\begin{code}
#include "MachDeps.h"
#if SIZEOF_HSWORD == 4
#define INT_MINBOUND (-2147483648#)
#define NEG_INT_MINBOUND (S# 2147483647# `plusInteger` S# 1#)
#elif SIZEOF_HSWORD == 8
#define INT_MINBOUND (-9223372036854775808#)
#define NEG_INT_MINBOUND (S# 9223372036854775807# `plusInteger` S# 1#)
#else
#error Unknown SIZEOF_HSWORD; can't define INT_MINBOUND and NEG_INT_MINBOUND
#endif
module GHC.Integer (
Integer,
smallInteger, wordToInteger, integerToWord, toInt#,
#if WORD_SIZE_IN_BITS < 64
integerToWord64, word64ToInteger,
integerToInt64, int64ToInteger,
#endif
plusInteger, minusInteger, timesInteger, negateInteger,
eqInteger, neqInteger, absInteger, signumInteger,
leInteger, gtInteger, ltInteger, geInteger, compareInteger,
divModInteger, quotRemInteger, quotInteger, remInteger,
encodeFloatInteger, decodeFloatInteger, floatFromInteger,
encodeDoubleInteger, decodeDoubleInteger, doubleFromInteger,
gcdInteger, lcmInteger,
andInteger, orInteger, xorInteger, complementInteger,
hashInteger,
) where
import GHC.Prim (
Int#, Word#, Double#, Float#, ByteArray#,
int2Word#, int2Double#, int2Float#, word2Int#,
quotInt#, remInt#, negateInt#,
(==#), (/=#), (<=#), (>=#), (<#), (>#), (*#), (-#), (+#),
mulIntMayOflo#, addIntC#, subIntC#, gcdInt#,
and#, or#, xor#,
indexIntArray#,
cmpInteger#, cmpIntegerInt#,
plusInteger#, minusInteger#, timesInteger#,
quotRemInteger#, quotInteger#, remInteger#, divModInteger#,
gcdInteger#, gcdIntegerInt#, divExactInteger#,
decodeDouble#, decodeFloat#,
int2Integer#, integer2Int#, word2Integer#, integer2Word#,
andInteger#, orInteger#, xorInteger#, complementInteger#,
#if WORD_SIZE_IN_BITS < 64
int64ToInteger#, word64ToInteger#,
#endif
)
import GHC.Integer.Internals (Integer(..))
#if WORD_SIZE_IN_BITS < 64
import GHC.IntWord64 (
Int64#, Word64#,
int64ToWord64#, intToInt64#, integerToWord64#,
int64ToInt#, word64ToInt64#, integerToInt64#,
geInt64#, leInt64#, leWord64#,
)
#endif
import GHC.Bool
import GHC.Ordering
default ()
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ type}
%* *
%*********************************************************
Convenient boxed Integer PrimOps.
\begin{code}
smallInteger :: Int# -> Integer
smallInteger i = S# i
wordToInteger :: Word# -> Integer
wordToInteger w = case word2Integer# w of (# s, d #) -> J# s d
integerToWord :: Integer -> Word#
integerToWord (S# i) = int2Word# i
integerToWord (J# s d) = integer2Word# s d
#if WORD_SIZE_IN_BITS < 64
integerToWord64 :: Integer -> Word64#
integerToWord64 (S# i) = int64ToWord64# (intToInt64# i)
integerToWord64 (J# s d) = integerToWord64# s d
word64ToInteger :: Word64# -> Integer
word64ToInteger w = if w `leWord64#` int64ToWord64# (intToInt64# 0x7FFFFFFF#)
then S# (int64ToInt# (word64ToInt64# w))
else case word64ToInteger# w of
(# s, d #) -> J# s d
integerToInt64 :: Integer -> Int64#
integerToInt64 (S# i) = intToInt64# i
integerToInt64 (J# s d) = integerToInt64# s d
int64ToInteger :: Int64# -> Integer
int64ToInteger i = if ((i `leInt64#` intToInt64# 0x7FFFFFFF#) &&
(i `geInt64#` intToInt64# 0x80000000#))
then smallInteger (int64ToInt# i)
else case int64ToInteger# i of
(# s, d #) -> J# s d
where
True && x = x
False && _ = False
#endif
toInt# :: Integer -> Int#
toInt# (S# i) = i
toInt# (J# s d) = integer2Int# s d
toBig :: Integer -> Integer
toBig (S# i) = case int2Integer# i of { (# s, d #) -> J# s d }
toBig i@(J# _ _) = i
\end{code}
%*********************************************************
%* *
\subsection{Dividing @Integers@}
%* *
%*********************************************************
\begin{code}
quotRemInteger :: Integer -> Integer -> (# Integer, Integer #)
quotRemInteger a@(S# INT_MINBOUND) b = quotRemInteger (toBig a) b
quotRemInteger (S# i) (S# j) = (# S# q, S# r #)
where
q = i `quotInt#` j
r = i `remInt#` j
quotRemInteger i1@(J# _ _) i2@(S# _) = quotRemInteger i1 (toBig i2)
quotRemInteger i1@(S# _) i2@(J# _ _) = quotRemInteger (toBig i1) i2
quotRemInteger (J# s1 d1) (J# s2 d2)
= case (quotRemInteger# s1 d1 s2 d2) of
(# s3, d3, s4, d4 #)
-> (# J# s3 d3, J# s4 d4 #)
divModInteger :: Integer -> Integer -> (# Integer, Integer #)
divModInteger a@(S# INT_MINBOUND) b = divModInteger (toBig a) b
divModInteger (S# i) (S# j) = (# S# d, S# m #)
where
d = i `divInt#` j
m = i `modInt#` j
divInt# :: Int# -> Int# -> Int#
x# `divInt#` y#
= if (x# ># 0#) && (y# <# 0#) then ((x# -# 1#) `quotInt#` y#) -# 1#
else if (x# <# 0#) && (y# ># 0#) then ((x# +# 1#) `quotInt#` y#) -# 1#
else x# `quotInt#` y#
modInt# :: Int# -> Int# -> Int#
x# `modInt#` y#
= if ((x# ># 0#) && (y# <# 0#)) ||
((x# <# 0#) && (y# ># 0#))
then if r# /=# 0# then r# +# y# else 0#
else r#
where r# = x# `remInt#` y#
(&&) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x
divModInteger i1@(J# _ _) i2@(S# _) = divModInteger i1 (toBig i2)
divModInteger i1@(S# _) i2@(J# _ _) = divModInteger (toBig i1) i2
divModInteger (J# s1 d1) (J# s2 d2)
= case (divModInteger# s1 d1 s2 d2) of
(# s3, d3, s4, d4 #)
-> (# J# s3 d3, J# s4 d4 #)
remInteger :: Integer -> Integer -> Integer
remInteger a@(S# INT_MINBOUND) b = remInteger (toBig a) b
remInteger (S# a) (S# b) = S# (remInt# a b)
remInteger ia@(S# _) ib@(J# _ _) = remInteger (toBig ia) ib
remInteger (J# sa a) (S# b)
= case int2Integer# b of { (# sb, b' #) ->
case remInteger# sa a sb b' of { (# sr, r #) ->
S# (integer2Int# sr r) }}
remInteger (J# sa a) (J# sb b)
= case remInteger# sa a sb b of (# sr, r #) -> J# sr r
quotInteger :: Integer -> Integer -> Integer
quotInteger a@(S# INT_MINBOUND) b = quotInteger (toBig a) b
quotInteger (S# a) (S# b) = S# (quotInt# a b)
quotInteger ia@(S# _) ib@(J# _ _) = quotInteger (toBig ia) ib
quotInteger (J# sa a) (S# b)
= case int2Integer# b of { (# sb, b' #) ->
case quotInteger# sa a sb b' of (# sq, q #) -> J# sq q }
quotInteger (J# sa a) (J# sb b)
= case quotInteger# sa a sb b of (# sg, g #) -> J# sg g
\end{code}
\begin{code}
gcdInteger :: Integer -> Integer -> Integer
gcdInteger a@(S# INT_MINBOUND) b = gcdInteger (toBig a) b
gcdInteger a b@(S# INT_MINBOUND) = gcdInteger a (toBig b)
gcdInteger (S# a) (S# b) = S# (gcdInt a b)
where
gcdInt :: Int# -> Int# -> Int#
gcdInt 0# y = absInt y
gcdInt x 0# = absInt x
gcdInt x y = gcdInt# (absInt x) (absInt y)
absInt x = if x <# 0# then negateInt# x else x
gcdInteger ia@(S# a) ib@(J# sb b)
= if a ==# 0# then absInteger ib
else if sb ==# 0# then absInteger ia
else S# (gcdIntegerInt# absSb b absA)
where absA = if a <# 0# then negateInt# a else a
absSb = if sb <# 0# then negateInt# sb else sb
gcdInteger ia@(J# _ _) ib@(S# _) = gcdInteger ib ia
gcdInteger (J# sa a) (J# sb b)
= case gcdInteger# sa a sb b of (# sg, g #) -> J# sg g
lcmInteger :: Integer -> Integer -> Integer
lcmInteger a b = if a `eqInteger` S# 0# then S# 0#
else if b `eqInteger` S# 0# then S# 0#
else (divExact aa (gcdInteger aa ab)) `timesInteger` ab
where aa = absInteger a
ab = absInteger b
divExact :: Integer -> Integer -> Integer
divExact a@(S# INT_MINBOUND) b = divExact (toBig a) b
divExact (S# a) (S# b) = S# (quotInt# a b)
divExact (S# a) (J# sb b)
= S# (quotInt# a (integer2Int# sb b))
divExact (J# sa a) (S# b)
= case int2Integer# b of
(# sb, b' #) -> case divExactInteger# sa a sb b' of
(# sd, d #) -> J# sd d
divExact (J# sa a) (J# sb b)
= case divExactInteger# sa a sb b of (# sd, d #) -> J# sd d
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ instances for @Eq@, @Ord@}
%* *
%*********************************************************
\begin{code}
eqInteger :: Integer -> Integer -> Bool
eqInteger (S# i) (S# j) = i ==# j
eqInteger (S# i) (J# s d) = cmpIntegerInt# s d i ==# 0#
eqInteger (J# s d) (S# i) = cmpIntegerInt# s d i ==# 0#
eqInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) ==# 0#
neqInteger :: Integer -> Integer -> Bool
neqInteger (S# i) (S# j) = i /=# j
neqInteger (S# i) (J# s d) = cmpIntegerInt# s d i /=# 0#
neqInteger (J# s d) (S# i) = cmpIntegerInt# s d i /=# 0#
neqInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) /=# 0#
leInteger :: Integer -> Integer -> Bool
leInteger (S# i) (S# j) = i <=# j
leInteger (J# s d) (S# i) = cmpIntegerInt# s d i <=# 0#
leInteger (S# i) (J# s d) = cmpIntegerInt# s d i >=# 0#
leInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) <=# 0#
gtInteger :: Integer -> Integer -> Bool
gtInteger (S# i) (S# j) = i ># j
gtInteger (J# s d) (S# i) = cmpIntegerInt# s d i ># 0#
gtInteger (S# i) (J# s d) = cmpIntegerInt# s d i <# 0#
gtInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) ># 0#
ltInteger :: Integer -> Integer -> Bool
ltInteger (S# i) (S# j) = i <# j
ltInteger (J# s d) (S# i) = cmpIntegerInt# s d i <# 0#
ltInteger (S# i) (J# s d) = cmpIntegerInt# s d i ># 0#
ltInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) <# 0#
geInteger :: Integer -> Integer -> Bool
geInteger (S# i) (S# j) = i >=# j
geInteger (J# s d) (S# i) = cmpIntegerInt# s d i >=# 0#
geInteger (S# i) (J# s d) = cmpIntegerInt# s d i <=# 0#
geInteger (J# s1 d1) (J# s2 d2) = (cmpInteger# s1 d1 s2 d2) >=# 0#
compareInteger :: Integer -> Integer -> Ordering
compareInteger (S# i) (S# j)
= if i ==# j then EQ
else if i <=# j then LT
else GT
compareInteger (J# s d) (S# i)
= case cmpIntegerInt# s d i of { res# ->
if res# <# 0# then LT else
if res# ># 0# then GT else EQ
}
compareInteger (S# i) (J# s d)
= case cmpIntegerInt# s d i of { res# ->
if res# ># 0# then LT else
if res# <# 0# then GT else EQ
}
compareInteger (J# s1 d1) (J# s2 d2)
= case cmpInteger# s1 d1 s2 d2 of { res# ->
if res# <# 0# then LT else
if res# ># 0# then GT else EQ
}
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ instances for @Num@}
%* *
%*********************************************************
\begin{code}
absInteger :: Integer -> Integer
absInteger (S# INT_MINBOUND) = NEG_INT_MINBOUND
absInteger n@(S# i) = if i >=# 0# then n else S# (negateInt# i)
absInteger n@(J# s d) = if (s >=# 0#) then n else J# (negateInt# s) d
signumInteger :: Integer -> Integer
signumInteger (S# i) = if i <# 0# then S# 1#
else if i ==# 0# then S# 0#
else S# 1#
signumInteger (J# s d)
= let
cmp = cmpIntegerInt# s d 0#
in
if cmp ># 0# then S# 1#
else if cmp ==# 0# then S# 0#
else S# (negateInt# 1#)
plusInteger :: Integer -> Integer -> Integer
plusInteger i1@(S# i) i2@(S# j) = case addIntC# i j of
(# r, c #) ->
if c ==# 0#
then S# r
else plusInteger (toBig i1) (toBig i2)
plusInteger i1@(J# _ _) i2@(S# _) = plusInteger i1 (toBig i2)
plusInteger i1@(S# _) i2@(J# _ _) = plusInteger (toBig i1) i2
plusInteger (J# s1 d1) (J# s2 d2) = case plusInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
minusInteger :: Integer -> Integer -> Integer
minusInteger i1@(S# i) i2@(S# j) = case subIntC# i j of
(# r, c #) ->
if c ==# 0# then S# r
else minusInteger (toBig i1)
(toBig i2)
minusInteger i1@(J# _ _) i2@(S# _) = minusInteger i1 (toBig i2)
minusInteger i1@(S# _) i2@(J# _ _) = minusInteger (toBig i1) i2
minusInteger (J# s1 d1) (J# s2 d2) = case minusInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
timesInteger :: Integer -> Integer -> Integer
timesInteger i1@(S# i) i2@(S# j) = if mulIntMayOflo# i j ==# 0#
then S# (i *# j)
else timesInteger (toBig i1) (toBig i2)
timesInteger i1@(J# _ _) i2@(S# _) = timesInteger i1 (toBig i2)
timesInteger i1@(S# _) i2@(J# _ _) = timesInteger (toBig i1) i2
timesInteger (J# s1 d1) (J# s2 d2) = case timesInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
negateInteger :: Integer -> Integer
negateInteger (S# INT_MINBOUND) = NEG_INT_MINBOUND
negateInteger (S# i) = S# (negateInt# i)
negateInteger (J# s d) = J# (negateInt# s) d
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ stuff for Double@}
%* *
%*********************************************************
\begin{code}
encodeFloatInteger :: Integer -> Int# -> Float#
encodeFloatInteger (S# i) j = int_encodeFloat# i j
encodeFloatInteger (J# s# d#) e = encodeFloat# s# d# e
decodeFloatInteger :: Float# -> (# Integer, Int# #)
decodeFloatInteger d = case decodeFloat# d of
(# exp#, s#, d# #) -> (# J# s# d#, exp# #)
encodeDoubleInteger :: Integer -> Int# -> Double#
encodeDoubleInteger (S# i) j = int_encodeDouble# i j
encodeDoubleInteger (J# s# d#) e = encodeDouble# s# d# e
decodeDoubleInteger :: Double# -> (# Integer, Int# #)
decodeDoubleInteger d = case decodeDouble# d of
(# exp#, s#, d# #) -> (# J# s# d#, exp# #)
doubleFromInteger :: Integer -> Double#
doubleFromInteger (S# i#) = int2Double# i#
doubleFromInteger (J# s# d#) = encodeDouble# s# d# 0#
floatFromInteger :: Integer -> Float#
floatFromInteger (S# i#) = int2Float# i#
floatFromInteger (J# s# d#) = encodeFloat# s# d# 0#
foreign import ccall unsafe "__encodeFloat"
encodeFloat# :: Int# -> ByteArray# -> Int# -> Float#
foreign import ccall unsafe "__int_encodeFloat"
int_encodeFloat# :: Int# -> Int# -> Float#
foreign import ccall unsafe "__encodeDouble"
encodeDouble# :: Int# -> ByteArray# -> Int# -> Double#
foreign import ccall unsafe "__int_encodeDouble"
int_encodeDouble# :: Int# -> Int# -> Double#
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ Bit definitions@}
%* *
%*********************************************************
\begin{code}
andInteger :: Integer -> Integer -> Integer
(S# x) `andInteger` (S# y) = S# (word2Int# (int2Word# x `and#` int2Word# y))
x@(S# _) `andInteger` y = toBig x `andInteger` y
x `andInteger` y@(S# _) = x `andInteger` toBig y
(J# s1 d1) `andInteger` (J# s2 d2) =
case andInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
orInteger :: Integer -> Integer -> Integer
(S# x) `orInteger` (S# y) = S# (word2Int# (int2Word# x `or#` int2Word# y))
x@(S# _) `orInteger` y = toBig x `orInteger` y
x `orInteger` y@(S# _) = x `orInteger` toBig y
(J# s1 d1) `orInteger` (J# s2 d2) =
case orInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
xorInteger :: Integer -> Integer -> Integer
(S# x) `xorInteger` (S# y) = S# (word2Int# (int2Word# x `xor#` int2Word# y))
x@(S# _) `xorInteger` y = toBig x `xorInteger` y
x `xorInteger` y@(S# _) = x `xorInteger` toBig y
(J# s1 d1) `xorInteger` (J# s2 d2) =
case xorInteger# s1 d1 s2 d2 of
(# s, d #) -> J# s d
complementInteger :: Integer -> Integer
complementInteger (S# x)
= S# (word2Int# (int2Word# x `xor#` int2Word# (0# -# 1#)))
complementInteger (J# s d)
= case complementInteger# s d of (# s', d' #) -> J# s' d'
\end{code}
%*********************************************************
%* *
\subsection{The @Integer@ hashing@}
%* *
%*********************************************************
\begin{code}
hashInteger :: Integer -> Int#
hashInteger (S# i) = i
hashInteger (J# s d) = if s ==# 0#
then 0#
else indexIntArray# d 0#
\end{code}