%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 19921998
%
Type subsumption and unification
\begin{code}
module TcUnify (
tcSubExp, tcGen,
checkSigTyVars, checkSigTyVarsWrt, bleatEscapedTvs, sigCtxt,
unifyType, unifyTypeList, unifyTheta,
unifyKind, unifyKinds, unifyFunKind,
preSubType, boxyMatchTypes,
tcInfer, subFunTys, unBox, refineBox, refineBoxToTau, withBox,
boxyUnify, boxyUnifyList, zapToMonotype,
boxySplitListTy, boxySplitPArrTy, boxySplitTyConApp, boxySplitAppTy,
wrapFunResCoercion
) where
#include "HsVersions.h"
import HsSyn
import TypeRep
import TcMType
import TcSimplify
import TcEnv
import TcTyFuns
import TcIface
import TcRnMonad
import TcType
import Type
import Coercion
import TysPrim
import Inst
import TyCon
import TysWiredIn
import Var
import VarSet
import VarEnv
import Name
import ErrUtils
import Maybes
import BasicTypes
import Util
import Outputable
import FastString
import Control.Monad
\end{code}
%************************************************************************
%* *
\subsection{'hole' type variables}
%* *
%************************************************************************
\begin{code}
tcInfer :: (BoxyType -> TcM a) -> TcM (a, TcType)
tcInfer tc_infer = withBox openTypeKind tc_infer
\end{code}
%************************************************************************
%* *
subFunTys
%* *
%************************************************************************
\begin{code}
subFunTys :: SDoc
-> Arity
-> BoxySigmaType
-> Maybe UserTypeCtxt
-> ([BoxySigmaType] -> BoxyRhoType -> TcM a)
-> TcM (HsWrapper, a)
subFunTys error_herald n_pats res_ty mb_ctxt thing_inside
= loop n_pats [] res_ty
where
loop n args_so_far res_ty
| Just res_ty' <- tcView res_ty = loop n args_so_far res_ty'
loop n args_so_far res_ty
| isSigmaTy res_ty
= do { (gen_fn, (co_fn, res)) <- tcGen res_ty emptyVarSet mb_ctxt $ \ _ res_ty ->
loop n args_so_far res_ty
; return (gen_fn <.> co_fn, res) }
loop 0 args_so_far res_ty
= do { res <- thing_inside (reverse args_so_far) res_ty
; return (idHsWrapper, res) }
loop n args_so_far (FunTy arg_ty res_ty)
= do { (co_fn, res) <- loop (n1) (arg_ty:args_so_far) res_ty
; co_fn' <- wrapFunResCoercion [arg_ty] co_fn
; return (co_fn', res) }
loop n args_so_far ty@(TyConApp tc _)
| isOpenSynTyCon tc
= do { (coi1, ty') <- tcNormaliseFamInst ty
; case coi1 of
IdCo -> defer n args_so_far ty
ACo _ ->
do { (co_fn, res) <- loop n args_so_far ty'
; return $ (co_fn <.> coiToHsWrapper (mkSymCoI coi1), res)
}
}
loop n args_so_far res_ty@(AppTy _ _)
= do { [arg_ty',res_ty'] <- newBoxyTyVarTys [argTypeKind, openTypeKind]
; (_, mb_coi) <- tryTcErrs $
boxyUnify res_ty (FunTy arg_ty' res_ty')
; if isNothing mb_coi then bale_out args_so_far
else do { let coi = expectJust "subFunTys" mb_coi
; (co_fn, res) <- loop n args_so_far (FunTy arg_ty'
res_ty')
; return (co_fn <.> coiToHsWrapper coi, res)
}
}
loop n args_so_far ty@(TyVarTy tv)
| isTyConableTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty -> loop n args_so_far ty
Flexi ->
do { (res_ty:arg_tys) <- withMetaTvs tv kinds mk_res_ty
; res <- thing_inside (reverse args_so_far ++ arg_tys)
res_ty
; return (idHsWrapper, res) } }
| otherwise
= defer n args_so_far ty
where
mk_res_ty (res_ty' : arg_tys') = mkFunTys arg_tys' res_ty'
mk_res_ty [] = panic "TcUnify.mk_res_ty1"
kinds = openTypeKind : take n (repeat argTypeKind)
loop _ args_so_far _ = bale_out args_so_far
defer n args_so_far ty
= do { arg_tys <- newFlexiTyVarTys n argTypeKind
; res_ty' <- newFlexiTyVarTy openTypeKind
; let fun_ty = mkFunTys arg_tys res_ty'
err = error_herald <> comma $$
text "which does not match its type"
; coi <- addErrCtxt err $
defer_unification (Unify False fun_ty ty) False fun_ty ty
; res <- thing_inside (reverse args_so_far ++ arg_tys) res_ty'
; return (coiToHsWrapper coi, res)
}
bale_out args_so_far
= do { env0 <- tcInitTidyEnv
; res_ty' <- zonkTcType res_ty
; let (env1, res_ty'') = tidyOpenType env0 res_ty'
; failWithTcM (env1, mk_msg res_ty'' (length args_so_far)) }
mk_msg res_ty n_actual
= error_herald <> comma $$
sep [ptext (sLit "but its type") <+> quotes (pprType res_ty),
if n_actual == 0 then ptext (sLit "has none")
else ptext (sLit "has only") <+> speakN n_actual]
\end{code}
\begin{code}
boxySplitTyConApp :: TyCon
-> BoxyRhoType
-> TcM ([BoxySigmaType],
CoercionI)
boxySplitTyConApp tc orig_ty
= do { checkWiredInTyCon tc
; loop (tyConArity tc) [] orig_ty }
where
loop n_req args_so_far ty
| Just ty' <- tcView ty = loop n_req args_so_far ty'
loop n_req args_so_far ty@(TyConApp tycon args)
| tc == tycon
= ASSERT( n_req == length args)
return (args ++ args_so_far, IdCo)
| isOpenSynTyCon tycon
= do { (coi1, ty') <- tcNormaliseFamInst ty
; traceTc $ text "boxySplitTyConApp:" <+>
ppr ty <+> text "==>" <+> ppr ty'
; case coi1 of
IdCo -> defer
ACo _ ->
do { (args, coi2) <- loop n_req args_so_far ty'
; return $ (args, coi2 `mkTransCoI` mkSymCoI coi1)
}
}
loop n_req args_so_far (AppTy fun arg)
| n_req > 0
= do { (args, coi) <- loop (n_req 1) (arg:args_so_far) fun
; return (args, mkAppTyCoI fun coi arg IdCo)
}
loop n_req args_so_far (TyVarTy tv)
| isTyConableTyVar tv
, res_kind `isSubKind` tyVarKind tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty -> loop n_req args_so_far ty
Flexi -> do { arg_tys <- withMetaTvs tv arg_kinds mk_res_ty
; return (arg_tys ++ args_so_far, IdCo) }
}
| otherwise
= defer
where
(arg_kinds, res_kind) = splitKindFunTysN n_req (tyConKind tc)
loop _ _ _ = boxySplitFailure (mkTyConApp tc (mkTyVarTys (tyConTyVars tc)))
orig_ty
defer = boxySplitDefer arg_kinds mk_res_ty orig_ty
where
(arg_kinds, _) = splitKindFunTys (tyConKind tc)
mk_res_ty = mkTyConApp tc
boxySplitListTy :: BoxyRhoType -> TcM (BoxySigmaType, CoercionI)
boxySplitListTy exp_ty
= do { ([elt_ty], coi) <- boxySplitTyConApp listTyCon exp_ty
; return (elt_ty, coi) }
boxySplitPArrTy :: BoxyRhoType -> TcM (BoxySigmaType, CoercionI)
boxySplitPArrTy exp_ty
= do { ([elt_ty], coi) <- boxySplitTyConApp parrTyCon exp_ty
; return (elt_ty, coi) }
boxySplitAppTy :: BoxyRhoType
-> TcM ((BoxySigmaType, BoxySigmaType),
CoercionI)
boxySplitAppTy orig_ty
= loop orig_ty
where
loop ty
| Just ty' <- tcView ty = loop ty'
loop ty
| Just (fun_ty, arg_ty) <- tcSplitAppTy_maybe ty
= return ((fun_ty, arg_ty), IdCo)
loop ty@(TyConApp tycon _args)
| isOpenSynTyCon tycon
= do { (coi1, ty') <- tcNormaliseFamInst ty
; case coi1 of
IdCo -> defer
ACo _ ->
do { (args, coi2) <- loop ty'
; return $ (args, coi2 `mkTransCoI` mkSymCoI coi1)
}
}
loop (TyVarTy tv)
| isTyConableTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty -> loop ty
Flexi -> do { [fun_ty, arg_ty] <- withMetaTvs tv kinds mk_res_ty
; return ((fun_ty, arg_ty), IdCo) } }
| otherwise
= defer
where
tv_kind = tyVarKind tv
kinds = [mkArrowKind liftedTypeKind (defaultKind tv_kind),
liftedTypeKind]
loop _ = boxySplitFailure (mkAppTy alphaTy betaTy) orig_ty
defer = do { ([ty1, ty2], coi) <- boxySplitDefer arg_kinds mk_res_ty orig_ty
; return ((ty1, ty2), coi)
}
where
orig_kind = typeKind orig_ty
arg_kinds = [mkArrowKind liftedTypeKind (defaultKind orig_kind),
liftedTypeKind]
mk_res_ty [fun_ty', arg_ty'] = mkAppTy fun_ty' arg_ty'
mk_res_ty _other = panic "TcUnify.mk_res_ty2"
boxySplitFailure :: TcType -> TcType -> TcM (a, CoercionI)
boxySplitFailure actual_ty expected_ty = failWithMisMatch actual_ty expected_ty
boxySplitDefer :: [Kind]
-> ([TcType] -> TcTauType)
-> BoxyRhoType
-> TcM ([TcType], CoercionI)
boxySplitDefer kinds mk_ty orig_ty
= do { tau_tys <- mapM newFlexiTyVarTy kinds
; let ty1 = mk_ty tau_tys
; coi <- defer_unification (Unify False ty1 orig_ty) False ty1 orig_ty
; return (tau_tys, coi)
}
\end{code}
\begin{code}
withMetaTvs :: TcTyVar
-> [Kind]
-> ([BoxySigmaType] -> BoxySigmaType)
-> TcM [BoxySigmaType]
withMetaTvs tv kinds mk_res_ty
| isBoxyTyVar tv
= do { box_tvs <- mapM (newMetaTyVar BoxTv) kinds
; let box_tys = mkTyVarTys box_tvs
; writeMetaTyVar tv (mk_res_ty box_tys)
; return box_tys }
| otherwise
= do { tau_tys <- mapM newFlexiTyVarTy kinds
; writeMetaTyVar tv (mk_res_ty tau_tys)
; return tau_tys }
withBox :: Kind -> (BoxySigmaType -> TcM a) -> TcM (a, TcType)
withBox kind thing_inside
= do { box_tv <- newBoxyTyVar kind
; res <- thing_inside (mkTyVarTy box_tv)
; ty <- readFilledBox box_tv
; return (res, ty) }
\end{code}
%************************************************************************
%* *
Approximate boxy matching
%* *
%************************************************************************
\begin{code}
preSubType :: [TcTyVar]
-> TcTyVarSet
-> TcType
-> BoxySigmaType
-> TcM [TcType]
preSubType qtvs btvs qty expected_ty
= do { tys <- mapM inst_tv qtvs
; traceTc (text "preSubType" <+> (ppr qtvs $$ ppr btvs $$ ppr qty $$ ppr expected_ty $$ ppr pre_subst $$ ppr tys))
; return tys }
where
pre_subst = boxySubMatchType (mkVarSet qtvs) qty expected_ty
inst_tv tv
| Just boxy_ty <- lookupTyVar pre_subst tv = return boxy_ty
| tv `elemVarSet` btvs = do { tv' <- tcInstBoxyTyVar tv
; return (mkTyVarTy tv') }
| otherwise = do { tv' <- tcInstTyVar tv
; return (mkTyVarTy tv') }
boxySubMatchType
:: TcTyVarSet -> TcType
-> BoxyRhoType
-> TvSubst
boxySubMatchType tmpl_tvs tmpl_ty boxy_ty
= go tmpl_tvs tmpl_ty emptyVarSet boxy_ty
where
go t_tvs t_ty b_tvs b_ty
| Just t_ty' <- tcView t_ty = go t_tvs t_ty' b_tvs b_ty
| Just b_ty' <- tcView b_ty = go t_tvs t_ty b_tvs b_ty'
go _ (TyVarTy _) _ _ = emptyTvSubst
go t_tvs t_ty b_tvs b_ty
| isSigmaTy t_ty, (tvs, _, t_tau) <- tcSplitSigmaTy t_ty
= go (t_tvs `delVarSetList` tvs) t_tau b_tvs b_ty
| isSigmaTy b_ty, (tvs, _, b_tau) <- tcSplitSigmaTy b_ty
= go t_tvs t_ty (extendVarSetList b_tvs tvs) b_tau
go t_tvs (FunTy arg1 res1) b_tvs (FunTy arg2 res2)
= boxy_match t_tvs arg1 b_tvs arg2 (go t_tvs res1 b_tvs res2)
go t_tvs t_ty b_tvs b_ty = boxy_match t_tvs t_ty b_tvs b_ty emptyTvSubst
\end{code}
Note [Submatch]
~~~~~~~~~~~~~~~~
Consider this
head :: [a] -> a
|- head xs : <rhobox>
We will do a boxySubMatchType between a ~ <rhobox>
But we *don't* want to match [a |-> <rhobox>] because
(a) The box should be filled in with a rhotype, but
but the returned substitution maps TyVars to boxy
*sigma* types
(b) In any case, the right final answer might be *either*
instantiate 'a' with a rhotype or a sigma type
head xs : Int vs head xs : forall b. b->b
So the matcher MUST NOT make a choice here. In general, we only
bind a template type variable in boxyMatchType, not in boxySubMatchType.
\begin{code}
boxyMatchTypes
:: TcTyVarSet -> [TcType]
-> [BoxySigmaType]
-> TvSubst
boxyMatchTypes tmpl_tvs tmpl_tys boxy_tys
= ASSERT( length tmpl_tys == length boxy_tys )
boxy_match_s tmpl_tvs tmpl_tys emptyVarSet boxy_tys emptyTvSubst
boxy_match_s :: TcTyVarSet -> [TcType] -> TcTyVarSet -> [BoxySigmaType]
-> TvSubst -> TvSubst
boxy_match_s _ [] _ [] subst
= subst
boxy_match_s tmpl_tvs (t_ty:t_tys) boxy_tvs (b_ty:b_tys) subst
= boxy_match tmpl_tvs t_ty boxy_tvs b_ty $
boxy_match_s tmpl_tvs t_tys boxy_tvs b_tys subst
boxy_match_s _ _ _ _ _
= panic "boxy_match_s"
boxy_match :: TcTyVarSet -> TcType
-> TcTyVarSet
-> BoxySigmaType
-> TvSubst
-> TvSubst
boxy_match tmpl_tvs orig_tmpl_ty boxy_tvs orig_boxy_ty subst
= go orig_tmpl_ty orig_boxy_ty
where
go t_ty b_ty
| Just t_ty' <- tcView t_ty = go t_ty' b_ty
| Just b_ty' <- tcView b_ty = go t_ty b_ty'
go ty1 ty2
| isSigmaTy ty1
, (tvs1, ps1, tau1) <- tcSplitSigmaTy ty1
, (tvs2, ps2, tau2) <- tcSplitSigmaTy ty2
, equalLength tvs1 tvs2
, equalLength ps1 ps2
= boxy_match (tmpl_tvs `delVarSetList` tvs1) tau1
(boxy_tvs `extendVarSetList` tvs2) tau2 subst
go (TyConApp tc1 tys1) (TyConApp tc2 tys2)
| tc1 == tc2
, not $ isOpenSynTyCon tc1
= go_s tys1 tys2
go (FunTy arg1 res1) (FunTy arg2 res2)
= go_s [arg1,res1] [arg2,res2]
go t_ty b_ty
| Just (s1,t1) <- tcSplitAppTy_maybe t_ty,
Just (s2,t2) <- tcSplitAppTy_maybe b_ty,
typeKind t2 `isSubKind` typeKind t1
= go_s [s1,t1] [s2,t2]
go (TyVarTy tv) b_ty
| tv `elemVarSet` tmpl_tvs
, boxy_tvs `disjointVarSet` tyVarsOfType orig_boxy_ty
, typeKind b_ty `isSubKind` tyVarKind tv
= extendTvSubst subst tv boxy_ty'
| otherwise
= subst
where
boxy_ty' = case lookupTyVar subst tv of
Nothing -> orig_boxy_ty
Just ty -> ty `boxyLub` orig_boxy_ty
go _ (TyVarTy tv) | isTcTyVar tv && isMetaTyVar tv
= subst
go _ _ = emptyTvSubst
go_s tys1 tys2 = boxy_match_s tmpl_tvs tys1 boxy_tvs tys2 subst
boxyLub :: BoxySigmaType -> BoxySigmaType -> BoxySigmaType
boxyLub orig_ty1 orig_ty2
= go orig_ty1 orig_ty2
where
go (AppTy f1 a1) (AppTy f2 a2) = AppTy (boxyLub f1 f2) (boxyLub a1 a2)
go (FunTy f1 a1) (FunTy f2 a2) = FunTy (boxyLub f1 f2) (boxyLub a1 a2)
go (TyConApp tc1 ts1) (TyConApp tc2 ts2)
| tc1 == tc2, length ts1 == length ts2
= TyConApp tc1 (zipWith boxyLub ts1 ts2)
go (TyVarTy tv1) _
| isTcTyVar tv1, isBoxyTyVar tv1
= orig_ty2
go _ (TyVarTy tv2)
| isTcTyVar tv2, isBoxyTyVar tv2
= orig_ty1
go ty1 ty2 | Just ty1' <- tcView ty1 = go ty1' ty2
| Just ty2' <- tcView ty1 = go ty1 ty2'
go _ _ = orig_ty1
\end{code}
Note [Matching kinds]
~~~~~~~~~~~~~~~~~~~~~
The target type might legitimately not be a subkind of template.
For example, suppose the target is simply a box with an OpenTypeKind,
and the template is a type variable with LiftedTypeKind.
Then it's ok (because the target type will later be refined).
We simply don't bind the template type variable.
It might also be that the kind mismatch is an error. For example,
suppose we match the template (a -> Int) against (Int# -> Int),
where the template type variable 'a' has LiftedTypeKind. This
matching function does not fail; it simply doesn't bind the template.
Later stuff will fail.
%************************************************************************
%* *
Subsumption checking
%* *
%************************************************************************
All the tcSub calls have the form
tcSub actual_ty expected_ty
which checks
actual_ty <= expected_ty
That is, that a value of type actual_ty is acceptable in
a place expecting a value of type expected_ty.
It returns a coercion function
co_fn :: actual_ty ~ expected_ty
which takes an HsExpr of type actual_ty into one of type
expected_ty.
\begin{code}
tcSubExp :: InstOrigin -> BoxySigmaType -> BoxySigmaType -> TcM HsWrapper
tcSubExp orig actual_ty expected_ty
=
traceTc (text "tcSubExp" <+> ppr actual_ty <+> ppr expected_ty) >>
tc_sub orig actual_ty actual_ty False expected_ty expected_ty
tc_sub :: InstOrigin
-> BoxySigmaType
-> BoxySigmaType
-> InBox
-> BoxySigmaType
-> BoxySigmaType
-> TcM HsWrapper
tc_sub orig act_sty act_ty exp_ib exp_sty exp_ty
= traceTc (text "tc_sub" <+> ppr act_ty $$ ppr exp_ty) >>
tc_sub1 orig act_sty act_ty exp_ib exp_sty exp_ty
tc_sub1 :: InstOrigin -> BoxySigmaType -> BoxySigmaType -> InBox
-> BoxySigmaType -> Type -> TcM HsWrapper
tc_sub1 orig act_sty act_ty exp_ib exp_sty exp_ty
| Just exp_ty' <- tcView exp_ty = tc_sub orig act_sty act_ty exp_ib exp_sty exp_ty'
tc_sub1 orig act_sty act_ty exp_ib exp_sty exp_ty
| Just act_ty' <- tcView act_ty = tc_sub orig act_sty act_ty' exp_ib exp_sty exp_ty
tc_sub1 orig act_sty (TyVarTy tv) exp_ib exp_sty exp_ty
= do { traceTc (text "tc_sub1 - case 1")
; coi <- addSubCtxt orig act_sty exp_sty $
uVar (Unify True act_sty exp_sty) False tv exp_ib exp_sty exp_ty
; traceTc (case coi of
IdCo -> text "tc_sub1 (Rule SBOXY) IdCo"
ACo co -> text "tc_sub1 (Rule SBOXY) ACo" <+> ppr co)
; return $ coiToHsWrapper coi
}
tc_sub1 orig act_sty act_ty exp_ib exp_sty exp_ty
| isSigmaTy exp_ty = do
{ traceTc (text "tc_sub1 - case 2") ;
if exp_ib then
defer_to_boxy_matching orig act_sty act_ty exp_ib exp_sty exp_ty
else do
{ (gen_fn, co_fn) <- tcGen exp_ty act_tvs Nothing $ \ _ body_exp_ty ->
tc_sub orig act_sty act_ty False body_exp_ty body_exp_ty
; return (gen_fn <.> co_fn) }
}
where
act_tvs = tyVarsOfType act_ty
tc_sub1 orig _ actual_ty exp_ib exp_sty expected_ty
| isSigmaTy actual_ty
= do { traceTc (text "tc_sub1 - case 3")
;
let (tyvars, theta, tau) = tcSplitSigmaTy actual_ty
tau_tvs = exactTyVarsOfType tau
; inst_tys <- if exp_ib then
do { tyvars' <- mapM tcInstBoxyTyVar tyvars
; return (mkTyVarTys tyvars') }
else
preSubType tyvars tau_tvs tau expected_ty
; let subst' = zipOpenTvSubst tyvars inst_tys
tau' = substTy subst' tau
; traceTc (text "tc_sub_spec" <+> vcat [ppr actual_ty,
ppr tyvars <+> ppr theta <+> ppr tau,
ppr tau'])
; co_fn2 <- tc_sub orig tau' tau' exp_ib exp_sty expected_ty
; co_fn1 <- instCall orig inst_tys (substTheta subst' theta)
; return (co_fn2 <.> co_fn1) }
tc_sub1 orig _ (FunTy act_arg act_res) exp_ib _ (FunTy exp_arg exp_res)
= do { traceTc (text "tc_sub1 - case 4")
; tc_sub_funs orig act_arg act_res exp_ib exp_arg exp_res
}
tc_sub1 orig act_sty act_ty@(FunTy act_arg act_res) _ exp_sty (TyVarTy exp_tv)
| isBoxyTyVar exp_tv
= do { traceTc (text "tc_sub1 - case 5")
; cts <- readMetaTyVar exp_tv
; case cts of
Indirect ty -> tc_sub orig act_sty act_ty True exp_sty ty
Flexi -> do { [arg_ty,res_ty] <- withMetaTvs exp_tv fun_kinds mk_res_ty
; tc_sub_funs orig act_arg act_res True arg_ty res_ty } }
where
mk_res_ty [arg_ty', res_ty'] = mkFunTy arg_ty' res_ty'
mk_res_ty _ = panic "TcUnify.mk_res_ty3"
fun_kinds = [argTypeKind, openTypeKind]
tc_sub1 orig act_sty actual_ty exp_ib exp_sty expected_ty@(TyVarTy exp_tv)
= do { traceTc (text "tc_sub1 - case 6a" <+> ppr [isBoxyTyVar exp_tv, isMetaTyVar exp_tv, isSkolemTyVar exp_tv, isExistentialTyVar exp_tv,isSigTyVar exp_tv] )
; defer_to_boxy_matching orig act_sty actual_ty exp_ib exp_sty expected_ty
}
tc_sub1 orig act_sty actual_ty exp_ib exp_sty expected_ty
= do { traceTc (text "tc_sub1 - case 6")
; defer_to_boxy_matching orig act_sty actual_ty exp_ib exp_sty expected_ty
}
defer_to_boxy_matching :: InstOrigin -> TcType -> TcType -> InBox
-> TcType -> TcType -> TcM HsWrapper
defer_to_boxy_matching orig act_sty actual_ty exp_ib exp_sty expected_ty
= do { coi <- addSubCtxt orig act_sty exp_sty $
u_tys (Unify True act_sty exp_sty)
False act_sty actual_ty exp_ib exp_sty expected_ty
; return $ coiToHsWrapper coi }
tc_sub_funs :: InstOrigin -> TcType -> BoxySigmaType -> InBox
-> TcType -> BoxySigmaType -> TcM HsWrapper
tc_sub_funs orig act_arg act_res exp_ib exp_arg exp_res
= do { arg_coi <- addSubCtxt orig act_arg exp_arg $
uTysOuter False act_arg exp_ib exp_arg
; co_fn_res <- tc_sub orig act_res act_res exp_ib exp_res exp_res
; wrapper1 <- wrapFunResCoercion [exp_arg] co_fn_res
; let wrapper2 = case arg_coi of
IdCo -> idHsWrapper
ACo co -> WpCast $ FunTy co act_res
; return (wrapper1 <.> wrapper2) }
wrapFunResCoercion
:: [TcType]
-> HsWrapper
-> TcM HsWrapper
wrapFunResCoercion arg_tys co_fn_res
| isIdHsWrapper co_fn_res
= return idHsWrapper
| null arg_tys
= return co_fn_res
| otherwise
= do { arg_ids <- newSysLocalIds (fsLit "sub") arg_tys
; return (mkWpLams arg_ids <.> co_fn_res <.> mkWpApps arg_ids) }
\end{code}
%************************************************************************
%* *
\subsection{Generalisation}
%* *
%************************************************************************
\begin{code}
tcGen :: BoxySigmaType
-> TcTyVarSet
-> Maybe UserTypeCtxt
-> ([TcTyVar] -> BoxyRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcGen expected_ty extra_tvs mb_ctxt thing_inside
= do { traceTc (text "tcGen")
; ((tvs', theta', rho'), skol_info) <- instantiate expected_ty
; when debugIsOn $
traceTc (text "tcGen" <+> vcat [
text "extra_tvs" <+> ppr extra_tvs,
text "expected_ty" <+> ppr expected_ty,
text "inst ty" <+> ppr tvs' <+> ppr theta'
<+> ppr rho',
text "free_tvs" <+> ppr free_tvs])
; (result, lie) <- getLIE $
thing_inside tvs' rho'
; loc <- getInstLoc (SigOrigin skol_info)
; dicts <- newDictBndrs loc theta'
; inst_binds <- tcSimplifyCheck loc tvs' dicts lie
; checkSigTyVarsWrt free_tvs tvs'
; traceTc (text "tcGen:done")
; let
dict_vars = map instToVar dicts
co_fn = mkWpTyLams tvs' <.> mkWpLams dict_vars <.> WpLet inst_binds
; return (co_fn, result) }
where
free_tvs = tyVarsOfType expected_ty `unionVarSet` extra_tvs
instantiate :: TcType -> TcM (([TcTyVar],ThetaType,TcRhoType), SkolemInfo)
instantiate expected_ty
| Just ctxt <- mb_ctxt
= do { let skol_info = SigSkol ctxt
; stuff <- tcInstSigType True skol_info expected_ty
; return (stuff, skol_info) }
| otherwise
= fixM $ \ ~(_, skol_info) ->
do { stuff@(forall_tvs, theta, rho_ty) <- tcInstSkolType skol_info expected_ty
; let skol_info = GenSkol forall_tvs (mkPhiTy theta rho_ty)
; return (stuff, skol_info) }
\end{code}
%************************************************************************
%* *
Boxy unification
%* *
%************************************************************************
The exported functions are all defined as versions of some
nonexported generic functions.
\begin{code}
boxyUnify :: BoxyType -> BoxyType -> TcM CoercionI
boxyUnify ty1 ty2 = addErrCtxtM (unifyCtxt ty1 ty2) $
uTysOuter False ty1 False ty2
boxyUnifyList :: [BoxyType] -> [BoxyType] -> TcM [CoercionI]
boxyUnifyList tys1 tys2 = uList boxyUnify tys1 tys2
unifyType :: TcTauType -> TcTauType -> TcM CoercionI
unifyType ty1 ty2
= ASSERT2( not (isBoxyTy ty1), ppr ty1 )
ASSERT2( not (isBoxyTy ty2), ppr ty2 )
addErrCtxtM (unifyCtxt ty1 ty2) $
uTysOuter True ty1 True ty2
unifyPred :: PredType -> PredType -> TcM CoercionI
unifyPred p1 p2 = uPred (Unify False (mkPredTy p1) (mkPredTy p2)) True p1 True p2
unifyTheta :: TcThetaType -> TcThetaType -> TcM [CoercionI]
unifyTheta theta1 theta2
= do { checkTc (equalLength theta1 theta2)
(vcat [ptext (sLit "Contexts differ in length"),
nest 2 $ parens $ ptext (sLit "Use -XRelaxedPolyRec to allow this")])
; uList unifyPred theta1 theta2
}
uList :: (a -> a -> TcM b)
-> [a] -> [a] -> TcM [b]
uList _ [] [] = return []
uList unify (ty1:tys1) (ty2:tys2) = do { x <- unify ty1 ty2;
; xs <- uList unify tys1 tys2
; return (x:xs)
}
uList _ _ _ = panic "Unify.uList: mismatched type lists!"
\end{code}
@unifyTypeList@ takes a single list of @TauType@s and unifies them
all together. It is used, for example, when typechecking explicit
lists, when all the elts should be of the same type.
\begin{code}
unifyTypeList :: [TcTauType] -> TcM ()
unifyTypeList [] = return ()
unifyTypeList [_] = return ()
unifyTypeList (ty1:tys@(ty2:_)) = do { _ <- unifyType ty1 ty2
; unifyTypeList tys }
\end{code}
%************************************************************************
%* *
\subsection[UnifyuTys]{@uTys@: getting down to business}
%* *
%************************************************************************
@uTys@ is the heart of the unifier. Each arg occurs twice, because
we want to report errors in terms of synomyms if possible. The first of
the pair is used in error messages only; it is always the same as the
second, except that if the first is a synonym then the second may be a
desynonym'd version. This way we get better error messages.
We call the first one \tr{ps_ty1}, \tr{ps_ty2} for ``possible synomym''.
\begin{code}
type SwapFlag = Bool
type InBox = Bool
data Outer = Unify Bool TcType TcType
instance Outputable Outer where
ppr (Unify c ty1 ty2) = pp_c <+> pprParendType ty1 <+> ptext (sLit "~")
<+> pprParendType ty2
where
pp_c = if c then ptext (sLit "Top") else ptext (sLit "NonTop")
uTysOuter :: InBox -> TcType
-> InBox -> TcType
-> TcM CoercionI
uTysOuter nb1 ty1 nb2 ty2
= do { traceTc (text "uTysOuter" <+> ppr ty1 <+> ppr ty2)
; u_tys (Unify True ty1 ty2) nb1 ty1 ty1 nb2 ty2 ty2 }
uTys :: InBox -> TcType -> InBox -> TcType -> TcM CoercionI
uTys nb1 ty1 nb2 ty2
= do { traceTc (text "uTys" <+> ppr ty1 <+> ppr ty2)
; u_tys (Unify False ty1 ty2) nb1 ty1 ty1 nb2 ty2 ty2 }
uTys_s :: Outer
-> InBox -> [TcType]
-> InBox -> [TcType]
-> TcM [CoercionI]
uTys_s outer nb1 tys1 nb2 tys2
= go tys1 tys2
where
go [] [] = return []
go (ty1:tys1) (ty2:tys2) = do { coi <- uTys nb1 ty1 nb2 ty2
; cois <- go tys1 tys2
; return (coi:cois) }
go _ _ = unifyMisMatch outer
u_tys :: Outer
-> InBox -> TcType -> TcType
-> InBox -> TcType -> TcType
-> TcM CoercionI
u_tys outer nb1 orig_ty1 ty1 nb2 orig_ty2 ty2
= do { traceTc (text "u_tys " <+> vcat [sep [ braces (ppr orig_ty1 <+> text "/" <+> ppr ty1),
text "~",
braces (ppr orig_ty2 <+> text "/" <+> ppr ty2)],
ppr outer])
; coi <- go outer orig_ty1 ty1 orig_ty2 ty2
; traceTc (case coi of
ACo co -> text "u_tys yields coercion:" <+> ppr co
IdCo -> text "u_tys yields no coercion")
; return coi
}
where
bale_out :: Outer -> TcM a
bale_out outer = unifyMisMatch outer
go :: Outer -> TcType -> TcType -> TcType -> TcType -> TcM CoercionI
go _ sty1 ty1 sty2 ty2
| Just ty1' <- tcView ty1 = go (Unify False ty1' ty2 ) sty1 ty1' sty2 ty2
| Just ty2' <- tcView ty2 = go (Unify False ty1 ty2') sty1 ty1 sty2 ty2'
go outer _ (TyVarTy tyvar1) sty2 ty2 = uVar outer False tyvar1 nb2 sty2 ty2
go outer sty1 ty1 _ (TyVarTy tyvar2) = uVar outer True tyvar2 nb1 sty1 ty1
go _ _ ty1 _ ty2
| isSigmaTy ty1 || isSigmaTy ty2
= do { traceTc (text "We have sigma types: equalLength" <+> ppr tvs1 <+> ppr tvs2)
; unless (equalLength tvs1 tvs2) (bale_out outer)
; traceTc (text "We're past the first length test")
; tvs <- tcInstSkolTyVars UnkSkol tvs1
; let tys = mkTyVarTys tvs
in_scope = mkInScopeSet (mkVarSet tvs)
phi1 = substTy (mkTvSubst in_scope (zipTyEnv tvs1 tys)) body1
phi2 = substTy (mkTvSubst in_scope (zipTyEnv tvs2 tys)) body2
(theta1,tau1) = tcSplitPhiTy phi1
(theta2,tau2) = tcSplitPhiTy phi2
; addErrCtxtM (unifyForAllCtxt tvs phi1 phi2) $ do
{ unless (equalLength theta1 theta2) (bale_out outer)
; _cois <- uPreds outer nb1 theta1 nb2 theta2
; traceTc (text "TOMDO!")
; coi <- uTys nb1 tau1 nb2 tau2
; free_tvs <- zonkTcTyVarsAndFV (varSetElems (tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2))
; when (any (`elemVarSet` free_tvs) tvs)
(bleatEscapedTvs free_tvs tvs tvs)
; when (nb1 && nb2) (notMonoType ty1)
; return coi
}}
where
(tvs1, body1) = tcSplitForAllTys ty1
(tvs2, body2) = tcSplitForAllTys ty2
go outer _ (PredTy p1) _ (PredTy p2)
= uPred outer nb1 p1 nb2 p2
go outer _ (TyConApp con1 tys1) _ (TyConApp con2 tys2)
| con1 == con2 && not (isOpenSynTyCon con1)
= do { traceTc (text "utys1" <+> ppr con1 <+> (ppr tys1 $$ ppr tys2))
; cois <- uTys_s outer nb1 tys1 nb2 tys2
; return $ mkTyConAppCoI con1 tys1 cois
}
| con1 == con2 && identicalOpenSynTyConApp
= do { traceTc (text "utys2" <+> ppr con1 <+> (ppr tys1' $$ ppr tys2'))
; cois <- uTys_s outer nb1 tys1' nb2 tys2'
; return $ mkTyConAppCoI con1 tys1 (replicate n IdCo ++ cois)
}
where
n = tyConArity con1
(idxTys1, tys1') = splitAt n tys1
(idxTys2, tys2') = splitAt n tys2
identicalOpenSynTyConApp = idxTys1 `tcEqTypes` idxTys2
go outer sty1 ty1@(TyConApp con1 _) sty2 ty2
| isOpenSynTyCon con1
= do { (coi1, ty1') <- tcNormaliseFamInst ty1
; case coi1 of
IdCo -> defer
_ -> liftM (coi1 `mkTransCoI`) $ go outer sty1 ty1' sty2 ty2
}
go outer sty1 ty1 sty2 ty2@(TyConApp con2 _)
| isOpenSynTyCon con2
= do { (coi2, ty2') <- tcNormaliseFamInst ty2
; case coi2 of
IdCo -> defer
_ -> liftM (`mkTransCoI` mkSymCoI coi2) $
go outer sty1 ty1 sty2 ty2'
}
go _ _ (FunTy fun1 arg1) _ (FunTy fun2 arg2)
= do { coi_l <- uTys nb1 fun1 nb2 fun2
; coi_r <- uTys nb1 arg1 nb2 arg2
; return $ mkFunTyCoI fun1 coi_l arg1 coi_r
}
go outer _ (AppTy s1 t1) _ ty2
| Just (s2,t2) <- tcSplitAppTy_maybe ty2
= do { coi_s <- go outer s1 s1 s2 s2
; coi_t <- uTys nb1 t1 nb2 t2
; return $ mkAppTyCoI s1 coi_s t1 coi_t }
go outer _ ty1 _ (AppTy s2 t2)
| Just (s1,t1) <- tcSplitAppTy_maybe ty1
= do { coi_s <- go outer s1 s1 s2 s2
; coi_t <- uTys nb1 t1 nb2 t2
; return $ mkAppTyCoI s1 coi_s t1 coi_t }
go outer _ _ _ _ = bale_out outer
defer = defer_unification outer False orig_ty1 orig_ty2
uPred :: Outer -> InBox -> PredType -> InBox -> PredType -> TcM CoercionI
uPred _ nb1 (IParam n1 t1) nb2 (IParam n2 t2)
| n1 == n2
= do { coi <- uTys nb1 t1 nb2 t2
; return $ mkIParamPredCoI n1 coi }
uPred outer nb1 (ClassP c1 tys1) nb2 (ClassP c2 tys2)
| c1 == c2
= do { traceTc (text "utys3" <+> ppr c1 <+> (ppr tys2 $$ ppr tys2))
; cois <- uTys_s outer nb1 tys1 nb2 tys2
; return $ mkClassPPredCoI c1 tys1 cois }
uPred outer _ _ _ _ = unifyMisMatch outer
uPreds :: Outer -> InBox -> [PredType] -> InBox -> [PredType]
-> TcM [CoercionI]
uPreds _ _ [] _ [] = return []
uPreds outer nb1 (p1:ps1) nb2 (p2:ps2) =
do { coi <- uPred outer nb1 p1 nb2 p2
; cois <- uPreds outer nb1 ps1 nb2 ps2
; return (coi:cois)
}
uPreds _ _ _ _ _ = panic "uPreds"
\end{code}
Note [Mismatched type lists and application decomposition]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we find two TyConApps, you might think that the argument lists
are guaranteed equal length. But they aren't. Consider matching
w (T x) ~ Foo (T x y)
We do match (w ~ Foo) first, but in some circumstances we simply create
a deferred constraint; and then go ahead and match (T x ~ T x y).
This came up in Trac #3950.
So either
(a) either we must check for identical argument kinds
when decomposing applications,
(b) or we must be prepared for illkinded unification subproblems
Currently we adopt (b) since it seems more robust
a global invariant.
Note [OpenSynTyCon app]
~~~~~~~~~~~~~~~~~~~~~~~
Given
type family T a :: * -> *
the two types (T () a) and (T () Int) must unify, even if there are
no type instances for T at all. Should we just turn them into an
equality (T () a ~ T () Int)? I don't think so. We currently try to
eagerly unify everything we can before generating equalities; otherwise,
we could turn the unification of [Int] with [a] into an equality, too.
Note [Unification and synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you are tempted to make a short cut on synonyms, as in this
pseudocode...
\begin{verbatim}
\end{verbatim}
then THINK AGAIN. Here is the whole story, as detected and reported
by Chris Okasaki \tr{<Chris_Okasaki@loch.mess.cs.cmu.edu>}:
\begin{quotation}
Here's a test program that should detect the problem:
\begin{verbatim}
type Bogus a = Int
x = (1 :: Bogus Char) :: Bogus Bool
\end{verbatim}
The problem with [the attempted shortcut code] is that
\begin{verbatim}
con1 == con2
\end{verbatim}
is not a sufficient condition to be able to use the shortcut!
You also need to know that the type synonym actually USES all
its arguments. For example, consider the following type synonym
which does not use all its arguments.
\begin{verbatim}
type Bogus a = Int
\end{verbatim}
If you ever tried unifying, say, \tr{Bogus Char} with \tr{Bogus Bool},
the unifier would blithely try to unify \tr{Char} with \tr{Bool} and
would fail, even though the expanded forms (both \tr{Int}) should
match.
Similarly, unifying \tr{Bogus Char} with \tr{Bogus t} would
unnecessarily bind \tr{t} to \tr{Char}.
... You could explicitly test for the problem synonyms and mark them
somehow as needing expansion, perhaps also issuing a warning to the
user.
\end{quotation}
%************************************************************************
%* *
\subsection[UnifyuVar]{@uVar@: unifying with a type variable}
%* *
%************************************************************************
@uVar@ is called when at least one of the types being unified is a
variable. It does {\em not} assume that the variable is a fixed point
of the substitution; rather, notice that @uVar@ (defined below) nips
back into @uTys@ if it turns out that the variable is already bound.
\begin{code}
uVar :: Outer
-> SwapFlag
-> TcTyVar
-> InBox
-> TcTauType -> TcTauType
-> TcM CoercionI
uVar outer swapped tv1 nb2 ps_ty2 ty2
= do { let expansion | showSDoc (ppr ty2) == showSDoc (ppr ps_ty2) = empty
| otherwise = brackets (equals <+> ppr ty2)
; traceTc (text "uVar" <+> ppr outer <+> ppr swapped <+>
sep [ppr tv1 <+> dcolon <+> ppr (tyVarKind tv1 ),
nest 2 (ptext (sLit " <-> ")),
ppr ps_ty2 <+> dcolon <+> ppr (typeKind ty2) <+> expansion])
; details <- lookupTcTyVar tv1
; case details of
IndirectTv ty1
| swapped -> u_tys outer nb2 ps_ty2 ty2 True ty1 ty1
| otherwise -> u_tys outer True ty1 ty1 nb2 ps_ty2 ty2
DoneTv details1 -> uUnfilledVar outer swapped tv1 details1 ps_ty2 ty2
}
uUnfilledVar :: Outer
-> SwapFlag
-> TcTyVar -> TcTyVarDetails
-> TcTauType -> TcTauType
-> TcM CoercionI
uUnfilledVar _ swapped tv1 details1 ps_ty2 ty2
| Just ty2' <- tcView ty2
=
let outer' | swapped = Unify False ty2' (mkTyVarTy tv1)
| otherwise = Unify False (mkTyVarTy tv1) ty2'
in uUnfilledVar outer' swapped tv1 details1 ps_ty2 ty2'
uUnfilledVar outer swapped tv1 details1 _ (TyVarTy tv2)
| tv1 == tv2
= case details1 of
MetaTv BoxTv ref1
-> do { tau_tv <- tcInstTyVar tv1
; updateMeta tv1 ref1 (mkTyVarTy tau_tv)
; return IdCo
}
_ -> return IdCo
| otherwise
= do { lookup2 <- lookupTcTyVar tv2
; case lookup2 of
IndirectTv ty2' -> uUnfilledVar outer swapped tv1 details1 ty2' ty2'
DoneTv details2 -> uUnfilledVars outer swapped tv1 details1 tv2 details2
}
uUnfilledVar outer swapped tv1 details1 ps_ty2 non_var_ty2
=
case details1 of
MetaTv (SigTv _) _ -> rigid_variable
MetaTv info ref1 -> uMetaVar outer swapped tv1 info ref1 ps_ty2 non_var_ty2
SkolemTv _ -> rigid_variable
where
rigid_variable
| isOpenSynTyConApp non_var_ty2
=
do { (coi2, ty2') <- tcNormaliseFamInst non_var_ty2
; case coi2 of
IdCo ->
defer_unification outer swapped (TyVarTy tv1) ps_ty2
ACo co ->
do { traceTc $
ppr co <+> text "::"<+> ppr non_var_ty2 <+> text "~" <+>
ppr ty2'
; coi <- uUnfilledVar outer swapped tv1 details1 ps_ty2 ty2'
; let coi2' = (if swapped then id else mkSymCoI) coi2
; return $ coi2' `mkTransCoI` coi
}
}
| SkolemTv RuntimeUnkSkol <- details1
= unifyMisMatch outer
| otherwise
= defer_unification outer swapped (TyVarTy tv1) ps_ty2
\end{code}
Note [Deferred Unification]
~~~~~~~~~~~~~~~~~~~~
We may encounter a unification ty1 = ty2 that cannot be performed syntactically,
and yet its consistency is undetermined. Previously, there was no way to still
make it consistent. So a mismatch error was issued.
Now these unfications are deferred until constraint simplification, where type
family instances and given equations may (or may not) establish the consistency.
Deferred unifications are of the form
F ... ~ ...
or x ~ ...
where F is a type function and x is a type variable.
E.g.
id :: x ~ y => x -> y
id e = e
involves the unfication x = y. It is deferred until we bring into account the
context x ~ y to establish that it holds.
If available, we defer original types (rather than those where closed type
synonyms have already been expanded via tcCoreView). This is, as usual, to
improve error messages.
We need to both 'unBox' and zonk deferred types. We need to unBox as
functions, such as TcExpr.tcMonoExpr promise to fill boxes in the expected
type. We need to zonk as the types go into the kind of the coercion variable
`cotv' and those are not zonked in Inst.zonkInst. (Maybe it would be better
to zonk in zonInst instead. Would that be sufficient?)
\begin{code}
defer_unification :: Outer
-> SwapFlag
-> TcType
-> TcType
-> TcM CoercionI
defer_unification outer True ty1 ty2
= defer_unification outer False ty2 ty1
defer_unification outer False ty1 ty2
= do { ty1' <- unBox ty1 >>= zonkTcType
; ty2' <- unBox ty2 >>= zonkTcType
; traceTc $ text "deferring:" <+> ppr ty1 <+> text "~" <+> ppr ty2
; cotv <- newMetaCoVar ty1' ty2'
; inst <- popUnifyCtxt outer $
mkEqInst (EqPred ty1' ty2') (Left cotv)
; extendLIE inst
; return $ ACo $ TyVarTy cotv }
uMetaVar :: Outer
-> SwapFlag
-> TcTyVar -> BoxInfo -> IORef MetaDetails
-> TcType -> TcType
-> TcM CoercionI
uMetaVar outer swapped tv1 BoxTv ref1 ps_ty2 ty2
=
do { final_ty <- unBox ps_ty2
; meta_details <- readMutVar ref1
; case meta_details of
Indirect _ ->
uVar outer swapped tv1 False ps_ty2 ty2
Flexi -> do { checkUpdateMeta swapped tv1 ref1 final_ty
; return IdCo }
}
uMetaVar outer swapped tv1 _ ref1 ps_ty2 _
= do {
; mb_final_ty <- checkTauTvUpdate tv1 ps_ty2
; case mb_final_ty of
Nothing ->
defer_unification outer swapped (mkTyVarTy tv1) ps_ty2
Just final_ty ->
do { checkUpdateMeta swapped tv1 ref1 final_ty
; return IdCo
}
}
uUnfilledVars :: Outer
-> SwapFlag
-> TcTyVar -> TcTyVarDetails
-> TcTyVar -> TcTyVarDetails
-> TcM CoercionI
uUnfilledVars outer swapped tv1 (SkolemTv _) tv2 (SkolemTv _)
=
defer_unification outer swapped (mkTyVarTy tv1) (mkTyVarTy tv2)
uUnfilledVars _ swapped tv1 (MetaTv _ ref1) tv2 (SkolemTv _)
= checkUpdateMeta swapped tv1 ref1 (mkTyVarTy tv2) >> return IdCo
uUnfilledVars _ swapped tv1 (SkolemTv _) tv2 (MetaTv _ ref2)
= checkUpdateMeta (not swapped) tv2 ref2 (mkTyVarTy tv1) >> return IdCo
uUnfilledVars _ swapped tv1 (MetaTv info1 ref1) tv2 (MetaTv info2 ref2)
= case (info1, info2) of
(BoxTv, BoxTv) -> box_meets_box >> return IdCo
(_, BoxTv) | k1_sub_k2 -> update_tv2 >> return IdCo
| otherwise -> box_meets_box >> return IdCo
(BoxTv, _ ) | k2_sub_k1 -> update_tv1 >> return IdCo
| otherwise -> box_meets_box >> return IdCo
(SigTv _, _ ) | k1_sub_k2 -> update_tv2 >> return IdCo
(_, SigTv _) | k2_sub_k1 -> update_tv1 >> return IdCo
(_, _) | k1_sub_k2 -> if k2_sub_k1 && nicer_to_update_tv1
then update_tv1 >> return IdCo
else update_tv2 >> return IdCo
| k2_sub_k1 -> update_tv1 >> return IdCo
| otherwise -> kind_err >> return IdCo
where
update_tv1 = updateMeta tv1 ref1 (mkTyVarTy tv2)
update_tv2 = updateMeta tv2 ref2 (mkTyVarTy tv1)
box_meets_box | k1_sub_k2 = if k2_sub_k1 && nicer_to_update_tv1
then fill_from tv2
else fill_from tv1
| k2_sub_k1 = fill_from tv2
| otherwise = kind_err
fill_from tv = do { tv' <- tcInstTyVar tv
; let tau_ty = mkTyVarTy tv'
; updateMeta tv1 ref1 tau_ty
; updateMeta tv2 ref2 tau_ty }
kind_err = addErrCtxtM (unifyKindCtxt swapped tv1 (mkTyVarTy tv2)) $
unifyKindMisMatch k1 k2
k1 = tyVarKind tv1
k2 = tyVarKind tv2
k1_sub_k2 = k1 `isSubKind` k2
k2_sub_k1 = k2 `isSubKind` k1
nicer_to_update_tv1 = isSystemName (Var.varName tv1)
\end{code}
\begin{code}
refineBox :: TcType -> TcM TcType
refineBox ty@(TyVarTy box_tv)
| isMetaTyVar box_tv
= do { cts <- readMetaTyVar box_tv
; case cts of
Flexi -> return ty
Indirect ty -> return ty }
refineBox other_ty = return other_ty
refineBoxToTau :: TcType -> TcM TcType
refineBoxToTau (TyVarTy box_tv)
| isMetaTyVar box_tv
, MetaTv BoxTv ref <- tcTyVarDetails box_tv
= do { cts <- readMutVar ref
; case cts of
Flexi -> fillBoxWithTau box_tv ref
Indirect ty -> return ty }
refineBoxToTau other_ty = return other_ty
zapToMonotype :: BoxySigmaType -> TcM TcTauType
zapToMonotype res_ty
= do { res_tau <- newFlexiTyVarTy liftedTypeKind
; _ <- boxyUnify res_tau res_ty
; return res_tau }
unBox :: BoxyType -> TcM TcType
unBox (TyConApp tc tys) = do { tys' <- mapM unBox tys; return (TyConApp tc tys') }
unBox (AppTy f a) = do { f' <- unBox f; a' <- unBox a; return (mkAppTy f' a') }
unBox (FunTy f a) = do { f' <- unBox f; a' <- unBox a; return (FunTy f' a') }
unBox (PredTy p) = do { p' <- unBoxPred p; return (PredTy p') }
unBox (ForAllTy tv ty) = ASSERT( isImmutableTyVar tv )
do { ty' <- unBox ty; return (ForAllTy tv ty') }
unBox (TyVarTy tv)
| isTcTyVar tv
, MetaTv BoxTv ref <- tcTyVarDetails tv
= do { cts <- readMutVar ref
; case cts of
Flexi -> fillBoxWithTau tv ref
Indirect ty -> do { non_boxy_ty <- unBox ty
; if isTauTy non_boxy_ty
then return non_boxy_ty
else notMonoType non_boxy_ty }
}
| otherwise
= return (TyVarTy tv)
unBoxPred :: PredType -> TcM PredType
unBoxPred (ClassP cls tys) = do { tys' <- mapM unBox tys; return (ClassP cls tys') }
unBoxPred (IParam ip ty) = do { ty' <- unBox ty; return (IParam ip ty') }
unBoxPred (EqPred ty1 ty2) = do { ty1' <- unBox ty1; ty2' <- unBox ty2; return (EqPred ty1' ty2') }
\end{code}
%************************************************************************
%* *
Errors and contexts
%* *
%************************************************************************
\begin{code}
unifyMisMatch :: Outer -> TcM a
unifyMisMatch (Unify is_outer ty1 ty2)
| is_outer = popErrCtxt $ failWithMisMatch ty1 ty2
| otherwise = failWithMisMatch ty1 ty2
popUnifyCtxt :: Outer -> TcM a -> TcM a
popUnifyCtxt (Unify True _ _) thing = popErrCtxt thing
popUnifyCtxt (Unify False _ _) thing = thing
unifyCtxt :: TcType -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
unifyCtxt act_ty exp_ty tidy_env
= do { act_ty' <- zonkTcType act_ty
; exp_ty' <- zonkTcType exp_ty
; let (env1, exp_ty'') = tidyOpenType tidy_env exp_ty'
(env2, act_ty'') = tidyOpenType env1 act_ty'
; return (env2, mkExpectedActualMsg act_ty'' exp_ty'') }
mkExpectedActualMsg :: Type -> Type -> SDoc
mkExpectedActualMsg act_ty exp_ty
= nest 2 (vcat [ text "Expected type" <> colon <+> ppr exp_ty,
text "Inferred type" <> colon <+> ppr act_ty ])
addSubCtxt :: InstOrigin -> TcType -> TcType -> TcM a -> TcM a
addSubCtxt orig actual_res_ty expected_res_ty thing_inside
= addErrCtxtM mk_err thing_inside
where
mk_err tidy_env
= do { exp_ty' <- zonkTcType expected_res_ty
; act_ty' <- zonkTcType actual_res_ty
; let (env1, exp_ty'') = tidyOpenType tidy_env exp_ty'
(env2, act_ty'') = tidyOpenType env1 act_ty'
(exp_args, _) = tcSplitFunTys exp_ty''
(act_args, _) = tcSplitFunTys act_ty''
len_act_args = length act_args
len_exp_args = length exp_args
message = case orig of
OccurrenceOf fun
| len_exp_args < len_act_args -> wrongArgsCtxt "too few" fun
| len_exp_args > len_act_args -> wrongArgsCtxt "too many" fun
_ -> mkExpectedActualMsg act_ty'' exp_ty''
; return (env2, message) }
wrongArgsCtxt too_many_or_few fun
= ptext (sLit "Probable cause:") <+> quotes (ppr fun)
<+> ptext (sLit "is applied to") <+> text too_many_or_few
<+> ptext (sLit "arguments")
unifyForAllCtxt :: [TyVar] -> Type -> Type -> TidyEnv -> TcM (TidyEnv, SDoc)
unifyForAllCtxt tvs phi1 phi2 env
= return (env2, msg)
where
(env', tvs') = tidyOpenTyVars env tvs
(env1, phi1') = tidyOpenType env' phi1
(env2, phi2') = tidyOpenType env1 phi2
msg = vcat [ptext (sLit "When matching") <+> quotes (ppr (mkForAllTys tvs' phi1')),
ptext (sLit " and") <+> quotes (ppr (mkForAllTys tvs' phi2'))]
\end{code}
%************************************************************************
%* *
Kind unification
%* *
%************************************************************************
Unifying kinds is much, much simpler than unifying types.
\begin{code}
unifyKind :: TcKind
-> TcKind
-> TcM ()
unifyKind (TyConApp kc1 []) (TyConApp kc2 [])
| isSubKindCon kc2 kc1 = return ()
unifyKind (FunTy a1 r1) (FunTy a2 r2)
= do { unifyKind a2 a1; unifyKind r1 r2 }
unifyKind (TyVarTy kv1) k2 = uKVar False kv1 k2
unifyKind k1 (TyVarTy kv2) = uKVar True kv2 k1
unifyKind k1 k2 = unifyKindMisMatch k1 k2
unifyKinds :: [TcKind] -> [TcKind] -> TcM ()
unifyKinds [] [] = return ()
unifyKinds (k1:ks1) (k2:ks2) = do unifyKind k1 k2
unifyKinds ks1 ks2
unifyKinds _ _ = panic "unifyKinds: length mis-match"
uKVar :: Bool -> KindVar -> TcKind -> TcM ()
uKVar swapped kv1 k2
= do { mb_k1 <- readKindVar kv1
; case mb_k1 of
Flexi -> uUnboundKVar swapped kv1 k2
Indirect k1 | swapped -> unifyKind k2 k1
| otherwise -> unifyKind k1 k2 }
uUnboundKVar :: Bool -> KindVar -> TcKind -> TcM ()
uUnboundKVar swapped kv1 k2@(TyVarTy kv2)
| kv1 == kv2 = return ()
| otherwise
= do { mb_k2 <- readKindVar kv2
; case mb_k2 of
Indirect k2 -> uUnboundKVar swapped kv1 k2
Flexi -> writeKindVar kv1 k2 }
uUnboundKVar swapped kv1 non_var_k2
= do { k2' <- zonkTcKind non_var_k2
; kindOccurCheck kv1 k2'
; k2'' <- kindSimpleKind swapped k2'
; writeKindVar kv1 k2'' }
kindOccurCheck :: TyVar -> Type -> TcM ()
kindOccurCheck kv1 k2
= checkTc (not_in k2) (kindOccurCheckErr kv1 k2)
where
not_in (TyVarTy kv2) = kv1 /= kv2
not_in (FunTy a2 r2) = not_in a2 && not_in r2
not_in _ = True
kindSimpleKind :: Bool -> Kind -> TcM SimpleKind
kindSimpleKind orig_swapped orig_kind
= go orig_swapped orig_kind
where
go sw (FunTy k1 k2) = do { k1' <- go (not sw) k1
; k2' <- go sw k2
; return (mkArrowKind k1' k2') }
go True k
| isOpenTypeKind k = return liftedTypeKind
| isArgTypeKind k = return liftedTypeKind
go _ k
| isLiftedTypeKind k = return liftedTypeKind
| isUnliftedTypeKind k = return unliftedTypeKind
go _ k@(TyVarTy _) = return k
go _ _ = failWithTc (ptext (sLit "Unexpected kind unification failure:")
<+> ppr orig_swapped <+> ppr orig_kind)
kindOccurCheckErr :: Var -> Type -> SDoc
kindOccurCheckErr tyvar ty
= hang (ptext (sLit "Occurs check: cannot construct the infinite kind:"))
2 (sep [ppr tyvar, char '=', ppr ty])
\end{code}
\begin{code}
unifyFunKind :: TcKind -> TcM (Maybe (TcKind, TcKind))
unifyFunKind (TyVarTy kvar) = do
maybe_kind <- readKindVar kvar
case maybe_kind of
Indirect fun_kind -> unifyFunKind fun_kind
Flexi ->
do { arg_kind <- newKindVar
; res_kind <- newKindVar
; writeKindVar kvar (mkArrowKind arg_kind res_kind)
; return (Just (arg_kind,res_kind)) }
unifyFunKind (FunTy arg_kind res_kind) = return (Just (arg_kind,res_kind))
unifyFunKind _ = return Nothing
\end{code}
%************************************************************************
%* *
\subsection{Checking signature type variables}
%* *
%************************************************************************
@checkSigTyVars@ checks that a set of universally quantified type varaibles
are not mentioned in the environment. In particular:
(a) Not mentioned in the type of a variable in the envt
eg the signature for f in this:
g x = ... where
f :: a->[a]
f y = [x,y]
Here, f is forced to be monorphic by the free occurence of x.
(d) Not (unified with another type variable that is) in scope.
eg f x :: (r->r) = (\y->y) :: forall a. a->r
when checking the expression type signature, we find that
even though there is nothing in scope whose type mentions r,
nevertheless the type signature for the expression isn't right.
Another example is in a class or instance declaration:
class C a where
op :: forall b. a -> b
op x = x
Here, b gets unified with a
Before doing this, the substitution is applied to the signature type variable.
\begin{code}
checkSigTyVars :: [TcTyVar] -> TcM ()
checkSigTyVars sig_tvs = check_sig_tyvars emptyVarSet sig_tvs
checkSigTyVarsWrt :: TcTyVarSet -> [TcTyVar] -> TcM ()
checkSigTyVarsWrt extra_tvs sig_tvs
= do { extra_tvs' <- zonkTcTyVarsAndFV (varSetElems extra_tvs)
; check_sig_tyvars extra_tvs' sig_tvs }
check_sig_tyvars
:: TcTyVarSet
-> [TcTyVar]
-> TcM ()
check_sig_tyvars _ []
= return ()
check_sig_tyvars extra_tvs sig_tvs
= ASSERT( all isTcTyVar sig_tvs && all isSkolemTyVar sig_tvs )
do { gbl_tvs <- tcGetGlobalTyVars
; traceTc (text "check_sig_tyvars" <+> (vcat [text "sig_tys" <+> ppr sig_tvs,
text "gbl_tvs" <+> ppr gbl_tvs,
text "extra_tvs" <+> ppr extra_tvs]))
; let env_tvs = gbl_tvs `unionVarSet` extra_tvs
; when (any (`elemVarSet` env_tvs) sig_tvs)
(bleatEscapedTvs env_tvs sig_tvs sig_tvs)
}
bleatEscapedTvs :: TcTyVarSet
-> [TcTyVar]
-> [TcTyVar]
-> TcM ()
bleatEscapedTvs globals sig_tvs zonked_tvs
= do { env0 <- tcInitTidyEnv
; let (env1, tidy_tvs) = tidyOpenTyVars env0 sig_tvs
(env2, tidy_zonked_tvs) = tidyOpenTyVars env1 zonked_tvs
; (env3, msgs) <- foldlM check (env2, []) (tidy_tvs `zip` tidy_zonked_tvs)
; failWithTcM (env3, main_msg $$ nest 2 (vcat msgs)) }
where
main_msg = ptext (sLit "Inferred type is less polymorphic than expected")
check (tidy_env, msgs) (sig_tv, zonked_tv)
| not (zonked_tv `elemVarSet` globals) = return (tidy_env, msgs)
| otherwise
= do { (tidy_env1, globs) <- findGlobals (unitVarSet zonked_tv) tidy_env
; return (tidy_env1, escape_msg sig_tv zonked_tv globs : msgs) }
escape_msg :: Var -> Var -> [SDoc] -> SDoc
escape_msg sig_tv zonked_tv globs
| notNull globs
= vcat [sep [msg, ptext (sLit "is mentioned in the environment:")],
nest 2 (vcat globs)]
| otherwise
= msg <+> ptext (sLit "escapes")
where
msg = ptext (sLit "Quantified type variable") <+> quotes (ppr sig_tv) <+> is_bound_to
is_bound_to
| sig_tv == zonked_tv = empty
| otherwise = ptext (sLit "is unified with") <+> quotes (ppr zonked_tv) <+> ptext (sLit "which")
\end{code}
These two context are used with checkSigTyVars
\begin{code}
sigCtxt :: Id -> [TcTyVar] -> TcThetaType -> TcTauType
-> TidyEnv -> TcM (TidyEnv, Message)
sigCtxt id sig_tvs sig_theta sig_tau tidy_env = do
actual_tau <- zonkTcType sig_tau
let
(env1, tidy_sig_tvs) = tidyOpenTyVars tidy_env sig_tvs
(env2, tidy_sig_rho) = tidyOpenType env1 (mkPhiTy sig_theta sig_tau)
(env3, tidy_actual_tau) = tidyOpenType env2 actual_tau
sub_msg = vcat [ptext (sLit "Signature type: ") <+> pprType (mkForAllTys tidy_sig_tvs tidy_sig_rho),
ptext (sLit "Type to generalise:") <+> pprType tidy_actual_tau
]
msg = vcat [ptext (sLit "When trying to generalise the type inferred for") <+> quotes (ppr id),
nest 2 sub_msg]
return (env3, msg)
\end{code}