
1Hugs doesn't support module hiding.

Common Architecture for Building
Applications and Libraries

User's Guide

Table of Contents
1. Packages .. 1
2. Creating a package ... 2

2.1. Package descriptions .. 4
2.1.1. Package properties .. 5
2.1.2. Library ... 6
2.1.3. Executables ... 6
2.1.4. Build information ... 6

2.2. Accessing data files from package code ... 8
2.3. System-dependent parameters .. 8
2.4. More complex packages ... 10

3. Building and installing a package .. 11
3.1. setup configure ... 12

3.1.1. Programs used for building ... 12
3.1.2. Installation paths .. 14
3.1.3. Miscellaneous options ... 18

3.2. setup build ... 19
3.3. setup haddock ... 19
3.4. setup install .. 19
3.5. setup copy ... 19
3.6. setup register .. 20
3.7. setup unregister ... 20
3.8. setup clean ... 20
3.9. setup test ... 20
3.10. setup sdist .. 20

4. Known bugs and deficiencies ... 21

The Cabal aims to simplify the distribution of Haskell [http://www.haskell.org/] software. It does this by
specifying a number of interfaces between package authors, builders and users, as well as providing a
library implementing these interfaces.

1. Packages
A package is the unit of distribution for the Cabal. Its purpose, when installed, is to make available
either or both of:

• A library, exposing a number of Haskell modules. A library may also contain hidden modules, which
are used internally but not available to clients.1

• One or more Haskell programs.

However having both a library and executables in a package does not work very well; if the executables
depend on the library, they must explicitly list all the modules they directly or indirectly import from

1

http://www.haskell.org/

that library.

Internally, the package may consist of much more than a bunch of Haskell modules: it may also have C
source code and header files, source code meant for preprocessing, documentation, test cases, auxiliary
tools etc.

A package is identified by a globally-unique package name, which consists of one or more alphanumeric
words separated by hyphens. To avoid ambiguity, each of these words should contain at least one letter.
Chaos will result if two distinct packages with the same name are installed on the same system, but there
is not yet a mechanism for allocating these names. A particular version of the package is distinguished
by a version number, consisting of a sequence of one or more integers separated by dots. These can be
combined to form a single text string called the package ID, using a hyphen to separate the name from
the version, e.g. “HUnit-1.1”.

Note

Packages are not part of the Haskell language; they simply populate the hierarchical space of module
names. It is still the case that all the modules of a program must have distinct module names, regardless
of the package they come from, and whether they are exposed or hidden. This also means that although
some implementations (i.e. GHC) may allow several versions of a package to be installed at the same
time, a program cannot use two packages, P and Q that depend on different versions of the same under-
lying package R.

2. Creating a package
Suppose you have a directory hierarchy containing the source files that make up your package. You will
need to add two more files to the root directory of the package:

.cab
packageal

a text file containing a package description (for details of the syntax of this file, see
Section 2.1, “Package descriptions”), and

Setup.hs or
Setup.lhs

a single-module Haskell program to perform various setup tasks (with the interface
described in Section 3, “Building and installing a package”). This module should im-
port only modules that will be present in all Haskell implementations, including mod-
ules of the Cabal library. In most cases it will be trivial, calling on the Cabal library
to do most of the work.

Once you have these, you can create a source bundle of this directory for distribution. Building of the
package is discussed in Section 3, “Building and installing a package”.

Example 1. A package containing a simple library

The HUnit package contains a file HUnit.cabal containing:

Name: HUnit
Version: 1.1
License: BSD3
Author: Dean Herington
Homepage: http://hunit.sourceforge.net/
Category: Testing
Build-Depends: base
Synopsis: Unit testing framework for Haskell
Exposed-modules:

Test.HUnit, Test.HUnit.Base, Test.HUnit.Lang,

Common Architecture for Building
Applications and Libraries

2

Test.HUnit.Terminal, Test.HUnit.Text
Extensions: CPP

and the following Setup.hs:

import Distribution.Simple
main = defaultMain

Example 2. A package containing executable programs

Name: TestPackage
Version: 0.0
License: BSD3
Author: Angela Author
Synopsis: Small package with two programs
Build-Depends: HUnit

Executable: program1
Main-Is: Main.hs
Hs-Source-Dirs: prog1

Executable: program2
Main-Is: Main.hs
Hs-Source-Dirs: prog2
Other-Modules: Utils

with Setup.hs the same as above.

Example 3. A package containing a library and executable programs

Name: TestPackage
Version: 0.0
License: BSD3
Author: Angela Author
Synopsis: Package with library and two programs
Build-Depends: HUnit
Exposed-Modules: A, B, C

Executable: program1
Main-Is: Main.hs
Hs-Source-Dirs: prog1
Other-Modules: A, B

Executable: program2
Main-Is: Main.hs
Hs-Source-Dirs: prog2
Other-Modules: A, C, Utils

with Setup.hs the same as above. Note that any library modules required (directly or indirectly) by an
executable must be listed again.

Common Architecture for Building
Applications and Libraries

3

The trivial setup script used in these examples uses the simple build infrastructure provided by the Cabal
library (see Distribution.Simple [../libraries/Cabal/Distribution-Simple.html]). The simplicity lies in its
interface rather that its implementation. It automatically handles preprocessing with standard prepro-
cessors, and builds packages for all the Haskell implementations (except nhc98, for now).

The simple build infrastructure can also handle packages where building is governed by system-de-
pendent parameters, if you specify a little more (see Section 2.3, “System-dependent parameters”). A
few packages require more elaborate solutions (see Section 2.4, “More complex packages”).

2.1. Package descriptions
The package description file should have a name ending in “.cabal”. There must be exactly one such
file in the directory. The first part of the name is immaterial, but it is conventional to use the package
name.

In the package description file, lines beginning with “--” are treated as comments and ignored.

This file should contain one or more stanzas separated by blank lines:

• The first stanza describes the package as a whole (see Section 2.1.1, “Package properties”), as well
as an optional library (see Section 2.1.2, “Library”) and relevant build information (see Sec-
tion 2.1.4, “Build information”).

• Each subsequent stanza (if any) describes an executable program (see Section 2.1.3, “Executables”)
and relevant build information (see Section 2.1.4, “Build information”).

Each stanza consists of a number of field/value pairs, with a syntax like mail message headers.

• case is not significant in field names

• to continue a field value, indent the next line

• to get a blank line in a field value, use an indented “.”

The syntax of the value depends on the field. Field types include:

token , file-
name , direct-
ory

Either a sequence of one or more non-space non-comma characters, or a quoted
string in Haskell 98 lexical syntax. Unless otherwise stated, relative filenames and
directories are interpreted from the package root directory.

freeform , URL
, address

An arbitrary, uninterpreted string.

identifier A letter followed by zero or more alphanumerics or underscores.

Modules and preprocessors

Haskell module names listed in the exposed-modules and other-modules fields may corres-
pond to Haskell source files, i.e. with names ending in “.hs” or “.lhs”, or to inputs for various
Haskell preprocessors. The simple build infrastructure understands the extensions “.gc” (haddock
[http://www.haskell.org/greencard/]), “.chs” (c2hs
[http://www.cse.unsw.edu.au/~chak/haskell/c2hs/]), “.hsc” (hsc2hs), “.y” and “.ly” (happy
[http://www.haskell.org/happy/]), “.x” (alex [http://www.haskell.org/alex/]) and “.cpphs” (cpphs
[http://www.haskell.org/cpphs/]). When building, Cabal will automatically run the appropriate prepro-

Common Architecture for Building
Applications and Libraries

4

../libraries/Cabal/Distribution-Simple.html
http://www.haskell.org/greencard/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/cpphs/

cessor and compile the Haskell module it produces.

Some fields take lists of values, which are optionally separated by commas, except for the build-
depends field, where the commas are mandatory.

Some fields are marked as required. All others are optional, and unless otherwise specified have empty
default values.

2.1.1. Package properties

These fields may occur in the first stanza, and describe the package as a whole:

name: package-
name (required)

The unique name of the package (see Section 1, “Packages”), without the ver-
sion number.

version: num-
bers (required)

The package version number, usually consisting of a sequence of natural num-
bers separated by dots.

cabal-version:
>, <=, etc. &
numbers

The version of Cabal required for this package. Use ONLY if this package re-
quires a particular version of Cabal, since unfortunitely, early versions of Cabal
do not recognize this field. List the field early in your .cabal file so that it will
appear as a syntax error before any others.

license: iden-
tifier (default:
AllRights-
Reserved)

The type of license under which this package is distributed. License names are
the constants of the License
[../libraries/Cabal/Distribution-License.html#t:License] type.

license-file:
filename

The name of a file containing the precise license for this package.

copyright:
freeform

The content of a copyright notice, typically the name of the holder of the copy-
right on the package and the year(s) from which copyright is claimed.

author: free-
form

The original author of the package.

maintainer: ad-
dress

The current maintainer or maintainers of the package. This is an e-mail address
to which users should send bug reports, feature requests and patches.

stability:
freeform

The stability level of the package, e.g. alpha, experimental, provi-
sional, stable.

homepage: URL The package homepage.

package-url:
URL

The location of a source bundle for the package. The distribution should be a
Cabal package.

synopsis: free-
form

A very short description of the package, for use in a table of packages. This is
your headline, so keep it short (one line) but as informative as possible. Save
space by not including the package name or saying it's written in Haskell.

description:
freeform

Description of the package. This may be several paragraphs, and should be
aimed at a Haskell programmer who has never heard of your package before.

category: free-
form

A classification category for future use by the package catalogue Hackage.
These categories have not yet been specified, but the upper levels of the module
hierarchy make a good start.

tested-with:
compiler list

A list of compilers and versions against which the package has been tested (or
at least built).

Common Architecture for Building
Applications and Libraries

5

../libraries/Cabal/Distribution-License.html#t:License

build-depends:
package list

A list of packages, possibly annotated with versions, needed to build this one,
e.g. foo > 1.2, bar. If no version constraint is specified, any version is
assumed to be acceptable.

data-files: fi-
lename list

A list of files to be installed for run-time use by the package. This is useful for
packages that use a large amount of static data, such as tables of values or code
templates. For details on how to find these files at run-time, see Section 2.2,
“Accessing data files from package code”.

extra-
source-files:
filename list

A list of additional files to be included in source distributions built with setup
sdist (see Section 3.10, “setup sdist”).

extra-
tmp-files: fi-
lename list

A list of additional files or directories to be removed by setup clean (see Sec-
tion 3.8, “setup clean”). These would typically be additional files created by ad-
ditional hooks, such as the scheme described in Section 2.3,
“System-dependent parameters”.

2.1.2. Library

If the package contains a library, the first stanza should also contain the following field:

exposed-mod-
ules: identifi-
er list (required if
this package contains
a library)

A list of modules added by this package.

The first stanza may also contain build information fields (see Section 2.1.4, “Build information”) relat-
ing to the library.

2.1.3. Executables

Subsequent stanzas (if present) describe executable programs contained in the package, using the fol-
lowing fields, as well as build information fields (see Section 2.1.4, “Build information”).

executable:
freeform
(required)

The name of the executable program.

main-is: file-
name (required)

The name of the source file containing the Main module, relative to one of the
directories listed in hs-source-dirs.

These stanzas may also contain build information fields (see Section 2.1.4, “Build information”) relating
to the executable.

2.1.4. Build information

The following fields may be optionally present in any stanza, and give information for the building of
the corresponding library or executable. See also Section 2.3, “System-dependent parameters” for a way
to supply system-dependent values for these fields.

buildable:
Boolean (default:
True)

Is the component buildable? Like some of the other fields below, this field is
more useful with the slightly more elaborate form of the simple build infra-
structure described in Section 2.3, “System-dependent parameters”.

other-modules:
identifier list

A list of modules used by the component but not exposed to users. For a library
component, these would be hidden modules of the library. For an executable,
these would be auxiliary modules to be linked with the file named in the

Common Architecture for Building
Applications and Libraries

6

main-is field.

hs-source-dirs:
directory list
(default: “.”)

Root directories for the module hierarchy.

For backwards compatibility, the old variant hs-source-dir is also recog-
nized.

extensions:
identifier list

A list of Haskell extensions used by every module. Extension names are the
constructors of the Extension
[../libraries/Cabal/Language-Haskell-Extension.html#t:Extension] type. These
determine corresponding compiler options. In particular, CPP specifies that
Haskell source files are to be preprocessed with a C preprocessor.

Extensions used only by one module may be specified by placing a LANGUAGE
pragma in the source file affected, e.g.:

{-# LANGUAGE CPP, MultiParamTypeClasses #-}

Note

GHC doesn't support the LANGUAGE pragma yet.

ghc-options:
token list

Additional options for GHC. You can often achieve the same effect using the
extensions field, which is preferred.

Options required only by one module may be specified by placing an OP-
TIONS_GHC pragma in the source file affected.

ghc-
prof-options:
token list

Additional options for GHC when the package is built with profiling enabled.

hugs-options:
token list

Additional options for Hugs. You can often achieve the same effect using the
extensions field, which is preferred.

Options required only by one module may be specified by placing an OP-
TIONS_HUGS pragma in the source file affected.

nhc-options:
token list

Additional options for nhc98. You can often achieve the same effect using the
extensions field, which is preferred.

Options required only by one module may be specified by placing an OP-
TIONS_NHC pragma in the source file affected.

includes: file-
name list

A list of header files from standard include directories or those listed in in-
clude-dirs, to be included in any compilations via C. These files typically
contain function prototypes for foreign imports used by the package.

include-dirs:
directory list

A list of directories to search for header files, both when using a C preprocessor
and when compiling via C.

c-sources: fi-
lename list

A list of C source files to be compiled and linked with the Haskell files.

If you use this field, you should also name the C files in CFILES pragmas in
the Haskell source files that use them, e.g.:

{-# CFILES dir/file1.c dir/file2.c #-}

These are ignored by the compilers, but needed by Hugs.

Common Architecture for Building
Applications and Libraries

7

../libraries/Cabal/Language-Haskell-Extension.html#t:Extension

raries: token
list

A list of extra libraries to link with.

extra-lib-dirs:
directory list

A list of directories to search for libraries.

cc-options:
token list

Command-line arguments to be passed to the C compiler. Since the arguments
are compiler-dependent, this field is more useful with the setup described in
Section 2.3, “System-dependent parameters”.

ld-options:
token list

Command-line arguments to be passed to the linker. Since the arguments are
compiler-dependent, this field is more useful with the setup described in Sec-
tion 2.3, “System-dependent parameters”.

frameworks:
token list

On Darwin/MacOS X, a list of frameworks to link to. See Apple's developer
documentation for more details on frameworks. This entry is ignored on all oth-
er platforms.

2.2. Accessing data files from package code
The placement on the target system of files listed in the data-files field varies between systems,
and in some cases one can even move packages around after installation (see Section 3.1.2.2,
“Prefix-independence”). To enable packages to find these files in a portable way, Cabal generates a
module called Paths_pkgname (with any hyphens in pkgname replaced by underscores) during
building, so that it may be imported by modules of the package. This module defines a function

getDataFileName :: FilePath -> IO FilePath

If the argument is a filename listed in the data-files field, the result is the name of the correspond-
ing file on the system on which the program is running.

2.3. System-dependent parameters
For some packages, especially those interfacing with C libraries, implementation details and the build
procedure depend on the build environment. The simple build infrastructure can handle many such situ-
ations using a slightly longer Setup.hs:

import Distribution.Simple
main = defaultMainWithHooks defaultUserHooks

This program differs from defaultMain in two ways:

1. If the package root directory contains a file called configure, the configure step will run that.
This configure program may be a script produced by the autoconf
[http://www.gnu.org/software/autoconf/] system, or may be hand-written. This program typically
discovers information about the system and records it for later steps, e.g. by generating system-
dependent header files for inclusion in C source files and preprocessed Haskell source files.
(Clearly this won't work for Windows without MSYS or Cygwin: other ideas are needed.)

2. If the package root directory contains a file called package.buildinfo after the configuration
step, subsequent steps will read it to obtain additional settings for build information fields (see Sec-
tion 2.1.4, “Build information”), to be merged with the ones given in the .cabal file. In particu-
lar, this file may be generated by the configure script mentioned above, allowing these settings
to vary depending on the build environment.

The build information file should have the following structure:

Common Architecture for Building
Applications and Libraries

8

http://www.gnu.org/software/autoconf/

buildinfo

executable: name
buildinfo

executable: name
buildinfo

...

where each buildinfo consists of settings of fields listed in Section 2.1.4, “Build information”.
The first one (if present) relates to the library, while each of the others relate to the named execut-
able. (The names must match the package description, but you don't have to have entries for all of
them.)

Neither of these files is required. If they are absent, this setup script is equivalent to defaultMain.

Example 4. Using autoconf

(This example is for people familiar with the autoconf [http://www.gnu.org/software/autoconf/] tools.)

In the X11 package, the file configure.ac contains:

AC_INIT([Haskell X11 package], [1.1], [libraries@haskell.org], [X11])

Safety check: Ensure that we are in the correct source directory.
AC_CONFIG_SRCDIR([X11.cabal])

Header file to place defines in
AC_CONFIG_HEADERS([include/HsX11Config.h])

Check for X11 include paths and libraries
AC_PATH_XTRA
AC_TRY_CPP([#include <X11/Xlib.h>],,[no_x=yes])

Build the package if we found X11 stuff
if test "$no_x" = yes
then BUILD_PACKAGE_BOOL=False
else BUILD_PACKAGE_BOOL=True
fi
AC_SUBST([BUILD_PACKAGE_BOOL])

AC_CONFIG_FILES([X11.buildinfo])
AC_OUTPUT

Then the setup script will run the configure script, which checks for the presence of the X11 libraries
and substitutes for variables in the file X11.buildinfo.in:

buildable: @BUILD_PACKAGE_BOOL@
cc-options: @X_CFLAGS@
ld-options: @X_LIBS@

Common Architecture for Building
Applications and Libraries

9

http://www.gnu.org/software/autoconf/

This generates a file X11.buildinfo supplying the parameters needed by later stages:

buildable: True
cc-options: -I/usr/X11R6/include
ld-options: -L/usr/X11R6/lib

The configure script also generates a header file include/HsX11Config.h containing C pre-
processor defines recording the results of various tests. This file may be included by C source files and
preprocessed Haskell source files in the package.

Note

Packages using these features will also need to list additional files such as configure, templates for
.buildinfo files, files named only in .buildinfo files, header files and so on in the extra-
source-files field, to ensure that they are included in source distributions. They should also list
files and directories generated by configure in the extra-tmp-files field to ensure that they are re-
moved by setup clean.

2.4. More complex packages
For packages that don't fit the simple schemes described above, you have a few options:

• You can customize the simple build infrastructure using hooks. These allow you to perform addition-
al actions before and after each command is run, and also to specify additional preprocessors. See
UserHooks in Distribution.Simple [../libraries/Cabal/Distribution-Simple.html] for the details, but
note that this interface is experimental, and likely to change in future releases.

• You could delegate all the work to make, though this is unlikely to be very portable. Cabal supports
this with a trivial setup library Distribution.Make [../libraries/Cabal/Distribution-Make.html], which
simply parses the command line arguments and invokes make. Here Setup.hs looks like

import Distribution.Make
main = defaultMain

The root directory of the package should contain a configure script, and, after that has run, a
Makefile with a default target that builds the package, plus targets install, register, un-
register, clean, dist and docs. Some options to commands are passed through as follows:

• The --with-hc, --with-hc-pkg, --prefix, --bindir, --libdir, --datadir and
--libexecdir options to the configure command are passed on to the configure
script.

• the --destdir option to the copy command becomes a setting of a destdir variable on the
invocation of make copy. The supplied Makefile should provide a copy target, which will
probably look like this:

copy :
$(MAKE) install prefix=$(destdir)/$(prefix) \

bindir=$(destdir)/$(bindir) \
libdir=$(destdir)/$(libdir) \
datadir=$(destdir)/$(datadir) \
libexecdir=$(destdir)/$(libexecdir)

Common Architecture for Building
Applications and Libraries

10

../libraries/Cabal/Distribution-Simple.html
../libraries/Cabal/Distribution-Make.html

• You can write your own setup script conforming to the interface of Section 3, “Building and in-
stalling a package”, possibly using the Cabal library for part of the work. One option is to copy the
source of Distribution.Simple, and alter it for your needs. Good luck.

3. Building and installing a package
After you've unpacked a Cabal package, you can build it by moving into the root directory of the pack-
age and using the Setup.hs or Setup.lhs script there:
runhaskell Setup.hs [command] [option...]

where runhaskell might be runhugs, runghc or runnhc. The command argument selects a particu-
lar step in the build/install process. You can also get a summary of the command syntax with
runhaskell Setup.hs --help

Example 5. Building and installing a system package

runhaskell Setup.hs configure --ghc
runhaskell Setup.hs build
runhaskell Setup.hs install

The first line readies the system to build the tool using GHC; for example, it checks that GHC exists on
the system. The second line performs the actual building, while the last both copies the build results to
some permanent place and registers the package with GHC.

Example 6. Building and installing a user package

runhaskell Setup.hs configure --ghc --user --prefix=$HOME
runhaskell Setup.hs build
runhaskell Setup.hs install

The package may use packages from the user's package database as well as the global one (--user), is
installed under the user's home directory (--prefix), and is registered in the user's package database
(--user).

Example 7. Creating a binary package

When creating binary packages (e.g. for RedHat or Debian) one needs to create a tarball that can be sent
to another system for unpacking in the root directory:

runhaskell Setup.hs configure --ghc --prefix=/usr
runhaskell Setup.hs build
runhaskell Setup.hs copy --destdir=/tmp/mypkg
(cd /tmp/mypkg; tar cf - .) | gzip -9 >mypkg.tar.gz

Common Architecture for Building
Applications and Libraries

11

If the package contains a library, you need two additional steps:

runhaskell Setup.hs register --gen-script
runhaskell Setup.hs unregister --gen-script

This creates shell scripts register.sh and unregister.sh, which must also be sent to the target
system. After unpacking there, the package must be registered by running the register.sh script.
The unregister.sh script would be used in the uninstall procedure of the package. Similar steps
may be used for creating binary packages for Windows.

The following options are understood by all commands:

--help, -h or
-?

List the available options for the command.

--verbose=n
or -vn

Set the verbosity level (0-5). The normal level is 1; a missing n defaults to 3.

The various commands and the additional options they support are described below. In the simple build
infrastructure, any other options will be reported as errors, except in the case of the configure com-
mand.

3.1. setup configure
Prepare to build the package. Typically, this step checks that the target platform is capable of building
the package, and discovers platform-specific features that are needed during the build.

The user may also adjust the behaviour of later stages using the options listed in the following subsec-
tions. In the simple build infrastructure, the values supplied via these options are recorded in a private
file read by later stages.

If a user-supplied configure script is run (see Section 2.3, “System-dependent parameters” or Sec-
tion 2.4, “More complex packages”), it is passed the --with-hc, --with-hc-pkg, --prefix, -
-bindir, --libdir, --datadir and --libexecdir options, plus any unrecognized options.

3.1.1. Programs used for building

The following options govern the programs used to process the source files of a package:

--ghc or -g, --nhc
or -n, --hugs

Specify which Haskell implementation to use to build the package. At most
one of these flags may be given. If none is given, the implementation under
which the setup script was compiled or interpreted is used.

Common Architecture for Building
Applications and Libraries

12

path or -wpath Specify the path to a particular compiler. If given, this must match the imple-
mentation selected above. The default is to search for the usual name of the
selected implementation.

pa
--with-hc-pkg=th

Specify the path to the package tool, e.g. ghc-pkg.

p
a
t
--with-haddock=h

Specify the path to haddock [http://www.haskell.org/haddock/].

pat
--with-happy=h

Specify the path to happy [http://www.haskell.org/happy/].

--with-alex=path Specify the path to alex [http://www.haskell.org/alex/].

pa
--with-hsc2hs=th

Specify the path to hsc2hs.

--with-c2hs=path Specify the path to c2hs [http://www.cse.unsw.edu.au/~chak/haskell/c2hs/].

Common Architecture for Building
Applications and Libraries

13

http://www.haskell.org/haddock/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

=path Specify the path to haddock [http://www.haskell.org/greencard/].

pat
--with-cpphs=h

Specify the path to cpphs [http://www.haskell.org/cpphs/].

3.1.2. Installation paths

The following options govern the location of installed files from a package:

--prefix=dir The root of the installation, for example /usr/local on a Unix system, or
C:\Program Files on a Windows system. The other installation paths are usu-
ally subdirectories of prefix, but they don't have to be.

--bindir=dir Executables that the user might invoke are installed here.

--libdir=dir Object-code libraries are installed here.

Common Architecture for Building
Applications and Libraries

14

http://www.haskell.org/greencard/
http://www.haskell.org/cpphs/

dir A subdirectory of libdir in which libraries are actually installed. For example, in
the simple build system on Unix, the default libdir is /usr/local/lib, and
libsubdir contains the package identifier and compiler, e.g. mypkg-
0.2/ghc-6.4, so libraries would be installed in /
usr/local/lib/mypkg-0.2/ghc-6.4.

Not all build systems make use of libsubdir, in particular the Distribution.Make
[../libraries/Cabal/Distribution-Make.html] system does not.

di
--datadir=r

Architecture-independent data files are installed here.

Common Architecture for Building
Applications and Libraries

15

../libraries/Cabal/Distribution-Make.html

=dir A subdirectory of datadir in which data files are actually installed. This option is
similar to --libsubdir in that not all build systems make use of it.

Common Architecture for Building
Applications and Libraries

16

=dir Executables that are not expected to be invoked directly by the user are installed
here.

3.1.2.1. Paths in the simple build system

For the simple build system, the following defaults apply:

Option Windows Default Unix Default

--prefix C:\Program Files /usr/local

--bindir $prefix\$pkgid $prefix/bin

--libdir $prefix\Haskell $prefix/lib

--libsubdir (Hugs) hugs\packages\$pkg hugs/packages/$pkg

--libsubdir (others) $pkgid\$compiler $pkgid/$compiler

--datadir (executable) $prefix $prefix/share

--datadir (library) C:\Program Files\Common
Files

$prefix/share

--datasubdir $pkgid $pkgid

--libexecdir $prefix\$pkgid $prefix/libexec

The following strings are substituted into directory names:

$prefix The value of prefix

$pkgid The full package identifier, e.g. pkg-0.1

$compiler The compiler and version, e.g. ghc-6.4.1

$pkg The name of the package only

$version The version of the package

3.1.2.2. Prefix-independence

On Windows (and perhaps other OSs), it is possible to query the pathname of the running binary. This
means that we can construct an installable executable package that is independent of its absolute install
location. The executable can find its auxiliary files by finding its own path and knowing the location of
the other files relative to bindir. Prefix-independence is particularly useful: it means the user can
choose the install location (i.e. the value of prefix) at install-time, rather than having to bake the path
into the binary when it is built.

In order to achieve this, we require that for an executable on Windows, all of bindir, libdir,
datadir and libexecdir begin with $prefix. If this is not the case then the compiled executable
will have baked in all absolute paths.

The application need do nothing special to achieve prefix-independence. If it finds any files using get-
DataFileName and the other functions provided for the purpose (see Section 2.2, “Accessing data
files from package code”), the files will be accessed relative to the location of the current executable.

A library cannot (currently) be prefix-independent, because it will be linked into an executable whose
filesystem location bears no relation to the library package.

Common Architecture for Building
Applications and Libraries

17

3.1.3. Miscellaneous options

--user Allow dependencies to be satisfied by the user package database,
in addition to the global database.

This also implies a default of --user for any subsequent in-
stall command, as packages registered in the global database
should not depend on packages registered in a user's database.

--global (default) Dependencies must be satisfied by the global package
database.

-
-en-
able-library-profiling or
-p

Request that an additional version of the library with profiling
features enabled be built and installed (only for implementations
that support profiling).

-
-dis-
able-library-profiling

(default) Do not generate an additional profiling version of the
library.

-
-en-
able-execut-
able-profiling

Any executables generated should have profiling enabled (only
for implementations that support profiling). For this to work, all
libraries used by these executables must also have been built with
profiling support.

-
-dis-
able-execut-
able-profiling

(default) Do not enable profiling in generated executables.

In the simple build infrastructure, an additional option is recognized:

Common Architecture for Building
Applications and Libraries

18

=dir or -bdir Specify the directory into which the package will be built (default: dist/build).

3.2. setup build
Perform any preprocessing or compilation needed to make this package ready for installation.

3.3. setup haddock
Build the interface documentation for a library using haddock [http://www.haskell.org/haddock/].

3.4. setup install
Copy the files into the install locations and (for library packages) register the package with the compiler,
i.e. make the modules it contains available to programs.

The install locations are determined by options to setup configure (see Section 3.1.2, “Installation
paths”).

This command takes the following options:

--global Register this package in the system-wide database. (This is the default, unless the -
-user option was supplied to the configure command.)

--user Register this package in the user's local package database. (This is the default if the -
-user option was supplied to the configure command.)

3.5. setup copy
Copy the files without registering them. This command is mainly of use to those creating binary pack-
ages.

This command takes the following option:

Common Architecture for Building
Applications and Libraries

19

http://www.haskell.org/haddock/

=path Specify the directory under which to place installed files. If this is not given, then the
root directory is assumed.

3.6. setup register
Register this package with the compiler, i.e. make the modules it contains available to programs. This
only makes sense for library packages. Note that the install command incorporates this action. The
main use of this separate command is in the post-installation step for a binary package.

This command takes the following options:

--global Register this package in the system-wide database. (This is the default.)

--user Register this package in the user's local package database.

--gen-script Instead of registering the package, generate a script containing commands to per-
form the registration. On Unix, this file is called register.sh, on Windows,
register.bat. This script might be included in a binary bundle, to be run after
the bundle is unpacked on the target system.

3.7. setup unregister
Deregister this package with the compiler.

This command takes the following options:

--global Deregister this package in the system-wide database. (This is the default.)

--user Deregister this package in the user's local package database.

--gen-script Instead of deregistering the package, generate a script containing commands to per-
form the deregistration. On Unix, this file is called unregister.sh, on Win-
dows, unregister.bat. This script might be included in a binary bundle, to be
run on the target system.

3.8. setup clean
Remove any local files created during the configure, build, haddock, register or unre-
gister steps, and also any files and directories listed in the extra-tmp-files field.

3.9. setup test
Run the test suite specified by the runTests field of Distribution.Simple.UserHooks. See
Distribution.Simple [../libraries/Cabal/Distribution-Simple.html] for information about creating hooks
and using defaultMainWithHooks.

3.10. setup sdist
Create a system- and compiler-independent source distribution in a file package-version.tar.gz
in the dist subdirectory, for distribution to package builders. When unpacked, the commands listed in
this section will be available.

Common Architecture for Building
Applications and Libraries

20

../libraries/Cabal/Distribution-Simple.html

The files placed in this distribution are the package description file, the setup script, the sources of the
modules named in the package description file, and files named in the license-file, main-is, c-
sources, data-files and extra-source-files fields.

This command takes the following option:

--snapshot Append today's date (in YYYYMMDD form) to the version number for the generated
source package. The original package is unaffected.

4. Known bugs and deficiencies
All these should be fixed in future versions:

• The scheme described in Section 2.3, “System-dependent parameters” will not work on Windows
without MSYS or Cygwin.

• Cabal has some limitations both running under Hugs and building packages for it:

• Cabal requires the latest release (Mar 2005).

• It doesn't work with Windows.

• There is no hugs-pkg tool.

• Though the library runs under Nhc98, it cannot build packages for Nhc98.

Please report any other flaws to <libraries@haskell.org>.

Common Architecture for Building
Applications and Libraries

21

	Common Architecture for Building Applications and Libraries
	Table of Contents
	1. Packages
	2. Creating a package
	2.1. Package descriptions
	2.1.1. Package properties
	2.1.2. Library
	2.1.3. Executables
	2.1.4. Build information

	2.2. Accessing data files from package code
	2.3. System-dependent parameters
	2.4. More complex packages

	3. Building and installing a package
	3.1. setup configure
	3.1.1. Programs used for building
	3.1.2. Installation paths
	3.1.2.1. Paths in the simple build system
	3.1.2.2. Prefix-independence

	3.1.3. Miscellaneous options

	3.2. setup build
	3.3. setup haddock
	3.4. setup install
	3.5. setup copy
	3.6. setup register
	3.7. setup unregister
	3.8. setup clean
	3.9. setup test
	3.10. setup sdist

	4. Known bugs and deficiencies

