module TcValidity ( Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType, expectedKindInCtxt, checkValidTheta, checkValidFamPats, checkValidInstance, validDerivPred, checkInstTermination, checkValidTyFamInst, checkTyFamFreeness, checkConsistentFamInst, arityErr, badATErr ) where #include "HsVersions.h" -- friends: import TcUnify ( tcSubType ) import TcSimplify ( simplifyAmbiguityCheck ) import TypeRep import TcType import TcMType import TysWiredIn ( coercibleClass ) import Type import Unify( tcMatchTyX ) import Kind import CoAxiom import Class import TyCon -- others: import HsSyn -- HsType import TcRnMonad -- TcType, amongst others import FunDeps import Name import VarEnv import VarSet import ErrUtils import PrelNames import DynFlags import Util import Maybes import ListSetOps import SrcLoc import Outputable import FastString import BasicTypes ( Arity ) import Control.Monad import Data.List ( (\\) )\end{code} %************************************************************************ %* * Checking for ambiguity %* * %************************************************************************ \begin{code}
checkAmbiguity :: UserTypeCtxt -> Type -> TcM () checkAmbiguity ctxt ty | GhciCtxt <- ctxt -- Allow ambiguous types in GHCi's :kind command = return () -- E.g. type family T a :: * -- T :: forall k. k -> * -- Then :k T should work in GHCi, not complain that -- (T k) is ambiguous! | otherwise = do { traceTc "Ambiguity check for" (ppr ty) ; (subst, _tvs) <- tcInstSkolTyVars (varSetElems (tyVarsOfType ty)) ; let ty' = substTy subst ty -- The type might have free TyVars, -- so we skolemise them as TcTyVars -- Tiresome; but the type inference engine expects TcTyVars -- Solve the constraints eagerly because an ambiguous type -- can cause a cascade of further errors. Since the free -- tyvars are skolemised, we can safely use tcSimplifyTop ; (_wrap, wanted) <- addErrCtxtM (mk_msg ty') $ captureConstraints $ tcSubType (AmbigOrigin ctxt) ctxt ty' ty' ; simplifyAmbiguityCheck ty wanted ; traceTc "Done ambiguity check for" (ppr ty) } where mk_msg ty tidy_env = do { allow_ambiguous <- xoptM Opt_AllowAmbiguousTypes ; return (tidy_env', msg $$ ppWhen (not allow_ambiguous) ambig_msg) } where (tidy_env', tidy_ty) = tidyOpenType tidy_env ty msg = hang (ptext (sLit "In the ambiguity check for:")) 2 (ppr tidy_ty) ambig_msg = ptext (sLit "To defer the ambiguity check to use sites, enable AllowAmbiguousTypes")\end{code} %************************************************************************ %* * Checking validity of a user-defined type %* * %************************************************************************ When dealing with a user-written type, we first translate it from an HsType to a Type, performing kind checking, and then check various things that should be true about it. We don't want to perform these checks at the same time as the initial translation because (a) they are unnecessary for interface-file types and (b) when checking a mutually recursive group of type and class decls, we can't "look" at the tycons/classes yet. Also, the checks are are rather diverse, and used to really mess up the other code. One thing we check for is 'rank'. Rank 0: monotypes (no foralls) Rank 1: foralls at the front only, Rank 0 inside Rank 2: foralls at the front, Rank 1 on left of fn arrow, basic ::= tyvar | T basic ... basic r2 ::= forall tvs. cxt => r2a r2a ::= r1 -> r2a | basic r1 ::= forall tvs. cxt => r0 r0 ::= r0 -> r0 | basic Another thing is to check that type synonyms are saturated. This might not necessarily show up in kind checking. type A i = i data T k = MkT (k Int) f :: T A -- BAD! \begin{code}
checkValidType :: UserTypeCtxt -> Type -> TcM () -- Checks that the type is valid for the given context -- Not used for instance decls; checkValidInstance instead checkValidType ctxt ty = do { traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (typeKind ty)) ; rankn_flag <- xoptM Opt_RankNTypes ; let gen_rank :: Rank -> Rank gen_rank r | rankn_flag = ArbitraryRank | otherwise = r rank1 = gen_rank r1 rank0 = gen_rank r0 r0 = rankZeroMonoType r1 = LimitedRank True r0 rank = case ctxt of DefaultDeclCtxt-> MustBeMonoType ResSigCtxt -> MustBeMonoType LamPatSigCtxt -> rank0 BindPatSigCtxt -> rank0 RuleSigCtxt _ -> rank1 TySynCtxt _ -> rank0 ExprSigCtxt -> rank1 FunSigCtxt _ -> rank1 InfSigCtxt _ -> ArbitraryRank -- Inferred type ConArgCtxt _ -> rank1 -- We are given the type of the entire -- constructor, hence rank 1 ForSigCtxt _ -> rank1 SpecInstCtxt -> rank1 ThBrackCtxt -> rank1 GhciCtxt -> ArbitraryRank _ -> panic "checkValidType" -- Can't happen; not used for *user* sigs -- Check the internal validity of the type itself ; check_type ctxt rank ty -- Check that the thing has kind Type, and is lifted if necessary -- Do this second, because we can't usefully take the kind of an -- ill-formed type such as (a~Int) ; check_kind ctxt ty ; traceTc "checkValidType done" (ppr ty <+> text "::" <+> ppr (typeKind ty)) } checkValidMonoType :: Type -> TcM () checkValidMonoType ty = check_mono_type SigmaCtxt MustBeMonoType ty check_kind :: UserTypeCtxt -> TcType -> TcM () -- Check that the type's kind is acceptable for the context check_kind ctxt ty | TySynCtxt {} <- ctxt = do { ck <- xoptM Opt_ConstraintKinds ; unless ck $ checkTc (not (returnsConstraintKind actual_kind)) (constraintSynErr actual_kind) } | Just k <- expectedKindInCtxt ctxt = checkTc (tcIsSubKind actual_kind k) (kindErr actual_kind) | otherwise = return () -- Any kind will do where actual_kind = typeKind ty -- Depending on the context, we might accept any kind (for instance, in a TH -- splice), or only certain kinds (like in type signatures). expectedKindInCtxt :: UserTypeCtxt -> Maybe Kind expectedKindInCtxt (TySynCtxt _) = Nothing -- Any kind will do expectedKindInCtxt ThBrackCtxt = Nothing expectedKindInCtxt GhciCtxt = Nothing expectedKindInCtxt (ForSigCtxt _) = Just liftedTypeKind expectedKindInCtxt InstDeclCtxt = Just constraintKind expectedKindInCtxt SpecInstCtxt = Just constraintKind expectedKindInCtxt _ = Just openTypeKind\end{code} Note [Higher rank types] ~~~~~~~~~~~~~~~~~~~~~~~~ Technically Int -> forall a. a->a is still a rank-1 type, but it's not Haskell 98 (Trac #5957). So the validity checker allow a forall after an arrow only if we allow it before -- that is, with Rank2Types or RankNTypes \begin{code}
data Rank = ArbitraryRank -- Any rank ok | LimitedRank -- Note [Higher rank types] Bool -- Forall ok at top Rank -- Use for function arguments | MonoType SDoc -- Monotype, with a suggestion of how it could be a polytype | MustBeMonoType -- Monotype regardless of flags rankZeroMonoType, tyConArgMonoType, synArgMonoType :: Rank rankZeroMonoType = MonoType (ptext (sLit "Perhaps you intended to use RankNTypes or Rank2Types")) tyConArgMonoType = MonoType (ptext (sLit "Perhaps you intended to use ImpredicativeTypes")) synArgMonoType = MonoType (ptext (sLit "Perhaps you intended to use LiberalTypeSynonyms")) funArgResRank :: Rank -> (Rank, Rank) -- Function argument and result funArgResRank (LimitedRank _ arg_rank) = (arg_rank, LimitedRank (forAllAllowed arg_rank) arg_rank) funArgResRank other_rank = (other_rank, other_rank) forAllAllowed :: Rank -> Bool forAllAllowed ArbitraryRank = True forAllAllowed (LimitedRank forall_ok _) = forall_ok forAllAllowed _ = False ---------------------------------------- check_mono_type :: UserTypeCtxt -> Rank -> KindOrType -> TcM () -- No foralls anywhere -- No unlifted types of any kind check_mono_type ctxt rank ty | isKind ty = return () -- IA0_NOTE: Do we need to check kinds? | otherwise = do { check_type ctxt rank ty ; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) } check_type :: UserTypeCtxt -> Rank -> Type -> TcM () -- The args say what the *type context* requires, independent -- of *flag* settings. You test the flag settings at usage sites. -- -- Rank is allowed rank for function args -- Rank 0 means no for-alls anywhere check_type ctxt rank ty | not (null tvs && null theta) = do { checkTc (forAllAllowed rank) (forAllTyErr rank ty) -- Reject e.g. (Maybe (?x::Int => Int)), -- with a decent error message ; check_valid_theta ctxt theta ; check_type ctxt rank tau -- Allow foralls to right of arrow ; checkAmbiguity ctxt ty } where (tvs, theta, tau) = tcSplitSigmaTy ty check_type _ _ (TyVarTy _) = return () check_type ctxt rank (FunTy arg_ty res_ty) = do { check_type ctxt arg_rank arg_ty ; check_type ctxt res_rank res_ty } where (arg_rank, res_rank) = funArgResRank rank check_type ctxt rank (AppTy ty1 ty2) = do { check_arg_type ctxt rank ty1 ; check_arg_type ctxt rank ty2 } check_type ctxt rank ty@(TyConApp tc tys) | isSynTyCon tc = check_syn_tc_app ctxt rank ty tc tys | isUnboxedTupleTyCon tc = check_ubx_tuple ctxt ty tys | otherwise = mapM_ (check_arg_type ctxt rank) tys check_type _ _ (LitTy {}) = return () check_type _ _ ty = pprPanic "check_type" (ppr ty) ---------------------------------------- check_syn_tc_app :: UserTypeCtxt -> Rank -> KindOrType -> TyCon -> [KindOrType] -> TcM () check_syn_tc_app ctxt rank ty tc tys | tc_arity <= n_args -- Saturated -- Check that the synonym has enough args -- This applies equally to open and closed synonyms -- It's OK to have an *over-applied* type synonym -- data Tree a b = ... -- type Foo a = Tree [a] -- f :: Foo a b -> ... = do { -- See Note [Liberal type synonyms] ; liberal <- xoptM Opt_LiberalTypeSynonyms ; if not liberal || isSynFamilyTyCon tc then -- For H98 and synonym families, do check the type args mapM_ check_arg tys else -- In the liberal case (only for closed syns), expand then check case tcView ty of Just ty' -> check_type ctxt rank ty' Nothing -> pprPanic "check_tau_type" (ppr ty) } | GhciCtxt <- ctxt -- Accept under-saturated type synonyms in -- GHCi :kind commands; see Trac #7586 = mapM_ check_arg tys | otherwise = failWithTc (arityErr "Type synonym" (tyConName tc) tc_arity n_args) where n_args = length tys tc_arity = tyConArity tc check_arg | isSynFamilyTyCon tc = check_arg_type ctxt rank | otherwise = check_mono_type ctxt synArgMonoType ---------------------------------------- check_ubx_tuple :: UserTypeCtxt -> KindOrType -> [KindOrType] -> TcM () check_ubx_tuple ctxt ty tys = do { ub_tuples_allowed <- xoptM Opt_UnboxedTuples ; checkTc ub_tuples_allowed (ubxArgTyErr ty) ; impred <- xoptM Opt_ImpredicativeTypes ; let rank' = if impred then ArbitraryRank else tyConArgMonoType -- c.f. check_arg_type -- However, args are allowed to be unlifted, or -- more unboxed tuples, so can't use check_arg_ty ; mapM_ (check_type ctxt rank') tys } ---------------------------------------- check_arg_type :: UserTypeCtxt -> Rank -> KindOrType -> TcM () -- The sort of type that can instantiate a type variable, -- or be the argument of a type constructor. -- Not an unboxed tuple, but now *can* be a forall (since impredicativity) -- Other unboxed types are very occasionally allowed as type -- arguments depending on the kind of the type constructor -- -- For example, we want to reject things like: -- -- instance Ord a => Ord (forall s. T s a) -- and -- g :: T s (forall b.b) -- -- NB: unboxed tuples can have polymorphic or unboxed args. -- This happens in the workers for functions returning -- product types with polymorphic components. -- But not in user code. -- Anyway, they are dealt with by a special case in check_tau_type check_arg_type ctxt rank ty | isKind ty = return () -- IA0_NOTE: Do we need to check a kind? | otherwise = do { impred <- xoptM Opt_ImpredicativeTypes ; let rank' = case rank of -- Predictive => must be monotype MustBeMonoType -> MustBeMonoType -- Monotype, regardless _other | impred -> ArbitraryRank | otherwise -> tyConArgMonoType -- Make sure that MustBeMonoType is propagated, -- so that we don't suggest -XImpredicativeTypes in -- (Ord (forall a.a)) => a -> a -- and so that if it Must be a monotype, we check that it is! ; check_type ctxt rank' ty ; checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty) } -- NB the isUnLiftedType test also checks for -- T State# -- where there is an illegal partial application of State# (which has -- kind * -> #); see Note [The kind invariant] in TypeRep ---------------------------------------- forAllTyErr :: Rank -> Type -> SDoc forAllTyErr rank ty = vcat [ hang (ptext (sLit "Illegal polymorphic or qualified type:")) 2 (ppr ty) , suggestion ] where suggestion = case rank of LimitedRank {} -> ptext (sLit "Perhaps you intended to use RankNTypes or Rank2Types") MonoType d -> d _ -> empty -- Polytype is always illegal unliftedArgErr, ubxArgTyErr :: Type -> SDoc unliftedArgErr ty = sep [ptext (sLit "Illegal unlifted type:"), ppr ty] ubxArgTyErr ty = sep [ptext (sLit "Illegal unboxed tuple type as function argument:"), ppr ty] kindErr :: Kind -> SDoc kindErr kind = sep [ptext (sLit "Expecting an ordinary type, but found a type of kind"), ppr kind]\end{code} Note [Liberal type synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If -XLiberalTypeSynonyms is on, expand closed type synonyms *before* doing validity checking. This allows us to instantiate a synonym defn with a for-all type, or with a partially-applied type synonym. e.g. type T a b = a type S m = m () f :: S (T Int) Here, T is partially applied, so it's illegal in H98. But if you expand S first, then T we get just f :: Int which is fine. IMPORTANT: suppose T is a type synonym. Then we must do validity checking on an appliation (T ty1 ty2) *either* before expansion (i.e. check ty1, ty2) *or* after expansion (i.e. expand T ty1 ty2, and then check) BUT NOT BOTH If we do both, we get exponential behaviour!! data TIACons1 i r c = c i ::: r c type TIACons2 t x = TIACons1 t (TIACons1 t x) type TIACons3 t x = TIACons2 t (TIACons1 t x) type TIACons4 t x = TIACons2 t (TIACons2 t x) type TIACons7 t x = TIACons4 t (TIACons3 t x) %************************************************************************ %* * \subsection{Checking a theta or source type} %* * %************************************************************************ \begin{code}
checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM () checkValidTheta ctxt theta = addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta) ------------------------- check_valid_theta :: UserTypeCtxt -> [PredType] -> TcM () check_valid_theta _ [] = return () check_valid_theta ctxt theta = do { dflags <- getDynFlags ; warnTc (wopt Opt_WarnDuplicateConstraints dflags && notNull dups) (dupPredWarn dups) ; mapM_ (check_pred_ty dflags ctxt) theta } where (_,dups) = removeDups cmpPred theta ------------------------- check_pred_ty :: DynFlags -> UserTypeCtxt -> PredType -> TcM () -- Check the validity of a predicate in a signature -- We look through any type synonyms; any constraint kinded -- type synonyms have been checked at their definition site check_pred_ty dflags ctxt pred | Just (tc,tys) <- tcSplitTyConApp_maybe pred = case () of _ | Just cls <- tyConClass_maybe tc -> check_class_pred dflags ctxt cls tys | tc `hasKey` eqTyConKey , let [_, ty1, ty2] = tys -> check_eq_pred dflags ctxt ty1 ty2 | isTupleTyCon tc -> check_tuple_pred dflags ctxt pred tys | otherwise -- X t1 t2, where X is presumably a -- type/data family returning ConstraintKind -> check_irred_pred dflags ctxt pred tys | (TyVarTy _, arg_tys) <- tcSplitAppTys pred = check_irred_pred dflags ctxt pred arg_tys | otherwise = badPred pred badPred :: PredType -> TcM () badPred pred = failWithTc (ptext (sLit "Malformed predicate") <+> quotes (ppr pred)) check_class_pred :: DynFlags -> UserTypeCtxt -> Class -> [TcType] -> TcM () check_class_pred dflags ctxt cls tys = do { -- Class predicates are valid in all contexts ; checkTc (arity == n_tys) arity_err -- Check the form of the argument types ; mapM_ checkValidMonoType tys ; checkTc (check_class_pred_tys dflags ctxt tys) (predTyVarErr (mkClassPred cls tys) $$ how_to_allow) } where class_name = className cls arity = classArity cls n_tys = length tys arity_err = arityErr "Class" class_name arity n_tys how_to_allow = parens (ptext (sLit "Use FlexibleContexts to permit this")) check_eq_pred :: DynFlags -> UserTypeCtxt -> TcType -> TcType -> TcM () check_eq_pred dflags _ctxt ty1 ty2 = do { -- Equational constraints are valid in all contexts if type -- families are permitted ; checkTc (xopt Opt_TypeFamilies dflags || xopt Opt_GADTs dflags) (eqPredTyErr (mkEqPred ty1 ty2)) -- Check the form of the argument types ; checkValidMonoType ty1 ; checkValidMonoType ty2 } check_tuple_pred :: DynFlags -> UserTypeCtxt -> PredType -> [PredType] -> TcM () check_tuple_pred dflags ctxt pred ts = do { checkTc (xopt Opt_ConstraintKinds dflags) (predTupleErr pred) ; mapM_ (check_pred_ty dflags ctxt) ts } -- This case will not normally be executed because -- without -XConstraintKinds tuple types are only kind-checked as * check_irred_pred :: DynFlags -> UserTypeCtxt -> PredType -> [TcType] -> TcM () check_irred_pred dflags ctxt pred arg_tys -- The predicate looks like (X t1 t2) or (x t1 t2) :: Constraint -- But X is not a synonym; that's been expanded already -- -- Allowing irreducible predicates in class superclasses is somewhat dangerous -- because we can write: -- -- type family Fooish x :: * -> Constraint -- type instance Fooish () = Foo -- class Fooish () a => Foo a where -- -- This will cause the constraint simplifier to loop because every time we canonicalise a -- (Foo a) class constraint we add a (Fooish () a) constraint which will be immediately -- solved to add+canonicalise another (Foo a) constraint. -- -- It is equally dangerous to allow them in instance heads because in that case the -- Paterson conditions may not detect duplication of a type variable or size change. = do { checkTc (xopt Opt_ConstraintKinds dflags) (predIrredErr pred) ; mapM_ checkValidMonoType arg_tys ; unless (xopt Opt_UndecidableInstances dflags) $ -- Make sure it is OK to have an irred pred in this context checkTc (case ctxt of ClassSCCtxt _ -> False; InstDeclCtxt -> False; _ -> True) (predIrredBadCtxtErr pred) } ------------------------- check_class_pred_tys :: DynFlags -> UserTypeCtxt -> [KindOrType] -> Bool check_class_pred_tys dflags ctxt kts = case ctxt of SpecInstCtxt -> True -- {-# SPECIALISE instance Eq (T Int) #-} is fine InstDeclCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys -- Further checks on head and theta in -- checkInstTermination _ -> flexible_contexts || all tyvar_head tys where (_, tys) = span isKind kts -- see Note [Kind polymorphic type classes] flexible_contexts = xopt Opt_FlexibleContexts dflags undecidable_ok = xopt Opt_UndecidableInstances dflags ------------------------- tyvar_head :: Type -> Bool tyvar_head ty -- Haskell 98 allows predicates of form | tcIsTyVarTy ty = True -- C (a ty1 .. tyn) | otherwise -- where a is a type variable = case tcSplitAppTy_maybe ty of Just (ty, _) -> tyvar_head ty Nothing -> False\end{code} Note [Kind polymorphic type classes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiParam check: class C f where... -- C :: forall k. k -> Constraint instance C Maybe where... The dictionary gets type [C * Maybe] even if it's not a MultiParam type class. Flexibility check: class C f where... -- C :: forall k. k -> Constraint data D a = D a instance C D where The dictionary gets type [C * (D *)]. IA0_TODO it should be generalized actually. Note [The ambiguity check for type signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ checkAmbiguity is a check on user-supplied type signatures. It is *purely* there to report functions that cannot possibly be called. So for example we want to reject: f :: C a => Int The idea is there can be no legal calls to 'f' because every call will give rise to an ambiguous constraint. We could soundly omit the ambiguity check on type signatures entirely, at the expense of delaying ambiguity errors to call sites. Indeed, the flag -XAllowAmbiguousTypes switches off the ambiguity check. What about things like this: class D a b | a -> b where .. h :: D Int b => Int The Int may well fix 'b' at the call site, so that signature should not be rejected. Moreover, using *visible* fundeps is too conservative. Consider class X a b where ... class D a b | a -> b where ... instance D a b => X [a] b where... h :: X a b => a -> a Here h's type looks ambiguous in 'b', but here's a legal call: ...(h [True])... That gives rise to a (X [Bool] beta) constraint, and using the instance means we need (D Bool beta) and that fixes 'beta' via D's fundep! Behind all these special cases there is a simple guiding principle. Consider f ::
checkThetaCtxt :: UserTypeCtxt -> ThetaType -> SDoc checkThetaCtxt ctxt theta = vcat [ptext (sLit "In the context:") <+> pprTheta theta, ptext (sLit "While checking") <+> pprUserTypeCtxt ctxt ] eqPredTyErr, predTyVarErr, predTupleErr, predIrredErr, predIrredBadCtxtErr :: PredType -> SDoc eqPredTyErr pred = ptext (sLit "Illegal equational constraint") <+> pprType pred $$ parens (ptext (sLit "Use GADTs or TypeFamilies to permit this")) predTyVarErr pred = hang (ptext (sLit "Non type-variable argument")) 2 (ptext (sLit "in the constraint:") <+> pprType pred) predTupleErr pred = hang (ptext (sLit "Illegal tuple constraint:") <+> pprType pred) 2 (parens (ptext (sLit "Use ConstraintKinds to permit this"))) predIrredErr pred = hang (ptext (sLit "Illegal constraint:") <+> pprType pred) 2 (parens (ptext (sLit "Use ConstraintKinds to permit this"))) predIrredBadCtxtErr pred = hang (ptext (sLit "Illegal constraint") <+> quotes (pprType pred) <+> ptext (sLit "in a superclass/instance context")) 2 (parens (ptext (sLit "Use UndecidableInstances to permit this"))) constraintSynErr :: Type -> SDoc constraintSynErr kind = hang (ptext (sLit "Illegal constraint synonym of kind:") <+> quotes (ppr kind)) 2 (parens (ptext (sLit "Use ConstraintKinds to permit this"))) dupPredWarn :: [[PredType]] -> SDoc dupPredWarn dups = ptext (sLit "Duplicate constraint(s):") <+> pprWithCommas pprType (map head dups) arityErr :: Outputable a => String -> a -> Int -> Int -> SDoc arityErr kind name n m = hsep [ text kind, quotes (ppr name), ptext (sLit "should have"), n_arguments <> comma, text "but has been given", if m==0 then text "none" else int m] where n_arguments | n == 0 = ptext (sLit "no arguments") | n == 1 = ptext (sLit "1 argument") | True = hsep [int n, ptext (sLit "arguments")]\end{code} %************************************************************************ %* * \subsection{Checking for a decent instance head type} %* * %************************************************************************ @checkValidInstHead@ checks the type {\em and} its syntactic constraints: it must normally look like: @instance Foo (Tycon a b c ...) ...@ The exceptions to this syntactic checking: (1)~if the @GlasgowExts@ flag is on, or (2)~the instance is imported (they must have been compiled elsewhere). In these cases, we let them go through anyway. We can also have instances for functions: @instance Foo (a -> b) ...@. \begin{code}
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM () checkValidInstHead ctxt clas cls_args = do { dflags <- getDynFlags ; checkTc (clas `notElem` abstractClasses) (instTypeErr clas cls_args abstract_class_msg) -- Check language restrictions; -- but not for SPECIALISE isntance pragmas ; let ty_args = dropWhile isKind cls_args ; unless spec_inst_prag $ do { checkTc (xopt Opt_TypeSynonymInstances dflags || all tcInstHeadTyNotSynonym ty_args) (instTypeErr clas cls_args head_type_synonym_msg) ; checkTc (xopt Opt_FlexibleInstances dflags || all tcInstHeadTyAppAllTyVars ty_args) (instTypeErr clas cls_args head_type_args_tyvars_msg) ; checkTc (xopt Opt_NullaryTypeClasses dflags || not (null ty_args)) (instTypeErr clas cls_args head_no_type_msg) ; checkTc (xopt Opt_MultiParamTypeClasses dflags || length ty_args <= 1) -- Only count type arguments (instTypeErr clas cls_args head_one_type_msg) } -- May not contain type family applications ; mapM_ checkTyFamFreeness ty_args ; mapM_ checkValidMonoType ty_args -- For now, I only allow tau-types (not polytypes) in -- the head of an instance decl. -- E.g. instance C (forall a. a->a) is rejected -- One could imagine generalising that, but I'm not sure -- what all the consequences might be } where spec_inst_prag = case ctxt of { SpecInstCtxt -> True; _ -> False } head_type_synonym_msg = parens ( text "All instance types must be of the form (T t1 ... tn)" $$ text "where T is not a synonym." $$ text "Use TypeSynonymInstances if you want to disable this.") head_type_args_tyvars_msg = parens (vcat [ text "All instance types must be of the form (T a1 ... an)", text "where a1 ... an are *distinct type variables*,", text "and each type variable appears at most once in the instance head.", text "Use FlexibleInstances if you want to disable this."]) head_one_type_msg = parens ( text "Only one type can be given in an instance head." $$ text "Use MultiParamTypeClasses if you want to allow more.") head_no_type_msg = parens ( text "No parameters in the instance head." $$ text "Use NullaryTypeClasses if you want to allow this.") abstract_class_msg = text "The class is abstract, manual instances are not permitted." abstractClasses :: [ Class ] abstractClasses = [ coercibleClass ] -- See Note [Coercible Instances] instTypeErr :: Class -> [Type] -> SDoc -> SDoc instTypeErr cls tys msg = hang (hang (ptext (sLit "Illegal instance declaration for")) 2 (quotes (pprClassPred cls tys))) 2 msg\end{code} validDeivPred checks for OK 'deriving' context. See Note [Exotic derived instance contexts] in TcSimplify. However the predicate is here because it uses sizeTypes, fvTypes. Also check for a bizarre corner case, when the derived instance decl would look like instance C a b => D (T a) where ... Note that 'b' isn't a parameter of T. This gives rise to all sorts of problems; in particular, it's hard to compare solutions for equality when finding the fixpoint, and that means the inferContext loop does not converge. See Trac #5287. \begin{code}
validDerivPred :: TyVarSet -> PredType -> Bool validDerivPred tv_set pred = case classifyPredType pred of ClassPred _ tys -> hasNoDups fvs && sizeTypes tys == length fvs && all (`elemVarSet` tv_set) fvs TuplePred ps -> all (validDerivPred tv_set) ps _ -> True -- Non-class predicates are ok where fvs = fvType pred\end{code} %************************************************************************ %* * \subsection{Checking instance for termination} %* * %************************************************************************ \begin{code}
checkValidInstance :: UserTypeCtxt -> LHsType Name -> Type -> TcM ([TyVar], ThetaType, Class, [Type]) checkValidInstance ctxt hs_type ty | Just (clas,inst_tys) <- getClassPredTys_maybe tau , inst_tys `lengthIs` classArity clas = do { setSrcSpan head_loc (checkValidInstHead ctxt clas inst_tys) ; checkValidTheta ctxt theta -- The Termination and Coverate Conditions -- Check that instance inference will terminate (if we care) -- For Haskell 98 this will already have been done by checkValidTheta, -- but as we may be using other extensions we need to check. -- -- Note that the Termination Condition is *more conservative* than -- the checkAmbiguity test we do on other type signatures -- e.g. Bar a => Bar Int is ambiguous, but it also fails -- the termination condition, because 'a' appears more often -- in the constraint than in the head ; undecidable_ok <- xoptM Opt_UndecidableInstances ; if undecidable_ok then checkAmbiguity ctxt ty else checkInstTermination inst_tys theta ; case (checkInstCoverage undecidable_ok clas theta inst_tys) of Nothing -> return () -- Check succeeded Just msg -> addErrTc (instTypeErr clas inst_tys msg) ; return (tvs, theta, clas, inst_tys) } | otherwise = failWithTc (ptext (sLit "Malformed instance head:") <+> ppr tau) where (tvs, theta, tau) = tcSplitSigmaTy ty -- The location of the "head" of the instance head_loc = case hs_type of L _ (HsForAllTy _ _ _ (L loc _)) -> loc L loc _ -> loc\end{code} Note [Paterson conditions] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Termination test: the so-called "Paterson conditions" (see Section 5 of "Understanding functionsl dependencies via Constraint Handling Rules, JFP Jan 2007). We check that each assertion in the context satisfies: (1) no variable has more occurrences in the assertion than in the head, and (2) the assertion has fewer constructors and variables (taken together and counting repetitions) than the head. This is only needed with -fglasgow-exts, as Haskell 98 restrictions (which have already been checked) guarantee termination. The underlying idea is that for any ground substitution, each assertion in the context has fewer type constructors than the head. \begin{code}
checkInstTermination :: [TcType] -> ThetaType -> TcM () -- See Note [Paterson conditions] checkInstTermination tys theta = check_preds theta where fvs = fvTypes tys size = sizeTypes tys check_preds :: [PredType] -> TcM () check_preds preds = mapM_ check preds check :: PredType -> TcM () check pred = case classifyPredType pred of TuplePred preds -> check_preds preds -- Look inside tuple predicates; Trac #8359 EqPred {} -> return () -- You can't get from equalities -- to class predicates, so this is safe _other -- ClassPred, IrredPred | not (null bad_tvs) -> addErrTc (predUndecErr pred (nomoreMsg bad_tvs) $$ parens undecidableMsg) | sizePred pred >= size -> addErrTc (predUndecErr pred smallerMsg $$ parens undecidableMsg) | otherwise -> return () where bad_tvs = filterOut isKindVar (fvType pred \\ fvs) -- Rightly or wrongly, we only check for -- excessive occurrences of *type* variables. -- e.g. type instance Demote {T k} a = T (Demote {k} (Any {k})) predUndecErr :: PredType -> SDoc -> SDoc predUndecErr pred msg = sep [msg, nest 2 (ptext (sLit "in the constraint:") <+> pprType pred)] nomoreMsg :: [TcTyVar] -> SDoc nomoreMsg tvs = sep [ ptext (sLit "Variable") <> plural tvs <+> quotes (pprWithCommas ppr tvs) , (if isSingleton tvs then ptext (sLit "occurs") else ptext (sLit "occur")) <+> ptext (sLit "more often than in the instance head") ] smallerMsg, undecidableMsg :: SDoc smallerMsg = ptext (sLit "Constraint is no smaller than the instance head") undecidableMsg = ptext (sLit "Use UndecidableInstances to permit this")\end{code} Note [Associated type instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We allow this: class C a where type T x a instance C Int where type T (S y) Int = y type T Z Int = Char Note that a) The variable 'x' is not bound by the class decl b) 'x' is instantiated to a non-type-variable in the instance c) There are several type instance decls for T in the instance All this is fine. Of course, you can't give any *more* instances for (T ty Int) elsewhere, because it's an *associated* type. Note [Checking consistent instantiation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class C a b where type T a x b instance C [p] Int type T [p] y Int = (p,y,y) -- Induces the family instance TyCon -- type TR p y = (p,y,y) So we * Form the mini-envt from the class type variables a,b to the instance decl types [p],Int: [a->[p], b->Int] * Look at the tyvars a,x,b of the type family constructor T (it shares tyvars with the class C) * Apply the mini-evnt to them, and check that the result is consistent with the instance types [p] y Int We do *not* assume (at this point) the the bound variables of the assoicated type instance decl are the same as for the parent instance decl. So, for example, instance C [p] Int type T [q] y Int = ... would work equally well. Reason: making the *kind* variables line up is much harder. Example (Trac #7282): class Foo (xs :: [k]) where type Bar xs :: * instance Foo '[] where type Bar '[] = Int Here the instance decl really looks like instance Foo k ('[] k) where type Bar k ('[] k) = Int but the k's are not scoped, and hence won't match Uniques. So instead we just match structure, with tcMatchTyX, and check that distinct type variables match 1-1 with distinct type variables. HOWEVER, we *still* make the instance type variables scope over the type instances, to pick up non-obvious kinds. Eg class Foo (a :: k) where type F a instance Foo (b :: k -> k) where type F b = Int Here the instance is kind-indexed and really looks like type F (k->k) (b::k->k) = Int But if the 'b' didn't scope, we would make F's instance too poly-kinded. \begin{code}
checkConsistentFamInst :: Maybe ( Class , VarEnv Type ) -- ^ Class of associated type -- and instantiation of class TyVars -> TyCon -- ^ Family tycon -> [TyVar] -- ^ Type variables of the family instance -> [Type] -- ^ Type patterns from instance -> TcM () -- See Note [Checking consistent instantiation] checkConsistentFamInst Nothing _ _ _ = return () checkConsistentFamInst (Just (clas, mini_env)) fam_tc at_tvs at_tys = do { -- Check that the associated type indeed comes from this class checkTc (Just clas == tyConAssoc_maybe fam_tc) (badATErr (className clas) (tyConName fam_tc)) -- See Note [Checking consistent instantiation] in TcTyClsDecls -- Check right to left, so that we spot type variable -- inconsistencies before (more confusing) kind variables ; discardResult $ foldrM check_arg emptyTvSubst $ tyConTyVars fam_tc `zip` at_tys } where at_tv_set = mkVarSet at_tvs check_arg :: (TyVar, Type) -> TvSubst -> TcM TvSubst check_arg (fam_tc_tv, at_ty) subst | Just inst_ty <- lookupVarEnv mini_env fam_tc_tv = case tcMatchTyX at_tv_set subst at_ty inst_ty of Just subst | all_distinct subst -> return subst _ -> failWithTc $ wrongATArgErr at_ty inst_ty -- No need to instantiate here, because the axiom -- uses the same type variables as the assocated class | otherwise = return subst -- Allow non-type-variable instantiation -- See Note [Associated type instances] all_distinct :: TvSubst -> Bool -- True if all the variables mapped the substitution -- map to *distinct* type *variables* all_distinct subst = go [] at_tvs where go _ [] = True go acc (tv:tvs) = case lookupTyVar subst tv of Nothing -> go acc tvs Just ty | Just tv' <- tcGetTyVar_maybe ty , tv' `notElem` acc -> go (tv' : acc) tvs _other -> False badATErr :: Name -> Name -> SDoc badATErr clas op = hsep [ptext (sLit "Class"), quotes (ppr clas), ptext (sLit "does not have an associated type"), quotes (ppr op)] wrongATArgErr :: Type -> Type -> SDoc wrongATArgErr ty instTy = sep [ ptext (sLit "Type indexes must match class instance head") , ptext (sLit "Found") <+> quotes (ppr ty) <+> ptext (sLit "but expected") <+> quotes (ppr instTy) ]\end{code} %************************************************************************ %* * Checking type instance well-formedness and termination %* * %************************************************************************ \begin{code}
-- Check that a "type instance" is well-formed (which includes decidability -- unless -XUndecidableInstances is given). -- checkValidTyFamInst :: Maybe ( Class, VarEnv Type ) -> TyCon -> CoAxBranch -> TcM () checkValidTyFamInst mb_clsinfo fam_tc (CoAxBranch { cab_tvs = tvs, cab_lhs = typats , cab_rhs = rhs, cab_loc = loc }) = setSrcSpan loc $ do { checkValidFamPats fam_tc tvs typats -- The right-hand side is a tau type ; checkValidMonoType rhs -- We have a decidable instance unless otherwise permitted ; undecidable_ok <- xoptM Opt_UndecidableInstances ; unless undecidable_ok $ mapM_ addErrTc (checkFamInstRhs typats (tcTyFamInsts rhs)) -- Check that type patterns match the class instance head ; checkConsistentFamInst mb_clsinfo fam_tc tvs typats } -- Make sure that each type family application is -- (1) strictly smaller than the lhs, -- (2) mentions no type variable more often than the lhs, and -- (3) does not contain any further type family instances. -- checkFamInstRhs :: [Type] -- lhs -> [(TyCon, [Type])] -- type family instances -> [MsgDoc] checkFamInstRhs lhsTys famInsts = mapCatMaybes check famInsts where size = sizeTypes lhsTys fvs = fvTypes lhsTys check (tc, tys) | not (all isTyFamFree tys) = Just (famInstUndecErr famInst nestedMsg $$ parens undecidableMsg) | not (null bad_tvs) = Just (famInstUndecErr famInst (nomoreMsg bad_tvs) $$ parens undecidableMsg) | size <= sizeTypes tys = Just (famInstUndecErr famInst smallerAppMsg $$ parens undecidableMsg) | otherwise = Nothing where famInst = TyConApp tc tys bad_tvs = filterOut isKindVar (fvTypes tys \\ fvs) -- Rightly or wrongly, we only check for -- excessive occurrences of *type* variables. -- e.g. type instance Demote {T k} a = T (Demote {k} (Any {k})) checkValidFamPats :: TyCon -> [TyVar] -> [Type] -> TcM () -- Patterns in a 'type instance' or 'data instance' decl should -- a) contain no type family applications -- (vanilla synonyms are fine, though) -- b) properly bind all their free type variables -- e.g. we disallow (Trac #7536) -- type T a = Int -- type instance F (T a) = a -- c) Have the right number of patterns checkValidFamPats fam_tc tvs ty_pats = do { -- A family instance must have exactly the same number of type -- parameters as the family declaration. You can't write -- type family F a :: * -> * -- type instance F Int y = y -- because then the type (F Int) would be like (\y.y) checkTc (length ty_pats == fam_arity) $ wrongNumberOfParmsErr (fam_arity - length fam_kvs) -- report only types ; mapM_ checkTyFamFreeness ty_pats ; let unbound_tvs = filterOut (`elemVarSet` exactTyVarsOfTypes ty_pats) tvs ; checkTc (null unbound_tvs) (famPatErr fam_tc unbound_tvs ty_pats) } where fam_arity = tyConArity fam_tc (fam_kvs, _) = splitForAllTys (tyConKind fam_tc) wrongNumberOfParmsErr :: Arity -> SDoc wrongNumberOfParmsErr exp_arity = ptext (sLit "Number of parameters must match family declaration; expected") <+> ppr exp_arity -- Ensure that no type family instances occur in a type. -- checkTyFamFreeness :: Type -> TcM () checkTyFamFreeness ty = checkTc (isTyFamFree ty) $ tyFamInstIllegalErr ty -- Check that a type does not contain any type family applications. -- isTyFamFree :: Type -> Bool isTyFamFree = null . tcTyFamInsts -- Error messages tyFamInstIllegalErr :: Type -> SDoc tyFamInstIllegalErr ty = hang (ptext (sLit "Illegal type synonym family application in instance") <> colon) 2 $ ppr ty famInstUndecErr :: Type -> SDoc -> SDoc famInstUndecErr ty msg = sep [msg, nest 2 (ptext (sLit "in the type family application:") <+> pprType ty)] famPatErr :: TyCon -> [TyVar] -> [Type] -> SDoc famPatErr fam_tc tvs pats = hang (ptext (sLit "Family instance purports to bind type variable") <> plural tvs <+> pprQuotedList tvs) 2 (hang (ptext (sLit "but the real LHS (expanding synonyms) is:")) 2 (pprTypeApp fam_tc (map expandTypeSynonyms pats) <+> ptext (sLit "= ..."))) nestedMsg, smallerAppMsg :: SDoc nestedMsg = ptext (sLit "Nested type family application") smallerAppMsg = ptext (sLit "Application is no smaller than the instance head")\end{code} %************************************************************************ %* * \subsection{Auxiliary functions} %* * %************************************************************************ \begin{code}
-- Free variables of a type, retaining repetitions, and expanding synonyms fvType :: Type -> [TyVar] fvType ty | Just exp_ty <- tcView ty = fvType exp_ty fvType (TyVarTy tv) = [tv] fvType (TyConApp _ tys) = fvTypes tys fvType (LitTy {}) = [] fvType (FunTy arg res) = fvType arg ++ fvType res fvType (AppTy fun arg) = fvType fun ++ fvType arg fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty) fvTypes :: [Type] -> [TyVar] fvTypes tys = concat (map fvType tys) sizeType :: Type -> Int -- Size of a type: the number of variables and constructors sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty sizeType (TyVarTy {}) = 1 sizeType (TyConApp _ tys) = sizeTypes tys + 1 sizeType (LitTy {}) = 1 sizeType (FunTy arg res) = sizeType arg + sizeType res + 1 sizeType (AppTy fun arg) = sizeType fun + sizeType arg sizeType (ForAllTy _ ty) = sizeType ty sizeTypes :: [Type] -> Int -- IA0_NOTE: Avoid kinds. sizeTypes xs = sum (map sizeType tys) where tys = filter (not . isKind) xs -- Size of a predicate -- -- We are considering whether class constraints terminate. -- Equality constraints and constraints for the implicit -- parameter class always termiante so it is safe to say "size 0". -- (Implicit parameter constraints always terminate because -- there are no instances for them---they are only solved by -- "local instances" in expressions). -- See Trac #4200. sizePred :: PredType -> Int sizePred ty = goClass ty where goClass p | isIPPred p = 0 | otherwise = go (classifyPredType p) go (ClassPred _ tys') = sizeTypes tys' go (EqPred {}) = 0 go (TuplePred ts) = sum (map goClass ts) go (IrredPred ty) = sizeType ty\end{code} Note [Paterson conditions on PredTypes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We are considering whether *class* constraints terminate (see Note [Paterson conditions]). Precisely, the Paterson conditions would have us check that "the constraint has fewer constructors and variables (taken together and counting repetitions) than the head.". However, we can be a bit more refined by looking at which kind of constraint this actually is. There are two main tricks: 1. It seems like it should be OK not to count the tuple type constructor for a PredType like (Show a, Eq a) :: Constraint, since we don't count the "implicit" tuple in the ThetaType itself. In fact, the Paterson test just checks *each component* of the top level ThetaType against the size bound, one at a time. By analogy, it should be OK to return the size of the *largest* tuple component as the size of the whole tuple. 2. Once we get into an implicit parameter or equality we can't get back to a class constraint, so it's safe to say "size 0". See Trac #4200. NB: we don't want to detect PredTypes in sizeType (and then call sizePred on them), or we might get an infinite loop if that PredType is irreducible. See Trac #5581.