
Building the Glasgow Functional
Programming Tools Suite

The GHC Team

This guide is intended for people who want to build or modify programs from the
Glasgow fptools suite (as distinct from those who merely want to run them).
Installation instructions are now provided in the user guide.

The bulk of this guide applies to building on Unix systems; see Section 9 for
Windows notes.

1. Getting the Glasgow fptools suite
Building the Glasgow tools can be complicated, mostly because there are so many permutations of
what/why/how, e.g., “Build Happy with HBC, everything else with GHC, leave out profiling, and
test it all on the ‘real’ NoFib programs.” Yeeps!

Happily, such complications don’t apply to most people. A few common “strategies” serve most
purposes. Pick one and proceed as suggested:

Binary distribution.

If your only purpose is to install some of the fptools suite then the easiest thing to do is to get
a binary distribution. In the binary distribution everything is pre-compiled for your particular
machine architecture and operating system, so all you should have to do is install the binaries
and libraries in suitable places. The user guide describes how to do this.

A binary distribution may not work for you for two reasons. First, we may not have built the
suite for the particular architecture/OS platform you want. That may be due to lack of time and
energy (in which case you can get a source distribution and build from it; see below).
Alternatively, it may be because we haven’t yet ported the suite to your architecture, in which
case you are considerably worse off.

The second reason a binary distribution may not be what you want is if you want to read or
modify the souce code.

Source distribution.

You have a supported platform, but (a) you like the warm fuzzy feeling of compiling things
yourself; (b) you want to build something “extra”—e.g., a set of libraries with
strictness-analysis turned off; or (c) you want to hack on GHC yourself.

1

Building the Glasgow Functional Programming Tools Suite

A source distribution contains complete sources for one or more projects in the fptools suite.
Not only that, but the more awkward machine-independent steps are done for you. For example,
if you don’t have happy you’ll find it convenient that the source distribution contains the result
of running happy on the parser specifications. If you don’t want to alter the parser then this
saves you having to find and install happy. You will still need a working version of GHC
(preferably version 4.08+) on your machine in order to compile (most of) the sources, however.

Build GHC from intermediate C .hc files:

You need a working GHC to use a source distribution. What if you don’t have a working GHC?
Then you have no choice but to “bootstrap” up from the intermediate C (.hc) files that we
provide. Building GHC on an unsupported platform falls into this category. Please see Section
7.

Once you have built GHC, you can build the other Glasgow tools with it.

In theory, you can (could?) build GHC with another Haskell compiler (e.g., HBC). We haven’t
tried to do this for ages and it almost certainly doesn’t work any more (for tedious reasons).

The CVS repository.

We make releases infrequently. If you want more up-to-the minute (but less tested) source code
then you need to get access to our CVS repository.

All the fptools source code is held in a CVS repository. CVS is a pretty good source-code
control system, and best of all it works over the network.

The repository holds source code only. It holds no mechanically generated files at all. So if you
check out a source tree from CVS you will need to install every utility so that you can build all
the derived files from scratch.

More information about our CVS repository is available in the fptools CVS Cheat Sheet
(http://www.haskell.org/ghc/cvs-cheat-sheet.html).

If you are going to do any building from sources (either from a source distribution or the CVS
repository) then you need to read all of this manual in detail.

2. Things to check before you start typing
Here’s a list of things to check before you get started.

1. Disk space needed: About 40MB (one tenth of one hamburger’s worth) of disk space for the
most basic binary distribution of GHC; more for some platforms, e.g., Alphas. An extra
“bundle” (e.g., concurrent Haskell libraries) might take you to up to one fifth of a hamburger.
You’ll need over 100MB (say, one fifth a hamburger’s worth) if you need to build the basic stuff

2

Building the Glasgow Functional Programming Tools Suite

from scratch. All of the above are estimates of disk-space needs. (Note: our benchmark
hamburger is a standard Double Whopper with Cheese, with an RRP of UKP2.99.)

2. Use an appropriate machine, compilers, and things. SPARC boxes, and PCs running Linux,
BSD (any variant), or Solaris are all fully supported. Win32 and HP boxes are in pretty good
shape. DEC Alphas running OSF/1, Linux or some BSD variant, MIPS and AIX boxes will need
some minimal porting effort before they work (as of 4.06). Section 3 gives the full run-down on
ports or lack thereof.

3. Be sure that the “pre-supposed” utilities are installed. Section 4 elaborates.

4. If you have any problem when building or installing the Glasgow tools, please check the
“known pitfalls” (Section 8). Also check the FAQ for the version you’re building, which should
be available from the relevant download page on the GHC web site
(http://www.haskell.org/ghc/). If you feel there is still some shortcoming in our procedure or
instructions, please report it. For GHC, please see the bug-reporting section of the GHC Users’
Guide (separate document), to maximise the usefulness of your report. If in doubt, please send a
message to <glasgow-haskell-bugs@haskell.org>.

3. What machines the Glasgow tools run on
The main question is whether or not the Haskell compiler (GHC) runs on your platform.

A “platform” is a architecture/manufacturer/operating-system combination, such as
sparc-sun-solaris2. Other common ones are alpha-dec-osf2, hppa1.1-hp-hpux9,
i386-unknown-linux, i386-unknown-solaris2, i386-unknown-freebsd,
i386-unknown-cygwin32, m68k-sun-sunos4, mips-sgi-irix5, sparc-sun-sunos4,
sparc-sun-solaris2, powerpc-ibm-aix.

Bear in mind that certain “bundles”, e.g. parallel Haskell, may not work on all machines for which
basic Haskell compiling is supported.

Some libraries may only work on a limited number of platforms; for example, a sockets library is of
no use unless the operating system supports the underlying BSDisms.

3.1. What platforms the Haskell compiler (GHC) runs on
The GHC hierarchy of Porting Goodness: (a) Best is a native-code generator; (b) next best is a
“registerised” port; (c) the bare minimum is an “unregisterised” port. (“Unregisterised” is so terrible
that we won’t say more about it).

We use Sparcs running Solaris 2.7 and x86 boxes running FreeBSD and Linux, so those are the best
supported platforms, unsurprisingly.

Here’s everything that’s known about GHC ports. We identify platforms by their “canonical”
CPU/Manufacturer/OS triple.

3

Building the Glasgow Functional Programming Tools Suite

alpha-dec-{osf,linux,freebsd,openbsd,netbsd}:

Currently non-working. The last working version (osf[1-3]) is GHC 3.02. A small amount of
porting effort will be required to get Alpha support into GHC 4.xx, but we don’t have easy
access to machines right now, and there hasn’t been a massive demand for support, so Alphas
remain unsupported for the time being. Please get in touch if you either need Alpha support
and/or can provide access to boxes.

sparc-sun-sunos4:

Probably works with minor tweaks, hasn’t been tested for a while.

sparc-sun-solaris2:

Fully supported, including native-code generator.

hppa1.1-hp-hpux (HP-PA boxes running HPUX 9.x)

Works registerised. No native-code generator.

i386-unknown-linux (PCs running Linux—ELF binary format):

GHC works registerised, has a native code generator. You must have GCC 2.7.x or later. NOTE
about glibc versions: GHC binaries built on a system running glibc 2.0 won’t work on a
system running glibc 2.1, and vice versa. In general, don’t expect compatibility between
glibc versions, even if the shared library version hasn’t changed.

i386-unknown-{freebsd,netbsd,openbsd) (PCs running FreeBSD 2.2 or higher, NetBSD, and
possibly OpenBSD):

GHC works registerised. These systems provide ready-built packages of GHC, so if you just
need binaries you’re better off just installing the package.

i386-unknown-cygwin32:

Fully supported under Win9x/NT, including a native code generator. Requires the cygwin32
compatibility library and a healthy collection of GNU tools (i.e., gcc, GNU ld, bash etc.).

mips-sgi-irix5:

Port currently doesn’t work, needs some minimal porting effort. As usual, we don’t have access
to machines and there hasn’t been an overwhelming demand for this port, but feel free to get in
touch.

powerpc-ibm-aix:

Port currently doesn’t work, needs some minimal porting effort. As usual, we don’t have access
to machines and there hasn’t been an overwhelming demand for this port, but feel free to get in
touch.

4

Building the Glasgow Functional Programming Tools Suite

Various other systems have had GHC ported to them in the distant past, including various Motorola
68k boxes. The 68k support still remains, but porting to one of these systems will certainly be a
non-trivial task.

3.2. What machines the other tools run on
Unless you hear otherwise, the other tools work if GHC works.

4. Installing pre-supposed utilities
Here are the gory details about some utility programs you may need; perl, gcc and happy are the
only important ones. (PVM is important if you’re going for Parallel Haskell.) The configure script
will tell you if you are missing something.

Perl:

You have to have Perl to proceed! It is pretty easy to install.

Perl 5 is required. For Win32 platforms, you should use the binary supplied in the InstallShield
(copy it to /bin). The Cygwin-supplied Perl seems not to work.

Perl should be put somewhere so that it can be invoked by the #! script-invoking mechanism.
The full pathname may need to be less than 32 characters long on some systems.

GNU C (gcc):

We recommend using GCC version 2.95.2 on all platforms. Failing that, version 2.7.2 is stable
on most platforms. Earlier versions of GCC can be assumed not to work, and versions in
between 2.7.2 and 2.95.2 (including egcs) have varying degrees of stability depending on the
platform.

If your GCC dies with “internal error” on some GHC source file, please let us know, so we can
report it and get things improved. (Exception: on iX86 boxes—you may need to fiddle with
GHC’s -monly-N-regs option; see the User’s Guide)

Happy:

Happy is a parser generator tool for Haskell, and is used to generate GHC’s parsers. Happy is
written in Haskell, and is a project in the CVS repository (fptools/happy). It can be built
from source, but bear in mind that you’ll need GHC installed in order to build it. To avoid the
chicken/egg problem, install a binary distribtion of either Happy or GHC to get started. Happy
distributions are available from Happy’s Web Page (http://www.haskell.org/happy/).

5

Building the Glasgow Functional Programming Tools Suite

Autoconf:

GNU Autoconf is needed if you intend to build from the CVS sources, it is not needed if you
just intend to build a standard source distribution.

Autoconf builds the configure script from configure.in and aclocal.m4. If you modify
either of these files, you’ll need autoconf to rebuild configure.

sed

You need a working sed if you are going to build from sources. The build-configuration stuff
needs it. GNU sed version 2.0.4 is no good! It has a bug in it that is tickled by the
build-configuration. 2.0.5 is OK. Others are probably OK too (assuming we don’t create too
elaborate configure scripts.)

One fptools project is worth a quick note at this point, because it is useful for all the others:
glafp-utils contains several utilities which aren’t particularly Glasgow-ish, but Occasionally
Indispensable. Like lndir for creating symbolic link trees.

4.1. Tools for building parallel GHC (GPH)

PVM version 3:

PVM is the Parallel Virtual Machine on which Parallel Haskell programs run. (You only need
this if you plan to run Parallel Haskell. Concurent Haskell, which runs concurrent threads on a
uniprocessor doesn’t need it.) Underneath PVM, you can have (for example) a network of
workstations (slow) or a multiprocessor box (faster).

The current version of PVM is 3.3.11; we use 3.3.7. It is readily available on the net; I think I
got it from research.att.com, in netlib.

A PVM installation is slightly quirky, but easy to do. Just follow the Readme instructions.

bash:

Sadly, the gr2ps script, used to convert “parallelism profiles” to PostScript, is written in Bash
(GNU’s Bourne Again shell). This bug will be fixed (someday).

4.2. Tools for building the Documentation
The following additional tools are required if you want to format the documentation that comes with
the fptools projects:

6

Building the Glasgow Functional Programming Tools Suite

DocBook:

All our documentation is written in SGML, using the DocBook DTD. Instructions on installing
and configuring the DocBook tools are in the installation guide (in the GHC user guide).

TeX:

A decent TeX distribution is required if you want to produce printable documentation. We
recomment teTeX, which includes just about everything you need.

4.3. Other useful tools

Flex:

This is a quite-a-bit-better-than-Lex lexer. Used to build a couple of utilities in glafp-utils.
Depending on your operating system, the supplied lex may or may not work; you should get the
GNU version.

5. Building from source
You’ve been rash enough to want to build some of the Glasgow Functional Programming tools
(GHC, Happy, nofib, etc.) from source. You’ve slurped the source, from the CVS repository or from
a source distribution, and now you’re sitting looking at a huge mound of bits, wondering what to do
next.

Gingerly, you type make. Wrong already!

This rest of this guide is intended for duffers like me, who aren’t really interested in Makefiles and
systems configurations, but who need a mental model of the interlocking pieces so that they can
make them work, extend them consistently when adding new software, and lay hands on them gently
when they don’t work.

5.1. Your source tree
The source code is held in your source tree. The root directory of your source tree must contain the
following directories and files:

• Makefile: the root Makefile.

• mk/: the directory that contains the main Makefile code, shared by all the fptools software.

• configure.in, config.sub, config.guess: these files support the configuration process.

• install-sh.

7

Building the Glasgow Functional Programming Tools Suite

All the other directories are individual projects of the fptools system—for example, the Glasgow
Haskell Compiler (ghc), the Happy parser generator (happy), the nofib benchmark suite, and so
on. You can have zero or more of these. Needless to say, some of them are needed to build others.

The important thing to remember is that even if you want only one project (happy, say), you must
have a source tree whose root directory contains Makefile, mk/, configure.in, and the project(s)
you want (happy/ in this case). You cannot get by with just the happy/ directory.

5.2. Build trees
While you can build a system in the source tree, we don’t recommend it. We often want to build
multiple versions of our software for different architectures, or with different options (e.g. profiling).
It’s very desirable to share a single copy of the source code among all these builds.

So for every source tree we have zero or more build trees. Each build tree is initially an exact copy of
the source tree, except that each file is a symbolic link to the source file, rather than being a copy of
the source file. There are “standard” Unix utilities that make such copies, so standard that they go by
different names: lndir, mkshadowdir are two (If you don’t have either, the source distribution
includes sources for the X11 lndir—check out fptools/glafp-utils/lndir). See Section 5.4
for a typical invocation.

The build tree does not need to be anywhere near the source tree in the file system. Indeed, one
advantage of separating the build tree from the source is that the build tree can be placed in a
non-backed-up partition, saving your systems support people from backing up untold megabytes of
easily-regenerated, and rapidly-changing, gubbins. The golden rule is that (with a single
exception—Section 5.3) absolutely everything in the build tree is either a symbolic link to the source
tree, or else is mechanically generated. It should be perfectly OK for your build tree to vanish
overnight; an hour or two compiling and you’re on the road again.

You need to be a bit careful, though, that any new files you create (if you do any development work)
are in the source tree, not a build tree!

Remember, that the source files in the build tree are symbolic links to the files in the source tree. (The
build tree soon accumulates lots of built files like Foo.o, as well.) You can delete a source file from
the build tree without affecting the source tree (though it’s an odd thing to do). On the other hand, if
you edit a source file from the build tree, you’ll edit the source-tree file directly. (You can set up
Emacs so that if you edit a source file from the build tree, Emacs will silently create an edited copy
of the source file in the build tree, leaving the source file unchanged; but the danger is that you think
you’ve edited the source file whereas actually all you’ve done is edit the build-tree copy. More
commonly you do want to edit the source file.)

Like the source tree, the top level of your build tree must be (a linked copy of) the root directory of
the fptools suite. Inside Makefiles, the root of your build tree is called $(FPTOOLS_TOP). In the
rest of this document path names are relative to $(FPTOOLS_TOP) unless otherwise stated. For
example, the file ghc/mk/target.mk is actually $(FPTOOLS_TOP)/ghc/mk/target.mk.

8

Building the Glasgow Functional Programming Tools Suite

5.3. Getting the build you want
When you build fptools you will be compiling code on a particular host platform, to run on a
particular target platform (usually the same as the host platform). The difficulty is that there are
minor differences between different platforms; minor, but enough that the code needs to be a bit
different for each. There are some big differences too: for a different architecture we need to build
GHC with a different native-code generator.

There are also knobs you can turn to control how the fptools software is built. For example, you
might want to build GHC optimised (so that it runs fast) or unoptimised (so that you can compile it
fast after you’ve modified it. Or, you might want to compile it with debugging on (so that extra
consistency-checking code gets included) or off. And so on.

All of this stuff is called the configuration of your build. You set the configuration using a three-step
process.

Step 1: get ready for configuration.

Change directory to $(FPTOOLS_TOP) and issue the command autoconf (with no arguments).
This GNU program converts $(FPTOOLS_TOP)/configure.in to a shell script called
$(FPTOOLS_TOP)/configure.

Some projects, including GHC, have their own configure script. If there’s an
$(FPTOOLS_TOP)/<project>/configure.in, then you need to run autoconf in that
directory too.

Both these steps are completely platform-independent; they just mean that the human-written
file (configure.in) can be short, although the resulting shell script, configure, and
mk/config.h.in, are long.

In case you don’t have autoconf we distribute the results, configure, and mk/config.h.in,
with the source distribution. They aren’t kept in the repository, though.

Step 2: system configuration.

Runs the newly-created configure script, thus:

./configure [args]

configure’s mission is to scurry round your computer working out what architecture it has,
what operating system, whether it has the vfork system call, where yacc is kept, whether gcc is
available, where various obscure #include files are, whether it’s a leap year, and what the
systems manager had for lunch. It communicates these snippets of information in two ways:

• It translates mk/config.mk.in to mk/config.mk, substituting for things between “@”
brackets. So, “@HaveGcc@” will be replaced by “YES” or “NO” depending on what configure
finds. mk/config.mk is included by every Makefile (directly or indirectly), so the
configuration information is thereby communicated to all Makefiles.

9

Building the Glasgow Functional Programming Tools Suite

• It translates mk/config.h.in to mk/config.h. The latter is #included by various C
programs, which can thereby make use of configuration information.

configure takes some optional arguments. Use ./configure -help to get a list of the
available arguments. Here are some of the ones you might need:

-with-ghc=path

Specifies the path to an installed GHC which you would like to use. This compiler will be
used for compiling GHC-specific code (eg. GHC itself). This option cannot be specified
using build.mk (see later), because configure needs to auto-detect the version of GHC
you’re using. The default is to look for a compiler named ghc in your path.

-with-hc=path

Specifies the path to any installed Haskell compiler. This compiler will be used for
compiling generic Haskell code. The default is to use ghc.

configure caches the results of its run in config.cache. Quite often you don’t want that;
you’re running configure a second time because something has changed. In that case, simply
delete config.cache.

Step 3: build configuration.

Next, you say how this build of fptools is to differ from the standard defaults by creating a
new file mk/build.mk in the build tree. This file is the one and only file you edit in the build
tree, precisely because it says how this build differs from the source. (Just in case your build tree
does die, you might want to keep a private directory of build.mk files, and use a symbolic link
in each build tree to point to the appropriate one.) So mk/build.mk never exists in the source
tree—you create one in each build tree from the template. We’ll discuss what to put in it shortly.

And that’s it for configuration. Simple, eh?

What do you put in your build-specific configuration file mk/build.mk? For almost all purposes all
you will do is put make variable definitions that override those in mk/config.mk.in. The whole
point of mk/config.mk.in—and its derived counterpart mk/config.mk—is to define the build
configuration. It is heavily commented, as you will see if you look at it. So generally, what you do is
look at mk/config.mk.in, and add definitions in mk/build.mk that override any of the
config.mk definitions that you want to change. (The override occurs because the main boilerplate
file, mk/boilerplate.mk, includes build.mk after config.mk.)

For example, config.mk.in contains the definition:

GhcHcOpts=-O -Rghc-timing

The accompanying comment explains that this is the list of flags passed to GHC when building GHC
itself. For doing development, it is wise to add -DDEBUG, to enable debugging code. So you would
add the following to build.mk:

or, if you prefer,

10

Building the Glasgow Functional Programming Tools Suite

GhcHcOpts += -DDEBUG

GNU make allows existing definitions to have new text appended using the “+=” operator, which is
quite a convenient feature.)

If you want to remove the -O as well (a good idea when developing, because the turn-around cycle
gets a lot quicker), you can just override GhcLibHcOpts altogether:

GhcHcOpts=-DDEBUG -Rghc-timing

When reading config.mk.in, remember that anything between “@...@” signs is going to be
substituted by configure later. You can override the resulting definition if you want, but you need to
be a bit surer what you are doing. For example, there’s a line that says:

YACC = @YaccCmd@

This defines the Make variables YACC to the pathname for a yacc that configure finds somewhere. If
you have your own pet yacc you want to use instead, that’s fine. Just add this line to mk/build.mk:

YACC = myyacc

You do not have to have a mk/build.mk file at all; if you don’t, you’ll get all the default settings
from mk/config.mk.in.

You can also use build.mk to override anything that configure got wrong. One place where this
happens often is with the definition of FPTOOLS_TOP_ABS: this variable is supposed to be the
canonical path to the top of your source tree, but if your system uses an automounter then the correct
directory is hard to find automatically. If you find that configure has got it wrong, just put the correct
definition in build.mk.

5.4. The story so far
Let’s summarise the steps you need to carry to get yourself a fully-configured build tree from scratch.

1. Get your source tree from somewhere (CVS repository or source distribution). Say you call the
root directory myfptools (it does not have to be called fptools). Make sure that you have the
essential files (see Section 5.1).

2. Use lndir or mkshadowdir to create a build tree.

cd myfptools
mkshadowdir . /scratch/joe-bloggs/myfptools-sun4

(N.B. mkshadowdir’s first argument is taken relative to its second.) You probably want to give the
build tree a name that suggests its main defining characteristic (in your mind at least), in case
you later add others.

3. Change directory to the build tree. Everything is going to happen there now.

cd /scratch/joe-bloggs/myfptools-sun4

11

Building the Glasgow Functional Programming Tools Suite

4. Prepare for system configuration:

autoconf

(You can skip this step if you are starting from a source distribution, and you already have
configure and mk/config.h.in.)

5. Do system configuration:

./configure

6. Create the file mk/build.mk, adding definitions for your desired configuration options.

emacs mk/build.mk

You can make subsequent changes to mk/build.mk as often as you like. You do not have to run any
further configuration programs to make these changes take effect. In theory you should, however, say
gmake clean, gmake all, because configuration option changes could affect anything—but in
practice you are likely to know what’s affected.

5.5. Making things
At this point you have made yourself a fully-configured build tree, so you are ready to start building
real things.

The first thing you need to know is that you must use GNU make, usually called gmake, not standard
Unix make. If you use standard Unix make you will get all sorts of error messages (but no damage)
because the fptools Makefiles use GNU make’s facilities extensively.

To just build the whole thing, cd to the top of your fptools tree and type gmake. This will prepare
the tree and build the various projects in the correct order.

5.6. Standard Targets
In any directory you should be able to make the following:

boot:

does the one-off preparation required to get ready for the real work. Notably, it does gmake
depend in all directories that contain programs. It also builds the necessary tools for
compilation to proceed.

Invoking the boot target explicitly is not normally necessary. From the top-level fptools
directory, invoking gmake causes gmake boot all to be invoked in each of the project
subdirectories, in the order specified by $(AllTargets) in config.mk.

If you’re working in a subdirectory somewhere and need to update the dependencies, gmake
boot is a good way to do it.

12

Building the Glasgow Functional Programming Tools Suite

all:

makes all the final target(s) for this Makefile. Depending on which directory you are in a “final
target” may be an executable program, a library archive, a shell script, or a Postscript file.
Typing gmake alone is generally the same as typing gmake all.

install:

installs the things built by all. Where does it install them? That is specified by
mk/config.mk.in; you can override it in mk/build.mk, or by running configure with
command-line arguments like -bindir=/home/simonpj/bin; see ./configure -help for
the full details.

uninstall:

reverses the effect of install.

clean:

Delete all files from the current directory that are normally created by building the program.
Don’t delete the files that record the configuration, or files generated by gmake boot. Also
preserve files that could be made by building, but normally aren’t because the distribution
comes with them.

distclean:

Delete all files from the current directory that are created by configuring or building the
program. If you have unpacked the source and built the program without creating any other
files, make distclean should leave only the files that were in the distribution.

mostlyclean:

Like clean, but may refrain from deleting a few files that people normally don’t want to
recompile.

maintainer-clean:

Delete everything from the current directory that can be reconstructed with this Makefile. This
typically includes everything deleted by distclean, plus more: C source files produced by
Bison, tags tables, Info files, and so on.

One exception, however: make maintainer-clean should not delete configure even if
configure can be remade using a rule in the Makefile. More generally, make
maintainer-clean should not delete anything that needs to exist in order to run configure
and then begin to build the program.

check:

run the test suite.

13

Building the Glasgow Functional Programming Tools Suite

All of these standard targets automatically recurse into sub-directories. Certain other standard targets
do not:

configure:

is only available in the root directory $(FPTOOLS_TOP); it has been discussed in Section 5.3.

depend:

make a .depend file in each directory that needs it. This .depend file contains
mechanically-generated dependency information; for example, suppose a directory contains a
Haskell source module Foo.lhs which imports another module Baz. Then the generated
.depend file will contain the dependency:

Foo.o : Baz.hi

which says that the object file Foo.o depends on the interface file Baz.hi generated by
compiling module Baz. The .depend file is automatically included by every Makefile.

binary-dist:

make a binary distribution. This is the target we use to build the binary distributions of GHC
and Happy.

dist:

make a source distribution. Note that this target does “make distclean” as part of its work; don’t
use it if you want to keep what you’ve built.

Most Makefiles have targets other than these. You can discover them by looking in the Makefile
itself.

5.7. Using a project from the build tree
If you want to build GHC (say) and just use it direct from the build tree without doing make
install first, you can run the in-place driver script: ghc/compiler/ghc-inplace.

Do NOT use ghc/compiler/ghc, or ghc/compiler/ghc-5.xx, as these are the scripts intended
for installation, and contain hard-wired paths to the installed libraries, rather than the libraries in the
build tree.

Happy can similarly be run from the build tree, using happy/src/happy-inplace.

5.8. Fast Making
Sometimes the dependencies get in the way: if you’ve made a small change to one file, and you’re
absolutely sure that it won’t affect anything else, but you know that make is going to rebuild

14

Building the Glasgow Functional Programming Tools Suite

everything anyway, the following hack may be useful:

gmake FAST=YES

This tells the make system to ignore dependencies and just build what you tell it to. In other words,
it’s equivalent to temporarily removing the .depend file in the current directory (where
mkdependHS and friends store their dependency information).

A bit of history: GHC used to come with a fastmake script that did the above job, but GNU make
provides the features we need to do it without resorting to a script. Also, we’ve found that
fastmaking is less useful since the advent of GHC’s recompilation checker (see the User’s Guide
section on "Separate Compilation").

6. The Makefile architecture
make is great if everything works—you type gmake install and lo! the right things get compiled and
installed in the right places. Our goal is to make this happen often, but somehow it often doesn’t;
instead some weird error message eventually emerges from the bowels of a directory you didn’t
know existed.

The purpose of this section is to give you a road-map to help you figure out what is going right and
what is going wrong.

6.1. A small project
To get started, let us look at the Makefile for an imaginary small fptools project, small. Each
project in fptools has its own directory in FPTOOLS_TOP, so the small project will have its own
directory FPOOLS_TOP/small/. Inside the small/ directory there will be a Makefile, looking
something like this:

Makefile for fptools project "small"

TOP = ..
include $(TOP)/mk/boilerplate.mk

SRCS = $(wildcard *.lhs) $(wildcard *.c)
HS_PROG = small

include $(TOP)/target.mk

This Makefile has three sections:

15

Building the Glasgow Functional Programming Tools Suite

1. The first section includes 1 a file of “boilerplate” code from the level above (which in this case
will be FPTOOLS_TOP/mk/boilerplate.mk). As its name suggests, boilerplate.mk
consists of a large quantity of standard Makefile code. We discuss this boilerplate in more
detail in Section 6.4. Before the include statement, you must define the make variable TOP to
be the directory containing the mk directory in which the boilerplate.mk file is. It is not OK
to simply say

include ../mk/boilerplate.mk # NO NO NO

Why? Because the boilerplate.mk file needs to know where it is, so that it can, in turn, include
other files. (Unfortunately, when an included file does an include, the filename is treated
relative to the directory in which gmake is being run, not the directory in which the included
sits.) In general, every file foo.mk assumes that $(TOP)/mk/foo.mk refers to itself. It is up to
the Makefile doing the include to ensure this is the case. Files intended for inclusion in other
Makefiles are written to have the following property: after foo.mk is included, it leaves
TOP containing the same value as it had just before the include statement. In our example, this
invariant guarantees that the include for target.mk will look in the same directory as that for
boilerplate.mk.

2. The second section defines the following standard make variables: SRCS (the source files from
which is to be built), and HS_PROG (the executable binary to be built). We will discuss in more
detail what the “standard variables” are, and how they affect what happens, in Section 6.6. The
definition for SRCS uses the useful GNU make construct $(wildcard pat), which expands
to a list of all the files matching the pattern pat in the current directory. In this example, SRCS is
set to the list of all the .lhs and .c files in the directory. (Let’s suppose there is one of each,
Foo.lhs and Baz.c.)

3. The last section includes a second file of standard code, called target.mk. It contains the rules
that tell gmake how to make the standard targets (Section 5.6). Why, you ask, can’t this standard
code be part of boilerplate.mk? Good question. We discuss the reason later, in Section 6.3.
You do not have to include the target.mk file. Instead, you can write rules of your own for
all the standard targets. Usually, though, you will find quite a big payoff from using the canned
rules in target.mk; the price tag is that you have to understand what canned rules get enabled,
and what they do (Section 6.6).

In our example Makefile, most of the work is done by the two included files. When you say
gmake all, the following things happen:

• gmake figures out that the object files are Foo.o and Baz.o.

• It uses a boilerplate pattern rule to compile Foo.lhs to Foo.o using a Haskell compiler. (Which
one? That is set in the build configuration.)

• It uses another standard pattern rule to compile Baz.c to Baz.o, using a C compiler. (Ditto.)

• It links the resulting .o files together to make small, using the Haskell compiler to do the link
step. (Why not use ld? Because the Haskell compiler knows what standard libraries to link in.

16

Building the Glasgow Functional Programming Tools Suite

How did gmake know to use the Haskell compiler to do the link, rather than the C compiler?
Because we set the variable HS_PROG rather than C_PROG.)

All Makefiles should follow the above three-section format.

6.2. A larger project
Larger projects are usually structured into a number of sub-directories, each of which has its own
Makefile. (In very large projects, this sub-structure might be iterated recursively, though that is
rare.) To give you the idea, here’s part of the directory structure for the (rather large) GHC project:

$(FPTOOLS_TOP)/ghc/
Makefile
mk/

boilerplate.mk
rules.mk

docs/
Makefile
...source files for documentation...

driver/
Makefile
...source files for driver...

compiler/
Makefile
parser/...source files for parser...
renamer/...source files for renamer...
...etc...

The sub-directories docs, driver, compiler, and so on, each contains a sub-component of GHC,
and each has its own Makefile. There must also be a Makefile in $(FPTOOLS_TOP)/ghc. It does
most of its work by recursively invoking gmake on the Makefiles in the sub-directories. We say
that ghc/Makefile is a non-leaf Makefile, because it does little except organise its children,
while the Makefiles in the sub-directories are all leaf Makefiles. (In principle the sub-directories
might themselves contain a non-leaf Makefile and several sub-sub-directories, but that does not
happen in GHC.)

The Makefile in ghc/compiler is considered a leaf Makefile even though the ghc/compiler
has sub-directories, because these sub-directories do not themselves have Makefiles in them. They
are just used to structure the collection of modules that make up GHC, but all are managed by the
single Makefile in ghc/compiler.

You will notice that ghc/ also contains a directory ghc/mk/. It contains GHC-specific Makefile
boilerplate code. More precisely:

17

Building the Glasgow Functional Programming Tools Suite

• ghc/mk/boilerplate.mk is included at the top of ghc/Makefile, and of all the leaf
Makefiles in the sub-directories. It in turn includes the main boilerplate file
mk/boilerplate.mk.

• ghc/mk/target.mk is included at the bottom of ghc/Makefile, and of all the leaf
Makefiles in the sub-directories. It in turn includes the file mk/target.mk.

So these two files are the place to look for GHC-wide customisation of the standard boilerplate.

6.3. Boilerplate architecture
Every Makefile includes a boilerplate.mk file at the top, and target.mk file at the bottom. In
this section we discuss what is in these files, and why there have to be two of them. In general:

• boilerplate.mk consists of:

• Definitions of millions of make variables that collectively specify the build configuration.
Examples: HC_OPTS, the options to feed to the Haskell compiler; NoFibSubDirs, the
sub-directories to enable within the nofib project; GhcWithHc, the name of the Haskell
compiler to use when compiling GHC in the ghc project.

• Standard pattern rules that tell gmake how to construct one file from another.

boilerplate.mk needs to be included at the top of each Makefile, so that the user can replace
the boilerplate definitions or pattern rules by simply giving a new definition or pattern rule in the
Makefile. gmake simply takes the last definition as the definitive one. Instead of replacing
boilerplate definitions, it is also quite common to augment them. For example, a Makefile might
say:

SRC_HC_OPTS += -O

thereby adding “-O” to the end of SRC_HC_OPTS.

• target.mk contains make rules for the standard targets described in Section 5.6. These rules are
selectively included, depending on the setting of certain make variables. These variables are
usually set in the middle section of the Makefile between the two includes. target.mk must
be included at the end (rather than being part of boilerplate.mk) for several tiresome reasons:

• gmake commits target and dependency lists earlier than it should. For example, target.mk
has a rule that looks like this:

$(HS_PROG) : $(OBJS)
$(HC) $(LD_OPTS) $< -o $@

If this rule was in boilerplate.mk then $(HS_PROG) and $(OBJS) would not have their final
values at the moment gmake encountered the rule. Alas, gmake takes a snapshot of their
current values, and wires that snapshot into the rule. (In contrast, the commands executed when
the rule “fires” are only substituted at the moment of firing.) So, the rule must follow the
definitions given in the Makefile itself.

18

Building the Glasgow Functional Programming Tools Suite

• Unlike pattern rules, ordinary rules cannot be overriden or replaced by subsequent rules for the
same target (at least, not without an error message). Including ordinary rules in
boilerplate.mk would prevent the user from writing rules for specific targets in specific
cases.

• There are a couple of other reasons I’ve forgotten, but it doesn’t matter too much.

6.4. The main mk/boilerplate.mk file
If you look at $(FPTOOLS_TOP)/mk/boilerplate.mk you will find that it consists of the following
sections, each held in a separate file:

config.mk

is the build configuration file we discussed at length in Section 5.3.

paths.mk

defines make variables for pathnames and file lists. In particular, it gives definitions for:

SRCS:

all source files in the current directory.

HS_SRCS:

all Haskell source files in the current directory. It is derived from $(SRCS), so if you
override SRCS with a new value HS_SRCS will follow suit.

C_SRCS:

similarly for C source files.

HS_OBJS:

the .o files derived from $(HS_SRCS).

C_OBJS:

similarly for $(C_SRCS).

OBJS:

the concatenation of $(HS_OBJS) and $(C_OBJS).

Any or all of these definitions can easily be overriden by giving new definitions in your
Makefile. For example, if there are things in the current directory that look like source files
but aren’t, then you’ll need to set SRCS manually in your Makefile. The other definitions will
then work from this new definition.

19

Building the Glasgow Functional Programming Tools Suite

What, exactly, does paths.mk consider a “source file” to be? It’s based on the file’s suffix (e.g.
.hs, .lhs, .c, .lc, etc), but this is the kind of detail that changes, so rather than enumerate the
source suffices here the best thing to do is to look in paths.mk.

opts.mk

defines make variables for option strings to pass to each program. For example, it defines
HC_OPTS, the option strings to pass to the Haskell compiler. See Section 6.5.

suffix.mk

defines standard pattern rules—see Section 6.5.

Any of the variables and pattern rules defined by the boilerplate file can easily be overridden in any
particular Makefile, because the boilerplate include comes first. Definitions after this include
directive simply override the default ones in boilerplate.mk.

6.5. Pattern rules and options
The file suffix.mk defines standard pattern rules that say how to build one kind of file from
another, for example, how to build a .o file from a .c file. (GNU make’s pattern rules are more
powerful and easier to use than Unix make’s suffix rules.)

Almost all the rules look something like this:

%.o : %.c
$(RM) $@
$(CC) $(CC_OPTS) -c $< -o $@

Here’s how to understand the rule. It says that something.o (say Foo.o) can be built from
something.c (Foo.c), by invoking the C compiler (path name held in $(CC)), passing to it the
options $(CC_OPTS) and the rule’s dependent file of the rule $< (Foo.c in this case), and putting
the result in the rule’s target $@ (Foo.o in this case).

Every program is held in a make variable defined in mk/config.mk—look in mk/config.mk for
the complete list. One important one is the Haskell compiler, which is called $(HC).

Every program’s options are are held in a make variables called <prog>_OPTS. the <prog>_OPTS
variables are defined in mk/opts.mk. Almost all of them are defined like this:

CC_OPTS = $(SRC_CC_OPTS) $(WAY$(_way)_CC_OPTS) $($*_CC_OPTS) $(EX-
TRA_CC_OPTS)

The four variables from which CC_OPTS is built have the following meaning:

20

Building the Glasgow Functional Programming Tools Suite

SRC_CC_OPTS:

options passed to all C compilations.

WAY_<way>_CC_OPTS:

options passed to C compilations for way <way>. For example, WAY_mp_CC_OPTS gives
options to pass to the C compiler when compiling way mp. The variable WAY_CC_OPTS holds
options to pass to the C compiler when compiling the standard way. (Section 6.8 dicusses
multi-way compilation.)

<module>_CC_OPTS:

options to pass to the C compiler that are specific to module <module>. For example,
SMap_CC_OPTS gives the specific options to pass to the C compiler when compiling SMap.c.

EXTRA_CC_OPTS:

extra options to pass to all C compilations. This is intended for command line use, thus:

gmake libHS.a EXTRA_CC_OPTS="-v"

6.6. The main mk/target.mk file
target.mk contains canned rules for all the standard targets described in Section 5.6. It is
complicated by the fact that you don’t want all of these rules to be active in every Makefile. Rather
than have a plethora of tiny files which you can include selectively, there is a single file, target.mk,
which selectively includes rules based on whether you have defined certain variables in your
Makefile. This section explains what rules you get, what variables control them, and what the rules
do. Hopefully, you will also get enough of an idea of what is supposed to happen that you can read
and understand any weird special cases yourself.

HS_PROG.

If HS_PROG is defined, you get rules with the following targets:

HS_PROG

itself. This rule links $(OBJS) with the Haskell runtime system to get an executable called
$(HS_PROG).

install

installs $(HS_PROG) in $(bindir).

C_PROG

is similar to HS_PROG, except that the link step links $(C_OBJS) with the C runtime system.

21

Building the Glasgow Functional Programming Tools Suite

LIBRARY

is similar to HS_PROG, except that it links $(LIB_OBJS) to make the library archive
$(LIBRARY), and install installs it in $(libdir).

LIB_DATA

. . .

LIB_EXEC

. . .

HS_SRCS, C_SRCS.

If HS_SRCS is defined and non-empty, a rule for the target depend is included, which generates
dependency information for Haskell programs. Similarly for C_SRCS.

All of these rules are “double-colon” rules, thus

install :: $(HS_PROG)
...how to install it...

GNU make treats double-colon rules as separate entities. If there are several double-colon rules for
the same target it takes each in turn and fires it if its dependencies say to do so. This means that you
can, for example, define both HS_PROG and LIBRARY, which will generate two rules for install.
When you type gmake install both rules will be fired, and both the program and the library will be
installed, just as you wanted.

6.7. Recursion
In leaf Makefiles the variable SUBDIRS is undefined. In non-leaf Makefiles, SUBDIRS is set to
the list of sub-directories that contain subordinate Makefiles. It is up to you to set SUBDIRS in the
Makefile. There is no automation here—SUBDIRS is too important to automate.

When SUBDIRS is defined, target.mk includes a rather neat rule for the standard targets (Section
5.6 that simply invokes make recursively in each of the sub-directories.

These recursive invocations are guaranteed to occur in the order in which the list of directories is
specified in SUBDIRS. This guarantee can be important. For example, when you say gmake boot it
can be important that the recursive invocation of make boot is done in one sub-directory (the include
files, say) before another (the source files). Generally, put the most independent sub-directory first,
and the most dependent last.

6.8. Way management
We sometimes want to build essentially the same system in several different “ways”. For example,
we want to build GHC’s Prelude libraries with and without profiling, with and without

22

Building the Glasgow Functional Programming Tools Suite

concurrency, and so on, so that there is an appropriately-built library archive to link with when the
user compiles his program. It would be possible to have a completely separate build tree for each
such “way”, but it would be horribly bureaucratic, especially since often only parts of the build tree
need to be constructed in multiple ways.

Instead, the target.mk contains some clever magic to allow you to build several versions of a
system; and to control locally how many versions are built and how they differ. This section explains
the magic.

The files for a particular way are distinguished by munging the suffix. The “normal way” is always
built, and its files have the standard suffices .o, .hi, and so on. In addition, you can build one or
more extra ways, each distinguished by a way tag. The object files and interface files for one of these
extra ways are distinguished by their suffix. For example, way mp has files .mp_o and .mp_hi.
Library archives have their way tag the other side of the dot, for boring reasons; thus, libHS_mp.a.

A make variable called way holds the current way tag. way is only ever set on the command line of a
recursive invocation of gmake. It is never set inside a Makefile. So it is a global constant for any
one invocation of gmake. Two other make variables, way_ and _way are immediately derived from
$(way) and never altered. If way is not set, then neither are way_ and _way, and the invocation of
make will build the “normal way”. If way is set, then the other two variables are set in sympathy. For
example, if $(way) is “mp”, then way_ is set to “mp_” and _way is set to “_mp”. These three
variables are then used when constructing file names.

So how does make ever get recursively invoked with way set? There are two ways in which this
happens:

• For some (but not all) of the standard targets, when in a leaf sub-directory, make is recursively
invoked for each way tag in $(WAYS). You set WAYS to the list of way tags you want these targets
built for. The mechanism here is very much like the recursive invocation of make in
sub-directories (Section 6.7). It is up to you to set WAYS in your Makefile; this is how you
control what ways will get built.

• For a useful collection of targets (such as libHS_mp.a, Foo.mp_o) there is a rule which
recursively invokes make to make the specified target, setting the way variable. So if you say
gmake Foo.mp_o you should see a recursive invocation gmake Foo.mp_o way=mp, and in this
recursive invocation the pattern rule for compiling a Haskell file into a .o file will match. The key
pattern rules (in suffix.mk) look like this:

%.$(way_)o : %.lhs
$(HC) $(HC_OPTS) $< -o $@

Neat, eh?

6.9. When the canned rule isn’t right
Sometimes the canned rule just doesn’t do the right thing. For example, in the nofib suite we want
the link step to print out timing information. The thing to do here is not to define HS_PROG or

23

Building the Glasgow Functional Programming Tools Suite

C_PROG, and instead define a special purpose rule in your own Makefile. By using different
variable names you will avoid the canned rules being included, and conflicting with yours.

7. Booting/porting from C (.hc) files
This section is for people trying to get GHC going by using the supplied intermediate C (.hc) files.
This would probably be because no binaries have been provided, or because the machine is not
“fully supported”.

The intermediate C files are normally made available together with a source release, please check the
announce message for exact directions of where to find them. If we haven’t made them available or
you can’t find them, please ask.

Assuming you’ve got them, unpack them on top of a fresh source tree. This will place matching .hc
files next to the corresponding Haskell source in the compiler subdirectory ghc and in the language
package of hslibs (i.e., in hslibs/lang). Then follow the ‘normal’ instructions in Section 5 for
setting up a build tree.

The actual build process is fully automated by the hc-build script located in the distrib
directory. If you eventually want to install GHC into the directory INSTALL_DIRECTORY, the
following command will execute the whole build process (it won’t install yet):

foo% distrib/hc-build -prefix=INSTALL_DIRECTORY

By default, the installation directory is /usr/local. If that is what you want, you may omit the
argument to hc-build. Generally, any option given to hc-build is passed through to the
configuration script configure. If hc-build successfully completes the build process, you can
install the resulting system, as normal, with

foo% make install

That’s the mechanics of the boot process, but, of course, if you’re trying to boot on a platform that is
not supported and significantly ‘different’ from any of the supported ones, this is only the start of the
adventure. . . (ToDo: porting tips—stuff to look out for, etc.)

8. Known pitfalls in building Glasgow Haskell
WARNINGS about pitfalls and known “problems”:

1. One difficulty that comes up from time to time is running out of space in TMPDIR. (It is
impossible for the configuration stuff to compensate for the vagaries of different sysadmin
approaches to temp space.) The quickest way around it is setenv TMPDIR /usr/tmp or even
setenv TMPDIR . (or the equivalent incantation with your shell of choice). The best way
around it is to say

24

Building the Glasgow Functional Programming Tools Suite

export TMPDIR=<dir>

in your build.mk file. Then GHC and the other fptools programs will use the appropriate
directory in all cases.

2. In compiling some support-code bits, e.g., in ghc/rts/gmp and even in ghc/lib, you may get
a few C-compiler warnings. We think these are OK.

3. When compiling via C, you’ll sometimes get “warning: assignment from incompatible pointer
type” out of GCC. Harmless.

4. Similarly, archiving warning messages like the following are not a problem:

ar: filename GlaIOMonad__1_2s.o truncated to GlaIOMonad_
ar: filename GlaIOMonad__2_2s.o truncated to GlaIOMonad_
...

5. In compiling the compiler proper (in compiler/), you may get an “Out of heap space” error
message. These can vary with the vagaries of different systems, it seems. The solution is simple:

• If you’re compiling with GHC 4.00 or later, then the maximum heap size must have been
reached. This is somewhat unlikely, since the maximum is set to 64M by default. Anyway,
you can raise it with the -optCrts-M<size> flag (add this flag to <module>_HC_OPTS

make variable in the appropriate Makefile).

• For GHC < 4.00, add a suitable -H flag to the Makefile, as above.

and try again: gmake. (see Section 6.5 for information about <module>_HC_OPTS.) Alternatively,
just cut to the chase:

% cd ghc/compiler
% make EXTRA_HC_OPTS=-optCrts-M128M

6. If you try to compile some Haskell, and you get errors from GCC about lots of things from
/usr/include/math.h, then your GCC was mis-installed. fixincludes wasn’t run when it
should’ve been. As fixincludes is now automagically run as part of GCC installation, this bug
also suggests that you have an old GCC.

7. You may need to re-ranlib your libraries (on Sun4s).

% cd $(libdir)/ghc-x.xx/sparc-sun-sunos4
% foreach i (‘find . -name ’*.a’ -print‘) # or other-shell equiv...
? ranlib $i
? # or, on some machines: ar s $i
? end

We’d be interested to know if this is still necessary.

8. GHC’s sources go through cpp before being compiled, and cpp varies a bit from one Unix to
another. One particular gotcha is macro calls like this:

SLIT("Hello, world")

Some cpps treat the comma inside the string as separating two macro arguments, so you get

:731: macro ‘SLIT’ used with too many (2) args

25

Building the Glasgow Functional Programming Tools Suite

Alas, cpp doesn’t tell you the offending file! Workaround: don’t put weird things in string args to
cpp macros.

9. Notes for building under Windows
This section summarises how to get the utilities you need on your Win95/98/NT/2000 machine to
use CVS and build GHC. Similar notes for installing and running GHC may be found in the user
guide. In general, Win95/Win98 behave the same, and WinNT/Win2k behave the same. You should
read the GHC installation guide sections on Windows (in the user guide) before continuing to read
these notes.

Because of various hard-wired infelicities, you need to copy bash.exe (from GHC’s extra-bin
directory), and perl.exe and cat.exe (from GHC’s bin directory) to /bin (discover where your
Cygwin root directory is by typign mount). You also need to have extra-bin on your path.

Before you start, you need to make sure that the user environment variable MAKE_MODE is set to
UNIX. If you don’t do this you get very weird messages when you type make, such as:

/c: /c: No such file or directory

9.1. Configuring ssh

• Generate a key, by running c:/user/local/bin/ssh-keygen1. This generates a public key in
.ssh/identity.pub, and a private key in .ssh/identity

In response to the ’Enter passphrase’ question, just hit return (i.e. use an empty passphrase). The
passphrase is a password that protects your private key. But it’s a pain to type this passphrase
everytime you use ssh, so the best thing to do is simply to protect your .ssh directory, and
.ssh/identity from access by anyone else. To do this right-click your .ssh directory, and
select Properties. If you are not on the access control list, add yourself, and give yourself full
permissions (the second panel). Remove everyone else from the access control list. (Don’t leave
them there but deny them access, because ’they’ may be a list that includes you!)

If you have problems running ssh-keygen1 from within bash, start up cmd.exe and run it as
follows:

c:\tmp> set CYGWIN32=tty
c:\tmp> c:/user/local/bin/ssh-keygen1

• If you don’t have an account on cvs.haskell.org, send your .ssh/identity.pub to the
CVS repository administrator (currently Jeff Lewis <jlewis@cse.ogi.edu>). He will set up
your account.

If you do have an account on cvs.haskell.org, use TeraTerm to logon to it. Once in, copy the
key that ssh-keygen1 deposited in /.ssh/identity.pub into your

26

Building the Glasgow Functional Programming Tools Suite

~/.ssh/authorized_keys. Make sure that the new version of authorized_keys still has 600
file permission.

9.2. Configuring CVS

• From the System control panel, set the following user environment variables (see the GHC user
guide)

• HOME: points to your home directory. This is where CVS will look for its .cvsrc file.

• CVS_RSH: c:/path_to_ghc/extra-bin/ssh

• CVSROOT: :ext:username@cvs.haskell.org:/home/cvs/root, where username is
your userid

• CVSEDITOR: bin/gnuclient.exe if you want to use an Emacs buffer for typing in those long
commit messages.

• SHELL: To use bash as the shell in Emacs, you need to set this to point to bash.exe.

• Put the following in $HOME/.cvsrc:

checkout -P
release -d
update -P
diff -u

These are the default options for the specified CVS commands, and represent better defaults than
the usual ones. (Feel free to change them.)

Filenames starting with . were illegal in the 8.3 DOS filesystem, but that restriction should have
been lifted by now (i.e., you’re using VFAT or later filesystems.) If you’re still having problems
creating it, don’t worry; .cvsrc is entirely optional.

• Try doing cvs co fpconfig. All being well, bytes should start to trickle through, leaving a directory
fptools in your current directory. (You can rm it if you don’t want to keep it.) The following
messages appear to be harmless:

setsockopt IPTOS_LOWDELAY: Invalid argument
setsockopt IPTOS_THROUGHPUT: Invalid argument

At this point I found that CVS tried to invoke a little dialogue with me (along the lines of ‘do you
want to talk to this host?’), but for some reason bombed out. This was from a bash shell running in
Emacs. I solved this by invoking a Cygnus shell, and running CVS from there. Once things are
dialogue free, it seems to work OK from within Emacs.

• If you want to check out part of large tree, proceed as follows:

cvs -f checkout -l papers
cd papers
cvs update cpr

27

Building the Glasgow Functional Programming Tools Suite

This sequence checks out the papers module, but none of its sub-directories. The "-l" flag says
not to check out sub-directories. The "-f" flag says not to read the .cvsrc file whose -P default
(don’t check out empty directories) is in this case bogus.

The cvs update command sucks in a named sub-directory.

There is a very nice graphical front-end to CVS for Win32 platforms, with a UI that people will be
familiar with, at wincvs.org (http://www.wincvs.org/). I have not tried it yet.

9.3. Building GHC

• In the ./configure output, ignore "checking whether #! works in shell scripts...

./configure: ./conftest: No such file or directory", and "not updating

unwritable cache ./config.cache". Nobody knows why these happen, but they seem to be
harmless.

• You have to run autoconf both in fptools and in fptools/ghc. If you omit the latter step
you’ll get an error when you run ./configure:

...lots of stuff...
creating mk/config.h
mk/config.h is unchanged
configuring in ghc
running /bin/sh ./configure -cache-file=.././config.cache -srcdir=.
./configure: ./configure: No such file or directory
configure: error: ./configure failed for ghc

• You need ghc to be in your PATH before you run configure. The default GHC InstallShield
creates only ghc-4.08, so you may need to duplicate this file as ghc in the same directory, in
order that configure will see it (or just rename ghc-4.08 to ghc. And make sure that the
directory is in your path.

Notes
1. One of the most important features of GNU make that we use is the ability for a Makefile to

include another named file, very like cpp’s #include directive.

28

