
Building the Glasgow Functional
Programming Tools Suite

The GHC Team

Abstract

The Glasgow fptools suite is a collection of Functional Programming related tools, including the
Glasgow Haskell Compiler (GHC). The source code for the whole suite is kept in a single CVS re-
pository and shares a common build and installation system.

This guide is intended for people who want to build or modify programs from the Glasgow
fptools suite (as distinct from those who merely want to run them). Installation instructions are
now provided in the user guide.

The bulk of this guide applies to building on Unix systems; see Section 13, “Instructions for build-
ing under Windows” for Windows notes.

Table of Contents
1. Getting the sources ... 2
2. Using the CVS repository .. 3

2.1. Getting access to the CVS Repository ... 3
2.1.1. Remote Read-only CVS Access ... 3
2.1.2. Remote Read-Write CVS Access ... 4

2.2. Checking Out a Source Tree .. 6
2.3. Committing Changes ... 6
2.4. Updating Your Source Tree ... 8
2.5. GHC Tag Policy ... 8
2.6. General Hints ... 9

3. What projects are there? .. 9
4. Things to check before you start ... 10
5. What machines the Glasgow tools run on ... 11

5.1. What platforms the Haskell compiler (GHC) runs on .. 11
5.2. What machines the other tools run on .. 12

6. Installing pre-supposed utilities .. 12
6.1. Tools for building parallel GHC (GPH) ... 14
6.2. Other useful tools .. 14

7. Building from source .. 14
7.1. Quick Start ... 15
7.2. Your source tree .. 15
7.3. Build trees ... 15
7.4. Getting the build you want .. 16
7.5. The story so far ... 19
7.6. Making things .. 20
7.7. Bootstrapping GHC ... 20
7.8. Standard Targets ... 20
7.9. Using a project from the build tree .. 22
7.10. Fast Making ... 22

8. The Makefile architecture .. 22

1

8.1. Debugging ... 23
8.2. A small project ... 23
8.3. A larger project ... 24
8.4. Boilerplate architecture .. 25
8.5. The main mk/boilerplate.mk file ... 26
8.6. Platform settings ... 27
8.7. Pattern rules and options ... 28
8.8. The main mk/target.mk file ... 29
8.9. Recursion .. 30
8.10. Way management .. 30
8.11. When the canned rule isn't right .. 31

9. Building the documentation ... 31
9.1. Tools for building the Documentation ... 31
9.2. Installing the DocBook tools ... 31

9.2.1. Installing the DocBook tools on Linux .. 31
9.2.2. Installing DocBook on FreeBSD .. 32
9.2.3. Installing from binaries on Windows .. 32

9.3. Configuring the DocBook tools .. 32
9.4. Building the documentation ... 32
9.5. Installing the documentation .. 33

10. Porting GHC ... 33
10.1. Booting/porting from C (.hc) files ... 33
10.2. Porting GHC to a new architecture .. 34

10.2.1. Cross-compiling to produce an unregisterised GHC ... 34
10.2.2. Porting the RTS .. 37
10.2.3. The mangler ... 37
10.2.4. The splitter .. 37
10.2.5. The native code generator ... 38
10.2.6. GHCi .. 38
11. Known pitfalls in building Glasgow Haskell .. 38
12. Platforms, scripts, and file names .. 39

12.1. Windows platforms: Cygwin, MSYS, and MinGW .. 39
12.1.1. MinGW ... 39
12.1.2. Cygwin and MSYS .. 40
12.1.3. Targeting MinGW ... 40
12.1.4. File names ... 41
12.1.5. Crippled ld .. 41
12.1.6. Host System vs Target System ... 41

12.2. Wrapper scripts ... 42
13. Instructions for building under Windows .. 42

13.1. Installing and configuring MSYS .. 42
13.2. Installing and configuring Cygwin .. 43
13.3. Configuring SSH ... 44
13.4. Other things you need to install .. 45
13.5. Building GHC ... 46
13.6. A Windows build log using Cygwin .. 47

Index .. 49

1. Getting the sources
You can get your hands on the fptools in two ways:

Source distributions You have a supported platform, but (a) you like the warm fuzzy feel-
ing of compiling things yourself; (b) you want to build something
``extra”—e.g., a set of libraries with strictness-analysis turned off; or
(c) you want to hack on GHC yourself.

Building the Glasgow Functional Pro-
gramming Tools Suite

2

A source distribution contains complete sources for one or more
projects in the fptools suite. Not only that, but the more awkward
machine-independent steps are done for you. For example, if you don't
have happy you'll find it convenient that the source distribution con-
tains the result of running happy on the parser specifications. If you
don't want to alter the parser then this saves you having to find and in-
stall happy. You will still need a working version of GHC (version
5.x or later) on your machine in order to compile (most of) the
sources, however.

The CVS repository. We make releases infrequently. If you want more up-to-the minute
(but less tested) source code then you need to get access to our CVS
repository.

All the fptools source code is held in a CVS repository. CVS is a
pretty good source-code control system, and best of all it works over
the network.

The repository holds source code only. It holds no mechanically gen-
erated files at all. So if you check out a source tree from CVS you will
need to install every utility so that you can build all the derived files
from scratch.

More information about our CVS repository can be found in Section 2,
“Using the CVS repository”.

If you are going to do any building from sources (either from a source distribution or the CVS reposit-
ory) then you need to read all of this manual in detail.

2. Using the CVS repository
We use CVS [http://www.cvshome.org/] (Concurrent Version System) to keep track of our sources for
various software projects. CVS lets several people work on the same software at the same time, allowing
changes to be checked in incrementally.

This section is a set of guidelines for how to use our CVS repository, and will probably evolve in time.
The main thing to remember is that most mistakes can be undone, but if there's anything you're not sure
about feel free to bug the local CVS meister (namely Jeff Lewis <jlewis@galois.com>).

2.1. Getting access to the CVS Repository
You can access the repository in one of two ways: read-only (Section 2.1.1, “Remote Read-only CVS
Access”), or read-write (Section 2.1.2, “Remote Read-Write CVS Access”).

2.1.1. Remote Read-only CVS Access

Read-only access is available to anyone - there's no need to ask us first. With read-only CVS access you
can do anything except commit changes to the repository. You can make changes to your local tree, and
still use CVS's merge facility to keep your tree up to date, and you can generate patches using 'cvs diff'
in order to send to us for inclusion.

To get read-only access to the repository:

1. Make sure that cvs is installed on your machine.

Building the Glasgow Functional Pro-
gramming Tools Suite

3

http://www.cvshome.org/

2. Set your $CVSROOT environment variable to
:pserver:anoncvs@glass.cse.ogi.edu:/cvs

If you set $CVSROOT in a shell script, be sure not to have any trailing spaces on that line, other-
wise CVS will respond with a perplexing message like

/cvs : no such repository

3. Run the command

$ cvs login

The password is simply cvs. This sets up a file in your home directory called .cvspass, which
squirrels away the dummy password, so you only need to do this step once.

4. Now go to Section 2.2, “Checking Out a Source Tree”.

2.1.2. Remote Read-Write CVS Access

We generally supply read-write access to folk doing serious development on some part of the source
tree, when going through us would be a pain. If you're developing some feature, or think you have the
time and inclination to fix bugs in our sources, feel free to ask for read-write access. There is a certain
amount of responsibility that goes with commit privileges; we are more likely to grant you access if
you've demonstrated your competence by sending us patches via mail in the past.

To get remote read-write CVS access, you need to do the following steps.

1. Make sure that cvs and ssh are both installed on your machine.

2. Generate a DSA private-key/public-key pair, thus:

$ ssh-keygen -d

(ssh-keygen comes with ssh.) Running ssh-keygen -d creates the private and public keys
in $HOME/.ssh/id_dsa and $HOME/.ssh/id_dsa.pub respectively (assuming you accept
the standard defaults).

ssh-keygen -d will only work if you have Version 2 ssh installed; it will fail harmlessly oth-
erwise. If you only have Version 1 you can instead generate an RSA key pair using plain

$ ssh-keygen

Doing so creates the private and public RSA keys in $HOME/.ssh/identity and
$HOME/.ssh/identity.pub respectively.

[Deprecated.] Incidentally, you can force a Version 2 ssh to use the Version 1 protocol by creating
$HOME/config with the following in it:

BatchMode Yes

Host cvs.haskell.org
Protocol 1

Building the Glasgow Functional Pro-
gramming Tools Suite

4

In both cases, ssh-keygen will ask for a passphrase. The passphrase is a password that protects
your private key. In response to the 'Enter passphrase' question, you can either:

• [Recommended.] Enter a passphrase, which you will quote each time you use CVS. ssh-
agent makes this entirely un-tiresome.

• [Deprecated.] Just hit return (i.e. use an empty passphrase); then you won't need to quote the
passphrase when using CVS. The downside is that anyone who can see into your .ssh direct-
ory, and thereby get your private key, can mess up the repository. So you must keep the .ssh
directory with draconian no-access permissions.

Windows users: see the notes in Section 13.3, “Configuring SSH” about ssh wrinkles!

3. Send a message to to the CVS repository administrator (currently Jeff Lewis
<jeff@galois.com>), containing:

• Your desired user-name.

• Your .ssh/id_dsa.pub (or .ssh/identity.pub).

He will set up your account.

4. Set the following environment variables:

• $HOME: points to your home directory. This is where CVS will look for its .cvsrc file.

• $CVS_RSH to ssh

[Windows users.] Setting your CVS_RSH to ssh assumes that your CVS client understands
how to execute shell script ("#!"s,really), which is what ssh is. This may not be the case on
Win32 platforms, so in that case set CVS_RSH to ssh1.

• $CVSROOT to :ext:your-username @cvs.haskell.org:/home/cvs/root where
your-username is your user name on cvs.haskell.org.

The CVSROOT environment variable will be recorded in the checked-out tree, so you don't need
to set this every time.

• $CVSEDITOR: bin/gnuclient.exe if you want to use an Emacs buffer for typing in
those long commit messages.

• $SHELL: To use bash as the shell in Emacs, you need to set this to point to bash.exe.

5. Put the following in $HOME/.cvsrc:

checkout -P
release -d
update -P
diff -u

These are the default options for the specified CVS commands, and represent better defaults than
the usual ones. (Feel free to change them.)

[Windows users.] Filenames starting with . were illegal in the 8.3 DOS filesystem, but that restric-
tion should have been lifted by now (i.e., you're using VFAT or later filesystems.) If you're still
having problems creating it, don't worry; .cvsrc is entirely optional.

Building the Glasgow Functional Pro-
gramming Tools Suite

5

[Experts.] Once your account is set up, you can get access from other machines without bothering Jeff,
thus:

1. Generate a public/private key pair on the new machine.

2. Use ssh to log in to cvs.haskell.org, from your old machine.

3. Add the public key for the new machine to the file $HOME/ssh/authorized_keys on
cvs.haskell.org. (authorized_keys2, I think, for Version 2 protocol.)

4. Make sure that the new version of authorized_keys still has 600 file permissions.

2.2. Checking Out a Source Tree

• Make sure you set your CVSROOT environment variable according to either of the remote methods
above. The Approved Way to check out a source tree is as follows:

$ cvs checkout fpconfig

At this point you have a new directory called fptools which contains the basic stuff for the fptools
suite, including the configuration files and some other junk.

[Windows users.] The following messages appear to be harmless:

setsockopt IPTOS_LOWDELAY: Invalid argument
setsockopt IPTOS_THROUGHPUT: Invalid argument

You can call the fptools directory whatever you like, CVS won't mind:

$ mv fptools directory

NB: after you've read the CVS manual you might be tempted to try

$ cvs checkout -d directory fpconfig

instead of checking out fpconfig and then renaming it. But this doesn't work, and will result in
checking out the entire repository instead of just the fpconfig bit.

$ cd directory
$ cvs checkout ghc libraries

The second command here checks out the relevant modules you want to work on. For a GHC build,
for instance, you need at least the ghc, and libraries modules (for a full list of the projects
available, see Section 3, “What projects are there?”).

Remember that if you do not have happy and/or Alex installed, you need to check them out as
well.

2.3. Committing Changes

Building the Glasgow Functional Pro-
gramming Tools Suite

6

This is only if you have read-write access to the repository. For anoncvs users, CVS will issue a "read-
only repository" error if you try to commit changes.

• Build the software, if necessary. Unless you're just working on documentation, you'll probably want
to build the software in order to test any changes you make.

• Make changes. Preferably small ones first.

• Test them. You can see exactly what changes you've made by using the cvs diff command:

$ cvs diff

lists all the changes (using the diff command) in and below the current directory. In emacs, C-c
C-v = runs cvs diff on the current buffer and shows you the results.

• If you changed something in the fptools/libraries subdirectories, also run make html to
check if the documentation can be generated successfully, too.

• Before checking in a change, you need to update your source tree:

$ cd fptools
$ cvs update

This pulls in any changes that other people have made, and merges them with yours. If there are any
conflicts, CVS will tell you, and you'll have to resolve them before you can check your changes in.
The documentation describes what to do in the event of a conflict.

It's not always necessary to do a full cvs update before checking in a change, since CVS will always
tell you if you try to check in a file that someone else has changed. However, you should still update
at regular intervals to avoid making changes that don't work in conjuction with changes that
someone else made. Keeping an eye on what goes by on the mailing list can help here.

• When you're happy that your change isn't going to break anything, check it in. For a one-file change:

$ cvs commit filename

CVS will then pop up an editor for you to enter a "commit message", this is just a short description
of what your change does, and will be kept in the history of the file.

If you're using emacs, simply load up the file into a buffer and type C-x C-q, and emacs will
prompt for a commit message and then check in the file for you.

For a multiple-file change, things are a bit trickier. There are several ways to do this, but this is the
way I find easiest. First type the commit message into a temporary file. Then either

$ cvs commit -F commit-message file_1 file_n

or, if nothing else has changed in this part of the source tree,

$ cvs commit -F commit-message directory

where directory is a common parent directory for all your changes, and commit-message is
the name of the file containing the commit message.

Building the Glasgow Functional Pro-
gramming Tools Suite

7

Shortly afterwards, you'll get some mail from the relevant mailing list saying which files changed,
and giving the commit message. For a multiple-file change, you should still get only one message.

2.4. Updating Your Source Tree
It can be tempting to cvs update just part of a source tree to bring in some changes that someone else has
made, or before committing your own changes. This is NOT RECOMMENDED! Quite often changes in
one part of the tree are dependent on changes in another part of the tree (the mk/*.mk files are a good
example where problems crop up quite often). Having an inconsistent tree is a major cause of headaches.

So, to avoid a lot of hassle, follow this recipe for updating your tree:

$ cd fptools
$ cvs update -P 2>&1 | tee log

Look at the log file, and fix any conflicts (denoted by a “C” in the first column). New directories may
have appeared in the repository; CVS doesn't check these out by default, so to get new directories you
have to explicitly do

$ cvs update -d

in each project subdirectory. Don't do this at the top level, because then all the projects will be checked
out.

If you're using multiple build trees, then for every build tree you have pointing at this source tree, you
need to update the links in case any new files have appeared:

$ cd build-tree
$ lndir source-tree

Some files might have been removed, so you need to remove the links pointing to these non-existent
files:

$ find . -xtype l -exec rm '{}' \;

To be really safe, you should do

$ gmake all

from the top-level, to update the dependencies and build any changed files.

2.5. GHC Tag Policy
If you want to check out a particular version of GHC, you'll need to know how we tag versions in the re-
pository. The policy (as of 4.04) is:

• The tree is branched before every major release. The branch tag is ghc-x-xx-branch, where x-
xx is the version number of the release with the '.' replaced by a '-'. For example, the 4.04 re-
lease lives on ghc-4-04-branch.

• The release itself is tagged with ghc-x-xx (on the branch). eg. 4.06 is called ghc-4-06.

Building the Glasgow Functional Pro-
gramming Tools Suite

8

• We didn't always follow these guidelines, so to see what tags there are for previous versions, do cvs
log on a file that's been around for a while (like fptools/ghc/README).

So, to check out a fresh GHC 4.06 tree you would do:

$ cvs co -r ghc-4-06 fpconfig
$ cd fptools
$ cvs co -r ghc-4-06 ghc libraries

2.6. General Hints

• As a general rule: commit changes in small units, preferably addressing one issue or implementing a
single feature. Provide a descriptive log message so that the repository records exactly which
changes were required to implement a given feature/fix a bug. I've found this very useful in the past
for finding out when a particular bug was introduced: you can just wind back the CVS tree until the
bug disappears.

• Keep the sources at least *buildable* at any given time. No doubt bugs will creep in, but it's quite
easy to ensure that any change made at least leaves the tree in a buildable state. We do nightly builds
of GHC to keep an eye on what things work/don't work each day and how we're doing in relation to
previous verions. This idea is truely wrecked if the compiler won't build in the first place!

• To check out extra bits into an already-checked-out tree, use the following procedure. Suppose you
have a checked-out fptools tree containing just ghc, and you want to add nofib to it:

$ cd fptools
$ cvs checkout nofib

or:

$ cd fptools
$ cvs update -d nofib

(the -d flag tells update to create a new directory). If you just want part of the nofib suite, you can do

$ cd fptools
$ cvs checkout nofib/spectral

This works because nofib is a module in its own right, and spectral is a subdirectory of the nofib
module. The path argument to checkout must always start with a module name. There's no equival-
ent form of this command using update.

3. What projects are there?
The fptools suite consists of several projects, most of which can be downloaded, built and installed
individually. Each project corresponds to a subdirectory in the source tree, and if checking out from
CVS then each project can be checked out individually by sitting in the top level of your source tree and
typing cvs checkout project.

Here is a list of the projects currently available:

Building the Glasgow Functional Pro-
gramming Tools Suite

9

alex The Alex [http://www.haskell.org/alex/] lexical analyser generator for Haskell.

ghc The Glasgow Haskell Compiler [http://www.haskell.org/ghc/] (minus libraries). Ab-
solutely required for building GHC.

glafp-utils Utility programs, some of which are used by the build/installation system. Required
for pretty much everything.

greencard The GreenCard [http://www.haskell.org/greencard/] system for generating Haskell
foreign function interfaces.

haggis The Haggis [http://www.dcs.gla.ac.uk/fp/software/haggis/] Haskell GUI framework.

haddock The Haddock [http://www.haskell.org/haddock/] documentation tool.

happy The Happy [http://www.haskell.org/happy/] Parser generator.

hdirect The H/Direct [http://www.haskell.org/hdirect/] Haskell interoperability tool.

hood The Haskell Object Observation Debugger [http://www.haskell.org/hood/].

hslibs Old, now deprecated, libraries. Everything in here is in libraries.

libraries Hierarchical Haskell library suite (required for building GHC).

mhms The Modular Haskell Metric System.

nofib The NoFib suite: A collection of Haskell programs used primarily for benchmarking.

testsuite A testing framework, including GHC's regression test suite.

So, to build GHC you need at least the ghc and libraries projects (a GHC source distribution will
already include the bits you need).

4. Things to check before you start
Here's a list of things to check before you get started.

1. Disk space needed: from about 100Mb for a basic GHC build, up to probably 500Mb for a GHC
build with everything included (libraries built several different ways, etc.).

2. Use an appropriate machine / operating system. Section 5, “What machines the Glasgow tools run
on” lists the supported platforms; if yours isn't amongst these then you can try porting GHC (see
Section 10, “Porting GHC”).

3. Be sure that the “pre-supposed” utilities are installed. Section 6, “Installing pre-supposed utilities”
elaborates.

4. If you have any problem when building or installing the Glasgow tools, please check the “known
pitfalls” (Section 11, “Known pitfalls in building Glasgow Haskell ”). Also check the FAQ for the
version you're building, which is part of the User's Guide and available on the GHC web site
[http://www.haskell.org/ghc/].

If you feel there is still some shortcoming in our procedure or instructions, please report it.

For GHC, please see the bug-reporting section of the GHC Users' Guide

Building the Glasgow Functional Pro-
gramming Tools Suite

10

http://www.haskell.org/alex/
http://www.haskell.org/ghc/
http://www.haskell.org/greencard/
http://www.dcs.gla.ac.uk/fp/software/haggis/
http://www.haskell.org/haddock/
http://www.haskell.org/happy/
http://www.haskell.org/hdirect/
http://www.haskell.org/hood/
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/docs/latest/set/bug-reporting.html

[http://www.haskell.org/ghc/docs/latest/set/bug-reporting.html], to maximise the usefulness of your
report.

If in doubt, please send a message to <glasgow-haskell-bugs@haskell.org>.

5. What machines the Glasgow tools run on
The main question is whether or not the Haskell compiler (GHC) runs on your platform.

A “platform” is a architecture/manufacturer/operating-system combination, such as sparc-
sun-solaris2. Other common ones are alpha-dec-osf2, hppa1.1-hp-hpux9,
i386-unknown-linux, i386-unknown-solaris2, i386-unknown-freebsd,
i386-unknown-cygwin32, m68k-sun-sunos4, mips-sgi-irix5, sparc-sun-sunos4,
sparc-sun-solaris2, powerpc-ibm-aix.

Some libraries may only work on a limited number of platforms; for example, a sockets library is of no
use unless the operating system supports the underlying BSDisms.

5.1. What platforms the Haskell compiler (GHC) runs on
The GHC hierarchy of Porting Goodness: (a) Best is a native-code generator; (b) next best is a
“registerised” port; (c) the bare minimum is an “unregisterised” port. (“Unregisterised” is so terrible that
we won't say more about it).

We use Sparcs running Solaris 2.7 and x86 boxes running FreeBSD and Linux, so those are the best sup-
ported platforms, unsurprisingly.

Here's everything that's known about GHC ports. We identify platforms by their “canonical” CPU/
Manufacturer/OS triple.

alpha-
dec-
{osf,linux,freebsd,openbsd,netbsd}
:

The OSF port is currently working (as of GHC version 5.02.1)
and well supported. The native code generator is currently non-
working. Other operating systems will require some minor port-
ing.

sparc-sun-sunos4 Probably works with minor tweaks, hasn't been tested for a while.

sparc-sun-solaris2 Fully supported (at least for Solaris 2.7 and 2.6), including native-
code generator.

sparc-unknown-openbsd Supported, including native-code generator. The same should also
be true of NetBSD

hppa1.1-hp-hpux (HP-PA boxes
running HPUX 9.x)

A registerised port is available for version 4.08, but GHC hasn't
been built on that platform since (as far as we know). No native-
code generator.

i386-unknown-linux (PCs running
Linux, ELF binary format)

GHC works registerised and has a native code generator. You
must have GCC 2.7.x or later. NOTE about glibc versions:
GHC binaries built on a system running glibc 2.0 won't work
on a system running glibc 2.1, and vice versa. In general,
don't expect compatibility between glibc versions, even if the
shared library version hasn't changed.

Building the Glasgow Functional Pro-
gramming Tools Suite

11

ning FreeBSD 2.2 or higher) GHC works registerised. Pre-built packages are available in the
native package format, so if you just need binaries you're better
off just installing the package (it might even be on your installa-
tion CD!).

i386-unknown-openbsd (PCs run-
ning OpenBSD)

Supported, with native code generator. Packages are available
through the ports system in the native package format.

i386-unknown-netbsd (PCs running
NetBSD)

Will require some minor porting effort, but should work register-
ised.

i386-unknown-mingw32 (PCs run-
ning Windows)

Fully supported under Win9x, WinNT, Win2k, and WinXP. In-
cludes a native code generator. Building from source requires a
recent Cygwin [http://www.cygwin.com/] distribution to be in-
stalled.

ia64-unknown-linux Supported, except there is no native code generator.

x86_64-unknown-linux GHC currently works unregisterised. A registerised port is in pro-
gress.

amd64-unknown-openbsd (This is the same as x86_64-unknown-openbsd). GHC currently
works unregisterised. A registerised port is in progress.

mips-sgi-irix5 Port has worked in the past, but hasn't been tested for some time
(and will certainly have rotted in various ways). As usual, we
don't have access to machines and there hasn't been an over-
whelming demand for this port, but feel free to get in touch.

mips64-sgi-irix6 GHC currently works unregisterised.

powerpc-ibm-aix Port currently doesn't work, needs some minimal porting effort.
As usual, we don't have access to machines and there hasn't been
an overwhelming demand for this port, but feel free to get in
touch.

powerpc-apple-darwin Supported registerised. Native code generator is almost working.

powerpc-apple-linux Not supported (yet).

Various other systems have had GHC ported to them in the distant past, including various Motorola 68k
boxes. The 68k support still remains, but porting to one of these systems will certainly be a non-trivial
task.

5.2. What machines the other tools run on
Unless you hear otherwise, the other tools work if GHC works.

6. Installing pre-supposed utilities
Here are the gory details about some utility programs you may need; perl, gcc and happy are the only
important ones. (PVM is important if you're going for Parallel Haskell.) The configure script will tell
you if you are missing something.

GHC GHC is required to build many of the tools, including GHC itself. If you

Building the Glasgow Functional Pro-
gramming Tools Suite

12

http://www.cygwin.com/

need to port GHC to your platform because there isn't a binary distribu-
tion of GHC available, then see Section 10, “Porting GHC”.

Which version of GHC you need will depend on the packages you intend
to build. GHC itself will normally build using one of several older ver-
sions of itself - check the announcement or release notes for details.

Perl You have to have Perl to proceed! Perl version 5 at least is required.
GHC has been known to tickle bugs in Perl, so if you find that Perl
crashes when running GHC try updating (or downgrading) your Perl in-
stallation. Versions of Perl before 5.6 have been known to have various
bugs tickled by GHC, so the configure script will look for version 5.6 or
later.

For Win32 platforms, you should use the binary supplied in the Install-
Shield (copy it to /bin). The Cygwin-supplied Perl seems not to work.

Perl should be put somewhere so that it can be invoked by the #! script-
invoking mechanism. The full pathname may need to be less than 32
characters long on some systems.

GNU C (gcc) We recommend using GCC version 2.95.2 on all platforms. Failing that,
version 2.7.2 is stable on most platforms. Earlier versions of GCC can be
assumed not to work, and versions in between 2.7.2 and 2.95.2 (including
egcs) have varying degrees of stability depending on the platform.

GCC 3.2 is currently known to have problems building GHC on Sparc,
but is stable on x86.

If your GCC dies with “internal error” on some GHC source file, please
let us know, so we can report it and get things improved. (Exception: on
x86 boxes—you may need to fiddle with GHC's -monly-N-regs op-
tion; see the User's Guide)

GNU Make The fptools build system makes heavy use of features specific to GNU
make, so you must have this installed in order to build any of the fptools
suite.

Happy Happy is a parser generator tool for Haskell, and is used to generate
GHC's parsers. Happy is written in Haskell, and is a project in the CVS
repository (fptools/happy). It can be built from source, but bear in
mind that you'll need GHC installed in order to build it. To avoid the
chicken/egg problem, install a binary distribution of either Happy or
GHC to get started. Happy distributions are available from Happy's Web
Page [http://www.haskell.org/happy/].

Alex Alex is a lexical-analyser generator for Haskell, which GHC uses to gen-
erate its lexer. Like Happy, Alex is written in Haskell and is a project in
the CVS repository. Alex distributions are available from Alex's Web
Page [http://www.haskell.org/alex/].

autoconf GNU autoconf is needed if you intend to build from the CVS sources, it
is not needed if you just intend to build a standard source distribution.

Version 2.52 or later of the autoconf package is required. NB. version
2.13 will no longer work, as of GHC version 6.1.

autoreconf (from the autoconf package) recursively builds configure
scripts from the corresponding configure.ac and aclocal.m4

Building the Glasgow Functional Pro-
gramming Tools Suite

13

http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/alex/

files. If you modify one of the latter files, you'll need autoreconf to re-
build the corresponding configure.

sed You need a working sed if you are going to build from sources. The
build-configuration stuff needs it. GNU sed version 2.0.4 is no good! It
has a bug in it that is tickled by the build-configuration. 2.0.5 is OK. Oth-
ers are probably OK too (assuming we don't create too elaborate config-
ure scripts.)

One fptools project is worth a quick note at this point, because it is useful for all the others: glafp-
utils contains several utilities which aren't particularly Glasgow-ish, but Occasionally Indispensable.
Like lndir for creating symbolic link trees.

6.1. Tools for building parallel GHC (GPH)

PVM version 3: PVM is the Parallel Virtual Machine on which Parallel Haskell programs
run. (You only need this if you plan to run Parallel Haskell. Concurrent
Haskell, which runs concurrent threads on a uniprocessor doesn't need it.)
Underneath PVM, you can have (for example) a network of workstations
(slow) or a multiprocessor box (faster).

The current version of PVM is 3.3.11; we use 3.3.7. It is readily available
on the net; I think I got it from research.att.com, in netlib.

A PVM installation is slightly quirky, but easy to do. Just follow the
Readme instructions.

bash: Sadly, the gr2ps script, used to convert “parallelism profiles” to Post-
Script, is written in Bash (GNU's Bourne Again shell). This bug will be
fixed (someday).

6.2. Other useful tools

Flex This is a quite-a-bit-better-than-Lex lexer. Used to build a couple of utilities
in glafp-utils. Depending on your operating system, the supplied lex
may or may not work; you should get the GNU version.

More tools are required if you want to format the documentation that comes with GHC and other fptools
projects. See Section 9, “Building the documentation”.

7. Building from source
You've been rash enough to want to build some of the Glasgow Functional Programming tools (GHC,
Happy, nofib, etc.) from source. You've slurped the source, from the CVS repository or from a source
distribution, and now you're sitting looking at a huge mound of bits, wondering what to do next.

Gingerly, you type make. Wrong already!

This rest of this guide is intended for duffers like me, who aren't really interested in Makefiles and sys-
tems configurations, but who need a mental model of the interlocking pieces so that they can make them
work, extend them consistently when adding new software, and lay hands on them gently when they

Building the Glasgow Functional Pro-
gramming Tools Suite

14

don't work.

7.1. Quick Start
If you are starting from a source distribution, and just want a completely standard build, then the follow-
ing procedure should work (unless you're on Windows, in which case go to Section 13, “Instructions for
building under Windows”).

$ autoreconf
$./configure
$ make
$ make install

For GHC, this will do a 2-stage bootstrap build of the compiler, with profiling libraries, and install the
results.

If you want to do anything at all non-standard, or you want to do some development, read on...

7.2. Your source tree
The source code is held in your source tree. The root directory of your source tree must contain the fol-
lowing directories and files:

• Makefile: the root Makefile.

• mk/: the directory that contains the main Makefile code, shared by all the fptools software.

• configure.ac, config.sub, config.guess: these files support the configuration process.

• install-sh.

All the other directories are individual projects of the fptools system—for example, the Glasgow
Haskell Compiler (ghc), the Happy parser generator (happy), the nofib benchmark suite, and so on.
You can have zero or more of these. Needless to say, some of them are needed to build others.

The important thing to remember is that even if you want only one project (happy, say), you must have
a source tree whose root directory contains Makefile, mk/, configure.ac, and the project(s) you
want (happy/ in this case). You cannot get by with just the happy/ directory.

7.3. Build trees
If you just want to build the software once on a single platform, then your source tree can also be your
build tree, and you can skip the rest of this section.

We often want to build multiple versions of our software for different architectures, or with different op-
tions (e.g. profiling). It's very desirable to share a single copy of the source code among all these builds.

So for every source tree we have zero or more build trees. Each build tree is initially an exact copy of
the source tree, except that each file is a symbolic link to the source file, rather than being a copy of the
source file. There are “standard” Unix utilities that make such copies, so standard that they go by differ-
ent names: lndir, mkshadowdir are two (If you don't have either, the source distribution includes
sources for the X11 lndir—check out fptools/glafp-utils/lndir). See Section 7.5, “The
story so far” for a typical invocation.

Building the Glasgow Functional Pro-
gramming Tools Suite

15

The build tree does not need to be anywhere near the source tree in the file system. Indeed, one advant-
age of separating the build tree from the source is that the build tree can be placed in a non-backed-up
partition, saving your systems support people from backing up untold megabytes of easily-regenerated,
and rapidly-changing, gubbins. The golden rule is that (with a single exception—Section 7.4, “Getting
the build you want”) absolutely everything in the build tree is either a symbolic link to the source tree,
or else is mechanically generated. It should be perfectly OK for your build tree to vanish overnight; an
hour or two compiling and you're on the road again.

You need to be a bit careful, though, that any new files you create (if you do any development work) are
in the source tree, not a build tree!

Remember, that the source files in the build tree are symbolic links to the files in the source tree. (The
build tree soon accumulates lots of built files like Foo.o, as well.) You can delete a source file from the
build tree without affecting the source tree (though it's an odd thing to do). On the other hand, if you edit
a source file from the build tree, you'll edit the source-tree file directly. (You can set up Emacs so that if
you edit a source file from the build tree, Emacs will silently create an edited copy of the source file in
the build tree, leaving the source file unchanged; but the danger is that you think you've edited the
source file whereas actually all you've done is edit the build-tree copy. More commonly you do want to
edit the source file.)

Like the source tree, the top level of your build tree must be (a linked copy of) the root directory of the
fptools suite. Inside Makefiles, the root of your build tree is called $(FPTOOLS_TOP). In the rest
of this document path names are relative to $(FPTOOLS_TOP) unless otherwise stated. For example,
the file ghc/mk/target.mk is actually $(FPTOOLS_TOP)/ghc/mk/target.mk.

7.4. Getting the build you want
When you build fptools you will be compiling code on a particular host platform, to run on a particu-
lar target platform (usually the same as the host platform). The difficulty is that there are minor differ-
ences between different platforms; minor, but enough that the code needs to be a bit different for each.
There are some big differences too: for a different architecture we need to build GHC with a different
native-code generator.

There are also knobs you can turn to control how the fptools software is built. For example, you
might want to build GHC optimised (so that it runs fast) or unoptimised (so that you can compile it fast
after you've modified it. Or, you might want to compile it with debugging on (so that extra consistency-
checking code gets included) or off. And so on.

All of this stuff is called the configuration of your build. You set the configuration using a three-step
process.

Step 1: get ready for configuration. NOTE: if you're starting from a source distribution, rather than
CVS sources, you can skip this step.

Change directory to $(FPTOOLS_TOP) and issue the command

$ autoreconf

(with no arguments). This GNU program (recursively) converts
$(FPTOOLS_TOP)/configure.ac and
$(FPTOOLS_TOP)/aclocal.m4 to a shell script called
$(FPTOOLS_TOP)/configure. If autoreconf bleats that it
can't write the file configure, then delete the latter and try
again. Note that you must use autoreconf, and not the old auto-
conf! If you erroneously use the latter, you'll get a message like
"No rule to make target 'mk/config.h.in'".

Building the Glasgow Functional Pro-
gramming Tools Suite

16

Some projects, including GHC, have their own configure script.
autoreconf takes care of that, too, so all you have to do is calling
autoreconf in the top-level directory $(FPTOOLS_TOP).

These steps are completely platform-independent; they just mean
that the human-written files (configure.ac and acloc-
al.m4) can be short, although the resulting files (the configure
shell scripts and the C header template mk/config.h.in) are
long.

Step 2: system configuration. Runs the newly-created configure script, thus:

$./configure [args]

configure's mission is to scurry round your computer working out
what architecture it has, what operating system, whether it has the
vfork system call, where tar is kept, whether gcc is available,
where various obscure #include files are, whether it's a leap
year, and what the systems manager had for lunch. It communic-
ates these snippets of information in two ways:

• It translates mk/config.mk.in to mk/config.mk, sub-
stituting for things between “@” brackets. So, “@HaveGcc@”
will be replaced by “YES” or “NO” depending on what config-
ure finds. mk/config.mk is included by every Makefile
(directly or indirectly), so the configuration information is
thereby communicated to all Makefiles.

• It translates mk/config.h.in to mk/config.h. The lat-
ter is #included by various C programs, which can thereby
make use of configuration information.

configure takes some optional arguments. Use ./configure
--help to get a list of the available arguments. Here are some of
the ones you might need:

--with-ghc=path Specifies the path to an installed GHC
which you would like to use. This com-
piler will be used for compiling GHC-
specific code (eg. GHC itself). This op-
tion cannot be specified using
build.mk (see later), because config-
ure needs to auto-detect the version of
GHC you're using. The default is to look
for a compiler named ghc in your path.

--with-hc=path Specifies the path to any installed
Haskell compiler. This compiler will be
used for compiling generic Haskell code.
The default is to use ghc.

--with-gcc=path Specifies the path to the installed GCC.
This compiler will be used to compile all
C files, except any generated by the in-
stalled Haskell compiler, which will
have its own idea of which C compiler
(if any) to use. The default is to use gcc.

Building the Glasgow Functional Pro-
gramming Tools Suite

17

Step 3: build configuration. Next, you say how this build of fptools is to differ from the
standard defaults by creating a new file mk/build.mk in the
build tree. This file is the one and only file you edit in the build
tree, precisely because it says how this build differs from the
source. (Just in case your build tree does die, you might want to
keep a private directory of build.mk files, and use a symbolic
link in each build tree to point to the appropriate one.) So mk/
build.mk never exists in the source tree—you create one in
each build tree from the template. We'll discuss what to put in it
shortly.

And that's it for configuration. Simple, eh?

What do you put in your build-specific configuration file mk/build.mk? For almost all purposes all
you will do is put make variable definitions that override those in mk/config.mk.in. The whole
point of mk/config.mk.in—and its derived counterpart mk/config.mk—is to define the build
configuration. It is heavily commented, as you will see if you look at it. So generally, what you do is
look at mk/config.mk.in, and add definitions in mk/build.mk that override any of the con-
fig.mk definitions that you want to change. (The override occurs because the main boilerplate file,
mk/boilerplate.mk, includes build.mk after config.mk.)

For your convenience, there's a file called build.mk.sample that can serve as a starting point for
your build.mk.

For example, config.mk.in contains the definition:

GhcHcOpts=-O -Rghc-timing

The accompanying comment explains that this is the list of flags passed to GHC when building GHC it-
self. For doing development, it is wise to add -DDEBUG, to enable debugging code. So you would add
the following to build.mk:

or, if you prefer,

GhcHcOpts += -DDEBUG

GNU make allows existing definitions to have new text appended using the “+=” operator, which is
quite a convenient feature.)

If you want to remove the -O as well (a good idea when developing, because the turn-around cycle gets
a lot quicker), you can just override GhcLibHcOpts altogether:

GhcHcOpts=-DDEBUG -Rghc-timing

When reading config.mk.in, remember that anything between “@...@” signs is going to be substi-
tuted by configure later. You can override the resulting definition if you want, but you need to be a bit
surer what you are doing. For example, there's a line that says:

TAR = @TarCmd@

This defines the Make variables TAR to the pathname for a tar that configure finds somewhere. If you
have your own pet tar you want to use instead, that's fine. Just add this line to mk/build.mk:

TAR = mytar

Building the Glasgow Functional Pro-
gramming Tools Suite

18

You do not have to have a mk/build.mk file at all; if you don't, you'll get all the default settings from
mk/config.mk.in.

You can also use build.mk to override anything that configure got wrong. One place where this hap-
pens often is with the definition of FPTOOLS_TOP_ABS: this variable is supposed to be the canonical
path to the top of your source tree, but if your system uses an automounter then the correct directory is
hard to find automatically. If you find that configure has got it wrong, just put the correct definition in
build.mk.

7.5. The story so far
Let's summarise the steps you need to carry to get yourself a fully-configured build tree from scratch.

1. Get your source tree from somewhere (CVS repository or source distribution). Say you call the root
directory myfptools (it does not have to be called fptools). Make sure that you have the es-
sential files (see Section 7.2, “Your source tree”).

2. (Optional) Use lndir or mkshadowdir to create a build tree.

$ cd myfptools
$ mkshadowdir . /scratch/joe-bloggs/myfptools-sun4

(N.B. mkshadowdir's first argument is taken relative to its second.) You probably want to give the
build tree a name that suggests its main defining characteristic (in your mind at least), in case you
later add others.

3. Change directory to the build tree. Everything is going to happen there now.

$ cd /scratch/joe-bloggs/myfptools-sun4

4. Prepare for system configuration:

$ autoreconf

(You can skip this step if you are starting from a source distribution, and you already have con-
figure and mk/config.h.in.)

5. Do system configuration:

$./configure

Don't forget to check whether you need to add any arguments to configure; for example, a com-
mon requirement is to specify which GHC to use with --with-ghc=ghc.

6. Create the file mk/build.mk, adding definitions for your desired configuration options.

$ emacs mk/build.mk

You can make subsequent changes to mk/build.mk as often as you like. You do not have to run any
further configuration programs to make these changes take effect. In theory you should, however, say
gmake clean, gmake all, because configuration option changes could affect anything—but in practice
you are likely to know what's affected.

Building the Glasgow Functional Pro-
gramming Tools Suite

19

7.6. Making things
At this point you have made yourself a fully-configured build tree, so you are ready to start building real
things.

The first thing you need to know is that you must use GNU make, usually called gmake, not standard
Unix make. If you use standard Unix make you will get all sorts of error messages (but no damage) be-
cause the fptools Makefiles use GNU make's facilities extensively.

To just build the whole thing, cd to the top of your fptools tree and type gmake. This will prepare
the tree and build the various projects in the correct order.

7.7. Bootstrapping GHC
GHC requires a 2-stage bootstrap in order to provide full functionality, including GHCi. By a 2-stage
bootstrap, we mean that the compiler is built once using the installed GHC, and then again using the
compiler built in the first stage. You can also build a stage 3 compiler, but this normally isn't necessary
except to verify that the stage 2 compiler is working properly.

Note that when doing a bootstrap, the stage 1 compiler must be built, followed by the runtime system
and libraries, and then the stage 2 compiler. The correct ordering is implemented by the top-level fptools
Makefile, so if you want everything to work automatically it's best to start make from the top of the
tree. When building GHC, the top-level fptools Makefile is set up to do a 2-stage bootstrap by default
(when you say make). Some other targets it supports are:

stage1 Build everything as normal, including the stage 1 compiler.

stage2 Build the stage 2 compiler only.

stage3 Build the stage 3 compiler only.

bootstrap,
bootstrap2

Build stage 1 followed by stage 2.

bootstrap3 Build stages 1, 2 and 3.

install Install everything, including the compiler built in stage 2. To override the stage, say
make install stage=n where n is the stage to install.

The top-level Makefile also arranges to do the appropriate make boot steps (see below) before ac-
tually building anything.

The stage1, stage2 and stage3 targets also work in the ghc/compiler directory, but don't for-
get that each stage requires its own make boot step: for example, you must do

$ make boot stage=2

before make stage2 in ghc/compiler.

7.8. Standard Targets
In any directory you should be able to make the following:

boot does the one-off preparation required to get ready for the real work. Notably,
it does gmake depend in all directories that contain programs. It also builds

Building the Glasgow Functional Pro-
gramming Tools Suite

20

the necessary tools for compilation to proceed.

Invoking the boot target explicitly is not normally necessary. From the top-
level fptools directory, invoking gmake causes gmake boot all to be
invoked in each of the project subdirectories, in the order specified by
$(AllTargets) in config.mk.

If you're working in a subdirectory somewhere and need to update the de-
pendencies, gmake boot is a good way to do it.

all makes all the final target(s) for this Makefile. Depending on which directory
you are in a “final target” may be an executable program, a library archive, a
shell script, or a Postscript file. Typing gmake alone is generally the same as
typing gmake all.

install installs the things built by all (except for the documentation). Where does it
install them? That is specified by mk/config.mk.in; you can override it
in mk/build.mk, or by running configure with command-line arguments
like --bindir=/home/simonpj/bin; see ./configure --help
for the full details.

install-docs installs the documentation. Otherwise behaves just like install.

uninstall reverses the effect of install.

clean Delete all files from the current directory that are normally created by build-
ing the program. Don't delete the files that record the configuration, or files
generated by gmake boot. Also preserve files that could be made by building,
but normally aren't because the distribution comes with them.

distclean Delete all files from the current directory that are created by configuring or
building the program. If you have unpacked the source and built the program
without creating any other files, make distclean should leave only the
files that were in the distribution.

mostlyclean Like clean, but may refrain from deleting a few files that people normally
don't want to recompile.

maintainer-clean Delete everything from the current directory that can be reconstructed with
this Makefile. This typically includes everything deleted by distclean,
plus more: C source files produced by Bison, tags tables, Info files, and so on.

One exception, however: make maintainer-clean should not delete
configure even if configure can be remade using a rule in the Make-
file. More generally, make maintainer-clean should not delete any-
thing that needs to exist in order to run configure and then begin to build
the program.

check run the test suite.

All of these standard targets automatically recurse into sub-directories. Certain other standard targets do
not:

configure is only available in the root directory $(FPTOOLS_TOP); it has been discussed in
Section 7.4, “Getting the build you want”.

depend make a .depend file in each directory that needs it. This .depend file contains

Building the Glasgow Functional Pro-
gramming Tools Suite

21

mechanically-generated dependency information; for example, suppose a directory
contains a Haskell source module Foo.lhs which imports another module Baz.
Then the generated .depend file will contain the dependency:

Foo.o : Baz.hi

which says that the object file Foo.o depends on the interface file Baz.hi gener-
ated by compiling module Baz. The .depend file is automatically included by
every Makefile.

binary-dist make a binary distribution. This is the target we use to build the binary distributions
of GHC and Happy.

dist make a source distribution. Note that this target does “make distclean” as part of its
work; don't use it if you want to keep what you've built.

Most Makefiles have targets other than these. You can discover them by looking in the Makefile
itself.

7.9. Using a project from the build tree
If you want to build GHC (say) and just use it direct from the build tree without doing make install
first, you can run the in-place driver script: ghc/compiler/ghc-inplace.

Do NOT use ghc/compiler/ghc, or ghc/compiler/ghc-6.xx, as these are the scripts inten-
ded for installation, and contain hard-wired paths to the installed libraries, rather than the libraries in the
build tree.

Happy can similarly be run from the build tree, using happy/src/happy-inplace, and similarly
for Alex and Haddock.

7.10. Fast Making
Sometimes the dependencies get in the way: if you've made a small change to one file, and you're abso-
lutely sure that it won't affect anything else, but you know that make is going to rebuild everything any-
way, the following hack may be useful:

$ gmake FAST=YES

This tells the make system to ignore dependencies and just build what you tell it to. In other words, it's
equivalent to temporarily removing the .depend file in the current directory (where mkdependHS and
friends store their dependency information).

A bit of history: GHC used to come with a fastmake script that did the above job, but GNU make
provides the features we need to do it without resorting to a script. Also, we've found that fastmaking is
less useful since the advent of GHC's recompilation checker (see the User's Guide section on "Separate
Compilation").

8. The Makefile architecture
make is great if everything works—you type gmake install and lo! the right things get compiled and in-
stalled in the right places. Our goal is to make this happen often, but somehow it often doesn't; instead
some weird error message eventually emerges from the bowels of a directory you didn't know existed.

Building the Glasgow Functional Pro-
gramming Tools Suite

22

1 One of the most important features of GNU make that we use is the ability for a Makefile to include another named file, very like cpp's
#include directive.

The purpose of this section is to give you a road-map to help you figure out what is going right and what
is going wrong.

8.1. Debugging
Debugging Makefiles is something of a black art, but here's a couple of tricks that we find particu-
larly useful. The following command allows you to see the contents of any make variable in the context
of the current Makefile:

$ make show VALUE=HS_SRCS

where you can replace HS_SRCS with the name of any variable you wish to see the value of.

GNU make has a -d option which generates a dump of the decision procedure used to arrive at a con-
clusion about which files should be recompiled. Sometimes useful for tracking down problems with su-
perfluous or missing recompilations.

8.2. A small project
To get started, let us look at the Makefile for an imaginary small fptools project, small. Each
project in fptools has its own directory in FPTOOLS_TOP, so the small project will have its own
directory FPOOLS_TOP/small/. Inside the small/ directory there will be a Makefile, looking
something like this:

Makefile for fptools project "small"

TOP = ..
include $(TOP)/mk/boilerplate.mk

SRCS = $(wildcard *.lhs) $(wildcard *.c)
HS_PROG = small

include $(TOP)/target.mk

this Makefile has three sections:

1. The first section includes 1 a file of “boilerplate” code from the level above (which in this case will
be FPTOOLS_TOP/mk/boilerplate.mk). As its name suggests, boilerplate.mk con-
sists of a large quantity of standard Makefile code. We discuss this boilerplate in more detail in
Section 8.5, “The main mk/boilerplate.mk file”.

Before the include statement, you must define the make variable TOP to be the directory con-
taining the mk directory in which the boilerplate.mk file is. It is not OK to simply say

include ../mk/boilerplate.mk # NO NO NO

Why? Because the boilerplate.mk file needs to know where it is, so that it can, in turn, in-
clude other files. (Unfortunately, when an included file does an include, the filename is
treated relative to the directory in which gmake is being run, not the directory in which the in-
cluded sits.) In general, every file foo.mk assumes that $(TOP)/mk/foo.mk refers to itself.
It is up to the Makefile doing the include to ensure this is the case.

Building the Glasgow Functional Pro-
gramming Tools Suite

23

Files intended for inclusion in other Makefiles are written to have the following property: after
foo.mk is included, it leaves TOP containing the same value as it had just before the in-
clude statement. In our example, this invariant guarantees that the include for target.mk
will look in the same directory as that for boilerplate.mk.

2. The second section defines the following standard make variables: SRCS (the source files from
which is to be built), and HS_PROG (the executable binary to be built). We will discuss in more de-
tail what the “standard variables” are, and how they affect what happens, in Section 8.8, “The main
mk/target.mk file”.

The definition for SRCS uses the useful GNU make construct $(wildcard pat), which ex-
pands to a list of all the files matching the pattern pat in the current directory. In this example,
SRCS is set to the list of all the .lhs and .c files in the directory. (Let's suppose there is one of
each, Foo.lhs and Baz.c.)

3. The last section includes a second file of standard code, called target.mk. It contains the rules
that tell gmake how to make the standard targets (Section 7.8, “Standard Targets”). Why, you ask,
can't this standard code be part of boilerplate.mk? Good question. We discuss the reason
later, in Section 8.4, “Boilerplate architecture”.

You do not have to include the target.mk file. Instead, you can write rules of your own for
all the standard targets. Usually, though, you will find quite a big payoff from using the canned
rules in target.mk; the price tag is that you have to understand what canned rules get enabled,
and what they do (Section 8.8, “The main mk/target.mk file”).

In our example Makefile, most of the work is done by the two included files. When you say
gmake all, the following things happen:

• gmake figures out that the object files are Foo.o and Baz.o.

• It uses a boilerplate pattern rule to compile Foo.lhs to Foo.o using a Haskell compiler. (Which
one? That is set in the build configuration.)

• It uses another standard pattern rule to compile Baz.c to Baz.o, using a C compiler. (Ditto.)

• It links the resulting .o files together to make small, using the Haskell compiler to do the link
step. (Why not use ld? Because the Haskell compiler knows what standard libraries to link in. How
did gmake know to use the Haskell compiler to do the link, rather than the C compiler? Because we
set the variable HS_PROG rather than C_PROG.)

All Makefiles should follow the above three-section format.

8.3. A larger project
Larger projects are usually structured into a number of sub-directories, each of which has its own
Makefile. (In very large projects, this sub-structure might be iterated recursively, though that is rare.)
To give you the idea, here's part of the directory structure for the (rather large) GHC project:

$(FPTOOLS_TOP)/ghc/
Makefile
mk/
boilerplate.mk
rules.mk
docs/
Makefile

Building the Glasgow Functional Pro-
gramming Tools Suite

24

...source files for documentation...
driver/
Makefile
...source files for driver...
compiler/
Makefile
parser/...source files for parser...
renamer/...source files for renamer...
...etc...

The sub-directories docs, driver, compiler, and so on, each contains a sub-component of GHC,
and each has its own Makefile. There must also be a Makefile in $(FPTOOLS_TOP)/ghc. It
does most of its work by recursively invoking gmake on the Makefiles in the sub-directories. We say
that ghc/Makefile is a non-leaf Makefile, because it does little except organise its children, while
the Makefiles in the sub-directories are all leaf Makefiles. (In principle the sub-directories might
themselves contain a non-leaf Makefile and several sub-sub-directories, but that does not happen in
GHC.)

The Makefile in ghc/compiler is considered a leaf Makefile even though the ghc/
compiler has sub-directories, because these sub-directories do not themselves have Makefiles in
them. They are just used to structure the collection of modules that make up GHC, but all are managed
by the single Makefile in ghc/compiler.

You will notice that ghc/ also contains a directory ghc/mk/. It contains GHC-specific Makefile
boilerplate code. More precisely:

• ghc/mk/boilerplate.mk is included at the top of ghc/Makefile, and of all the leaf Make-
files in the sub-directories. It in turn includes the main boilerplate file mk/
boilerplate.mk.

• ghc/mk/target.mk is included at the bottom of ghc/Makefile, and of all the leaf Make-
files in the sub-directories. It in turn includes the file mk/target.mk.

So these two files are the place to look for GHC-wide customisation of the standard boilerplate.

8.4. Boilerplate architecture
Every Makefile includes a boilerplate.mk file at the top, and target.mk file at the bottom. In
this section we discuss what is in these files, and why there have to be two of them. In general:

• boilerplate.mk consists of:

• Definitions of millions of make variables that collectively specify the build configuration. Ex-
amples: HC_OPTS, the options to feed to the Haskell compiler; NoFibSubDirs, the sub-
directories to enable within the nofib project; GhcWithHc, the name of the Haskell compiler
to use when compiling GHC in the ghc project.

• Standard pattern rules that tell gmake how to construct one file from another.

boilerplate.mk needs to be included at the top of each Makefile, so that the user can re-
place the boilerplate definitions or pattern rules by simply giving a new definition or pattern rule in
the Makefile. gmake simply takes the last definition as the definitive one.

Instead of replacing boilerplate definitions, it is also quite common to augment them. For example, a
Makefile might say:

Building the Glasgow Functional Pro-
gramming Tools Suite

25

SRC_HC_OPTS += -O

thereby adding “-O” to the end of SRC_HC_OPTS.

• target.mk contains make rules for the standard targets described in Section 7.8, “Standard Tar-
gets”. These rules are selectively included, depending on the setting of certain make variables.
These variables are usually set in the middle section of the Makefile between the two includes.

target.mk must be included at the end (rather than being part of boilerplate.mk) for several
tiresome reasons:

• gmake commits target and dependency lists earlier than it should. For example, target.mk
has a rule that looks like this:

$(HS_PROG) : $(OBJS)
$(HC) $(LD_OPTS) $< -o $@

If this rule was in boilerplate.mk then $(HS_PROG) and $(OBJS) would not have their
final values at the moment gmake encountered the rule. Alas, gmake takes a snapshot of their
current values, and wires that snapshot into the rule. (In contrast, the commands executed when
the rule “fires” are only substituted at the moment of firing.) So, the rule must follow the defini-
tions given in the Makefile itself.

• Unlike pattern rules, ordinary rules cannot be overriden or replaced by subsequent rules for the
same target (at least, not without an error message). Including ordinary rules in boiler-
plate.mk would prevent the user from writing rules for specific targets in specific cases.

• There are a couple of other reasons I've forgotten, but it doesn't matter too much.

8.5. The main mk/boilerplate.mk file
If you look at $(FPTOOLS_TOP)/mk/boilerplate.mk you will find that it consists of the fol-
lowing sections, each held in a separate file:

config.mk is the build configuration file we discussed at length in Section 7.4, “Getting the build
you want”.

paths.mk defines make variables for pathnames and file lists. This file contains code for automat-
ically compiling lists of source files and deriving lists of object files from those. The res-
ults can be overriden in the Makefile, but in most cases the automatic setup should do
the right thing.

The following variables may be set in the Makefile to affect how the automatic
source file search is done:

ALL_DIRS Set to a list of directories to search in addition to the current dir-
ectory for source files.

EXCLUDED_SRCS Set to a list of source files (relative to the current directory) to
omit from the automatic search. The source searching machinery
is clever enough to know that if you exclude a source file from
which other sources are derived, then the derived sources should
also be excluded. For example, if you set EXCLUDED_SRCS to
include Foo.y, then Foo.hs will also be excluded.

Building the Glasgow Functional Pro-
gramming Tools Suite

26

EXTRA_SRCS Set to a list of extra source files (perhaps in directories not listed
in ALL_DIRS) that should be considered.

The results of the automatic source file search are placed in the following make vari-
ables:

SRCS All source files found, sorted and without duplicates, including those
which might not exist yet but will be derived from other existing
sources. SRCS can be overriden if necessary, in which case the vari-
ables below will follow suit.

HS_SRCS all Haskell source files in the current directory, including those de-
rived from other source files (eg. Happy sources also give rise to
Haskell sources).

HS_OBJS Object files derived from HS_SRCS.

HS_IFACES Interface files (.hi files) derived from HS_SRCS.

C_SRCS All C source files found.

C_OBJS Object files derived from C_SRCS.

SCRIPT_SRCS All script source files found (.lprl files).

SCRIPT_OBJS “object” files derived from SCRIPT_SRCS (.prl files).

HSC_SRCS All hsc2hs source files (.hsc files).

HAPPY_SRCS All happy source files (.y or .hy files).

OBJS the concatenation of $(HS_OBJS), $(C_OBJS), and
$(SCRIPT_OBJS).

Any or all of these definitions can easily be overriden by giving new definitions in your
Makefile.

What, exactly, does paths.mk consider a “source file” to be? It's based on the file's
suffix (e.g. .hs, .lhs, .c, .hy, etc), but this is the kind of detail that changes, so
rather than enumerate the source suffices here the best thing to do is to look in
paths.mk.

opts.mk defines make variables for option strings to pass to each program. For example, it
defines HC_OPTS, the option strings to pass to the Haskell compiler. See Section 8.7,
“Pattern rules and options”.

suffix.mk defines standard pattern rules—see Section 8.7, “Pattern rules and options”.

Any of the variables and pattern rules defined by the boilerplate file can easily be overridden in any par-
ticular Makefile, because the boilerplate include comes first. Definitions after this include dir-
ective simply override the default ones in boilerplate.mk.

8.6. Platform settings
There are three platforms of interest when building GHC:

Building the Glasgow Functional Pro-
gramming Tools Suite

27

The
build
plat-
form

The platform on which we are doing this build.

The
host
plat-
form

The platform on which these binaries will run.

The
target
plat-
form

The platform for which this compiler will generate code.

These platforms are set when running the configure script, using the --build, --host, and -
-target options. The mk/config.mk file defines several symbols related to the platform settings
(see mk/config.mk for details).

We don't currently support build & host being different, because the build process creates binaries that
are both run during the build, and also installed.

If host and target are different, then we are building a cross-compiler. For GHC, this means a compiler
which will generate intermediate .hc files to port to the target architecture for bootstrapping. The librar-
ies and stage 2 compiler will be built as HC files for the target system (see Section 10, “Porting GHC”
for details.

More details on when to use BUILD, HOST or TARGET can be found in the comments in
config.mk.

8.7. Pattern rules and options
The file suffix.mk defines standard pattern rules that say how to build one kind of file from another,
for example, how to build a .o file from a .c file. (GNU make's pattern rules are more powerful and
easier to use than Unix make's suffix rules.)

Almost all the rules look something like this:

%.o : %.c
$(RM) $@
$(CC) $(CC_OPTS) -c $< -o $@

Here's how to understand the rule. It says that something.o (say Foo.o) can be built from something.c
(Foo.c), by invoking the C compiler (path name held in $(CC)), passing to it the options
$(CC_OPTS) and the rule's dependent file of the rule $< (Foo.c in this case), and putting the result in
the rule's target $@ (Foo.o in this case).

Every program is held in a make variable defined in mk/config.mk—look in mk/config.mk for
the complete list. One important one is the Haskell compiler, which is called $(HC).

Every program's options are are held in a make variables called <prog>_OPTS. the <prog>_OPTS
variables are defined in mk/opts.mk. Almost all of them are defined like this:

CC_OPTS = \
$(SRC_CC_OPTS) $(WAY$(_way)_CC_OPTS) $($*_CC_OPTS) $(EXTRA_CC_OPTS)

The four variables from which CC_OPTS is built have the following meaning:

SRC_CC_OPTS: options passed to all C compilations.

Building the Glasgow Functional Pro-
gramming Tools Suite

28

: options passed to C compilations for way <way>. For example,
WAY_mp_CC_OPTS gives options to pass to the C compiler when compil-
ing way mp. The variable WAY_CC_OPTS holds options to pass to the C
compiler when compiling the standard way. (Section 8.10, “Way manage-
ment” dicusses multi-way compilation.)

<module>_CC_OPTS: options to pass to the C compiler that are specific to module <module>.
For example, SMap_CC_OPTS gives the specific options to pass to the C
compiler when compiling SMap.c.

EXTRA_CC_OPTS: extra options to pass to all C compilations. This is intended for command
line use, thus:

$ gmake libHS.a EXTRA_CC_OPTS="-v"

8.8. The main mk/target.mk file
target.mk contains canned rules for all the standard targets described in Section 7.8, “Standard Tar-
gets”. It is complicated by the fact that you don't want all of these rules to be active in every
Makefile. Rather than have a plethora of tiny files which you can include selectively, there is a single
file, target.mk, which selectively includes rules based on whether you have defined certain variables
in your Makefile. This section explains what rules you get, what variables control them, and what the
rules do. Hopefully, you will also get enough of an idea of what is supposed to happen that you can read
and understand any weird special cases yourself.

HS_PROG. If HS_PROG is defined, you get rules with the following targets:

HS_PROG itself. This rule links $(OBJS) with the Haskell runtime system to get an
executable called $(HS_PROG).

install installs $(HS_PROG) in $(bindir).

C_PROG is similar to HS_PROG, except that the link step links $(C_OBJS) with the C runtime
system.

LIBRARY is similar to HS_PROG, except that it links $(LIB_OBJS) to make the library archive
$(LIBRARY), and install installs it in $(libdir).

LIB_DATA …

LIB_EXEC …

HS_SRCS,
C_SRCS.

If HS_SRCS is defined and non-empty, a rule for the target depend is included, which
generates dependency information for Haskell programs. Similarly for C_SRCS.

All of these rules are “double-colon” rules, thus

install :: $(HS_PROG)
...how to install it...

GNU make treats double-colon rules as separate entities. If there are several double-colon rules for the
same target it takes each in turn and fires it if its dependencies say to do so. This means that you can, for
example, define both HS_PROG and LIBRARY, which will generate two rules for install. When you
type gmake install both rules will be fired, and both the program and the library will be installed, just as

Building the Glasgow Functional Pro-
gramming Tools Suite

29

you wanted.

8.9. Recursion
In leaf Makefiles the variable SUBDIRS is undefined. In non-leaf Makefiles, SUBDIRS is set to
the list of sub-directories that contain subordinate Makefiles. It is up to you to set SUBDIRS in the
Makefile. There is no automation here—SUBDIRS is too important to automate.

When SUBDIRS is defined, target.mk includes a rather neat rule for the standard targets (Sec-
tion 7.8, “Standard Targets” that simply invokes make recursively in each of the sub-directories.

These recursive invocations are guaranteed to occur in the order in which the list of directories is spe-
cified in SUBDIRS. This guarantee can be important. For example, when you say gmake boot it can be
important that the recursive invocation of make boot is done in one sub-directory (the include files, say)
before another (the source files). Generally, put the most independent sub-directory first, and the most
dependent last.

8.10. Way management
We sometimes want to build essentially the same system in several different “ways”. For example, we
want to build GHC's Prelude libraries with and without profiling, so that there is an appropriately-
built library archive to link with when the user compiles his program. It would be possible to have a
completely separate build tree for each such “way”, but it would be horribly bureaucratic, especially
since often only parts of the build tree need to be constructed in multiple ways.

Instead, the target.mk contains some clever magic to allow you to build several versions of a system;
and to control locally how many versions are built and how they differ. This section explains the magic.

The files for a particular way are distinguished by munging the suffix. The “normal way” is always
built, and its files have the standard suffices .o, .hi, and so on. In addition, you can build one or more
extra ways, each distinguished by a way tag. The object files and interface files for one of these extra
ways are distinguished by their suffix. For example, way mp has files .mp_o and .mp_hi. Library
archives have their way tag the other side of the dot, for boring reasons; thus, libHS_mp.a.

A make variable called way holds the current way tag. way is only ever set on the command line of
gmake (usually in a recursive invocation of gmake by the system). It is never set inside a Makefile.
So it is a global constant for any one invocation of gmake. Two other make variables, way_ and _way
are immediately derived from $(way) and never altered. If way is not set, then neither are way_ and
_way, and the invocation of make will build the “normal way”. If way is set, then the other two vari-
ables are set in sympathy. For example, if $(way) is “mp”, then way_ is set to “mp_” and _way is set
to “_mp”. These three variables are then used when constructing file names.

So how does make ever get recursively invoked with way set? There are two ways in which this hap-
pens:

• For some (but not all) of the standard targets, when in a leaf sub-directory, make is recursively in-
voked for each way tag in $(WAYS). You set WAYS in the Makefile to the list of way tags you
want these targets built for. The mechanism here is very much like the recursive invocation of make
in sub-directories (Section 8.9, “Recursion”). It is up to you to set WAYS in your Makefile; this is
how you control what ways will get built.

• For a useful collection of targets (such as libHS_mp.a, Foo.mp_o) there is a rule which recurs-
ively invokes make to make the specified target, setting the way variable. So if you say gmake
Foo.mp_o you should see a recursive invocation gmake Foo.mp_o way=mp, and in this recursive
invocation the pattern rule for compiling a Haskell file into a .o file will match. The key pattern
rules (in suffix.mk) look like this:

Building the Glasgow Functional Pro-
gramming Tools Suite

30

%.$(way_)o : %.lhs
$(HC) $(HC_OPTS) $< -o $@

Neat, eh?

• You can invoke make with a particular way setting yourself, in order to build files related to a par-
ticular way in the current directory. eg.

$ make way=p

will build files for the profiling way only in the current directory.

8.11. When the canned rule isn't right
Sometimes the canned rule just doesn't do the right thing. For example, in the nofib suite we want the
link step to print out timing information. The thing to do here is not to define HS_PROG or C_PROG,
and instead define a special purpose rule in your own Makefile. By using different variable names
you will avoid the canned rules being included, and conflicting with yours.

9. Building the documentation
9.1. Tools for building the Documentation

The following additional tools are required if you want to format the documentation that comes with the
fptools projects:

DocBook Much of our documentation is written in DocBook XML, instructions
on installing and configuring the DocBook tools are below.

TeX A decent TeX distribution is required if you want to produce printable
documentation. We recomment teTeX, which includes just about
everything you need.

Haddock Haddock is a Haskell documentation tool that we use for automatically
generating documentation from the library source code. It is an
fptools project in itself. To build documentation for the libraries
(fptools/libraries) you should check out and build Haddock in
fptools/haddock. Haddock requires GHC to build.

9.2. Installing the DocBook tools

9.2.1. Installing the DocBook tools on Linux

If you're on a recent RedHat (7.0+) or SuSE (8.1+) system, you probably have working DocBook tools
already installed. The configure script should detect your setup and you're away.

If you don't have DocBook tools installed, and you are using a system that can handle RPM packages,
you can use Rpmfind.net [http://rpmfind.net/] to find suitable packages for your system. Search for the
packages docbook-dtd, docbook-xsl-stylesheets, libxslt, libxml2, fop, xmltex,
and dvips.

Building the Glasgow Functional Pro-
gramming Tools Suite

31

http://rpmfind.net/

9.2.2. Installing DocBook on FreeBSD

On FreeBSD systems, the easiest way to get DocBook up and running is to install it from the ports tree
or a pre-compiled package (packages are available from your local FreeBSD mirror site).

To use the ports tree, do this:

$ cd /usr/ports/textproc/docproj
$ make install

This installs the FreeBSD documentation project tools, which includes everything needed to format the
GHC documentation.

9.2.3. Installing from binaries on Windows

Probably the fastest route to a working DocBook environment on Windows is to install Cygwin
[http://www.cygwin.com/] with the complete Doc category. If you are using MinGW
[http://www.mingw.org/] for compilation, you have to help configure a little bit: Set the environment
variables XmllintCmd and XsltprocCmd to the paths of the Cygwin executables xmllint and xslt-
proc, respectively, and set fp_cv_dir_docbook_xsl to the path of the directory where the XSL
stylesheets are installed, e.g. c:/cygwin/usr/share/docbook-xsl.

If you want to build HTML Help, you have to install the HTML Help SDK
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/hworiHTMLHelpStartP
age.asp], too, and make sure that hhc is in your PATH.

9.3. Configuring the DocBook tools
Once the DocBook tools are installed, the configure script will detect them and set up the build system
accordingly. If you have a system that isn't supported, let us know, and we'll try to help.

9.4. Building the documentation
To build documentation in a certain format, you can say, for example,

$ make html

to build HTML documentation below the current directory. The available formats are: dvi, ps, pdf,
html, and rtf. Note that not all documentation can be built in all of these formats: HTML documenta-
tion is generally supported everywhere, and DocBook documentation might support the other formats
(depending on what other tools you have installed).

All of these targets are recursive; that is, saying make html will make HTML docs for all the docu-
ments recursively below the current directory.

Because there are many different formats that the DocBook documentation can be generated in, you
have to select which ones you want by setting the XMLDocWays variable to a list of them. For example,
in build.mk you might have a line:

XMLDocWays = html ps

This will cause the documentation to be built in the requested formats as part of the main build (the de-
fault is not to build any documentation at all).

Building the Glasgow Functional Pro-
gramming Tools Suite

32

http://www.cygwin.com/
http://www.mingw.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/hworiHTMLHelpStartPage.asp

9.5. Installing the documentation
To install the documentation, use:

$ make install-docs

This will install the documentation into $(datadir) (which defaults to $(prefix)/share). The
exception is HTML documentation, which goes into $(datadir)/html, to keep things tidy.

Note that unless you set $(XMLDocWays) to a list of formats, the install-docs target won't do
anything for DocBook XML documentation.

10. Porting GHC
This section describes how to port GHC to a currenly unsupported platform. There are two distinct pos-
sibilities:

• The hardware architecture for your system is already supported by GHC, but you're running an OS
that isn't supported (or perhaps has been supported in the past, but currently isn't). This is the easiest
type of porting job, but it still requires some careful bootstrapping. Proceed to Section 10.1,
“Booting/porting from C (.hc) files”.

• Your system's hardware architecture isn't supported by GHC. This will be a more difficult port
(though by comparison perhaps not as difficult as porting gcc). Proceed to Section 10.2, “Porting
GHC to a new architecture”.

10.1. Booting/porting from C (.hc) files
Bootstrapping GHC on a system without GHC already installed is achieved by taking the intermediate C
files (known as HC files) from another GHC compilation, compiling them using gcc to get a working
GHC.

NOTE: GHC versions 5.xx were hard to bootstrap from C. We recommend using GHC 6.0.1 or later.

HC files are platform-dependent, so you have to get a set that were generated on the same platform.
There may be some supplied on the GHC download page, otherwise you'll have to compile some up
yourself, or start from unregisterised HC files - see Section 10.2, “Porting GHC to a new architecture”.

The following steps should result in a working GHC build with full libraries:

• Unpack the HC files on top of a fresh source tree (make sure the source tree version matches the ver-
sion of the HC files exactly!). This will place matching .hc files next to the corresponding Haskell
source (.hs or .lhs) in the compiler subdirectory ghc/compiler and in the libraries
(subdirectories of libraries).

• The actual build process is fully automated by the hc-build script located in the distrib direct-
ory. If you eventually want to install GHC into the directory dir, the following command will ex-
ecute the whole build process (it won't install yet):

$ distrib/hc-build --prefix=dir

By default, the installation directory is /usr/local. If that is what you want, you may omit the ar-
gument to hc-build. Generally, any option given to hc-build is passed through to the configur-

Building the Glasgow Functional Pro-
gramming Tools Suite

33

ation script configure. If hc-build successfully completes the build process, you can install
the resulting system, as normal, with

$ make install

10.2. Porting GHC to a new architecture
The first step in porting to a new architecture is to get an unregisterised build working. An unregister-
ised build is one that compiles via vanilla C only. By contrast, a registerised build uses the following ar-
chitecture-specific hacks for speed:

• Global register variables: certain abstract machine “registers” are mapped to real machine registers,
depending on how many machine registers are available (see ghc/includes/MachRegs.h).

• Assembly-mangling: when compiling via C, we feed the assembly generated by gcc though a Perl
script known as the mangler (see ghc/driver/mangler/ghc-asm.lprl). The mangler re-
arranges the assembly to support tail-calls and various other optimisations.

In an unregisterised build, neither of these hacks are used — the idea is that the C code generated by the
compiler should compile using gcc only. The lack of these optimisations costs about a factor of two in
performance, but since unregisterised compilation is usually just a step on the way to a full registerised
port, we don't mind too much.

Notes on GHC portability in general: we've tried to stick to writing portable code in most parts of the
system, so it should compile on any POSIXish system with gcc, but in our experience most systems dif-
fer from the standards in one way or another. Deal with any problems as they arise - if you get stuck, ask
the experts on <glasgow-haskell-users@haskell.org>.

Lots of useful information about the innards of GHC is available in the GHC Commentary
[http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/], which might be helpful if you run into some
code which needs tweaking for your system.

10.2.1. Cross-compiling to produce an unregisterised GHC

NOTE! These instructions apply to GHC 6.4 and (hopefully) later. If you need instructions for an earlier
version of GHC, try to get hold of the version of this document that was current at the time. It should be
available from the appropriate download page on the GHC homepage [http://www.haskell.org/ghc/].

In this section, we explain how to bootstrap GHC on a new platform, using unregisterised intermediate
C files. We haven't put a great deal of effort into automating this process, for two reasons: it is done very
rarely, and the process usually requires human intervention to cope with minor porting issues anyway.

The following step-by-step instructions should result in a fully working, albeit unregisterised, GHC.
Firstly, you need a machine that already has a working GHC (we'll call this the host machine), in order
to cross-compile the intermediate C files that we will use to bootstrap the compiler on the target ma-
chine.

• On the target machine:

• Unpack a source tree (preferably a released version). We will call the path to the root of this tree
T.

•

Building the Glasgow Functional Pro-
gramming Tools Suite

34

http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/
http://www.haskell.org/ghc/

$ cd T
$./configure --enable-hc-boot --enable-hc-boot-unregisterised

You might need to update configure.in to recognise the new architecture, and re-generate
configure with autoreconf.

•
$ cd T/ghc/includes
$ make

• On the host machine:

• Unpack a source tree (same released version). Call this directory H.

•
$ cd H
$./configure

• Create H/mk/build.mk, with the following contents:

GhcUnregisterised = YES
GhcLibHcOpts = -O -fvia-C -keep-hc-files
GhcRtsHcOpts = -keep-hc-files
GhcLibWays =
SplitObjs = NO
GhcWithNativeCodeGen = NO
GhcWithInterpreter = NO
GhcStage1HcOpts = -O
GhcStage2HcOpts = -O -fvia-C -keep-hc-files
SRC_HC_OPTS += -H32m
GhcBootLibs = YES

• Edit H/mk/config.mk:

• change TARGETPLATFORM appropriately, and set the variables involving TARGET to the
correct values for the target platform. This step is necessary because currently configure
doesn't cope with specifying different values for the --host and --target flags.

• copy LeadingUnderscore setting from target.

• Copy T/ghc/includes/ghcautoconf.h, T/
ghc/includes/DerivedConstants.h, and T/ghc/includes/GHCConstants.h
to H/ghc/includes. Note that we are building on the host machine, using the target ma-
chine's configuration files. This is so that the intermediate C files generated here will be suitable
for compiling on the target system.

• Touch the generated configuration files, just to make sure they don't get replaced during the
build:

$ cd H/ghc/includes
$ touch ghcautoconf.h DerivedConstants.h GHCConstants.h mkDerivedConstants.c
$ touch mkDerivedConstantsHdr mkDerivedConstants.o mkGHCConstants mkGHCConstants.o

• Now build the compiler:

Building the Glasgow Functional Pro-
gramming Tools Suite

35

$ cd H/glafp-utils && make boot && make
$ cd H/ghc && make boot && make

Don't worry if the build falls over in the RTS, we don't need the RTS yet.

•
$ cd H/libraries
$ make boot && make

•
$ cd H/ghc/compiler
$ make boot stage=2 && make stage=2

•
$ cd H/ghc/lib/compat
$ make clean
$ rm .depend
$ make boot UseStage1=YES
$ make -k UseStage1=YES EXTRA_HC_OPTS='-O -fvia-C -keep-hc-files'
$ cd H/ghc/utils
$ make clean
$ make -k UseStage1=YES EXTRA_HC_OPTS='-O -fvia-C -keep-hc-files'

•
$ cd H
$ make hc-file-bundle Project=Ghc

• copy H/*-hc.tar.gz to T/...

• On the target machine:

At this stage we simply need to bootstrap a compiler from the intermediate C files we generated
above. The process of bootstrapping from C files is automated by the script in distrib/
hc-build, and is described in Section 10.1, “Booting/porting from C (.hc) files”.

$./distrib/hc-build --enable-hc-boot-unregisterised

However, since this is a bootstrap on a new machine, the automated process might not run to com-
pletion the first time. For that reason, you might want to treat the hc-build script as a list of in-
structions to follow, rather than as a fully automated script. This way you'll be able to restart the pro-
cess part-way through if you need to fix anything on the way.

Don't bother with running make install in the newly bootstrapped tree; just use the compiler in
that tree to build a fresh compiler from scratch, this time without booting from C files. Before doing
this, you might want to check that the bootstrapped compiler is generating working binaries:

$ cat >hello.hs
main = putStrLn "Hello World!\n"
^D
$ T/ghc/compiler/ghc-inplace hello.hs -o hello
$./hello
Hello World!

Building the Glasgow Functional Pro-
gramming Tools Suite

36

Once you have the unregisterised compiler up and running, you can use it to start a registerised port.
The following sections describe the various parts of the system that will need architecture-specific
tweaks in order to get a registerised build going.

10.2.2. Porting the RTS

The following files need architecture-specific code for a registerised build:

ghc/includes/MachRegs.h Defines the STG-register to machine-register mapping. You need
to know your platform's C calling convention, and which registers
are generally available for mapping to global register variables.
There are plenty of useful comments in this file.

ghc/includes/TailCalls.h Macros that cooperate with the mangler (see Section 10.2.3, “The
mangler”) to make proper tail-calls work.

ghc/rts/Adjustor.c Support for foreign import "wrapper" (aka for-
eign export dynamic). Not essential for getting GHC boot-
strapped, so this file can be deferred until later if necessary.

ghc/rts/StgCRun.c The little assembly layer between the C world and the Haskell
world. See the comments and code for the other architectures in
this file for pointers.

ghc/rts/MBlock.h , ghc/
rts/MBlock.c

These files are really OS-specific rather than architecture-specific.
In MBlock.h is specified the absolute location at which the RTS
should try to allocate memory on your platform (try to find an
area which doesn't conflict with code or dynamic libraries). In
Mblock.c you might need to tweak the call to mmap() for your
OS.

10.2.3. The mangler

The mangler is an evil Perl-script (ghc/driver/mangler/ghc-asm.lprl) that rearranges the as-
sembly code output from gcc to do two main things:

• Remove function prologues and epilogues, and all movement of the C stack pointer. This is to sup-
port tail-calls: every code block in Haskell code ends in an explicit jump, so we don't want the C-
stack overflowing while we're jumping around between code blocks.

• Move the info table for a closure next to the entry code for that closure. In unregisterised code, info
tables contain a pointer to the entry code, but in registerised compilation we arrange that the info ta-
ble is shoved right up against the entry code, and addressed backwards from the entry code pointer
(this saves a word in the info table and an extra indirection when jumping to the closure entry code).

The mangler is abstracted to a certain extent over some architecture-specific things such as the particular
assembler directives used to herald symbols. Take a look at the definitions for other architectures and
use these as a starting point.

10.2.4. The splitter

The splitter is another evil Perl script (ghc/driver/split/ghc-split.lprl). It cooperates

Building the Glasgow Functional Pro-
gramming Tools Suite

37

with the mangler to support object splitting. Object splitting is what happens when the -split-objs
option is passed to GHC: the object file is split into many smaller objects. This feature is used when
building libraries, so that a program statically linked against the library will pull in less of the library.

The splitter has some platform-specific stuff; take a look and tweak it for your system.

10.2.5. The native code generator

The native code generator isn't essential to getting a registerised build going, but it's a desirable thing to
have because it can cut compilation times in half. The native code generator is described in some detail
in the GHC commentary [http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/].

10.2.6. GHCi

To support GHCi, you need to port the dynamic linker (fptools/ghc/rts/Linker.c). The linker
currently supports the ELF and PEi386 object file formats - if your platform uses one of these then
things will be significantly easier. The majority of Unix platforms use the ELF format these days. Even
so, there are some machine-specific parts of the ELF linker: for example, the code for resolving particu-
lar relocation types is machine-specific, so some porting of this code to your architecture will probaly be
necessary.

If your system uses a different object file format, then you have to write a linker — good luck!

11. Known pitfalls in building Glasgow Haskell
WARNINGS about pitfalls and known “problems”:

1. One difficulty that comes up from time to time is running out of space in TMPDIR. (It is impossible
for the configuration stuff to compensate for the vagaries of different sysadmin approaches to temp
space.) The quickest way around it is setenv TMPDIR /usr/tmp or even setenv TMPDIR . (or the
equivalent incantation with your shell of choice). The best way around it is to say

export TMPDIR=<dir>

in your build.mk file. Then GHC and the other fptools programs will use the appropriate dir-
ectory in all cases.

2. In compiling some support-code bits, e.g., in ghc/rts/gmp and even in ghc/lib, you may get
a few C-compiler warnings. We think these are OK.

3. When compiling via C, you'll sometimes get “warning: assignment from incompatible pointer type”
out of GCC. Harmless.

4. Similarly, archiving warning messages like the following are not a problem:

ar: filename GlaIOMonad__1_2s.o truncated to GlaIOMonad_
ar: filename GlaIOMonad__2_2s.o truncated to GlaIOMonad_
...

5. In compiling the compiler proper (in compiler/), you may get an “Out of heap space” error mes-
sage. These can vary with the vagaries of different systems, it seems. The solution is simple:

• If you're compiling with GHC 4.00 or later, then the maximum heap size must have been
reached. This is somewhat unlikely, since the maximum is set to 64M by default. Anyway, you
can raise it with the -optCrts-M<size> flag (add this flag to <module>_HC_OPTS make

Building the Glasgow Functional Pro-
gramming Tools Suite

38

http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/

variable in the appropriate Makefile).

• For GHC < 4.00, add a suitable -H flag to the Makefile, as above.
and try again: gmake. (see Section 8.7, “Pattern rules and options” for information about
<module>_HC_OPTS.) Alternatively, just cut to the chase:

$ cd ghc/compiler
$ make EXTRA_HC_OPTS=-optCrts-M128M

6. If you try to compile some Haskell, and you get errors from GCC about lots of things from /
usr/include/math.h, then your GCC was mis-installed. fixincludes wasn't run when it
should've been. As fixincludes is now automagically run as part of GCC installation, this bug also
suggests that you have an old GCC.

7. You may need to re-ranlib your libraries (on Sun4s).

$ cd $(libdir)/ghc-x.xx/sparc-sun-sunos4
$ foreach i (`find . -name '*.a' -print`) # or other-shell equiv...
? ranlib $i
? # or, on some machines: ar s $i
? end

We'd be interested to know if this is still necessary.

8. GHC's sources go through cpp before being compiled, and cpp varies a bit from one Unix to anoth-
er. One particular gotcha is macro calls like this:

SLIT("Hello, world")

Some cpps treat the comma inside the string as separating two macro arguments, so you get

:731: macro `SLIT' used with too many (2) args

Alas, cpp doesn't tell you the offending file! Workaround: don't put weird things in string args to
cpp macros.

12. Platforms, scripts, and file names
GHC is designed both to be built, and to run, on both Unix and Windows. This flexibility gives rise to a
good deal of brain-bending detail, which we have tried to collect in this chapter.

12.1. Windows platforms: Cygwin, MSYS, and MinGW
The build system is built around Unix-y makefiles. Because it's not native, the Windows situation for
building GHC is particularly confusing. This section tries to clarify, and to establish terminology.

12.1.1. MinGW

MinGW (Minimalist GNU for Windows) [http://www.mingw.org] is a collection of header files and im-
port libraries that allow one to use gcc and produce native Win32 programs that do not rely on any third-
party DLLs. The current set of tools include GNU Compiler Collection (gcc), GNU Binary Utilities
(Binutils), GNU debugger (Gdb), GNU make, and a assorted other utilities.

The down-side of MinGW is that the MinGW libraries do not support anything like the full Posix inter-
face.

Building the Glasgow Functional Pro-
gramming Tools Suite

39

http://www.mingw.org

12.1.2. Cygwin and MSYS

You can't use the MinGW to build GHC, because MinGW doesn't have a shell, or the standard Unix
commands such as mv, rm, ls, nor build-system stuff such as make and cvs. For that, there are two
choices: Cygwin [http://www.cygwin.com] and MSYS [http://www.mingw.org/msys.shtml]:

• Cygwin comes with compilation tools (gcc, ld and so on), which compile code that has access to all
of Posix. The price is that the executables must be dynamically linked with the Cygwin DLL, so that
you cannot run a Cywin-compiled program on a machine that doesn't have Cygwin. Worse, Cygwin
is a moving target. The name of the main DLL, cygwin1.dll does not change, but the imple-
mentation certainly does. Even the interfaces to functions it exports seem to change occasionally.

• MSYS is a fork of the Cygwin tree, so they are fundamentally similar. However, MSYS is by design
much smaller and simpler. Access to the file system goes through fewer layers, so MSYS is quite a
bit faster too.

Furthermore, MSYS provides no compilation tools; it relies instead on the MinGW tools. These
compile binaries that run with no DLL support, on any Win32 system. However, MSYS does come
with all the make-system tools, such as make, autoconf, cvs, ssh etc. To get these, you have to
download the MsysDTK (Developer Tool Kit) package, as well as the base MSYS package.

MSYS does have a DLL, but it's only used by MSYS commands (sh, rm, ssh and so on), not by pro-
grams compiled under MSYS.

12.1.3. Targeting MinGW

We want GHC to compile programs that work on any Win32 system. Hence:

• GHC does invoke a C compiler, assembler, linker and so on, but we ensure that it only invokes the
MinGW tools, not the Cygwin ones. That means that the programs GHC compiles will work on any
system, but it also means that the programs GHC compiles do not have access to all of Posix. In par-
ticular, they cannot import the (Haskell) Posix library; they have to do their input output using stand-
ard Haskell I/O libraries, or native Win32 bindings.

We will call a GHC that targets MinGW in this way GHC-mingw.

• To make the GHC distribution self-contained, the GHC distribution includes the MinGW gcc, as, ld,
and a bunch of input/output libraries.

So GHC targets MinGW, not Cygwin. It is in principle possible to build a version of GHC,
GHC-cygwin, that targets Cygwin instead. The up-side of GHC-cygwin is that Haskell programs com-
piled by GHC-cygwin can import the (Haskell) Posix library. We do not support GHC-cygwin, however;
it is beyond our resources.

While GHC targets MinGW, that says nothing about how GHC is built. We use both MSYS and Cyg-
win as build environments for GHC; both work fine, though MSYS is rather lighter weight.

In your build tree, you build a compiler called ghc-inplace. It uses the gcc that you specify using the -
-with-gcc flag when you run configure (see below). The makefiles are careful to use ghc-inplace
(not gcc) to compile any C files, so that it will in turn invoke the correct gcc rather that whatever one
happens to be in your path. However, the makefiles do use whatever ld and ar happen to be in your
path. This is a bit naughty, but (a) they are only used to glom together .o files into a bigger .o file, or a .a
file, so they don't ever get libraries (which would be bogus; they might be the wrong libraries), and (b)
Cygwin and MinGW use the same .o file format. So its ok.

Building the Glasgow Functional Pro-
gramming Tools Suite

40

http://www.cygwin.com
http://www.mingw.org/msys.shtml

12.1.4. File names

Cygwin, MSYS, and the underlying Windows file system all understand file paths of form
c:/tmp/foo. However:

• MSYS programs understand /bin, /usr/bin, and map Windows's lettered drives as /
c/tmp/foo etc. The exact mount table is given in the doc subdirectory of the MSYS distribution.

When it invokes a command, the MSYS shell sees whether the invoked binary lives in the MSYS /
bin directory. If so, it just invokes it. If not, it assumes the program is no an MSYS program, and
walks over the command-line arguments changing MSYS paths into native-compatible paths. It does
this inside sub-arguments and inside quotes. For example, if you invoke

foogle -B/c/tmp/baz

the MSYS shell will actually call foogle with argument -Bc:/tmp/baz.

• Cygwin programs have a more complicated mount table, and map the lettered drives as /
cygdrive/c/tmp/foo.

The Cygwin shell does no argument processing when invoking non-Cygwin programs.

12.1.5. Crippled ld

It turns out that on both Cygwin and MSYS, the ld has a limit of 32kbytes on its command line. Espe-
cially when using split object files, the make system can emit calls to ld with thousands of files on it.
Then you may see something like this:

(cd Graphics/Rendering/OpenGL/GL/QueryUtils_split && /mingw/bin/ld -r -x -o ../QueryUtils.o *.o)
/bin/sh: /mingw/bin/ld: Invalid argument

The solution is either to switch off object file splitting (set SplitObjs to NO in your build.mk), or
to make the module smaller.

12.1.6. Host System vs Target System

In the source code you'll find various ifdefs looking like:

#ifdef mingw32_HOST_OS
...blah blah...

#endif

and

#ifdef mingw32_TARGET_OS
...blah blah...

#endif

These macros are set by the configure script (via the file config.h). Which is which? The criterion is this.
In the ifdefs in GHC's source code:

• The "host" system is the one on which GHC itself will be run.

• The "target" system is the one for which the program compiled by GHC will be run.

Building the Glasgow Functional Pro-
gramming Tools Suite

41

For a stage-2 compiler, in which GHCi is available, the "host" and "target" systems must be the same.
So then it doesn't really matter whether you use the HOST_OS or TARGET_OS cpp macros.

12.2. Wrapper scripts
Many programs, including GHC itself and hsc2hs, need to find associated binaries and libraries. For in-
stalled programs, the strategy depends on the platform. We'll use GHC itself as an example:

• On Unix, the command ghc is a shell script, generated by adding installation paths to the front of the
source file ghc.sh, that invokes the real binary, passing "-Bpath" as an argument to tell ghc where
to find its supporting files.

• On vanilla Windows, it turns out to be much harder to make reliable script to be run by the native
Windows shell cmd (e.g. limits on the length of the command line). So instead we invoke the GHC
binary directly, with no -B flag. GHC uses the Windows getExecDir function to find where the
executable is, and from that figures out where the supporting files are.

(You can find the layout of GHC's supporting files in the section "Layout of installed files" of Section 2
of the GHC user guide.)

Things work differently for in-place execution, where you want to execute a program that has just been
built in a build tree. The difference is that the layout of the supporting files is different. In this case,
whether on Windows or Unix, we always use a shell script. This works OK on Windows because the
script is executed by MSYS or Cygwin, which don't have the shortcomings of the native Windows cmd
shell.

13. Instructions for building under Windows
This section gives detailed instructions for how to build GHC from source on your Windows machine.
Similar instructions for installing and running GHC may be found in the user guide. In general,
Win95/Win98 behave the same, and WinNT/Win2k behave the same.

Make sure you read the preceding section on platforms (Section 12, “Platforms, scripts, and file names”)
before reading section. You don't need Cygwin or MSYS to use GHC, but you do need one or the other
to build GHC.

13.1. Installing and configuring MSYS
MSYS is a lightweight alternative to Cygwin. You don't need MSYS to use GHC, but you do need it or
Cygwin to build GHC. Here's how to install MSYS.

• Go to http://www.mingw.org/download.shtml and download the following (of course, the version
numbers will differ):

• The main MSYS package (binary is sufficient): MSYS-1.0.9.exe

• The MSYS developer's toolkit (binary is sufficient): msysDTK-1.0.1.exe. This provides
make, autoconf, ssh, cvs and probably more besides.

Run both executables (in the order given above) to install them. I put them in c:/msys

• Set the following environment variables

• PATH: add c:/msys/1.0/bin and c:/msys/1.0/local/bin to your path. (Of course,
the version number may differ.) MSYS mounts the former as both /bin and /usr/bin and
the latter as /usr/local/bin.

Building the Glasgow Functional Pro-
gramming Tools Suite

42

http://www.mingw.org/download.shtml

• HOME: set to your home directory (e.g. c:/userid). This is where, among other things, ssh
will look for your .ssh directory.

• SHELL: set to c:/msys/1.0/bin/sh.exe

• CVS_RSH: set to c:/msys/1.0/bin/ssh.exe. Only necessary if you are using CVS.

• MAKE_MODE: set to UNIX. (I'm not certain this is necessary for MSYS.)

• Check that the CYGWIN environment variable is not set. It's a bad bug that MSYS is affected by this,
but if you have CYGWIN set to "ntsec ntea", which is right for Cygwin, it causes the MSYS ssh to
bogusly fail complaining that your .ssh/identity file has too-liberal permissinos.

Here are some points to bear in mind when using MSYS:

• MSYS does some kind of special magic to binaries stored in /bin and /usr/bin, which are by
default both mapped to c:/msys/1.0/bin (assuming you installed MSYS in c:/msys). Do not
put any other binaries (such as GHC or Alex) in this directory or its sub-directories: they fail in mys-
terious ways. However, it's fine to put other binaries in /usr/local/bin, which maps to
c:/msys/1.0/local/bin.

• MSYS seems to implement symbolic links by copying, so sharing is lost.

• Win32 has a find command which is not the same as MSYS's find. You will probably discover that
the Win32 find appears in your PATH before the MSYS one, because it's in the system PATH envir-
onment variable, whereas you have probably modified the user PATH variable. You can always in-
voke find with an absolute path, or rename it.

• MSYS comes with bzip, and MSYS's tar's -j will bunzip an archive (e.g. tar xvjf
foo.tar.bz2). Useful when you get a bzip'd dump.

13.2. Installing and configuring Cygwin
Install Cygwin from http://www.cygwin.com/. The installation process is straightforward; we install it in
c:/cygwin.

You must install enough Cygwin packages to support building GHC. If you miss out any of these,
strange things will happen to you. There are two ways to do this:

• The direct, but laborious way is to select all of the following packages in the installation dialogue:
cvs, openssh, autoconf, binutils (includes ld and (I think) ar), gcc, flex, make. To see thse pack-
ages, click on the "View" button in the "Select Packages" stage of Cygwin's installation dialogue,
until the view says "Full". The default view, which is "Category" isn't very helpful, and the "View"
button is rather unobtrousive.

• The clever way is to point the Cygwin installer at the ghc-depends package, which is kept at ht-
tp://haskell.org/ghc/cygwin. When the Cygwin installer asks you to "Choose a Download Site",
choose one of the offered mirror sites; and then type "http://haskell.org/ghc/cygwin" into the "User
URL" box and click "Add"; now two sites are selected. (The Cygwin installer remembers this for
next time.) Click "Next".

In the "Select Packages" dialogue box that follows, click the "+" sign by "Devel", scroll down to the
end of the "Devel" packages, and choose ghc-depends. The package ghc-depends will not actually

Building the Glasgow Functional Pro-
gramming Tools Suite

43

http://www.cygwin.com/
http://haskell.org/ghc/cygwin
http://haskell.org/ghc/cygwin

install anything itself, but forces additional packages to be added by the Cygwin installer.

Now set the following user environment variables:

• Add c:/cygwin/bin and c:/cygwin/usr/bin to your PATH

• Set MAKE_MODE to UNIX. If you don't do this you get very weird messages when you type make,
such as:

/c: /c: No such file or directory

• Set SHELL to c:/cygwin/bin/bash. When you invoke a shell in Emacs, this SHELL is what
you get.

• Set HOME to point to your home directory. This is where, for example, bash will look for your
.bashrc file. Ditto emacs looking for .emacsrc

Here are some things to be aware of when using Cygwin:

• Cygwin doesn't deal well with filenames that include spaces. "Program Files" and "Local
files" are common gotchas.

• Cygwin implements a symbolic link as a text file with some magical text in it. So other programs
that don't use Cygwin's I/O libraries won't recognise such files as symlinks. In particular, programs
compiled by GHC are meant to be runnable without having Cygwin, so they don't use the Cygwin
library, so they don't recognise symlinks.

• See the notes in Section 13.1, “Installing and configuring MSYS” about find and bzip, which apply
to Cygwin too.

• Some script files used in the make system start with "#!/bin/perl", (and similarly for sh). Notice the
hardwired path! So you need to ensure that your /bin directory has at least sh, perl, and cat in it.
All these come in Cygwin's bin directory, which you probably have installed as
c:/cygwin/bin. By default Cygwin mounts "/" as c:/cygwin, so if you just take the defaults
it'll all work ok. (You can discover where your Cygwin root directory / is by typing mount.)
Provided /bin points to the Cygwin bin directory, there's no need to copy anything. If not, copy
these binaries from the cygwin/bin directory (after fixing the sh.exe stuff mentioned in the
previous bullet).

• By default, cygwin provides the command shell ash as sh.exe. It seems to be fine now, but in the
past we saw build-system problems that turned out to be due to bugs in ash (to do with quoting and
length of command lines). On the other hand bash seems to be rock solid. If this happens to you
(which it shouldn't), in cygwin/bin remove the supplied sh.exe (or rename it as ash.exe),
and copy bash.exe to sh.exe. You'll need to do this in Windows Explorer or the Windows cmd
shell, because you can't rename a running program!

13.3. Configuring SSH
ssh comes with both Cygwin and MSYS. (Cygwin note: you need to ask for package openssh (not ssh)
in the Cygwin list of packages; or use the ghc-depends package -- see Section 13.2, “Installing and con-
figuring Cygwin”.)

There are several strange things about ssh on Windows that you need to know.

Building the Glasgow Functional Pro-
gramming Tools Suite

44

• The programs ssh-keygen1, ssh1, and cvs, seem to lock up bash entirely if they try to get user input
(e.g. if they ask for a password). To solve this, start up cmd.exe and run it as follows:

c:\tmp> set CYGWIN32=tty
c:\tmp> c:/user/local/bin/ssh-keygen1

• (Cygwin-only problem, I think.) ssh needs to access your directory .ssh, in your home directory.
To determine your home directory ssh first looks in c:/cygwin/etc/passwd (or wherever you
have Cygwin installed). If there's an entry there with your userid, it'll use that entry to determine
your home directory, ignoring the setting of the environment variable $HOME. If the home directory
is bogus, ssh fails horribly. The best way to see what is going on is to say

ssh -v cvs.haskell.org

which makes ssh print out information about its activity.

You can fix this problem, either by correcting the home-directory field in
c:/cygwin/etc/passwd, or by simply deleting the entire entry for your userid. If you do that,
ssh uses the $HOME environment variable instead.

• To protect your .ssh from access by anyone else, right-click your .ssh directory, and select
Properties. If you are not on the access control list, add yourself, and give yourself full permis-
sions (the second panel). Remove everyone else from the access control list. Don't leave them there
but deny them access, because 'they' may be a list that includes you!

• In fact ssh 3.6.1 now seems to require you to have Unix permissions 600 (read/write for owner only)
on the .ssh/identity file, else it bombs out. For your local C drive, it seems that chmod 600
identity works, but on Windows NT/XP, it doesn't work on a network drive (exact dteails ob-
scure). The solution seems to be to set the $CYGWIN environment variable to "ntsec neta".
The $CYGWIN environment variable is discussed in the Cygwin User's Guide
[http://cygwin.com/cygwin-ug-net/using-cygwinenv.html], and there are more details in the Cygwin
FAQ [http://cygwin.com/faq/faq_4.html#SEC44].

13.4. Other things you need to install
You have to install the following other things to build GHC, listed below.

On Windows you often install executables in directories with spaces, such as "Program Files".
However, the make system for fptools doesn't deal with this situation (it'd have to do more quoting of
binaries), so you are strongly advised to put binaries for all tools in places with no spaces in their path.
On both MSYS and Cygwin, it's perfectly OK to install such programs in the standard Unixy places, /
usr/local/bin and /usr/local/lib. But it doesn't matter, provided they are in your path.

• Install an executable GHC, from http://www.haskell.org/ghc. This is what you will use to compile
GHC. Add it in your PATH: the installer tells you the path element you need to add upon comple-
tion.

• Install an executable Happy, from http://www.haskell.org/happy. Happy is a parser generator used to
compile the Haskell grammar. Under MSYS or Cygwin you can easily build it from the source dis-
tribution using

$./configure
$ make
$ make install

This should install it in /usr/local/bin (which maps to c:/msys/1.0/local/bin on

Building the Glasgow Functional Pro-
gramming Tools Suite

45

http://cygwin.com/cygwin-ug-net/using-cygwinenv.html
http://cygwin.com/faq/faq_4.html#SEC44
http://cygwin.com/faq/faq_4.html#SEC44
http://www.haskell.org/ghc
http://www.haskell.org/happy

MSYS). Make sure the installation directory is in your PATH.

• Install an executable Alex. This can be done by building from the source distribution in the same
way as Happy. Sources are available from http://www.haskell.org/alex.

• GHC uses the mingw C compiler to generate code, so you have to install that (see Section 12.1,
“Windows platforms: Cygwin, MSYS, and MinGW”). Just pick up a mingw bundle at ht-
tp://www.mingw.org/. We install it in c:/mingw.

On MSYS, add c:/mingw/bin to your PATH. MSYS does not provide gcc, ld, ar, and so on, be-
cause it just uses the MinGW ones. So you need them in your path.

On Cygwin, do not add any of the mingw binaries to your path. They are only going to get used by
explicit access (via the --with-gcc flag you give to configure later). If you do add them to your path
you are likely to get into a mess because their names overlap with Cygwin binaries. On the other
hand, you do need ld, ar (and perhaps one or two other things) in your path. The Cygwin ones are
fine, but you must have them; hence needing the Cygwin binutils package.

• We use emacs a lot, so we install that too. When you are in fptools/ghc/compiler, you can
use "make tags" to make a TAGS file for emacs. That uses the utility fptools/
ghc/utils/hasktags/hasktags, so you need to make that first. The most convenient way to
do this is by going make boot in fptools/ghc. The make tags command also uses etags,
which comes with emacs, so you will need to add emacs/bin to your PATH.

• Finally, check out a copy of GHC sources from the CVS repository, following the instructions above
(Section 2.1, “Getting access to the CVS Repository”).

13.5. Building GHC
OK! Now go read the documentation above on building from source (Section 7, “Building from
source”); the bullets below only tell you about Windows-specific wrinkles.

• If you used autoconf instead of autoreconf, you'll get an error when you run ./configure:

...lots of stuff...
creating mk/config.h
mk/config.h is unchanged
configuring in ghc
running /bin/sh ./configure --cache-file=.././config.cache --srcdir=.
./configure: ./configure: No such file or directory
configure: error: ./configure failed for ghc

• autoreconf seems to create the file configure read-only. So if you need to run autoreconf again
(which I sometimes do for safety's sake), you get

/usr/bin/autoconf: cannot create configure: permission denied

Solution: delete configure first.

• After autoreconf run ./configure in fptools/ thus:

$./configure --host=i386-unknown-mingw32 --with-gcc=c:/mingw/bin/gcc

This is the point at which you specify that you are building GHC-mingw (see Section 12.1.1,
“MinGW”).

Building the Glasgow Functional Pro-
gramming Tools Suite

46

http://www.haskell.org/alex
http://www.mingw.org/
http://www.mingw.org/

Both these options are important! It's possible to get into trouble using the wrong C compiler!

Furthermore, it's very important that you specify a full MinGW path for gcc, not a Cygwin path, be-
cause GHC (which uses this path to invoke gcc) is a MinGW program and won't understand a Cyg-
win path. For example, if you say --with-gcc=/mingw/bin/gcc, it'll be interpreted as /
cygdrive/c/mingw/bin/gcc, and GHC will fail the first time it tries to invoke it. Worse, the
failure comes with no error message whatsoever. GHC simply fails silently when first invoked, typ-
ically leaving you with this:

make[4]: Leaving directory `/cygdrive/e/fptools-stage1/ghc/rts/gmp'
../../ghc/compiler/ghc-inplace -optc-mno-cygwin -optc-O
-optc-Wall -optc-W -optc-Wstrict-prototypes -optc-Wmissing-prototypes
-optc-Wmissing-declarations -optc-Winline -optc-Waggregate-return
-optc-Wbad-function-cast -optc-Wcast-align -optc-I../includes
-optc-I. -optc-Iparallel -optc-DCOMPILING_RTS
-optc-fomit-frame-pointer -O2 -static
-package-name rts -O -dcore-lint -c Adjustor.c -o Adjustor.o

make[2]: *** [Adjustor.o] Error 1
make[1]: *** [all] Error 1
make[1]: Leaving directory `/cygdrive/e/fptools-stage1/ghc'
make: *** [all] Error 1

Be warned!

If you want to build GHC-cygwin (Section 12.1.2, “Cygwin and MSYS”) you'll have to do
something more like:

$./configure --with-gcc=...the Cygwin gcc...

• If you are paranoid, delete config.cache if it exists. This file occasionally remembers out-
of-date configuration information, which can be really confusing.

• You almost certainly want to set

SplitObjs = NO

in your build.mk configuration file (see Section 7.4, “Getting the build you want”). This tells the
build system not to split each library into a myriad of little object files, one for each function. Doing
so reduces binary sizes for statically-linked binaries, but on Windows it dramatically increases the
time taken to build the libraries in the first place.

• Do not attempt to build the documentation. It needs all kinds of wierd Jade stuff that we haven't
worked out for Win32.

13.6. A Windows build log using Cygwin
Here is a complete, from-scratch, log of all you need to build GHC using Cygwin, kindly provided by
Claus Reinke. It does not discuss alternative choices, but it gives a single path that works.

- Install some editor (vim, emacs, whatever)

- Install cygwin (http://www.cygwin.com)
; i used 1.5.16-1, installed in c:\cygwin

- run 'setup.exe'
Choose a Download Source:

select 'download from internet';
Select Root Install Directory:

Building the Glasgow Functional Pro-
gramming Tools Suite

47

root dir: c:\cygwin;
install for: all users;
default file type: unix

Select Local Package Directory
choose a spare temporary home

Select Your Internet Connection
Use IE5 settings

Choose a Download Site
Choose your preferred main mirror and
Add 'http://www.haskell.org/ghc/cygwin'

Select Packages
In addition to 'Base' (default install),
select 'Devel->ghc-depends'

- Install mingw (http://www.mingw.org/)
; i used MinGW-3.1.0-1.exe
; installed in c:\mingw

- you probably want to add GLUT
; (http://www.xmission.com/~nate/glut.html)
; i used glut-3.7.3-mingw32.tar

- Get recent binary snapshot of ghc-6.4.1 for mingw
; (http://www.haskell.org/ghc/dist/stable/dist/)

- unpack in c:/ghc
- add C:\ghc\ghc-6.4.1\bin to %PATH%
(Start->Control Panel->System->Advanced->Environment Variables)

- Get cvs version of ghc
; also, subscribe to cvs-all@haskell.org, or follow the mailing list
; archive, in case you checkout a version with problems
; http://www.haskell.org//pipermail/cvs-all/

- mkdir c:/fptools; cd c:/fptools
; (or whereever you want your cvs tree to be)

- export CVSROOT=:pserver:anoncvs@glass.cse.ogi.edu:/cvs
- cvs login
; pw: cvs

- cvs checkout fpconfig
- cd fptools
- cvs checkout ghc hslibs libraries

- Build ghc, using cygwin and mingw, targetting mingw
- export PATH=/cygdrive/c/ghc/ghc-6.4.1/tools:$PATH
; for haddock, alex, happy (*)

- export PATH=/cygdrive/c/mingw/bin:$PATH
; without, we pick up some cygwin tools at best!

- cd c:/fptools/fptools
; (if you aren't there already)

- autoreconf
- ./configure --host=i386-unknown-mingw32 --with-gcc=C:/Mingw/bin/gcc.exe
; we use cygwin, but build for windows

- cp mk/build.mk.sample mk/build.mk
- in mk/build.mk:
uncomment line: BuildFlavour = perf
add line: BIN_DIST=1
add line: SplitObjs = NO

- make 2>&1 | tee make.log
; always useful to have a log around

- Package up binary distribution
- make binary-dist Project=Ghc 2>&1 | tee make-bin-dist.log
; always useful to have a log around

- cd ghc-6.5
- chmod +x ../distrib/prep-bin-dist-mingw
; if you're happy with the script's contents (*)

Building the Glasgow Functional Pro-
gramming Tools Suite

48

- ../distrib/prep-bin-dist-mingw
; then tar up, unpack where wanted, and enjoy

Index
Symbols

--hc-build, 33
--with-gcc, 17
--with-ghc, 17
--with-hc, 17

project, 10, 10

A
Adjustor.c, 37
alex

project, 10
Alex, 13
ALL_DIRS, 26
alpha-dec-freebsd, 11
alpha-dec-linux, 11
alpha-dec-netbsd, 11
alpha-dec-openbsd, 11
alpha-dec-osf, 11
amd64-unknown-linux, 12
autoconf, pre-supposed, 13
autoreconf, 16

B
bash, presupposed (Parallel Haskell only), 14
boilerplate architecture, 25
boilerplate.mk, 18, 23, 25, 26
booting GHC from .hc files, 33
bugs

known, 10
mailing list, 11
seporting, 11

build trees, 15
build.mk, 18
Building from source, 14
building GHC from .hc files, 33
building pitfalls, 38

C
config.h, 17
config.h.in, 17
config.mk, 17, 26
config.mk.in, 17
configure, 12
CVS repository, 3
C_OBJS, 27
C_PROG, 29
C_SRCS, 27, 29

Building the Glasgow Functional Pro-
gramming Tools Suite

49

D
dependencies, omitting, 22
Disk space needed, 10
DocBook, pre-supposed, 31

E
EXCLUDED_SRCS, 26
EXTRA_CC_OPTS, 29
EXTRA_SRCS, 27

F
FAST, makefile variable, 22
fastmake, 22
flex, pre-supposed, 14
FPTOOLS_TOP, 16
fully-supported platforms, 11

G
GCC (GNU C compiler), pre-supposed, 13
ghc

project, 10
GHC

ports, 11
GHC, pre-supposed, 12
GhcWithHc, 25
glafp-utils

project, 10
greencard

project, 10

H
haddock

project, 10
Haddock, 31
haggis

project, 10
happy, 3

project, 10
Happy, 13
HAPPY_SRCS, 27
HC_OPTS, 25, 27
hdirect

project, 10
hood

project, 10
hppa1.1-hp-hpux, 11
HSC_SRCS, 27
hslibs

project, 10
HS_IFACES, 27
HS_OBJS, 27
HS_PROG, 24, 26, 29, 29
HS_SRCS, 27, 29

I

Building the Glasgow Functional Pro-
gramming Tools Suite

50

i386-*-linux, 11
i386-unknown-freebsd, 12
i386-unknown-mingw32, 12
i386-unknown-netbsd, 12
i386-unknown-openbsd, 12
ia64-unknown-linux, 12
include, directive in Makefiles, 23
install, 29

L
LIBRARY, 29
LIB_DATA, 29
LIB_EXEC, 29
link trees, for building, 15
lndir, 15

M
MachRegs.h, 37
make

GNU, 13
makefile architecture, 22
Makefile inclusion, 23
makefile targets, 20
Makefile, minimal, 23
Makefile, recursing into subdirectories, 30
MBlock.c, 37
MBlock.h, 37
mips-sgi-irix6, 12
mips-sgi-irix[5-6], 12
mkshadowdir, 15

N
native-code generator, 11
nofib

project, 10
NoFibSubDirs, 25

O
OBJS, 26, 27
opts.mk, 27

P
paths.mk, 26
Pattern rules, 28
Perl, pre-supposed, 13
pitfalls, in building, 38
platform, 16
Platform settings, 27
platforms

supported, 11
porting GHC, 33
ports

GHC, 11
powerpc-apple-darwin, 12
powerpc-apple-linux, 12
powerpc-ibm-aix, 12

Building the Glasgow Functional Pro-
gramming Tools Suite

51

pre-supposed utilities, 12
pre-supposed: autoconf, 13
pre-supposed: DocBook, 31
pre-supposed: flex, 14
pre-supposed: GCC (GNU C compiler), 13
pre-supposed: GHC, 12
pre-supposed: Perl, 13
pre-supposed: PVM3 (Parallel Virtual Machine), 14
pre-supposed: sed, 14
pre-supposed: TeX, 31
problems, building, 38
PVM, 12
PVM3 (Parallel Virtual Machine), pre-supposed, 14

R
ranlib, 39
recursion, in makefiles, 30
registerised ports, 11

S
SCRIPT_OBJS, 27
SCRIPT_SRCS, 27
sed, pre-supposed, 14
Source distributions, 2
Source, building from, 14
sparc-sun-solaris2, 11
sparc-sun-sunos4, 11
sparc-unknown-openbsd, 11
SRCS, 24, 27
SRC_CC_OPTS, 28
SRC_HC_OPTS, 26
StgCRun.c, 37
SUBDIRS, 30
suffix.mk, 27, 28

T
TailCalls.h, 37
target.mk, 24, 25, 29, 30
targets, standard makefile, 20
testsuite

project, 10
TeX, pre-supposed, 31
tmp, running out of space in, 38
TMPDIR, 38
TOP, 23

U
unregisterised ports, 11
utilities, pre-supposed, 12

W
way management, 30
wildcard, 24

X
x86_64-unknown-linux, 12

Building the Glasgow Functional Pro-
gramming Tools Suite

52

	Building the Glasgow Functional Programming Tools Suite
	Table of Contents
	1. Getting the sources
	2. Using the CVS repository
	2.1. Getting access to the CVS Repository
	2.1.1. Remote Read-only CVS Access
	2.1.2. Remote Read-Write CVS Access

	2.2. Checking Out a Source Tree
	2.3. Committing Changes
	2.4. Updating Your Source Tree
	2.5. GHC Tag Policy
	2.6. General Hints

	3. What projects are there?
	4. Things to check before you start
	5. What machines the Glasgow tools run on
	5.1. What platforms the Haskell compiler (GHC) runs on
	5.2. What machines the other tools run on

	6. Installing pre-supposed utilities
	6.1. Tools for building parallel GHC (GPH)
	6.2. Other useful tools

	7. Building from source
	7.1. Quick Start
	7.2. Your source tree
	7.3. Build trees
	7.4. Getting the build you want
	7.5. The story so far
	7.6. Making things
	7.7. Bootstrapping GHC
	7.8. Standard Targets
	7.9. Using a project from the build tree
	7.10. Fast Making

	8. The Makefile architecture
	8.1. Debugging
	8.2. A small project
	8.3. A larger project
	8.4. Boilerplate architecture
	8.5. The main mk/boilerplate.mk file
	8.6. Platform settings
	8.7. Pattern rules and options
	8.8. The main mk/target.mk file
	8.9. Recursion
	8.10. Way management
	8.11. When the canned rule isn't right

	9. Building the documentation
	9.1. Tools for building the Documentation
	9.2. Installing the DocBook tools
	9.2.1. Installing the DocBook tools on Linux
	9.2.2. Installing DocBook on FreeBSD
	9.2.3. Installing from binaries on Windows

	9.3. Configuring the DocBook tools
	9.4. Building the documentation
	9.5. Installing the documentation

	10. Porting GHC
	10.1. Booting/porting from C (.hc) files
	10.2. Porting GHC to a new architecture
	10.2.1. Cross-compiling to produce an unregisterised GHC
	10.2.2. Porting the RTS
	10.2.3. The mangler
	10.2.4. The splitter
	10.2.5. The native code generator
	10.2.6. GHCi

	11. Known pitfalls in building Glasgow Haskell
	12. Platforms, scripts, and file names
	12.1. Windows platforms: Cygwin, MSYS, and MinGW
	12.1.1. MinGW
	12.1.2. Cygwin and MSYS
	12.1.3. Targeting MinGW
	12.1.4. File names
	12.1.5. Crippled ld
	12.1.6. Host System vs Target System

	12.2. Wrapper scripts

	13. Instructions for building under Windows
	13.1. Installing and configuring MSYS
	13.2. Installing and configuring Cygwin
	13.3. Configuring SSH
	13.4. Other things you need to install
	13.5. Building GHC
	13.6. A Windows build log using Cygwin

	Index

