%
% (c) The AQUA Project, Glasgow University, 19931998
%
\section[SimplMonad]{The simplifier Monad}
\begin{code}
module SimplEnv (
InId, InBind, InExpr, InAlt, InArg, InType, InBndr,
OutId, OutTyVar, OutBind, OutExpr, OutAlt, OutArg, OutType, OutBndr,
InCoercion, OutCoercion,
setMode, getMode,
SwitchChecker, SwitchResult(..), getSwitchChecker, getSimplIntSwitch,
isAmongSimpl, intSwitchSet, switchIsOn,
setEnclosingCC, getEnclosingCC,
SimplEnv(..), pprSimplEnv,
mkSimplEnv, extendIdSubst, SimplEnv.extendTvSubst,
zapSubstEnv, setSubstEnv,
getInScope, setInScope, setInScopeSet, modifyInScope, addNewInScopeIds,
getSimplRules,
SimplSR(..), mkContEx, substId, lookupRecBndr,
simplNonRecBndr, simplRecBndrs, simplLamBndr, simplLamBndrs,
simplBinder, simplBinders, addBndrRules,
substExpr, substWorker, substTy,
Floats, emptyFloats, isEmptyFloats, addNonRec, addFloats, extendFloats,
wrapFloats, floatBinds, setFloats, zapFloats, addRecFloats,
doFloatFromRhs, getFloats
) where
#include "HsVersions.h"
import SimplMonad
import IdInfo
import CoreSyn
import CoreUtils
import CostCentre
import Var
import VarEnv
import VarSet
import OrdList
import Id
import qualified CoreSubst ( Subst, mkSubst, substExpr, substSpec, substWorker )
import qualified Type ( substTy, substTyVarBndr )
import Type hiding ( substTy, substTyVarBndr )
import Coercion
import BasicTypes
import DynFlags
import MonadUtils
import Outputable
import FastString
import Data.List
\end{code}
%************************************************************************
%* *
\subsection[Simplifytypes]{Type declarations}
%* *
%************************************************************************
\begin{code}
type InBndr = CoreBndr
type InId = Id
type InType = Type
type InBind = CoreBind
type InExpr = CoreExpr
type InAlt = CoreAlt
type InArg = CoreArg
type InCoercion = Coercion
type OutBndr = CoreBndr
type OutId = Id
type OutTyVar = TyVar
type OutType = Type
type OutCoercion = Coercion
type OutBind = CoreBind
type OutExpr = CoreExpr
type OutAlt = CoreAlt
type OutArg = CoreArg
\end{code}
%************************************************************************
%* *
\subsubsection{The @SimplEnv@ type}
%* *
%************************************************************************
\begin{code}
data SimplEnv
= SimplEnv {
seMode :: SimplifierMode,
seChkr :: SwitchChecker,
seCC :: CostCentreStack,
seInScope :: InScopeSet,
seFloats :: Floats,
seTvSubst :: TvSubstEnv,
seIdSubst :: SimplIdSubst
}
pprSimplEnv :: SimplEnv -> SDoc
pprSimplEnv env
= vcat [ptext (sLit "TvSubst:") <+> ppr (seTvSubst env),
ptext (sLit "IdSubst:") <+> ppr (seIdSubst env) ]
type SimplIdSubst = IdEnv SimplSR
data SimplSR
= DoneEx OutExpr
| DoneId OutId
| ContEx TvSubstEnv
SimplIdSubst
InExpr
instance Outputable SimplSR where
ppr (DoneEx e) = ptext (sLit "DoneEx") <+> ppr e
ppr (DoneId v) = ptext (sLit "DoneId") <+> ppr v
ppr (ContEx _tv _id e) = vcat [ptext (sLit "ContEx") <+> ppr e ]
\end{code}
seInScope:
The inscope part of Subst includes *all* inscope TyVars and Ids
The elements of the set may have better IdInfo than the
occurrences of inscope Ids, and (more important) they will
have a correctlysubstituted type. So we use a lookup in this
set to replace occurrences
The Ids in the InScopeSet are replete with their Rules,
and as we gather info about the unfolding of an Id, we replace
it in the inscope set.
The inscope set is actually a mapping OutVar -> OutVar, and
in case expressions we sometimes bind
seIdSubst:
The substitution is *applyonce* only, because InIds and OutIds can overlap.
For example, we generally omit mappings
a77 -> a77
from the substitution, when we decide not to clone a77, but it's quite
legitimate to put the mapping in the substitution anyway.
Furthermore, consider
let x = case k of I# x77 -> ... in
let y = case k of I# x77 -> ... in ...
and suppose the body is strict in both x and y. Then the simplifier
will pull the first (case k) to the top; so the second (case k) will
cancel out, mapping x77 to, well, x77! But one is an inId and the
other is an outId.
Of course, the substitution *must* applied! Things in its domain
simply aren't necessarily bound in the result.
* substId adds a binding (DoneId new_id) to the substitution if
the Id's unique has changed
Note, though that the substitution isn't necessarily extended
if the type changes. Why not? Because of the next point:
* We *always, always* finish by looking up in the inscope set
any variable that doesn't get a DoneEx or DoneVar hit in the substitution.
Reason: so that we never finish up with a "old" Id in the result.
An old Id might point to an old unfolding and so on... which gives a space leak.
[The DoneEx and DoneVar hits map to "new" stuff.]
* It follows that substExpr must not do a noop if the substitution is empty.
substType is free to do so, however.
* When we come to a letbinding (say) we generate new IdInfo, including an
unfolding, attach it to the binder, and add this newly adorned binder to
the inscope set. So all subsequent occurrences of the binder will get mapped
to the fulladorned binder, which is also the one put in the binding site.
* The inscope "set" usually maps x->x; we use it simply for its domain.
But sometimes we have two inscope Ids that are synomyms, and should
map to the same target: x->x, y->x. Notably:
case y of x { ... }
That's why the "set" is actually a VarEnv Var
\begin{code}
mkSimplEnv :: SimplifierMode -> SwitchChecker -> SimplEnv
mkSimplEnv mode switches
= SimplEnv { seChkr = switches, seCC = subsumedCCS,
seMode = mode, seInScope = emptyInScopeSet,
seFloats = emptyFloats,
seTvSubst = emptyVarEnv, seIdSubst = emptyVarEnv }
getSwitchChecker :: SimplEnv -> SwitchChecker
getSwitchChecker env = seChkr env
getMode :: SimplEnv -> SimplifierMode
getMode env = seMode env
setMode :: SimplifierMode -> SimplEnv -> SimplEnv
setMode mode env = env { seMode = mode }
getEnclosingCC :: SimplEnv -> CostCentreStack
getEnclosingCC env = seCC env
setEnclosingCC :: SimplEnv -> CostCentreStack -> SimplEnv
setEnclosingCC env cc = env {seCC = cc}
extendIdSubst :: SimplEnv -> Id -> SimplSR -> SimplEnv
extendIdSubst env@(SimplEnv {seIdSubst = subst}) var res
= env {seIdSubst = extendVarEnv subst var res}
extendTvSubst :: SimplEnv -> TyVar -> Type -> SimplEnv
extendTvSubst env@(SimplEnv {seTvSubst = subst}) var res
= env {seTvSubst = extendVarEnv subst var res}
getInScope :: SimplEnv -> InScopeSet
getInScope env = seInScope env
setInScopeSet :: SimplEnv -> InScopeSet -> SimplEnv
setInScopeSet env in_scope = env {seInScope = in_scope}
setInScope :: SimplEnv -> SimplEnv -> SimplEnv
setInScope env env_with_scope
= env { seInScope = seInScope env_with_scope,
seFloats = emptyFloats }
setFloats :: SimplEnv -> SimplEnv -> SimplEnv
setFloats env env_with_floats
= env { seInScope = seInScope env_with_floats,
seFloats = seFloats env_with_floats }
addNewInScopeIds :: SimplEnv -> [CoreBndr] -> SimplEnv
addNewInScopeIds env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) vs
= env { seInScope = in_scope `extendInScopeSetList` vs,
seIdSubst = id_subst `delVarEnvList` vs }
modifyInScope :: SimplEnv -> CoreBndr -> SimplEnv
modifyInScope env@(SimplEnv {seInScope = in_scope}) v
= env {seInScope = extendInScopeSet in_scope v}
zapSubstEnv :: SimplEnv -> SimplEnv
zapSubstEnv env = env {seTvSubst = emptyVarEnv, seIdSubst = emptyVarEnv}
setSubstEnv :: SimplEnv -> TvSubstEnv -> SimplIdSubst -> SimplEnv
setSubstEnv env tvs ids = env { seTvSubst = tvs, seIdSubst = ids }
mkContEx :: SimplEnv -> InExpr -> SimplSR
mkContEx (SimplEnv { seTvSubst = tvs, seIdSubst = ids }) e = ContEx tvs ids e
\end{code}
%************************************************************************
%* *
\subsection{Floats}
%* *
%************************************************************************
Note [Simplifier floats]
~~~~~~~~~~~~~~~~~~~~~~~~~
The Floats is a bunch of bindings, classified by a FloatFlag.
NonRec x (y:ys) FltLifted
Rec [(x,rhs)] FltLifted
NonRec x# (y +# 3) FltOkSpec
NonRec x# (a /# b) FltCareful
NonRec x* (f y) FltCareful
NonRec x# (f y) FltCareful
\begin{code}
data Floats = Floats (OrdList OutBind) FloatFlag
data FloatFlag
= FltLifted
| FltOkSpec
| FltCareful
instance Outputable Floats where
ppr (Floats binds ff) = ppr ff $$ ppr (fromOL binds)
instance Outputable FloatFlag where
ppr FltLifted = ptext (sLit "FltLifted")
ppr FltOkSpec = ptext (sLit "FltOkSpec")
ppr FltCareful = ptext (sLit "FltCareful")
andFF :: FloatFlag -> FloatFlag -> FloatFlag
andFF FltCareful _ = FltCareful
andFF FltOkSpec FltCareful = FltCareful
andFF FltOkSpec _ = FltOkSpec
andFF FltLifted flt = flt
classifyFF :: CoreBind -> FloatFlag
classifyFF (Rec _) = FltLifted
classifyFF (NonRec bndr rhs)
| not (isStrictId bndr) = FltLifted
| exprOkForSpeculation rhs = FltOkSpec
| otherwise = FltCareful
doFloatFromRhs :: TopLevelFlag -> RecFlag -> Bool -> OutExpr -> SimplEnv -> Bool
doFloatFromRhs lvl rec str rhs (SimplEnv {seFloats = Floats fs ff})
= not (isNilOL fs) && want_to_float && can_float
where
want_to_float = isTopLevel lvl || exprIsExpandable rhs
can_float = case ff of
FltLifted -> True
FltOkSpec -> isNotTopLevel lvl && isNonRec rec
FltCareful -> isNotTopLevel lvl && isNonRec rec && str
\end{code}
\begin{code}
emptyFloats :: Floats
emptyFloats = Floats nilOL FltLifted
unitFloat :: OutBind -> Floats
unitFloat bind = Floats (unitOL bind) (classifyFF bind)
addNonRec :: SimplEnv -> OutId -> OutExpr -> SimplEnv
addNonRec env id rhs
= env { seFloats = seFloats env `addFlts` unitFloat (NonRec id rhs),
seInScope = extendInScopeSet (seInScope env) id }
extendFloats :: SimplEnv -> OutBind -> SimplEnv
extendFloats env bind
= env { seFloats = seFloats env `addFlts` unitFloat bind,
seInScope = extendInScopeSetList (seInScope env) bndrs }
where
bndrs = bindersOf bind
addFloats :: SimplEnv -> SimplEnv -> SimplEnv
addFloats env1 env2
= env1 {seFloats = seFloats env1 `addFlts` seFloats env2,
seInScope = seInScope env2 }
addFlts :: Floats -> Floats -> Floats
addFlts (Floats bs1 l1) (Floats bs2 l2)
= Floats (bs1 `appOL` bs2) (l1 `andFF` l2)
zapFloats :: SimplEnv -> SimplEnv
zapFloats env = env { seFloats = emptyFloats }
addRecFloats :: SimplEnv -> SimplEnv -> SimplEnv
addRecFloats env1 env2@(SimplEnv {seFloats = Floats bs ff})
= ASSERT2( case ff of { FltLifted -> True; _ -> False }, ppr (fromOL bs) )
env2 {seFloats = seFloats env1 `addFlts` unitFloat (Rec (flattenBinds (fromOL bs)))}
wrapFloats :: SimplEnv -> OutExpr -> OutExpr
wrapFloats env expr = wrapFlts (seFloats env) expr
wrapFlts :: Floats -> OutExpr -> OutExpr
wrapFlts (Floats bs _) body = foldrOL wrap body bs
where
wrap (Rec prs) body = Let (Rec prs) body
wrap (NonRec b r) body = bindNonRec b r body
getFloats :: SimplEnv -> [CoreBind]
getFloats (SimplEnv {seFloats = Floats bs _}) = fromOL bs
isEmptyFloats :: SimplEnv -> Bool
isEmptyFloats env = isEmptyFlts (seFloats env)
isEmptyFlts :: Floats -> Bool
isEmptyFlts (Floats bs _) = isNilOL bs
floatBinds :: Floats -> [OutBind]
floatBinds (Floats bs _) = fromOL bs
\end{code}
%************************************************************************
%* *
Substitution of Vars
%* *
%************************************************************************
Note [Global Ids in the substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We look up even a global (eg imported) Id in the substitution. Consider
case X.g_34 of b { (a,b) -> ... case X.g_34 of { (p,q) -> ...} ... }
The binderswap in the occurence analyser will add a binding
for a LocalId version of g (with the same unique though):
case X.g_34 of b { (a,b) -> let g_34 = b in
... case X.g_34 of { (p,q) -> ...} ... }
So we want to look up the inner X.g_34 in the substitution, where we'll
find that it has been substituted by b. (Or conceivably cloned.)
\begin{code}
substId :: SimplEnv -> InId -> SimplSR
substId (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
= case lookupVarEnv ids v of
Nothing -> DoneId (refine in_scope v)
Just (DoneId v) -> DoneId (refine in_scope v)
Just (DoneEx (Var v)) -> DoneId (refine in_scope v)
Just res -> res
where
refine :: InScopeSet -> Var -> Var
refine in_scope v
| isLocalId v = case lookupInScope in_scope v of
Just v' -> v'
Nothing -> WARN( True, ppr v ) v
| otherwise = v
lookupRecBndr :: SimplEnv -> InId -> OutId
lookupRecBndr (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v
= case lookupVarEnv ids v of
Just (DoneId v) -> v
Just _ -> pprPanic "lookupRecBndr" (ppr v)
Nothing -> refine in_scope v
\end{code}
%************************************************************************
%* *
\section{Substituting an Id binder}
%* *
%************************************************************************
These functions are in the monad only so that they can be made strict via seq.
\begin{code}
simplBinders, simplLamBndrs
:: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplBinders env bndrs = mapAccumLM simplBinder env bndrs
simplLamBndrs env bndrs = mapAccumLM simplLamBndr env bndrs
simplBinder :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
simplBinder env bndr
| isTyVar bndr = do { let (env', tv) = substTyVarBndr env bndr
; seqTyVar tv `seq` return (env', tv) }
| otherwise = do { let (env', id) = substIdBndr env bndr
; seqId id `seq` return (env', id) }
simplLamBndr :: SimplEnv -> Var -> SimplM (SimplEnv, Var)
simplLamBndr env bndr
| isId bndr && hasSomeUnfolding old_unf = seqId id2 `seq` return (env2, id2)
| otherwise = simplBinder env bndr
where
old_unf = idUnfolding bndr
(env1, id1) = substIdBndr env bndr
id2 = id1 `setIdUnfolding` substUnfolding env old_unf
env2 = modifyInScope env1 id2
simplNonRecBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
simplNonRecBndr env id
= do { let (env1, id1) = substIdBndr env id
; seqId id1 `seq` return (env1, id1) }
simplRecBndrs :: SimplEnv -> [InBndr] -> SimplM SimplEnv
simplRecBndrs env@(SimplEnv {}) ids
= do { let (env1, ids1) = mapAccumL substIdBndr env ids
; seqIds ids1 `seq` return env1 }
substIdBndr :: SimplEnv
-> InBndr
-> (SimplEnv, OutBndr)
substIdBndr env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst })
old_id
= (env { seInScope = in_scope `extendInScopeSet` new_id,
seIdSubst = new_subst }, new_id)
where
id1 = uniqAway in_scope old_id
id2 = substIdType env id1
new_id = zapFragileIdInfo id2
new_subst | new_id /= old_id
= extendVarEnv id_subst old_id (DoneId new_id)
| otherwise
= delVarEnv id_subst old_id
\end{code}
\begin{code}
seqTyVar :: TyVar -> ()
seqTyVar b = b `seq` ()
seqId :: Id -> ()
seqId id = seqType (idType id) `seq`
idInfo id `seq`
()
seqIds :: [Id] -> ()
seqIds [] = ()
seqIds (id:ids) = seqId id `seq` seqIds ids
\end{code}
Note [Arity robustness]
~~~~~~~~~~~~~~~~~~~~~~~
We *do* transfer the arity from from the in_id of a let binding to the
out_id. This is important, so that the arity of an Id is visible in
its own RHS. For example:
f = \x. ....g (\y. f y)....
We can etareduce the arg to g, becuase f is a value. But that
needs to be visible.
This interacts with the 'state hack' too:
f :: Bool -> IO Int
f = \x. case x of
True -> f y
False -> \s -> ...
Can we etaexpand f? Only if we see that f has arity 1, and then we
take advantage of the 'state hack' on the result of
(f y) :: State# -> (State#, Int) to expand the arity one more.
There is a disadvantage though. Making the arity visible in the RHS
allows us to etareduce
f = \x -> f x
to
f = f
which technically is not sound. This is very much a corner case, so
I'm not worried about it. Another idea is to ensure that f's arity
never decreases; its arity started as 1, and we should never etareduce
below that.
Note [Robust OccInfo]
~~~~~~~~~~~~~~~~~~~~~
It's important that we *do* retain the loopbreaker OccInfo, because
that's what stops the Id getting inlined infinitely, in the body of
the letrec.
Note [Rules in a letrec]
~~~~~~~~~~~~~~~~~~~~~~~~
After creating fresh binders for the binders of a letrec, we
substitute the RULES and add them back onto the binders; this is done
*before* processing any of the RHSs. This is important. Manuel found
cases where he really, really wanted a RULE for a recursive function
to apply in that function's own righthand side.
See Note [Loop breaking and RULES] in OccAnal.
\begin{code}
addBndrRules :: SimplEnv -> InBndr -> OutBndr -> (SimplEnv, OutBndr)
addBndrRules env in_id out_id
| isEmptySpecInfo old_rules = (env, out_id)
| otherwise = (modifyInScope env final_id, final_id)
where
subst = mkCoreSubst env
old_rules = idSpecialisation in_id
new_rules = CoreSubst.substSpec subst out_id old_rules
final_id = out_id `setIdSpecialisation` new_rules
substIdType :: SimplEnv -> Id -> Id
substIdType (SimplEnv { seInScope = in_scope, seTvSubst = tv_env}) id
| isEmptyVarEnv tv_env || isEmptyVarSet (tyVarsOfType old_ty) = id
| otherwise = Id.setIdType id (Type.substTy (TvSubst in_scope tv_env) old_ty)
where
old_ty = idType id
substUnfolding :: SimplEnv -> Unfolding -> Unfolding
substUnfolding _ NoUnfolding = NoUnfolding
substUnfolding _ (OtherCon cons) = OtherCon cons
substUnfolding env (CompulsoryUnfolding rhs) = CompulsoryUnfolding (substExpr env rhs)
substUnfolding env (CoreUnfolding rhs t u v w g) = CoreUnfolding (substExpr env rhs) t u v w g
substWorker :: SimplEnv -> WorkerInfo -> WorkerInfo
substWorker _ NoWorker = NoWorker
substWorker env wkr_info = CoreSubst.substWorker (mkCoreSubst env) wkr_info
\end{code}
%************************************************************************
%* *
Impedence matching to type substitution
%* *
%************************************************************************
\begin{code}
substTy :: SimplEnv -> Type -> Type
substTy (SimplEnv { seInScope = in_scope, seTvSubst = tv_env }) ty
= Type.substTy (TvSubst in_scope tv_env) ty
substTyVarBndr :: SimplEnv -> TyVar -> (SimplEnv, TyVar)
substTyVarBndr env@(SimplEnv { seInScope = in_scope, seTvSubst = tv_env }) tv
= case Type.substTyVarBndr (TvSubst in_scope tv_env) tv of
(TvSubst in_scope' tv_env', tv')
-> (env { seInScope = in_scope', seTvSubst = tv_env'}, tv')
mkCoreSubst :: SimplEnv -> CoreSubst.Subst
mkCoreSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seIdSubst = id_env })
= mk_subst tv_env id_env
where
mk_subst tv_env id_env = CoreSubst.mkSubst in_scope tv_env (mapVarEnv fiddle id_env)
fiddle (DoneEx e) = e
fiddle (DoneId v) = Var v
fiddle (ContEx tv id e) = CoreSubst.substExpr (mk_subst tv id) e
substExpr :: SimplEnv -> CoreExpr -> CoreExpr
substExpr env expr = CoreSubst.substExpr (mkCoreSubst env) expr
\end{code}