Represents a compilation unit (e.g. a Haskell module).
DW_TAG_subprogram Represents a C-\- top-level basic block.
DW_TAG_lexical_block Represents a C-\- basic block. Note that this is a slight departure

from the intended meaning of this DIE type as it does not necessarily reflect lexical
scope in the source program.

As GHC’s compilation products don’t map perfectly onto DWARF constructs, GHC takes ad-
vantage of the extensibility of the DWARF standard to provide additional information.
Unfortunately DWARF isn’t expressive enough to fully describe the code that GHC produces.
This is most apparent in the case of line information, where GHC is forced to choose some be-
tween a variety of possible originating source locations. This limits the usefulness of DWARF
information with traditional statistical profiling tools. For profiling it is recommended that
one use the extended debugging information. See the Profiling section below.

9.4. Implementor’s notes: DWARF annotations 621

http://dwarfstd.org/

GHC User’s Guide Documentation, Release 9.2.6

In addition to the usual DIEs specified by the DWARF specification, GHC produces a variety
of others using the vendor-extensibility regions of the tag and attribute space.

DW_TAG_ghc_src_note

DW_TAG_ghc_src_note DIEs (tag 0x5b01) are found as children of DW_TAG_lexical_block
DIEs. They describe source spans which gave rise to the block; formally these spans are
causally responsible for produced code: changes to code in the given span may change the
code within the block; conversely changes outside the span are guaranteed not to affect the
code in the block.
Spans are described with the following attributes,
DW_AT_ghc_span_file (0x2b00, string) the name of the source file
DW_AT_ghc_span_start_line (0x2b01, integer) the line number of the beginning of the

span
DW_AT_ghc_span_start_col (0x2b02, integer) the column number of the beginning of the

span
DW_AT_ghc_span_end_line (0x2b03, integer) the line number of the end of the span
DW_AT_ghc_span_end_col (0x2b04, integer) the column number of the end of the span

9.5 Further Reading

For more information about the debug information produced by GHC see Peter Wortmann’s
PhD thesis, *Profiling Optimized Haskell: Causal Analysis and Implementation*.

9.6 Direct Mapping

In addition to the DWARF debug information, which can be used by many standard tools,
there is also a GHC specific way to map info table pointers to a source location. This lookup
table is generated by using the -finfo-table-map flag.
-finfo-table-map

Since 9.2
This flag enables the generation of a table which maps the address of an info table to an
approximate source position of where that info table statically originated from. If you
also want more precise information about constructor info tables then you should also
use -fdistinct-constructor-tables (page 622).
This flag will increase the binary size by quite a lot, depending on how big your project
is. For compiling a project the size of GHC the overhead was about 200 megabytes.

-fdistinct-constructor-tables

Since 9.2
For every usage of a data constructor in the source program a new info table will be cre-
ated. This is useful with -finfo-table-map (page 622) and the -hi (page 604) profiling
mode as each info table will correspond to the usage of a data constructor rather than
the data constructor itself.

622 Chapter 9. Debugging compiled programs

http://etheses.whiterose.ac.uk/8321/

GHC User’s Guide Documentation, Release 9.2.6

9.7 Querying the Info Table Map

If it is generated then the info table map can be used in two ways.
1. The whereFrom Haskell function can be used to determine the source position which we
think a specific closure was created.

2. The complete mapping is also dumped into the eventlog.
If you are using gdb then you can use the lookupIPE function (provided by IPE.h and exported
in the public API) directly in order to find any information which is known about the info table
for a specific closure.

9.7. Querying the Info Table Map 623

GHC User’s Guide Documentation, Release 9.2.6

624 Chapter 9. Debugging compiled programs

CHAPTER

TEN

WHAT TO DO WHEN SOMETHING GOES WRONG

If you still have a problem after consulting this section, then you may have found a bug—
please report it! See Reporting bugs in GHC (page 4) for details on how to report a bug and
a list of things we’d like to know about your bug. If in doubt, send a report — we love mail
from irate users :-!
(Haskell standards vs. Glasgow Haskell: language non-compliance (page 647), which de-
scribes Glasgow Haskell’s shortcomings vs. the Haskell language definition, may also be of
interest.)

10.1 When the compiler “does the wrong thing”

“Help! The compiler crashed (or panic’d)!” These events are always bugs in the GHC
system—please report them.

“This is a terrible error message.” If you think that GHC could have produced a better
error message, please report it as a bug.

“What about this warning from the C compiler?” For example: …warning: \`Foo' de-
clared \`static' but never defined. Unsightly, but shouldn’t be a problem.

Sensitivity to .hi interface files GHC is very sensitive about interface files. For example,
if it picks up a non-standard Prelude.hi file, pretty terrible things will happen.
Furthermore, as sketched below, youmay have big problems running programs compiled
using unstable interfaces.

“I think GHC is producing incorrect code” Unlikely :-) A useful be-more-paranoid option
to give to GHC is -dcore-lint-dcore-lint option; this causes a “lint” pass to check for
errors (notably type errors) after each Core-to-Core transformation pass. We run with
-dcore-lint on all the time; it costs about 5% in compile time.

Why did I get a link error? If the linker complains about not finding _<something>_fast,
then something is inconsistent: you probably didn’t compile modules in the proper de-
pendency order.

“Is this line number right?” On this score, GHC usually does pretty well, especially if you
“allow” it to be off by one or two. In the case of an instance or class declaration, the line
number may only point you to the declaration, not to a specific method.
Please report line-number errors that you find particularly unhelpful.

625

GHC User’s Guide Documentation, Release 9.2.6

10.2 When your program “does the wrong thing”

(For advice about overly slow or memory-hungry Haskell programs, please see Hints
(page 627)).
“Help! My program crashed!” (e.g., a “segmentation fault” or “core dumped”) segmenta-

tion fault
If your program has no foreign calls in it, and no calls to known-unsafe functions (such as
unsafePerformIO) then a crash is always a BUG in the GHC system, except in one case: If
your program is made of several modules, each module must have been compiled after
any modules on which it depends (unless you use .hi-boot files, in which case these
must be correct with respect to the module source).
For example, if an interface is lying about the type of an imported value then GHC may
well generate duff code for the importing module. This applies to pragmas inside inter-
faces too! If the pragma is lying (e.g., about the “arity” of a value), then duff code may
result. Furthermore, arities may change even if types do not.
In short, if you compile a module and its interface changes, then all the modules that
import that interface must be re-compiled.
A useful option to alert you when interfaces change is -ddump-hi-diffs option. It will
run diff on the changed interface file, before and after, when applicable.
If you are using make, GHC can automatically generate the dependencies required in
order tomake sure that everymodule is up-to-date with respect to its imported interfaces.
Please see Dependency generation (page 213).
If you are down to your last-compile-before-a-bug-report, we would recommend that you
add a -dcore-lint option (for extra checking) to your compilation options.
So, before you report a bug because of a core dump, you should probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -ddump-hi-diffs to highlight changes;

as mentioned above, use -dcore-lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets are off, because you
can trash the heap, the stack, or whatever.

“My program entered an ‘absent’ argument.” This is definitely caused by a bug in GHC.
Please report it (see Reporting bugs in GHC (page 4)).

“What’s with this arithmetic (or floating-point) exception?” Int, Float, and Double
arithmetic is unchecked. Overflows, underflows and loss of precision are either silent or
reported as an exception by the operating system (depending on the platform). Divide-
by-zero may cause an untrapped exception (please report it if it does).

626 Chapter 10. What to do when something goes wrong

CHAPTER

ELEVEN

HINTS

Please advise us of other “helpful hints” that should go here!

11.1 Sooner: producing a program more quickly

Don’t use -O (page 121) or (especially) -O2 (page 121): By using them, you are telling
GHC that you are willing to suffer longer compilation times for better-quality code.
GHC is surprisingly zippy for normal compilations without -O (page 121)!

Use more memory: Within reason, more memory for heap space means less garbage collec-
tion for GHC, which means less compilation time. If you use the -Rghc-timing option,
you’ll get a garbage-collector report. (Again, you can use the cheap-and-nasty +RTS -S
-RTS option to send the GC stats straight to standard error.)
If it says you’re using more than 20% of total time in garbage collecting, then more
memory might help: use the -H⟨size⟩ (see -H [⟨size⟩] (page 187)) option. Increasing
the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A⟨size⟩ -RTS option (see -A ⟨size⟩ (page 184)).
If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory! As soon as GHC plus its “fellow citizens” (other processes on
your machine) start using more than the real memory on your machine, and the machine
starts “thrashing,” the party is over. Compile times will be worse than terrible! Use
something like the csh builtin time command to get a report on how many page faults
you’re getting.
If you don’t know what virtual memory, thrashing, and page faults are, or you don’t
know the memory configuration of your machine, don’t try to be clever about memory
use: you’ll just make your life a misery (and for other people, too, probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be
large, it can take many real seconds to slurp the bits to/from a remote filesystem.
It would be quite sensible to compile on a fast machine using remotely-mounted disks;
then link on a slow machine that had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.
GHC compiles some program constructs slowly: We’d rather you reported such be-

haviour as a bug, so that we can try to correct it.
To figure out which part of the compiler is badly behaved, the -v2 option is your friend.

627

GHC User’s Guide Documentation, Release 9.2.6

11.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately in Profiling (page 593). There is no substitute for finding where your
program’s time/space is really going, as opposed to where you imagine it is going.
Another point to bear in mind: By far the best way to improve a program’s performance
dramatically is to use better algorithms. Once profiling has thrown the spotlight on the guilty
time-consumer(s), it may be better to re-think your program than to try all the tweaks listed
below.
Another extremely efficient way to make your program snappy is to use library code that has
been Seriously Tuned By Someone Else. You might be able to write a better quicksort than
the one in Data.List, but it will take you much longer than typing import Data.List.
Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credi-
ble competition in the performance department these days it’s hard to say what overly-slow
means, so just use your judgement! Of course, if a GHC compiled program runs slower than
the same program compiled with NHC or Hugs, then it’s definitely a bug.
Optimise, using -O or -O2: This is the most basic way to make your program go faster. Com-

pilation time will be slower, especially with -O2.
At present, -O2 is nearly indistinguishable from -O.

Compile via LLVM: The LLVM code generator (page 233) can sometimes do a far better job
at producing fast code than the native code generator (page 233). This is not universal
and depends on the code. Numeric heavy code seems to show the best improvement
when compiled via LLVM. You can also experiment with passing specific flags to LLVM
with the -optlo ⟨option⟩ (page 236) and -optlc ⟨option⟩ (page 236) flags. Be care-
ful though as setting these flags stops GHC from setting its usual flags for the LLVM
optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is
elegant, neat, etc., etc., but it is death to performance if left to linger in an inner loop.
How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported,
top-level functions is good software-engineering practice, anyway. (Tip: using the -
Wmissing-signatures (page 110) option can help enforce good signature-practice).
The automatic specialisation of overloaded functions (with -O) should take care of over-
loaded local and/or unexported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program.
See SPECIALIZE pragma (page 563) and SPECIALIZE instance pragma (page 566).

“But how do I know where overloading is creeping in?” A low-tech way: grep (search)
your interface files for overloaded type signatures. You can view interface files using
the --show-iface ⟨file⟩ (page 87) option (see Other options related to interface files
(page 203)).

$ ghc --show-iface Foo.hi | egrep '^[a-z].*::.*=>'

Strict functions are your dear friends: And, among other things, lazy pattern-matching is
your enemy.
(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

628 Chapter 11. Hints

GHC User’s Guide Documentation, Release 9.2.6

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.
A less contrived example shows the use of BangPatterns on lets to get stricter code (a
good thing):

f (Wibble x y)
= let

!(a1, b1, c1) = unpackFoo x
!(a2, b2, c2) = unpackFoo y

in ...

GHC loves single-constructor data-types: It’s all the better if a function is strict in a
single-constructor type (a type with only one data-constructor; for example, tuples are
single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a sin-
gle field, use a newtype declaration instead of a data declaration. The newtype will be
optimised away in most cases.

“How do I find out a function’s strictness?” Don’t guess—look it up.
Look for your function in the interface file, then for the third field in the pragma; it
should say Strictness: ⟨string⟩. The ⟨string⟩ gives the strictness of the function’s
arguments: see the GHC Commentary for a description of the strictness notation.
For an “unpackable” U(...) argument, the info inside tells the strictness of its com-
ponents. So, if the argument is a pair, and it says U(AU(LSS)), that means “the first
component of the pair isn’t used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”
If the function isn’t exported, just compile with the extra flag -ddump-simpl (page 254);
next to the signature for any binder, it will print the self-same pragmatic information as
would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain
functions that are used a lot can have a dramatic effect. See INLINE pragma (page 559).

Explicit export list: If you do not have an explicit export list in a module, GHC must assume
that everything in that module will be exported. This has various pessimising effects.
For example, if a bit of code is actually unused (perhaps because of unfolding effects),
GHC will not be able to throw it away, because it is exported and some other module
may be relying on its existence.
GHC can be quite a bit more aggressive with pieces of code if it knows they are not
exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your
compilation with -ddump-simpl (page 254) (don’t forget the -O (page 121)).
If profiling has pointed the finger at particular functions, look at their Core code. lets
are bad, cases are good, dictionaries (d.⟨Class⟩.⟨Unique⟩) [or anything overloading-
ish] are bad, nested lambdas are bad, explicit data constructors are good, primitive op-
erations (e.g., eqInt#) are good, ...

11.2. Faster: producing a program that runs quicker 629

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/demand

GHC User’s Guide Documentation, Release 9.2.6

Use strictness annotations: Putting a strictness annotation (!) on a constructor field helps
in two ways: it adds strictness to the program, which gives the strictness analyser more
to work with, and it might help to reduce space leaks.
It can also help in a third way: when used with -funbox-strict-fields (page 134) (see
-f*: platform-independent flags (page 121)), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be removed. Unpacking only
happens for single-constructor datatypes (Int is a good candidate, for example).
Using -funbox-strict-fields (page 134) is only really a good idea in conjunction with
-O (page 121), because otherwise the extra packing and unpacking won’t be optimised
away. In fact, it is possible that -funbox-strict-fields (page 134) may worsen perfor-
mance even with -O (page 121), but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you
want to get right down to the “raw bits.” Please see Unboxed types (page 509) for some
information about using unboxed types.
Before resorting to explicit unboxed types, try using strict constructor fields and -
funbox-strict-fields (page 134) first (see above). That way, your code stays portable.

Use foreign import (a GHC extension) to plug into fast libraries: This may take real
work, but… There exist piles of massively-tuned library code, and the best thing is not
to compete with it, but link with it.
Foreign function interface (FFI) (page 515) describes the foreign function interface.

Don’t use Floats: If you’re using Complex, definitely use Complex Double rather than Com-
plex Float (the former is specialised heavily, but the latter isn’t).
Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With Doubles, you are much less
likely to hang yourself with numerical errors.
One time when Float might be a good idea is if you have a lot of them, say a giant array
of Floats. They take up half the space in the heap compared to Doubles. However, this
isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic
arithmetic element types including Int and Char: see the Data.Array.Unboxed library
for details. These arrays are likely to be much faster than using standard Haskell 98
arrays from the Data.Array library.

Use a bigger heap! If your program’s GC stats (-S [⟨file⟩] (page 190) RTS option) indi-
cate that it’s doing lots of garbage-collection (say, more than 20% of execution time),
more memory might help — with the -H [⟨size⟩] (page 187) or -A ⟨size⟩ (page 184)
RTS options (see RTS options to control the garbage collector (page 183)). As a rule of
thumb, try setting -H [⟨size⟩] (page 187) to the amount of memory you’re willing to
let your process consume, or perhaps try passing -H [⟨size⟩] (page 187) without any
argument to let GHC calculate a value based on the amount of live data.

Compact your data: The GHC.Compact module provides a way to make garbage collection
more efficient for long-lived data structures. Compacting a data structure collects the
objects together in memory, where they are treated as a single object by the garbage
collector and not traversed individually.

630 Chapter 11. Hints

GHC User’s Guide Documentation, Release 9.2.6

11.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -funfolding-
use-threshold=0 (page 134) option for the extreme case. (“Only unfoldings with zero cost
should proceed.”) Warning: except in certain specialised cases (like Happy parsers) this is
likely to actually increase the size of your program, because unfolding generally enables extra
simplifying optimisations to be performed.
Avoid Prelude.Read.
Use strip on your executables.

11.4 Thriftier: producing a program that gobbles less
heap space

“I think I have a space leak...”
Re-run your program with +RTS -S (page 190), and remove all doubt! (You’ll see the heap
usage get bigger and bigger...) (Hmmm... this might be even easier with the -G1 (page 186)
RTS option; so... ./a.out +RTS -S -G1)
Once again, the profiling facilities (Profiling (page 593)) are the basic tool for demystifying
the space behaviour of your program.
Strict functions are good for space usage, as they are for time, as discussed in the previous
section. Strict functions get right down to business, rather than filling up the heap with
closures (the system’s notes to itself about how to evaluate something, should it eventually
be required).

11.5 Controlling inlining via optimisation flags.

Inlining is one of the major optimizations GHC performs. Partially because inlining often
allows other optimizations to be triggered. Sadly this is also a double edged sword. While
inlining can often cut through runtime overheads this usually comes at the cost of not just pro-
gram size, but also compiler performance. In extreme cases making it impossible to compile
certain code.
For this reason GHC offers various ways to tune inlining behaviour.

11.5.1 Unfolding creation

In order for a function from a different module to be inlined GHC requires the functions un-
folding. The following flags can be used to control unfolding creation. Making their creation
more or less likely:
• -fexpose-all-unfoldings (page 124)
• -funfolding-creation-threshold=⟨n⟩ (page 134)

11.3. Smaller: producing a program that is smaller 631

GHC User’s Guide Documentation, Release 9.2.6

11.5.2 Inlining decisions

If a unfolding is available the following flags can impact GHC’s decision about inlining a
specific binding.
• -funfolding-use-threshold=⟨n⟩ (page 134)
• -funfolding-case-threshold=⟨n⟩ (page 135)
• -funfolding-case-scaling=⟨n⟩ (page 135)
• -funfolding-dict-discount=⟨n⟩ (page 134)
• -funfolding-fun-discount=⟨n⟩ (page 134)

Should the simplifier run out of ticks because of a inlining loop users are encouraged to try de-
creasing -funfolding-case-threshold=⟨n⟩ (page 135) or -funfolding-case-scaling=⟨n⟩
(page 135) to limit inlining into deeply nested expressions while allowing a higher tick factor.
The defaults of these are tuned such that we don’t expect regressions for most user pro-
grams. Using a -funfolding-case-threshold=⟨n⟩ (page 135) of 1-2 with a -funfolding-
case-scaling=⟨n⟩ (page 135) of 15-25 can cause usually small runtime regressions but will
prevent most inlining loops from getting out of control.
In extreme cases lowering scaling and treshold further can be useful, but at that point it’s very
likely that beneficial inlining is prevented as well resulting in significant runtime regressions.
In such cases it’s recommended to move the problematic piece of code into it’s own module
and changing inline parameters for the offending module only.

11.5.3 Inlining generics

There are also flags specific to the inlining of generics:
• -finline-generics (page 130)
• -finline-generics-aggressively (page 130)

11.6 Understanding how OS memory usage corresponds
to live data

A confusing aspect about the RTS is the sometimes big difference between OS reported mem-
ory usage and the amount of live data reported by heap profiling or GHC.Stats.
There are two main factors which determine OS memory usage.
Firstly the collection strategy used by the oldest generation. By default a copying strategy is
used which requires at least 2 times the amount of currently live data in order to perform a
major collection. For example, if your program’s live data is 1G then you would expect the
OS to report at minimum 2G.
If instead you are using the compacting (-c (page 185)) or nonmoving (-xn (page 183)) strate-
gies for the oldest generation then less overhead is required as the strategy immediately
reuses already allocated memory by overwriting. For a program with heap size 1G then you
might expect the OS to report at minimum a small percentage above 1G.
Secondly, after doing some allocation GHC is quite reluctant to return the memory to the OS.
This is because after performing a major collection the program might still be allocating a lot

632 Chapter 11. Hints

GHC User’s Guide Documentation, Release 9.2.6

and it costs to have to request more memory. Therefore the RTS keeps an extra amount to
reuse which depends on the -F ⟨factor⟩ (page 185) option. By default the RTS will keep up
to (2 + F) * live_bytes after performing a major collection due to exhausting the available
heap. The default value is F = 2 so you can see OS memory usage reported to be as high as
4 times the amount used by your program.
Without further intervention, once your program has topped out at this high threshold, no
more memory would be returned to the OS so memory usage would always remain at 4 times
the live data. If you had a server with 1.5G live data, then if there was a memory spike up
to 6G for a short period, then OS reported memory would never dip below 6G. This is what
happened before GHC 9.2. In GHC 9.2 memory is gradually returned to the OS so OS memory
usage returns closer to the theoretical minimums.
The -Fd ⟨factor⟩ (page 185) option controls the rate at which memory is returned to the OS.
On consecutive major collections which are not triggered by heap overflows, a counter (t) is
increased and the F factor is inversly scaled according to the value of t and Fd. The factor is
scaled by the equation:

F′ = F× 2
−t
Fd

By default Fd = 4, increasing Fd decreases the rate memory is returned.
Major collections which are not triggered by heap overflows arise mainly in two ways.
1. Idle collections (controlled by -I ⟨seconds⟩ (page 187))
2. Explicit trigger using performMajorGC.

For example, idle collections happen by default after 0.3 seconds of inactivity. If you are
running your application and have also set -Iw30, so that the minimum period between idle
GCs is 30 seconds, then say you do a small amount of work every 5 seconds, there will be
about 10 idle collections about 5 minutes. This number of consecutive idle collections will
scale the F factor as follows:

F′ = 2× 2
−10
4 ≈ 0.35

and hence we will only retain (0.35 + 2) * live_bytes rather than the original 4 times. If
you want less frequent idle collections then you should also decrease Fd so that more memory
is returned each time a collection takes place.
If you set -Fd0 then GHC will not attempt to return memory, which corresponds with the
behaviour from releases prior to 9.2. You probably don’t want to do this as unless you have
idle periods in your program the behaviour will be similar anyway. If you want to retain a
specific amount of memory then it’s better to set -H1G in order to communicate that you are
happy with a heap size of 1G. If you do this then OS reported memory will never decrease
below this amount if it ever reaches this threshold.
The collecting strategy also affects the fragmentation of the heap and hence how easy it is to
return memory to a theoretical baseline. Memory is allocated firstly in the unit of megablocks
which is then further divided into blocks. Block-level fragmentation is how much unused
space within the allocated megablocks there is. In a fragmented heap there will be many
megablocks which are only partially full.
In theory the compacting strategy has a lower memory baseline but practically it can be
hard to reach the baseline due to how compacting never defragments. On the other hand,
the copying collecting has a higher theoretical baseline but we can often get very close to it
because the act of copying leads to lower fragmentation.
There are some other flags which affect the amount of retained memory as well. Setting the
maximum heap size using -M ⟨size⟩ (page 189) will make sure we don’t try and retain more

11.6. Understanding how OS memory usage corresponds to live data 633

GHC User’s Guide Documentation, Release 9.2.6

memory than the maximum size and explicitly setting -H [⟨size⟩] (page 187) will mean that
we will always try and retain at least H bytes irrespective of the amount of live data.

634 Chapter 11. Hints

CHAPTER

TWELVE

OTHER HASKELL UTILITY PROGRAMS

This section describes other program(s) which we distribute, that help with the Great Haskell
Programming Task.

12.1 “Yacc for Haskell”: happy

Andy Gill and Simon Marlow have written a parser-generator for Haskell, called happy. Happy
is to Haskell what Yacc is to C.
You can get happy from the Happy Homepage.
Happy is at its shining best when compiled by GHC.

12.2 Writing Haskell interfaces to C code: hsc2hs

The hsc2hs command can be used to automate some parts of the process of writing Haskell
bindings to C code. It reads an almost-Haskell source with embedded special constructs, and
outputs a real Haskell file with these constructs processed, based on information taken from
some C headers. The extra constructs deal with accessing C data from Haskell.
It may also output a C file which contains additional C functions to be linked into the program,
together with a C header that gets included into the C code to which the Haskell module will
be compiled (when compiled via C) and into the C file. These two files are created when the
#def construct is used (see below).
Actually hsc2hs does not output the Haskell file directly. It creates a C program that includes
the headers, gets automatically compiled and run. That program outputs the Haskell code.
In the following, “Haskell file” is the main output (usually a .hs file), “compiled Haskell file”
is the Haskell file after ghc has compiled it to C (i.e. a .hc file), “C program” is the program
that outputs the Haskell file, “C file” is the optionally generated C file, and “C header” is its
header file.

12.2.1 command line syntax

hsc2hs takes input files as arguments, and flags that modify its behavior:
-o FILE, --output=FILE Name of the Haskell file.
-t FILE, --template=FILE The template file (see below).
-c PROG, --cc=PROG The C compiler to use (default: gcc)

635

http://www.haskell.org/happy/

GHC User’s Guide Documentation, Release 9.2.6

-l PROG, --ld=PROG The linker to use (default: gcc).
-C FLAG, --cflag=FLAG An extra flag to pass to the C compiler.
-I DIR Passed to the C compiler.
-L FLAG, --lflag=FLAG An extra flag to pass to the linker.
-i FILE, --include=FILE As if the appropriate #include directive was placed in the source.
-D NAME[=VALUE], --define=NAME[=VALUE] As if the appropriate #define directive was

placed in the source.
--no-compile Stop after writing out the intermediate C program to disk. The file name for

the intermediate C program is the input file name with .hsc replaced with _hsc_make.c.
-k, --keep-files Proceed as normal, but do not delete any intermediate files.
-x, --cross-compile Activate cross-compilation mode (see Cross-compilation (page 638)).
--cross-safe Restrict the .hsc directives to those supported by the --cross-compile mode

(see Cross-compilation (page 638)). This should be useful if your .hsc files must be safely
cross-compiled and you wish to keep non-cross-compilable constructs from creeping into
them.

-?, --help Display a summary of the available flags and exit successfully.
-V, --version Output version information and exit successfully.
The input file should end with .hsc (it should be plain Haskell source only; literate Haskell is
not supported at the moment). Output files by default get names with the .hsc suffix replaced:
.hs Haskell file
_hsc.h C header
_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path to
HsFFI.h which is automatically included into the C program.

12.2.2 Input syntax

All special processing is triggered by the # operator. To output a literal #, write it twice: ##.
Inside string literals and comments # characters are not processed.
A # is followed by optional spaces and tabs, an alphanumeric keyword that describes the kind
of processing, and its arguments. Arguments look like C expressions separated by commas
(they are not written inside parens). They extend up to the nearest unmatched),] or }, or
to the end of line if it occurs outside any () [] {} '' "" /**/ and is not preceded by a
backslash. Backslash-newline pairs are stripped.
In addition #{stuff} is equivalent to #stuff except that it’s self-delimited and thus needs not
to be placed at the end of line or in some brackets.
Meanings of specific keywords:
#include <file.h>, #include "file.h" The specified file gets included into the C program,

the compiled Haskell file, and the C header. <HsFFI.h> is included automatically.
#define ⟨name⟩, #define ⟨name ⟨value⟩, #undef ⟨name⟩ Similar to #include. Note that

#includes and #defines may be put in the same file twice so they should not assume
otherwise.

636 Chapter 12. Other Haskell utility programs

GHC User’s Guide Documentation, Release 9.2.6

#let ⟨name⟩ ⟨parameters⟩ = "⟨definition⟩" Defines amacro to be applied to the Haskell
source. Parameter names are comma-separated, not inside parens. Such macro is in-
voked as other #-constructs, starting with #name. The definition will be put in the C
program inside parens as arguments of printf. To refer to a parameter, close the quote,
put a parameter name and open the quote again, to let C string literals concatenate. Or
use printf‘s format directives. Values of arguments must be given as strings, unless the
macro stringifies them itself using the C preprocessor’s #parameter syntax.

#def ⟨C_definition⟩ The definition (of a function, variable, struct or typedef) is written to
the C file, and its prototype or extern declaration to the C header. Inline functions are
handled correctly. struct definitions and typedefs are written to the C program too. The
inline, struct or typedef keyword must come just after def.

#if ⟨condition⟩, #ifdef ⟨name⟩, #ifndef ⟨name⟩, #elif ⟨condition⟩, #else, #endif, #error ⟨message⟩, #warning ⟨message⟩
Conditional compilation directives are passed unmodified to the C program, C file, and
C header. Putting them in the C program means that appropriate parts of the Haskell
file will be skipped.

#const ⟨C_expression⟩ The expression must be convertible to long or unsigned long. Its
value (literal or negated literal) will be output.

#const_str ⟨C_expression⟩ The expression must be convertible to const char pointer. Its
value (string literal) will be output.

#type ⟨C_type⟩ A Haskell equivalent of the C numeric type will be output. It will be one of
{Int,Word}{8,16,32,64}, Float, Double, LDouble.

#peek ⟨struct_type⟩,⟨field⟩ A function that peeks a field of a C struct will be output. It
will have the type Storable b => Ptr a -> IO b. The intention is that #peek and #poke
can be used for implementing the operations of class Storable for a given C struct (see
the Foreign.Storable module in the library documentation).

#poke ⟨struct_type⟩,⟨field⟩ Similarly for poke. It will have the type Storable b => Ptr
a -> b -> IO ().

#ptr ⟨struct_type⟩,⟨field⟩ Makes a pointer to a field struct. It will have the type Ptr a
-> Ptr b.

#offset ⟨struct_type⟩,⟨field⟩ Computes the offset, in bytes, of field in struct_type.
It will have type Int.

#size ⟨struct_type⟩ Computes the size, in bytes, of struct_type. It will have type Int.
#alignment ⟨struct_type⟩ Computes the alignment, in bytes, of struct_type. It will have

type Int.
#enum ⟨type⟩,⟨constructor⟩,⟨value⟩,⟨value⟩,... A shortcut for multiple definitions

which use #const. Each value is a name of a C integer constant, e.g. enumeration
value. The name will be translated to Haskell by making each letter following an un-
derscore uppercase, making all the rest lowercase, and removing underscores. You can
supply a different translation by writing hs_name = c_value instead of a value, in which
case c_valuemay be an arbitrary expression. The hs_name will be defined as having the
specified type. Its definition is the specified constructor (which in fact may be an ex-
pression or be empty) applied to the appropriate integer value. You can have multiple
#enum definitions with the same type; this construct does not emit the type definition
itself.

12.2. Writing Haskell interfaces to C code: hsc2hs 637

GHC User’s Guide Documentation, Release 9.2.6

12.2.3 Custom constructs

#const, #type, #peek, #poke and #ptr are not hardwired into the hsc2hs, but are defined
in a C template that is included in the C program: template-hsc.h. Custom constructs and
templates can be used too. Any #-construct with unknown key is expected to be handled by a
C template.
A C template should define a macro or function with name prefixed by hsc_ that handles the
construct by emitting the expansion to stdout. See template-hsc.h for examples.
Such macros can also be defined directly in the source. They are useful for making a #let-
like macro whose expansion uses other #let macros. Plain #let prepends hsc_ to the macro
name and wraps the definition in a printf call.

12.2.4 Cross-compilation

hsc2hs normally operates by creating, compiling, and running a C program. That approach
doesn’t work when cross-compiling — in this case, the C compiler’s generates code for the
target machine, not the host machine. For this situation, there’s a special mode hsc2hs --
cross-compile which can generate the .hs by extracting information from compilations only
— specifically, whether or not compilation fails.
Only a subset of .hsc syntax is supported by --cross-compile. The following are unsup-
ported:
• #{const_str}

• #{let}

• #{def}

• Custom constructs

638 Chapter 12. Other Haskell utility programs

CHAPTER

THIRTEEN

RUNNING GHC ON WIN32 SYSTEMS

13.1 Starting GHC on Windows platforms

The installer that installs GHC on Win32 also sets up the file-suffix associations for ”.hs” and
”.lhs” files so that double-clicking them starts ghci.
Be aware of that ghc and ghci do require filenames containing spaces to be escaped using
quotes:

c:\ghc\bin\ghci "c:\\Program Files\\Haskell\\Project.hs"

If the quotes are left off in the above command, ghci will interpret the filename as two,
c:\\\\Program and Files\\\\Haskell\\\\Project.hs.

13.2 Running GHCi on Windows

We recommend running GHCi in a standard Windows console: select the GHCi option from
the start menu item added by the GHC installer, or use Start->Run->cmd to get a Windows
console and invoke ghci from there (as long as it’s in your PATH).
If you run GHCi in a Cygwin or MSYS shell, then the Control-C behaviour is adversely affected.
In one of these environments you should use the ghcii.sh script to start GHCi, otherwise
when you hit Control-C you’ll be returned to the shell prompt but the GHCi process will still be
running. However, even using the ghcii.sh script, if you hit Control-C then the GHCi process
will be killed immediately, rather than letting you interrupt a running program inside GHCi as
it should. This problem is caused by the fact that the Cygwin and MSYS shell environments
don’t pass Control-C events to non-Cygwin child processes, because in order to do that there
needs to be a Windows console.
There’s an exception: you can use a Cygwin shell if the CYGWIN environment variable does not
contain tty. In this mode, the Cygwin shell behaves like a Windows console shell and console
events are propagated to child processes. Note that the CYGWIN environment variable must
be set before starting the Cygwin shell; changing it afterwards has no effect on the shell.
This problem doesn’t just affect GHCi, it affects any GHC-compiled program that wants to
catch console events. See the GHC.ConsoleHandler module.

639

GHC User’s Guide Documentation, Release 9.2.6

13.3 Interacting with the terminal

By default GHC builds applications that open a console window when they start. If you want
to build a GUI-only application, with no console window, use the flag -optl-mwindows in the
link step.

Warning: Windows GUI-only programs have no stdin, stdout or stderr so using the ordi-
nary Haskell input/output functions will cause your program to fail with an IO exception,
such as:
Fail: <stdout>: hPutChar: failed (Bad file descriptor)

However using Debug.Trace.trace is alright because it uses Windows debugging output
support rather than stderr.

For some reason, Mingw ships with the readline library, but not with the readline headers.
As a result, GHC (like Hugs) does not use readline for interactive input on Windows. You
can get a close simulation by using an emacs shell buffer!

13.4 Differences in library behaviour

Some of the standard Haskell libraries behave slightly differently on Windows.
• On Windows, the ^Z character is interpreted as an end-of-file character, so if you read a
file containing this character the file will appear to end just before it. To avoid this, use
IOExts.openFileEx to open a file in binary (untranslated) mode or change an already
opened file handle into binary mode using IOExts.hSetBinaryMode. The IOExtsmodule
is part of the lang package.

13.5 File paths under Windows

Windows paths are not all the same. The different kinds of paths each have different meanings.
The MAX_PATH limitation is not a limitation of the operating system nor the file system. It is a
limitation of the default namespace enforced by the Win32 API for backwards compatibility.
The NT kernel however allows you ways to opt out of this path preprocessing by the Win32
APIs. This is done by explicitly using the desired namespace in the path.
The namespaces are:
• file namespace: \\?\
• device namespace: \\.\
• NT namespace: \

Each of these turn off path processing completely by the Win32 API and the paths are passed
untouched to the filesystem.
Paths with a drive letter are legacy paths. The drive letters are actually meaningless to the
kernel. Just like Unix operating systems, drive letters are just a mount point. You can view
your mount points by using the mountvol command.

640 Chapter 13. Running GHC on Win32 systems

GHC User’s Guide Documentation, Release 9.2.6

Since GHC 8.6.1, the Haskell I/O manager automatically promotes paths in the legacy format
to Win32 file namespace. By default the I/O manager will do two things to your paths:
• replace \ with \\
• expand relative paths to absolute paths

If you want to opt out of all preprocessing just explicitly use namespaces in your paths. Due
to this change, if you need to open raw devices (e.g. COM ports) you need to use the device
namespace explicitly. (e.g. \\.\COM1). GHC and Haskell programs in general no longer
support opening devices in the legacy format.
See the Windows documentation for more details.

13.6 Using GHC (and other GHC-compiled executables)
with Cygwin

13.6.1 Background

The Cygwin tools aim to provide a Unix-style API on top of the windows libraries, to facilitate
ports of Unix software to windows. To this end, they introduce a Unix-style directory hierarchy
under some root directory (typically / is C:\cygwin\). Moreover, everything built against the
Cygwin API (including the Cygwin tools and programs compiled with Cygwin’s GHC) will see
/ as the root of their file system, happily pretending to work in a typical unix environment, and
finding things like /bin and /usr/include without ever explicitly bothering with their actual
location on the windows system (probably C:\cygwin\bin and C:\cygwin\usr\include).

13.6.2 The problem

GHC, by default, no longer depends on cygwin, but is a native Windows program. It is built
using mingw, and it uses mingw’s GHC while compiling your Haskell sources (even if you
call it from cygwin’s bash), but what matters here is that - just like any other normal windows
program - neither GHC nor the executables it produces are aware of Cygwin’s pretended unix
hierarchy. GHC will happily accept either / or \\ as path separators, but it won’t know where
to find /home/joe/Main.hs or /bin/bash or the like. This causes all kinds of fun when GHC
is used from within Cygwin’s bash, or in make-sessions running under Cygwin.

13.6.3 Things to do

• Don’t use absolute paths in make, configure & co if there is any chance that those might
be passed to GHC (or to GHC-compiled programs). Relative paths are fine because cyg-
win tools are happy with them and GHC accepts / as path-separator. And relative paths
don’t depend on where Cygwin’s root directory is located, or on which partition or net-
work drive your source tree happens to reside, as long as you cd there first.

• If you have to use absolute paths (beware of the innocent-looking ROOT=$(pwd) in make-
file hierarchies or configure scripts), Cygwin provides a tool called cygpath that can
convert Cygwin’s Unix-style paths to their actual Windows-style counterparts. Many
Cygwin tools actually accept absolute Windows-style paths (remember, though, that you
either need to escape \\ or convert \\ to /), so you should be fine just using those ev-
erywhere. If you need to use tools that do some kind of path-mangling that depends on
unix-style paths (one fun example is trying to interpret : as a separator in path lists),

13.6. Using GHC (and other GHC-compiled executables) with Cygwin 641

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247.aspx

GHC User’s Guide Documentation, Release 9.2.6

you can still try to convert paths using cygpath just before they are passed to GHC and
friends.

• If you don’t have cygpath, you probably don’t have cygwin and hence no problems with
it... unless you want to write one build process for several platforms. Again, relative
paths are your friend, but if you have to use absolute paths, and don’t want to use differ-
ent tools on different platforms, you can simply write a short Haskell program to print
the current directory (thanks to George Russell for this idea): compiled with GHC, this
will give you the view of the file system that GHC depends on (which will differ depend-
ing on whether GHC is compiled with cygwin’s gcc or mingw’s gcc or on a real Unix
system..) - that little program can also deal with escaping \\ in paths. Apart from the
banner and the startup time, something like this would also do:

$ echo "Directory.getCurrentDirectory >>= putStrLn . init . tail . show " | ghci

13.7 Building and using Win32 DLLs

Dynamic link libraries, Win32 DLLs, Win32 On Win32 platforms, the compiler is capable of
both producing and using dynamic link libraries (DLLs) containing ghc-compiled code. This
section shows you how to make use of this facility.
There are two distinct ways in which DLLs can be used:
• You can turn each Haskell package into a DLL, so that multiple Haskell executables using
the same packages can share the DLL files. (As opposed to linking the libraries statically,
which in effect creates a new copy of the RTS and all libraries for each executable pro-
duced.)
That is the same as the dynamic linking on other platforms, and it is described in Using
shared libraries (page 247).

• You can package up a complete Haskell program as a DLL, to be called by some external
(usually non-Haskell) program. This is usually used to implement plugins and the like,
and is described below.

13.7.1 Creating a DLL

Creating aWin32 DLL -shared Sealing up your Haskell library inside a DLL is straightforward;
compile up the object files that make up the library, and then build the DLL by issuing a
command of the form:

ghc -shared -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option -shared, it will build a DLL rather than produce
an executable. The DLL will consist of all the object files and archives given on the command
line.
A couple of things to notice:
• By default, the entry points of all the object files will be exported from the DLL when
using -shared. Should you want to constrain this, you can specify the module definition
file to use on the command line as follows:

ghc -shared -o MyDef.def

642 Chapter 13. Running GHC on Win32 systems

GHC User’s Guide Documentation, Release 9.2.6

See Microsoft documentation for details, but a module definition file simply lists what
entry points you want to export. Here’s one that’s suitable when building a Haskell COM
server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the -shared option also creates an import library. The
import library name is derived from the name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool.dll.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-
existence of import libraries with ordinary static libraries (e.g., libHSfoo.a and libHS-
foo.dll.a. Additionally, when the compiler driver is linking in non-static mode, it will
rewrite occurrence of -lHSfoo on the command line to -lHSfoo.dll. By doing this for
you, switching from non-static to static linking is simply a question of adding -static to
your command line.

13.7.2 Making DLLs to be called from other languages

This section describes how to create DLLs to be called from other languages, such as Visual
Basic or C++. This is a special case of Making a Haskell library that can be called from
foreign code (page 525); we’ll deal with the DLL-specific issues that arise below. Here’s an
example:
Use foreign export declarations to export the Haskell functions you want to call from the
outside. For example:

-- Adder.hs
{-# LANGUAGE ForeignFunctionInterface #-}
module Adder where

adder :: Int -> Int -> IO Int -- gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

Add some helper code that starts up and shuts down the Haskell RTS:

// StartEnd.c
#include <Rts.h>

void HsStart()
{

int argc = 1;
char* argv[] = {"ghcDll", NULL}; // argv must end with NULL

// Initialize Haskell runtime
char** args = argv;
hs_init(&argc, &args);

}

13.7. Building and using Win32 DLLs 643

GHC User’s Guide Documentation, Release 9.2.6

void HsEnd()
{

hs_exit();
}

Here, Adder is the name of the root module in the module tree (as mentioned above, there
must be a single root module, and hence a single module tree in the DLL). Compile everything
up:

ghc -c Adder.hs
ghc -c StartEnd.c
ghc -shared -o Adder.dll Adder.o Adder_stub.o StartEnd.o

Now the file Adder.dll can be used from other programming languages. Before calling any
functions in Adder it is necessary to call HsStart, and at the very end call HsEnd.

Warning: It may appear tempting to use DllMain to call hs_init/hs_exit, but this won’t
work (particularly if you compile with -threaded). There are severe restrictions on which
actions can be performed during DllMain, and hs_init violates these restrictions, which
can lead to your DLL freezing during startup (see #3605).

Using from VBA

An example of using Adder.dll from VBA is:

Private Declare Function Adder Lib "Adder.dll" Alias "adder@8" _
(ByVal x As Long, ByVal y As Long) As Long

Private Declare Sub HsStart Lib "Adder.dll" ()
Private Declare Sub HsEnd Lib "Adder.dll" ()

Private Sub Document_Close()
HsEnd
End Sub

Private Sub Document_Open()
HsStart
End Sub

Public Sub Test()
MsgBox "12 + 5 = " & Adder(12, 5)
End Sub

This example uses the Document_Open/Close functions of Microsoft Word, but provided
HsStart is called before the first function, and HsEnd after the last, then it will work fine.

Using from C++

An example of using Adder.dll from C++ is:

// Tester.cpp
#include "HsFFI.h"
#include "Adder_stub.h"

644 Chapter 13. Running GHC on Win32 systems

https://gitlab.haskell.org/ghc/ghc/issues/3605

GHC User’s Guide Documentation, Release 9.2.6

#include <stdio.h>

extern "C" {
void HsStart();
void HsEnd();

}

int main()
{

HsStart();
// can now safely call functions from the DLL
printf("12 + 5 = %i\n", adder(12,5)) ;
HsEnd();
return 0;

}

This can be compiled and run with:

$ ghc -o tester Tester.cpp Adder.dll.a
$ tester
12 + 5 = 17

13.7. Building and using Win32 DLLs 645

GHC User’s Guide Documentation, Release 9.2.6

646 Chapter 13. Running GHC on Win32 systems

CHAPTER

FOURTEEN

KNOWN BUGS AND INFELICITIES

14.1 Haskell standards vs. Glasgow Haskell: language
non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98 and
Haskell 2010. See also the “when things go wrong” section (What to do when something
goes wrong (page 625)) for information about crashes, space leaks, and other undesirable
phenomena.
The limitations here are listed in Haskell Report order (roughly).

14.1.1 Divergence from Haskell 98 and Haskell 2010

GHC aims to be able to behave (mostly) like a Haskell 98 or Haskell 2010 compiler, if you tell
it to try to behave like that with the Haskell98 (page 263) and Haskell2010 (page 262) flags.
The known deviations from the standards are described below. Unless otherwise stated, the
deviation applies in both Haskell 98 and Haskell 2010 mode.

Lexical syntax

• Certain lexical rules regarding qualified identifiers are slightly different in GHC com-
pared to the Haskell report. When you have ⟨module⟩.⟨reservedop⟩, such as M.\, GHC
will interpret it as a single qualified operator rather than the two lexemes M and .\.

• forall is always a reserved keyword at the type level, contrary to the Haskell Report,
which allows type variables to be named forall. Note that this does not imply that GHC
always enables the ExplicitForAll (page 466) extension. Even without this extension
enabled, reserving forall as a keyword has significance. For instance, GHC will not
parse the type signature foo :: forall x.

• The (!) operator, when written in prefix form (preceded by whitespace and not fol-
lowed by whitespace, as in f !x = ...), is interpreted as a bang pattern, contrary to
the Haskell Report, which prescribes to treat ! as an operator regardless of surround-
ing whitespace. Note that this does not imply that GHC always enables BangPatterns
(page 498). Without the extension, GHCwill issue a parse error on f !x, asking to enable
the extension.

• Irrefutable patterns must be written in prefix form:

f ~a ~b = ... -- accepted by both GHC and the Haskell Report
f ~ a ~ b = ... -- accepted by the Haskell Report but not GHC

647

GHC User’s Guide Documentation, Release 9.2.6

When written in non-prefix form, (~) is treated by GHC as a regular infix operator.
See GHC Proposal #229 for the precise rules.

• Strictness annotations in data declarations must be written in prefix form:

data T = MkT !Int -- accepted by both GHC and the Haskell Report
data T = MkT ! Int -- accepted by the Haskell Report but not GHC

See GHC Proposal #229 for the precise rules.
• As-patterns must not be surrounded by whitespace on either side:

f p@(x, y, z) = ... -- accepted by both GHC and the Haskell Report

-- accepted by the Haskell Report but not GHC:
f p @ (x, y, z) = ...
f p @(x, y, z) = ...
f p@ (x, y, z) = ...

When surrounded by whitespace on both sides, (@) is treated by GHC as a regular infix
operator.
When preceded but not followed by whitespace, (@) is treated as a visible type applica-
tion.
See GHC Proposal #229 for the precise rules.

Context-free syntax

• In Haskell 98 mode (but not in Haskell 2010 mode), GHC is a little less strict about
the layout rule when used in do expressions. Specifically, the restriction that “a nested
context must be indented further to the right than the enclosing context” is relaxed to
allow the nested context to be at the same level as the enclosing context, if the enclosing
context is a do expression.
For example, the following code is accepted by GHC:

main = do args <- getArgs
if null args then return [] else do
ps <- mapM process args
mapM print ps

This behaviour is controlled by the NondecreasingIndentation (page 648) extension.
NondecreasingIndentation

Since 7.2.1
Allow nested contexts to be at the same indentation level as its enclosing context.

• GHC doesn’t do the fixity resolution in expressions during parsing as required by
Haskell 98 (but not by Haskell 2010). For example, according to the Haskell 98 report,
the following expression is legal:

let x = 42 in x == 42 == True

and parses as:

648 Chapter 14. Known bugs and infelicities

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.2.6

(let x = 42 in x == 42) == True

because according to the report, the let expression “extends as far to the right as possi-
ble”. Since it can’t extend past the second equals sign without causing a parse error (==
is non-fix), the let-expression must terminate there. GHC simply gobbles up the whole
expression, parsing like this:

(let x = 42 in x == 42 == True)

Expressions and patterns

By default, GHC makes some programs slightly more defined than they should be. For exam-
ple, consider

f :: [a] -> b -> b
f [] = error "urk"
f (x:xs) = \v -> v

main = print (f [] `seq` True)

This should call error but actually prints True. Reason: GHC eta-expands f to

f :: [a] -> b -> b
f [] v = error "urk"
f (x:xs) v = v

This improves efficiency slightly but significantly for most programs, and is bad for only a few.
To suppress this bogus “optimisation” use -fpedantic-bottoms.

Failable patterns

Since the MonadFail Proposal (MFP), do-notation blocks that contain a failable pattern need
a MonadFail constraint.
For example

mayFail :: (MonadIO m) => m ()
mayFail = do
(Just value) <- fetchData
putStrLn value

Will warn you with

• Could not deduce (MonadFail m)
arising from a do statement
with the failable pattern ‘(Just x)’

from the context: MonadIO m
bound by the type signature for:

mayFail :: forall (m :: * -> *). MonadIO m => m ()

And indeed, since the Monad class does not have the fail method anymore, we need to
explicitly add (MonadFail m) to the constraints of the function.

14.1. Haskell standards vs. Glasgow Haskell: language non-compliance 649

https://gitlab.haskell.org/haskell/prime/-/wikis/libraries/proposals/monad-fail
https://hackage.haskell.org/package/base-4.14.1.0/docs/Control-Monad-Fail.html#t:MonadFail
https://hackage.haskell.org/package/base-4.14.1.0/docs/Control-Monad.html#t:Monad

GHC User’s Guide Documentation, Release 9.2.6

Typechecking of recursive binding groups

The Haskell Report specifies that a group of bindings (at top level, or in a let or where) should
be sorted into strongly-connected components, and then type-checked in dependency order
(Haskell Report, Section 4.5.1). As each group is type-checked, any binders of the group that
have an explicit type signature are put in the type environment with the specified polymorphic
type, and all others are monomorphic until the group is generalised (Haskell Report, Section
4.5.2).
Following a suggestion ofMark Jones, in his paper TypingHaskell in Haskell, GHC implements
a more general scheme. In GHC the dependency analysis ignores references to variables
that have an explicit type signature. As a result of this refined dependency analysis, the
dependency groups are smaller, and more bindings will typecheck. For example, consider:

f :: Eq a => a -> Bool
f x = (x == x) || g True || g "Yes"

g y = (y <= y) || f True

This is rejected by Haskell 98, but under Jones’s scheme the definition for g is typechecked
first, separately from that for f, because the reference to f in g‘s right hand side is ignored
by the dependency analysis. Then g‘s type is generalised, to get

g :: Ord a => a -> Bool

Now, the definition for f is typechecked, with this type for g in the type environment.
The same refined dependency analysis also allows the type signatures of mutually-recursive
functions to have different contexts, something that is illegal in Haskell 98 (Section 4.5.2, last
sentence). GHC only insists that the type signatures of a refined group have identical type
signatures; in practice this means that only variables bound by the same pattern binding must
have the same context. For example, this is fine:

f :: Eq a => a -> Bool
f x = (x == x) || g True

g :: Ord a => a -> Bool
g y = (y <= y) || f True

Default Module headers with -main-is

The Haskell2010 Report specifies in <https://www.haskell.org/onlinereport/haskell2010/
haskellch5.html#x11-990005.1> that

“An abbreviated form of module, consisting only of the module body, is per-
mitted. If this is used, the header is assumed to be module Main(main) where.”

GHC’s -main-is option can be used to change the name of the top-level entry point from
main to any other variable. When compiling the main module and -main-is has been used
to rename the default entry point, GHC will also use the alternate name in the default export
list.
Consider the following program:

-- file: Main.hs
program :: IO ()
program = return ()

650 Chapter 14. Known bugs and infelicities

http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
https://web.cecs.pdx.edu/~mpj/thih/
https://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-990005.1
https://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-990005.1

GHC User’s Guide Documentation, Release 9.2.6

GHC will successfully compile this module with ghc -main-is Main.program Main.hs, be-
cause the default export list will include program rather than main, as the Haskell Report
typically requires.
This change only applies to the main module. Other modules will still export main from a
default export list, regardless of the -main-is flag. This allows use of -main-is with existing
modules that export main via a default export list, even when -main-is points to a different
entry point, as in this example (compiled with -main-is MainWrapper.program).

-- file MainWrapper.hs
module MainWrapper where
import Main

program :: IO ()
program = putStrLn "Redirecting..." >> main

-- file Main.hs
main :: IO ()
main = putStrLn "I am main."

Module system and interface files

GHC requires the use of hs-boot files to cut the recursive loops among mutually recursive
modules as described in How to compile mutually recursive modules (page 205). This more
of an infelicity than a bug: the Haskell Report says (Section 5.7)

“Depending on the Haskell implementation used, separate compilation of mutually
recursive modules may require that imported modules contain additional informa-
tion so that they may be referenced before they are compiled. Explicit type signa-
tures for all exported values may be necessary to deal with mutual recursion. The
precise details of separate compilation are not defined by this Report.”

Numbers, basic types, and built-in classes

Num superclasses The Num class does not have Show or Eq superclasses.
You can make code that works with both Haskell98/Haskell2010 and GHC by:
• Whenever you make a Num instance of a type, also make Show and Eq instances, and
• Whenever you give a function, instance or class a Num t constraint, also give it Show
t and Eq t constraints.

Bits superclass The Bits class does not have a Num superclass. It therefore does not have
default methods for the bit, testBit and popCount methods.
You can make code that works with both Haskell 2010 and GHC by:
• Whenever you make a Bits instance of a type, also make a Num instance, and
• Whenever you give a function, instance or class a Bits t constraint, also give it a
Num t constraint, and

• Always define the bit, testBit and popCount methods in Bits instances.
Read class methods The Read class has two extra methods, readPrec and readListPrec,

that are not found in the Haskell 2010 since they rely on the ReadPrec data type, which
requires the RankNTypes (page 372) extension. GHC also derives Read instances by im-
plementing readPrec instead of readsPrec, and relies on a default implementation of

14.1. Haskell standards vs. Glasgow Haskell: language non-compliance 651

http://haskell.org/onlinereport/modules.html#sect5.7

GHC User’s Guide Documentation, Release 9.2.6

readsPrec that is defined in terms of readPrec. GHC adds these two extra methods
simply because ReadPrec is more efficient than ReadS (the type on which readsPrec is
based).

Monad superclass The Monad class has an Applicative superclass. You cannot write Monad
instances that work for GHC and also for a Haskell 2010 implementation that does not
define Applicative.

Extra instances The following extra instances are defined:

instance Functor ((->) r)
instance Monad ((->) r)
instance Functor ((,) a)
instance Functor (Either a)
instance Monad (Either e)

Multiply-defined array elements not checked This code fragment should elicit a fatal er-
ror, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

GHC’s implementation of array takes the value of an array slot from the last (index,value)
pair in the list, and does no checking for duplicates. The reason for this is efficiency, pure
and simple.

In Prelude support

splitAt semantics Data.List.splitAt is more strict than specified in the Report. Specifi-
cally, the Report specifies that

splitAt n xs = (take n xs, drop n xs)

which implies that

splitAt undefined undefined = (undefined, undefined)

but GHC’s implementation is strict in its first argument, so

splitAt undefined [] = undefined

Showing records The Haskell 2010 definition of Show stipulates that the rendered string
should only include parentheses which are necessary to unambiguously parse the re-
sult. For historical reasons, Show instances derived by GHC include parentheses around
records despite the fact that record syntax binds more tightly than function application;
e.g.,

data Hello = Hello { aField :: Int } deriving (Show)

-- GHC produces...
show (Just (Hello {aField=42})) == "Just (Hello {aField=42})"

-- whereas Haskell 2010 calls for...
show (Just (Hello {aField=42})) == "Just Hello {aField=42}"

Reading integers GHC’s implementation of the Read class for integral types accepts hex-
adecimal and octal literals (the code in the Haskell 98 report doesn’t). So, for example,

652 Chapter 14. Known bugs and infelicities

GHC User’s Guide Documentation, Release 9.2.6

read "0xf00" :: Int

works in GHC.
A possible reason for this is that readLitChar accepts hex and octal escapes, so it seems
inconsistent not to do so for integers too.

isAlpha The Haskell 98 definition of isAlpha is:

isAlpha c = isUpper c || isLower c

GHC’s implementation diverges from the Haskell 98 definition in the sense that Unicode
alphabetic characters which are neither upper nor lower case will still be identified as
alphabetic by isAlpha.

hGetContents Lazy I/O throws an exception if an error is encountered, in contrast to the
Haskell 98 spec which requires that errors are discarded (see Section 21.2.2 of the
Haskell 98 report). The exception thrown is the usual IO exception that would be thrown
if the failing IO operation was performed in the IO monad, and can be caught by Sys-
tem.IO.Error.catch or Control.Exception.catch.

The Foreign Function Interface

hs_init(), hs_exit() The FFI spec requires the implementation to support re-initialising
itself after being shut down with hs_exit(), but GHC does not currently support that.
See #13693.

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010

This section documents GHC’s take on various issues that are left undefined or implementa-
tion specific in Haskell 98.
Char Following the ISO-10646 standard, maxBound :: Char in GHC is 0x10FFFF.
Int In GHC the Int type follows the size of an address on the host architecture; in other

words it holds 32 bits on a 32-bit machine, and 64-bits on a 64-bit machine.
Arithmetic on Int is unchecked for overflowInt, so all operations on Int happen modulo
2⟨n⟩ where ⟨n⟩ is the size in bits of the Int type.
The fromInteger (and hence also fromIntegral) is a special case when converting to
Int. The value of fromIntegral x :: Int is given by taking the lower ⟨n⟩ bits of (abs
x), multiplied by the sign of x (in 2’s complement ⟨n⟩-bit arithmetic). This behaviour was
chosen so that for example writing 0xffffffff :: Int preserves the bit-pattern in the
resulting Int.
Negative literals, such as -3, are specified by (a careful reading of) the Haskell Re-
port as meaning Prelude.negate (Prelude.fromInteger 3). So -2147483648 means
negate (fromInteger 2147483648). Since fromInteger takes the lower 32 bits of
the representation, fromInteger (2147483648::Integer), computed at type Int is -
2147483648::Int. The negate operation then overflows, but it is unchecked, so negate
(-2147483648::Int) is just -2147483648. In short, one can write minBound::Int as a
literal with the expected meaning (but that is not in general guaranteed).

14.1. Haskell standards vs. Glasgow Haskell: language non-compliance 653

https://gitlab.haskell.org/ghc/ghc/issues/13693

GHC User’s Guide Documentation, Release 9.2.6

The fromIntegral function also preserves bit-patterns when converting between the
sized integral types (Int8, Int16, Int32, Int64 and the unsigned Word variants), see the
modules Data.Int and Data.Word in the library documentation.

Unchecked floating-point arithmetic Operations on Float and Double numbers are
unchecked for overflow, underflow, and other sad occurrences. (note, however, that
some architectures trap floating-point overflow and loss-of-precision and report a
floating-point exception, probably terminating the program)

Large tuple support The Haskell Report only requires implementations to provide tuple
types and their accompanying standard instances up to size 15. GHC limits the size
of tuple types to 62 and provides instances of Eq, Ord, Bounded, Read, Show, and Ix for
tuples up to size 15.

14.2 Known bugs or infelicities

The bug tracker lists bugs that have been reported in GHC but not yet fixed: see the GHC
issue tracker. In addition to those, GHC also has the following known bugs or infelicities.
These bugs are more permanent; it is unlikely that any of them will be fixed in the short term.

14.2.1 Bugs in GHC

• readIORef from Data.IORef is missing memory barriers and might result in inconsistent
or unsafe behaviour in multithreaded programs on architectures with weaker memory
models such as AArch64. See #22468 for more details.

• isByteArrayPinned# considers large ByteArray#‘s pinned, even if they were not explic-
itly pinned. This is incorrect if the ‘ByteArray# is subsequently added to a compact
region as the ByteArray# will be moved in the process. See #22255 for more details.

• GHC’s runtime system implements cooperative multitasking, with context switching po-
tentially occurring only when a program allocates. This means that programs that do
not allocate may never context switch. This is especially true of programs using STM,
which may deadlock after observing inconsistent state. See #367 for further discussion.
If you are hit by this, you may want to compile the affected module with -fno-omit-
yields (page 127) (see -f*: platform-independent flags (page 121)). This flag ensures
that yield points are inserted at every function entrypoint (at the expense of a bit of
performance).

• GHC does not allow you to have a data type with a context that mentions type variables
that are not data type parameters. For example:

data C a b => T a = MkT a

so that MkT‘s type is

MkT :: forall a b. C a b => a -> T a

In principle, with a suitable class declaration with a functional dependency, it’s possible
that this type is not ambiguous; but GHC nevertheless rejects it. The type variables
mentioned in the context of the data type declarationmust be among the type parameters
of the data type.

654 Chapter 14. Known bugs and infelicities

https://gitlab.haskell.org/ghc/ghc/issues
https://gitlab.haskell.org/ghc/ghc/issues
https://gitlab.haskell.org/ghc/ghc/issues/22468
https://gitlab.haskell.org/ghc/ghc/issues/22255
https://gitlab.haskell.org/ghc/ghc/issues/367

GHC User’s Guide Documentation, Release 9.2.6

• GHC’s inliner can be persuaded into non-termination using the standard way to encode
recursion via a data type:

data U = MkU (U -> Bool)

russel :: U -> Bool
russel u@(MkU p) = not $ p u

x :: Bool
x = russel (MkU russel)

The non-termination is reported like this:

ghc: panic! (the 'impossible' happened)
(GHC version 8.2.1 for x86_64-unknown-linux):
Simplifier ticks exhausted

When trying UnfoldingDone x_alB
To increase the limit, use -fsimpl-tick-factor=N (default 100)

with the panic being reported no matter how high a -fsimpl-tick-factor (page 128)
you supply.
We have never found another class of programs, other than this contrived one, thatmakes
GHC diverge, and fixing the problem would impose an extra overhead on every compi-
lation. So the bug remains un-fixed. There is more background in Secrets of the GHC
inliner.

• On 32-bit x86 platforms when using the native code generator, the -fexcess-precision
(page 124) option is always on. This means that floating-point calculations are non-
deterministic, because depending on how the program is compiled (optimisation set-
tings, for example), certain calculations might be done at 80-bit precision instead of the
intended 32-bit or 64-bit precision. Floating-point results may differ when optimisation
is turned on. In the worst case, referential transparency is violated, because for example
let x = E1 in E2 can evaluate to a different value than E2[E1/x].
One workaround is to use the -msse2 (page 97) option (see Platform-specific Flags
(page 96)), which generates code to use the SSE2 instruction set instead of the x87
instruction set. SSE2 code uses the correct precision for all floating-point operations,
and so gives deterministic results. However, note that this only works with processors
that support SSE2 (Intel Pentium 4 or AMD Athlon 64 and later), which is why the option
is not enabled by default. The libraries that come with GHC are probably built without
this option, unless you built GHC yourself.

• The state hack (page 127) optimization can result in non-obvious changes in evaluation
ordering which may hide exceptions, even with -fpedantic-bottoms (page 127) (see,
e.g., #7411). For instance,

import Control.Exception
import Control.DeepSeq
main = do

evaluate (('a' : undefined) `deepseq` return () :: IO ())
putStrLn "Hello"

Compiling this program with -O results in Hello to be printed, despite the fact that
evaluate should have bottomed. Compiling with -O -fno-state-hack results in the
exception one would expect.

• Programs compiled with -fdefer-type-errors (page 102) may fail a bit more eagerly
than one might expect. For instance,

14.2. Known bugs or infelicities 655

http://research.microsoft.com/~simonpj/Papers/inlining/
http://research.microsoft.com/~simonpj/Papers/inlining/
https://gitlab.haskell.org/ghc/ghc/issues/7411

GHC User’s Guide Documentation, Release 9.2.6

{-# OPTIONS_GHC -fdefer-type-errors #-}
main = do

putStrLn "Hi there."
putStrLn True

Will emit no output, despite the fact that the ill-typed term appears after the well-typed
putStrLn "Hi there.". See #11197.

• Despite appearances * and Constraint aren’t really distinct kinds in the compiler’s in-
ternal representation and can be unified producing unexpected results. See #11715 for
one example.

• Because of a toolchain limitation we are unable to support full Unicode paths onWindows.
On Windows we support up to Latin-1. See #12971 for more.

14.2.2 Bugs in GHCi (the interactive GHC)

• GHCi does not respect the default declaration in the module whose scope you are in.
Instead, for expressions typed at the command line, you always get the default default-
type behaviour; that is, default(Int,Double).
It would be better for GHCi to record what the default settings in each module are, and
use those of the ‘current’ module (whatever that is).

• On Windows, there’s a GNU ld/BFD bug whereby it emits bogus PE object files that have
more than 0xffff relocations. When GHCi tries to load a package affected by this bug,
you get an error message of the form

Loading package javavm ... linking ... WARNING: Overflown relocation field (#␣
↪→relocs found: 30765)

The last time we looked, this bug still wasn’t fixed in the BFD codebase, and there wasn’t
any noticeable interest in fixing it when we reported the bug back in 2001 or so.
The workaround is to split up the .o files that make up your package into two or more
.o’s, along the lines of how the base package does it.

656 Chapter 14. Known bugs and infelicities

https://gitlab.haskell.org/ghc/ghc/issues/11197
https://gitlab.haskell.org/ghc/ghc/issues/11715
https://gitlab.haskell.org/ghc/ghc/issues/12971

CHAPTER

FIFTEEN

EVENTLOG ENCODINGS

This section documents the encodings of the events emitted to GHC’s event log (page 193).
These events can include information about the thread scheduling events, garbage collection
statistics, profiling information, user-defined tracing events.
This section is intended for implementors of tooling which consume these events. GHC ships
with a C header file (EventlogFormat.h) which provides symbolic names for the event type
IDs described in this file.

15.1 Event log format

The log format is designed to be extensible: old tools should be able to parse (but not neces-
sarily understand all of) new versions of the format, and new tools will be able to understand
old log files.
• The format is endian-independent: all values are represented in big-endian order.
• The format is extensible:

– The header describes each event type and its length. Tools that don’t recognise a
particular event type can skip those events.

– There is room for extra information in the event type specification, which can be
ignored by older tools.

– Events can have extra information added, but existing fields cannot be changed.
Tools should ignore extra fields at the end of the event record.

The event-log stream begins with a header describing the event types present in the file.
The header is followed by the event records themselves, each of which consist of a 64-bit
timestamp

log : EVENT_HEADER_BEGIN
EventType*
EVENT_HEADER_END
EVENT_DATA_BEGIN
Event*
EVENT_DATA_END

EventType :
EVENT_ET_BEGIN
Word16 -- unique identifier for this event
Int16 -- >=0 size of the event in bytes (minus the header)

-- -1 variable size
Word32 -- length of the next field in bytes

657

GHC User’s Guide Documentation, Release 9.2.6

Word8* -- string describing the event
Word32 -- length of the next field in bytes
Word8* -- extra info (for future extensions)
EVENT_ET_END

Event :
Word16 -- event_type
Word64 -- time (nanosecs)
[Word16] -- length of the rest (for variable-sized events only)
... extra event-specific info ...

There are two classes of event types:
• Fixed size: All event records of a fixed-sized type are of the same length, given in the
header event-log header.

• Variable size: Each event record includes a length field.

15.2 Runtime system diagnostics

• ThreadId ~ Word32

• CapNo ~ Word16

• CapSetId ~ Word32

15.2.1 Capability sets

TODO

15.2.2 Environment information

These events are typically produced during program startup and describe the environment
which the program is being run in.
RTS_IDENTIFIER

Tag 29
Length variable
Field CapSetId Capability set
Field String Runtime system name and version.

Describes the name and version of the runtime system responsible for the indicated
capability set.

PROGRAM_ARGS

Tag 30
Length variable
Field CapSetId Capability set
Field [String] The command-line arguments passed to the program

Describes the command-line used to start the program.

658 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

PROGRAM_ENV

Tag 31
Length variable
Field CapSetId Capability set
Field [String] The environment variable name/value pairs. (TODO: encod-

ing?)
Describes the environment variables present in the program’s environment.

15.2.3 Thread and scheduling events

CREATE_THREAD

Tag 0
Length fixed
Field ThreadId thread id

Marks the creation of a Haskell thread.
RUN_THREAD

Tag 1
Length fixed
Field ThreadId thread id

The indicated thread has started running.
STOP_THREAD

Tag 2
Length fixed
Field ThreadId thread id
Field Word16 status

• 1: HeapOverflow
• 2: StackOverflow
• 3: ThreadYielding
• 4: ThreadBlocked
• 5: ThreadFinished
• 6: ForeignCall
• 7: BlockedOnMVar
• 8: BlockedOnBlackHole
• 9: BlockedOnRead
• 10: BlockedOnWrite
• 11: BlockedOnDelay
• 12: BlockedOnSTM

15.2. Runtime system diagnostics 659

GHC User’s Guide Documentation, Release 9.2.6

• 13: BlockedOnDoProc
• 16: BlockedOnMsgThrowTo

Field ThreadId thread id of thread being blocked on (only for some status val-
ues)

The indicated thread has stopped running for the reason given by status.
THREAD_RUNNABLE

Tag 3
Length fixed
Field ThreadId thread id

The indicated thread is has been marked as ready to run.
MIGRATE_THREAD

Tag 4
Length fixed
Field ThreadId thread id
Field CapNo capability

The indicated thread has been migrated to a new capability.
THREAD_WAKEUP

Tag 8
Length fixed
Field ThreadId thread id
Field CapNo other capability

The indicated thread has been woken up on another capability.
THREAD_LABEL

Tag 44
Length fixed
Field ThreadId thread id
Field String label

The indicated thread has been given a label (e.g. with GHC.Conc.labelThread).

15.2.4 Garbage collector events

The following events mark various points of the lifecycle of a moving garbage collection.
A typical garbage collection will look something like the following:
1. A capability realizes that it needs a garbage collection (e.g. as a result of running
out of nursery) and requests a garbage collection. This is marked by REQUEST_SEQ_GC
(page 661) or REQUEST_PAR_GC (page 661).

2. As other capabilities reach yield points and suspend execution they emit STOP_THREAD
(page 659) events.

660 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

3. When all capabilities have suspended execution, collection will begin, marked by a
GC_START (page 661) event.

4. As individual parallel GC threads commence with scavenging they will emit GC_WORK
(page 662) events.

5. If a parallel GC thread runs out of work it will emit a GC_IDLE (page 662) event. If it is
later handed more work it will emit another GC_WORK (page 662) event.

6. Eventually when scavenging has finished a GC_DONE (page 662) event will be emitted by
each GC thread.

7. A bit of book-keeping is performed.
8. A GC_END (page 661) event will be emitted marking the end of the GC cycle.
9. A HEAP_SIZE (page 663) event will be emitted giving the current size of the heap, in
bytes, calculated by how many megablocks are allocated.

10. A BLOCKS_SIZE (page 663) event will be emitted giving the current size of the heap, in
bytes, calculated by how many blocks are allocated.

11. A GC_STATS_GHC (page 662) event will be emitted containing various details of the col-
lection and heap state.

12. In the case of a major collection, a HEAP_LIVE (page 663) event will be emitted describing
the current size of the live on-heap data.

13. In the case of the -threaded (page 244) RTS, a SPARK_COUNTERS (page 664) event will
be emitted giving details on how many sparks have been created, evaluated, and GC’d.

14. As mutator threads resume execution they will emit RUN_THREAD (page 659) events.
15. A MEM_RETURN (page 662) event will be emitted containing details about currently live

mblocks, how many we think we need and whether we could return excess to the OS.
Note that in the case of the concurrent non-moving collector additional events will be emitted
during the concurrent phase of collection. These are described in Non-moving GC event
output (page 670).
GC_START

Tag 9
Length fixed

A garbage collection pass has been started.
GC_END

Tag 10
Length fixed

A garbage collection pass has been finished.
REQUEST_SEQ_GC

Tag 11
Length fixed

A sequential garbage collection has been requested by a capability.
REQUEST_PAR_GC

Tag 12

15.2. Runtime system diagnostics 661

GHC User’s Guide Documentation, Release 9.2.6

Length fixed
A parallel garbage collection has been requested by a capability.

GC_IDLE

Tag 20
Length fixed

An idle-time garbage collection has been started.
GC_WORK

Tag 21
Length fixed

Marks the start of concurrent scavenging.
GC_DONE

Tag 22
Length fixed

Marks the end of concurrent scavenging.
GC_STATS_GHC

Tag 53
Length fixed
Field CapSetId heap capability set
Field Word16 generation of collection
Field Word64 bytes copied
Field Word64 bytes of slop found
Field Word64 bytes of fragmentation, the difference between total mblock size

and total block size. When all mblocks are full of full blocks, this number is
0.

Field Word64 number of parallel garbage collection threads
Field Word64 maximum number of bytes copied by any single collector thread
Field Word64 total bytes copied by all collector threads

Report various information about a major collection.
GC_GLOBAL_SYNC

Tag 54
Length fixed

TODO
MEM_RETURN

Tag 90
Length fixed
Field CapSetId heap capability set
Field Word32 currently allocated mblocks

662 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

Field Word32 the number of mblocks we would like to retain
Field Word32 the number of mblocks which we returned to the OS

Report information about currently allocation megablocks and attempts made to return
them to the operating system. If your heap is fragmented then the current value will be
greater than needed value but returned will be less than the difference between the two.

15.2.5 Heap events and statistics

HEAP_ALLOCATED

Tag 49
Length fixed
Field CapSetId heap capability set
Field Word64 allocated bytes

A new chunk of heap has been allocated by the indicated capability set.
HEAP_SIZE

Tag 50
Length fixed
Field CapSetId heap capability set
Field Word64 heap size in bytes

Report the heap size, calculated by the number of megablocks currently allocated.
BLOCKS_SIZE

Tag 91
Length fixed
Field CapSetId heap capability set
Field Word64 heap size in bytes

Report the heap size, calculated by the number of blocks currently allocated.
HEAP_LIVE

Tag 51
Length fixed
Field CapSetId heap capability set
Field Word64 heap size in bytes

Report the live heap size.
HEAP_INFO_GHC

Tag 52
Length fixed
Field CapSetId heap capability set
Field Word16 number of garbage collection generations
Field Word64 maximum heap size

15.2. Runtime system diagnostics 663

GHC User’s Guide Documentation, Release 9.2.6

Field Word64 allocation area size
Field Word64 MBlock size
Field Word64 Block size

Report various information about the heap configuration. Typically produced during RTS
initialization..

15.2.6 Spark events

CREATE_SPARK_THREAD

Tag 15
Length fixed

A thread has been created to perform spark evaluation.
SPARK_COUNTERS

Tag 34
Length fixed

A periodic reporting of various statistics of spark evaluation.
SPARK_CREATE

Tag 35
Length fixed

A spark has been added to the spark pool.
SPARK_DUD

Tag 36
Length fixed

TODO
SPARK_OVERFLOW

Tag 37
Length fixed

TODO
SPARK_RUN

Tag 38
Length fixed

Evaluation has started on a spark.
SPARK_STEAL

Tag 39
Length fixed
Field Word16 capability from which the spark was stolen

A spark has been stolen from another capability for evaluation.

664 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

SPARK_FIZZLE

Tag 40
Length fixed

A spark has been GC’d before being evaluated.
SPARK_GC

Tag 41
Length fixed

An unevaluated spark has been garbage collected.

15.2.7 Capability events

CAP_CREATE

Tag 45
Length fixed
Field CapNo the capability number

A capability has been started.
CAP_DELETE

Tag 46
Length fixed

A capability has been deleted.
CAP_DISABLE

Tag 47
Length fixed

A capability has been disabled.
CAP_ENABLE

Tag 48
Length fixed

A capability has been enabled.

15.2.8 Task events

TASK_CREATE

Tag 55
Length fixed
Field TaskId task id
Field CapNo capability number
Field ThreadId TODO

Marks the creation of a task.

15.2. Runtime system diagnostics 665

GHC User’s Guide Documentation, Release 9.2.6

TASK_MIGRATE

Tag 56
Length fixed
Field TaskId task id
Field CapNo old capability
Field CapNo new capability

Marks the migration of a task to a new capability.

15.2.9 Tracing events

LOG_MSG

Tag 16
Length variable
Field String The message

A log message from the runtime system.
BLOCK_MARKER

Tag 18
Length variable
Field Word32 size
Field Word64 end time in nanoseconds
Field String marker name

TODO
USER_MSG

Tag 19
Length variable
Field String message

A user log message (from, e.g., Control.Concurrent.traceEvent).
USER_MARKER

Tag 58
Length variable
Field String marker name

A user marker (from Debug.Trace.traceMarker).

15.3 Heap profiler event log output

The heap profiler can produce output to GHC’s event log, allowing samples to be correlated
with other event log events over the program’s lifecycle.

666 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

This section defines the layout of these events. The String type below is defined to be a
UTF-8 encoded NUL-terminated string.

15.3.1 Metadata event types

Beginning of sample stream

A single fixed-width event emitted during program start-up describing the samples that follow.

HEAP_PROF_BEGIN

Tag 160
Length variable
Field Word8 profile ID
Field Word64 sampling period in nanoseconds
Field Word32 sample breadown type. One of,

• HEAP_PROF_BREAKDOWN_COST_CENTER (output from -hc (page 603))
• HEAP_PROF_BREAKDOWN_CLOSURE_DESCR (output from -hd (page 604))
• HEAP_PROF_BREAKDOWN_RETAINER (output from -hr (page 604))
• HEAP_PROF_BREAKDOWN_MODULE (output from -hm (page 604))
• HEAP_PROF_BREAKDOWN_TYPE_DESCR (output from -hy (page 604))
• HEAP_PROF_BREAKDOWN_BIOGRAPHY (output from -hb (page 604))
• HEAP_PROF_BREAKDOWN_CLOSURE_TYPE (output from -hT (page 193))

Field String module filter
Field String closure description filter
Field String type description filter
Field String cost centre filter
Field String cost centre stack filter
Field String retainer filter
Field String biography filter

Cost centre definitions

A variable-length packet produced once for each cost centre,
HEAP_PROF_COST_CENTRE

Tag 161
Length fixed
Field Word32 cost centre number
Field String label
Field String module

15.3. Heap profiler event log output 667

GHC User’s Guide Documentation, Release 9.2.6

Field String source location
Field Word8 flags:

• bit 0: is the cost-centre a CAF?

Info Table Provenance definitions

Amessage which describes an approximate source position for info tables. See -finfo-table-
map (page 622) for more information.
IPE

Tag 169
Length fixed
Field Word64 info table address
Field String table name
Field String closure type
Field String type
Field String source position label
Field String source position module
Field String source position location

Sample event types

A sample (consisting of a list of break-down classes, e.g. cost centres, and heap residency
sizes), is to be encoded in the body of one or more events.
We normally mark the beginning of a new sample with an EVENT_HEAP_PROF_SAMPLE_BEGIN
event,
HEAP_PROF_SAMPLE_BEGIN

Length fixed
Field Word64 sample number

Marks the beginning of a heap profile sample.
Biographical profiling samples start with the EVENT_HEAP_BIO_PROF_SAMPLE_BEGIN event.
These events also include a timestamp which indicates when the sample was taken. This
is because all these samples will appear at the end of the eventlog due to how the biograph-
ical profiling mode works. You can use the timestamp to reorder the samples relative to the
other events.
HEAP_BIO_PROF_SAMPLE_BEGIN

Tag 166
Length fixed
Field Word64 sample number
Field Word64 eventlog timestamp in ns

668 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

A heap residency census will follow. Since events may only be up to 2^16^ bytes in length
a single sample may need to be split among multiple EVENT_HEAP_PROF_SAMPLE events. The
precise format of the census entries is determined by the break-down type.
At the end of the sample period the EVENT_HEAP_PROF_SAMPLE_END event if emitted. This is
useful to properly delimit the sampling period and to record the total time spent profiling.
HEAP_PROF_SAMPLE_END

Tag 165
Length fixed
Field Word64 sample number

Marks the end of a heap profile sample.

Cost-centre break-down

A variable-length packet encoding a heap profile sample broken down by,
• cost-centre (-hc (page 603))

HEAP_PROF_SAMPLE_COST_CENTRE

Tag 163
Length variable
Field Word8 profile ID
Field Word64 heap residency in bytes
Field Word8 stack depth
Field Word32[] cost centre stack starting with inner-most (cost centre num-

bers)

String break-down

A variable-length event encoding a heap sample broken down by,
• type description (-hy (page 604))
• closure description (-hd (page 604))
• module (-hm (page 604))

HEAP_PROF_SAMPLE_STRING

Tag 164
Length variable
Field Word8 profile ID
Field Word64 heap residency in bytes
Field String type or closure description, or module name

15.3. Heap profiler event log output 669

GHC User’s Guide Documentation, Release 9.2.6

15.4 Time profiler event log output

The time profiling mode enabled by -p (page 599) also emits sample events to the eventlog.
At the start of profiling the tick interval is emitted to the eventlog and then on each tick the
current cost centre stack is emitted. Together these enable a user to construct an approximate
track of the executation of their program.

15.4.1 Profile begin event

PROF_BEGIN

Tag 168
Length fixed
Field Word64 tick interval, in nanoseconds

Marks the beginning of a time profile.

15.4.2 Profile sample event

A variable-length packet encoding a profile sample.
PROF_SAMPLE_COST_CENTRE

Tag 167
Length variable
Field Word32 capability
Field Word64 current profiling tick
Field Word8 stack depth
Field Word32[] cost centre stack starting with inner-most (cost centre num-

bers)

15.5 Biographical profile sample event

A variable-length packet encoding a profile sample.
BIO_PROF_SAMPLE_BEGIN

Tag 166
TODO

15.6 Non-moving GC event output

These events mark various stages of the non-moving collection (page 183) lifecycle. These
are enabled with the +RTS -lg event-set.
A typical non-moving collection cycle will look something like the following:

670 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

1. The preparatory phase of collection will emit the usual events associated with a moving
collection. See Garbage collector events (page 660) for details.

2. The concurrent write barrier is enabled and the concurrent mark thread is started.
From this point forward mutator threads may emit CONC_UPD_REM_SET_FLUSH (page 672)
events, indicating that they have flushed their capability-local update remembered sets.

3. Concurrent marking begins, denoted by a CONC_MARK_BEGIN (page 671) event.
4. When the mark queue is depleted a CONC_MARK_END (page 671) is emitted.
5. If necessary (e.g. due to weak pointer marking), the marking process will continue,
returning to step (3) above.

6. When the collector has done as much concurrent marking as it can it will enter the post-
mark synchronization phase of collection, denoted by a CONC_SYNC_BEGIN (page 671)
event.

7. Mutator threads will suspend execution and, if necessary, flush their update remembered
sets (indicated by CONC_UPD_REM_SET_FLUSH (page 672) events).

8. The collector will do any final marking necessary (indicated by CONC_MARK_BEGIN
(page 671) and CONC_MARK_END (page 671) events).

9. The collector will do a small amount of sweeping, disable the write barrier, emit a
CONC_SYNC_END (page 671) event, and allow mutators to resume

10. The collector will begin the concurrent sweep phase, indicated by a CONC_SWEEP_BEGIN
(page 672) event.

11. Once sweeping has concluded a CONC_SWEEP_END (page 672) event will be emitted and
the concurrent collector thread will terminate.

12. A NONMOVING_HEAP_CENSUS (page 672) event will be emitted describing the fragmenta-
tion state of the non-moving heap.

CONC_MARK_BEGIN

Tag 200
Length fixed

Marks the beginning of marking by the concurrent collector.
CONC_MARK_END

Tag 201
Length fixed

Marks the end of marking by the concurrent collector.
CONC_SYNC_BEGIN

Tag 202
Length fixed

Marks the beginning of the concurrent garbage collector’s post-mark synchronization
phase.

CONC_SYNC_END

Tag 203
Length fixed

15.6. Non-moving GC event output 671

GHC User’s Guide Documentation, Release 9.2.6

Marks the end of the concurrent garbage collector’s post-mark synchronization phase.
CONC_SWEEP_BEGIN

Tag 204
Length fixed

Marks the beginning of the concurrent garbage collector’s sweep phase.
CONC_SWEEP_END

Tag 205
Length fixed

Marks the end of the concurrent garbage collector’s sweep phase.
CONC_UPD_REM_SET_FLUSH

Tag 206
Length fixed

Marks a capability flushing its local update remembered set accumulator.

15.6.1 Non-moving heap census

The non-moving heap census events (enabled with the +RTS -ln (page 194) event-set) are
intended to provide insight into fragmentation of the non-moving heap.
NONMOVING_HEAP_CENSUS

Tag 207
Length fixed
Field Word8 base-2 logarithm of blk_sz.
Field Word32 number of active segments.
Field Word32 number of filled segments.
Field Word32 number of live blocks.

Describes the occupancy of the blk_sz sub-heap.

15.6.2 Ticky counters

Programs compiled with -ticky (page 616) and -eventlog (page 244) and invoked with +RTS
-lT (page 194) will emit periodic samples of the ticky entry counters to the eventlog.
TICKY_COUNTER_DEF

Tag 210
Length variable
Field Word64 counter ID
Field Word16 arity/field count
Field String argument kinds. This is the same as the synonymous field in the

textual ticky summary.
Field String counter name

672 Chapter 15. Eventlog encodings

GHC User’s Guide Documentation, Release 9.2.6

Defines a ticky counter.
TICKY_COUNTER_BEGIN_SAMPLE

Tag 212
Length fixed

Denotes the beginning of an atomic set of ticky-ticky profiler counter samples.
TICKY_COUNTER_SAMPLE

Tag 211
Length fixed
Field Word64 counter ID
Field Word64 number of times closures of this type has been entered.
Field Word64 number of allocations (words)
Field Word64 number of times this has been allocated (words). Only produced

for modules compiled with -ticky-allocd (page 616).
Records the number of “ticks” recorded by a ticky-ticky counter single the last sample.

15.6. Non-moving GC event output 673

GHC User’s Guide Documentation, Release 9.2.6

674 Chapter 15. Eventlog encodings

CHAPTER

SIXTEEN

CARE AND FEEDING OF YOUR GHC USER’S GUIDE

The GHC User’s Guide is the primary reference documentation for the Glasgow Haskell Com-
piler. Even more than this, it at times serves (for better or for worse) as a de-facto language
standard, being the sole non-academic reference for many widely used language extensions.
Since GHC 8.0, the User’s Guide is authored in ReStructuredText (or ReST or RST, for short)
a rich but light-weight mark-up language aimed at producing documentation. The Sphinx tool
is used to produce the final PDF and HTML documentation.
This document (also written in ReST) serves as a brief introduction to ReST and to document
the conventions used in the User’s Guide. This document is not intended to be a thorough
guide to ReST. For this see the resources referenced below (page ??).

16.1 Basics

Unicode characters are allowed in the document.
The basic syntax works largely as one would expect. For instance,

This is a paragraph containing a few sentences of text. Purple turtles walk
through green fields of lofty maize. Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Some lists,

1. This is a list item

a. Followed by a sub-item
b. And another!
c. Now with ``a bit of code`` and some *emphasis*.

2. Back to the first list

Or perhaps you are more of a bullet list person,

* Foo
* Fizzle

- Bar
- Blah

Or perhaps a definition list is in order,

Chelonii
The taxonomic order consisting of modern turtles

675

https://en.wikipedia.org/wiki/ReStructuredText
http://sphinx-doc.org/

GHC User’s Guide Documentation, Release 9.2.6

Meiolaniidae
The taxonomic order of an extinct variety of herbivorous turtles.

Note the blank lines between a list item and its sub-items. Sub-items should be on the same in-
dentation level as the content of their parent items. Also note that no whitespace is necessary
or desirable before the bullet or item number (lest the list be indented unnecessarily).
The above would be rendered as,

This is a paragraph containing a few sentences of text. Purple turtles walk through
green fields of lofty maize. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Some lists,
1. This is a list item
(a) Followed by a sub-item
(b) And another!
(c) Now with a bit of code and some emphasis.

2. Back to the first list
Or perhaps you are more of a bullet list person,
• Foo
• Fizzle

– Bar
– Blah

Or perhaps a definition list is in order,
Chelonii The taxonomic order consisting of modern turtles
Meiolaniidae The taxonomic order of an extinct variety of herbivorous turtles.

16.1.1 Headings

While ReST can accommodate a wide range of heading styles, we have standardized on this
convention in the User’s Guide,

Header level 1
==============

Header level 2

Header level 3
~~~~~~~~~~~~~~

Header level 4
^^^^^^^^^^^^^^

16.1.2 Formatting code

676 Chapter 16. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 9.2.6

Haskell

Code snippets can be included as both inline and block elements. Inline code is denoted with
double-backticks whereas block of code are introduced by ending a paragraph with double-
colons and indentation,

The ``fib`` function is defined as, ::

fib :: Integer -> Integer
fib 1 = 1
fib n = n * fib (n - 1)

Which would be rendered as,
The fib function is defined as,

fib :: Integer -> Integer
fib 1 = 1
fib n = n * fib (n - 1)

Other languages

Double-colon blocks are syntax-highlighted as Haskell by default. To avoid this use a .. code-
block directive with explicit language designation,

This is a simple shell script,

.. code-block:: sh

#!/bin/bash
echo "Hello World!"

16.1.3 Links

Within the User’s Guide

Frequently we want to give a name to a section so it can be referred to from other points in
the document,

.. _options-platform:

Platform-specific Flags
-----------------------

There are lots of platform-specific flags.

Some other section
-------------------

GHC supports a variety of :ref:`x86 specific features <options-platform>`.

See :ref:`options-platform` for details.

16.1. Basics 677

http://sphinx-doc.org/markup/code.html#directive-code-block


GHC User’s Guide Documentation, Release 9.2.6

To GHC resources

There are special macros for conveniently linking to GHC Wiki articles and tickets,

See :ghc-wiki:`commentary/compiler/demand` for details on demand analysis.

See the :ghc-wiki:`coding style <commentary/coding-style>` for guidelines.

See the :ghc-ticket:`123` for further discussion.

See the :ghc-ticket:`this bug <123>` for what happens when this fails.

To external resources

External links can be written in either of these ways,

See the `GHC Wiki <https://gitlab.haskell.org/ghc/ghc/wikis>`_ for details.

See the `GHC Wiki`_ for details.

.. _GHC Wiki: https://gitlab.haskell.org/ghc/ghc/wikis

To core library Haddock documentation

It is often useful to be able to refer to the Haddock documentation of the libraries shipped
with GHC. The users guide’s build system provides commands for referring to documentation
for the following core GHC packages,
• base: :base-ref:
• cabal: :cabal-ref:
• ghc-prim: :ghc-prim-ref:

These are defined in docs/users_guide/ghc_config.py.in.
For instance,

See the documentation for :base-ref:`Control.Applicative.`
for details.

Math

You can insert type-set equations using :math:. For instance,

Fick's law of diffusion, :math:`J = -D \frac{d \varphi}{d x}`, ...

will render as,
Fick’s law of diffusion, J = −D dφ

dx , ...

678 Chapter 16. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 9.2.6

16.1.4 Index entries

Index entries can be included anywhere in the document as a block element. They look like,

Here is some discussion on the Strict Haskell extension.

.. index::
single: strict haskell
single: language extensions; StrictData

This would produce two entries in the index referring to the “Strict Haskell” section. One
would be a simple “strict haskell” heading whereas the other would be a “StrictData” sub-
heading under “language extensions”.
Sadly it is not possible to use inline elements (e.g. monotype inlines) inside index headings.

16.2 Citations

Citations can be marked-up like this,

See the original paper [Doe2008]_

.. [Doe2008] John Doe and Leslie Conway.
"This is the title of our paper" (2008)

16.3 Admonitions

Admonitions are block elements used to draw the readers attention to a point. They should
not be over-used for the sake of readability but they can be quite effective in separating and
drawing attention to points of importance,

.. important::

Be friendly and supportive to your fellow contributors.

Would be rendered as,

Important: Be friendly and supportive to your fellow contributors.

There are a number of admonitions types,
• attention
• caution
• danger
• error
• hint
• important
• note
• tip
• warning

16.2. Citations 679

http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions


GHC User’s Guide Documentation, Release 9.2.6

16.4 Documenting command-line options and GHCi com-
mands

conf.py defines a few Sphinx object types for GHCi commands (ghci-cmd), ghc command-line
options (ghc-flag), and runtime :system options (rts-flag),

16.4.1 Command-line options

The ghc-flag and rts-flag roles/directives can be used to document command-line argu-
ments to the ghc executable and runtime system, respectively. For instance,

.. rts-flag:: -C ⟨seconds⟩

:since: 8.2
:default: 20 milliseconds

Sets the context switch interval to ⟨s⟩ seconds.

Will be rendered as,
-C ⟨seconds⟩

Since 8.2
Default 20 milliseconds

Sets the context switch interval to ⟨s⟩ seconds.
and will have an associated index entry generated automatically.
The ghc-flag directive requires a few extra parameters to be passed. This extra information
is used to generate the Flag reference (page 139) and the man page. A ghc-flag directive
looks like this,

.. ghc-flag:: -fasm
:shortdesc: Use the native code generator
:type: dynamic
:reverse: -fllvm
:category: codegen

Regular description...

When rendered, the extra parameters will be hidden, and the data stored for later use. For
more details, see the Sphinx extension flags.py.
Note that, as in Style Conventions below, we use ⟨⟩ instead of less-than/greater-than signs.
To reference a ghc-flag or rts-flag, you must match the definition exactly, including the
arguments. A quick way to find the exact names and special characters is,

$ git grep -- "flag:: -o "

which will generate the appropriate,

separate_compilation.rst:.. ghc-flag:: -o ⟨file⟩

680 Chapter 16. Care and feeding of your GHC User’s Guide



GHC User’s Guide Documentation, Release 9.2.6

16.4.2 GHCi commands

The ghci-cmd role and directive can be used to document GHCi directives. For instance, we
can describe the GHCi :module command,

.. ghci-cmd:: :module; [*]⟨file⟩

Load a module

which will be rendered as,
:module [*]⟨file⟩

Load a module
And later refer to it by just the command name, :module,

The GHCi :ghci-cmd:`:load` and :ghci-cmd:`:module` commands are used
to modify the modules in scope.

Like command-line options, GHCi commands will have associated index entries generated
automatically.

16.5 Style Conventions

When describing user commands and the like it is common to need to denote user-
substitutable tokens. In this document we use the convention, ⟨subst⟩ (note that these are
angle brackets, U+27E8 and U+27E9, not less-than/greater-than signs).

16.6 ReST reference materials

• Sphinx ReST Primer: A great place to start.
• Sphinx extensions: How Sphinx extends ReST
• ReST reference: When you really need the details.
• Directives reference

16.5. Style Conventions 681

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html#code


GHC User’s Guide Documentation, Release 9.2.6

682 Chapter 16. Care and feeding of your GHC User’s Guide



CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex
• search

683



GHC User’s Guide Documentation, Release 9.2.6

684 Chapter 17. Indices and tables



BIBLIOGRAPHY

[AssocDataTypes2005] “Associated Types with Class”, M. Chakravarty, G. Keller, S. Peyton
Jones, and S. Marlow. In Proceedings of “The 32nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL‘05)”, pages 1-13, ACM Press,
2005.

[AssocTypeSyn2005] “Type Associated Type Synonyms”. M. Chakravarty, G. Keller, and S.
Peyton Jones. In Proceedings of “The Tenth ACM SIGPLAN International Conference on
Functional Programming”, ACM Press, pages 241-253, 2005.

[TypeFamilies2008] “Type Checking with Open Type Functions”, T. Schrijvers, S. Peyton-
Jones, M. Chakravarty, and M. Sulzmann, in Proceedings of “ICFP 2008: The 13th ACM
SIGPLAN International Conference on Functional Programming”, ACM Press, pages 51-
62, 2008.

[Jones2000] “Type Classes with Functional Dependencies”, Mark P. Jones, In Proceedings
of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany, March
2000, Springer-Verlag LNCS 1782, .

[Jones1999] “Exploring the Design Space for Type-based Implicit Parameterization”, Mark P.
Jones, Oregon Graduate Institute of Science & Technology, Technical Report, July 1999.

[Lewis2000] “Implicit parameters: dynamic scoping with static types”, J Lewis, MB Shields,
E Meijer, J Launchbury, 27th ACM Symposium on Principles of Programming Languages
(POPL‘00), Boston, Jan 2000.

[Generics2010] Jose Pedro Magalhaes, Atze Dijkstra, Johan Jeuring, and Andres Loeh. A
generic deriving mechanism for Haskell. Proceedings of the third ACM Haskell sympo-
sium on Haskell (Haskell‘2010), pp. 37-48, ACM, 2010.

685

http://www.cse.unsw.edu.au/~chak/papers/CKPM05.html
http://www.cse.unsw.edu.au/~chak/papers/CKP05.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html
https://web.cecs.pdx.edu/~mpj/pubs/fundeps.html
https://web.cecs.pdx.edu/~mpj/pubs/fdtr.html
http://dreixel.net/research/pdf/gdmh.pdf
http://dreixel.net/research/pdf/gdmh.pdf


GHC User’s Guide Documentation, Release 9.2.6

686 Bibliography



INDEX

+RTS, 179
+t option

in GHCi, 40
–RTS, 179
–copying-gc

RTS option, 183
–disable-delayed-os-memory-return

RTS option, 182
–eventlog-flush-interval=⟨seconds⟩

RTS option, 195
–exclude-module=⟨file⟩

GHC option, 215
–force

ghc-pkg option, 228
–frontend ⟨module⟩

GHC option, 86
–generate-crash-dumps

RTS option, 181
–generate-stack-traces=<yes|no>

RTS option, 181
–global

ghc-pkg option, 228
–help

GHC option, 87
ghc-pkg option, 228

–info
GHC option, 87
RTS option, 197

–install-seh-handlers=⟨yes|no⟩
RTS option, 181

–install-signal-handlers=⟨yes|no⟩
RTS option, 181

–interactive, 60
GHC option, 86

–internal-counters
RTS option, 190

–ipid
ghc-pkg option, 228

–long-gc-sync
RTS option, 190

–long-gc-sync=<seconds>
RTS option, 190

–machine-readable
RTS option, 190

–make
GHC option, 86
mode of GHC, 89

–mk-dll
GHC option, 86

–no-automatic-heap-samples
RTS option, 605

–nonmoving-gc
RTS option, 183

–null-eventlog-writer
RTS option, 605

–numa
RTS option, 189

–numa=<mask>
RTS option, 189

–numeric-version
GHC option, 87

–print-booter-version
GHC option, 87

–print-build-platform
GHC option, 87

–print-c-compiler-flags
GHC option, 87

–print-c-compiler-link-flags
GHC option, 87

–print-debug-on
GHC option, 87

–print-global-package-db
GHC option, 87

–print-have-interpreter
GHC option, 87

–print-have-native-code-generator
GHC option, 87

–print-host-platform
GHC option, 88

–print-ld-flags
GHC option, 88

–print-leading-underscore
GHC option, 88

–print-libdir

687



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 88
–print-object-splitting-supported

GHC option, 88
–print-project-git-commit-id

GHC option, 88
–print-project-version

GHC option, 88
–print-rts-ways

GHC option, 88
–print-stage

GHC option, 88
–print-support-smp

GHC option, 88
–print-tables-next-to-code

GHC option, 88
–print-target-platform

GHC option, 89
–print-unregisterised

GHC option, 89
–run ⟨file⟩

GHC option, 86
–show-iface ⟨file⟩

GHC option, 87, 204
–show-options

GHC option, 87
–supported-extensions

GHC option, 87
–supported-languages

GHC option, 87
–unit-id

ghc-pkg option, 228
–user

ghc-pkg option, 228
–verbose

ghc-pkg option, 228
–version

GHC option, 87
ghc-pkg option, 228

-?
GHC option, 87
ghc-pkg option, 228
hp2ps command line option, 608

-A ⟨size⟩
RTS option, 184

-AL ⟨size⟩
RTS option, 184

-A⟨size⟩
RTS option, 627

-B
RTS option, 195

-C, 90
GHC option, 86

-C ⟨s⟩
RTS option, 136

-D ⟨x⟩
RTS option, 195

-DC DEBUG: compact
RTS option, 196

-DG DEBUG: gccafs
RTS option, 195

-DS DEBUG: sanity
RTS option, 195

-DZ DEBUG: zero freed memory on GC
RTS option, 196

-Da DEBUG: apply
RTS option, 196

-Db DEBUG: block
RTS option, 195

-Dc DEBUG: program coverage
RTS option, 196

-Dg DEBUG: gc
RTS option, 195

-Di DEBUG: interpreter
RTS option, 195

-Dl DEBUG: linker
RTS option, 196

-Dm DEBUG: stm
RTS option, 196

-Dp DEBUG: prof
RTS option, 196

-Dr DEBUG: sparks
RTS option, 196

-Ds DEBUG: scheduler
RTS option, 195

-Dt DEBUG: stable
RTS option, 196

-Dw DEBUG: weak
RTS option, 195

-Dz DEBUG: stack squeezing
RTS option, 196

-D⟨symbol⟩[=⟨value⟩]
GHC option, 237

-E, 90
GHC option, 86

-F
GHC option, 239

-F ⟨factor⟩
RTS option, 185

-Fd ⟨factor⟩
RTS option, 185

-G RTS option, 631
-G ⟨generations⟩

RTS option, 186
-H

RTS option, 627
-H [⟨size⟩]

RTS option, 187
-H ⟨size⟩

688 Index



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 98
-I ⟨seconds⟩

RTS option, 187
-Iw ⟨seconds⟩

RTS option, 187
-I⟨dir⟩

GHC option, 237
-K ⟨size⟩

RTS option, 188
-L ⟨dir⟩

GHC option, 242
-L ⟨num⟩

RTS option, 605
-L ⟨n⟩

RTS option, 193
-M

GHC option, 86
-M ⟨size⟩

RTS option, 189
-Mgrace=⟨size⟩

RTS option, 189
-N

RTS option, 137
-N ⟨x⟩

RTS option, 137
-O

GHC option, 121
-O ⟨size⟩

RTS option, 184
-O0

GHC option, 121
-O1

GHC option, 121
-O2

GHC option, 121
-O⟨n⟩

GHC option, 121
-P

RTS option, 599
-R ⟨size⟩

RTS option, 606
-RTS, 179
-Rghc-timing

GHC option, 96
-S, 90

GHC option, 86
-S RTS option, 631
-S [⟨file⟩]

RTS option, 190
-T

RTS option, 190
-U⟨symbol⟩

GHC option, 237
-V

GHC option, 87
ghc-pkg option, 228

-V ⟨secs⟩
RTS option, 599

-W
GHC option, 99

-Wall
GHC option, 100

-Wall-missed-specialisations
GHC option, 103

-Wall-missed-specializations
GHC option, 103

-Wambiguous-fields
GHC option, 120

-Wauto-orphans
GHC option, 119

-Wcompat
GHC option, 100

-Wcompat-unqualified-imports
GHC option, 101

-Wcpp-undef
GHC option, 118

-Wdefault
GHC option, 99

-Wdeferred-out-of-scope-variables
GHC option, 102

-Wdeferred-type-errors
GHC option, 102

-Wdeprecated-flags
GHC option, 105

-Wdeprecations
GHC option, 103

-Wderiving-defaults
GHC option, 106

-Wderiving-typeable
GHC option, 119

-Wdodgy-exports
GHC option, 105

-Wdodgy-foreign-imports
GHC option, 105

-Wdodgy-imports
GHC option, 105

-Wduplicate-constraints
GHC option, 106

-Wduplicate-exports
GHC option, 107

-Wempty-enumerations
GHC option, 106

-Werror
GHC option, 100

-Weverything
GHC option, 100

-Wextra
GHC option, 99

Index 689



GHC User’s Guide Documentation, Release 9.2.6

-Whi-shadowing
GHC option, 107

-Widentities
GHC option, 107

-Wimplicit-kind-vars
GHC option, 107

-Wimplicit-lift
GHC option, 107

-Wimplicit-prelude
GHC option, 107

-Winaccessible-code
GHC option, 112

-Wincomplete-patterns
GHC option, 108

-Wincomplete-record-updates
GHC option, 108

-Wincomplete-uni-patterns
GHC option, 108

-Winferred-safe-imports
GHC option, 540

-Winline-rule-shadowing
GHC option, 117

-Winvalid-haddock
GHC option, 118

-Wmissed-extra-shared-lib
GHC option, 114

-Wmissed-specialisations
GHC option, 103

-Wmissed-specializations
GHC option, 103

-Wmissing-deriving-strategies
GHC option, 109

-Wmissing-export-lists
GHC option, 109

-Wmissing-exported-signatures
GHC option, 110

-Wmissing-exported-sigs
GHC option, 110

-Wmissing-fields
GHC option, 109

-Wmissing-home-modules
GHC option, 118

-Wmissing-import-lists
GHC option, 109

-Wmissing-kind-signatures
GHC option, 110

-Wmissing-local-signatures
GHC option, 110

-Wmissing-local-sigs
GHC option, 110

-Wmissing-methods
GHC option, 110

-Wmissing-monadfail-instances
GHC option, 104

-Wmissing-pattern-synonym-signatures
GHC option, 110

-Wmissing-safe-haskell-mode
GHC option, 541

-Wmissing-signatures
GHC option, 110

-Wmissing-space-after-bang
GHC option, 119

-Wmonomorphism-restriction
GHC option, 113

-Wname-shadowing
GHC option, 111

-Wno-compat
GHC option, 100

-Wnoncanonical-monad-instances
GHC option, 104

-Wnoncanonical-monadfail-instances
GHC option, 104

-Wnoncanonical-monoid-instances
GHC option, 104

-Wnot
GHC option, 100

-Woperator-whitespace
GHC option, 119

-Woperator-whitespace-ext-conflict
GHC option, 119

-Worphans
GHC option, 111

-Woverflowed-literals
GHC option, 105

-Woverlapping-patterns
GHC option, 111

-Wpartial-fields
GHC option, 118

-Wpartial-type-signatures
GHC option, 102

-Wprepositive-qualified-module
GHC option, 101

-Wredundant-bang-patterns
GHC option, 116

-Wredundant-constraints
GHC option, 106

-Wredundant-record-wildcards
GHC option, 117

-Wsafe
GHC option, 540

-Wsemigroup
GHC option, 104

-Wsimplifiable-class-constraints
GHC option, 113

-Wstar-binder
GHC option, 113

-Wstar-is-type
GHC option, 112

690 Index



GHC User’s Guide Documentation, Release 9.2.6

-Wtabs
GHC option, 113

-Wtrustworthy-safe
GHC option, 540

-Wtype-defaults
GHC option, 113

-Wtyped-holes
GHC option, 102

-Wunbanged-strict-patterns
GHC option, 118

-Wunicode-bidirectional-format-characters
GHC option, 120

-Wunrecognised-pragmas
GHC option, 103

-Wunrecognised-warning-flags
GHC option, 101

-Wunsafe
GHC option, 540

-Wunsupported-calling-conventions
GHC option, 105

-Wunsupported-llvm-version
GHC option, 114

-Wunticked-promoted-constructors
GHC option, 114

-Wunused-binds
GHC option, 114

-Wunused-do-bind
GHC option, 115

-Wunused-foralls
GHC option, 116

-Wunused-imports
GHC option, 115

-Wunused-local-binds
GHC option, 115

-Wunused-matches
GHC option, 115

-Wunused-packages
GHC option, 118

-Wunused-pattern-binds
GHC option, 115

-Wunused-record-wildcards
GHC option, 116

-Wunused-top-binds
GHC option, 114

-Wunused-type-patterns
GHC option, 116

-Wwarn
GHC option, 101

-Wwarnings-deprecations
GHC option, 103

-Wwrong-do-bind
GHC option, 117

-Z
RTS option, 197

-auto
GHC option, 599

-auto-all
GHC option, 598

-b
hp2ps command line option, 607

-c, 90
GHC option, 86, 241
hp2ps command line option, 608
RTS option, 185

-c ⟨n⟩
RTS option, 185

-caf-all
GHC option, 599

-clear-package-db
GHC option, 222

-cpp
GHC option, 237

-cpp vs string gaps, 239
-d

hp2ps command line option, 607
-dasm-lint

GHC option, 259
-dcmm-lint

GHC option, 259
-dcore-lint

GHC option, 259
-ddump-asm

GHC option, 256
-ddump-asm-expanded

GHC option, 256
-ddump-asm-liveness

GHC option, 256
-ddump-asm-native

GHC option, 256
-ddump-asm-regalloc

GHC option, 256
-ddump-asm-regalloc-stages

GHC option, 256
-ddump-asm-stats

GHC option, 256
-ddump-bcos

GHC option, 257
-ddump-c-backend

GHC option, 256
-ddump-cfg-weights

GHC option, 256
-ddump-cmm

GHC option, 256
-ddump-cmm-caf

GHC option, 255
-ddump-cmm-cbe

GHC option, 255
-ddump-cmm-cfg

Index 691



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 255
-ddump-cmm-cps

GHC option, 256
-ddump-cmm-from-stg

GHC option, 255
-ddump-cmm-info

GHC option, 256
-ddump-cmm-opt

GHC option, 256
-ddump-cmm-proc

GHC option, 255
-ddump-cmm-procmap

GHC option, 255
-ddump-cmm-raw

GHC option, 255
-ddump-cmm-sink

GHC option, 255
-ddump-cmm-sp

GHC option, 255
-ddump-cmm-split

GHC option, 255
-ddump-cmm-switch

GHC option, 255
-ddump-cmm-verbose

GHC option, 255
-ddump-cmm-verbose-by-proc

GHC option, 255
-ddump-core-stats

GHC option, 253
-ddump-cpr-signatures

GHC option, 254
-ddump-cpranal

GHC option, 254
-ddump-cse

GHC option, 254
-ddump-deriv

GHC option, 253
-ddump-ds

GHC option, 253
-ddump-ds-preopt

GHC option, 253
-ddump-ec-trace

GHC option, 252
-ddump-faststrings

GHC option, 251
-ddump-file-prefix=⟨str⟩

GHC option, 251
-ddump-foreign

GHC option, 257
-ddump-hi

GHC option, 203
-ddump-hi-diffs, 626

GHC option, 203
-ddump-hie

GHC option, 252
-ddump-hpc

GHC option, 257
-ddump-if-trace

GHC option, 252
-ddump-inlinings

GHC option, 254
-ddump-json

GHC option, 251
-ddump-llvm

GHC option, 256
-ddump-minimal-imports

GHC option, 203
-ddump-mod-cycles

GHC option, 214
-ddump-mod-map

GHC option, 257
-ddump-occur-anal

GHC option, 254
-ddump-opt-cmm

GHC option, 256
-ddump-parsed

GHC option, 252
-ddump-parsed-ast

GHC option, 252
-ddump-prep

GHC option, 254
-ddump-rn

GHC option, 252
-ddump-rn-ast

GHC option, 252
-ddump-rn-stats

GHC option, 252
-ddump-rn-trace

GHC option, 252
-ddump-rtti

GHC option, 257
-ddump-rule-firings

GHC option, 253
-ddump-rule-rewrites

GHC option, 253
-ddump-rules

GHC option, 253
-ddump-simpl

GHC option, 254
-ddump-simpl-iterations

GHC option, 253
-ddump-simpl-stats

GHC option, 253
-ddump-spec

GHC option, 253
-ddump-splices

GHC option, 252
-ddump-stg

692 Index



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 255
-ddump-stg-final

GHC option, 255
-ddump-stg-from-core

GHC option, 254
-ddump-stg-unarised

GHC option, 255
-ddump-str-signatures

GHC option, 254
-ddump-stranal

GHC option, 254
-ddump-tc

GHC option, 252
-ddump-tc-ast

GHC option, 252
-ddump-tc-trace

GHC option, 252
-ddump-ticked

GHC option, 257
-ddump-timings

GHC option, 252
-ddump-to-file

GHC option, 251
-ddump-types

GHC option, 253
-ddump-worker-wrapper

GHC option, 254
-debug

GHC option, 244
-dep-makefile ⟨file⟩

GHC option, 214
-dep-suffix ⟨suffix⟩

GHC option, 215
-dfaststring-stats

GHC option, 251
-dhex-word-literals

GHC option, 257
-dinitial-unique=⟨s⟩

GHC option, 260
-dinline-check=⟨str⟩

GHC option, 254
-distrust ⟨pkg⟩

GHC option, 538
-distrust-all-packages

GHC option, 538
-dlinear-core-lint

GHC option, 259
-dno-debug-output

GHC option, 258
-dno-typeable-binds

GHC option, 260
-dppr-case-as-let

GHC option, 257
-dppr-cols=⟨n⟩

GHC option, 257
-dppr-debug

GHC option, 251
-dppr-user-length

GHC option, 257
-drule-check=⟨str⟩

GHC option, 254
-dshow-passes

GHC option, 251
-dstg-lint

GHC option, 259
-dsuppress-all

GHC option, 258
-dsuppress-coercions

GHC option, 258
-dsuppress-idinfo

GHC option, 258
-dsuppress-module-prefixes

GHC option, 258
-dsuppress-stg-free-vars

GHC option, 258
-dsuppress-ticks

GHC option, 258
-dsuppress-timestamps

GHC option, 258
-dsuppress-type-applications

GHC option, 258
-dsuppress-type-signatures

GHC option, 258
-dsuppress-unfoldings

GHC option, 258
-dsuppress-uniques

GHC option, 258
-dsuppress-var-kinds

GHC option, 258
-dth-dec-file

GHC option, 253
-dumpdir ⟨dir⟩

GHC option, 201
-dunique-increment=⟨i⟩

GHC option, 260
-dverbose-core2core

GHC option, 253
-dverbose-stg2stg

GHC option, 255
-dylib-install-name ⟨path⟩

GHC option, 246
-dynamic

GHC option, 242
-dynamic-too

GHC option, 241
-dynhisuf ⟨suffix⟩

GHC option, 202
-dynload

Index 693



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 243
-dyno ⟨file⟩

GHC option, 201
-dynohi ⟨file⟩

GHC option, 201
-dynosuf ⟨suffix⟩

GHC option, 202
-e ⟨expr⟩

GHC option, 86
-eventlog

GHC option, 244
-e⟨float⟩[in|mm|pt]

hp2ps command line option, 608
-f

ghc-pkg option, 228
-fPIC

GHC option, 240
-fPIE

GHC option, 240
-f\* options (GHC), 121
-fabstract-refinement-hole-fits

GHC option, 298
-falignment-sanitisation

GHC option, 259
-fasm

GHC option, 240
-fasm-shortcutting

GHC option, 122
-fbinary-blob-threshold=⟨n⟩

GHC option, 136
-fblock-layout-cfg

GHC option, 123
-fblock-layout-weightless

GHC option, 123
-fblock-layout-weights

GHC option, 123
-fbreak-on-error

GHC option, 58
-fbreak-on-exception

GHC option, 58
-fbyte-code

GHC option, 240
-fcall-arity

GHC option, 122
-fcase-folding

GHC option, 122
-fcase-merge

GHC option, 121
-fcatch-bottoms

GHC option, 259
-fcheck-prim-bounds

GHC option, 259
-fclear-plugins

GHC option, 573

-fcmm-elim-common-blocks
GHC option, 122

-fcmm-sink
GHC option, 122

-fcmm-static-pred
GHC option, 122

-fcompact-unwind
GHC option, 247

-fcpr-anal
GHC option, 123

-fcross-module-specialise
GHC option, 129

-fcse
GHC option, 123

-fdefer-diagnostics
GHC option, 94

-fdefer-out-of-scope-variables
GHC option, 102

-fdefer-type-errors
GHC option, 102

-fdefer-typed-holes
GHC option, 102

-fdiagnostics-color=⟨always|auto|never⟩
GHC option, 95

-fdiagnostics-show-caret
GHC option, 95

-fdicts-cheap
GHC option, 123

-fdicts-strict
GHC option, 124

-fdistinct-constructor-tables
GHC option, 622

-fdmd-tx-dict-sel
GHC option, 124

-fdo-eta-reduction
GHC option, 124

-fdo-lambda-eta-expansion
GHC option, 124

-feager-blackholing
GHC option, 124

-fenable-rewrite-rules
GHC option, 542

-fenable-th-splice-warnings
GHC option, 492

-ferror-spans
GHC option, 95

-fexcess-precision
GHC option, 124

-fexitification
GHC option, 122

-fexpose-all-unfoldings
GHC option, 124

-fexpose-internal-symbols
GHC option, 241

694 Index



GHC User’s Guide Documentation, Release 9.2.6

-fexternal-dynamic-refs
GHC option, 240

-fexternal-interpreter
GHC option, 77

-ffamily-application-cache
GHC option, 333

-ffloat-in
GHC option, 124

-fforce-recomp
GHC option, 204

-ffull-laziness
GHC option, 125

-ffun-to-thunk
GHC option, 125

-fghci-hist-size=⟨n⟩
GHC option, 57

-fghci-leak-check
GHC option, 60

-fglasgow-exts
GHC option, 263

-fhelpful-errors
GHC option, 103

-fhide-source-paths
GHC option, 92

-fhpc
GHC option, 613

-fignore-asserts
GHC option, 125

-fignore-hpc-changes
GHC option, 204

-fignore-interface-pragmas
GHC option, 125

-fignore-optim-changes
GHC option, 204

-finfo-table-map
GHC option, 622

-finline-generics
GHC option, 130

-finline-generics-aggressively
GHC option, 130

-fkeep-cafs
GHC option, 247

-fkeep-going
GHC option, 96

-flate-dmd-anal
GHC option, 125

-flate-specialise
GHC option, 130

-fliberate-case
GHC option, 125

-fliberate-case-threshold=⟨n⟩
GHC option, 126

-flink-rts
GHC option, 243

-fllvm
GHC option, 240

-fllvm-fill-undef-with-garbage
GHC option, 259

-fllvm-pass-vectors-in-regs
GHC option, 126

-flocal-ghci-history
GHC option, 60

-floopification
GHC option, 126

-fmax-inline-alloc-size=⟨n⟩
GHC option, 126

-fmax-inline-memcpy-insns=⟨n⟩
GHC option, 126

-fmax-inline-memset-insns=⟨n⟩
GHC option, 126

-fmax-pmcheck-models=⟨n⟩
GHC option, 108

-fmax-refinement-hole-fits=⟨n⟩
GHC option, 298

-fmax-relevant-binds=⟨n⟩
GHC option, 126

-fmax-simplifier-iterations=⟨n⟩
GHC option, 126

-fmax-uncovered-patterns=⟨n⟩
GHC option, 126

-fmax-valid-hole-fits=⟨n⟩
GHC option, 296

-fmax-worker-args=⟨n⟩
GHC option, 127

-fno-\* options (GHC), 121
-fno-code

GHC option, 240
-fno-embed-manifest

GHC option, 245
-fno-gen-manifest

GHC option, 245
-fno-implicit-import-qualified, 44
-fno-it

GHC option, 46
-fno-opt-coercion

GHC option, 127
-fno-pre-inlining

GHC option, 127
-fno-prof-count-entries

GHC option, 597
-fno-safe-haskell

GHC option, 540
-fno-shared-implib

GHC option, 246
-fno-show-valid-hole-fits

GHC option, 296
-fno-sort-valid-hole-fits

GHC option, 298

Index 695



GHC User’s Guide Documentation, Release 9.2.6

-fno-state-hack
GHC option, 127

-fobject-code
GHC option, 240

-fomit-interface-pragmas
GHC option, 127

-fomit-yields
GHC option, 127

-foptimal-applicative-do
GHC option, 273

-fpackage-trust, 537
GHC option, 540

-fpedantic-bottoms
GHC option, 127

-fplugin-opt=⟨module⟩:⟨args⟩
GHC option, 573

-fplugin-trustworthy
GHC option, 573

-fplugin=⟨module⟩
GHC option, 573

-fprint-axiom-incomps
GHC option, 93

-fprint-bind-result
GHC option, 38

-fprint-equality-relations
GHC option, 93

-fprint-evld-with-show
GHC option, 51

-fprint-expanded-synonyms
GHC option, 94

-fprint-explicit-coercions
GHC option, 93

-fprint-explicit-foralls
GHC option, 92

-fprint-explicit-kinds
GHC option, 92

-fprint-explicit-runtime-reps
GHC option, 364

-fprint-potential-instances
GHC option, 92

-fprint-typechecker-elaboration
GHC option, 94

-fprint-unicode-syntax
GHC option, 92

-fproc-alignment
GHC option, 259

-fprof-auto
GHC option, 598

-fprof-auto-calls
GHC option, 598

-fprof-auto-exported
GHC option, 598

-fprof-auto-top
GHC option, 598

-fprof-cafs, 597
GHC option, 598

-fprof-callers=⟨name⟩
GHC option, 598

-framework ⟨name⟩
GHC option, 242

-framework-path ⟨dir⟩
GHC option, 242

-frefinement-level-hole-fits=⟨n⟩
GHC option, 298

-fregs-graph
GHC option, 127

-fregs-iterative
GHC option, 127

-freverse-errors
GHC option, 96

-fshow-docs-of-hole-fits
GHC option, 296

-fshow-hole-constraints
GHC option, 295

-fshow-hole-matches-of-hole-fits
GHC option, 298

-fshow-loaded-modules
GHC option, 34

-fshow-provenance-of-hole-fits
GHC option, 296

-fshow-type-app-of-hole-fits
GHC option, 296

-fshow-type-app-vars-of-hole-fits
GHC option, 296

-fshow-type-of-hole-fits
GHC option, 296

-fshow-warning-groups
GHC option, 101

-fsimpl-tick-factor=⟨n⟩
GHC option, 128

-fsimplifier-phases=⟨n⟩
GHC option, 128

-fsolve-constant-dicts
GHC option, 130

-fsort-by-size-hole-fits
GHC option, 299

-fsort-by-subsumption-hole-fits
GHC option, 299

-fspec-constr
GHC option, 128

-fspec-constr-count=⟨n⟩
GHC option, 129

-fspec-constr-keen
GHC option, 129

-fspec-constr-threshold=⟨n⟩
GHC option, 129

-fspecialise
GHC option, 129

696 Index



GHC User’s Guide Documentation, Release 9.2.6

-fspecialise-aggressively
GHC option, 129

-fstatic-argument-transformation
GHC option, 131

-fstg-cse
GHC option, 123

-fstg-lift-lams
GHC option, 131

-fstg-lift-lams-known
GHC option, 131

-fstg-lift-lams-non-rec-args
GHC option, 131

-fstg-lift-lams-rec-args
GHC option, 131

-fstrictness
GHC option, 131

-fstrictness-before=⟨n⟩
GHC option, 133

-funbox-small-strict-fields
GHC option, 133

-funbox-strict-fields
GHC option, 134

-funclutter-valid-hole-fits
GHC option, 296

-funfolding-case-scaling=⟨n⟩
GHC option, 135

-funfolding-case-threshold=⟨n⟩
GHC option, 135

-funfolding-creation-threshold=⟨n⟩
GHC option, 134

-funfolding-dict-discount=⟨n⟩
GHC option, 134

-funfolding-fun-discount=⟨n⟩
GHC option, 134

-funfolding-keeness-factor=⟨n⟩
GHC option, 134

-funfolding-use-threshold0 option, 631
-funfolding-use-threshold=⟨n⟩

GHC option, 134
-fuse-rpaths

GHC option, 242
-fvalidate-ide-info

GHC option, 204
-fvia-C, 234

GHC option, 234
-fwhole-archive-hs-libs

GHC option, 246
-fworker-wrapper

GHC option, 135
-fwrite-ide-info

GHC option, 204
-fwrite-interface

GHC option, 240
-g

GHC option, 617
hp2ps command line option, 608

-ghci-script
GHC option, 76

-ghcversion-file ⟨path to ghcversion.h⟩
GHC option, 98

-global-package-db
GHC option, 222

-g⟨n⟩
GHC option, 617

-h
RTS option, 193, 603

-hT
RTS option, 193, 603

-haddock
GHC option, 98

-hb
RTS option, 604

-hc
RTS option, 603

-hcsuf ⟨suffix⟩
GHC option, 202

-hd
RTS option, 604

-hi
RTS option, 604

-hide-all-packages
GHC option, 219

-hide-all-plugin-packages
GHC option, 574

-hide-package ⟨pkg⟩
GHC option, 219

-hidir ⟨dir⟩
GHC option, 201

-hiedir ⟨dir⟩
GHC option, 201

-hiesuf ⟨suffix⟩
GHC option, 202

-hisuf ⟨suffix⟩
GHC option, 202

-hm
RTS option, 604

-hr
RTS option, 604

-hy
RTS option, 604

-h⟨break-down⟩, 607
-i

GHC option, 200
-i ⟨secs⟩

RTS option, 605
-ignore-dot-ghci

GHC option, 76
-ignore-package ⟨pkg⟩

Index 697



GHC User’s Guide Documentation, Release 9.2.6

GHC option, 219
-include-cpp-deps

GHC option, 215
-include-pkg-deps

GHC option, 215
-interactive-print ⟨name⟩

GHC option, 48
-i⟨dir⟩[:⟨dir⟩]*

GHC option, 200
-j[⟨n⟩]

GHC option, 90
-kb ⟨size⟩

RTS option, 188
-kc ⟨size⟩

RTS option, 188
-keep-hc-file

GHC option, 202
-keep-hc-files

GHC option, 202
-keep-hi-files

GHC option, 202
-keep-hscpp-file

GHC option, 202
-keep-hscpp-files

GHC option, 202
-keep-llvm-file

GHC option, 203
-keep-llvm-files

GHC option, 203
-keep-o-files

GHC option, 203
-keep-s-file

GHC option, 203
-keep-s-files

GHC option, 203
-keep-tmp-files

GHC option, 203
-ki ⟨size⟩

RTS option, 188
-l

hp2ps command line option, 608
-l ⟨flags⟩

RTS option, 194
-l ⟨lib⟩

GHC option, 241
-m ⟨n⟩

RTS option, 188
-m\* options, 96
-main-is ⟨thing⟩

GHC option, 243
-mavx

GHC option, 96
-mavx2

GHC option, 96

-mavx512cd
GHC option, 96

-mavx512er
GHC option, 96

-mavx512f
GHC option, 96

-mavx512pf
GHC option, 97

-maxN ⟨x⟩
RTS option, 137

-mbmi
GHC option, 97

-mbmi2
GHC option, 98

-msse
GHC option, 97

-msse2
GHC option, 97

-msse2 option, 655
-msse3

GHC option, 97
-msse4

GHC option, 97
-msse4.2

GHC option, 97
-m⟨int⟩

hp2ps command line option, 608
-n ⟨size⟩

RTS option, 184
-no-auto

GHC option, 599
-no-auto-all

GHC option, 599
-no-auto-link-packages

GHC option, 219
-no-caf-all

GHC option, 599
-no-global-package-db

GHC option, 222
-no-hs-main

GHC option, 243
-no-pie

GHC option, 247
-no-rtsopts-suggestions

GHC option, 245
-no-user-package-db

GHC option, 222
-o ⟨file⟩

GHC option, 200
-odir ⟨dir⟩

GHC option, 201
-ohi ⟨file⟩

GHC option, 201
-ol⟨filename⟩

698 Index



GHC User’s Guide Documentation, Release 9.2.6

RTS option, 194
-optF ⟨option⟩

GHC option, 235
-optL ⟨option⟩

GHC option, 235
-optP ⟨option⟩

GHC option, 235
-opta ⟨option⟩

GHC option, 236
-optc ⟨option⟩

GHC option, 235
-optcxx ⟨option⟩

GHC option, 236
-optdll ⟨option⟩

GHC option, 236
-opti ⟨option⟩

GHC option, 236
-optl ⟨option⟩

GHC option, 236
-optlc ⟨option⟩

GHC option, 236
-optlm ⟨option⟩

GHC option, 236
-optlo ⟨option⟩

GHC option, 236
-optwindres ⟨option⟩

GHC option, 236
-osuf ⟨suffix⟩

GHC option, 202
-outputdir ⟨dir⟩

GHC option, 202
-p

hp2ps command line option, 608
RTS option, 593, 599

-pa
RTS option, 599

-package ⟨name⟩
GHC option, 241

-package ⟨pkg⟩
GHC option, 218

-package-db
ghc-pkg option, 228

-package-db ⟨file⟩
GHC option, 222

-package-env ⟨file⟩|⟨name⟩
GHC option, 223

-package-id ⟨unit-id⟩
GHC option, 219

-pgmF ⟨cmd⟩
GHC option, 235

-pgmL ⟨cmd⟩
GHC option, 234

-pgmP ⟨cmd⟩
GHC option, 234

-pgma ⟨cmd⟩
GHC option, 235

-pgmc ⟨cmd⟩
GHC option, 234

-pgmc-supports-no-pie
GHC option, 235

-pgmdll ⟨cmd⟩
GHC option, 235

-pgmi ⟨cmd⟩
GHC option, 235

-pgminstall_name_tool ⟨cmd⟩
GHC option, 235

-pgml ⟨cmd⟩
GHC option, 235

-pgmlc ⟨cmd⟩
GHC option, 234

-pgmlibtool ⟨cmd⟩
GHC option, 235

-pgmlm ⟨cmd⟩
GHC option, 235

-pgmlo ⟨cmd⟩
GHC option, 234

-pgmotool ⟨cmd⟩
GHC option, 235

-pgms ⟨cmd⟩
GHC option, 235

-pgmwindres ⟨cmd⟩
GHC option, 235

-pie
GHC option, 246

-pj
RTS option, 599

-plugin-package ⟨pkg⟩
GHC option, 574

-plugin-package-id ⟨pkg-id⟩
GHC option, 574

-po ⟨stem⟩
RTS option, 599

-prof
GHC option, 597

-qa
RTS option, 138

-qb ⟨gen⟩
RTS option, 186

-qg ⟨gen⟩
RTS option, 186

-qm
RTS option, 138

-qn ⟨x⟩
RTS option, 186

-r ⟨file⟩
RTS option, 196

-rdynamic
GHC option, 246

Index 699



GHC User’s Guide Documentation, Release 9.2.6

-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩]
GHC option, 244

-s
hp2ps command line option, 608

-s [⟨file⟩]
RTS option, 190

-shared
GHC option, 242

-split-objs
GHC option, 241

-split-sections
GHC option, 242

-static
GHC option, 242

-staticlib
GHC option, 242

-stubdir ⟨dir⟩
GHC option, 201

-t [⟨file⟩]
RTS option, 190

-this-unit-id ⟨unit-id⟩
GHC option, 219

-threaded
GHC option, 244

-ticky
GHC option, 616

-ticky-allocd
GHC option, 616

-ticky-dyn-thunk
GHC option, 616

-tmpdir ⟨dir⟩
GHC option, 203

-trust ⟨pkg⟩
GHC option, 538

-t⟨float⟩
hp2ps command line option, 608

-user-package-db
GHC option, 222

-v
GHC option, 91, 627
ghc-pkg option, 228

-v [⟨flags⟩]
RTS option, 195

-v⟨n⟩
GHC option, 91

-w
GHC option, 100
RTS option, 183

-with-rtsopts=⟨opts⟩
GHC option, 245

-x ⟨suffix⟩
GHC option, 91

-xc
RTS option, 196, 600

-xm
RTS option, 182

-xm ⟨address⟩
RTS option, 182

-xn
RTS option, 183

-xp
RTS option, 182

-xq ⟨size⟩
RTS option, 183

-y
hp2ps command line option, 608

.ghci
file, 75

.haskeline
file, 77

.hc files, saving, 202

.hi files, 199

.ll files, saving, 202

.o files, 199

.s files, saving, 202
:

⟨command⟩
GHCi command, 73

GHCi command, 65
:: ⟨builtin-command⟩

GHCi command, 73
:?

GHCi command, 65
:abandon

GHCi command, 61
:add

GHCi command, 61
:all-types

GHCi command, 61
:back

GHCi command, 62
:break

GHCi command, 62
:browse

GHCi command, 62
:cd

GHCi command, 62
:cmd

GHCi command, 63
:complete

GHCi command, 63
:continue

GHCi command, 64
:ctags

GHCi command, 64
:def

GHCi command, 64
:delete

700 Index



GHC User’s Guide Documentation, Release 9.2.6

GHCi command, 65
:disable

GHCi command, 65
:doc

GHCi command, 65
:edit

GHCi command, 65
:enable

GHCi command, 65
:etags

GHCi command, 65
:force

GHCi command, 65
:forward

GHCi command, 65
:help

GHCi command, 65
:history

GHCi command, 65
:ignore

GHCi command, 67
:info

GHCi command, 65
:instances

GHCi command, 66
:issafe

GHCi command, 67
:kind

GHCi command, 67
:list

GHCi command, 67
:list [⟨module⟩]

GHCi command, 67
:load, 34

GHCi command, 67
:loc-at

GHCi command, 68
:main

GHCi command, 68
:module

GHCi command, 68
:print

GHCi command, 69
:quit

GHCi command, 69
:reload, 35

GHCi command, 69
:run

GHCi command, 69
:script

GHCi command, 69
:set

command in GHCi, 73
GHCi command, 69

:set +c
GHCi command, 73

:set +m
GHCi command, 74

:set +r
GHCi command, 74

:set +s
GHCi command, 74

:set +t
GHCi command, 74

:set args
GHCi command, 69

:set editor
GHCi command, 69

:set local-config
GHCi command, 69

:set prog
GHCi command, 69

:set prompt
GHCi command, 70

:set prompt-cont
GHCi command, 70

:set prompt-cont-function
GHCi command, 70

:set prompt-function
GHCi command, 70

:set stop
GHCi command, 70

:seti, 73
GHCi command, 71

:show
GHCi command, 71

:show bindings
GHCi command, 71

:show breaks
GHCi command, 71

:show context
GHCi command, 71

:show imports
GHCi command, 71

:show language
GHCi command, 71

:show modules
GHCi command, 71

:show packages
GHCi command, 71

:show paths
GHCi command, 71

:showi language
GHCi command, 71

:sprint
GHCi command, 71

:step
GHCi command, 71

Index 701



GHC User’s Guide Documentation, Release 9.2.6

:steplocal
GHCi command, 72

:stepmodule
GHCi command, 72

:trace
GHCi command, 72

:type
GHCi command, 72

:type +d
GHCi command, 72

:type +v
GHCi command, 72

:type-at
GHCi command, 72

:undef
GHCi command, 73

:unset
GHCi command, 73

:uses
GHCi command, 73

__GLASGOW_HASKELL_FULL_VERSION__,
237

__GLASGOW_HASKELL_LLVM__, 238
__GLASGOW_HASKELL_PATCHLEVEL1__,

237
__GLASGOW_HASKELL_PATCHLEVEL2__,

237
__GLASGOW_HASKELL_TH__, 238
__GLASGOW_HASKELL__, 4, 237
__PARALLEL_HASKELL__, 238
‘‘hs-boot‘‘ files, 205

allocation area for large objects, size, 184
allocation area, chunk size, 184
allocation area, size, 184
AllowAmbiguousTypes

Language Extension, 469
ANN pragma, 571

on modules, 572
on types, 572

apparently erroneous do binding, warning,
117

Applicative do-notation, 271
ApplicativeDo

Language Extension, 271
arguments

command-line, 84
Arrows

Language Extension, 299
ASCII, 198
Assertions, 553
assertions

disabling, 553
author

package specification, 231
auto

package specification, 231

Bang patterns, 497
BangPatterns

Language Extension, 498
BinaryLiterals

Language Extension, 454
binds, unused, 114, 115
BIO_PROF_SAMPLE_BEGIN

eventlog event type, 670
BLOCK_MARKER

eventlog event type, 666
BlockArguments

Language Extension, 290
BLOCKS_SIZE

eventlog event type, 663
bugs

reporting, 4

C calls, function headers, 525
C code generator, 234
C pre-processor options, 237
CAFs

in GHCi, 74
CAP_CREATE

eventlog event type, 665
CAP_DELETE

eventlog event type, 665
CAP_DISABLE

eventlog event type, 665
CAP_ENABLE

eventlog event type, 665
CApiFFI

Language Extension, 520
category

package specification, 231
cc-options

package specification, 232
Char

size of, 653
code coverage, 611
COLUMN

pragma, 563
command-line

arguments, 84
order of arguments, 84

compacting garbage collection, 185
compilation phases, changing, 234
compiled code

in GHCi, 35
compiler problems, 625
compiling faster, 627

702 Index



GHC User’s Guide Documentation, Release 9.2.6

COMPLETE
pragma, 567

complete user-supplied kind signature, 350
CONC_MARK_BEGIN

eventlog event type, 671
CONC_MARK_END

eventlog event type, 671
CONC_SWEEP_BEGIN

eventlog event type, 672
CONC_SWEEP_END

eventlog event type, 672
CONC_SYNC_BEGIN

eventlog event type, 671
CONC_SYNC_END

eventlog event type, 671
CONC_UPD_REM_SET_FLUSH

eventlog event type, 672
concurrency, 504
Concurrent Haskell

using, 136
concurrent mark and sweep, 183
CONLIKE

pragma, 561
consistency checks, 259
Constant Applicative Form, 74
ConstrainedClassMethods

Language Extension, 436
ConstraintKinds

Language Extension, 461
constructor fields, strict, 133, 134
copyright

package specification, 231
cost centres

automatically inserting, 598
cost-centre profiling, 593
CPP

Language Extension, 236
cpp, pre-processing with, 237
CREATE_SPARK_THREAD

eventlog event type, 664
CREATE_THREAD

eventlog event type, 659
CUSK, 350
CUSKs

Language Extension, 350
Custom printing function

in GHCi, 48

DataKinds
Language Extension, 343

DatatypeContexts
Language Extension, 309

debugger
in GHCi, 49

debugging options (for GHC), 250
DeepSubsumption

Language Extension, 375
default declarations, 48
defaulting mechanism, warning, 113
DefaultSignatures

Language Extension, 437
dependencies in Makefiles, 213
dependency-generation mode

of GHC, 86
depends

package specification, 232
DEPRECATED

pragma, 557
deprecated flags, 105
deprecations, 104

warnings, 103
DeriveAnyClass

Language Extension, 419
DeriveDataTypeable

Language Extension, 411
DeriveFoldable

Language Extension, 408
DeriveFunctor

Language Extension, 405
DeriveGeneric

Language Extension, 550
DeriveLift

Language Extension, 412
DeriveTraversable

Language Extension, 410
DerivingStrategies

Language Extension, 421
DerivingVia

Language Extension, 422
description

package specification, 231
deterministic builds, 260
disabling

assertions, 553
DisambiguateRecordFields

Language Extension, 389
displaying type

in GHCi, 74
DLL-creation mode, 87
do binding, apparently erroneous, 117
do binding, unused, 115
do-notation

Applicative, 271
in GHCi, 38
Qualified, 274

dumping GHC intermediates, 251
duplicate constraints, warning, 106
duplicate exports, warning, 107

Index 703



GHC User’s Guide Documentation, Release 9.2.6

DuplicateRecordFields
Language Extension, 390

dynamic
options, 74, 85

Dynamic libraries
using, 247

EDITOR, 10, 65
EmptyCase

Language Extension, 288
EmptyDataDecls

Language Extension, 308
EmptyDataDeriving

Language Extension, 401
encodings

of source files, 198
endEventLogging (C function), 181
environment file, 223
environment variable

EDITOR, 10, 65
for setting RTS options, 179
GHC_ENVIRONMENT, 223, 224
GHC_PACKAGE_PATH, 221, 222, 225,

226
GHCRTS, 178–180, 244
HOME, 61, 63
HPCTIXFILE, 612, 616
LD_LIBRARY_PATH, 61, 250
LIBRARY_PATH, 61
PATH, 222, 240
RPATH, 249
RUNPATH, 249
TMPDIR, 203
VISUAL, 10, 65

environment variables, 98
eval mode

of GHC, 86
eventlog

and heap profiling, 604
eventlog event type

BIO_PROF_SAMPLE_BEGIN, 670
BLOCK_MARKER, 666
BLOCKS_SIZE, 663
CAP_CREATE, 665
CAP_DELETE, 665
CAP_DISABLE, 665
CAP_ENABLE, 665
CONC_MARK_BEGIN, 671
CONC_MARK_END, 671
CONC_SWEEP_BEGIN, 672
CONC_SWEEP_END, 672
CONC_SYNC_BEGIN, 671
CONC_SYNC_END, 671
CONC_UPD_REM_SET_FLUSH, 672

CREATE_SPARK_THREAD, 664
CREATE_THREAD, 659
GC_DONE, 662
GC_END, 661
GC_GLOBAL_SYNC, 662
GC_IDLE, 662
GC_START, 661
GC_STATS_GHC, 662
GC_WORK, 662
HEAP_ALLOCATED, 663
HEAP_BIO_PROF_SAMPLE_BEGIN, 668
HEAP_INFO_GHC, 663
HEAP_LIVE, 663
HEAP_PROF_BEGIN, 667
HEAP_PROF_COST_CENTRE, 667
HEAP_PROF_SAMPLE_BEGIN, 668
HEAP_PROF_SAMPLE_COST_CENTRE,

669
HEAP_PROF_SAMPLE_END, 669
HEAP_PROF_SAMPLE_STRING, 669
HEAP_SIZE, 663
IPE, 668
LOG_MSG, 666
MEM_RETURN, 662
MIGRATE_THREAD, 660
NONMOVING_HEAP_CENSUS, 672
PROF_BEGIN, 670
PROF_SAMPLE_COST_CENTRE, 670
PROGRAM_ARGS, 658
PROGRAM_ENV, 659
REQUEST_PAR_GC, 661
REQUEST_SEQ_GC, 661
RTS_IDENTIFIER, 658
RUN_THREAD, 659
SPARK_COUNTERS, 664
SPARK_CREATE, 664
SPARK_DUD, 664
SPARK_FIZZLE, 664
SPARK_GC, 665
SPARK_OVERFLOW, 664
SPARK_RUN, 664
SPARK_STEAL, 664
STOP_THREAD, 659
TASK_CREATE, 665
TASK_MIGRATE, 665
THREAD_LABEL, 660
THREAD_RUNNABLE, 660
THREAD_WAKEUP, 660
TICKY_COUNTER_BEGIN_SAMPLE, 673
TICKY_COUNTER_DEF, 672
TICKY_COUNTER_SAMPLE, 673
USER_MARKER, 666
USER_MSG, 666

eventlog files, 193

704 Index



GHC User’s Guide Documentation, Release 9.2.6

eventLogStatus (C function), 181
EventLogStatus (C type), 181
EventLogWriter (C type), 180
EventLogWriter.flushEventLog (C member),

180
EventLogWriter.initEventLogWriter (C mem-

ber), 180
EventLogWriter.stopEventLogWriter (C mem-

ber), 181
EventLogWriter.writeEventLog (C member),

180
events, 193
ExistentialQuantification

Language Extension, 312
ExplicitForAll

Language Extension, 466
ExplicitNamespaces

Language Extension, 307
export lists, duplicates, 107
export lists, missing, 109
exposed

package specification, 231
exposed-modules

package specification, 231
extended interface files, options, 204
extended list comprehensions, 278
ExtendedDefaultRules

Language Extension, 46
extensions

options controlling, 261
extra-libraries

package specification, 232

faster compiling, 627
faster programs, how to produce, 628
FFI

GHCi support, 33
fields, missing, 109
FieldSelectors

Language Extension, 392
file names

of source files, 198
file suffixes for GHC, 85
filenames

of modules, 35
finding interface files, 199
FlexibleContexts

Language Extension, 459
FlexibleInstances

Language Extension, 446
Floating point

and the FFI, 529
floating-point exceptions., 654

For instance: ‘‘__GLAS-
GOW_HASKELL_FULL_VERSION__==8.11.0.20200319‘‘.,
237

forall, 267
foralls, unused, 116
forcing GHC-phase options, 235
foreign, 267
foreign export

with GHC, 522
Foreign Function Interface

GHCi support, 33
Foreign function interface, 515
ForeignFunctionInterface

Language Extension, 515
formatting dumps, 257
framework-dirs

package specification, 233
frameworks

package specification, 233
fromInteger function, 653
fromIntegral function, 653
frontend plugins

using, 86
FunctionalDependencies

Language Extension, 440

GADTs
Language Extension, 321

GADTSyntax
Language Extension, 316

garbage collection
compacting, 185

garbage collector
options, 183

GC sync time, measuring, 190
GC threads, setting the number of, 187
GC_DONE

eventlog event type, 662
GC_END

eventlog event type, 661
GC_GLOBAL_SYNC

eventlog event type, 662
GC_IDLE

eventlog event type, 662
GC_START

eventlog event type, 661
GC_STATS_GHC

eventlog event type, 662
GC_WORK

eventlog event type, 662
GeneralisedNewtypeDeriving

Language Extension, 413
GeneralizedNewtypeDeriving

Language Extension, 413

Index 705



GHC User’s Guide Documentation, Release 9.2.6

generations, number of, 186
getArgs, behavior in GHCi, 69
getProgName, behavior in GHCi, 70
GHC backends, 233
GHC code generators, 233
GHC option

–exclude-module=⟨file⟩, 215
–frontend ⟨module⟩, 86
–help, 87
–info, 87
–interactive, 86
–make, 86
–mk-dll, 86
–numeric-version, 87
–print-booter-version, 87
–print-build-platform, 87
–print-c-compiler-flags, 87
–print-c-compiler-link-flags, 87
–print-debug-on, 87
–print-global-package-db, 87
–print-have-interpreter, 87
–print-have-native-code-generator, 87
–print-host-platform, 88
–print-ld-flags, 88
–print-leading-underscore, 88
–print-libdir, 88
–print-object-splitting-supported, 88
–print-project-git-commit-id, 88
–print-project-version, 88
–print-rts-ways, 88
–print-stage, 88
–print-support-smp, 88
–print-tables-next-to-code, 88
–print-target-platform, 89
–print-unregisterised, 89
–run ⟨file⟩, 86
–show-iface ⟨file⟩, 87, 204
–show-options, 87
–supported-extensions, 87
–supported-languages, 87
–version, 87
-?, 87
-C, 86
-D⟨symbol⟩[=⟨value⟩], 237
-E, 86
-F, 239
-H ⟨size⟩, 98
-I⟨dir⟩, 237
-L ⟨dir⟩, 242
-M, 86
-O, 121
-O0, 121
-O1, 121
-O2, 121

-O⟨n⟩, 121
-Rghc-timing, 96
-S, 86
-U⟨symbol⟩, 237
-V, 87
-W, 99
-Wall, 100
-Wall-missed-specialisations, 103
-Wall-missed-specializations, 103
-Wambiguous-fields, 120
-Wauto-orphans, 119
-Wcompat, 100
-Wcompat-unqualified-imports, 101
-Wcpp-undef, 118
-Wdefault, 99
-Wdeferred-out-of-scope-variables, 102
-Wdeferred-type-errors, 102
-Wdeprecated-flags, 105
-Wdeprecations, 103
-Wderiving-defaults, 106
-Wderiving-typeable, 119
-Wdodgy-exports, 105
-Wdodgy-foreign-imports, 105
-Wdodgy-imports, 105
-Wduplicate-constraints, 106
-Wduplicate-exports, 107
-Wempty-enumerations, 106
-Werror, 100
-Weverything, 100
-Wextra, 99
-Whi-shadowing, 107
-Widentities, 107
-Wimplicit-kind-vars, 107
-Wimplicit-lift, 107
-Wimplicit-prelude, 107
-Winaccessible-code, 112
-Wincomplete-patterns, 108
-Wincomplete-record-updates, 108
-Wincomplete-uni-patterns, 108
-Winferred-safe-imports, 540
-Winline-rule-shadowing, 117
-Winvalid-haddock, 118
-Wmissed-extra-shared-lib, 114
-Wmissed-specialisations, 103
-Wmissed-specializations, 103
-Wmissing-deriving-strategies, 109
-Wmissing-export-lists, 109
-Wmissing-exported-signatures, 110
-Wmissing-exported-sigs, 110
-Wmissing-fields, 109
-Wmissing-home-modules, 118
-Wmissing-import-lists, 109
-Wmissing-kind-signatures, 110
-Wmissing-local-signatures, 110

706 Index



GHC User’s Guide Documentation, Release 9.2.6

-Wmissing-local-sigs, 110
-Wmissing-methods, 110
-Wmissing-monadfail-instances, 104
-Wmissing-pattern-synonym-signatures,

110
-Wmissing-safe-haskell-mode, 541
-Wmissing-signatures, 110
-Wmissing-space-after-bang, 119
-Wmonomorphism-restriction, 113
-Wname-shadowing, 111
-Wno-compat, 100
-Wnoncanonical-monad-instances, 104
-Wnoncanonical-monadfail-instances,

104
-Wnoncanonical-monoid-instances, 104
-Wnot, 100
-Woperator-whitespace, 119
-Woperator-whitespace-ext-conflict, 119
-Worphans, 111
-Woverflowed-literals, 105
-Woverlapping-patterns, 111
-Wpartial-fields, 118
-Wpartial-type-signatures, 102
-Wprepositive-qualified-module, 101
-Wredundant-bang-patterns, 116
-Wredundant-constraints, 106
-Wredundant-record-wildcards, 117
-Wsafe, 540
-Wsemigroup, 104
-Wsimplifiable-class-constraints, 113
-Wstar-binder, 113
-Wstar-is-type, 112
-Wtabs, 113
-Wtrustworthy-safe, 540
-Wtype-defaults, 113
-Wtyped-holes, 102
-Wunbanged-strict-patterns, 118
-Wunicode-bidirectional-format-

characters, 120
-Wunrecognised-pragmas, 103
-Wunrecognised-warning-flags, 101
-Wunsafe, 540
-Wunsupported-calling-conventions, 105
-Wunsupported-llvm-version, 114
-Wunticked-promoted-constructors, 114
-Wunused-binds, 114
-Wunused-do-bind, 115
-Wunused-foralls, 116
-Wunused-imports, 115
-Wunused-local-binds, 115
-Wunused-matches, 115
-Wunused-packages, 118
-Wunused-pattern-binds, 115
-Wunused-record-wildcards, 116

-Wunused-top-binds, 114
-Wunused-type-patterns, 116
-Wwarn, 101
-Wwarnings-deprecations, 103
-Wwrong-do-bind, 117
-auto, 599
-auto-all, 598
-c, 86, 241
-caf-all, 599
-clear-package-db, 222
-cpp, 237
-dasm-lint, 259
-dcmm-lint, 259
-dcore-lint, 259
-ddump-asm, 256
-ddump-asm-expanded, 256
-ddump-asm-liveness, 256
-ddump-asm-native, 256
-ddump-asm-regalloc, 256
-ddump-asm-regalloc-stages, 256
-ddump-asm-stats, 256
-ddump-bcos, 257
-ddump-c-backend, 256
-ddump-cfg-weights, 256
-ddump-cmm, 256
-ddump-cmm-caf, 255
-ddump-cmm-cbe, 255
-ddump-cmm-cfg, 255
-ddump-cmm-cps, 256
-ddump-cmm-from-stg, 255
-ddump-cmm-info, 256
-ddump-cmm-opt, 256
-ddump-cmm-proc, 255
-ddump-cmm-procmap, 255
-ddump-cmm-raw, 255
-ddump-cmm-sink, 255
-ddump-cmm-sp, 255
-ddump-cmm-split, 255
-ddump-cmm-switch, 255
-ddump-cmm-verbose, 255
-ddump-cmm-verbose-by-proc, 255
-ddump-core-stats, 253
-ddump-cpr-signatures, 254
-ddump-cpranal, 254
-ddump-cse, 254
-ddump-deriv, 253
-ddump-ds, 253
-ddump-ds-preopt, 253
-ddump-ec-trace, 252
-ddump-faststrings, 251
-ddump-file-prefix=⟨str⟩, 251
-ddump-foreign, 257
-ddump-hi, 203
-ddump-hi-diffs, 203

Index 707



GHC User’s Guide Documentation, Release 9.2.6

-ddump-hie, 252
-ddump-hpc, 257
-ddump-if-trace, 252
-ddump-inlinings, 254
-ddump-json, 251
-ddump-llvm, 256
-ddump-minimal-imports, 203
-ddump-mod-cycles, 214
-ddump-mod-map, 257
-ddump-occur-anal, 254
-ddump-opt-cmm, 256
-ddump-parsed, 252
-ddump-parsed-ast, 252
-ddump-prep, 254
-ddump-rn, 252
-ddump-rn-ast, 252
-ddump-rn-stats, 252
-ddump-rn-trace, 252
-ddump-rtti, 257
-ddump-rule-firings, 253
-ddump-rule-rewrites, 253
-ddump-rules, 253
-ddump-simpl, 254
-ddump-simpl-iterations, 253
-ddump-simpl-stats, 253
-ddump-spec, 253
-ddump-splices, 252
-ddump-stg, 255
-ddump-stg-final, 255
-ddump-stg-from-core, 254
-ddump-stg-unarised, 255
-ddump-str-signatures, 254
-ddump-stranal, 254
-ddump-tc, 252
-ddump-tc-ast, 252
-ddump-tc-trace, 252
-ddump-ticked, 257
-ddump-timings, 252
-ddump-to-file, 251
-ddump-types, 253
-ddump-worker-wrapper, 254
-debug, 244
-dep-makefile ⟨file⟩, 214
-dep-suffix ⟨suffix⟩, 215
-dfaststring-stats, 251
-dhex-word-literals, 257
-dinitial-unique=⟨s⟩, 260
-dinline-check=⟨str⟩, 254
-distrust ⟨pkg⟩, 538
-distrust-all-packages, 538
-dlinear-core-lint, 259
-dno-debug-output, 258
-dno-typeable-binds, 260
-dppr-case-as-let, 257

-dppr-cols=⟨n⟩, 257
-dppr-debug, 251
-dppr-user-length, 257
-drule-check=⟨str⟩, 254
-dshow-passes, 251
-dstg-lint, 259
-dsuppress-all, 258
-dsuppress-coercions, 258
-dsuppress-idinfo, 258
-dsuppress-module-prefixes, 258
-dsuppress-stg-free-vars, 258
-dsuppress-ticks, 258
-dsuppress-timestamps, 258
-dsuppress-type-applications, 258
-dsuppress-type-signatures, 258
-dsuppress-unfoldings, 258
-dsuppress-uniques, 258
-dsuppress-var-kinds, 258
-dth-dec-file, 253
-dumpdir ⟨dir⟩, 201
-dunique-increment=⟨i⟩, 260
-dverbose-core2core, 253
-dverbose-stg2stg, 255
-dylib-install-name ⟨path⟩, 246
-dynamic, 242
-dynamic-too, 241
-dynhisuf ⟨suffix⟩, 202
-dynload, 243
-dyno ⟨file⟩, 201
-dynohi ⟨file⟩, 201
-dynosuf ⟨suffix⟩, 202
-e ⟨expr⟩, 86
-eventlog, 244
-fPIC, 240
-fPIE, 240
-fabstract-refinement-hole-fits, 298
-falignment-sanitisation, 259
-fasm, 240
-fasm-shortcutting, 122
-fbinary-blob-threshold=⟨n⟩, 136
-fblock-layout-cfg, 123
-fblock-layout-weightless, 123
-fblock-layout-weights, 123
-fbreak-on-error, 58
-fbreak-on-exception, 58
-fbyte-code, 240
-fcall-arity, 122
-fcase-folding, 122
-fcase-merge, 121
-fcatch-bottoms, 259
-fcheck-prim-bounds, 259
-fclear-plugins, 573
-fcmm-elim-common-blocks, 122
-fcmm-sink, 122

708 Index



GHC User’s Guide Documentation, Release 9.2.6

-fcmm-static-pred, 122
-fcompact-unwind, 247
-fcpr-anal, 123
-fcross-module-specialise, 129
-fcse, 123
-fdefer-diagnostics, 94
-fdefer-out-of-scope-variables, 102
-fdefer-type-errors, 102
-fdefer-typed-holes, 102
-fdiagnostics-color=⟨always|auto|never⟩,

95
-fdiagnostics-show-caret, 95
-fdicts-cheap, 123
-fdicts-strict, 124
-fdistinct-constructor-tables, 622
-fdmd-tx-dict-sel, 124
-fdo-eta-reduction, 124
-fdo-lambda-eta-expansion, 124
-feager-blackholing, 124
-fenable-rewrite-rules, 542
-fenable-th-splice-warnings, 492
-ferror-spans, 95
-fexcess-precision, 124
-fexitification, 122
-fexpose-all-unfoldings, 124
-fexpose-internal-symbols, 241
-fexternal-dynamic-refs, 240
-fexternal-interpreter, 77
-ffamily-application-cache, 333
-ffloat-in, 124
-fforce-recomp, 204
-ffull-laziness, 125
-ffun-to-thunk, 125
-fghci-hist-size=⟨n⟩, 57
-fghci-leak-check, 60
-fglasgow-exts, 263
-fhelpful-errors, 103
-fhide-source-paths, 92
-fhpc, 613
-fignore-asserts, 125
-fignore-hpc-changes, 204
-fignore-interface-pragmas, 125
-fignore-optim-changes, 204
-finfo-table-map, 622
-finline-generics, 130
-finline-generics-aggressively, 130
-fkeep-cafs, 247
-fkeep-going, 96
-flate-dmd-anal, 125
-flate-specialise, 130
-fliberate-case, 125
-fliberate-case-threshold=⟨n⟩, 126
-flink-rts, 243
-fllvm, 240

-fllvm-fill-undef-with-garbage, 259
-fllvm-pass-vectors-in-regs, 126
-flocal-ghci-history, 60
-floopification, 126
-fmax-inline-alloc-size=⟨n⟩, 126
-fmax-inline-memcpy-insns=⟨n⟩, 126
-fmax-inline-memset-insns=⟨n⟩, 126
-fmax-pmcheck-models=⟨n⟩, 108
-fmax-refinement-hole-fits=⟨n⟩, 298
-fmax-relevant-binds=⟨n⟩, 126
-fmax-simplifier-iterations=⟨n⟩, 126
-fmax-uncovered-patterns=⟨n⟩, 126
-fmax-valid-hole-fits=⟨n⟩, 296
-fmax-worker-args=⟨n⟩, 127
-fno-code, 240
-fno-embed-manifest, 245
-fno-gen-manifest, 245
-fno-it, 46
-fno-opt-coercion, 127
-fno-pre-inlining, 127
-fno-prof-count-entries, 597
-fno-safe-haskell, 540
-fno-shared-implib, 246
-fno-show-valid-hole-fits, 296
-fno-sort-valid-hole-fits, 298
-fno-state-hack, 127
-fobject-code, 240
-fomit-interface-pragmas, 127
-fomit-yields, 127
-foptimal-applicative-do, 273
-fpackage-trust, 540
-fpedantic-bottoms, 127
-fplugin-opt=⟨module⟩:⟨args⟩, 573
-fplugin-trustworthy, 573
-fplugin=⟨module⟩, 573
-fprint-axiom-incomps, 93
-fprint-bind-result, 38
-fprint-equality-relations, 93
-fprint-evld-with-show, 51
-fprint-expanded-synonyms, 94
-fprint-explicit-coercions, 93
-fprint-explicit-foralls, 92
-fprint-explicit-kinds, 92
-fprint-explicit-runtime-reps, 364
-fprint-potential-instances, 92
-fprint-typechecker-elaboration, 94
-fprint-unicode-syntax, 92
-fproc-alignment, 259
-fprof-auto, 598
-fprof-auto-calls, 598
-fprof-auto-exported, 598
-fprof-auto-top, 598
-fprof-cafs, 598
-fprof-callers=⟨name⟩, 598

Index 709



GHC User’s Guide Documentation, Release 9.2.6

-framework ⟨name⟩, 242
-framework-path ⟨dir⟩, 242
-frefinement-level-hole-fits=⟨n⟩, 298
-fregs-graph, 127
-fregs-iterative, 127
-freverse-errors, 96
-fshow-docs-of-hole-fits, 296
-fshow-hole-constraints, 295
-fshow-hole-matches-of-hole-fits, 298
-fshow-loaded-modules, 34
-fshow-provenance-of-hole-fits, 296
-fshow-type-app-of-hole-fits, 296
-fshow-type-app-vars-of-hole-fits, 296
-fshow-type-of-hole-fits, 296
-fshow-warning-groups, 101
-fsimpl-tick-factor=⟨n⟩, 128
-fsimplifier-phases=⟨n⟩, 128
-fsolve-constant-dicts, 130
-fsort-by-size-hole-fits, 299
-fsort-by-subsumption-hole-fits, 299
-fspec-constr, 128
-fspec-constr-count=⟨n⟩, 129
-fspec-constr-keen, 129
-fspec-constr-threshold=⟨n⟩, 129
-fspecialise, 129
-fspecialise-aggressively, 129
-fstatic-argument-transformation, 131
-fstg-cse, 123
-fstg-lift-lams, 131
-fstg-lift-lams-known, 131
-fstg-lift-lams-non-rec-args, 131
-fstg-lift-lams-rec-args, 131
-fstrictness, 131
-fstrictness-before=⟨n⟩, 133
-funbox-small-strict-fields, 133
-funbox-strict-fields, 134
-funclutter-valid-hole-fits, 296
-funfolding-case-scaling=⟨n⟩, 135
-funfolding-case-threshold=⟨n⟩, 135
-funfolding-creation-threshold=⟨n⟩, 134
-funfolding-dict-discount=⟨n⟩, 134
-funfolding-fun-discount=⟨n⟩, 134
-funfolding-keeness-factor=⟨n⟩, 134
-funfolding-use-threshold=⟨n⟩, 134
-fuse-rpaths, 242
-fvalidate-ide-info, 204
-fvia-C, 234
-fwhole-archive-hs-libs, 246
-fworker-wrapper, 135
-fwrite-ide-info, 204
-fwrite-interface, 240
-g, 617
-ghci-script, 76
-ghcversion-file ⟨path to ghcversion.h⟩, 98

-global-package-db, 222
-g⟨n⟩, 617
-haddock, 98
-hcsuf ⟨suffix⟩, 202
-hide-all-packages, 219
-hide-all-plugin-packages, 574
-hide-package ⟨pkg⟩, 219
-hidir ⟨dir⟩, 201
-hiedir ⟨dir⟩, 201
-hiesuf ⟨suffix⟩, 202
-hisuf ⟨suffix⟩, 202
-i, 200
-ignore-dot-ghci, 76
-ignore-package ⟨pkg⟩, 219
-include-cpp-deps, 215
-include-pkg-deps, 215
-interactive-print ⟨name⟩, 48
-i⟨dir⟩[:⟨dir⟩]*, 200
-j[⟨n⟩], 90
-keep-hc-file, 202
-keep-hc-files, 202
-keep-hi-files, 202
-keep-hscpp-file, 202
-keep-hscpp-files, 202
-keep-llvm-file, 203
-keep-llvm-files, 203
-keep-o-files, 203
-keep-s-file, 203
-keep-s-files, 203
-keep-tmp-files, 203
-l ⟨lib⟩, 241
-main-is ⟨thing⟩, 243
-mavx, 96
-mavx2, 96
-mavx512cd, 96
-mavx512er, 96
-mavx512f, 96
-mavx512pf, 97
-mbmi, 97
-mbmi2, 98
-msse, 97
-msse2, 97
-msse3, 97
-msse4, 97
-msse4.2, 97
-no-auto, 599
-no-auto-all, 599
-no-auto-link-packages, 219
-no-caf-all, 599
-no-global-package-db, 222
-no-hs-main, 243
-no-pie, 247
-no-rtsopts-suggestions, 245
-no-user-package-db, 222

710 Index



GHC User’s Guide Documentation, Release 9.2.6

-o ⟨file⟩, 200
-odir ⟨dir⟩, 201
-ohi ⟨file⟩, 201
-optF ⟨option⟩, 235
-optL ⟨option⟩, 235
-optP ⟨option⟩, 235
-opta ⟨option⟩, 236
-optc ⟨option⟩, 235
-optcxx ⟨option⟩, 236
-optdll ⟨option⟩, 236
-opti ⟨option⟩, 236
-optl ⟨option⟩, 236
-optlc ⟨option⟩, 236
-optlm ⟨option⟩, 236
-optlo ⟨option⟩, 236
-optwindres ⟨option⟩, 236
-osuf ⟨suffix⟩, 202
-outputdir ⟨dir⟩, 202
-package ⟨name⟩, 241
-package ⟨pkg⟩, 218
-package-db ⟨file⟩, 222
-package-env ⟨file⟩|⟨name⟩, 223
-package-id ⟨unit-id⟩, 219
-pgmF ⟨cmd⟩, 235
-pgmL ⟨cmd⟩, 234
-pgmP ⟨cmd⟩, 234
-pgma ⟨cmd⟩, 235
-pgmc ⟨cmd⟩, 234
-pgmc-supports-no-pie, 235
-pgmdll ⟨cmd⟩, 235
-pgmi ⟨cmd⟩, 235
-pgminstall_name_tool ⟨cmd⟩, 235
-pgml ⟨cmd⟩, 235
-pgmlc ⟨cmd⟩, 234
-pgmlibtool ⟨cmd⟩, 235
-pgmlm ⟨cmd⟩, 235
-pgmlo ⟨cmd⟩, 234
-pgmotool ⟨cmd⟩, 235
-pgms ⟨cmd⟩, 235
-pgmwindres ⟨cmd⟩, 235
-pie, 246
-plugin-package ⟨pkg⟩, 574
-plugin-package-id ⟨pkg-id⟩, 574
-prof, 597
-rdynamic, 246
-rtsopts[=⟨none|some|all|ignore|ignoreAll⟩],

244
-shared, 242
-split-objs, 241
-split-sections, 242
-static, 242
-staticlib, 242
-stubdir ⟨dir⟩, 201
-this-unit-id ⟨unit-id⟩, 219

-threaded, 244
-ticky, 616
-ticky-allocd, 616
-ticky-dyn-thunk, 616
-tmpdir ⟨dir⟩, 203
-trust ⟨pkg⟩, 538
-user-package-db, 222
-v, 91
-v⟨n⟩, 91
-w, 100
-with-rtsopts=⟨opts⟩, 245
-x ⟨suffix⟩, 91

GHC vs the Haskell standards, 647
GHC, using, 83
GHC2021

Language Extension, 261
GHC_ENVIRONMENT, 224
GHC_PACKAGE_PATH, 221, 222, 225, 226
GHCForeignImportPrim

Language Extension, 519
GHCi, 33, 86
GHCi command

:, 65
⟨command⟩, 73

:: ⟨builtin-command⟩, 73
:?, 65
:abandon, 61
:add, 61
:all-types, 61
:back, 62
:break, 62
:browse, 62
:cd, 62
:cmd, 63
:complete, 63
:continue, 64
:ctags, 64
:def, 64
:delete, 65
:disable, 65
:doc, 65
:edit, 65
:enable, 65
:etags, 65
:force, 65
:forward, 65
:help, 65
:history, 65
:ignore, 67
:info, 65
:instances, 66
:issafe, 67
:kind, 67
:list, 67

Index 711



GHC User’s Guide Documentation, Release 9.2.6

:list [⟨module⟩], 67
:load, 67
:loc-at, 68
:main, 68
:module, 68
:print, 69
:quit, 69
:reload, 69
:run, 69
:script, 69
:set, 69
:set +c, 73
:set +m, 74
:set +r, 74
:set +s, 74
:set +t, 74
:set args, 69
:set editor, 69
:set local-config, 69
:set prog, 69
:set prompt, 70
:set prompt-cont, 70
:set prompt-cont-function, 70
:set prompt-function, 70
:set stop, 70
:seti, 71
:show, 71
:show bindings, 71
:show breaks, 71
:show context, 71
:show imports, 71
:show language, 71
:show modules, 71
:show packages, 71
:show paths, 71
:showi language, 71
:sprint, 71
:step, 71
:steplocal, 72
:stepmodule, 72
:trace, 72
:type, 72
:type +d, 72
:type +v, 72
:type-at, 72
:undef, 73
:unset, 73
:uses, 73
import, 69

GHCi prompt
setting, 70

GHCi prompt function
setting, 70

GHCRTS, 178–180, 244

GHCRTS environment variable, 179
Glasgow Haskell mailing lists, 3
group, 278

haddock, 98
haddock-html

package specification, 233
haddock-interfaces

package specification, 233
Happy, 635
happy parser generator, 635
Haskell Program Coverage, 611
Haskell standards vs GHC, 647
Haskell2010

Language Extension, 262
Haskell98

Language Extension, 263
heap profiles, 607
heap size, factor, 185
heap size, grace, 189
heap size, maximum, 189
heap size, suggested, 187
heap space, using less, 631
heap, minimum free, 189
HEAP_ALLOCATED

eventlog event type, 663
HEAP_BIO_PROF_SAMPLE_BEGIN

eventlog event type, 668
HEAP_INFO_GHC

eventlog event type, 663
HEAP_LIVE

eventlog event type, 663
HEAP_PROF_BEGIN

eventlog event type, 667
HEAP_PROF_COST_CENTRE

eventlog event type, 667
HEAP_PROF_SAMPLE_BEGIN

eventlog event type, 668
HEAP_PROF_SAMPLE_COST_CENTRE

eventlog event type, 669
HEAP_PROF_SAMPLE_END

eventlog event type, 669
HEAP_PROF_SAMPLE_STRING

eventlog event type, 669
HEAP_SIZE

eventlog event type, 663
help options, 86
HexFloatLiterals

Language Extension, 454
hidden-modules

package specification, 231
HOME, 61, 63
homepage

package specification, 231

712 Index



GHC User’s Guide Documentation, Release 9.2.6

hooks
RTS, 180

hp2ps, 607
hp2ps command line option

-?, 608
-b, 607
-c, 608
-d, 607
-e⟨float⟩[in|mm|pt], 608
-g, 608
-l, 608
-m⟨int⟩, 608
-p, 608
-s, 608
-t⟨float⟩, 608
-y, 608

hpc, 611
HPCTIXFILE, 612, 616
hs-libraries

package specification, 232
hs_exit, 653
hs_init, 653
hsc2hs, 635
hugs-options

package specification, 232

id
package specification, 231

idle GC, 187
implicit parameters, 267
implicit prelude, warning, 107
ImplicitParams

Language Extension, 476
import

GHCi command, 69
import lists, missing, 109
import-dirs

package specification, 232
importing, ‘‘hi-boot‘‘ files, 205
ImportQualifiedPost

Language Extension, 307
imports, unused, 115
ImpredicativeTypes

Language Extension, 377
improvement, code, 120
in GHCi

Repeating last command, 65
inaccessible, 112
inaccessible code, warning, 112
include-dirs

package specification, 232
includes

package specification, 232
INCOHERENT, 569

pragma, 569
IncoherentInstances

Language Extension, 450
incomplete patterns, warning, 108
incomplete record updates, warning, 108
INLINABLE

pragma, 560
INLINE

pragma, 559
inlining, controlling, 130, 134, 135, 631
instance, specializing, 566
InstanceSigs

Language Extension, 453
Int

size of, 653
interactive, 33
Interactive classes, 47
interactive mode, 86
interface files, 199
interface files, finding them, 199
interface files, options, 203
interfacing with native code, 515
intermediate files, saving, 202
intermediate passes, output, 251
interpreter, 33
InterruptibleFFI

Language Extension, 519
invoking

GHCi, 60
IPE

eventlog event type, 668
it variable, 45
Its value comes from the ‘‘ProjectVersion‘‘ Au-

totools variable., 237

kind heterogeneous
Type equality constraints, 460

kind signatures, missing, 111
KindSignatures

Language Extension, 471

LambdaCase
Language Extension, 287

LANGUAGE
pragma, 556

language
option, 261

Language Extension
AllowAmbiguousTypes, 469
ApplicativeDo, 271
Arrows, 299
BangPatterns, 498
BinaryLiterals, 454
BlockArguments, 290

Index 713



GHC User’s Guide Documentation, Release 9.2.6

CApiFFI, 520
ConstrainedClassMethods, 436
ConstraintKinds, 461
CPP, 236
CUSKs, 350
DataKinds, 343
DatatypeContexts, 309
DeepSubsumption, 375
DefaultSignatures, 437
DeriveAnyClass, 419
DeriveDataTypeable, 411
DeriveFoldable, 408
DeriveFunctor, 405
DeriveGeneric, 550
DeriveLift, 412
DeriveTraversable, 410
DerivingStrategies, 421
DerivingVia, 422
DisambiguateRecordFields, 389
DuplicateRecordFields, 390
EmptyCase, 288
EmptyDataDecls, 308
EmptyDataDeriving, 401
ExistentialQuantification, 312
ExplicitForAll, 466
ExplicitNamespaces, 307
ExtendedDefaultRules, 46
FieldSelectors, 392
FlexibleContexts, 459
FlexibleInstances, 446
ForeignFunctionInterface, 515
FunctionalDependencies, 440
GADTs, 321
GADTSyntax, 316
GeneralisedNewtypeDeriving, 413
GeneralizedNewtypeDeriving, 413
GHC2021, 261
GHCForeignImportPrim, 519
Haskell2010, 262
Haskell98, 263
HexFloatLiterals, 454
ImplicitParams, 476
ImportQualifiedPost, 307
ImpredicativeTypes, 377
IncoherentInstances, 450
InstanceSigs, 453
InterruptibleFFI, 519
KindSignatures, 471
LambdaCase, 287
LexicalNegation, 305
LiberalTypeSynonyms, 310
LinearTypes, 378
MagicHash, 268
MonadComprehensions, 280

MonoLocalBinds, 485
MultiParamTypeClasses, 435
MultiWayIf, 289
NamedFieldPuns, 394
NamedWildCards, 481
NegativeLiterals, 454
NoImplicitPrelude, 285
NoMonomorphismRestriction, 484
NondecreasingIndentation, 648
NoPatternGuards, 424
NoTraditionalRecordSyntax, 387
NPlusKPatterns, 426
NullaryTypeClasses, 440
NumDecimals, 455
NumericUnderscores, 455
OverlappingInstances, 449
OverloadedLabels, 458
OverloadedLists, 282
OverloadedRecordDot, 399
OverloadedRecordUpdate, 400
OverloadedStrings, 457
PackageImports, 306
ParallelListComp, 277
PartialTypeSignatures, 479
PatternSynonyms, 427
PolyKinds, 346
PostfixOperators, 286
QualifiedDo, 274
QuantifiedConstraints, 462
QuasiQuotes, 495
Rank2Types, 372
RankNTypes, 372
RebindableSyntax, 285
RecordWildCards, 395
RecursiveDo, 269
RoleAnnotations, 385
Safe, 539
ScopedTypeVariables, 472
StandaloneDeriving, 403
StandaloneKindSignatures, 352
StarIsType, 360
StaticPointers, 506
Strict, 500
StrictData, 499
TemplateHaskell, 486
TemplateHaskellQuotes, 486
TransformListComp, 278
Trustworthy, 539
TupleSections, 287
TypeApplications, 366
TypeFamilies, 325
TypeFamilyDependencies, 341
TypeInType, 346
TypeOperators, 310

714 Index



GHC User’s Guide Documentation, Release 9.2.6

TypeSynonymInstances, 445
UnboxedSums, 511
UnboxedTuples, 510
UndecidableInstances, 448
UndecidableSuperClasses, 435
UnicodeSyntax, 267
UnliftedDatatypes, 514
UnliftedFFITypes, 517
UnliftedNewtypes, 513
Unsafe, 540
ViewPatterns, 424

language, GHC extensions, 261
Latin-1, 198
ld options, 241
ld-options

package specification, 232
LD_LIBRARY_PATH, 61, 250
levity polymorphism, 362
LexicalNegation

Language Extension, 305
lhs file extension, 85
libdir, 88
LiberalTypeSynonyms

Language Extension, 310
libraries

with GHCi, 61
library-dirs

package specification, 232
LIBRARY_PATH, 61
license-file

package specification, 231
LINE

pragma, 562
LinearTypes

Language Extension, 378
linker options, 241
linking Haskell libraries with foreign code,

243
lint, 259
list comprehensions

ambiguity with quasi-quotes, 496
generalised, 278
parallel, 277

LLVM code generator, 233
LOG_MSG

eventlog event type, 666

machine-specific options, 96
MagicHash

Language Extension, 268
mailing lists, Glasgow Haskell, 3
maintainer

package specification, 231
make

building programs with, 212
make and recompilation, 198
make mode

of GHC, 86
Makefile dependencies, 213
Makefiles

avoiding, 89
MallocFailHook (C function), 180
matches, unused, 115
mdo, 267
MEM_RETURN

eventlog event type, 662
memory, using less heap, 631
methods, missing, 110
MIGRATE_THREAD

eventlog event type, 660
MIN_VERSION_GLASGOW_HASKELL, 238
MINIMAL

pragma, 558
miscellaneous flags, 98
missing export lists, warning, 109
missing fields, warning, 109
missing import lists, warning, 109
missing methods, warning, 110
mode

options, 85
module system, recursion, 205
modules

and filenames, 35
monad comprehensions, 280
MonadComprehensions

Language Extension, 280
MonoLocalBinds

Language Extension, 485
monomorphism restriction, warning, 114
multiline input

in GHCi, 74
MultiParamTypeClasses

Language Extension, 435
MultiWayIf

Language Extension, 289

name
package specification, 231

NamedFieldPuns
Language Extension, 394

NamedWildCards
Language Extension, 481

native code generator, 233
NegativeLiterals

Language Extension, 454
NoImplicitPrelude

Language Extension, 285
NOINLINE

Index 715



GHC User’s Guide Documentation, Release 9.2.6

pragma, 561
nominal

role, 384
NoMonomorphismRestriction

Language Extension, 484
NondecreasingIndentation

Language Extension, 648
NONMOVING_HEAP_CENSUS

eventlog event type, 672
NoPatternGuards

Language Extension, 424
NOTINLINE, 561
NoTraditionalRecordSyntax

Language Extension, 387
NOUNPACK

pragma, 567
NPlusKPatterns

Language Extension, 426
NullaryTypeClasses

Language Extension, 440
NUMA, enabling in the runtime, 189
NumDecimals

Language Extension, 455
NumericUnderscores

Language Extension, 455

object files, 199
old generation, size, 184
optimisation, 120
optimise

aggressively, 121
normally, 121

optimization
and GHCi, 78

options
for profiling, 597
GHCi, 73
language, 261

OPTIONS_GHC
pragma, 557

orphan instances, warning, 111
orphan rules, warning, 111
OutOfHeapHook (C function), 180
output-directing options, 200
OVERLAPPABLE, 569

pragma, 569
OVERLAPPING, 569

pragma, 569
overlapping patterns, warning, 111
OverlappingInstances

Language Extension, 449
OVERLAPS, 569

pragma, 569
OverloadedLabels

Language Extension, 458
OverloadedLists

Language Extension, 282
OverloadedRecordDot

Language Extension, 399
OverloadedRecordUpdate

Language Extension, 400
OverloadedStrings

Language Extension, 457
overloading, death to, 563, 566, 628

package environments, 223
package trust, 538
package-url

package specification, 231
PackageImports

Language Extension, 306
packages, 216

building, 228
management, 225
using, 217
with GHCi, 60

parallel list comprehensions, 277
parallelism, 136, 504
ParallelListComp

Language Extension, 277
parser generator for Haskell, 635
PartialTypeSignatures

Language Extension, 479
PATH, 222, 240
patterns, incomplete, 108
patterns, overlapping, 111
PatternSynonyms

Language Extension, 427
phantom

role, 384
platform-specific options, 96
PolyKinds

Language Extension, 346
PostfixOperators

Language Extension, 286
postscript, from heap profiles, 607
pragma, 556

ANN, 571
COLUMN, 563
COMPLETE, 567
CONLIKE, 561
DEPRECATED, 557
INCOHERENT, 569
INLINABLE, 560
INLINE, 559
LANGUAGE, 556
LINE, 562
MINIMAL, 558

716 Index



GHC User’s Guide Documentation, Release 9.2.6

NOINLINE, 561
NOUNPACK, 567
OPTIONS_GHC, 557
OVERLAPPABLE, 569
OVERLAPPING, 569
OVERLAPS, 569
RULES, 541
SOURCE, 567
SPECIALIZE, 563
SPECIALIZE-INLINE, 564
SPECIALIZE-instance, 566
UNPACK, 566
WARNING, 557

pragma, SPECIALIZE, 563
pre-processing: cpp, 237
pre-processing: custom, 239
pre-processor options, 239
problems, 625
problems running your program, 626
problems with the compiler, 625
proc, 267
PROF_BEGIN

eventlog event type, 670
PROF_SAMPLE_COST_CENTRE

eventlog event type, 670
profiling, 593

options, 597
ticky ticky, 196
with Template Haskell, 494

PROGRAM_ARGS
eventlog event type, 658

PROGRAM_ENV
eventlog event type, 659

promoted constructor, warning, 114
prompt

GHCi, 33

Qualified do-notation, 274
QualifiedDo

Language Extension, 274
QuantifiedConstraints

Language Extension, 462
quasi-quotation, 267
Quasi-quotes, 267
quasi-quotes

ambiguity with list comprehensions, 496
QuasiQuotes

Language Extension, 495

Rank2Types
Language Extension, 372

RankNTypes
Language Extension, 372

RebindableSyntax

Language Extension, 285
recompilation checker, 198, 204
record updates, incomplete, 108
RecordWildCards

Language Extension, 395
recursion, between modules, 205
RecursiveDo

Language Extension, 269
redirecting compilation output, 200
redundant constraints, warning, 106
redundant, warning, bang patterns, 117
reexported-modules

reexport specification, 231
Repeating last command

in GHCi, 65
reporting bugs, 4
representational

role, 384
REQUEST_PAR_GC

eventlog event type, 661
REQUEST_SEQ_GC

eventlog event type, 661
rewrite rules, 541
RoleAnnotations

Language Extension, 385
roles, 383
RPATH, 249
RTS, 197
RTS behaviour, changing, 180
RTS hooks, 180
RTS option

–copying-gc, 183
–disable-delayed-os-memory-return, 182
–eventlog-flush-interval=⟨seconds⟩, 195
–generate-crash-dumps, 181
–generate-stack-traces=<yes|no>, 181
–info, 197
–install-seh-handlers=⟨yes|no⟩, 181
–install-signal-handlers=⟨yes|no⟩, 181
–internal-counters, 190
–long-gc-sync, 190
–long-gc-sync=<seconds>, 190
–machine-readable, 190
–no-automatic-heap-samples, 605
–nonmoving-gc, 183
–null-eventlog-writer, 605
–numa, 189
–numa=<mask>, 189
-A ⟨size⟩, 184
-AL ⟨size⟩, 184
-B, 195
-C ⟨s⟩, 136
-D ⟨x⟩, 195
-DC DEBUG: compact, 196

Index 717



GHC User’s Guide Documentation, Release 9.2.6

-DG DEBUG: gccafs, 195
-DS DEBUG: sanity, 195
-DZ DEBUG: zero freed memory on GC,

196
-Da DEBUG: apply, 196
-Db DEBUG: block, 195
-Dc DEBUG: program coverage, 196
-Dg DEBUG: gc, 195
-Di DEBUG: interpreter, 195
-Dl DEBUG: linker, 196
-Dm DEBUG: stm, 196
-Dp DEBUG: prof, 196
-Dr DEBUG: sparks, 196
-Ds DEBUG: scheduler, 195
-Dt DEBUG: stable, 196
-Dw DEBUG: weak, 195
-Dz DEBUG: stack squeezing, 196
-F ⟨factor⟩, 185
-Fd ⟨factor⟩, 185
-G ⟨generations⟩, 186
-H [⟨size⟩], 187
-I ⟨seconds⟩, 187
-Iw ⟨seconds⟩, 187
-K ⟨size⟩, 188
-L ⟨num⟩, 605
-L ⟨n⟩, 193
-M ⟨size⟩, 189
-Mgrace=⟨size⟩, 189
-N, 137
-N ⟨x⟩, 137
-O ⟨size⟩, 184
-P, 599
-R ⟨size⟩, 606
-S [⟨file⟩], 190
-T, 190
-V ⟨secs⟩, 599
-Z, 197
-c, 185
-c ⟨n⟩, 185
-h, 193, 603
-hT, 193, 603
-hb, 604
-hc, 603
-hd, 604
-hi, 604
-hm, 604
-hr, 604
-hy, 604
-i ⟨secs⟩, 605
-kb ⟨size⟩, 188
-kc ⟨size⟩, 188
-ki ⟨size⟩, 188
-l ⟨flags⟩, 194
-m ⟨n⟩, 188

-maxN ⟨x⟩, 137
-n ⟨size⟩, 184
-ol⟨filename⟩, 194
-p, 599
-pa, 599
-pj, 599
-po ⟨stem⟩, 599
-qa, 138
-qb ⟨gen⟩, 186
-qg ⟨gen⟩, 186
-qm, 138
-qn ⟨x⟩, 186
-r ⟨file⟩, 196
-s [⟨file⟩], 190
-t [⟨file⟩], 190
-v [⟨flags⟩], 195
-w, 183
-xc, 196, 600
-xm ⟨address⟩, 182
-xn, 183
-xp, 182
-xq ⟨size⟩, 183

RTS options, 178
concurrent, 136
from the environment, 179
garbage collection, 183

RTS options, hacking/debugging, 195
RTS options, setting, 178
RTS_IDENTIFIER

eventlog event type, 658
RULES

pragma, 541
run mode, 86
RUN_THREAD

eventlog event type, 659
runghc, 81
running, compiled program, 178
RUNPATH, 249
runtime control of Haskell programs, 178

Safe
Language Extension, 539

safe compilation, 541
safe haskell, 530
Safe Haskell flags, 539
safe haskell imports, warning, 540
safe haskell mode, missing, 541
safe haskell trust, 536
safe haskell uses, 531
safe imports, 535
safe inference, 539
safe language, 533
sanity-checking options, 98
ScopedSort, 368

718 Index



GHC User’s Guide Documentation, Release 9.2.6

ScopedTypeVariables
Language Extension, 472

search path, 199
source code, 200

secure haskell, 531
semigroup

warning, 105
separate compilation, 89, 198
shadowing

interface files, 107
shadowing, warning, 111
Shared libraries

using, 247
shell commands

in GHCi, 73
Show class, 46
signature files

Backpack
hsig files, 207

simple: stack trace
in GHCi, 49

simplifiable class constraints, warning, 113
single : -osuf

using with profiling, 495
size_t (C type), 180
smaller programs, how to produce, 631
SMP, 136, 505
SOURCE

pragma, 567
source annotations, 571
source-file options, 84
space-leaks, avoiding, 631
SPARK_COUNTERS

eventlog event type, 664
SPARK_CREATE

eventlog event type, 664
SPARK_DUD

eventlog event type, 664
SPARK_FIZZLE

eventlog event type, 664
SPARK_GC

eventlog event type, 665
SPARK_OVERFLOW

eventlog event type, 664
SPARK_RUN

eventlog event type, 664
SPARK_STEAL

eventlog event type, 664
SPECIALIZE

pragma, 563
SPECIALIZE pragma, 563, 628
SPECIALIZE-INLINE

pragma, 564
SPECIALIZE-instance

pragma, 566
specifying your own main function, 243
SQL, 278
stability

package specification, 231
stack

chunk buffer size, 188
chunk size, 188

stack, initial size, 188
stack, maximum size, 188
StackOverflowHook (C function), 180
standalone kind signature, 352
StandaloneDeriving

Language Extension, 403
StandaloneKindSignatures

Language Extension, 352
StarIsType

Language Extension, 360
startEventLogging (C function), 181
startup

files, GHCi, 75, 77
statements

in GHCi, 38
static

options, 74
Static pointers, 506
StaticPointers

Language Extension, 506
STOP_THREAD

eventlog event type, 659
Strict

Language Extension, 500
strict constructor fields, 133, 134
strict haskell, 497
StrictData

Language Extension, 499
string gaps vs -cpp., 239
structure, command-line, 84
suffixes, file, 85
suppression

of unwanted dump output, 258

tabs, warning, 113
TASK_CREATE

eventlog event type, 665
TASK_MIGRATE

eventlog event type, 665
Template Haskell, 267
TemplateHaskell

Language Extension, 486
TemplateHaskellQuotes

Language Extension, 486
temporary files

keeping, 202, 203

Index 719



GHC User’s Guide Documentation, Release 9.2.6

redirecting, 203
This macro exposes the full version string.,

237
THREAD_LABEL

eventlog event type, 660
THREAD_RUNNABLE

eventlog event type, 660
THREAD_WAKEUP

eventlog event type, 660
ticky ticky profiling, 196
ticky-ticky profiling, 616
TICKY_COUNTER_BEGIN_SAMPLE

eventlog event type, 673
TICKY_COUNTER_DEF

eventlog event type, 672
TICKY_COUNTER_SAMPLE

eventlog event type, 673
time profile, 599
TMPDIR, 203
TMPDIR environment variable, 203
tracing, 193
TransformListComp

Language Extension, 278
trust, 536
trust check, 536, 537
trusted

package specification, 232
Trustworthy

Language Extension, 539
trustworthy, 538
TupleSections

Language Extension, 287
TYPE, 362
Type defaulting

in GHCi, 46
Type equality constraints

kind heterogeneous, 460
type patterns, unused, 116
type signatures, missing, 110
type signatures, missing, pattern synonyms,

110
type variable

inferred vs. specified, 367
TypeApplications

Language Extension, 366
TypeFamilies

Language Extension, 325
TypeFamilyDependencies

Language Extension, 341
TypeInType

Language Extension, 346
TypeOperators

Language Extension, 310
TypeSynonymInstances

Language Extension, 445

unboxed tuples, sums
and GHCi, 79

UnboxedSums
Language Extension, 511

UnboxedTuples
Language Extension, 510

UndecidableInstances
Language Extension, 448

UndecidableSuperClasses
Language Extension, 435

unfolding, controlling, 130, 134, 135, 631
Unicode, 198
UnicodeSyntax

Language Extension, 267
UnliftedDatatypes

Language Extension, 514
UnliftedFFITypes

Language Extension, 517
UnliftedNewtypes

Language Extension, 513
UNPACK

pragma, 566
unregisterised compilation, 234
Unsafe

Language Extension, 540
unused binds, warning, 114, 115
unused do binding, warning, 115
unused foralls, warning, 116
unused imports, warning, 115
unused matches, warning, 115
unused type patterns, warning, 116
unused, warning, record wildcards, 116, 117
USER_MARKER

eventlog event type, 666
USER_MSG

eventlog event type, 666
using GHC, 83
UTF-8, 198
utilities, Haskell, 635

verbosity options, 91
version

package specification, 231
version, of ghc, 4
ViewPatterns

Language Extension, 424
VISUAL, 10, 65

WARNING
pragma, 557

warnings, 98
deprecations, 103

windres, 246

720 Index



GHC User’s Guide Documentation, Release 9.2.6

Yacc for Haskell, 635

Index 721


	Introduction
	Obtaining GHC
	Meta-information: Web sites, mailing lists, etc.
	Reporting bugs in GHC
	GHC version numbering policy
	The Glasgow Haskell Compiler License

	Release notes
	Version 9.2.1
	Language
	Compiler
	GHCi
	Runtime system
	Template Haskell
	ghc-prim library
	Eventlog
	ghc library
	base library
	Included libraries


	Version 9.2.2
	Compiler
	GHCi
	Core libraries
	Build system and packaging
	Runtime system
	Included libraries

	Version 9.2.3
	Compiler
	Runtime system
	GHCi
	Core libraries
	Build system and packaging
	Included libraries

	Version 9.2.4
	Compiler
	Runtime system
	GHCi
	Core libraries
	Build system and packaging
	Included libraries

	Version 9.2.5
	Compiler
	Runtime system
	Core libraries
	Included libraries

	Version 9.2.6
	Compiler
	Runtime system
	Build system and packaging
	Core libraries
	Included libraries


	Using GHCi
	Introduction to GHCi
	Loading source files
	Modules vs. filenames
	Making changes and recompilation

	Loading compiled code
	Interactive evaluation at the prompt
	I/O actions at the prompt
	Using do notation at the prompt
	Multiline input
	Type, class and other declarations
	What's really in scope at the prompt?
	The effect of :load on what is in scope
	Controlling what is in scope with import
	Controlling what is in scope with the :module command
	Qualified names
	:module and :load

	The :main and :run commands
	The it variable
	Type defaulting in GHCi
	Interactive classes
	Extended rules around default declarations

	Using a custom interactive printing function
	Stack Traces in GHCi

	The GHCi Debugger
	Breakpoints and inspecting variables
	Setting breakpoints
	Managing breakpoints

	Single-stepping
	Nested breakpoints
	The _result variable
	Tracing and history
	Debugging exceptions
	Example: inspecting functions
	Limitations

	Invoking GHCi
	Packages
	Extra libraries

	GHCi commands
	The :set and :seti commands
	GHCi options
	Setting GHC command-line options in GHCi
	Setting options for interactive evaluation only

	The .ghci and .haskeline files
	The .ghci files
	The .haskeline file

	Compiling to object code inside GHCi
	Running the interpreter in a separate process
	Running the interpreter on a different host
	FAQ and Things To Watch Out For

	Using runghc
	Usage
	runghc flags
	GHC Flags

	Using GHC
	Using GHC
	Getting started: compiling programs
	Options overview
	Command-line arguments
	Command line options in source files
	Setting options in GHCi

	Dynamic and Mode options
	Meaningful file suffixes
	Modes of operation
	Using ghc --make
	Expression evaluation mode
	Batch compiler mode

	Verbosity options
	Platform-specific Flags
	Haddock
	Miscellaneous flags
	Other environment variables


	Warnings and sanity-checking
	Optimisation (code improvement)
	-O*: convenient “packages” of optimisation flags.
	-f*: platform-independent flags

	Using Concurrent Haskell
	Using SMP parallelism
	Compile-time options for SMP parallelism
	RTS options for SMP parallelism
	Hints for using SMP parallelism

	Flag reference
	Verbosity options
	Alternative modes of operation
	Which phases to run
	Redirecting output
	Keeping intermediate files
	Temporary files
	Finding imports
	Interface file options
	Extended interface file options
	Recompilation checking
	Interactive-mode options
	Packages
	Language options
	Warnings
	Optimisation levels
	Individual optimisations
	Profiling options
	Program coverage options
	C pre-processor options
	Code generation options
	Linking options
	Plugin options
	Replacing phases
	Forcing options to particular phases
	Platform-specific options
	Compiler debugging options
	Miscellaneous compiler options

	Running a compiled program
	Setting RTS options
	Setting RTS options on the command line
	Setting RTS options at compile time
	Setting RTS options with the GHCRTS environment variable
	``Hooks'' to change RTS behaviour

	Miscellaneous RTS options
	RTS options to control the garbage collector
	RTS options to produce runtime statistics
	RTS options for concurrency and parallelism
	RTS options for profiling
	Tracing
	RTS options for hackers, debuggers, and over-interested souls
	Getting information about the RTS

	Filenames and separate compilation
	Haskell source files
	Output files
	The search path
	Redirecting the compilation output(s)
	Keeping Intermediate Files
	Redirecting temporary files
	Other options related to interface files
	Options related to extended interface files
	The recompilation checker
	How to compile mutually recursive modules
	Module signatures
	Using make
	Dependency generation
	Orphan modules and instance declarations

	Packages
	Using Packages
	The main package
	Consequences of packages for the Haskell language
	Thinning and renaming modules
	Package Databases
	The GHC_PACKAGE_PATH environment variable
	Package environments

	Installed package IDs, dependencies, and broken packages
	Package management (the ghc-pkg command)
	Building a package from Haskell source
	InstalledPackageInfo: a package specification

	GHC Backends
	Native Code Generator (-fasm)
	LLVM Code Generator (-fllvm)
	C Code Generator (-fvia-C)
	Unregisterised compilation

	Options related to a particular phase
	Replacing the program for one or more phases
	Forcing options to a particular phase
	Options affecting the C pre-processor
	Standard CPP macros
	CPP and string gaps

	Options affecting a Haskell pre-processor
	Options affecting code generation
	Options affecting linking

	Using shared libraries
	Building programs that use shared libraries
	Shared libraries for Haskell packages
	Shared libraries that export a C API
	Finding shared libraries at runtime
	Unix
	Mac OS X


	Debugging the compiler
	Dumping out compiler intermediate structures
	Front-end
	Type-checking and renaming
	Core representation and simplification
	STG representation
	C-\- representation
	LLVM code generator
	C code generator
	Native code generator
	Miscellaneous backend dumps

	Formatting dumps
	Suppressing unwanted information
	Checking for consistency
	Checking for determinism
	Other


	Language extensions
	Introduction
	Controlling extensions
	Overview of all language extensions
	Summary of stolen syntax

	Syntax
	Unicode syntax
	The magic hash
	The recursive do-notation
	Recursive binding groups
	The mdo notation

	Applicative do-notation
	Strict patterns
	Things to watch out for

	Qualified do-notation
	Examples

	Parallel List Comprehensions
	Generalised (SQL-like) List Comprehensions
	Monad comprehensions
	Overloaded lists
	The IsList class
	Rebindable syntax
	Defaulting
	Speculation about the future

	Rebindable syntax and the implicit Prelude import
	Things unaffected by RebindableSyntax

	Postfix operators
	Tuple sections
	Lambda-case
	Empty case alternatives
	Multi-way if-expressions
	Local Fixity Declarations
	More liberal syntax for function arguments
	Changes to the grammar

	Typed Holes
	Valid Hole Fits

	Arrow notation
	do-notation for commands
	Conditional commands
	Defining your own control structures
	Primitive constructs
	Differences with the paper
	Portability

	Lexical negation

	Import and export
	Hiding things the imported module doesn't export
	Package-qualified imports
	Safe imports
	Explicit namespaces in import/export
	Writing qualified in postpositive position

	Types
	Data types with no constructors
	Data type contexts
	Infix type constructors, classes, and type variables
	Type operators
	Liberalised type synonyms
	Existentially quantified data constructors
	Why existential?
	Existentials and type classes
	Record Constructors
	Restrictions

	Declaring data types with explicit constructor signatures
	Formal syntax for GADTs
	GADT syntax odds and ends

	Generalised Algebraic Data Types (GADTs)
	Type families
	Data families
	Synonym families
	Wildcards on the LHS of data and type family instances
	Associated data and type families
	Import and export
	Type families and instance declarations
	Injective type families

	Datatype promotion
	Motivation
	Overview
	Distinguishing between types and constructors
	Type-level literals
	Promoted list and tuple types
	Promoting existential data constructors
	Constraints in kinds

	Kind polymorphism
	Overview of kind polymorphism
	Overview of Type-in-Type
	Principles of kind inference
	Kind inference in type signatures
	Explicit kind quantification
	Inferring the order of variables in a type/class declaration
	Complete user-supplied kind signatures and polymorphic recursion
	Standalone kind signatures and polymorphic recursion
	Standalone kind signatures and declaration headers
	Kind inference in data type declarations
	Kind inference for data/newtype instance declarations
	Kind inference in class instance declarations
	Kind inference in type synonyms and type family instances
	Kind inference in closed type families
	Higher-rank kinds
	The kind Type
	Inferring dependency in datatype declarations
	Inferring dependency in user-written foralls
	Kind defaulting without PolyKinds
	Pretty-printing in the presence of kind polymorphism
	Datatype return kinds

	Levity polymorphism
	No levity-polymorphic variables or arguments
	Levity-polymorphic bottoms
	Printing levity-polymorphic types

	Type-Level Literals
	Runtime Values for Type-Level Literals
	Computing With Type-Level Naturals

	Visible type application
	Inferred vs. specified type variables
	Ordering of specified variables
	Manually defining inferred variables
	Type Applications in Patterns

	Arbitrary-rank polymorphism
	Examples
	Subsumption
	Type inference
	Implicit quantification

	Impredicative polymorphism
	Linear types
	Data types
	Printing multiplicity-polymorphic types
	Limitations
	Design and further reading

	Custom compile-time errors
	Deferring type errors to runtime
	Enabling deferring of type errors
	Deferred type errors in GHCi
	Limitations of deferred type errors

	Roles
	Nominal, Representational, and Phantom
	Role inference
	Role annotations


	Records
	Traditional record syntax
	Field selectors and TypeApplications
	Field selectors for Haskell98-style data constructors
	Field selectors for GADT constructors
	Field selectors for pattern synonyms

	Record field disambiguation
	Duplicate record fields
	Selector functions
	Record updates
	Import and export of record fields

	Field selectors
	Import and export of selector functions

	Record puns
	Record wildcards
	Record field selector polymorphism
	Solving HasField constraints
	Virtual record fields

	Overloaded record dot
	Overloaded record update

	Deriving mechanism
	Deriving instances for empty data types
	Inferred context for deriving clauses
	Stand-alone deriving declarations
	Deriving instances of extra classes (Data, etc.)
	Deriving Functor instances
	Deriving Foldable instances
	Deriving Traversable instances
	Deriving Data instances
	Deriving Typeable instances
	Deriving Lift instances

	Generalised derived instances for newtypes
	Generalising the deriving clause
	A more precise specification
	Associated type families

	Deriving any other class
	Deriving strategies
	Default deriving strategy

	Deriving via

	Patterns
	Pattern guards
	View patterns
	n+k patterns
	Pattern synonyms
	Record Pattern Synonyms
	Syntax and scoping of pattern synonyms
	Import and export of pattern synonyms
	Typing of pattern synonyms
	Matching of pattern synonyms
	Pragmas for pattern synonyms


	Class and instances declarations
	Multi-parameter type classes
	Undecidable (or recursive) superclasses
	Constrained class method types
	Default method signatures
	Detailed requirements for default type signatures
	Nullary type classes
	Functional dependencies
	Rules for functional dependencies
	Background on functional dependencies

	Instance declarations and resolution
	Relaxed rules for the instance head
	Formal syntax for instance declaration types
	Instance termination rules
	Overlapping instances
	Instance signatures: type signatures in instance declarations


	Literals
	Negative literals
	Binary integer literals
	Hexadecimal floating point literals
	Fractional looking integer literals
	Numeric underscores
	Overloaded string literals
	Overloaded labels

	Constraints
	Loosening restrictions on class contexts
	Equality constraints and Coercible constraint
	Equality constraints
	Heterogeneous equality
	Unlifted heterogeneous equality
	The Coercible constraint

	The Constraint kind
	Quantified constraints
	Motivation
	Syntax changes
	Typing changes
	Superclasses
	Overlap
	Instance lookup
	Termination
	Coherence


	Type signatures
	Explicit universal quantification (forall)
	The forall-or-nothing rule

	Ambiguous types and the ambiguity check
	Explicitly-kinded quantification
	Lexically scoped type variables
	Overview
	Declaration type signatures
	Expression type signatures
	Pattern type signatures
	Class and instance declarations

	Implicit parameters
	Implicit-parameter type constraints
	Implicit-parameter bindings
	Implicit parameters and polymorphic recursion
	Implicit parameters and monomorphism

	Partial Type Signatures
	Syntax
	Where can they occur?


	Bindings and generalisation
	Switching off the Monomorphism Restriction
	Let-generalisation

	Template Haskell
	Syntax
	Using Template Haskell
	Viewing Template Haskell generated code
	A Template Haskell Worked Example
	Template Haskell quotes and Rebindable Syntax
	Using Template Haskell with Profiling
	Template Haskell Quasi-quotation

	Bang patterns and Strict Haskell
	Bang patterns
	Strict-by-default data types
	Strict-by-default pattern bindings
	Modularity
	Dynamic semantics of bang patterns

	Parallel and Concurrent
	Concurrent and Parallel Haskell
	Concurrent Haskell
	Parallel Haskell
	Annotating pure code for parallelism

	Software Transactional Memory
	Static pointers
	Using static pointers
	Static semantics of static pointers


	Unboxed types and primitive operations
	Unboxed types
	Unboxed type kinds
	Unboxed tuples
	Unboxed sums
	Unlifted Newtypes
	Unlifted Datatypes

	Foreign function interface (FFI)
	GHC differences to the FFI Chapter
	Guaranteed call safety
	Interactions between safe calls and bound threads
	Varargs not supported by ccall calling convention

	GHC extensions to the FFI Chapter
	Unlifted FFI Types
	Newtype wrapping of the IO monad
	Explicit ``forall''s in foreign types
	Primitive imports
	Interruptible foreign calls
	The CAPI calling convention
	hs_thread_done()
	Freeing many stable pointers efficiently

	Using the FFI with GHC
	Using foreign export and foreign import ccall "wrapper" with GHC
	Using header files
	Memory Allocation
	Multi-threading and the FFI
	Floating point and the FFI
	Pinned Byte Arrays


	Safe Haskell
	Uses of Safe Haskell
	Strict type-safety (good style)
	Building secure systems (restricted IO Monads)

	Safe Language
	Safe Overlapping Instances

	Safe Imports
	Trust and Safe Haskell Modes
	Trust check (-fpackage-trust disabled)
	Trust check (-fpackage-trust enabled)
	Example
	Trustworthy Requirements
	Package Trust

	Safe Haskell Inference
	Safe Haskell Flag Summary
	Safe Compilation

	Miscellaneous
	Rewrite rules
	Syntax
	Semantics
	How rules interact with INLINE/NOINLINE pragmas
	How rules interact with CONLIKE pragmas
	How rules interact with class methods
	List fusion
	Specialisation
	Controlling what's going on in rewrite rules

	Special built-in functions
	Generic programming
	Deriving representations
	Writing generic functions
	Unlifted representation types
	Generic defaults
	More information

	Assertions
	HasCallStack
	Compared with other sources of stack traces


	Pragmas
	LANGUAGE pragma
	OPTIONS_GHC pragma
	INCLUDE pragma
	WARNING and DEPRECATED pragmas
	MINIMAL pragma
	INLINE and NOINLINE pragmas
	INLINE pragma
	INLINABLE pragma
	NOINLINE pragma
	CONLIKE modifier
	Phase control

	LINE pragma
	COLUMN pragma
	RULES pragma
	SPECIALIZE pragma
	SPECIALIZE INLINE
	SPECIALIZE for imported functions

	SPECIALIZE instance pragma
	UNPACK pragma
	NOUNPACK pragma
	SOURCE pragma
	COMPLETE pragmas
	OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas


	Extending and using GHC as a Library
	Source annotations
	Annotating values
	Annotating types
	Annotating modules

	Using GHC as a Library
	Compiler Plugins
	Using compiler plugins
	Writing compiler plugins
	Core plugins in more detail
	Manipulating bindings
	Using Annotations

	Typechecker plugins
	Constraint solving with plugins

	Source plugins
	Parsed representation
	Type checked representation
	Evaluated code
	Interface files
	Source plugin example

	Hole fit plugins
	Stateful hole fit plugins
	Hole fit plugin example

	Controlling Recompilation
	Frontend plugins
	DynFlags plugins


	Profiling
	Cost centres and cost-centre stacks
	Inserting cost centres by hand
	Rules for attributing costs

	Compiler options for profiling
	Automatically placing cost-centres

	Time and allocation profiling
	JSON profile format

	Profiling memory usage
	RTS options for heap profiling
	Retainer Profiling
	Hints for using retainer profiling

	Biographical Profiling
	Actual memory residency

	hp2ps – Rendering heap profiles to PostScript
	Manipulating the hp file
	Zooming in on regions of your profile
	Viewing the heap profile of a running program
	Viewing a heap profile in real time

	Profiling Parallel and Concurrent Programs
	Observing Code Coverage
	A small example: Reciprocation
	Options for instrumenting code for coverage
	The hpc toolkit
	hpc report
	hpc markup
	hpc sum
	hpc combine
	hpc map
	hpc overlay and hpc draft

	Caveats and Shortcomings of Haskell Program Coverage

	Using “ticky-ticky” profiling (for implementors)

	Debugging compiled programs
	Tutorial
	Requesting a stack trace from Haskell code
	Requesting a stack trace with SIGQUIT
	Implementor's notes: DWARF annotations
	Debugging information entities
	DW_TAG_ghc_src_note


	Further Reading
	Direct Mapping
	Querying the Info Table Map

	What to do when something goes wrong
	When the compiler “does the wrong thing”
	When your program “does the wrong thing”

	Hints
	Sooner: producing a program more quickly
	Faster: producing a program that runs quicker
	Smaller: producing a program that is smaller
	Thriftier: producing a program that gobbles less heap space
	Controlling inlining via optimisation flags.
	Unfolding creation
	Inlining decisions
	Inlining generics

	Understanding how OS memory usage corresponds to live data

	Other Haskell utility programs
	``Yacc for Haskell'': happy
	Writing Haskell interfaces to C code: hsc2hs
	command line syntax
	Input syntax
	Custom constructs
	Cross-compilation


	Running GHC on Win32 systems
	Starting GHC on Windows platforms
	Running GHCi on Windows
	Interacting with the terminal
	Differences in library behaviour
	File paths under Windows
	Using GHC (and other GHC-compiled executables) with Cygwin
	Background
	The problem
	Things to do

	Building and using Win32 DLLs
	Creating a DLL
	Making DLLs to be called from other languages
	Using from VBA
	Using from C++



	Known bugs and infelicities
	Haskell standards vs. Glasgow Haskell: language non-compliance
	Divergence from Haskell 98 and Haskell 2010
	Lexical syntax
	Context-free syntax
	Expressions and patterns
	Failable patterns
	Typechecking of recursive binding groups
	Default Module headers with -main-is
	Module system and interface files
	Numbers, basic types, and built-in classes
	In Prelude support
	The Foreign Function Interface

	GHC's interpretation of undefined behaviour in Haskell 98 and Haskell 2010

	Known bugs or infelicities
	Bugs in GHC
	Bugs in GHCi (the interactive GHC)


	Eventlog encodings
	Event log format
	Runtime system diagnostics
	Capability sets
	Environment information
	Thread and scheduling events
	Garbage collector events
	Heap events and statistics
	Spark events
	Capability events
	Task events
	Tracing events

	Heap profiler event log output
	Metadata event types
	Beginning of sample stream
	Cost centre definitions
	Info Table Provenance definitions
	Sample event types
	Cost-centre break-down
	String break-down


	Time profiler event log output
	Profile begin event
	Profile sample event

	Biographical profile sample event
	Non-moving GC event output
	Non-moving heap census
	Ticky counters


	Care and feeding of your GHC User's Guide
	Basics
	Headings
	Formatting code
	Haskell
	Other languages

	Links
	Within the User's Guide
	To GHC resources
	To external resources
	To core library Haddock documentation
	Math

	Index entries

	Citations
	Admonitions
	Documenting command-line options and GHCi commands
	Command-line options
	GHCi commands

	Style Conventions
	ReST reference materials

	Indices and tables
	Bibliography
	Index

