GHC User’s Guide Documentation
Release 8.10.0.20191123

GHC Team

Nov 23, 2019

The Glasgow Haskell Compiler License

Introduction to GHC

2.1 Obtaining GHC
2.2 Meta-information: Web sites, mailing lists, etc.
2.3 ReportingbugsinGHC
2.4 GHC version numbering policy

Release notes for version 8.8.1

3.1 Highlights
3.2 Fulldetails. e

3.2.1 Language it i
2 Compiler.
3 Runtimesystem
4 Template Haskell
5
6
7

Release notes for version 8.10.1

4.1 Highlights
4.2 Fulldetails. e
4.2.1 Language v v i e e e e e e e e e e e
422 Compiler.o e
4.2.3 GHCi e e e
4.2.4 Runtimesystem
4.2.5 Template Haskell
4.2.6 ghc-primlibrary
4.2.7 ghclibrary
4.2.8 baselibrary
4.2.9 Buildsystem,
4.3 Includedlibraries

Using GHCi

5.1 Introductionto GHCi
5.2 Loadingsourcefiles
5.2.1 Modules vs. filenames
5.2.2 Making changes and recompilation
5.3 Loading compiledcode

ghc-primlibrary
ghclibrary
baselibrary,

3.2.8 Buildsystem,
3.3 Included libraries,

CONTENTS

5.4 Interactive evaluation atthe prompt 27

5.4.1 I/O actionsattheprompt. 28
5.4.2 Using do notation at the prompt 28
5.4.3 Multilineinput L e e e 30
5.4.4 Type, class and other declarations 31
5.4.5 What’s really in scope at the prompt? 32

The effect of :load on whatisinscope 33
Controlling what is in scope with import 33
Controlling what is in scope with the :module command 34

Qualified names e e 34

:module and :load e 35

5.4.6 The :mainand :runcommands it i 35
5.4.7 The itwvariable. e 36
5.4.8 Typedefaultingin GHCi, 36
Interactive classes e e e 38

Extended rules around default declarations 38

5.4.9 Using a custom interactive printing function 38
5.4.10 Stack Traces in GHCi i i et e e e e e 39

5.5 The GHCiDebugger e e e e e e e e e e e e 40
5.5.1 Breakpoints and inspecting variables 40
Setting breakpoints L 43

Managing breakpoints L e 43

5.5.2 Single-stepping e e e e e 44
5.5.3 Nested breakpoints e 45
5.5.4 The resultvariable 45
5.5.5 Tracing and history e 45
5.5.6 Debugging exceptions e e 47
5.5.7 Example: inspecting functions o 48
5.5.8 Limitations e e e e 49

5.6 Invoking GHCi et e e e e e e e e e e e e 49
5.6.1 Packages e e e e e e e 50
5.6.2 Extralibraries e e 50

5.7 GHCicommands i it ittt et e e e e e e e e 51
5.8 The :setand :seticommands 63
5.8.1 GHCioptions e e e e e e e e e e e e 63
5.8.2 Setting GHC command-line optionsin GHCi 63
5.8.3 Setting options for interactive evaluationonly 64

5.9 The .ghci and .haskelinefiles 65
5.9.1 The .ghcifiles e e e e 65
5.9.2 The .haskelinefile e 66

5.10 Compiling to object code inside GHCi 66
5.11 Running the interpreter in a separate process 67
5.12 Running the interpreter on a differenthost 67
5.13 FAQ and Things To Watch Out For 68
6 Using runghc 71
6.1 Usage o v it e e e e e e e e e e e e e e e e e e e 71
6.2 runghcflags e e e e e e e e e e 71
6.3 GHC Flags o i it e e e e e e e e e e e e e e e 71
7 Using GHC 73
7.1 Using GHC e e e e e e e e e 73
7.1.1 Getting started: compiling programs, 73
7.1.2 Options OVEIVIEW i i e e e e e e e e e e e e e e e e e e 74

7.2
7.3

7.4

7.5

7.6

7.7

Command-line arguments e 74

Command line options in sourcefiles 74

Setting options in GHCi 75
7.1.3 Dynamic and Mode options e 75
7.1.4 Meaningful file suffixes L o o 75
7.1.5 Modes of operation 76

Using ghc --make e e e e 77

Expression evaluationmode 78

Batch compilermode 78
7.1.6 Verbosity options e e 79
7.1.7 Platform-specific Flags e 84
7.1.8 Miscellaneous flags e e e 85

Other environment variables 85
Warnings and sanity-checking o e 85
Optimisation (code improvement) 101
7.3.1 -0%*: convenient “packages” of optimisation flags. 101
7.3.2 -f*: platform-independentflags, 102
Using Concurrent Haskell, 114
Using SMP parallelism e e e e e 114
7.5.1 Compile-time options for SMP parallelism 114
7.5.2 RTS options for SMP parallelism 115
7.5.3 Hints for using SMP parallelism 116
Flagreference @ . @ i i i e e e 116
7.6.1 Verbosity options e 116
7.6.2 Alternative modes of operation, 119
7.6.3 Which phasestorun 120
7.6.4 Redirecting output 121
7.6.5 Keeping intermediate files L o o 122
7.6.6 Temporary files. e e e e e e 122
7.6.7 Finding imports e e e e e e 122
7.6.8 Interface fileoptions 123
7.6.9 Recompilation checking 123
7.6.10 Interactive-mode options 123
7.6.11 Packages e e e e e e e e e e 124
7.6.12 Language options e e e e e e e e e e e e e e 125
7.6.13 Warnings o i e 125
7.6.14 Optimisation levels 133
7.6.15 Individual optimisations00, 134
7.6.16 Profiling options e e e 139
7.6.17 Program coverage options e e e e 140
7.6.18 C pre-processor options i i e e 140
7.6.19 Code generation options e 141
7.6.20 Linking options e e 141
7.6.21 Plugin options e e e e e e e e e e e e 143
7.6.22 Replacing phases e e e 144
7.6.23 Forcing options to particularphases 145
7.6.24 Platform-specificoptions 145
7.6.25 Compiler debuggingoptions 146
7.6.26 Miscellaneous compileroptions 150
Running a compiled program e e e 151
7.7.1 Setting RTSoptions ittt i e 151

Setting RTS options on the command line 151

Setting RTS options at compiletime 152

Setting RTS options with the GHCRTS environment variable 152

“Hooks” to change RTS behaviour 152

7.7.2 Miscellaneous RTS options 153
7.7.3 RTS options to control the garbage collector 155
7.7.4 RTS options to produce runtime statistics 161
7.7.5 RTS options for concurrency and parallelism 164
7.7.6 RTS options for profiling 164
7.7.7 Tracing o v i it e e e e e e e e e e e e e e e 164
7.7.8 RTS options for hackers, debuggers, and over-interested souls 166
7.7.9 Getting information aboutthe RTS 167
7.8 Filenames and separate compilation 0oL 169
7.8.1 Haskell source files e 169
7.8.2 Outputfiles e e e e e e 169
7.8.3 Thesearchpath 170
7.8.4 Redirecting the compilation output(s) 171
7.8.5 Keeping Intermediate Files 173
7.8.6 Redirecting temporary files 173
7.8.7 Other options related to interfacefiles 174
7.8.8 Options related to extended interfacefiles 174
7.8.9 The recompilationchecker., 175
7.8.10 How to compile mutually recursive modules 175
7.8.11 Module signatures e e e e e 177
7.8.12 Using make e e e e e e e 183
7.8.13 Dependency generation e 184
7.8.14 Orphan modules and instance declarations 185
7.9 Packages e e e e 187
7.9.1 Using Packages i i i it e e e e 187
7.9.2 Themainpackage i i i e e 190
7.9.3 Consequences of packages for the Haskell language 190
7.9.4 Thinning and renaming modules 191
7.9.5 Package Databases 191
The GHC PACKAGE_PATH environment variable 192
Package environments e e 193

7.9.6 Installed package IDs, dependencies, and broken packages 194
7.9.7 Package management (the ghc-pkg command) 196
7.9.8 Building a package from Haskell source 199
7.9.9 InstalledPackageInfo: a package specification 200
7.10 GHC Backends i e e e 203
7.10.1 Native Code Generator (-fasm) o o o v v v v it i e i e i 203
7.10.2 LLVM Code Generator (-fllvm). i i i i i v i 203
7.10.3 C Code Generator (-fvia-C) it 204
7.10.4 Unregisterised compilation 204
7.11 Options related to a particularphase., 205
7.11.1 Replacing the program for one or more phases 205
7.11.2 Forcing options to a particularphase 205
7.11.3 Options affecting the C pre-processor 206
Standard CPP macros @ i i e e e 207

CPP and string gapsS v v v v v i e e e e e e e e e e e e e e e e e e 209
7.11.4 Options affecting a Haskell pre-processor 209
7.11.5 Options affecting code generation 210
7.11.6 Options affecting linking 211
7.12 Using shared libraries e e e e e e 216
7.12.1 Building programs that use shared libraries 217
7.12.2 Shared libraries for Haskell packages 217

7.12.3 Shared libraries that exporta CAPI 217

7.12.4 Finding shared libraries at runtime 218

UNiX . .o e e e e e e e e e e e e 218

Mac OS X . . . e e e e e e e e e e e e 219

7.13 Debugging the compiler e 219
7.13.1 Dumping out compiler intermediate structures 220
Front-end e e e 221
Type-checking and renaming, 221

Core representation and simplification 222
STGrepresentation e 223
C-\-representation 223

LLVM code generator o v i i vt it e e e e e 224

Native code generator i i i i i i e e e e 225
Miscellaneous backend dumps 225

7.13.2 Formatting dumps e e e e e e e e e e 226
7.13.3 Suppressing unwanted information 226
7.13.4 Checking for consistency e 227
7.13.5 Checking for determinism 228
7.13.6 Other o e e e e e e e e e 228

8 Profiling 229
8.1 Cost centres and cost-centre stacks 229
8.1.1 Inserting costcentresbyhand 231
8.1.2 Rules for attributingcosts 233

8.2 Compiler options for profiling 233
8.3 Time and allocation profiling 234
8.3.1 JSON profileformat e 235

8.4 Profiling memory USAge v v v v v v v e e e e e e e e e e e e e e e e e e e 237
8.4.1 RTS options for heap profiling 238
8.4.2 Retainer Profiling 240
Hints for using retainer profiling, 241

8.4.3 Biographical Profiling 241
8.4.4 Actual memoryresidency e 242

8.5 hp2ps - Rendering heap profiles to PostScript 242
8.5.1 Manipulatingthe hpfile 243
8.5.2 Zooming in on regions of your profile 244
8.5.3 Viewing the heap profile of a running program 244
8.5.4 Viewing a heap profileinrealtime 244

8.6 Profiling Parallel and Concurrent Programs 245
8.7 Observing Code COVETAgE v v v v v i i e e e e e e e e e e e e e e e 246
8.7.1 A small example: Reciprocation 246
8.7.2 Options for instrumenting code for coverage 247
8.7.3 The hpctoolkit e 248
hpcreport e e e e 248
hpcmarkup. e e e e e 249

hpcsum e e e e e 249
hpccombine 249

hpcmap e e e e 250

hpc overlay and hpcdraft, 250

8.7.4 Caveats and Shortcomings of Haskell Program Coverage 251

8.8 Using “ticky-ticky” profiling (for implementors) 251
9 Advice on: sooner, faster, smaller, thriftier 253
9.1 Sooner: producing a program more quickly 253
9.2 Faster: producing a program that runs quicker 254

9.3 Smaller: producing a program thatissmaller 257

9.4 Thriftier: producing a program that gobbles less heapspace 257
10GHC Language Features 259
10.1 Language options o . i e e e e e e e e e e e e e e e 259
10.2 Unboxed types and primitive operations 263
10.2.1 Unboxed types v i i it e e e e e e e e e e e e e e e e e e 263
10.2.2 Unboxed type kinds e e 264
10.2.3 Unboxed tuples e e e e 265
10.2.4 Unboxed SUMS o v v it e et e e e e e e e e e e e e e e e e 266
10.2.5 Unlifted Newtypes o i it e e e e e e e e e e e e e e e 267

10.3 Syntactic exXtensions L e e e e e e e e e e 268
10.3.1 Unicode syntax o i i i it e e e e e e e e e 268
10.3.2 Themagichash e 269
10.3.3 Negative literals e e e 270
10.3.4 Fractional looking integerliterals 270
10.3.5 Binary integerliterals. e 270
10.3.6 Hexadecimal floating point literals 270
10.3.7 Numeric undersCores v v v v v i e e e e e e e e e e e e e e 271
10.3.8 Pattern guards e e e e e e e 272
10.3.9 View patterns e e e e e e e e 272
10.3.1Gh+k patterns e e e e e e e 274
10.3.1TThe recursive do-notation 275
Recursive binding groups o e 275

The mdonotation 276
10.3.1Applicative do-notation L L oL 277
Strict patterns 279

Things towatchoutfor 280
10.3.13Farallel List Comprehensions, 280
10.3.14Generalised (SQL-like) List Comprehensions 281
10.3.13Monad comprehensions e e 283
10.3.1&New monadic failure desugaring mechanism 285
10.3.1"Rebindable syntax and the implicit Prelude import 285
Things unaffected by RebindableSyntax 286
10.3.1&ostfix operators e e e e e e 287
10.3.19Tuple sections e e e e e e e e 287
10.3.2@ambda-case i i e e e e e e e e e e e e e e e e e e 288
10.3.2IEmpty case alternatives o e 288
10.3.22Multi-way if-exXpressions i e e e e e e e e 289
10.3.23ocal Fixity Declarations i 290
10.3.24mport and export extensions 0o 290
Hiding things the imported module doesn’texport 291
Package-qualified imports e 291

Safe imports e e e e e e e e 291

Explicit namespaces in import/export 292

Writing qualified in postpositive position 292
10.3.2More liberal syntax for function arguments 293
Changes tothe grammar, 294
10.3.266Bummary of stolensyntax 0. 294

10.4 Extensions to data types and type synonyms 295
10.4.1 Data types with no constructors 295
10.4.2 Datatype contexts o i i i e e e e e e e e e 296
10.4.3 Infix type constructors, classes, and type variables 296
10.4.4 Type operators v i i i e e e e e e e e e e e e e e e e e e e 297

Vi

10.4.5 Liberalised type Synonyms v v v v v v i e e e e e e e e e e 298

10.4.6 Existentially quantified data constructors. 299
Why existential? e e e 300
Existentials and type classes oo, 300
Record Constructors i e e 300
Restrictions i i e e e e 301

10.4.7 Declaring data types with explicit constructor signatures 303

10.4.8 Generalised Algebraic Data Types (GADTS) 307

10.5 Extensions totherecord system 309

10.5.1 Traditional record syntax 309

10.5.2 Record field disambiguation 309

10.5.3 Duplicate record fields e 310
Selectorfunctions 310
Record updates e 311
Import and export of record fields 312

10.5.4 Record PUNS o i i i e 312

10.5.5 Record wildcards e e 313

10.5.6 Record field selector polymorphism 315
Solving HasField constraints 315
Virtual record fields e 316

10.6 Extensions to the “deriving” mechanism. 317

10.6.1 Deriving instances for empty datatypes 318

10.6.2 Inferred context for deriving clauses, 318

10.6.3 Stand-alone deriving declarations 319

10.6.4 Deriving instances of extra classes (Data, etc.) 321
Deriving Functorinstances e 321
Deriving Foldable instances, 324
Deriving Traversableinstances 326
Deriving Datainstances 328
Deriving Typeableinstances 328
Deriving Liftinstances 328

10.6.5 Generalised derived instances for newtypes 329
Generalising the derivingclause 330
A more precise specification 0., 332
Associated type families L e 333

10.6.6 Deriving any otherclass 335

10.6.7 Deriving strategies i i i e e e e e e e 337
Default deriving strategy e 338

10.6.8 Deriving Via . . . v v v v v e 339

10.7 Pattern synonyms i e e e e e e e e e e e e e e e e e e e 340

10.7.1 Record Pattern Synonyms, 343

10.7.2 Syntax and scoping of pattern synonyms 344

10.7.3 Import and export of pattern synonyms 344

10.7.4 Typing of pattern synonyms e 345

10.7.5 Matching of pattern synonyms, 347

10.8 Class and instances declarations, 348

10.8.1 Class declarations i i i it e e e 348
Multi-parameter type classes e 348
The superclasses of a class declaration 349
Constrained class method types 349
Default method signatures 350
Nullary type classes i i i e 351

10.8.2 Functional dependencies e 352
Rules for functional dependencies 352

vii

Background on functional dependencies, 353

10.8.3 Instance declarations e e e 356
Instance resolution e 357
Relaxed rules for the instance head 357
Relaxed rules for instance contexts 358
Instance terminationruleso 358
Undecidable instances e 360
Overlapping instances i i i it 361
Instance signatures: type signatures in instance declarations 364

10.8.4 Overloaded string literals, 365

10.8.5 Overloaded labels e 366

10.8.6 Overloaded lists e e e 368
The IsListclass i i i e e e e e e e 368
Rebindable syntax. e e 369
Defaulting e e e e 370
Speculation about the future 370

10.8.7 Undecidable (or recursive) superclasses 370

10.9 Type families e e e e e e e e e 371

10.9.1 Data families e e e e e e 372
Data family declarations 372
Data instance declarations 372
Overlap of datainstances 374

10.9.2 Synonym families e e e 374
Type family declarations 374
Type instance declarations, 376
Closed type families e 376
Type family examples. e 377
Compatibility and apartness of type family equations 377
Decidability of type synonym instances 378

10.9.3 Wildcards on the LHS of data and type family instances 379

10.9.4 Associated data and type families 379
Associated instances e e 380
Associated type synonym defaults, 381
Scoping of class parameters o e 383
Instance contexts and associated type and data instances 384

10.9.5 Import and exXport e e e e e e 384
Examples e e e e e e 384
Instances e e e e e e e e e 385

10.9.6 Type families and instance declarations 385

10.9.7 Injective type families. e 386
Syntax of injectivity annotation. o o oL, 387
Verifying the injectivity annotation against type family equations 387

10.1Matatype promotion e e e e e e e e e e e e e 388

10.10. IMotivation o o it e e e e e e e e e e e e e e e e e 388

10.10.2DVEIVIEW . . . v i it e 389

10.10.distinguishing between types and constructors 390

10.10.Promoted list and tuple types 390

10.10.®Promoting existential data constructors. 391

10.11Kind polymorphism e e 391

10.11.10verview of kind polymorphism, 392

10.11.0verview of Type-in-Type o i i i i it e e e e e e e e e e e 392

10.11.Principles of kind inference 393

10.11.4nferring the order of variables in a type/class declaration 393

10.11.8%Complete user-supplied kind signatures and polymorphic recursion ... 394

viii

10.11.6tandalone kind signatures and polymorphic recursion 396

10.11.75tandalone kind signatures and declaration headers 397
10.11.&Kind inference in closed type families 399
10.11.XKind inference in class instance declarations 400
10.11.10ind inference in type signatures. 0. 400
10.11.1Bxplicit kind quantification, 400
10.11.I2nplicit quantification in type synonyms and type family instances 401
10.11.Kind-indexed GADTS i i i et e e e e e e e e e e 402
10.11.Higher-rank kinds e e e 403
10.11.1Gonstraintsin kinds oL 404
10.11.Tfhe kind Type o o e e e e e e e e e e e 404
10.11.TAferring dependency in datatype declarations 404
10.11.18&ferring dependency in user-written foralls 405
10.11.79ind defaulting without PolyKinds 405
10.11.Rretty-printing in the presence of kind polymorphism 406
10.12Zevity polymorphism e e 406
10.12.1No levity-polymorphic variables or arguments 406
10.12.Zevity-polymorphic bottoms o o L L 407
10.12.®rinting levity-polymorphic types oL 407
10.13Type-Level Literals o i e e e e 408
10.13.Runtime Values for Type-Level Literals 408
10.13.Zomputing With Type-Level Naturals 409
10.14Equality constraints, Coercible, and the kind Constraint 410
10.14.FEquality constraints 410
10.14. Heterogeneous equality oo 410
10.14.3Unlifted heterogeneous equality 410
10.14.4The Coercible constraint 411
10.14.5The Constraint kind o 411
10.13Quantified constraints L e e e e e 412
10.15. IMotivation. o e e e e e e e e e e e e e e 412
10.15.8yntax changes e e e 413
10.15.3Typing changes e e e e e 414
10.15.45UPETClasSes . . . v v i i i e 414
10.15.80verlap . . . o v o e e e e e e e e e e e e e 415
10.15.dnstance IooKUD e e e e e e e e e e e 416
10.15. 7Termination e e e e e e e 416
10.15.820herence e e e e e e e 416
10.1@Extensions to type signatures i e e e e e e 416
10.16.Explicit universal quantification (forall) 416
10.16.2T'he context of a type signature 417
10.16.3Ambiguous types and the ambiguitycheck 417
10.16.&Explicitly-kinded quantification, 420
10.17Lexically scoped type variables 420
10.17.10VEIVIEW . . . o i i e 421
10.17.Declaration type signatures oo 422
10.17.Fxpression type signatures o000 423
10.17.4Pattern type signatures L e 423
10.17.%lass and instance declarations. 424
10.18indings and generalisation 425
10.18.1Switching off the dreaded Monomorphism Restriction 425
10.18.Zet-generalisation e 425
10.1%isible type application e e 426
10.19.1Inferred vs. specified type variables 426
10.19.0rdering of specified variables 427

ix

10.20mplicit parameters e e e e e e e e e e 428

10.20.Implicit-parameter type constraints 429
10.20.2mplicit-parameter bindings o L oo e 430
10.20.dmplicit parameters and polymorphic recursion 430
10.20.4mplicit parameters and monomorphism 431
10.21Arbitrary-rank polymorphism e 431
10.21. FExamples o e e e e e e e e e e e e e e e e 432
10.21.2Iype inference e e e e e e e e e e e 434
10.21.3mplicit quantification o o oo 434
10.22Zmpredicative polymorphism 435
10.23Typed Holes o e e e e e e 436
10.23.IValid Hole Fits o e e e e e e 440
Refinement Hole Fits i e 441

Sorting Valid Hole Fits .. 443
10.24Partial Type Signatures o 0 e e e e e 443
10.24.1Syntax e e e e e e e e e e e e e e e e 444
Type Wildcards i e e e 444

Named Wildcards i i e e e e e e e 445
Extra-Constraints Wildcard 446
10.24.2Where can they occur? e 447
10.25Custom compile-time errors e e 448
10.2@eferring type errors toruntime L Lo 449
10.26.FEnabling deferring of type errors o e 450
10.26.Deferred type errors in GHCi 450
10.26.3.imitations of deferred typeerrors. 451
10.27Template Haskell e e e 451
10.27.1Syntax o e e e e e e e e e e e e e e e e e 451
10.27.2Using Template Haskell 456
10.27.¥iewing Template Haskell generatedcode 457
10.27.4A Template Haskell Worked Example 457
10.27.9Jsing Template Haskell with Profiling 458
10.27.6I'emplate Haskell Quasi-quotation 459
10.28Arrow notation i e e e e e e e e e e e e e e e e 461
10.28.1do-notation for commands e e e e 463
10.28.Londitional commands L e 464
10.28.Defining your own control structures 465
10.28.Primitive constructs L e e e e e e e e 466
10.28.Differences with the paper oL 467
10.28.@Portability e e e e e e e 467
10.2Bang patterns and Strict Haskell, 468
10.29.1Bang patterns e e e e e e e e e 468
10.29.5trict-by-default data typeso o 469
10.29.3Ftrict-by-default pattern bindings, 470
10.29.Modularity e e e e e e e e e e 472
10.29.Dynamic semantics of bang patterns 0oL, 472
10.3MASSETLIONS . . . o v o e 475
10.31Static pointers e e e e e e e e e e e 475
10.31.1Using static pointers @ 0 i i i i i e e e e e 476
10.31.5tatic semantics of static pointers0 0oL, 476
10.32PTagmas « v v v v v o e 478
10.32.1LANGUAGE pragma o i i e e e e e e e e e e e e e e e e e e e 478
10.32.DPTIONS GHC pragma ¢ v v v v v e e e e e e e e e e e e e e e e e o 478
10.32.3INCLUDE pragma v v it e i e e e e e e e e e e e e e e e 479

10.32.4WARNING and DEPRECATED pragmas« « c v v v v v v v v v oo e o 479

10.32.MINIMAL Pragma v v v e 480

10.32.GINLINE and NOINLINE pragmas v v v v v v v vt et e e e e e 480
INLINE pragma v i i i e 481
INLINABLE pragma o i i it e e e e e e e e e e e e e e e 482
NOINLINE pragma o v o vt e 483
CONLIKE modifier @ . i i e e e e e e e e e e e 483
Phase control e 483

10.32.LINE Pragma o v o e 484

10.32.80LUMN Pragma v v v v e 484

10.32.RULES pragma o v ot e e e e e e e e e e e e e e e e e e 485

10.32.19PECIALIZE Pragma « « « « v v v v v e e e et e e e e e e e e e e e e e 485
SPECIALIZE INLINE o i e e e e e e e e e e e e e e 486
SPECIALIZE for imported functions 487

10.32.1SPECIALIZE instance pragma v v v v v v v vt et e e e e e e e e 487

10.32. UNPACK PTagmma v v v v e 488

10.32. INDUNPACK pragma v v v v v e e e e e e e e e e e e e e e e e e 488

10.32.18DURCE Pragma v v v v i e 489

10.32. 1MPLETE Pragmas v v v v o e 489

10.32.18/ERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas 490

10.3Rewriterules L e e e e e e e e 491

10.33.1Syntax oL e e e e e e e 491

10.33.5emantiCs o v it e 493

10.33.How rules interact with INLINE/NOINLINE pragmas. 494

10.33.4How rules interact with CONLIKE pragmas 494

10.33.How rules interact with class methods 494

10.33.dist fusion e e e e e 495

10.33.Bpecialisation. e e e e e e 496

10.33.8ontrolling what’s going on in rewriterules 497

10.34Special built-in functions e 498
10.33Generic classes oL e e e e e e e e e e e e e e 498
10.365€eneric programming v v v v v v e 498

10.36.DDeriving representations L o e e e e 498

10.36.20Writing generic functions L L oo 500

10.36.3Unlifted representation types L o oo e 500

10.36.4Generic defaults e 501

10.36.3More information e e e e e 502

10.37R0IES . . . v i e e e e e e e e e 502

10.37.INominal, Representational, and Phantom 502

10.37.Roleinference e e e e e e e 503

10.37.Ro0le annotations L. e e e e e e 504

10.38asCallStack e e e 505

10.38.1Compared with other sources of stack traces 507

10.3%Concurrent and Parallel Haskell 507

10.39.1Concurrent Haskell e 507

10.39.5oftware Transactional Memory 508

10.39.Farallel Haskell e 508

10.39.4Annotating pure code for parallelism 508

10.4Bafe Haskell e e e e e e e e 509

10.40.1Uses of Safe Haskell, 510
Strict type-safety (good style) 510
Building secure systems (restricted IO Monads) 510

10.40.5afe Language o v i i i i e 512
Safe Overlapping Instances 513

10.40.Bafe Imports e e e e e e e e e 514

Xi

10.40.4A'rust and Safe Haskell Modes. o o i i v i it it i e i 515

Trust check (-fpackage-trustdisabled) 515

Trust check (-fpackage-trustenabled) 515

Example e e e e e 516
Trustworthy Requirements 517

Package Trust e e e 517
10.40.F3afe Haskell Inference it 517
10.40.66afe Haskell Flag Summary it 518
10.40.5afe Compilation e e e e e 520

11 Foreign function interface (FFI) 521
11.1 GHC differences to the FFI Chapter 521
11.1.1 Guaranteed call safety 521

11.2 GHC extensions to the FFI Chapter. 522
11.2.1 Unlifted FFITypes o it e e e e e e e e e e e e e e e e e e e 522
11.2.2 Newtype wrapping of the IOmonad 524
11.2.3 Explicit “forall”s in foreign types o L. 524
11.2.4 Primitive imports e e e e e e e 524
11.2.5 Interruptible foreigncalls 525
11.2.6 The CAPI calling convention 525
11.2.7 hs _thread done() @ i i i i e e e 526
11.2.8 Freeing many stable pointers efficiently 526

11.3 Using the FFIwith GHC e e e e e 527
11.3.1 Using foreign export and foreign import ccall "wrapper" with GHC 527
Using your own main() 0 i i i i it e e e 528

Making a Haskell library that can be called from foreign code 530

11.3.2 Using headerfiles e 530
11.3.3 Memory Allocation e e 531
11.3.4 Multi-threadingand the FFT 531
Foreign imports and multi-threading 531

The relationship between Haskell threads and OS threads 532

Foreign exports and multi-threading 532
Ontheuseof hs exit() i 532

Waking up Haskell threadsfrom C. 533

11.3.5 Floating pointand the FFT 534
11.3.6 Pinned Byte Arrays i i e e e e e e 535

12 Extending and using GHC as a Library 537
12.1 Source annotations e e e e e 537
12.1.1 Annotating values e e e e 537
12.1.2 Annotating types o e e e e e e e 538
12.1.3 Annotatingmodules e 538

12.2 Using GHC asa Library i i i it e e e e e e e e e e e e e 538
12.3 Compiler Plugins e e e 539
12.3.1 Using compiler plugins e 539
12.3.2 Writing compiler plugins e 541
12.3.3 Core pluginsinmoredetail, 541
Manipulating bindings L e 542

Using Annotations 0 i i i e e e e e 543

12.3.4 Typechecker plugins 543
Constraint solving with plugins 544

12.3.5 Source pluginso e e e e e e e e e e e 545
Parsed representation 545

Type checked representation, 546

xii

Evaluated code e
Interface files e e e
Source pluginexample
12.3.6 Hole fitplugins o o o e e e e
Stateful hole fit plugins
Hole fit plugin example e
12.3.7 Controlling Recompilation
12.3.8 Frontend plugins i i i e e e e e e
12.3.9 DynFlags plugins @ e e e e e e

13What to do when something goes wrong

13.1 When the compiler “does the wrong thing”
13.2 When your program “does the wrong thing”

14Debugging compiled programs

14.1 Tutorial o o e e
14.2 Requesting a stack trace from Haskellcode
14.3 Requesting a stack trace with SIGQUIT
14.4 Implementor’s notes: DWARF annotations
14.4.1 Debugging information entities o oo L.

DW TAG ghc src note i i e

14.5 Further Reading i i it e e e e e e e e e e

15 Other Haskell utility programs

15.1 “Yacc for Haskell”: happy o i i i e e e e e e e e e e e e e
15.2 Writing Haskell interfaces to C code: hsc2hs
15.2.1 command line syntax e e e
15.2.2 Input syntax e e e e e e e e e e e
15.2.3 Custom constructs o i e e e e e e e
15.2.4 Cross-compilation e

16 Running GHC on Win32 systems

16.1 Starting GHC on Windows platforms
16.2 Running GHCion Windows 0 0 i i i it e e e e e e e e e
16.3 Interacting with the terminal,
16.4 Differences in library behaviour L oo oo
16.5 File paths under Windows e
16.6 Using GHC (and other GHC-compiled executables) with Cygwin
16.6.1 Background e e e e e e e e e
16.6.2 The problem e e e e
16.6.3 Thingstodo i i e e e e e

16.7 Building and using Win32 DLLs i e e
16.7.1 Creatinga DLL L e e e e e e e e e e e
16.7.2 Making DLLs to be called from other languages.
Using from VBA e e e e e

Using from CH++ o e e e e

17 Known bugs and infelicities

17.1 Haskell standards vs. Glasgow Haskell: language non-compliance
17.1.1 Divergence from Haskell 98 and Haskell 2010
Lexical syntax i i e e e e e e
Context-freesyntax e e
Expressions and patterns L L e
Declarations and bindings
Typechecking of recursive binding groups

Default Module headers with -main-is. 579

Module system and interfacefiles 580
Numbers, basic types, and built-inclasses 580
In Prelude support i i i e e e e e 581
The Foreign Function Interface 582
Operatorsections i i it e e e e 582

17.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 e e e e e e 582
17.2 Known bugs or infelicities e 583
17.2.1 Bugsin GHC e e e e e 583
17.2.2 Bugs in GHCIi (the interactive GHC) 585
18 Eventlog encodings 587
18.1 Heap profiler event logoutput.. 587
18.1.1 Metadata event types e e e e e e 587
Beginning of sample stream e 587
Cost centre definitions L e 588
18.1.2 Sample event types e e e e e e e e 588
Cost-centre break-down e 589
String break-down e 589
18.2 Time profiler eventlogoutput e 589
18.2.1 Profile beginevent e 589
18.2.2 Tick sample event i e e e e e e 589
19Care and feeding of your GHC User’s Guide 591
19.1 BaSICS . . ¢ v v i o e e e e e e e e e e e e e 591
19.1.1 Headings i i i it e e e e e e e e e e e e e e e e e e e 592
19.1.2 Formattingcode e 592
Haskell e e e e 593
Otherlanguages i i i i i i e e e e e e e e e e 593
19.1.3 Links o o e e e e e e e 593
Within the User’'s Guide 593
ToGHC IreSOUTCES . . . v v v v i i e e e e e et e e e e e e e e e e e e e e e e 594
To external T€SOUTCES i i i i e e e e e e e e e e 594
To core library Haddock documentation 594
Math . . . o e e e e e 594
19.14 Index entries i i v i i e e e e e e e e e e e 595
19.2 Citations o e e e e e e e e e e e e e 595
19.3 Admonitions e e e e e e e e 595
19.4 Documenting command-line options and GHCi commands 596
19.4.1 Command-line options 596
19.4.2 GHCicommands v v v v v it e e e e e e e e e e e e e e e e 597
19.5 Style Conventions i i i it e e e e e e e e e e e e 597
19.6 ReST reference materials i 597
20Indices and tables 599
Bibliography 601
Index 603

xiv

GHC User’s Guide Documentation, Release 8.10.0.20191123

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 8.10.0.20191123

2 CONTENTS

CHAPTER
ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GHC User’s Guide Documentation, Release 8.10.0.20191123

4 Chapter 1. The Glasgow Haskell Compiler License

CHAPTER
TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 23), and a batch compiler, described throughout Using GHC
(page 73). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 259).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 229) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page

http://www.haskell.org/
http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building
http://www.haskell.org/ghc/

GHC User’s Guide Documentation, Release 8.10.0.20191123

* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where (y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 206)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__ GLASGOW_HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since

6 Chapter 2. Introduction to GHC

https://gitlab.haskell.org/ghc/ghc
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
http://www.haskell.org/ghc/dist/stable/dist/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories
http://www.haskell.org/ghc/dist/current/dist/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 8.10.0.20191123

interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 79)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when CPP (page 206) is used).
See Standard CPP macros (page 207) for details.

2.4. GHC version numbering policy 7

GHC User’s Guide Documentation, Release 8.10.0.20191123

8 Chapter 2. Introduction to GHC

CHAPTER
THREE

RELEASE NOTES FOR VERSION 8.8.1

The significant changes to the various parts of the compiler are listed in the following sec-
tions. There have also been numerous bug fixes and performance improvements over the
8.6.1 release.

3.1 Highlights

The highlights, since the 8.6.1 release, are:

Many, many bug fixes.

A new code layout algorithm for x86.

3.2 Full details

3.2.1 Language

GHC now supports visible kind applications, as described in GHC proposal #15. This
extends the existing visible type applications (page 426) feature to permit type applica-
tions at the type level (e.g., f :: Proxy ('Just @Bool 'True)) in addition to the term
level (e.g., g = Just @Bool True).

GHC now allows explicitly binding type variables in type family instances and rewrite
rules, as described in GHC proposal #7. For instance:

type family G a b where
forall x y. G [x] (Proxy y) Double
forall z. G z z Bool
{-# RULES "example" forall a. forall (x :: a). id x = x #-}

ScopedTypeVariables (page 420): The type variable that a type signature on a pattern
can bring into scope can now stand for arbitrary types. Previously, they could only stand
in for other type variables, but this restriction was deemed unnecessary in GHC proposal
#29. Also see #15050.

The pattern-match coverage checker now checks for cases that are unreachable due to
constructors have strict argument types. For instance, in the following example:

data K = K1 | K2 !Void

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0015-type-level-type-applications.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0007-instance-foralls.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0029-scoped-type-variables-types.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0029-scoped-type-variables-types.rst
https://gitlab.haskell.org/ghc/ghc/issues/15050

GHC User’s Guide Documentation, Release 8.10.0.20191123

K2 cannot be matched on in f, since it is impossible to construct a terminating value of
type Void. Accordingly, GHC will not warn about K2 (whereas previous versions of GHC
would).

(!) and (.) are now valid type operators:

type family a ! b
type family a . b

forall is now always a keyword in types to provide more helpful error messages when
-XExplicitForall is off.

An existential context no longer requires parenthesization:

class a + b
data D1 = forall a b. (a+b) =Dl a b
data D2 = forall a b. a+b =>D2ab -- now allowed

{-# UNPACK #-} annotation no longer requires parenthesization:

data T = MkT1 { a :: {-# UNPACK #-} (Maybe Int && Bool) }
| MkT2 { a :: {-# UNPACK #-} Maybe Int && Bool } -- now allowed

data G where
MKG1l :: {-# UNPACK #-} (Maybe Int && Bool) -> G
MkG2 :: {-# UNPACK #-} Maybe Int && Bool -> G -- now allowed

The requirement that kind signatures always be parenthesized has been relaxed. For in-
stance, it is now permissible to write Proxy '(a :: A,b :: B) (previous GHC versions
required extra parens: Proxy '((a :: A),(b :: B))).

-Woverflowed-literals (page 91) checks all literals. Previously, it would only inspect
boxed expression literals.

-Wempty-enumerations (page 91) now also works for Numeric.Natural.

3.2.2 Compiler

The final phase of the MonadFail proposal has been implemented. Accordingly, the Mon-
adFailDesugaring language extension is now deprecated, as its effects are always en-
abled. Similarly, the -Wnoncanonical-monadfail-instances flag is also deprecated, as
there is no longer any way to define a “non-canonical” Monad or MonadFail instance.

New -keep-hscpp-files (page 173) to keep the output of the CPP pre-processor.
The -Wcompat (page 87) warning group now includes -Wstar-is-type (page 96).
New -Wunused-packages (page 101) warning reports unused packages.

The -fllvm-pass-vectors-in-regs (page 107) flag is now deprecated as vector argu-
ments are now passed in registers by default.

The -fblock-layout-cfg (page 103) flag enables a new code layout algorithm on x86.
This is enabled by default at -0 (page 102) and -02 (page 102).

The deprecated ghc-flag -Wamp has been removed.

10

Chapter 3. Release notes for version 8.8.1

GHC User’s Guide Documentation, Release 8.10.0.20191123

Add new -Wmissing-deriving-strategies (page 93) flag that warns users when they
are not taking advantage of DerivingStrategies (page 337). The warning is supplied
at each deriving site.

Support for object splitting with the flag -split-objs is removed. Using this flag now
results in a warning and does nothing. Use -split-sections (page 211) instead.

3.2.3 Runtime system

Add and document new FFI functions hs lock stable ptr table and
hs unlock stable ptr table. These replace the undocumented functions
hs lock stable tables and hs unlock stable tables, respectively. The latter
should now be considered deprecated.

Document the heretofore undocumented FFI function hs free stable ptr unsafe,
used in conjunction with manual locking and unlocking.

The runtime linker on Windows has been overhauled to properly handle section align-
ment, lower the amount of wasted memory and lower the amount of in use memory. See
#13617. Note that committed memory may be slightly higher.

The output filename used for eventlog output (page 164) can now be specified with the
-ol (filename) (page 165) flag.

Add support for generating a new type of output: extended interfaces files. Generation
of these files, which sport a .hie suffix, is enabled via the -fwrite-ide-info flag. See
Options related to extended interface files (page 174) for more information.

A new flag -xp is added on x86 64. When it is passed, the runtime linker can load object
files compiled with -fPIC -fexternal-dynamic-refs anywhere in the address space.
This used to be restricted to the low 2Gb.

3.2.4 Template Haskell

Reifying type classes no longer shows redundant class type variables and contexts in the
type signature of each class method. For instance, reifying the following class:

class C a where
method :: a

Used to produce the following:

class C a where
method :: forall a. C a => a

Where the forall a. C a => partis entirely redundant. This part is no longer included
when reifying C. It’s possible that this may break some code which assumes the existence
of forall a. C a =>.

Template Haskell has been updated to support visible kind applications and explicit
foralls in type family instances and RULES. These required a couple of backwards-
incompatible changes to the template-haskell API. Please refer to the GHC 8.8 Mi-
gration Guide for more details.

Template Haskell now supports implicit parameters and recursive do.

Template Haskell splices can now embed assembler source (#16180)

3.2.

Full details 11

https://gitlab.haskell.org/ghc/ghc/issues/13617
https://gitlab.haskell.org/ghc/ghc/wikis/migration/8.8#template-haskell-21500
https://gitlab.haskell.org/ghc/ghc/wikis/migration/8.8#template-haskell-21500
https://gitlab.haskell.org/ghc/ghc/issues/16180

GHC User’s Guide Documentation, Release 8.10.0.20191123

3.2.5 ghc-prim library

* GHC now exposes a new primop, traceBinaryEvent#. This primop writes eventlog
events similar to traceEvent# but allows the user to pass the event payload as a binary
blob instead of a zero-terminated ByteString.

* The StableName# type parameter now has a phantom role instead of a representational
one. There is really no reason to care about the type of the underlying object.

3.2.6 ghc library

3.2.7 base library
e The final phase of the MonadFail proposal has been implemented. As a result of this
change:

- The fail method of Monad has been removed in favor of the method of the same
name in the MonadFail class.

- MonadFail(fail) is now re-exported from the Prelude and Control.Monad mod-
ules.

These are breaking changes that may require you to update your code. Please refer to
the GHC 8.8 Migration Guide for more details.

* Support the characters from recent versions of Unicode (up to v. 12) in literals
(see #5518).

* The StableName type parameter now has a phantom role instead of a representational
one. There is really no reason to care about the type of the underlying object.

* The functions zipWith3 and zip3 in Prelude can now fuse, together with zipWith4 to
zipWith7 as well as their tuple counterparts in Data.List.

3.2.8 Build system

* Configure: Add ALEX and HAPPY variables to explicitly set the alex and happy programs
to use.

* Configure: Deprecate -with-ghc=ARG in favour of the GHC variable.

3.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 8.10.0.20191123 The compiler itself
Cabal 3.1.0.0 Dependency of ghc-pkg util-
ity
Continued on next page

12 Chapter 3. Release notes for version 8.8.1

https://gitlab.haskell.org/ghc/ghc/wikis/migration/8.8#base-41300
https://gitlab.haskell.org/ghc/ghc/issues/5518

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 3.1 - continued from previous page

Package Version Reason for inclusion
Win32 2.6.1.0 Dependency of ghc library
array 0.5.4.0 Dependency of ghc library
base 4.14.0.0 Core library

binary 0.8.7.0 Dependency of ghc library
bytestring 0.10.9.0 Dependency of ghc library
containers 0.6.2.1 Dependency of ghc library
deepseq 1.4.4.0 Dependency of ghc library
directory 1.3.4.0 Dependency of ghc library
filepath 1.4.2.1 Dependency of ghc library
ghc-boot-th 8.10.0.20191123 Internal compiler library
ghc-boot 8.10.0.20191123 Internal compiler library

ghc-compact

0.1.0.0

Core library

ghc-heap 8.10.0.20191123 GHC heap-walking library

ghc-prim 0.6.1 Core library

ghci 8.10.0.20191123 The REPL interface

haskeline 0.8.0.0 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

libiserv 8.10.0.20191123 Internal compiler library

mtl 2.2.2 Dependency of Cabal library
parsec 3.1.14.0 Dependency of Cabal library
pretty 1.1.3.6 Dependency of ghc library
process 1.6.6.0 Dependency of ghc library

Continued on next page

3.3. Included libraries

13

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 3.1 - continued from previous page

Package Version Reason for inclusion

stm 2.5.0.0 Dependency of haskeline li-
brary

template-haskell 2.16.0.0 Core library

terminfo 0.4.1.4 Dependency of haskeline li-
brary

text 1.2.3.1 Dependency of Cabal library

time 1.9.3 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

14 Chapter 3. Release notes for version 8.8.1

CHAPTER
FOUR

RELEASE NOTES FOR VERSION 8.10.1

The significant changes to the various parts of the compiler are listed in the following sections.

4.1 Highlights

The UnliftedNewtypes (page 267) extension.

4.2 Full details

4.2.1 Language

Kind variables are no longer implicitly quantified when an explicit forall is used, see
GHC proposal #24. -Wimplicit-kind-vars (page 92) is now obsolete.

Kind variables are no longer implicitly quantified in constructor declarations:

data T a
data T (a :: k)

T1 (S (a :: k)) | forall (b::k). T2 (S b) -- no longer accepted
T1 (S (a :: k)) | forall (b::k). T2 (S b) -- still accepted

Implicitly quantified kind variables are no longer put in front of other variables:

f :: Proxy (a :: k) -> Proxy (b :: j)

ghci> :t +v f -- old order:
f :: forall k j (a :: k) (b :: j). Proxy a -> Proxy b

ghci> :t +v f -- new order:
f :: forall k (a :: k) j (b :: j). Proxy a -> Proxy b

This is a breaking change for users of TypeApplications (page 426).

In type synonyms and type family equations, free variables on the RHS are no longer
implicitly quantified unless used in an outermost kind annotation:

Just (Nothing :: Maybe a) -- no longer accepted
Just Nothing :: Maybe (Maybe a) -- still accepted

type T
type T

A new extension StandaloneKindSignatures (page 396) allows one to explicitly specify
the kind of a type constructor, as proposed in GHC proposal #54:

15

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0054-kind-signatures.rst

GHC User’s Guide Documentation, Release 8.10.0.20191123

type TypeRep :: forall k. k -> Type
data TypeRep a where

TyInt :: TypeRep Int
TyMaybe :: TypeRep Maybe
TyApp :: TypeRep a -> TypeRep b -> TypeRep (a b)

Analogous to function type signatures, a standalone kind signature (page 396) enables
polymorphic recursion. This feature is a replacement for CUSKs (page 394).

* GHC now parses visible, dependent quantifiers (as proposed in GHC proposal 35), such

as the following:

data Proxy :: forall k -> k -> Type

See the section on explicit kind quantification (page 400) for more details.

Type variables in associated type family default declarations can now be explicitly bound
with a forall when ExplicitForAll (page 416) is enabled, as in the following example:

class C a where
type T a b
type forall a b. T a b = Either a b

This has a couple of knock-on consequences:

- Wildcard patterns are now permitted on the left-hand sides of default declarations,
whereas they were rejected by previous versions of GHC.

- It used to be the case that default declarations supported occurrences of left-hand
side arguments with higher-rank kinds, such as in the following example:

class C a where
type T a (f :: forall k. k -> Type)
type T a (f :: forall k. k -> Type) = f Int

This will no longer work unless f is explicitly quantified with a forall, like so:

class C a where
type T a (f :: forall k. k -> Type)
type forall a (f :: forall k. k -> Type).
Taf=fInt

* A new extension UnliftedNewtypes (page 267) that relaxes restrictions around what

kinds of types can appear inside of the data constructor for a newtype. This was proposed
in GHC proposal #13.

* A new extension ImportQualifiedPost (page 292) allows the syntax import M quali-

fied, that is, to annotate a module as qualified by writing qualified after the module
name. This was proposed in GHC proposal #49.

New flag -Wderiving-defaults (page 91) that controls a warning message when both
DeriveAnyClass (page 335) and GeneralizedNewtypeDeriving (page 329) are enabled
and no explicit deriving strategy is in use. The warning is enabled by default and has
been present in earlier GHC versions but without the option of disabling it. For example,
this code would trigger the warning:

class C a
newtype T a = MkT a deriving C

16

Chapter 4. Release notes for version 8.10.1

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0035-forall-arrow.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0049-module-qualified-syntax.rst

GHC User’s Guide Documentation, Release 8.10.0.20191123

GHC now performs more validity checks on inferred type signatures. One consequence
of this change is that some programs that used to be accepted will no longer compile
without enabling the required language extensions. For example, in these two modules:

{-# LANGUAGE RankNTypes #-}
module A where

foo :: (forall a. a -=>a) ->b ->b
foo f x = f x

module B where
import A

bar = foo

Notice that A enables -XRankNTypes (page 431), but B does not. Previous versions of
GHC would allow bar to typecheck, even though its inferred type is higher-rank. GHC
8.10 will now reject this, as one must now enable - XRankNTypes (page 431) in B to accept
the inferred type signature.

Type family dependencies (also known as injective type families) sometimes now need
-XUndecidableInstances in order to be accepted. Here is an example:

type family Flra=r | r -> a
type family F2 a=r | r -> a
type instance F2 [a] = Maybe (F1l a)

Because GHC needs to look under a type family to see that a is determined by the right-
hand side of F2‘s equation, this now needs -XUndecidableInstances. The problem is
very much akin to its need to detect some functional dependencies.

4.2.2 Compiler

Add new flags -Wunused-record-wildcards (page 99) and -Wredundant-record-
wildcards (page 100) which warn users when they have redundant or unused uses of a
record wildcard match.

Calls to memset and memcpy are now unrolled more aggressively and the produced code
is more efficient on x86 64 with added support for 64-bit MOVs. In particular, setByteAr-
ray# and copyByteArray# calls that were not optimized before, now will be. See #16052.

GHC'’s runtime linker no longer uses global state. This allows programs that use the
GHC API to safely use multiple GHC sessions in a single process, as long as there are no
native dependencies that rely on global state.

When loading modules that use UnboxedTuples (page 265) or UnboxedSums (page 266)
into GHC,], it will now automatically enable - fobject-code (page 210) for these modules
and all modules they depend on. Before this change, attempting to load these modules
into the interpreter would just fail, and the only convenient workaround was to enable
-fobject-code (page 210) for all modules. See the GHCi FAQ (page 68) for further
details.

The eventlog now contains events for biographical and retainer profiling. The biograph-
ical profiling events all appear at the end of the eventlog but the sample start event
contains a timestamp of when the census occurred. The retainer profiling events are
emitted using the standard events.

4.2,

Full details 17

https://gitlab.haskell.org/ghc/ghc/issues/16052

GHC User’s Guide Documentation, Release 8.10.0.20191123

The eventlog now logs the cost centre stack on each sample. This enables the .prof file
to be partially reconstructed from the eventlog.

Add new flag - fkeep-going (page 84) which makes the compiler continue as far as it
can despite errors.

Deprecated flag - fwarn-hi-shadowing because it was not implemented correctly, and
appears to be largely unused. This flag will be removed in a later version of GHC.

Windows bindist has been updated to GCC 9.2 and binutils 2.32. These binaries have
been patched to no longer have have the MAX PATH limit. Windows users should no
longer have any issues with long path names.

Introduce DynFlags plugins, that allow users to modidy the DynFlags that GHC is going
to use when processing a set of files, from plugins. They can be used for applying tiny
configuration changes, registering hooks and much more. See the user guide (page 555)
for more details as well as an example.

4.2.3 GHCi

Added a command :instances (page 57) to show the class instances available for a type.

Added new debugger commands :disable (page 54) and :enable (page 55) to disable
and re-enable breakpoints.

Improved command name resolution with option !. For example, : k! resolvesto :kind!.

4.2.4 Runtime system

The runtime system linker now marks loaded code as non-writable (see #14069) on all
tier-1 platforms. This is necesaary for out-of-the-box compatibility with OpenBSD and
macOS Catalina (see #17353)

4.2.5 Template Haskell

The Lift typeclass is now levity-polymorphic and has a 1iftTyped method. Previously
disallowed instances for unboxed tuples, unboxed sums, an primitive unboxed types have
also been added. Finally, the code generated by DerivelLift (page 328) has been sim-
plified to take advantage of expression quotations.

Using TupleT 1, TupE [exp], or TupP [pat] will now produce unary tuples (i.e., involv-
ing the Unit type from GHC.Tuple) instead of silently dropping the parentheses. This
brings Template Haskell’s treatment of boxed tuples in line with that of unboxed tuples,
as UnboxedTupleT", " “UnboxedTupE, and UnboxedTupP also produce unary unboxed tu-
ples (i.e., Unit#) when applied to only one argument.

GHC'’s constraint solver now solves constraints in each top-level group sooner. This has
practical consequences for Template Haskell, as TH splices necessarily separate top-
level groups. For example, the following program would compile in previous versions of
GHC, but not in GHC 8.10:

data T = MkT

tStr :: String
tStr = show MKT

18

Chapter 4. Release notes for version 8.10.1

https://gitlab.haskell.org/ghc/ghc/issues/14069
https://gitlab.haskell.org/ghc/ghc/issues/17353

GHC User’s Guide Documentation, Release 8.10.0.20191123

$(return [1)

instance Show T where
show MKT = "MKT"

This is because each top-level group’s constraints are solved before moving on to the
next, and since the top-level group for tStr appears before the top-level group that de-
fines a Show T instance, GHC 8.10 will throw an error about a missing Show T instance in
the expression show MKT. The issue can be fixed by rearranging the order of declarations.
For instance, the following will compile:

data T = MkT

instance Show T where
show MKT = "MKT"

$(return []1)

tStr :: String
tStr = show MKT

4.2.6 ghc-prim library

* Add new bitReverse# primops that, for a Word of 8, 16, 32 or 64 bits, reverse the order
of its bits e.g. 0b110001 becomes 0b100011. These primitives use optimized machine
instructions when available.

4.2.7 ghc library
4.2.8 base library

4.2.9 Build system
4.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 8.10.0.20191123 The compiler itself
Cabal 3.1.0.0 Dependency of ghc-pkg util-
ity
Win32 2.6.1.0 Dependency of ghc library
array 0.5.4.0 Dependency of ghc library
Continued on next page

4.3. Included libraries 19

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 4.1 - continued from previous page

Package Version Reason for inclusion

base 4.14.0.0 Core library

binary 0.8.7.0 Dependency of ghc library
bytestring 0.10.9.0 Dependency of ghc library
containers 0.6.2.1 Dependency of ghc library
deepseq 1.4.4.0 Dependency of ghc library
directory 1.3.4.0 Dependency of ghc library
filepath 1.4.2.1 Dependency of ghc library
ghc-boot-th 8.10.0.20191123 Internal compiler library
ghc-boot 8.10.0.20191123 Internal compiler library

ghc-compact

0.1.0.0

Core library

ghc-heap 8.10.0.20191123 GHC heap-walking library

ghc-prim 0.6.1 Core library

ghci 8.10.0.20191123 The REPL interface

haskeline 0.8.0.0 Dependency of ghci exe-
cutable

hpc 0.6.1.0 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

libiserv 8.10.0.20191123 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.14.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

process 1.6.6.0 Dependency of ghc library

stm 2.5.0.0 Dependency of haskeline li-
brary

template-haskell 2.16.0.0 Core library

Continued on next page

20

Chapter 4. Release notes for version 8.10.1

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 4.1 - continued from previous page

Package Version Reason for inclusion

terminfo 0.4.1.4 Dependency of haskeline li-
brary

text 1.2.3.1 Dependency of Cabal library

time 1.9.3 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

4.3. Included libraries

21

GHC User’s Guide Documentation, Release 8.10.0.20191123

22 Chapter 4. Release notes for version 8.10.1

CHAPTER
FIVE

USING GHCI

GHCi ! is GHC'’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you're familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all ? the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 40)).

5.1 Introduction to GHCi

Let’s start with an example GHCIi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type :7? (page 55) to see the list of com-
mands available, and a half line description of each of them. We’ll explain most of these
commands as we go along, and there is complete documentation for all the commands in
GHCi commands (page 51).

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

Prelude> x = 42
Prelude> x

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

23

http://www.haskell.org/hugs/

GHC User’s Guide Documentation, Release 8.10.0.20191123

42
Prelude>

5.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory ® then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the : load (page 56) command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
0k, modules loaded: Main.

*Main>

GHCi has loaded the Main module, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 32)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the : load (page 56) command (hint: : Lload (page 56) can be abbreviated to
:1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-loaded-modules
Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 56) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

24 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 56),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the -1i (page 170) option on the GHCi
command line, like so:

or it can be set using the :set (page 58) command from within GHCi (see Setting GHC
command-line options in GHCi (page 63)) *

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

5.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 58) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 175)).

5.3 Loading compiled code

When you load a Haskell source module into GHCi], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with :load (page 56), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

4 Note that in GHCi, and - -make (page 76) mode, the -i (page 170) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -i (page 170) option is used to specify the search path
for interface files, see The search path (page 170).

5.3. Loading compiled code 25

GHC User’s Guide Documentation, Release 8.10.0.20191123

A
/ N\
B C
\/

D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B

(interpreted)
Compiling C (
(

S,
s, interpreted)
s, interpreted)
D.o).

Compiling A
0Ok, modules loaded: A, B, C
*Main>

B.h
C.h
A.h
D (

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 212) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command :show modules (page 60) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs

*Main> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

26 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C‘s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
0Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 58), only : load (page 56):

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 32)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 56), for
example

Prelude> :load *A
Compiling A (A.hs, interpreted)
*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the - fobject-
code (page 210) option (see Compiling to object code inside GHCi (page 66)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

5.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCiimmediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 545

10

5.4. Interactive evaluation at the prompt 27

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

5.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <-return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 28) is set then GHCi will print the result of a statement
if and only if:

*The statement is not a binding, or it is a monadic binding (p <-e€) that binds exactly
one variable.

*The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

28 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<-e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated im-
mediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!

Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

Prelude> add a b =a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [] =n; fopn (h:t) =h op> fopnt
Prelude> f (+) 0 [1..3]

6

Prelude>

:{
'}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g op n [] =n

Prelude| g op n (h:t) = h "op" gopnt
Prelude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 65)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

5.4. Interactive evaluation at the prompt 29

GHC User’s Guide Documentation, Release 8.10.0.20191123

Warning: Temporary bindings introduced at the prompt only last until the next :load
(page 56) or : reload (page 58) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 58): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 60)
command:

Prelude> :show bindings
x :: Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

Prelude> :set +t

Prelude> let (x:xs) = [1..]
X :: Integer

xs :: [Integer]

5.4.3 Multiline input

Apart from the : { ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m
Prelude> let x =
Prelude| y =
Prelude|
Prelude>

42
3

Explicit braces and semicolons can be used instead of layout:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

30 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do

Prelude| putStrLn "Hello, World!"
Prelude| ~C

Prelude>

5.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T = A | B

Prelude> let f A = True; f B = False
Prelude> data T=A | B | C
Prelude> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it =f A
Prelude>

5.4. Interactive evaluation at the prompt 31

GHC User’s Guide Documentation, Release 8.10.0.20191123

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 371).) For example:

Prelude> type family T a b
Prelude> type instance T a b = a
Prelude> let uc :: a -> T a b; uc = id

Prelude> type instance Ta b =1b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

Prelude> type family T a b

-- This is a brand-new T, unrelated to the old one
Prelude> type instance Ta b =0b

Prelude> uc 'a' :: Int

<interactive>:8:1: error:
* Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
* In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

5.4.5 What’s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 56), :add (page 51), and : reload (page 58) commands (The effect of
:load on what is in scope (page 33)).

* The import declaration (Controlling what is in scope with import (page 33)).

* The :module (page 58) command (Controlling what is in scope with the :module com-
mand (page 34)).

The command :show imports (page 60) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

32 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

The effect of :1load on what is in scope

The : load (page 56), :add (page 51), and : reload (page 58) commands (Loading source files
(page 24) and Loading compiled code (page 25)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of (module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 56) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, orif Bar is compiled it will be set to Prelude Bar (GHCiautomatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 60):

Prelude> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0k, modules loaded: Main.

*Main> :show imports

:module +*Main -- added automatically

*Main>

and the automatically-added import is replaced the next time you use : load (page 56), :add
(page 51), or : reload (page 58). It can also be removed by :module (page 58) as with normal
imports.

Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

5.4. Interactive evaluation at the prompt 33

GHC User’s Guide Documentation, Release 8.10.0.20191123

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 60):

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit

import System.IO

import Data.Map as Map

Prelude System.IO0 Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 58) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 58) command provides a way to do two things that cannot be done with
ordinary import declarations:

» :module (page 58) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

34 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

:module and :load

It might seem that :module (page 58)/import and :load (page 56)/:add (page 51)/: reload
(page 58) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCIi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by :load (page 56),
:add (page 51) and : reload (page 58), and can be shown with : show modules (page 60).

* The set of modules that are currently in scope at the prompt. This set is modified by im-
port and :module (page 58), and it is also modified automatically after : Load (page 56),
:add (page 51), and :reload (page 58), as described above. The set of modules in scope
can be shown with :show imports (page 60).

You can add a module to the scope (via :module (page 58) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 58)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

5.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 57) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[Ilfoolllllbarll]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 58)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

5.4. Interactive evaluation at the prompt 35

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eqg.:

Prelude> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
Prelude> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag - fno-it (page 36) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 31)).
-fno-it
When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

5.4.8 Type defaulting in GHCi

ExtendedDefaultRules

36 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])
[1

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard rules
take each group of constraints (C1 a,C2 a,...,Cn a) for each type variable a, and defaults
the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 36) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

* Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

5.4. Interactive evaluation at the prompt 37

GHC User’s Guide Documentation, Release 8.10.0.20191123

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won'’t try to print a result when running them. This is particularly important
for printf, which has an instance that returns I0 a. However, it is only able to return unde-
fined (the reason for the instance having this type is so that printf doesn’t require extensions
to the class system), so if the type defaults to Integer then ghci gives an error when running
a printf.

See also [/O actions at the prompt (page 28) for how the monad of a computational expression
defaults to I0 if possible.

Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 36) is in effect) are:
any numeric class, Show, Eq, 0rd, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 36), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl1,...,tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

5.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCIi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (name) (page 38) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 52), :add (page 51), :load (page 56),
:reload (page 58) or, :set (page 58).

-interactive-print (name)
Set the function used by GHCi to print evaluation results. Given name must be of type C
a=>a ->10 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

38 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (name) (page 38) flag can also be used when running GHC in -e
mode:

5.4.10 Stack Traces in GHCi
[This is an experimental feature enabled by the new - fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCIi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a separate
process (page 67)) and runs it in profiling mode to collect call stack information. Note that
because we’re running the interpreted code in profiling mode, all packages that you use must
be compiled for profiling. The -prof flag to GHCi only works in conjunction with - fexternal-
interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 505)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 231)).

5.4. Interactive evaluation at the prompt 39

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger °.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

» Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 47)).

5.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [1 =[]
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (qgsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

40 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a:: a

left :: [a]
right :: [al

[gsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the :list (page 56) command:

[gsort.hs:2:15-46] *Main> :list

1 gsort [] = []

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 56) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables ® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 61), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 58), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *Main> :print left
left = (_tl::[a])

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

5.5. The GHCi Debugger 41

GHC User’s Guide Documentation, Release 8.10.0.20191123

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 58) does not force any evaluation.
The idea is that :print (page 58) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 45)). Rather than forcing thunks, :print (page 58) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

-fprint-evld-with-show
The flag -fprint-evld-with-show (page 42) instructs :print (page 58) to reuse avail-
able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 55) instead of :print (page 58). The : force (page 55) command behaves exactly like
:print (page 58), except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since :force (page 55) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[gsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 55). For example:

[gsort.hs:2:15-46]1 *Main> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *Main> seq _tl ()
()

[gsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 54) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]

a :: a

left :: [a]

42 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

right :: [a]
[gsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 97) in Warnings
and sanity-checking (page 85)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

Managing breakpoints

The list of breakpoints currently defined can be displayed using :show breaks (page 60):

*Main> :show breaks
[0] Main qgsort.hs:1:11-12 enabled
[1] Main gsort.hs:2:15-46 enabled

5.5. The GHCi Debugger 43

GHC User’s Guide Documentation, Release 8.10.0.20191123

To disable one or several defined breakpoint, use the :disable (page 54) command with one
or several blank separated numbers given in the output from :show breaks (page 60):. To
disable all breakpoints at once, use :disable *.

*Main> :disable 0

*Main> :show breaks

[0] Main qgsort.hs:1:11-12 disabled
[1] Main gsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 55) command. The param-
eters of the :disable (page 54) and :enable (page 55) commands are identical.

To delete a breakpoint, use the :delete (page 54) command with the number given in the
output from :show breaks (page 60):

*Main> :delete 0
*Main> :show breaks
[1] Main qgsort.hs:2:15-46 disabled

To delete all breakpoints at once, use :delete *.

5.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 61) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 61) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 61) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 61) begins the evaluation of {expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 61)
and :stepmodule (page 61) commands work similarly.

The :1ist (page 56) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *Main> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[gsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 56):

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step

Stopped at qsort.hs:5:14-46

result :: [Integer]

SN

main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])

44 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

6
[gsort.hs:5:14-46] *Main>

5.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[gsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[qsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of qsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 60):

[qsort.hs:(1,0)-(3,55)] *Main> :show context
--> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 51):

[gsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon
*Main>

5.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 61)). So it will probably be necessary to issue a : continue (page 53) immediately when
evaluating result. Alternatively, you can use :force (page 55) which ignores breakpoints.

5.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance

5.5. The GHCi Debugger 45

GHC User’s Guide Documentation, Release 8.10.0.20191123

to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 229)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 61) command. For example, if
we set a breakpoint on the base case of gqsort:

*Main> :list qgsort

1 gsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12

*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[qsort.hs:1:11-12] *Main> :hist
- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 51):

[gsort.hs:1:11-12] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]

as :: [al

a::a

[-1: gsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be

46 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 55) can be used to
traverse forward in the history.

The :trace (page 61) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like : step (page 61).

The history is only available when using : trace (page 61); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)
Default 50
Modify the depth of the evaluation history tracked by GHCi.

5.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 167)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a breakpoint on
the location in the source code that throws the exception, and then use :trace (page 61) and
:history (page 55) to establish the context. However, head is in a library and we can’t set
a breakpoint on it directly. For this reason, GHCi provides the flags - fbreak-on-exception
(page 48) which causes the evaluator to stop when an exception is thrown, and -fbreak-
on-error (page 48), which works similarly but stops only on uncaught exceptions. When
stopping at an exception, GHCi will act just as it does when a breakpoint is hit, with the
deviation that it will not show you any source code location. Due to this, these commands are
only really useful in conjunction with :trace (page 61), in order to log the steps leading up
to the exception. For example:

*Main> :set -fbreak-on-exception

*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *Main> :hist

- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *Main> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [al

a:: a

[-1: gsort.hs:3:24-38] *Main> :force as
**¥* Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *Main> :print as
as = 'b'" : 'c' : (_tl::[Char])

5.5. The GHCi Debugger a7

GHC User’s Guide Documentation, Release 8.10.0.20191123

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-exception (page 48) breaks on all exceptions.

-fbreak-on-error
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 48) breaks on only those exceptions which would
otherwise be uncaught.

5.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 = [1]
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]
X :: a
f::ra->b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known

yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the

type of its first argument is the same as the type of x, and its result type is shared with
result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 40)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*Main> seq x ()
*Main> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

48 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

*Main> :t x

X :: Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0
*Main> :p b
b= (t2::a)
*Main> seq b ()
()

*Main> :t b

b :: a
*Main> :p b
b = Just 10

*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer

*Main> f 20

Just 20

*Main> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

5.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’'re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

* Implicit parameters (see Implicit parameters (page 428)) are only available at the scope
of a breakpoint if there is an explicit type signature.

5.6 Invoking GHCi

GHC i is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :load

5.6. Invoking GHCi 49

GHC User’s Guide Documentation, Release 8.10.0.20191123

modules at the GHCi prompt (see GHCi commands (page 51)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 73)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

-flocal-ghci-history
By default, GHCi keeps global history in ~/.ghc/ghci history or %APP-
DATA%/<app>/ghci history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCIi is launched.

-fghci-leak-check
(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

5.6.1 Packages
Most packages (see Using Packages (page 187)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the -
package (pkg) (page 188) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

5.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 25).) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 211) command-line option,

* The standard library search path for your system loader, which on some systems may be
overridden by setting the LD_LIBRARY_ PATH environment variable.

50 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

* The linker standard library search can also be overriden on some systems using the LI-
BRARY_ PATH environment variable. Because of some implementation detail on Windows,
setting LIBRARY PATH will also extend the system loader path for any library it finds. So
often setting LIBRARY PATH is enough.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.dl1, lib-
1ib.dl1l. GHCIi also has full support for import libraries, either Microsoft style . lib, or GNU
GCC style .a and .dl1.a libraries. If you have an import library it is advisable to always spec-
ify the import libary instead of the .d11l. e.g. use -lgcc™ instead of "' -1llibgcc s seh-1.
Again, GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 211)).

5.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

tadd[*] (module)
Add (module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of {module) will be replaced
by the contents of the environment variable HOME.

:all-types

List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 63) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo

GhciTypes.hs: (45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable,,
—SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 45) for more about GHCi’s debugging facilities. See also: :trace (page 61), :his-
tory (page 55), : forward (page 55).

tbreak [(identifier) | [(module)] (line) [{column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 43).

tbrowse[!] [[*] (module)]
Displays the identifiers exported by the module {module), which must be either loaded

5.7. GHCi commands 51

GHC User’s Guide Documentation, Release 8.10.0.20191123

into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What's really in scope at the prompt? (page 32)).

There are two variants of the browse command:

*If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of :browse (page 51) is
available.

*Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the com-
mand, thus :browse!, they are listed individually. The !-form also annotates the
listing with comments giving possible imports for each group of entries. Here is an
example:

Prelude> :browse! Data.Maybe
- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeTolList :: Maybe a -> [a]
- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCi session - see What’s really in scope
at the prompt? (page 32)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

rcd (dir)

Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 60) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd (expr)

Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 52) command is useful with :def (page 54) and :set stop (page 60).

:complete (type) [(n)-1[{(m)] (string-literal)

This command allows to request command completions from GHCi even when inter-

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.

When called, :complete (page 52) prints the (n)™ to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and (m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 52) begins with a header line containing three space-
delimited fields:

*An integer denoting the number 1 of printed completions,
*an integer denoting the total number of completions available, and finally

*a string literal denoting a common prefix to be added to the returned completion
candidates.

The headerline is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"

"Foreign.Storable"

Prelude> :complete repl "map"

33 ""

"map"

"mapM*"

"mapM_"

Prelude> :complete repl 5-10 "map"

03 ""

:continue
Continue the current evaluation, when stopped at a breakpoint.

:ctags [(filename)]
Generates a “tags” file for Vi-style editors (:ctags (page 53)) or Emacs-style editors
(:etags (page 55)). If no filename is specified, the default tags or TAGS is used, respec-

5.7. GHCi commands 53

GHC User’s Guide Documentation, Release 8.10.0.20191123

tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

:def[!] (name) (expr)
:def (page 54) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines a new GHCi command :name, implemented by the Haskell ex-
pression (expr), which must have type String -> I0 String. When :name args istyped
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

Prelude> let date = Data.Time.getZonedTime >>= print >> return ""
Prelude> :def date date

Prelude> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 52):

Prelude> let mycd d = System.Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_-> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceeding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands : {, :} and :!.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 60) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | (num)
Disable one or more breakpoints by number (use :show breaks (page 60) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)

Displays the documentation for the given name. Currently the command is restricted to

54 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

redit (file)
Opens an editor to edit the file (file), or the most recently loaded module if (file) is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 59).

:enable * | (num)
Enable one or more disabled breakpoints by number (use : show breaks (page 60) to see
the number and state of each breakpoint). The * form enables all the disabled break-
points.

retags
See :ctags (page 53).

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 58). Unlike :print
(page 58), : force (page 55) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 45) for more about GHCi’s debugging facilities. See also: :trace (page 61), :his-
tory (page 55), :back (page 51).

thelp
:?

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with :trace (page 61); see Tracing and history (page 45). To set the number
of history entries stored by GHCIi, use the -fghci-hist-size=(n) (page 47) flag.

tinfo[!] (name)
Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name),
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : Load (page 56) or :module (page 58) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {name) in their head.

:issafe [(module)]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

5.7. GHCi commands 55

GHC User’s Guide Documentation, Release 8.10.0.20191123

tkind[!] (type)

Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 55) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T 0 * -> % > %

ghci> :k T Int

T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)

Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [{(module)] (line)

Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*]{module)

Recursively loads the specified (module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 56) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 449) for further motivation and details.

After a : load (page 56) command, the current context is set to:
*{module), if it was loaded successfully, or

*the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 56), or

*Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [{(name)]

Tries to find the definition site of the name at the given source-code span, e.g.:

56

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 63) to be set.
:instances (type)
Displays all the class instances available to the argument (type). The command will

match (type) with the first parameter of every instance and then check that all constraints
are satisfiable.

When combined with PartialTypeSignatures (page 443), a user can insert wildcards
into a query and learn the constraints required of each wildcard for (type) match with
an instance.

The output is a listing of all matching instances, simplified and instantiated as much as
possible.

For example:

> :instances Maybe (Maybe Int)

instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

> :instances Maybe _
instance Eq _ => Eq (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Monoid (Maybe) -- Defined in ‘GHC.Base’
instance Ord _ => Ord (Maybe) -- Defined in ‘GHC.Maybe’
instance Semigroup _ => Semigroup (Maybe) -- Defined in ‘GHC.Base’

instance Show => Show (Maybe) -- Defined in ‘GHC.Show’

instance Read @ => Read (Maybe) -- Defined in ‘GHC.Read’

:main (argl) ... (argn)
When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

Instead, we can use the :main (page 57) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["fOO","bar“]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

5.7. GHCi commands 57

GHC User’s Guide Documentation, Release 8.10.0.20191123

Finally, other functions can be called, either with the -main-is flag or the : run (page 58)
command:

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 32)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 58) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 58) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 58) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 40) for more information.
See also the :sprint (page 61) command, which works like :print (page 58) but does
not bind new variables.

rquit
Quits GHCi. You can also quit by typing Control-D at the prompt.
treload[']
Attempts to reload the current target set (see : load (page 56)) if any of the modules in

the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 449) for further motivation and details.

irun
See :main (page 57).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 63)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 63) for a list of available
options and Interactive-mode options (page 123) for a list of GHCi-specific flags. The
:set (page 58) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

58 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 55) to {cmd).

:set local-config (source|ignore)
If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.

Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 65) on the command line, or sourced via :script (page 58).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

*%S by the names of the modules currently in scope.

*%1 by the line number (as referenced in compiler messages) of the current prompt.
*%d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
*%t by the current time in 24-hour HH:MM:SS format.

*%T by the current time in 12-hour HH:MM:SS format.

*%@ by the current time in 12-hour am/pm format.

*%A by the current time in 24-hour HH:MM format.

*%U by the username of the current user.

*%w by the current working directory.

*%0 by the operating system.

*%a by the machine architecture.

*%N by the compiler name.

*%V by the compiler version.

*%call(cmd [args]) by the result of calling cmd args.

*%% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont (prompt)
Sets the string to be used as the continuation prompt (used when using the :{ (page 29)
command) in GHCi.

:set prompt-function (prompt-function)
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 32) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

5.7. GHCi commands 59

GHC User’s Guide Documentation, Release 8.10.0.20191123

:set prompt-cont-function (prompt-function)

Sets the function to be used for the continuation prompt (used when using the :{
(page 29) command) displaying in GHCi.

:set stop (num) (cmd)

Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 60) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 53) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t
want such a message, you can use the :disable (page 54) command. What’s more, with
cunning use of :def (page 54) and :cmd (page 52) you can use :set stop (page 60) to
implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\"_,
—else return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar
techniques.

:seti [(option) ...]

Like :set (page 58), but options set with :seti (page 60) affect only expressions and
commands typed at the prompt, and not modules loaded with :load (page 56) (in con-
trast, options set with :set (page 58) apply everywhere). See Setting options for inter-
active evaluation only (page 64).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings

Show the bindings made at the prompt and their types.

:show breaks

List the active breakpoints.

:show context

List the active evaluations that are stopped at breakpoints.

:show imports

Show the imports that are currently in force, as created by import and :module (page 58)
commands.

:show modules

Show the list of modules currently loaded.

:show packages

Show the currently active package flags, as well as the list of packages currently loaded.

:show paths

Show the current working directory (as set via : cd (page 52) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language

Show the currently active language flags for source files.

60

Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 60)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 58)).

:sprint (expr)
Prints a value without forcing its evaluation. :sprint (page 61) is similar to :print
(page 58), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {(expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 44).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint. Continuation with : steplocal (page 61) is not possible if this last break-
point was hit by an error (- fbreak-on-error (page 48)) or an exception (-fbreak-on-
exception (page 48)).

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 55).
See Tracing and history (page 45).

:type (expression)
Infers and prints the type of (expression), including explicit forall quantifiers for polymor-
phic types. The type reported is the type that would be inferred for a variable assigned
to the expression, but without the monomorphism restriction applied.

*X> :type length
length :: Foldable t == t a -> Int

:type +v (expression)
Infers and prints the type of {(expression), but without fiddling with type variables or class
constraints. This is useful when you are using TypeApplications (page 426) and care
about the distinction between specified type variables (available for type application) and
inferred type variables (not available). This mode sometimes prints constraints (such as
Show Int) that could readily be solved, but solving these constraints may affect the type
variables, so GHC refrains.

*X> :set -fprint-explicit-foralls
*X> :type +v length
length :: forall (t :: * -> *). Foldable t => forall a. t a -> Int

:type +d (expression)
Infers and prints the type of (expression), defaulting type variables if possible. In this
mode, if the inferred type is constrained by any interactive class (Num, Show, Eq, 0rd,
Foldable, or Traversable), the constrained type variable(s) are defaulted according to
the rules described under ExtendedDefaultRules (page 36). This mode is quite useful

5.7. GHCi commands 61

GHC User’s Guide Documentation, Release 8.10.0.20191123

when the inferred type is quite general (such as for foldr) and it may be helpful to see
a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at (path) (line) (col) (end-line) (end-col) [{(name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames
(page 25) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case :type-at (page 62) falls back to a general : type
(page 61) like lookup.

The :type-at (page 62) command requires :set +c (page 63) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 54) above).

:unset (option)
Unsets certain options. See The :set and :seti commands (page 63) for a list of available
options.

tuses (module) (line) (col) (end-line) (end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 62) command requires :set +c (page 63) to be set.

(builtin-command)
Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of
builtin commands, excluding defined macros. See also: :def (page 54).

:! {(command)
Executes the shell command (command).

62 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.8 The :set and :setli commands

The :set (page 58) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-”.

Note: At the moment, the :set (page 58) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

5.8.1 GHCi options

GHCi options may be set using :set (page 58) and unset using :unset (page 62).
The available GHCi options are:

iset +c
Collect type and location information after loading modules. The commands :all-types
(page 51), :loc-at (page 56), :type-at (page 62), and :uses (page 62) require +c to be
active.

iset +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 30)).

:set +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

iset +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

iset +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

5.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 58). For example, to
turn on -Wmissing-signatures (page 94), you would say:

Prelude> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 116)), may be set using :set (page 58). To unset an option, you can set the reverse
option:

5.8. The :set and :seti commands 63

GHC User’s Guide Documentation, Release 8.10.0.20191123

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 116) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 188), -I(dir) (page 207), -i(dir)[:(dir)]*
(page 170), and -1 (lib) (page 211) in particular) will also work, but some may not take
effect until the next reload.

5.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options:
* The loading options apply when loading modules

* The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 58) command modifies both, but there is also a :seti (page 60) command
(for “set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonolLocalBinds

It would be undesirable if MonoLocalBinds (page 425) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use :seti (page 60)
rather than :set (page 58), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 58) and :seti (page 60) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 65). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 36)).

* The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 425)).

64 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.9 The .ghci and .haskeline files

5.9.1 The .ghci files

When it starts, unless the -ignore-dot-ghci (page 65) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ghcappdata/ghci.conf, where {(ghcappdata) depends on your system, but is usually
something like $HOME/ .ghc on Unix or C: /Documents and Settings/user/Application
Data/ghc on Windows.

2. $HOME/.ghci
3. ./.ghci

The ghci. conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use :seti (page 60)
rather than :set (page 58) (see Setting options for interactive evaluation only (page 64)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 170) flag is a static one, but in fact it works to set it
using :set (page 58) like this. The changes won’t take effect until the next : Load (page 56),
though.)

Warning: Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary
commands that will be executed as the user. Use :set local-config (page 59) to inhibit
the processing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your . ghci file, you can use :source filetoread GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 65) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

5.9. The .ghci and .haskeline files 65

http://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

-ghci-script
Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 65) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:

1. You have a macro :time and enter :t 3
You get :type 3

2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter :t 3
You get :type 3 with your defined macro.

When giving priority to built-in commands, you can use :: (builtin-command) (page 62),
like : :type 3.

5.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCIi history. See: Haskeline user preferences.

5.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCIi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 210) flag either on the command line or with :set (page 58) (the
option -fbyte-code (page 210) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 58) command typically runs much faster than restart-
ing GHC with --make (page 76) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

66 Chapter 5. Using GHCi

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 8.10.0.20191123

5.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 67) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 233) is in
effect, and in dynamically-linked mode if -dynamic (page 212) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option is
currently not implemented on Windows (it is a no-op), and the external interpreter does
not support the GHCi debugger, so breakpoints and single-stepping don’t work with -
fexternal-interpreter (page 67).

See also the -pgmi (cmd) (page 205) (Replacing the program for one or more phases
(page 205)) and -opti (option) (page 206) (Forcing options to a particular phase
(page 205)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 39)).

* When compiling Template Haskell code with -prof (page 233) we don’t need to compile
the modules without -prof (page 233) first (see Using Template Haskell with Profiling
(page 458)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

5.12 Running the interpreter on a different host

When using the flag - fexternal-interpreter (page 67) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling)
where it is favourable to have the communication happen over the network. GHC provides
two utilities for this, which can be found in the utils directory.

* remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

* iserv-proxy needs to be built on the build machine by the build compiler.

After starting remote-iserv (tmp dir) (port) on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.

Providing -pgmi /path/to/iserv-proxy (page 205), -pgmo (option) and -pgmo (port) in
addition to -fexternal-interpreter (page 67) will then make ghc go through the proxy
instead.

5.11. Running the interpreter in a separate process 67

GHC User’s Guide Documentation, Release 8.10.0.20191123

There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

5.13 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 102) doesn’t work with GHCil!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Modules using unboxed tuples or sums will automatically enable - fobject-code (page 210)

The bytecode interpreter doesn’t support most uses of unboxed tuples or sums, so
GHCi will automatically compile these modules, and all modules they depend on, to
object code instead of bytecode.

GHCi checks for the presence of unboxed tuples and sums in a somewhat con-
servative fashion: it simply checks to see if a module enables the UnboxedTuples
(page 265) or UnboxedSums (page 266) language extensions. It is not always the case
that code which enables UnboxedTuples (page 265) or UnboxedSums (page 266) re-
quires -fobject-code (page 210), so if you really want to compile UnboxedTuples
(page 265)/UnboxedSums (page 266)-using code to bytecode, you can do so explicitly
by enabling the - fbyte-code (page 210) flag. If you do this, do note that bytecode
interpreter will throw an error if it encounters unboxed tuple/sum-related code that
it cannot handle.

Incidentally, the previous point, that -0 (page 102) is incompatible with GHCI, is
because the bytecode compiler can’t deal with unboxed tuples or sums.

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 213) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 56) or
:reload (page 58) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 569).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

68 Chapter 5. Using GHCi

GHC User’s Guide Documentation, Release 8.10.0.20191123

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

5.13. FAQ and Things To Watch Out For 69

GHC User’s Guide Documentation, Release 8.10.0.20191123

70 Chapter 5. Using GHCi

CHAPTER
SIX

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

6.1 Usage

The runghc command-line looks like:

’runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a --
separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

6.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

6.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, -f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case

71

GHC User’s Guide Documentation, Release 8.10.0.20191123

* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use

--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

72 Chapter 6. Using runghc

CHAPTER
SEVEN

USING GHC

7.1 Using GHC

7.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

’main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

’$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello. hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 79) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

73

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -0 foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag im-
plication. For instance, consider -fno-specialise (page 110) and -01 (page 102) (which
implies - fspecialise (page 110)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overriden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the -
fspecialise implied by -01.

Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 478)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 478)).
Only dynamic flags can be used in an OPTIONS GHC pragma (see Dynamic and Mode options
(page 75)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

74 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but
in some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-
file (page 173) and have OPTION flags in your module, the OPTIONS GHC will get put into the
generated . hc file).

Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 58) command.

7.1.3 Dynamic and Mode options

Each of GHC’s command line options is classified as dynamic or mode:

Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, - -make (page 76) or -E (page 76). The available modes are listed
in Modes of operation (page 76).

Dynamic: A dynamic flag may be used on the command line, in a OPTIONS GHC
pragma in a source file, or set using :set (page 58) in GHCi.

The flag reference tables (Flag reference (page 116)) lists the status of each flag.

7.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . Lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hie An extended Haskell interface file, produced by the Haskell compiler.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.S An assembly-language source file, usually produced by the compiler.

.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

7.1. Using GHC 75

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 76) mode (Using ghc -make
(page 77)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCIi (page 23).

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc -make
(page 77).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 76) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. See
Expression evaluation mode (page 78) for more details.

-E
Stop after preprocessing (.hspp file)
-C
Stop after generating C (.hc file)
-S
Stop after generating assembly (. s file)
-C
Stop after generating object (.0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 78).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 184).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 554) for details.

--mk-d1l
DLL-creation mode (Windows only). See Creating a DLL (page 572).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.

76 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

- -supported-extensions
--supported-languages
Print the supported language extensions.

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-libdir
Print the path to GHC’s library directory. This is the top of the directory tree
containing GHC'’s libraries, interfaces, and include files (usually something like
/usr/local/lib/ghc-5.04 on Unix). This is the value of $libdir in the package con-
figuration file (see Packages (page 187)).

Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

’ghc --make Main.hs ‘

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

’ghc Main.hs ‘

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -j[(n)] (page 78) flag, you can compile modules in parallel. Specify -j (n) to
compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of processors.

7.1. Using GHC 77

GHC User’s Guide Documentation, Release 8.10.0.20191123

Any of the command-line options described in the rest of this chapter can be used with - -
make, but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 74)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 76), the linking phase is omitted (same as - -make -no-1link).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -i (page 170)
option can be used to add directories to the search path (see The search path (page 170)).

-il(n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

78 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Phase of the compilation Suffix saying “start Flag saying “stop (suffix of) output
system here” after” file

literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hcor .c -S .S

assembler .S -C .0

linker {other) a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 203) for more details.

Note: Pre-processing is optional, the -cpp (page 206) flag turns it on. See Options affecting
the C pre-processor (page 206) for more details.

Note: The option -E (page 76) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 76) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 204) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 79) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -X hs M.my-hs.

7.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-1libdir modes in Modes
of operation (page 76).

-V
The -v (page 79) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).

7.1. Using GHC 79

GHC User’s Guide Documentation, Release 8.10.0.20191123

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v{n)
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0 Disable all non-essential messages (this is the default).

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 76) or --interactive (page 76) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to -dshow-
passes (page 220)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 79)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:

-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the Uni-
codeSyntax (page 268) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) * Monad m=VYab. ma—-mb-—-mb

-fprint-explicit-foralls
Using -fprint-explicit-foralls (page 80) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f::a->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

*For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

80 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

«If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

This flag also enables the printing of inferred type variables inside braces. See Inferred
vs. specified type variables (page 426).

-fprint-explicit-kinds

Using -fprint-explicit-kinds (page 81) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds

ghci> data T a (b :: 1) = MKT

ghci> :t MKT

MKT :: forall k 1T (a :: k) (b :: 1). Tab

ghci> :set -fprint-explicit-kinds

ghci> :t MKT

MKT :: forall k 1 (a :: k) (b :: 1). T e{k} @L a b
ghci> :set -XNoPolyKinds

ghci> :t MKT

MKT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and 1) and two type vari-
ables (a and b). Note that k is an inferred variable and 1 is a specified variable (see
Inferred vs. specified type variables (page 426)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of 1 (with @l) is the
standard syntax for visible type application (see Visible type application (page 426)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when - fprint-explicit-kinds (page 81) is enabled.

-fprint-explicit-coercions

Using -fprint-explicit-coercions (page 81) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-axiom-incomps

Using - fprint-axiom-incomps (page 81) tells GHC to display incompatibilities between
closed type families’ equations, whenever they are printed by :info (page 55) or --
show-iface (file) (page 76).

ghci> :1i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where

==) (f a) (g b) = (f == g) & (a == b)
==) a a = 'True
==) 1 2 = 'False

ghci> :set -fprint-axiom-incomps

ghci> :i Data.Type.Equality.==

type family (==) (a :: k) (b :: k) :: Bool

where
{- #0 -} (==) (f a) (g b) = (f == g) & (a == b)
{- #1 -} (==) a a = 'True

7.1. Using GHC 81

GHC User’s Guide Documentation, Release 8.10.0.20191123

-- incompatible with: #0
{- #2 -} (==) 1 2 = 'False
-- incompatible with: #1, #0

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations

Using -fprint-equality-relations (page 82) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equality,
the internal equality relation used in GHC’s solver. Generally, users should not need
to worry about the subtleties here; ~ is probably what you want. Without -fprint-
equality-relations (page 82), GHC prints all of these as ~. See also Equality con-
straints (page 410).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo = Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration

When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

82

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
<= (%)
return
let
AbsBinds [] []
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel
Binds: a = "hello"}

in a’

or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics
Causes GHC to group diagnostic messages by severity and output them after other mes-
sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with --make (page 76) and -j[(n)]
(page 78). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=(always|auto|never)
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
*message
-header
*warning
xerror
xfatal

In the caret diagnostics, there is currently no inheritance at all betweenmargin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret
Controls whether GHC displays a line of the original source code where the error was

7.1. Using GHC 83

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 8.10.0.20191123

detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

’test.hs:3:6: parse error on input “where' ‘

becomes:

’test296.hs:3:6-10: parse error on input “where' ‘

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going
Since 8.10.1

Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j[(n)] (page 78)) is in use.

-freverse-errors
Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 155).

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 155).

7.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 203). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 203) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

84 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

SSE?2 is unconditionally used on x86-64 platforms.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 203). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 203) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

-mbmi2
(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 203). The resulting compiled code
will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

7.1.8 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)
When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s package
database does not contain the rts package, or one wants to specify a specific ghcver-
sions.hto be included. This option can be used to specify the path to the ghcversions.h
file to be included. This is primarily intended to be used by GHC’s build system.

Other environment variables

GHC can also be configured using environment variables. Currently the only variable it sup-
ports is GHC_NO_UNICODE, which, when set, disables Unicode output regardless of locale set-
tings. GHC _NO UNICODE can be set to anything +(event an empty string) to trigger this be-
haviour.

7.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. Some options control individual
warnings and others control collections of warnings. To turn off an individual warning -
W<wflag>, use -Wno-<wflag>. To reverse -Werror, which makes all warnings into errors, use
-Wwarn.

By default, you get a standard set of warnings which are generally likely to indicate bugs in
your program. These are:

* -Woverlapping-patterns (page 95)
* -Wwarnings-deprecations (page 89)
* -Wdeprecations (page 89)

* -Wdeprecated-flags (page 90)

* -Wunrecognised-pragmas (page 88)
* -Wduplicate-exports (page 92)

* -Wderiving-defaults (page 91)

* -Woverflowed-literals (page 91)

7.2. Warnings and sanity-checking 85

GHC User’s Guide Documentation, Release 8.10.0.20191123

The following flags are simple ways to select standard “packages” of warnings:

-W

-Wempty-enumerations (page 91)
-Wmissing-fields (page 94)
-Wmissing-methods (page 94)
-Wwrong-do-bind (page 100)
-Wsimplifiable-class-constraints (page 97)
-Wtyped-holes (page 88)
-Wdeferred-type-errors (page 88)
-Wpartial-type-signatures (page 88)
-Wunsupported-calling-conventions (page 90)
-Wdodgy-foreign-imports (page 90)
-Winline-rule-shadowing (page 100)
-Wunsupported-1lvm-version (page 97)
-Wmissed-extra-shared-1ib (page 97)

-Wtabs (page 97)
-Wunrecognised-warning-flags (page 87)
-Winaccessible-code (page 95)
-Wstar-is-type (page 96)

-Wstar-binder (page 96)

-Wspace-after-bang (page 97)

Provides the standard warnings plus

*-Wunused-binds (page 98)
*-Wunused-matches (page 99)
*-Wunused-foralls (page 99)
*-Wunused-imports (page 98)
*-Wincomplete-patterns (page 93)
*-Wdodgy-exports (page 91)
*-Wdodgy-imports (page 91)
*-Wunbanged-strict-patterns (page 100)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings

that are not enabled by -Wall (page 86) are

e-Wincomplete-uni-patterns (page 93)
*-Wincomplete-record-updates (page 93)
e -Wmonomorphism-restriction (page 97)
e-Wimplicit-prelude (page 92)
*-Wmissing-local-signatures (page 95)
*-Wmissing-exported-signatures (page 95)
e-Wmissing-export-lists (page 94)
e-Wmissing-import-lists (page 94)
*-Wmissing-home-modules (page 100)
*-Widentities (page 92)
*-Wredundant-constraints (page 91)
*-Wpartial-fields (page 101)
*-Wmissed-specialisations (page 89)
*-Wall-missed-specialisations (page 89)

-Weverything

Turns on every single warning supported by the compiler.

-Wcompat

86

Chapter 7.

Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

*-Wmissing-monadfail-instances (page 90)
*-Wsemigroup (page 90)
*-Wnoncanonical-monoid-instances (page 90)
*-Wstar-is-type (page 96)

-Wno-compat
Disables all warnings enabled by -Wcompat (page 87).

Turns off all warnings, including the standard ones and those that -Wall (page 86)
doesn’t enable.

These options control which warnings are considered fatal and cause compilation to abort.

-Werror
Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn=<wflag> to stop treating specific warnings as errors.

-Werror=(wflag)
Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn=<wflag>.

-Werror=compat has the same effect as -Werror=... for each warning flag in the -
Wcompat (page 87) option group.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 87) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

-Wwarn=compat has the same effect as -Wwarn=. .. for each warning flag in the -Wcompat
(page 87) option group.
When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.

7.2. Warnings and sanity-checking 87

GHC User’s Guide Documentation, Release 8.10.0.20191123

This warning is on by default.

-Wtyped-holes
Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 436) and Deferring
type errors to runtime (page 449)

This warning is on by default.

-Wdeferred-type-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 449)

This warning is on by default.
-fdefer-type-errors

Implies -fdefer-typed-holes (page 88), -fdefer-out-of-scope-variables
(page 88)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 449)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 436) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as -fdefer-type-errors (page 88) (which implies this option). See Typed Holes

(page 436) and Deferring type errors to runtime (page 449).
Implied by - fdefer-type-errors (page 88). See also -Wtyped-holes (page 88).

-fdefer-out-of-scope-variables
Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a value
that depends on an out-of-scope variable produces a runtime error, the same as - fdefer-
type-errors (page 88) (which implies this option). See Typed Holes (page 436) and
Deferring type errors to runtime (page 449).

Implied by -fdefer-type-errors (page 88). See also -Wdeferred-out-of-scope-
variables (page 88).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 443) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Sig-
natures (page 443).

This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.

This option is on by default.

88 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as IN-
LINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page 87).
This option is off by default.

-Wall-missed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page 87).
This option is off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 479) for
more details on the pragmas.

This option is on by default.

-Wdeprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 479) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 89).

This option is on by default.

-Wnoncanonical-monad-instances
Warn if noncanonical Applicative or Monad instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
*If return is defined it must be canonical (i.e. return = pure).
oIf (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:

return).

(>>)).

*Warn if pure is defined backwards (i.e. pure
eWarn if (*>) is defined backwards (i.e. (*>)

This option is off by default.

-Wnoncanonical-monadfail-instances
Warn if noncanonical Monad or MonadFail instances declarations are detected.

When this warning is enabled, the following conditions are verified:

7.2. Warnings and sanity-checking 89

GHC User’s Guide Documentation, Release 8.10.0.20191123

In Monad instances declarations warn if any of the following conditions does not hold:
*If fail is defined it must be canonical (i.e. fail = Control.Monad.Fail.fail).
Moreover, in MonadFail instance declarations:
eWarn if fail is defined backwards (i.e. fail = Control.Monad.fail).
See also -Wmissing-monadfail-instances (page 90).
This option is off by default.

-Wnoncanonical-monoid-instances
Warn if noncanonical Semigroup or Monoid instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
*If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
*Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page 87) option group.

-Wmissing-monadfail-instances
Warn when a failable pattern is used in a do-block that does not have a MonadFail
instance.

See also -Wnoncanonical-monadfail-instances (page 89).

Being part of the -Wcompat (page 87) option group, this warning is off by default, but
will be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup
Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1.Instances of Monoid should also be instances of Semigroup

2.The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 87) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.

This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

foreign import "“f" f :: FunPtr t

on the grounds that it probably should be

90 Chapter 7. Using GHC

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC User’s Guide Documentation, Release 8.10.0.20191123

foreign import "&f" f :: FunPtr t

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports
Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports
Causes a warning to be emitted in the following cases:

*When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

*When an import statement hides an entity that is not exported.

-Woverflowed-literals
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wderiving-defaults
Since 8.10

Causes a warning when both DeriveAnyClass (page 335) and GeneralizedNewtypeD-
eriving (page 329) are enabled and no explicit deriving strategy is in use. For example,
this would result a warning:

class C a
newtype T a = MkT a deriving C

-Wduplicate-constraints
Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 91).
-Wredundant-constraints
Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:

*A redundant constraint within the type signature itself:

f:: (Eq a, Ord @) => a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.

*A constraint in the type signature is not used in the code it covers:

7.2. Warnings and sanity-checking 91

GHC User’s Guide Documentation, Release 8.10.0.20191123

f :: Ega=>a ->a -> Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, you can suppress it on a per-module basis with -Wno-redundant-
constraints (page 91). Occasionally you may specifically want a function to have a
more constrained signature than necessary, perhaps to leave yourself wiggle-room for
changing the implementation without changing the API. In that case, you can suppress
the warning on a per-function basis, using a call in a dead binding. For example:

f:: EQa=>a->a ->Bool
f xy = True
where
_ =X ==X -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars
Have the compiler warn if a kind variable is not explicitly quantified over. For instance,
the following would produce a warning:

’f :: forall (a :: k). Proxy a

This can be fixed by explicitly quantifying over k:

’f :: forall k (a :: k). Proxy a

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or
this implicit import is disabled (either by NoImplicitPrelude (page 285) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if NoIm-
plicitPrelude (page 285) would change whether it refers to the Prelude. For example,

92 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

no warning is given when 368 means Prelude.fromInteger (368::Prelude.Integer)
(where Prelude refers to the actual Prelude module, regardless of the imports of the
module being compiled).

This warning is off by default.

-Wincomplete-patterns
The option -Wincomplete-patterns (page 93) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 93) is enabled.

gll=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 86).

-Wincomplete-uni-patterns
The flag -Wincomplete-uni-patterns (page 93) is similar to -Wincomplete-patterns
(page 93), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] ->2
Just k= fy

-fmax-pmcheck-models=(n)
Default 100

The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y but vy is
not 4.

This can be exponential in the arity of the pattern and in the number of guards in some
cases. The -fmax-pmcheck-models=(n) (page 93) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 93) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6}

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies
Since 8.8.1

7.2. Warnings and sanity-checking 93

GHC User’s Guide Documentation, Release 8.10.0.20191123

The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When -
Wmissing-deriving-strategies (page 93) is enabled, the compiler will emit a warning
about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the

warning is enabled, but DerivingStrategies (page 337) is not enabled, the compiler

will suggest turning on the DerivingStrategies (page 337) extension. This option is

not on by default, having to be turned on manually or with -Weverything (page 86).
-Wmissing-fields

This option is on by default, and warns you whenever the construction of a labelled field

constructor isn’t complete, missing initialisers for one or more fields. While not an error

(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists
Since 8.4.1

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X = X

The -Wmissing-export-lists (page 94) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-lists (page 94) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z‘s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 480).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 94) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

94 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 95).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 95) option. This option takes precedence over -Wmissing-signatures (page 94).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 95).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 95) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 95) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 95) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callin f = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; _ignore <- that; return (the other) }

-Worphans
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 185) for details.

The flag -Worphans (page 95) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
T[] =
f (:xs)
f

0
_ 1
||2|| 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

7.2. Warnings and sanity-checking 95

GHC User’s Guide Documentation, Release 8.10.0.20191123

-Winaccessible-code

By default, the compiler will warn you if types make a branch inaccessible. This gener-
ally requires GADTs or similar extensions.

Take, for example, the following program

{-# LANGUAGE GADTs #-}

data Foo a where
Fool :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool

step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

The Just Refl case in step?2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type

Since 8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 404)
extension, which in a future release will be turned off by default and then possibly re-
moved. The reasons for this and the deprecation schedule are described in GHC proposal
#30.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

Being part of the -Wcompat (page 87) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wstar-binder

Under StarIsType (page 404), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a + b
type family a * b

While a + bis parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bisparsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

type family (*) a b

96

Chapter 7. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst

GHC User’s Guide Documentation, Release 8.10.0.20191123

This is a rather fragile arrangement, as generally a programmer expects (*) a b to be
equivalenttoa * b. With -Wstar-binder (page 96) we warn when this special treatment
of (*) takes place.

-Wsimplifiable-class-constraints
Since 8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a]l => a -> a

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

’f::Eqa=>a->a ‘

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 97).

-Wspace-after-bang

-Wtabs
Have the compiler warn if there are tabs in your source file.

-Wtype-defaults
Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction
Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.

-Wunsupported-1lvm-version
Warn when using - fllvm (page 210) with an unsupported version of LLVM.

-Wmissed-extra-shared-1lib
Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors
Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

7.2. Warnings and sanity-checking 97

GHC User’s Guide Documentation, Release 8.10.0.20191123

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.
This warning is enabled by default in -Wall (page 86) mode.

-Wunused-binds
Report any function definitions (and local bindings) which are unused. An alias for

*-Wunused-top-binds (page 98)
*-Wunused-local-binds (page 98)
*-Wunused-pattern-binds (page 98)

-Wunused-top-binds
Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
It is exported, or

It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where

f = let (p,q) = rhsl in t p -- No warning: g is unused, but is locally bound

t = rhs3 -- No warning: f is used, and hence so is t

g=nhx -- Warning: g unused

h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding

W = True -- No warning: w starts with an underscore
-Wunused-local-binds

Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: g is unused

g =hx -- No warning: g is unused, but is a top-level,

—binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_,) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= Xx::Int. A banged pattern (see Bang patterns and Strict Haskell (page 468)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form

98 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore,
thus:

f _x = True

Note that -Wunused-matches (page 99) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 99) flag.

-Wunused-do-bind
Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

’do { _ <- mapM popInt xs ; return 10 } ‘

Of course, in this particular situation you can do even better:

’do { mapM_ popInt xs ; return 10 } ‘

-Wunused-type-patterns
Report all unused implicitly bound type variables which arise from patterns in type
family and data family instances. For instance:

’type instance F x y = [] ‘

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

’type instance F x y = [] ‘

When ExplicitForAll (page 416) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

’type instance forall x y. F x y = [] ‘

would still report x and y as unused on the right hand side

Unlike -Wunused-matches (page 99), -Wunused-type-patterns (page 99) is not implied
by -Wall (page 86). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls
Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b ->b)

would report a and ¢ as unused.

7.2. Warnings and sanity-checking 99

GHC User’s Guide Documentation, Release 8.10.0.20191123

-Wunused-record-wildcards
Since 8.10.1

Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl1P{..} =1+ 3

would report that the P{..} match is unused.
-Wredundant-record-wildcards
Since 8.10.1

Report all record wildcards where the wild card match binds no patterns. For instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{x,y,..} =x +y

would report that the P{x,y, ..} match has a redundant use of ...

-Wwrong-do-bind
Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

’do { _ <- return (popInt 10) ; return 10 } ‘

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

’do { popInt 10 ; return 10 } ‘

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 494).

-Wepp-undef
Since 8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 263) for information about unlifted types.

-Wmissing-home-modules
Since 8.2

100 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

When a module provided by the package currently being compiled (i.e. the “home”
package) is imported, but not explicitly listed in command line as a target. Useful for
Cabal to ensure GHC won't pick up modules, not listed neither in exposed-modules, nor
in other-modules.

-Wpartial-fields
Since 8.4

The option -Wpartial-fields (page 101) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 101)
is enabled.

The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

-Wunused-packages
Since 8.10

The option -Wunused-packages (page 101) warns about packages, specified on command
line via -package (pkg) (page 188)or -package-id (unit-id) (page 189), but were not
loaded during compication. Usually it means that you have an unused dependency.

You may want to enable this warning on a clean build or enable -fforce-recomp
(page 175) in order to get reliable results.

If you're feeling really paranoid, the -dcore-1int (page 227) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

7.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off” (begin-
ning with the prefix no-). For instance, while -fspecialise enables specialisation, -fno-
specialise disables it. When multiple flags for the same option appear in the command-line
they are evaluated from left to right. For instance, -fno-specialise -fspecialise will en-
able specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

7.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased

7.3. Optimisation (code improvement) 101

GHC User’s Guide Documentation, Release 8.10.0.20191123

lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ““-O*‘-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c¢ Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-0

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you're unlucky. They are normally turned on or off individually.

-0(n)
Any -On where n > 2 is the same as -O2.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 79), then stand
back in amazement.

7.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying -fno-wombat.

-fcase-merge
Default on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-

ample,
case x of
Red -> el
_ => case x of
Blue -> e2

Green -> e3

Is transformed to,

case x of
Red -> el

102 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Blue -> e2
Green -> e2

-fcase-folding
Default on

Allow constant folding in case expressions that scrutinise some primops: For example,

case X ~minusWord#™ 10## of
10## -> el
20## -> e2
Y -> e3

Is transformed to,

case x of
20## -> el
30## -> e2
-> let v = x “minusWord#"™ 10## in e3

-fcall-arity
Default on
Enable call-arity analysis.
-fexitification
Default on
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fasm-shortcutting
Default off

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at -O2
we run the pass again at the asm stage to catch these.

-fblock-layout-cfg
Default off but enabled with -0 (page 102).

7.3. Optimisation (code improvement) 103

GHC User’s Guide Documentation, Release 8.10.0.20191123

The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to
find hot code paths and place them sequentially leading to better cache utilization and
performance.

This is expected to improve performance on average, but actual performance difference
can vary.

If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights
This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.

If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

-fblock-layout-weightless
Default off

When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.

With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.

When this flag is enabled and - fblock-layout-cfg (page 103) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal
Default on
Turn on CPR analysis in the demand analyser.
-fcse
Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.
-fstg-cse
Default on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off

Make dictionaries strict.

104 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-fdmd-tx-dict-sel
Default on
Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 114) for a dicussion on its use.
-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 583).

-fexpose-all-unfoldings
Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

7.3. Optimisation (code improvement) 105

http://community.haskell.org/~simonmar/papers/multiproc.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 8.10.0.20191123

-ffull-laziness
Default on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full laziness. Although GHC'’s full-laziness op-
timisation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these transfor-
mations are not applied consistently, so don’t rely on them.

-ffun-to-thunk
Default off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 475)).

-fignore-interface-pragmas
Default off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like -fspec-constr (page 109) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case
Default off but enabled with -02 (page 102).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (- fspec-constr (page 109)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)
Default 2000
Set the size threshold for the liberate-case transformation.

-floopification

106 Chapter 7. Using GHC

http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 8.10.0.20191123

Default on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs
Default on

Instructs GHC to use the platform’s native vector registers to pass vector arguments
during function calls. As with all vector support, this requires - fllvm (page 210).

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=(n)
Default 32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.
-fmax-relevant-binds=(n)
Default 6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with -
fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but - fno-max-relevant-binds
includes them too.

-fmax-uncovered-patterns=(n)
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by -
Wincomplete-patterns (page 93) and -Wincomplete-uni-patterns (page 93).

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)
Default 10
If a worker has that many arguments, none will be unpacked anymore.
-fno-opt-coercion
Default coercion optimisation enabled.

Turn off the coercion optimiser.

7.3. Optimisation (code improvement) 107

GHC User’s Guide Documentation, Release 8.10.0.20191123

-fno-pre-inlining
Default pre-inlining enabled
Turn off pre-inlining.
-fno-state-hack
Default state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Default Implied by -00 (page 102), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default yield points enabled

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms
Default off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 108)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (#7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

Note that the graph colouring allocator is a bit experimental and may fail when faced
with code with high register pressure #8657.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 108) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)

108 Chapter 7. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/7679
https://gitlab.haskell.org/ghc/ghc/issues/8657

GHC User’s Guide Documentation, Release 8.10.0.20191123

Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 491)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 583)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr
Default off but enabled by -02 (page 102).
Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last [] = error "last"
last (x : [1) = x
last (x : xs) = last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [1] = error "last"
last (x : xs) = last' x xs
where
last' x [1] = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a => b ->a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl loop SPEC z s
where
foldl loop !sPEC z s = case step s of

7.3. Optimisation (code improvement) 109

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 8.10.0.20191123

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> z

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)
Default 2000
Set the size threshold for the SpecConstr transformation.
-fspecialise
Default on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 110) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 482)) will
be specialised as well.
-fspecialise-aggressively
Default off
By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-

sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 105) if you want to ensure all calls are specialised.

-fcross-module-specialise
Default on

Specialise INLINABLE (INLINABLE pragma (page 482)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-flate-specialise
Default off

110 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-fsolve-constant-dicts
Default on
When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

class M a b wherem :: a -> b
type Ca b = (Num a, M a b)

f :: CIntb=0D>b->1Int->1Int
f X=X +1

The body of f requires a Num Int instance. We could solve this constraint from the
context because we have C Int b and that provides us a solution for Num Int. However,
we can often produce much better code by directly solving for an available Num Int
dictionary we might have at hand. This removes potentially many layers of indirection
and crucially allows other optimisations to fire as the dictionary will be statically known
and selector functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams
Default on

Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-lift-lams-known
Default off

Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-lift-lams-non-rec-args
Default 5

Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86 64.

7.3. Optimisation (code improvement) 111

https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/

GHC User’s Guide Documentation, Release 8.10.0.20191123

-fstg-lift-lams-rec-args
Default 5

Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86_64.

-fstrictness
Default on

Switch on the strictness analyser. The implementation is described in the paper Theory
and Practice of Demand Analysis in Haskell.

The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This
allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=(n)
Run an additional strictness analysis before simplifier phase (n).

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 488)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A = A !Int
data B B !'A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 263)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 488)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 488)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 488)).

112 Chapter 7. Using GHC

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf

GHC User’s Guide Documentation, Release 8.10.0.20191123

Alternatively you can use - funbox-small-strict-fields (page 112) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
1.nothing larger than this will be inlined (unless it has an INLINE pragma)
2.nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The -funfolding-use-threshold=(n) (page 113) is more useful.

-funfolding-dict-discount=(n)
Default 30
How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?
-funfolding-keeness-factor=(n)
Default 1.5
How eager should the compiler be to inline functions?
-funfolding-use-threshold=(n)
Default 60

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and -funfolding-creation-threshold=(n) (page 113) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-fworker-wrapper
Enable the worker-wrapper transformation after a strictness analysis pass. Implied by -0
(page 102), and by - fstrictness (page 112). Disabled by -fno-strictness (page 112).
Enabling - fworker-wrapper (page 113) while strictness analysis is disabled (by -fno-
strictness (page 112)) has no effect.

-fbinary-blob-threshold=(n)
Default 500000

The native code-generator can either dump binary blobs (e.g. string literals) into the
assembly file (by using ”.asciz” or ”.string” assembler directives) or it can dump them
as binary data into a temporary file which is then included by the assembler (using the
”.incbin” assembler directive).

7.3. Optimisation (code improvement) 113

GHC User’s Guide Documentation, Release 8.10.0.20191123

This flag sets the size (in bytes) threshold above which the second approach is used. You
can disable the second approach entirely by setting the threshold to 0.

7.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page 213) option (see Options
affecting linking (page 211). This provides two benefits:

* It enables the -N (x) (page 115) to be used, which allows threads to run in parallelism
on a multi-processor or multi-core machine. See Using SMP parallelism (page 114).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 531).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0O or -C, context switches will occur as often as possible (at every
heap block allocation).

7.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 507) we describe the
language features that affect parallelism.

7.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 213) option (see Options affecting linking (page 211)). Additionally, the following com-
piler options affect parallelism:

114 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly
it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 105) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

We recommend compiling any code that is intended to be run in parallel with the -
feager-blackholing (page 105) flag.

7.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 115)
options.

-N (x)
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 531)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine '. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

Omitting -N(x) entirely means -N1.

With -maxN{x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 155)).

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

7.5. Using SMP parallelism 115

GHC User’s Guide Documentation, Release 8.10.0.20191123

The current value of the -N option is available to the Haskell program via Con-
trol.Concurrent.getNumCapabilities, and it may be changed while the program is
running by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.
When this option is enabled, the OS threads for a capability i are bound to the CPU core
i using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

7.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 161) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 115) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 155)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

7.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
mode/dynamic status (see Dynamic and Mode options (page 75)), and the flag’s opposite (if
available).

7.6.1 Verbosity options

More details in Verbosity options (page 79)

116 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Flag Description Type Reverse
-fabstract-refinement- default: off. Toggles | dynamic| -fno-abstract-
hole-fits (page 442) whether refinements refinement-hole-
where one or more of the fits (page 442)
holes are abstract are
reported.
-fdefer-diagnostics Defer and group diagnos- | dynamic
(page 83) tic messages by severity
-fdiagnostics- Use colors in error mes- | dynamic
color=(always|auto|never) sages
(page 83)
-fdiagnostics-show- Whether to show snippets | dynamic| - fno-diagnostics-
caret (page 83) of original source code show-caret (page 83)
-ferror-spans (page 84) Output full span in error | dynamic
messages
-fhide-source-paths hide module source and | dynamic
(page 80) object paths
-fkeep-going (page 84) Continue compilation as | dynamic
far as possible on errors
-fmax-refinement-hole- default: 6. Set the max- | dynamic| - fno-max-
fits=(n) (page 443) imum number of refine- refinement-hole-
ment hole fits for typed fits (page 443)
holes to display in type er-
ror messages.
-fmax-relevant- default: 6. Set the max- | dynamic| -fno-max-relevant-
binds=(n) (page 107) imum number of bindings binds (page 107)
to display in type error
messages.
-fmax-valid-hole- default: 6. Set the maxi- | dynamic| -fno-max-valid-
fits=(n) (page 440) mum number of valid hole hole-fits (page 440)
fits for typed holes to dis-
play in type error mes-
sages.
-fno-show-valid-hole- Disables showing a list of | dynamic
fits (page 440) valid hole fits for typed
holes in type error mes-
sages.
-fno-sort-valid-hole- Disables the sorting of the | dynamic| -fsort-valid-hole-
fits (page 443) list of valid hole fits for fits (page 443)
typed holes in type error
messages.
-fprint-axiom-incomps Display equation incom- | dynamic| -fno-print-axiom-
(page 81) patibilities in closed type incomps (page 81)
families
-fprint-equality- Distinguish between | dynamic| -fno-print-

relations (page 82)

equality relations when
printing

equality-relations
(page 82)

Continued on next page

7.6. Flag reference

117

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.1 - continued from previous page

Flag Description Type Reverse
-fprint-expanded- In type errors, also print | dynamic| -fno-print-
synonyms (page 82) type-synonym-expanded expanded-synonyms
types. (page 82)
-fprint-explicit- Print coercions in types dynamic| -fno-print-
coercions (page 81) explicit-coercions
(page 81)
-fprint-explicit- Print explicit forall | dynamic| -fno-print-
foralls (page 80) quantification in types. explicit-foralls
See also ExplicitForAll (page 80)
(page 416)
-fprint-explicit-kinds Print explicit kind foralls | dynamic| -fno-print-
(page 81) and kind arguments in explicit-kinds
types. See also KindSig- (page 81)
natures (page 420)
-fprint-explicit- Print RuntimeRep vari- | dynamic| -fno-print-
runtime-reps (page 407) ables in types which are explicit-runtime-
runtime-representation reps (page 407)
polymorphic.
-fprint-potential- display all available in- | dynamic| -fno-print-
instances (page 80) stances in type error mes- potential-
sages instances (page 80)
-fprint-typechecker- Print extra information | dynamic| -fno-print-
elaboration (page 82) from typechecker. typechecker-
elaboration
(page 82)
-fprint-unicode-syntax Use unicode syntax when | dynamic| -fno-print-
(page 80) printing expressions, unicode-syntax
types and kinds. See (page 80)
also UnicodeSyntax
(page 268)
-frefinement-level- default: off. Sets the level | dynamic| -fno-refinement-
hole-fits=(n) (page 442) of refinement of the refine- level-hole-fits
ment hole fits, where level (page 442)
n means that hole fits of up
to n holes will be consid-
ered.
-freverse-errors Output errors in reverse | dynamic| -fno-reverse-
(page 84) order errors (page 84)
-fshow-docs-of-hole- Toggles whether to show | dynamic| -fno-show-docs-of-
fits (page 441) the documentation of the hole-fits (page 441)
valid hole fits in the out-
put.
-fshow-hole-constraints | Show constraints when re- | dynamic

(page 440)

porting typed holes.

Continued on next page

118

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.1 - continued from previous page

Flag Description Type Reverse
-fshow-hole-matches-of- | Toggles whether to show | dynamic| -fno-show-hole-
hole-fits (page 443) the type of the additional matches-of-hole-
holes in refinement hole fits (page 443)
fits.
-fshow-provenance-of- Toggles whether to show | dynamic| -fno-show-
hole-fits (page 441) the provenance of the provenance-of-
valid hole fits in the hole-fits (page 441)
output.
-fshow-type-app-of- Toggles whether to show | dynamic| -fno-show-type-
hole-fits (page 440) the type application of the app-of-hole-fits
valid hole fits in the out- (page 440)
put.
-fshow-type-app-vars- Toggles whether to show | dynamic| -fno-show-type-
of-hole-fits (page 441) what type each quantified app-vars-of-hole-
variable takes in a valid fits (page 441)
hole fit.
-fshow-type-of-hole- Toggles whether to show | dynamic| -fno-type-of-hole-
fits (page 440) the type of the valid hole fits (page 440)
fits in the output.
-funclutter-valid-hole- | Unclutter the list of valid | dynamic
fits (page 441) hole fits by not showing
provenance nor type appli-
cations of suggestions.
-Rghc-timing (page 84) Summarise timing stats | dynamic
for GHC (same as +RTS -
tstderr).
-v (page 79) verbose mode (equivalent | dynamic
to -v3)
-v({n) (page 80) set verbosity level dynamic
7.6.2 Alternative modes of operation
More details in Modes of operation (page 76)
Flag Description Type Reverse
--frontend (module) run GHC with the given | mode
(page 76) frontend plugin; see Fron-
tend plugins (page 554)
for details.
--help (page 76), -7 | Display help mode
(page 76)
--info (page 77) display information about | mode
the compiler
--interactive (page 76) | Interactive mode - nor- | mode
mally used by just run-
ning ghci; see Using GHCi
(page 23) for details.

Continued on next page

7.6. Flag reference 119

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.2 - continued from previous page

Flag Description Type Reverse
- -make (page 76) Build a multi-module | mode
Haskell program, auto-
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc -make
(page 77) for details.
--mk-dll (page 76) DLL-creation mode (Win- | mode
dows only)
--numeric-version display GHC version (nu- | mode
(page 77) meric only)
--print-libdir display GHC library direc- | mode
(page 77) tory
--show-iface (file) display the contents of an | mode
(page 76) interface file.
--show-options display the supported | mode
(page 77) command line options
--supported- display the supported lan- | mode
extensions (page 77), | guage extensions
- -supported-languages
(page 77)
--version (page 77), -V | display GHC version mode
(page 77)
-e (expr) (page 76) Evaluate expr; see Ex- | mode
pression evaluation mode
(page 78) for details.
-M (page 76) generate dependency | mode
information suitable for
use in a Makefile; see
Dependency generation
(page 184) for details.
7.6.3 Which phases to run
More details in Batch compiler mode (page 78)
Flag Description Type Reverse
-C (page 76) Stop after generating C | mode
(.hc file)
-C (page 76) Stop after generating ob- | mode
ject (.o0) file
-E (page 76) Stop after preprocessing | mode
(.hspp file)
-F (page 209) Enable the use of a pre- | dynamic

processor
(set with
(page 205))

(page 209)
-pgmF (cmd)

Continued on next page

120

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.3 - continued from previous page

Flag Description Type Reverse
-S (page 76) Stop after generating as- | mode
sembly (. s file)
-x (suffix) (page 79) Override default be- | dynamic
haviour for source files
7.6.4 Redirecting output
More details in Redirecting the compilation output(s) (page 171)
Flag Description Type Reverse
- -exclude- Regard (file) as “sta- | dynamic
module=(file) ble”; i.e., exclude it from
(page 185) having dependencies on it.
-ddump-mod-cycles Dump module cycles dynamic
(page 185)
-dep-makefile (file) Use (file) as the makefile dynamic
(page 185)
-dep-suffix (suffix) Make dependencies that | dynamic
(page 185) declare that files with suf-
fix .(suf)(osuf) depend
on interface files with suf-
fix . (suf)hi
-dumpdir (dir) redirect dump files dynamic
(page 172)
-hcsuf (suffix) set the suffix to use for in- | dynamic
(page 172) termediate C files
-hidir (dir) (page 172) | set directory for interface | dynamic
files
-hiedir (dir) set directory for extended | dynamic
(page 172) interface files
-hiesuf (suffix) set the suffix to use for ex- | dynamic
(page 172) tended interface files
-hisuf (suffix) set the suffix to use for in- | dynamic
(page 172) terface files
-include-cpp-deps Include preprocessor de- | dynamic
(page 185) pendencies
-include-pkg-deps Regard modules imported | dynamic
(page 185) from packages as unstable
-0 (file) (page 171) set output filename dynamic
-odir (dir) (page 171) | set directory for object | dynamic
files
-ohi (file) (page 171) | set the filename in which | dynamic
to put the interface
-osuf (suffix) set the output file suffix dynamic
(page 172)
-outputdir (dir) set output directory dynamic
(page 172)

Continued on next page

7.6. Flag reference

121

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.4 - continued from previous page

Flag Description Type Reverse
-stubdir (dir) redirect FFI stub files dynamic
(page 172)
7.6.5 Keeping intermediate files
More details in Keeping Intermediate Files (page 173)
Flag Description Type Reverse
-keep-hc-file Retain intermediate .hc | dynamic
(page 173), -keep- | files.
hc-files (page 173)
-keep-hi-files Retain intermediate .hi | dynamic| -no-keep-hi-files
(page 173) files (the default). (page 173)
-keep-hscpp-file Retain intermediate | dynamic
(page 173), -keep- | .hscpp files.
hscpp-files (page 173)
-keep-1llvm-file Retain intermediate LLVM | dynamic
(page 173), -keep- | .11 files. Implies -fllvm
1lvm-files (page 173) (page 210).
-keep-o-files Retain intermediate .0 | dynamic| -no-keep-o-files
(page 173) files (the default). (page 173)
-keep-s-file Retain intermediate .s | dynamic
(page 173), -keep-s- | files.
files (page 173)
-keep-tmp-files Retain all intermediate | dynamic
(page 173) temporary files.
7.6.6 Temporary files
More details in Redirecting temporary files (page 173)
Flag Description Type Reverse
-tmpdir (dir) set the directory for tem- | dynamic
(page 173) porary files
7.6.7 Finding imports
More details in The search path (page 170)
Flag Description Type Reverse
-1 (page 170) Empty the import direc- | dynamic
tory list
-i{dir)[:{(dir)]* add (dir), (dir2), etc. toim- | dynamic
(page 170) port path
122 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.6.8 Interface file options

More details in Other options related to interface files (page 174)

Flag Description Type Reverse
--show-iface (file) See Modes of operation | mode
(page 76) (page 76).
-ddump-hi (page 174) Dump the new interface to | dynamic
stdout
-ddump-hi-diffs Show the differences vs. | dynamic
(page 174) the old interface
-ddump-minimal- Dump a minimal set of im- | dynamic
imports (page 174) ports
7.6.9 Recompilation checking
More details in The recompilation checker (page 175)
Flag Description Type Reverse
-fforce-recomp Turn off recompilation | dynamic| -fno-force-recomp
(page 175) checking. This is implied (page 175)
by any -ddump-X option
when compiling a single
file (i.e. when using -c
(page 76)).
-fignore-hpc-changes Do not recompile modules | dynamic| -fno-ignore-hpc-
(page 175) just to match changes to changes (page 175)
HPC flags. This is espe-
cially useful for avoiding
recompilation when using
GHCi, and is enabled by
default for GHCi.
-fignore-optim- Do not recompile modules | dynamic| -fno-ignore-optim-
changes (page 175) just to match changes to changes (page 175)
optimisation flags. This is
especially useful for avoid-
ing recompilation when
using GHCi, and is en-
abled by default for GHCi.
7.6.10 Interactive-mode options
More details in The .ghci and .haskeline files (page 65)
Flag Description Type Reverse
-fbreak-on-error Break on uncaught excep- | dynamic| -fno-break-on-error
(page 48) tions and errors (page 47) (page 48)

Continued on next page

7.6. Flag reference

123

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.10 - continued from previous page

Flag Description Type Reverse
-fbreak-on-exception Break on any exception | dynamic| -fno-break-on-
(page 48) thrown (page 47) exception (page 48)
-fghci-hist-size=(n) Set the number of entries | dynamic
(page 47) GHCi keeps for :history.
See The GHCi Debugger
(page 40).
-fghci-leak-check (Debugging only) check | dynamic| -fno-ghci-leak-check
(page 50) for space leaks when load- (page 50)
ing new modules in GHCi.
-flocal-ghci-history Use current directory for | dynamic| -fno-local-ghci-
(page 50) the GHCi command his- history (page 50)
tory file .ghci-history.
-fno-1it (page 36) No longer set the special | dynamic| -fno-no-it (page 36)
variable it.
-fprint-bind-result Turn on printing of | dynamic| -fno-print-bind-
(page 28) binding results in GHCi result (page 28)
(page 28)
-fprint-evld-with- Instruct :print (page 58) | dynamic
show (page 42) to use Show instances
where possible.
-fshow-loaded-modules | Show the names of mod- | dynamic
(page 24) ules that GHCi loaded af-
ter a : load (page 56) com-
mand.
-ghci-script (page 65) | Read additional .ghci | dynamic
files
-ignore-dot-ghci Disable reading of .ghci | dynamic
(page 65) files
-interactive-print Select the function to | dynamic
(name) (page 38) use for printing evalu-
ated expressions in GHCi
(page 38)
7.6.11 Packages
More details in Packages (page 187)
Flag Description Type Reverse
-clear-package-db Clear the package db | dynamic
(page 192) stack.
-distrust (pkg) Expose package (pkg) and | dynamic
(page 517) set it to be distrusted. See
Safe Haskell (page 509).
-distrust-all- Distrust all packages by | dynamic

packages (page 517)

default. See Safe Haskell
(page 509).

Continued on next page

124

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.11 - continued from previous page

Flag Description Type Reverse
-fpackage-trust Enable Safe Haskell | dynamic
(page 519) (page 509) trusted pack-
age requirement for
trustworthy modules.
-global-package-db Add the global package db | dynamic
(page 192) to the stack.
-hide-all-packages Hide all packages by de- | dynamic
(page 189) fault
-hide-package (pkg) Hide package (pkg) dynamic
(page 189)
-ignore-package (pkg) | Ignore package (pkg) dynamic
(page 189)
-no-auto-link- Don’t automatically link in | dynamic
packages (page 190) the base and rts packages.
-no-global-package-db | Remove the global pack- | dynamic
(page 192) age db from the stack.
-no-user-package-db Remove the user’s pack- | dynamic
(page 192) age db from the stack.
-package (pkg) Expose package (pkg) dynamic
(page 188)
-package-db (file) Add (file) to the package | dynamic
(page 192) db stack.
-package-env Use the specified package | dynamic
(file) | (name) environment.
(page 194)
-package-id (unit-id) | Expose package by id | dynamic
(page 189) (unit-id)
-this-unit-id (unit- Compile to be part of unit | dynamic
id) (page 190) (i.e. package) (unit-id)
-trust (pkg) (page 517) | Expose package (pkg) and | dynamic
set it to be trusted. See
Safe Haskell (page 509).
-user-package-db Add the user’s package db | dynamic

(page 192)

to the stack.

7.6.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-# LAN-

GUAGE blah #-} pragma in the file itself. See Language options (page 259).

7.6.13 Warnings

More details in Warnings and sanity-checking (page 85)

7.6. Flag reference

125

GHC User’s Guide Documentation, Release 8.10.0.20191123

Flag

Description

Type

Reverse

-fdefer-out-of-scope-
variables (page 88)

Convert variable out
of scope variables er-
rors into warnings.
Implied by -fdefer-
type-errors (page 88).
See also -Wdeferred-
out-of-scope-variables
(page 88).

dynamic

-fno-defer-out-
of-scope-variables
(page 88)

-fdefer-type-errors
(page 88)

Turn type errors into
warnings, deferring
the error until runtime
(page 449). Implies -
fdefer-typed-holes
(page 88) and -fdefer-
out-of-scope-variables
(page 88). See also -
Wdeferred-type-errors
(page 88)

dynamic

-fno-defer-type-
errors (page 88)

-fdefer-typed-holes
(page 88)

Convert typed hole
(page 436) errors into
warnings, deferring
the error until runtime
(page 449). Implied by
-fdefer-type-errors

(page 88). See also
-Wtyped-holes (page 88).

dynamic

-fno-defer-typed-
holes (page 88)

-fhelpful-errors
(page 88)

Make suggestions for mis-
spelled names.

dynamic

-fno-helpful-errors
(page 88)

- fmax-pmcheck-
models=(n) (page 93)

soft limit on the number
of parallel models the pat-
tern match checker should
check a pattern match
clause against

dynamic

-fshow-warning-groups
(page 87)

show which group an emit-
ted warning belongs to.

dynamic

-fno-show-warning-
groups (page 87)

-fvia-C (page 204)

use the C code generator

dynamic

-W (page 86)

enable normal warnings

dynamic

-w (page 87)

-w (page 87)

disable all warnings

dynamic

-Wall (page 86)

enable almost all warnings
(details in Warnings and
sanity-checking (page 85))

dynamic

-w (page 87)

-Wall-missed-

warn when specialisation

dynamic

-Wno-all-missed-

specialisations of any overloaded function specialisations
(page 89) fails. (page 89)
Continued on next page
126 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wcompat (page 87) enable future compati- | dynamic| -Wno-compat (page 87)

bility warnings (details

in Warnings and sanity-

checking (page 85))
-Wcpp-undef (page 100) | warn on uses of the #if di- | dynamic

rective on undefined iden-

tifiers
-Wdeferred-out- Report warnings when | dynamic| -Wno-deferred-out-
of-scope-variables variable out-of-scope er- of-scope-variables
(page 88) rors are deferred until (page 88)

runtime (page 449). See

-fdefer-out-of-scope-

variables (page 88).
-Wdeferred-type- Report warnings when | dynamic| -Wno-deferred-type-
errors (page 88) deferred type errors errors (page 88)

(page 449) are enabled.

This option is enabled by

default. See -fdefer-

type-errors (page 88).
-Wdeprecated-flags warn about uses of com- | dynamic| -Wno-deprecated-
(page 90) mandline flags that are flags (page 90)

deprecated
-Wdeprecations warn about uses of func- | dynamic| -Wno-deprecations
(page 89) tions & types that have (page 89)

warnings or deprecated

pragmas. Alias for -

Wwarnings-deprecations

(page 89)
-Wderiving-defaults warn about default deriv- | dynamic| -Wno-deriving-
(page 91) ing when using both De- defaults (page 91)

riveAnyClass (page 335)

and GeneralizedNew-

typeDeriving (page 329)
-Wdodgy-exports warn about dodgy exports | dynamic| -Wno-dodgy-exports
(page 91) (page 91)
-Wdodgy-foreign- warn about dodgy foreign | dynamic| -Wno-dodgy-foreign-
imports (page 90) imports import (page 90)
-Wdodgy-imports warn about dodgy imports | dynamic| -Wno-dodgy-imports
(page 91) (page 91)
-Wduplicate- warn when a constraint | dynamic| -Wno-duplicate-
constraints (page 91) appears duplicated in a constraints (page 91)

type signature
-Wduplicate-exports warn when an entity is ex- | dynamic| -Wno-duplicate-

(page 92)

ported multiple times

exports (page 92)

Continued on next page

7.6. Flag reference

127

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wempty-enumerations warn about enumerations | dynamic| -Wno-empty-
(page 91) that are empty enumerations (page 91)
-Werror (page 87) make warnings fatal dynamic| -Wwarn (page 87)
-Weverything (page 86) | enable all warnings sup- | dynamic
ported by GHC
-Whi-shadowing (deprecated) warn when a | dynamic| -Wno-hi-shadowing
(page 92) .hi file in the current di- (page 92)
rectory shadows a library
-Widentities (page 92) warn about uses of Pre- | dynamic| -Wno-identities
lude numeric conversions (page 92)
that are probably the iden-
tity (and hence could be
omitted)
-Wimplicit-kind-vars warn when kind variables | dynamic| -Wno-implicit-kind-
(page 92) are implicitly quantified vars (page 92)
over.
-Wimplicit-prelude warn when the Prelude is | dynamic| -Wno-implicit-
(page 92) implicitly imported prelude (page 92)
-Winaccessible-code warn about inaccessible | dynamic| -Wno-inaccessible-
(page 95) code code (page 95)
-Wincomplete-patterns | warn when a pattern | dynamic| -Wno-incomplete-
(page 93) match could fail patterns (page 93)
-Wincomplete-record- warn when a record up- | dynamic| -Wno-incomplete-
updates (page 93) date could fail record-updates
(page 93)
-Wincomplete-uni- warn when a pattern | dynamic| -Wno-incomplete-uni-
patterns (page 93) match in a lambda expres- patterns (page 93)
sion or pattern binding
could fail
-Winline-rule- Warn if a rewrite RULE | dynamic| -Wno-inline-rule-
shadowing (page 100) might fail to fire because shadowing (page 100)
the function might be in-
lined before the rule has
a chance to fire. See
How rules interact with
INLINE/NOINLINE prag-
mas (page 494).
-Wmissed-extra- Warn when GHCi can’t | dynamic| -Wno-missed-extra-
shared-1ib (page 97) load a shared lib. shared-1ib (page 97)
-Wmissed- warn when specialisation | dynamic| -Wno-missed-
specialisations of an imported, over- specialisations
(page 89) loaded function fails. (page 89)
Continued on next page
128 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wmissing-deriving- warn when a deriving | dynamic| -Wno-missing-
strategies (page 93) clause is missing a deriv- deriving-strategies
ing strategy (page 93)
-Wmissing-export- warn when a module dec- | dynamic| -fnowarn-missing-
lists (page 94) laration does not explicitly export-lists (page 94)
list all exports
-Wmissing-exported- warn about top-level func- | dynamic| -Wno-missing-
signatures (page 95) tions without signatures, exported-signatures
only if they are exported. (page 95)
takes precedence over -
Wmissing-signatures
-Wmissing-exported- (deprecated) warn about | dynamic| -Wno-missing-
sigs (page 95) top-level functions with- exported-sigs
out signatures, only (page 95)
if they are exported.
takes precedence over
-Wmissing-signatures
-Wmissing-fields warn when fields of a | dynamic| -Wno-missing-fields
(page 94) record are uninitialised (page 94)
-Wmissing-home- warn when encountering | dynamic| -Wno-missing-home-
modules (page 100) a home module imported, modules (page 100)
but not listed on the
command line. Useful
for cabal to ensure GHC
won’'t pick up modules,
not listed neither in ex-
posed-modules, nor in
other-modules.
-Wmissing-import- warn when an import dec- | dynamic| -fnowarn-missing-
lists (page 94) laration does not explicitly import-lists (page 94)
list all the names brought
into scope
-Wmissing-local- warn about polymorphic | dynamic| -Wno-missing-local-
signatures (page 95) local bindings without sig- signatures (page 95)
natures
-Wmissing-local-sigs (deprecated) warn about | dynamic| -Wno-missing-local-
(page 95) polymorphic local bind- sigs (page 95)
ings without signatures
-Wmissing-methods warn when class methods | dynamic| -Wno-missing-methods
(page 94) are undefined (page 94)
-Wmissing-monadfail- Warn when a failable pat- | dynamic| -Wno-missing-

instances (page 90)

tern is used in a do-block
that does not have a Mon-
adFail instance.

monadfail-instances
(page 90)

Continued on next page

7.6. Flag reference

129

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wmissing-pattern- warn when pattern syn- | dynamic| -Wno-missing-
synonym-signatures onyms do not have type pattern-synonym-
(page 95) signatures signatures (page 95)
-Wmissing-signatures warn about top-level func- | dynamic| -Wno-missing-
(page 94) tions without signatures signatures (page 94)
-Wmonomorphism- warn when the Monomor- | dynamic| -Wno-monomorphism-
restriction (page 97) phism Restriction is ap- restriction (page 97)

plied
-Wname-shadowing warn when names are | dynamic| -Wno-name-shadowing
(page 95) shadowed (page 95)
-Wno-compat (page 87) Disables all warnings | dynamic| -Wcompat (page 87)

enabled by -Wcompat

(page 87).
-Wnoncanonical-monad- | warn when Applicative | dynamic| -Wno-noncanonical-
instances (page 89) or Monad instances have monad-instances

noncanonical definitions (page 89)

of return, pure, (>>), or

(*>). See flag description

in Warnings and sanity-

checking (page 85) for

more details.
-Wnoncanonical- warn when Monad or Mon- | dynamic| -Wno-noncanonical-
monadfail-instances adFail instances have monadfail-instances
(page 89) noncanonical definitions (page 89)

of fail. See flag de-

scription in Warnings and

sanity-checking (page 85)

for more details.
-Wnoncanonical- warn when Semigroup or | dynamic| -Wno-noncanonical-
monoid-instances Monoid instances have monoid-instances
(page 90) noncanonical definitions (page 90)

of (<>) or mappend. See

flag description in Warn-

ings and sanity-checking

(page 85) for more details.
-Worphans (page 95) warn when the module | dynamic| -Wno-orphans (page 95)

contains orphan instance

declarations or rewrite

rules (page 185)
-Woverflowed-literals | warn about literals that | dynamic| -Wno-overflowed-
(page 91) will overflow their type literals (page 91)
-Woverlapping- warn about overlapping | dynamic| -Wno-overlapping-

patterns (page 95)

patterns

patterns (page 95)

Continued on next page

130

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wpartial-fields warn when defining a par- | dynamic| -Wno-partial-fields
(page 101) tial record field. (page 101)
-Wpartial-type- warn about holes in par- | dynamic| -Wno-partial-type-
signatures (page 88) tial type signatures when signatures (page 88)
PartialTypeSignatures
(page 443) is enabled.
Not applicable when
PartialTypeSignatures
(page 443) is not enabled,
in which case errors are
generated for such holes.
-Wredundant- Have the compiler warn | dynamic| -Wno-redundant-
constraints (page 91) about redundant con- constraints (page 91)
straints in type signa-
tures.
-Wredundant-record- Warn about record wild- | dynamic| -Wno-redundant-
wildcards (page 100) card matches when the record-wildcards
wildcard binds no pat- (page 100)
terns.
-Wsafe (page 519) warn if the module being | dynamic| -Wno-safe (page 519)
compiled is regarded to be
safe.
-Wsemigroup (page 90) warn when a Monoid is not | dynamic| -Wno-semigroup
Semigroup, and on non- (page 90)
Semigroup definitions of
(<>)7?
-Wsimplifiable-class- | Warn about class con- | dynamic| -Wno-simplifiable-
constraints (page 97) straints in a type signa- class-constraints
ture that can be simplified (page 97)
using a top-level instance
declaration.
-Wspace-after-bang warn for missing space be- | dynamic| -Wno-missing-space-
(page 97) fore the second argument after-bang (page 97)
of an infix definition of
(') when BangPatterns
(page 468) are not enabled
-Wstar-binder (page 96) | warn about binding the | dynamic| -Wno-star-binder
(*) type operator despite (page 96)
StarIsType (page 404)
-Wstar-is-type warn when * is used to | dynamic| -Wno-star-is-type
(page 96) mean Data.Kind.Type (page 96)
-Wtabs (page 97) warn if there are tabs in | dynamic| -Wno-tabs (page 97)

the source file

Continued on next page

7.6. Flag reference

131

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

Flag Description Type Reverse
-Wtrustworthy-safe warn if the module being | dynamic| -Wno-safe (page 519)
(page 519) compiled is marked as
Trustworthy (page 518)
but it could instead
be marked as Safe
(page 518), a more in-
formative bound.
-Wtype-defaults warn when defaulting hap- | dynamic| -Wno-type-defaults
(page 97) pens (page 97)
-Wtyped-holes (page 88) | Report warnings when | dynamic| -Wno-typed-holes
typed hole (page 436) (page 88)
errors are deferred until
runtime (page 449). See
-fdefer-typed-holes
(page 88).
-Wunbanged-strict- warn on pattern bind of | dynamic| -Wno-unbanged-
patterns (page 100) unlifted variable that is strict-patterns
neither bare nor banged (page 100)
-Wunrecognised- warn about uses of prag- | dynamic| -Wno-unrecognised-
pragmas (page 88) mas that GHC doesn’t pragmas (page 88)
recognise
-Wunrecognised- throw a warning when | dynamic| -Wno-unrecognised-
warning-flags (page 87) | an unrecognised -W... warning-flags
flag is encountered on the (page 87)
command line.
-Wunsafe (page 519) warn if the module being | dynamic| -Wno-unsafe (page 519)
compiled is regarded to be
unsafe. See Safe Haskell
(page 509)
-Wunsupported- warn about use of an un- | dynamic| -Wno-unsupported-
calling-conventions supported calling conven- calling-conventions
(page 90) tion (page 90)
-Wunsupported-1lvm- Warn when using -fllvm | dynamic| -Wno-monomorphism-
version (page 97) (page 210) with an unsup- restriction (page 97)
ported version of LLVM.
-Wunticked-promoted- warn if promoted con- | dynamic| -Wno-unticked-
constructors (page 97) structors are not ticked promoted-
constructors (page 97)
-Wunused-binds warn about bindings | dynamic| -Wno-unused-binds
(page 98) that are unused. Alias (page 98)
for -Wunused-top-binds
(page 98), -Wunused-
local-binds (page 98)
and -Wunused-pattern-
binds (page 98)
Continued on next page
132 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.12 - continued from previous page

(page 100)

that appear to throw away
monadic values that you
should have bound instead

Flag Description Type Reverse
-Wunused-do-bind warn about do bindings | dynamic| -Wno-unused-do-bind
(page 99) that appear to throw away (page 99)

values of types other than

()
-Wunused-foralls warn about type variables | dynamic| -Wno-unused-foralls
(page 99) in user-written forall\s (page 99)

that are unused
-Wunused-imports warn about unnecessary | dynamic| -Wno-unused-imports
(page 98) imports (page 98)
-Wunused-local-binds warn about local bindings | dynamic| -Wno-unused-local-
(page 98) that are unused binds (page 98)
-Wunused-matches warn about variables in | dynamic| -Wno-unused-matches
(page 99) patterns that aren’t used (page 99)
-Wunused-packages warn when package is re- | dynamic| -Wno-unused-packages
(page 101) quested on command line, (page 101)

but was never loaded.
-Wunused-pattern- warn about pattern match | dynamic| -Wno-unused-pattern-
binds (page 98) bindings that are unused binds (page 98)
-Wunused-record- Warn about record wild- | dynamic| -Wno-unused-record-
wildcards (page 99) card matches when none wildcards (page 99)

of the bound variables are

used.
-Wunused-top-binds warn about top-level bind- | dynamic| -Wno-unused-top-
(page 98) ings that are unused binds (page 98)
-Wunused-type- warn about unused type | dynamic| -Wno-unused-type-
patterns (page 99) variables which arise from patterns (page 99)

patterns in in type family

and data family instances
-Wwarn (page 87) make warnings non-fatal dynamic| -Werror (page 87)
-Wwarnings- warn about uses of func- | dynamic| -Wno-warnings-
deprecations (page 89) | tions & types that have deprecations (page 89)

warnings or deprecated

pragmas
-Wwrong-do-bind warn about do bindings | dynamic| -Wno-wrong-do-bind

(page 100)

7.6.14 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 101).

See Individual optimisations (page 134) for a list of optimisations enabled on level 1 and level

2.

7.6. Flag reference

133

GHC User’s Guide Documentation, Release 8.10.0.20191123

Flag Description Type Reverse

-0 (page 102), -01 | Enable level 1 optimisa- | dynamic| -00 (page 102)

(page 102) tions

-00 (page 102) Disable optimisations (de- | dynamic
fault)

-02 (page 102) Enable level 2 optimisa- | dynamic| -00 (page 102)
tions

-0(n) (page 102) Any -On where n > 2 is the | dynamic| -00 (page 102)

same as -02.

7.6.15 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 102). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

plied by -0 (page 102).

Flag Description Type Reverse
-fasm-shortcutting Enable shortcutting on as- | dynamic| -fno-asm-
(page 103) sembly. Implied by -02 shortcutting
(page 102). (page 103)
-fbinary-blob- default: 500K. Tweak as- | dynamic
threshold=(n) sembly generator for bi-
(page 113) nary blobs.
-fblock-layout-cfg Use the new cfg based | dynamic| -fno-block-layout-
(page 103) block layout algorithm. cfg (page 103)
-fblock-layout- Ignore cfg weights for | dynamic| -fno-block-layout-
weightless (page 104) code layout. weightless (page 104)
-fblock-layout- Sets edge weights used by | dynamic
weights (page 104) the new code layout algo-
rithm.
-fcall-arity (page 103) | Enable call-arity optimi- | dynamic| -fno-call-arity
sation. Implied by -0 (page 103)
(page 102).
-fcase-folding Enable constant folding in | dynamic| -fno-case-folding
(page 103) case expressions. Implied (page 103)
by -0 (page 102).
-fcase-merge (page 102) | Enable case-merging. Im- | dynamic| -fno-case-merge
plied by -0 (page 102). (page 102)
-fcmm-elim- common- Enable Cmm common | dynamic| -fno-cmm-elim-
blocks (page 103) block elimination. Implied common-blocks
by -0 (page 102). (page 103)
-fcmm-sink (page 103) Enable Cmm sinking. Im- | dynamic| -fno-cmm-sink

(page 103)

Continued on next page

134

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.14 - continued from previous page

Flag Description Type Reverse
-fcpr-anal (page 104) Turn on CPR analysis in | dynamic| -fno-cpr-anal
the demand analyser. Im- (page 104)
plied by -0 (page 102).
-fcross-module- Turn on specialisation of | dynamic| -fno-cross-module-
specialise (page 110) overloaded functions im- specialise (page 110)
ported from other mod-
ules.
-fcse (page 104) Enable common sub- | dynamic| -fno-cse (page 104)
expression elimination.
Implied by -0 (page 102).
-fdicts-cheap Make dictionary-valued | dynamic| -fno-dicts-cheap
(page 104) expressions seem cheap (page 104)
to the optimiser.
-fdicts-strict Make dictionaries strict dynamic| -fno-dicts-strict
(page 104) (page 104)
-fdmd-tx-dict-sel Use a special demand | dynamic| -fno-dmd-tx-dict-sel
(page 104) transformer for dictionary (page 104)
selectors. Always enabled
by default.
-fdo-eta-reduction Enable eta-reduction. Im- | dynamic| -fno-do-eta-
(page 105) plied by -0 (page 102). reduction (page 105)
-fdo-lambda-eta- Enable lambda eta- | dynamic| -fno-do-lambda-eta-
expansion (page 105) expansion. Always en- expansion (page 105)
abled by default.
-feager-blackholing Turn on eager blackholing | dynamic
(page 105) (page 114)
-fenable-rewrite- Switch on all rewrite rules | dynamic| -fno-enable-rewrite-
rules (page 491) (including rules generated rules (page 491)
by automatic specialisa-
tion of overloaded func-
tions). Implied by -0
(page 102).
-fexcess-precision Enable excess intermedi- | dynamic| -fno-excess-
(page 105) ate precision precision (page 105)
-fexitification Enables exitification opti- | dynamic| -fno-exitification
(page 103) misation. Implied by -0 (page 103)
(page 102).
-fexpose-all- Expose all unfoldings, | dynamic| -fno-expose-all-
unfoldings (page 105) even for very large or unfoldings (page 105)
recursive functions.
-ffloat-in (page 105) Turn on the float-in trans- | dynamic| -fno-float-in
formation. Implied by -0 (page 105)
(page 102).
-ffull-laziness Turn on full laziness (float- | dynamic| -fno-full-laziness

(page 105)

ing bindings outwards).
Implied by -0 (page 102).

(page 105)

Continued on next page

7.6. Flag reference

135

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.14 - continued from previous page

iterations=(n)
(page 107)

erations for the simplifier.

Flag Description Type Reverse
-ffun-to-thunk Allow worker-wrapper to | dynamic| -fno-fun-to-thunk
(page 106) convert a function closure (page 106)

into a thunk if the function

does not use any of its ar-

guments. Off by default.
-fignore-asserts Ignore assertions in the | dynamic| -fno-ignore-asserts
(page 106) source. Implied by -0 (page 106)

(page 102).
-fignore-interface- Ignore pragmas in inter- | dynamic| -fno-ignore-
pragmas (page 106) face files. Implied by -00 interface-pragmas

(page 102) only. (page 106)
-flate-dmd-anal Run demand analysis | dynamic| -fno-late-dmd-anal
(page 106) again, at the end of the (page 106)

simplification pipeline
-flate-specialise Run a late specialisation | dynamic| -fno-late-specialise
(page 110) pass (page 110)
-fliberate-case Turn on the liberate-case | dynamic| -fno-liberate-case
(page 106) transformation. Implied (page 106)

by -02 (page 102).
-fliberate-case- default: 2000. Set the size | dynamic| -fno-liberate-case-
threshold=(n) threshold for the liberate- threshold (page 106)
(page 106) case transformation to (n)
-fllvm-pass-vectors- Pass vector value in vector | dynamic| -fno-Lllvm-pass-
in-regs (page 107) registers for function calls vectors-in-regs

(page 107)

-floopification Turn saturated self- | dynamic| -fno-loopification
(page 106) recursive tail-calls into (page 106)

local jumps in the gener-

ated assembly. Implied by

-0 (page 102).
-fmax-inline-alloc- default: 128. Set the | dynamic
size=(n) (page 107) maximum size of inline ar-

ray allocations to {n) bytes

(default: 128).
-fmax-inline-memcpy - default: 32. Inline mem- | dynamic
insns=(n) (page 107) cpy calls if they would gen-

erate no more than (n)

pseudo instructions.
-fmax-inline-memset- default: 32. Inline mem- | dynamic
insns=(n) (page 107) set calls if they would gen-

erate no more than (n)

pseudo instructions
-fmax-simplifier- default: 4. Set the max it- | dynamic

Continued on next page

136

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.14 - continued from previous page

Flag Description Type Reverse
-fmax-uncovered- default: 4. Set the | dynamic
patterns=(n) (page 107) | maximum number of pat-
terns to display in warn-
ings about non-exhaustive
ones.
-fmax-worker-args=(n) | default: 10. If a worker | dynamic
(page 107) has that many arguments,
none will be unpacked
anymore.
-fno-opt-coercion Turn off the coercion opti- | dynamic
(page 107) miser
-fno-pre-inlining Turn off pre-inlining dynamic
(page 107)
-fno-state-hack Turn off the state hack- | dynamic
(page 108) whereby any lambda with
a real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.
-fomit-interface- Don’t generate interface | dynamic| -fno-omit-interface-
pragmas (page 108) pragmas. Implied by -00 pragmas (page 108)
(page 102) only.
-fomit-yields Omit heap checks when | dynamic| -fno-omit-yields
(page 108) no allocation is being per- (page 108)
formed.
-foptimal- Use a slower but better al- | dynamic| -fno-optimal-
applicative-do gorithm for ApplicativeDo applicative-do
(page 279) (page 279)
-fpedantic-bottoms Make GHC be more pre- | dynamic| -fno-pedantic-
(page 108) cise about its treatment of bottoms (page 108)
bottom (but see also -fno-
state-hack (page 108)).
In particular, GHC will not
eta-expand through a case
expression.
-fregs-graph (page 108) | Use the graph colouring | dynamic| - fno-regs-graph
register allocator for reg- (page 108)
ister allocation in the na-
tive code generator. Im-
plied by -02 (page 102).
-fregs-iterative Use the iterative coalesc- | dynamic| -fno-regs-iterative
(page 108) ing graph colouring regis- (page 108)
ter allocator in the native
code generator.
-fsimpl-tick- default: 100. Set the per- | dynamic

factor=(n) (page 109)

centage factor for simpli-
fier ticks.

Continued on next page

7.6. Flag reference

137

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.14 - continued from previous page

Flag Description Type Reverse
-fsimplifier- default: 2. Set the num- | dynamic
phases=(n) (page 108) ber of phases for the sim-
plifier. Ignored with -00
(page 102).
-fsolve-constant- When solving constraints, | dynamic| -fno-solve-constant-
dicts (page 111) try to eagerly solve su- dicts (page 111)
per classes using available
dictionaries.
-fspec-constr Turn on the SpecConstr | dynamic| -fno-spec-constr
(page 109) transformation. Implied (page 109)
by -02 (page 102).
-fspec-constr- default: 3.* Set to (n) | dynamic| -fno-spec-constr-
count=(n) (page 110) the maximum number of count (page 110)
specialisations that will be
created for any one func-
tion by the SpecConstr
transformation.
-fspec-constr-keen Specialize a call with an | dynamic| -fno-spec-constr-
(page 110) explicit constructor argu- keen (page 110)
ment, even if the argu-
ment is not scrutinised in
the body of the function
-fspec-constr- default: 2000. Set the size | dynamic| -fno-spec-constr-
threshold=(n) threshold for the Spec- threshold (page 110)
(page 110) Constr transformation to
(n).
-fspecialise (page 110) | Turn on specialisation of | dynamic| -fno-specialise
overloaded functions. Im- (page 110)
plied by -0 (page 102).
-fspecialise- Turn on specialisation of | dynamic| -fno-specialise-
aggressively (page 110) | overloaded functions re- aggressively
gardless of size, if unfold- (page 110)
ing is available
-fstatic-argument- Turn on the static argu- | dynamic| -fno-static-
transformation ment transformation. argument-
(page 111) transformation
(page 111)
-fstg-cse (page 104) Enable common sub- | dynamic| -fno-stg-cse
expression elimination (page 104)
on the STG intermediate
language
-fstg-lift-lams Enable late lambda lifting | dynamic| -fno-stg-1ift-lams
(page 111) on the STG intermediate (page 111)
language. Implied by -02
(page 102).
-fstg-lift-lams-known | Allow turning known into | dynamic| -fno-stg-lift-lams-

(page 111)

unknown calls while per-
forming late lambda lift-
ing.

known (page 111)

Continued on next page

138

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.14 - continued from previous page

Flag Description Type Reverse
-fstg-lift-lams-non- Create top-level non- | dynamic| -fno-stg-1ift-lams-
rec-args (page 111) recursive functions with non-rec-args-any
at most <n> parameters (page 111)
while performing late
lambda lifting.
-fstg-lift-lams-rec- Create top-level recursive | dynamic| -fno-stg-lift-
args (page 111) functions with at most lams-rec-args-any
<n> parameters while (page 111)
performing late lambda
lifting.
-fstrictness (page 112) | Turn on strictness | dynamic| -fno-strictness
analysis. Implied by (page 112)
-0 (page 102). Im-
plies -fworker-wrapper
(page 113)
-fstrictness- Run an additional strict- | dynamic
before=(n) (page 112) ness analysis before sim-
plifier phase (n)
-funbox-small-strict- | Flatten strict constructor | dynamic| - fno-unbox-small-
fields (page 112) fields with a pointer-sized strict-fields
representation. Implied (page 112)
by -0 (page 102).
-funbox-strict-fields | Flatten strict constructor | dynamic| - fno-unbox-strict-
(page 112) fields fields (page 112)
-funfolding-creation- | default: 750. Tweak un- | dynamic
threshold=(n) folding settings.
(page 113)
-funfolding-dict- default: 30. Tweak unfold- | dynamic
discount=(n) (page 113) | ing settings.
-funfolding-fun- default: 60. Tweak unfold- | dynamic
discount=(n) (page 113) | ing settings.
-funfolding-keeness- default: 1.5. Tweak un- | dynamic
factor=(n) (page 113) folding settings.
-funfolding-use- default: 60. Tweak unfold- | dynamic
threshold=(n) ing settings.
(page 113)
-fworker-wrapper Enable the worker- | dynamic
(page 113) wrapper transformation.

7.6.16 Profiling options

More details in Profiling (page 229)

7.6. Flag reference

139

GHC User’s Guide Documentation, Release 8.10.0.20191123

Flag Description Type Reverse
-fno-prof-auto Disables any pre- | dynamic| - fprof-auto (page 234)
(page 234) vious -fprof-auto
(page 234), -fprof-
auto-top (page 233), or
-fprof-auto-exported
(page 233) options.
-fno-prof-cafs Disables any previous | dynamic| -fprof-cafs (page 234)
(page 234) -fprof-cafs (page 234)
option.
-fno-prof-count- Do not collect entry counts | dynamic| -fprof-count-entries
entries (page 234) (page 234)
-fprof-auto (page 234) | Auto-add SCC\ s to all bind- | dynamic| -fno-prof-auto
ings not marked INLINE (page 234)
-fprof-auto-calls Auto-add SCC\ s to all call | dynamic| -fno-prof-auto-calls
(page 233) sites (page 233)
-fprof-auto-exported Auto-add SCC\ s to all | dynamic| -fno-prof-auto
(page 233) exported bindings not (page 234)
marked INLINE
-fprof-auto-top Auto-add SCC\ s to all top- | dynamic| -fno-prof-auto
(page 233) level bindings not marked (page 234)
INLINE
-fprof-cafs (page 234) | Auto-add SCC\ s to all CAFs | dynamic| -fno-prof-cafs
(page 234)
-prof (page 233) Turn on profiling dynamic
-ticky (page 251) Turn on ticky-ticky profil- | dynamic
ing (page 251)
7.6.17 Program coverage options
More details in Observing Code Coverage (page 246)
Flag Description Type Reverse
-fhpc (page 247) Turn on Haskell program | dynamic
coverage instrumentation
7.6.18 C pre-processor options
More details in Options affecting the C pre-processor (page 206)
Flag Description Type Reverse
-cpp (page 206) Run the C pre-processor | dynamic
on Haskell source files
-D(symbol)[=(value)] Define a symbol in the C | dynamic| -U(symbol) (page 207)

(page 207)

pre-processor

Continued on next page

140

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.17 - continued from previous page

Flag

Description Type Reverse

-I(dir) (page 207)

Add (dir) to the directory | dynamic
search list for #include
files

-U{symbol) (page 207)

Undefine a symbolin the C | dynamic
pre-processor

7.6.19 Code generation options

More details in Options affecting code generation (page 210)

Flag

Description Type Reverse

-dynamic-too (page 210)

Build dynamic object files | dynamic
as well as static object files
during compilation

-fasm (page 210)

Use the native code gener- | dynamic| -fllvm (page 210)
ator (page 203)

-fbyte-code (page 210)

Generate byte-code dynamic

-fexternal-dynamic-
refs (page 210)

Generate code for linking | dynamic
against dynamic libraries

-fllvm (page 210)

Compile using the LLVM | dynamic| -fasm (page 210)
code generator (page 203)

-fno-code (page 210) Omit code generation dynamic
-fobject-code Generate object code dynamic
(page 210)
-fPIC (page 210) Generate position- | dynamic
independent code (where
available)

-fPIE (page 210)

Generate code for a | dynamic
position-independent exe-
cutable (where available)

-fwrite-interface
(page 210)

Always write interface | dynamic
files

7.6.20 Linking options

More details in Options affecting linking (page 211)

Flag

Description Type Reverse

-C (page 76)

Stop after generating object (. o) file mode

-debug (page 213)

Use the debugging runtime dynamic

Continued on next page

7.6. Flag reference

141

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.19 - continued from previous page

Flag Description Type Reverse
-dylib-install-name Set the install name (via - | dynamic
(path) (page 215) install name passed to Apple’s
linker), specifying the full install path
of the library file. Any libraries or
executables that link with it later will
pick up that path as their runtime
search location for it. (Darwin/OS X
only)
-dynamic (page 212) Build dynamically-linked object files | dynamic
and executables
-dynload (page 212) Selects one of a number of modes for | dynamic
finding shared libraries at runtime.
-eventlog (page 213) Enable runtime event tracing dynamic
-fno-embed-manifest Do not embed the manifest in the exe- | dynamic
(page 215) cutable (Windows only)
-fno-gen-manifest Do not generate a manifest file (Win- | dynamic
(page 214) dows only)
-fno-shared-implib Don’t generate an import library for a | dynamic
(page 215) DLL (Windows only)
-framework (name) On Darwin/OS X/iOS only, link in the | dynamic
(page 211) framework (name). This option corre-
sponds to the -framework option for
Apple’s Linker.
-framework-path (dir) On Darwin/OS X/iOS only, add (dir) | dynamic
(page 211) to the list of directories searched for
frameworks. This option corresponds
to the -F option for Apple’s Linker.
-fwhole-archive-hs-1libs When linking a binary executable, | dynamic
(page 215) this inserts the flag -Wl,--whole-
archive before any -1 flags for
Haskell libraries, and -Wl,--no-
whole-archive afterwards
-keep-cafs (page 216) Do not garbage-collect CAFs (top-level | dynamic
expressions) at runtime
-L (dir) (page 211) Add (dir) to the list of directories | dynamic
searched for libraries
-1 (lib) (page 211) Link in library (lib) dynamic
-main-is (thing) (page 212) | Set main module and function dynamic
-no-hs-main (page 212) Don’t assume this program contains | dynamic
main
-no-rtsopts-suggestions Don’t print RTS sugges- | dynamic
(page 214) tions about linking with -
rtsopts[=(none|some|all|ignore|ighoreAll)]
(page 213).
-package (name) (page 211) | Expose package (pkg) dynamic

Continued on next page

142

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.19 - continued from previous page

Flag

Description

Type

Reverse

-pie (page 216)

Instruct the Ilinker to produce a
position-independent executable.

dynamic

-rdynamic (page 215)

This instructs the linker to add all sym-
bols, not only used ones, to the dy-
namic symbol table. Currently Linux
and Windows/MinGW32 only. This is
equivalent to using -optl -rdynamic
on Linux, and -optl -export-all-
symbols on Windows.

dynamic

-rtsopts[=(none|some|all|i

(page 213)

yiCortirod nwhethéy 1the RTS behaviour
can be tweaked via command-line flags
and the GHCRTS environment variable.
Using none means no RTS flags can
be given; some means only a mini-
mum of safe options can be given (the
default); all (or no argument at all)
means that all RTS flags are permit-
ted; ignore means RTS flags can be
given, but are treated as regular argu-
ments and passed to the Haskell pro-
gram as arguments; ignoreAll is the
same as ignore, but GHCRTS is also
ignored. -rtsopts does not affect -
with-rtsopts behavior; flags passed
via -with-rtsopts are used regard-
less of -rtsopts.

dynamic

-shared (page 212)

Generate a shared library (as opposed
to an executable)

dynamic

-split-sections (page 211)

Split sections for link-time dead-code
stripping

dynamic

-static (page 212)

Use static Haskell libraries

dynamic

-staticlib (page 211)

Generate a standalone static library
(as opposed to an executable). This is
useful when cross compiling. The li-
brary together with all its dependen-
cies ends up in in a single static library
that can be linked against.

dynamic

-threaded (page 213)

Use the threaded runtime

dynamic

-with-rtsopts=(opts)
(page 214)

Set the default RTS options to {(opts).

dynamic

7.6.21 Plugin options

More details in Compiler Plugins (page 539)

Flag

Description

Type

Reverse

-fclear-plugins
(page 539)

Clear the list of active plu-
gins

dynamic

Continued on next page

7.6. Flag reference

143

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.20 - continued from previous page

Flag Description Type Reverse
-fplugin- Give arguments to a | dynamic
opt=(module): (args) plugin module; mod-
(page 539) ule must be specified

with -fplugin=(module)

(page 539)
-fplugin-trustworthy Trust the used plugins and | dynamic
(page 539) no longer mark the com-

piled module as unsafe
-fplugin=(module) Load a plugin exported by | dynamic
(page 539) a given module
-hide-all-plugin- Hide all packages for plu- | dynamic
packages (page 540) gins by default
-plugin-package (pkg) | Expose (pkg) for plugins dynamic
(page 540)
-plugin-package-id Expose (pkg-id) for plug- | dynamic

(pkg-id) (page 540)

ms

7.6.22 Replacing phases

More details in Replacing the program for one or more phases (page 205)

Flag Description Type Reverse

-pgma {(cmd) (page 205) | Use (cmd) as the assem- | dynamic
bler

-pgmc {(cmd) (page 205) | Use {(cmd) as the C com- | dynamic
piler

-pgmdll (cmd) Use (cmd) as the DLL gen- | dynamic

(page 205) erator

-pgmF (cmd) (page 205) | Use (cmd) as the pre- | dynamic
processor (with -F
(page 209) only)

-pgmi (cmd) (page 205) | Use (cmd) as the external | dynamic
interpreter command.

-pgmL (cmd) (page 205) | Use {cmd) as the literate | dynamic
pre-processor

-pgml (cmd) (page 205) | Use (cmd) as the linker dynamic

-pgmlc (cmd) (page 205) | Use {(cmd) as the LLVM | dynamic
compiler

-pgmlibtool (cmd) Use (cmd) as the com- | dynamic

(page 205) mand for libtool (with
-staticlib (page 211)
only).

-pgmlo (cmd) (page 205) | Use {cmd) as the LLVM op- | dynamic
timiser

-pgmP {(cmd) (page 205) | Use (cmd) as the C pre- | dynamic
processor (with -cpp only)

-pgms (cmd) (page 205) | Use {(cmd) as the splitter dynamic

Continued on next page

144

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.21 - continued from previous page

Flag Description Type Reverse
-pgmwindres {cmd) Use {(cmd) as the program | dynamic
(page 205) for embedding manifests
on Windows.
7.6.23 Forcing options to particular phases
More details in Forcing options to a particular phase (page 205)
Flag Description Type Reverse
-opta (option) pass (option) to the assem- | dynamic
(page 206) bler
-optc (option) pass (option) to the C com- | dynamic
(page 206) piler
-optcxx (option) pass (option) to the C++ | dynamic
(page 206) compiler
-optdll (option) pass (option) to the DLL | dynamic
(page 206) generator
-optF (option) pass (option) to the cus- | dynamic
(page 206) tom pre-processor
-opti (option) pass (option) to the inter- | dynamic
(page 206) preter sub-process.
-optL (option) pass (option) to the liter- | dynamic
(page 205) ate pre-processor
-optl (option) pass (option) to the linker | dynamic
(page 206)
-optlc (option) pass {(option) to the LLVM | dynamic
(page 206) compiler
-optlo (option) pass {(option) to the LLVM | dynamic
(page 206) optimiser
-optP (option) pass (option) to cpp (with | dynamic
(page 205) -cpp only)
-optwindres (option) pass {(option) to windres. | dynamic
(page 206)
7.6.24 Platform-specific options
More details in Platform-specific Flags (page 84)
Flag Description Type Reverse
-mbmi2 (page 85) (x86 only) Use BMI2 for bit | dynamic
manipulation operations
-msse2 (page 84) (x86 only) Use SSE2 for | dynamic
floating-point operations
-msse4d.2 (page 85) (x86 only) Use SSE4.2 for | dynamic

floating-point operations

7.6. Flag reference

145

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.6.25 Compiler debugging options

More details in Debugging the compiler (page 219)

Flag Description Type Reverse

-dcmm-lint (page 227) C-\- pass sanity checking dynamic

-dcore-lint (page 227) Turn on internal sanity checking dynamic

-ddump-asm (page 225) Dump final assembly dynamic

-ddump-asm-expanded Dump the result of the synthetic in- | dynamic

(page 225) struction expansion pass.

-ddump-asm-liveness Dump assembly augmented with regis- | dynamic

(page 225) ter liveness

-ddump-asm-native Dump initial assembly dynamic

(page 225)

-ddump-asm-regalloc Dump the result of register allocation | dynamic

(page 225)

-ddump-asm-regalloc- Dump the build/spill stages of the - | dynamic

stages (page 225) fregs-graph (page 108) register allo-
cator.

-ddump-asm-stats (page 225) | Dump statistics from the register allo- | dynamic
cator.

-ddump-bcos (page 225) Dump interpreter byte code dynamic

-ddump-cfg-weights Dump the assumed weights of the | dynamic

(page 224) CFG.

-ddump-cmm (page 224) Dump the final C-\- output dynamic

-ddump-cmm-caf (page 224) Dump the results of the C-\- CAF anal- | dynamic
ysis pass.

-ddump-cmm-cbe (page 224) Dump the results of common block | dynamic
elimination

-ddump-cmm-cfg (page 224) Dump the results of the C-\- control | dynamic
flow optimisation pass.

-ddump-cmm-cps (page 224) Dump the results of the CPS pass dynamic

-ddump-cmm-from-stg Dump STG-to-C-\- output dynamic

(page 224)

-ddump-cmm-info (page 224) | Dump the results of the C-\- info table | dynamic
augmentation pass.

-ddump-cmm-proc (page 224) | Dump the results of proc-point analysis | dynamic

-ddump-cmm-procmap Dump the results of the C-\- proc-point | dynamic

(page 224) map pass.

-ddump-cmm- raw (page 224) Dump raw C-\- dynamic

-ddump-cmm-sink (page 224) | Dump the results of the C-\- sinking | dynamic
pass.

-ddump-cmm-sp (page 224) Dump the results of the C-\- stack lay- | dynamic

out pass.

Continued on next page

146

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.24 - continued from previous page

Flag Description Type Reverse

-ddump-cmm-split (page 224) | Dump the results of the C-\- proc-point | dynamic
splitting pass.

-ddump-cmm-switch Dump the results of switch lowering | dynamic

(page 224) passes

-ddump-cmm-verbose Write output from main C-\- pipeline | dynamic

(page 223) passes to files

-ddump-cmm-verbose-by- Show output from main C-\- pipeline | dynamic

proc (page 223) passes (grouped by proc)

-ddump-core-stats Print a one-line summary of the size of | dynamic

(page 222) the Core program at the end of the op-
timisation pipeline

-ddump-cse (page 223) Dump CSE output dynamic

-ddump-deriv (page 222) Dump deriving output dynamic

-ddump-ds (page 222), Dump desugarer output. dynamic

ddump-ds-preopt (page 222)

-ddump-ec-trace (page 221) | Trace exhaustiveness checker dynamic

-ddump-file-prefix=(str) Set the prefix of the filenames used for | dynamic

(page 220) debugging output.

-ddump-foreign (page 225) Dump foreign export stubs dynamic

-ddump-hpc (page 225) An alias for -ddump-ticked | dynamic
(page 225).

-ddump-if-trace (page 221) | Trace interface files dynamic

-ddump-inlinings (page 223) | Dump inlining info dynamic

-ddump-json (page 220) Dump error messages as JSON docu- | dynamic
ments

-ddump-1lvm (page 224) Dump LLVM intermediate code. dynamic

-ddump-mod-map (page 225) Dump the state of the module mapping | dynamic
database.

-ddump-occur-anal Dump occurrence analysis output dynamic

(page 223)

-ddump-opt-cmm (page 225) Dump the results of C-\- to C-\- optimis- | dynamic
ing passes

-ddump-parsed (page 221) Dump parse tree dynamic

-ddump-parsed-ast Dump parser output as a syntax tree dynamic

(page 221)

-ddump-prep (page 223) Dump prepared core dynamic

-ddump-rn (page 221) Dump renamer output dynamic

-ddump-rn-ast (page 221) Dump renamer output as a syntax tree | dynamic

Continued on next page

7.6. Flag reference

147

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.24 - continued from previous page

Flag Description Type Reverse
-ddump-rn-stats (page 221) | Renamer stats dynamic
-ddump-rn-trace (page 221) | Trace renamer dynamic
-ddump-rtti (page 225) Trace runtime type inference dynamic
-ddump-rule-firings Dump rule firing info dynamic
(page 222)
-ddump-rule-rewrites Dump detailed rule firing info dynamic
(page 222)
-ddump-rules (page 222) Dump rewrite rules dynamic
-ddump-simpl (page 223) Dump final simplifier output dynamic
-ddump-simpl-iterations Dump output from each simplifier iter- | dynamic
(page 222) ation
-ddump-simpl-stats Dump simplifier stats dynamic
(page 222)
-ddump-spec (page 222) Dump specialiser output dynamic
-ddump-splices (page 221) Dump TH spliced expressions, and | dynamic
what they evaluate to
-ddump-stg (page 223) Show CoreToStg output dynamic
-ddump-stg-final (page 223) | Show output of last STG pass. dynamic
-ddump-stg-unarised Show unarised STG dynamic
(page 223)
-ddump-str-signatures Dump strictness signatures dynamic
(page 223)
-ddump-stranal (page 223) Dump strictness analyser output dynamic
-ddump-tc (page 221) Dump typechecker output dynamic
-ddump-tc-ast (page 221) Dump typechecker output as a syntax | dynamic
tree
-ddump-tc-trace (page 221) | Trace typechecker dynamic
-ddump-ticked (page 225) Dump the code instrumented by | dynamic
HPC (Observing Code Coverage
(page 246)).
-ddump-timings (page 220) Dump per-pass timing and allocation | dynamic
statistics
-ddump-to-file (page 220) Dump to files instead of stdout dynamic
-ddump-types (page 221) Dump type signatures dynamic
-ddump-worker-wrapper Dump worker-wrapper output dynamic

(page 223)

Continued on next page

148

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.24 - continued from previous page

Flag Description Type Reverse

-dfaststring-stats Show statistics for fast string usage | dynamic

(page 220) when finished

-dhex-word-literals Print values of type Word# in hexadec- | dynamic

(page 226) imal.

-dinitial-unique=(s) Start UniqSupply allocation from (s). dynamic

(page 228)

-dinline-check=(str) Dump information about inlining deci- | dynamic

(page 222) sions

-dno-debug-output Suppress unsolicited debugging out- | dynamic| -

(page 226) put ddebug-

output
(page 22

-dno-typeable-binds Don’t generate bindings for Typeable | dynamic

(page 228) methods

-dppr-case-as-let Print single alternative case expres- | dynamic

(page 226) sions as strict lets.

-dppr-cols=(n) (page 226) Set the width of debugging output. For | dynamic
example -dppr-cols200

-dppr-debug (page 220) Turn on debug printing (more verbose) | dynamic

-dppr-user-length Set the depth for printing expressions | dynamic

(page 226) in error msgs

-drule-check=(str) Dump information about potential rule | dynamic

(page 222) application

-dshow-passes (page 220) Print out each pass name as it happens | dynamic

-dstg-lint (page 227) STG pass sanity checking dynamic

-dsuppress-all (page 226) In dumps, suppress everything (except | dynamic
for uniques) that is suppressible.

-dsuppress-coercions Suppress the printing of coercions in | dynamic

(page 227) Core dumps to make them shorter

-dsuppress-idinfo Suppress extended information about | dynamic

(page 226) identifiers where they are bound

-dsuppress-module- Suppress the printing of module quali- | dynamic

prefixes (page 227) fication prefixes

-dsuppress-stg-free-vars Suppress the printing of closure free | dynamic

(page 227) variable lists in STG output

-dsuppress-ticks (page 226) | Suppress “ticks” in the pretty-printer | dynamic
output.

-dsuppress-timestamps Suppress timestamps in dumps dynamic

(page 227)

-dsuppress-type- Suppress type applications dynamic

applications (page 227)

-dsuppress-type- Suppress type signatures dynamic

signatures (page 227)

-dsuppress-unfoldings Suppress the printing of the stable un- | dynamic

(page 227)

folding of a variable at its binding site

Continued on next page

7.6. Flag reference

149

6)

GHC User’s Guide Documentation, Release 8.10.0.20191123

Table 7.24 - continued from previous page

Flag Description Type Reverse
-dsuppress-uniques Suppress the printing of uniques in de- | dynamic
(page 226) bug output (easier to use diff)
-dsuppress-var-kinds Suppress the printing of variable kinds | dynamic
(page 227)
-dth-dec-file (page 221) Dump evaluated TH declarations into | dynamic
*.th.hs files
-dunique-increment=(1i) Set the increment for the generated | dynamic
(page 228) Unique’s to (i).
-dverbose-core2core Show output from each core-to-core | dynamic
(page 222) pass
-dverbose-stg2stg Show output from each STG-to-STG | dynamic
(page 223) pass
-falignment-sanitisation Compile with alignment checks for all | dynamic
(page 227) info table dereferences.
-fcatch-bottoms (page 227) | Insert error expressions after bottom- | dynamic
ing expressions; useful when debug-
ging the compiler.
-fllvm-fill-undef-with- Intruct LLVM to fill dead STG registers | dynamic
garbage (page 227) with garbage
-fproc-alignment (page 227) | Align functions at given boundary. dynamic
-g (page 559), -g(n) | Produce DWARF debug information in | dynamic
(page 559) compiled object files. (n) can be O, 1,
or 2, with higher numbers producing
richer output. If (n) is omitted, level 2
is assumed.
7.6.26 Miscellaneous compiler options
Flag Description Type Reverse
-fexternal-interpreter Run interpreted code in a separate | dynamic
(page 67) process
-fglasgow-exts (page 262) Deprecated. Enable most language | dynamic| -fno-
extensions; see Language options glasgow
(page 259) for exactly which ones. exts
(page 26
-ghcversion-file (path to | (GHC as a C compiler only) Use this | dynamic
ghcversion.h) (page 85) ghcversion.h file
-H (size) (page 84) Set the minimum size of the heap to | dynamic
(size)
-j[{n)] (page 78) When compiling with --make | dynamic
(page 76), compile (n) modules in
parallel.

150

Chapter 7. Using GHC

2)

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.7 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with
a non-trivial runtime system (RTS), which handles storage management, thread scheduling,
profiling, and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 151)) describes the various methods, and the following sections describe the
RTS options themselves.

7.7.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 151))

* at compile-time, using -with-rtsopts=(opts) (page 214) (Setting RTS options at com-
pile time (page 152))

» with the environment variable GHCRTS (page 152) (Setting RTS options with the GHCRTS
environment variable (page 152))

* by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 152))

Setting RTS options on the command line

If you set the -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 213) flag appropri-
ately when linking (see Options affecting linking (page 211)), you can give RTS options on
the command line when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

% hls -1tr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a - -RTS.

As always, for RTS options that take (size)s: If the last character of (size) is a K or k, multiply
by 1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in
the counters is your fault!)

7.7. Running a compiled program 151

GHC User’s Guide Documentation, Release 8.10.0.20191123

Giving a +RTS -? RTS option option will print out the RTS options actually available in your
program (which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the -
with-rtsopts flag (Options affecting linking (page 211)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

Setting RTS options with the GHCRTS environment variable

GHCRTS
If the - rtsopts flag is set to something other than none or ignoreAll when linking, RTS
options are also taken from the environment variable GHCRTS (page 152). For example,
to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like
shell):

GHCRTS="-M2G"
export GHCRTS

RTS options taken from the GHCRTS (page 152) environment variable can be overridden
by options given on the command line.

Tip: Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

“Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defi-
nitions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

You can change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:

152 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

void OutOfHeapHook (unsigned long, unsigned long)
The heap-overflow message.

void StackOverflowHook (long int)
The stack-overflow message.

void MallocFailHook (long int)
The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -1 (flags) (page 164)) is
written through a custom EventLogWriter (page 153):

EventLogWriter
A sink of event-log data.

void initEventLogWriter (void)
Initializes your EventLogWriter (page 153). This is optional.

bool writeEventLog(void *eventlog, size t eventlog size)
Hands buffered event log data to your event log writer. Required for a custom
EventLogWriter (page 153).

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 153). This can be NULL.

void stopEventLogWriter (void)
Called when event logging is about to stop. This can be NULL.

7.7.2 Miscellaneous RTS options

--install-signal-handlers=(yes|no)
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This
option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see -V (secs) (page 234)).

--install-seh-handlers=(yes|no)
If yes (the default), the RTS on Windows installs exception handlers to catch unhandled
exceptions using the Windows exception handling mechanism. This option is primarily
useful for when you are using the Haskell code as a DLL, and don’t want the RTS to
ungracefully terminate your application on erros such as segfaults.

--generate-crash-dumps
If yes (the default), the RTS on Windows will generate a core dump on any crash. These
dumps can be inspected using debuggers such as WinDBG. The dumps record all code,
registers and threading information at the time of the crash. Note that this implies - -
install-seh-handlers=yes.

--generate-stack-traces=<yes|no>
If yes (the default), the RTS on Windows will generate a stack trace on crashes if excep-
tion handling are enabled. In order to get more information in compiled executables, C
code or DLLs symbols need to be available.

7.7. Running a compiled program 153

GHC User’s Guide Documentation, Release 8.10.0.20191123

--disable-delayed-os-memory-return

-Xp

=Xm

-xq

If given, uses MADV_DONTNEED instead of MADV_FREE on platforms where this results in
more accurate resident memory usage of the program as shown in memory usage re-
porting tools (e.g. the RSS column in top and htop).

Using this is expected to make the program slightly slower.

On Linux, MADV FREE is newer and faster because it can avoid zeroing pages if they
are re-used by the process later (see man 2 madvise), but for the trade-off that memory
inspection tools like top will not immediately reflect the freeing in their display of res-
ident memory (RSS column): Only under memory pressure will Linux actually remove
the freed pages from the process and update its RSS statistics. Until then, the pages
show up as LazyFree in /proc/PID/smaps (see man 5 proc).

The delayed RSS update can confuse programmers debugging memory issues, produc-
tion memory monitoring tools, and end users who may complain about undue memory
usage shown in reporting tools, so with this flag it can be turned off.

On 64-bit machines, the runtime linker usually needs to map object code into the low 2Gb
of the address space, due to the x86 64 small memory model where most symbol refer-
ences are 32 bits. The problem is that this 2Gb of address space can fill up, especially if
you're loading a very large number of object files into GHCi.

This flag offers a workaround, albeit a slightly convoluted one. To be able to load an
object file outside of the low 2Gb, the object code needs to be compiled with -fPIC
-fexternal-dynamic-refs. When the +RTS -xp flag is passed, the linker will assume
that all object files were compiled with - fPIC -fexternal-dynamic-refs and load them
anywhere in the address space. It’s up to you to arrange that the object files you load
(including all packages) were compiled in the right way. If this is not the case for an
object, the linker will probably fail with an error message when the problem is detected.

On some platforms where PIC is always the case, e.g. x86 64 MacOS X, this flag is
enabled by default.

(address)

Warning: This option is for working around memory allocation problems only. Do not
use unless GHCi fails with a message like “failed to mmap() memory below 2Gb”.
Consider recompiling the objects with -fPIC -fexternal-dynamic-refs and using
the -xp flag instead. If you need to use this option to get GHCi working on your
machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to
use the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

(size)
Default 100k

This option relates to allocation limits; for more about this see

154

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

GHC.Conc.enableAllocationLimit. When a thread hits its allocation limit, the RTS
throws an exception to the thread, and the thread gets an additional quota of allocation
before the exception is raised again, the idea being so that the thread can execute its
exception handlers. The -xq controls the size of this additional quota.

7.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.

=Xn

Default off
Since 8.10.1

Enable the concurrent mark-and-sweep garbage collector for old generation collectors.
Typically GHC uses a stop-the-world copying garbage collector for all generations. This
can cause long pauses in execution during major garbage collections. -xn (page 155)
enables the use of a concurrent mark-and-sweep garbage collector for oldest genera-
tion collections. Under this collection strategy oldest-generation garbage collection can
proceed concurrently with mutation.

Note that -xn (page 155) cannot be used with -G1 nor -c (page 156).

-A (size)

-AL

Default 1MB

Set the allocation area size used by the garbage collector. The allocation area (actually
generation 0 step 0) is fixed and is never resized (unless you use -H [(size)] (page 158),
below).

Increasing the allocation area size may or may not give better performance (a bigger
allocation area means worse cache behaviour but fewer garbage collections and less
promotion).

With only 1 generation (e.g. -G1, see -G (generations) (page 157)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be
resized according to the amount of data in the heap (see -F (factor) (page 156), be-
low).

(size)
Default -A (page 155) value
Since 8.2.1

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 155) value.

Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.

7.7.

Running a compiled program 155

GHC User’s Guide Documentation, Release 8.10.0.20191123

To see whether you’'re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-0 (size)

Default 1m

Set the minimum size of the old generation. The old generation is collected whenever it
grows to this size or the value of the -F (factor) (page 156) option multiplied by the
size of the live data at the previous major collection, whichever is larger.

-n (size)

Default 4m with -Al16m (page 155) or larger, otherwise 0.

[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.

This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.

This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.

For a given heap size (using the -H [(size)] (page 158) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the
ratio of live data to heap size is high, say greater than 30%.

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c (n)

Default 30

Automatically enable compacting collection when the live data exceeds (n)% of the max-
imum heap size (see the -M (size) (page 159) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M (size) (page 159).

-F (factor)

Default 2

156

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to
use -H (size) (see -H [(size)] (page 158)) than to increase -F (factor) (page 156).

The -F (factor) (page 156) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M (size) (page 159) setting) is approaching.

-G (generations)
Default 2

Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A (size) (page 155) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [(size)] (page 158) option).

-qg (gen)
Default 0
Since 6.12.1

Use parallel GC in generation {gen) and higher. Omitting {(gen) turns off the parallel GC
completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those
using GHC.Conc.par, Strategies, or with multiple threads). However, it is sometimes
beneficial to enable the parallel GC for a single-threaded sequential program too, espe-
cially if the program has a large amount of heap data and GC is a significant fraction of
runtime. To use the parallel GC in a sequential program, enable the parallel runtime with
a suitable -N (x) (page 115) option, and additionally it might be beneficial to restrict
parallel GC to the old generation with -qg1l.

-gb (gen)
Default 1 for -A (page 155) < 32M, 0 otherwise
Since 6.12.1

Use load-balancing in the parallel GC in generation (gen) and higher. Omitting (gen)
disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used to
the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qb.

-gn (x)

7.7. Running a compiled program 157

GHC User’s Guide Documentation, Release 8.10.0.20191123

Default the value of -N (page 115) or the number of CPU cores, whichever is
smaller.

Since 8.2.1

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.

The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [(size)]

Default 0

This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A (size) (page 155) option. It says: I want to use at least (size) bytes, so
use whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.

If (size) is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the (size). This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I (seconds)

-ki

Default 0.3 seconds in the threaded runtime, 0 in the non-threaded runtime

In the threaded and SMP versions of the RTS (see -threaded (page 213), Options af-
fecting linking (page 211)), a major GC is automatically performed if the runtime has
been idle (no Haskell computation has been running) for a period of time. The amount of
idle time which must pass before a GC is performed is set by the -I (seconds) option.
Specifying -I0 disables the idle GC.

For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

(size)
Default 1k
Set the initial stack size for new threads.

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack

158

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-kc

-kb

chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

(size)
Default 32k

Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K (size)
(page 159) is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

(size)
Default 1k

Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc (size) (page 159)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K (size)

Default 80% of physical memory

Set the maximum stack size for an individual thread to (size) bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.

This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m (n)

Default 3%

Minimum % (n) of heap which must be available for allocation.

-M (size)

Default unlimited

Set the maximum heap size to (size) bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,

7.7.

Running a compiled program 159

GHC User’s Guide Documentation, Release 8.10.0.20191123

which at the least will result in the program being summarily killed by the operating
system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=(size)
Default 1M

If the program’s heap exceeds the value set by -M (size) (page 159), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa
--numa=<mask>
Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux and Windows currently).

Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.

The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:

*Determine the number of NUMA nodes (N) by querying the OS.

*Manage separate memory pools for each node.

*Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
*Bind worker threads on a capability to the appropriate node.

*Allocate the nursery from node-local memory.

*Perform other memory allocation, including in the GC, from node-local memory.

*When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The - -numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.

Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts_setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is
running on and the memory it is using while running Haskell code, which will negate
any benefits of - -numa.

If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, --numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

160 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

--long-gc-sync

--long-gc-sync=<seconds>
When a GC starts, all the running mutator threads have to stop and synchronise. The
period between when the GC is initiated and all the mutator threads are stopped is called
the GC synchronisation phase. If this phase is taking a long time (longer than 1ms is
considered long), then it can have a severe impact on overall throughput.

A long GC sync can be caused by a mutator thread that is inside an unsafe FFI call, or
running in a loop that doesn’t allocate memory and so doesn’t yield. To fix the former,
make the call safe, and to fix the latter, either avoid calling the code in question or
compile it with -fomit-yields (page 108).

By default, the flag will cause a warning to be emitted to stderr when the sync time ex-
ceeds the specified time. This behaviour can be overriden, however: the LongGCSync ()
hook is called when the sync time is exceeded during the sync period, and the longGC-
SyncEnd () hook at the end. Both of these hooks can be overriden in the RtsConfig when
the runtime is started with hs_init ghc(). The default implementations of these hooks
(LongGcSync () and LongGCSyncEnd () respectively) print warnings to stderr.

One way to use this flag is to set a breakpoint on LongGCSync () in the debugger, and find
the thread that is delaying the sync. You probably want to use -g (page 559) to provide
more info to the debugger.

The GC sync time, along with other GC stats, are available by calling the getRTSStats ()
function from C, or GHC.Stats.getRTSStats from Haskell.

7.7.4 RTS options to produce runtime statistics

=T

-t [(file)]

-s [(file)]

=S [(file)]

--machine-readable

--internal-counters
These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection. Passing --internal-counters to a threaded runtime will cause a
detailed summary to include various internal counts accumulated during the run; note
that these are unspecified and may change between releases.

The output is placed in (file). If {file) is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples),
— 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07,
—elapsed) :ghc>>

This tells you:

*The total number of bytes allocated by the program over the whole run.

7.7. Running a compiled program 161

GHC User’s Guide Documentation, Release 8.10.0.20191123

*The total number of garbage collections performed.

*The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 164) RTS option (RTS options for profiling (page 164)).

*The peak memory the RTS has allocated from the OS.

*The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t --
machine-readable:

[("bytes allocated", "36169392")

, ("num_GCs", "69")

, ("average bytes used", "603392")
, ("max_bytes used", "1065272")

, ("num_byte usage samples", "2")

, ("peak megabytes allocated", "3")
,("init cpu seconds", "0.00")
,("init wall seconds", "0.00")

, ("mutator cpu seconds", "0.02")

, ("mutator wall seconds", "0.02")
, ("GC_cpu_seconds", "0.07")

, ("GC_wall seconds", "0.07")

1

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))
54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s
MUT time 0.01s
GC time 0.07s
EXIT time 0.00s
Total time 0.08s

0.00s elapsed)
0.02s elapsed)
0.07s elapsed)
0.00s elapsed)
0.09s elapsed)

—~ e~~~ —~

%GC time 89.5% (75.3% elapsed)
Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

*The “bytes allocated in the heap” is the total bytes allocated by the program over

162

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

the whole run.

*GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.

*The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.

*The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.

*The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.

*Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.

*The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.

*Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.

%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)
]

[...
524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:
*How many bytes we allocated this garbage collection.
*How many bytes we copied this garbage collection.
*How many bytes are currently live.
*How long this garbage collection took (CPU time and elapsed wall clock time).

*How long the program has been running (CPU time and elapsed wall clock time).

7.7. Running a compiled program 163

GHC User’s Guide Documentation, Release 8.10.0.20191123

*How many page faults occurred this garbage collection.
*How many page faults occurred since the end of the last garbage collection.

*Which generation is being garbage collected.

7.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell
(page 114), and those for parallelism in RTS options for SMP parallelism (page 115).

7.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 233), and RTS options for heap profiling (page 238)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:

-hT

-h
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hp2ps - Rendering heap profiles to PostScript (page 242)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 229)). Can be shortened to -h
(page 164).

Note: The meaning of the shortened -h (page 164) is dependent on whether your
program was compiled for profiling. (See RTS options for heap profiling (page 238) for
details.)

-L (n)
Default 25 characters

Sets the maximum length of the cost-centre names listed in the heap profile.

7.7.7 Tracing

When the program is linked with the -eventlog (page 213) option (Options affecting linking
(page 211)), runtime events can be logged in several ways:

* In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

* In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

* As text to standard output, for debugging purposes.

-1 (flags)
Log events in binary format. Without any (flags) specified, this logs a default set of
events, suitable for use with tools like ThreadScope.

164 Chapter 7. Using GHC

http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope

GHC User’s Guide Documentation, Release 8.10.0.20191123

Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overriden with a custom EventLogWriter.

For some special use cases you may want more control over which events are included.
The (flags) is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:

*s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.

*g — GC events, including GC start/stop. Enabled by default.
*p — parallel sparks (sampled). Enabled by default.
*f — parallel sparks (fully accurate). Disabled by default.

*u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
*a — enable all event classes listed above
*-(x) — disable the given class of events, for any event class listed above
*-a — disable all classes

For example, -1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.

The format of the log file is described by the header EventLogFormat.h that comes with
GHC, and it can be parsed in Haskell using the ghc-events library. To dump the contents
of a .eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

Each event is associated with a timestamp which is the number of nanoseconds since
the start of executation of the running program. This is the elapsed time, not the CPU
time.

-ol (filename)
Default <program>.eventlog
Since 8.8
Sets the destination for the eventlog produced with the -1 (flags) (page 164) flag.

-v [(flags)]
Log events as text to standard output, instead of to the .eventlog file. The (flags) are the
same as for -1, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -1 option.

7.7. Running a compiled program 165

http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!

-B

Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office...”

-D (x)

-Ds
-Di
-Dw
-DG
-Dg
-Db
-DS
-Dz
-Dt
-Dp
-Da
-D1
-Dm
-Dz
-Dc
-Dr
-DC

An RTS debugging flag; only available if the program was linked with the -debug
(page 213) option. Various values of (x) are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -7 to find out which
debug flags are supported.

Full list of currently supported flags:
DEBUG: scheduler

DEBUG: interpreter

DEBUG: weak

DEBUG: gccafs

DEBUG: gc

DEBUG: block

DEBUG: sanity

DEBUG: zero freed memory on GC
DEBUG: stable

DEBUG: prof

DEBUG: apply

DEBUG: linker

DEBUG: stm

DEBUG: stack squeezing

DEBUG: program coverage

DEBUG: sparks

DEBUG: compact
Debug messages will be sent to the binary event log file instead of stdout if the -1
(flags) (page 164) option is added. This might be useful for reducing the overhead
of debug tracing.

To figure out what exactly they do, the least bad way is to grep the rts/ directory in the
ghc code for macros like DEBUG (scheduler or DEBUG_scheduler.

166

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-r (file)
Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 213)). The (file) business works just like on the -S
[(file)] (page 161) RTS option, above.

For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for im-
plementors) (page 251).

-XC
(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with
-prof -fprof-auto (see -prof (page 233)) and running with +RTS -xc -RTS will tell
you exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table search,
called from Main.polynomial.theta index,
called from Main.polynomial,
called from Main.zonal pressure,
called from Main.make pressure.p,
called from Main.make pressure,
called from Main.compute initial state.p,
called from Main.compute initial state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.

See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly
good reason to turn it off, except to ensure the accuracy of certain data collected regard-
ing thunk entry counts.)

7.7.9 Getting information about the RTS

--info
It is possible to ask the RTS to give some information about itself. To do this, use the
--info (page 167) flag, e.g.

7.7. Running a compiled program 167

GHC User’s Guide Documentation, Release 8.10.0.20191123

$./a.out +RTS --info
[("GHC RTS", "YES")

, ("GHC version", "6.7")

, ("RTS way", "rts p")

, ("Host platform", "x86 64-unknown-linux")
, ("Host architecture", "x86 64")

, ("Host 0S", "linux")

, ("Host vendor", "unknown")

, ("Build platform", "x86_ 64-unknown-linux")
, ("Build architecture", "x86 64")

, ("Build 0S", "linux")

, ("Build vendor", "unknown")

, ("Target platform", "x86 64-unknown-linux")
, ("Target architecture", "x86 64")

, ("Target 0S", "1linux")

, ("Target vendor", "unknown")

, ("Word size", "64")

, ("Compiler unregisterised", "NO")

, ("Tables next to code", "YES")

,("Flag -with-rtsopts", "")

1

The information is formatted such that it can be read as a of type [(String,String)].
Currently the following fields are present:

GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts v
(vanilla), rts_thr (threaded runtime, i.e. linked using the -threaded (page 213)
option) and rts_p (profiling runtime, i.e. linked using the -prof (page 233) option).
Other variants include debug (linked using -debug (page 213)), and dyn (the RTS
is linked in dynamically, i.e. a shared library, rather than statically linked into the
executable itself). These can be combined, e.g. you might have rts thr debug p.

Target platformTarget architectureTarget 0STarget vendor These are the plat-
form the program is compiled to run on.

Build platformBuild architectureBuild 0SBuild vendor These are the platform
where the program was built on. (That is, the target platform of GHC itself.) Or-
dinarily this is identical to the target platform. (It could potentially be different if
cross-compiling.)

Host platformHost architectureHost 0SHost vendor These are the platform where
GHC itself was compiled. Again, this would normally be identical to the build and
target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered Was this program compiled with an “unregistered” (page 204)
version of GHC? (I.e., a version of GHC that has no platform-specific optimisations
compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful perfor-
mance optimisation that is not available on all platforms. This field tells you whether
the program has been compiled with this optimisation. (Usually yes, except on un-
usual platforms.)

168 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Flag -with-rtsopts The value of the GHC flag -with-rtsopts=(opts) (page 214) at
compile/link time.

7.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.

Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

7.8.1 Haskell source files

Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C. hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

7.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.

The object file, which normally ends in a . o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the --show-iface (file) (page 76) option instead (see
Other options related to interface files (page 174)).

You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules,
where (osuf) is the object-file suffix (this can be changed with the -osuf option).

» If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with (osuf).

7.8. Filenames and separate compilation 169

GHC User’s Guide Documentation, Release 8.10.0.20191123

* If -odir (dir) has been specified, then the object filename is (dir)/(mod).(osuf), where
(mod) is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath (dir), if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is (hisuf)
(.hi by default) instead of (osuf), and the relevant options are -hidir (dir) (page 172)
and -hisuf (suffix) (page 172) instead of -odir (dir) (page 171) and -osuf (suffix)
(page 172) respectively.

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.

For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 170). This means that for most modules,
the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it
is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -0
(file) (page 171) option, and the name of the interface file can be specified directly using
the -ohi (file) (page 171) option.

7.8.3 The search path

In your program, you import a module Foo by saying import Foo. In - -make (page 76) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without - -make
(page 76), GHC will look for the interface file for Foo, which should have been created by an
earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the
appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each
of these directories, it tries appending (basename) . (extension) to the directory, and checks
whether the file exists. The value of (basename) is the module name with dots replaced by
the directory separator (“/” or “\\", depending on the system), and (extension) is a source
extension (hs, lhs) if we are in - -make (page 76) mode or GHCi, or (hisuf) otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in
--make (page 76) mode looking for the source file for a module A.B.C. GHC will look in
d1/A/B/C.hs, d1/A/B/C.1hs, d2/A/B/C.hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:
-i(dir)[:(dir)]*

This flag appends a colon-separated list of dirs to the search path.
-i

resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as
packages. See the section on packages (Packages (page 187)) for details.

170 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.8.4 Redirecting the compilation output(s)

-0 (file)
GHC'’s compiled output normally goes into a . hc, .0, etc., file, depending on the last-run
compilation phase. The option -0 file re-directs the output of that last-run phase to
(file).

Note: This “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the
intermediate C code in the file f00.0, name notwithstanding!

This option is most often used when creating an executable file, to set the filename of
the executable. For example:

ghc -0 prog --make Main

will compile the program starting with module Main and put the executable in the file
prog.

Note: on Windows, if the result is an executable file, the extension “.exe” is added if the
specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe
(not foo).

If you use ghc --make and you don’t use the -0, the name GHC will choose for the
executable will be based on the name of the file containing the module Main. Note that
with GHC the Main module doesn’t have to be put in file Main.hs. Thus both

’ ghc --make Prog

and

’ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

-odir (dir)
Redirects object files to directory (dir). For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir “uname -m’

The object files, Foo.o0, Bar.o, and Bumble.o would be put into a subdirectory named
after the architecture of the executing machine (x86, mips, etc).

Note that the -odir option does not affect where the interface files are put; use the -
hidir option for that. In the above example, they would still be put in parse/Foo.hi,
parse/Bar.hi, and gurgle/Bumble.hi.

Please also note that when doing incremental compilation, this directory is where GHC
looks into to find object files from previous builds.

-ohi (file)
The interface output may be directed to another file bar2/Wurble.iface with the option
-ohi bar2/Wurble.iface (not recommended).

7.8. Filenames and separate compilation 171

GHC User’s Guide Documentation, Release 8.10.0.20191123

Warning: If you redirect the interface file somewhere that GHC can’t find it, then
the recompilation checker may get confused (at the least, you won’t get any recompi-
lation avoidance). We recommend using a combination of -hidir and -hisuf options
instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface
into the bit bucket: -ohi /dev/null, for example.

-hidir (dir)
Redirects all generated interface files into (dir), instead of the default.

Please also note that when doing incremental compilation (by ghc --make or ghc -c¢),
this directory is where GHC looks into to find interface files.

-hiedir (dir)
Redirects all generated extended interface files into (dir), instead of the default.

Please also note that when doing incremental compilation (by ghc --make or ghc -c¢),
this directory is where GHC looks into to find extended interface files.

-stubdir (dir)
Redirects all generated FFI stub files into (dir). Stub files are generated when the
Haskell source contains a foreign export or foreign import "&wrapper" declaration
(see Using foreign export and foreign import ccall “wrapper” with GHC (page 527)). The
-stubdir option behaves in exactly the same way as -odir and -hidir with respect to
hierarchical modules.

-dumpdir (dir)
Redirects all dump files into (dir). Dump files are generated when -ddump-to-file is
used with other -ddump-* flags.

-outputdir (dir)
The -outputdir option is shorthand for the combination of -odir (dir) (page 171),
-hidir (dir) (page 172), -stubdir (dir) (page 172) and -dumpdir (dir) (page 172).

-osuf (suffix)
The -osuf (suffix) will change the .o file suffix for object files to whatever you specify.
We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.

-hisuf (suffix)
Similarly, the -hisuf (suffix) will change the .hi file suffix for non-system interface files
(see Other options related to interface files (page 174)).

The -hisuf/-osuf game is particularly useful if you want to compile a program both with
and without profiling, in the same directory. You can say:

’ghc

to get the ordinary version, and

’ghc ... -osuf prof.o -hisuf prof.hi -prof -fprof-auto

to get the profiled version.

-hiesuf (suffix)
The -hiesuf (suffix) will change the .hie file suffix for extended interface files to what-
ever you specify.

172 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-hcsuf (suffix)
Finally, the option -hcsuf (suffix) will change the .hc file suffix for compiler-generated
intermediate C files.

7.8.5 Keeping Intermediate Files

The following options are useful for keeping (or not keeping) certain intermediate files around,
when normally GHC would throw these away after compilation:

-keep-hc-file

-keep-hc-files
Keep intermediate .hc files when doing . hs-to-.0 compilations via C (page 204) (Note:
.hc files are only generated by unregisterised (page 204) compilers).

-keep-hi-files
Keep intermediate . hi files. This is the default. You may use -no-keep-hi-files if you
are not interested in the .hi files.

-keep-hscpp-file

-keep-hscpp-files
Keep the output of the CPP pre-processor phase as .hscpp files. A .hscpp file is only
created, if a module gets compiled and uses the C pre-processor.

-keep-1lvm-file
-keep-1lvm-files

Implies -fllvm (page 210)

Keep intermediate .11 files when doing .hs-to-.0 compilations via LLVM (page 203)
(Note: .11 files aren’t generated when using the native code generator, you may need
to use -fllvm (page 210) to force them to be produced).

-keep-o-files
Keep intermediate .o files. This is the default. You may use -no-keep-o-files if you
are not interested in the .o files.

-keep-s-file
-keep-s-files
Keep intermediate . s files.

-keep-tmp-files
Instructs the GHC driver not to delete any of its temporary files, which it normally keeps
in /tmp (or possibly elsewhere; see Redirecting temporary files (page 173)). Running
GHC with -v will show you what temporary files were generated along the way.

7.8.6 Redirecting temporary files

-tmpdir (dir)
If you have trouble because of running out of space in /tmp (or wherever your installation
thinks temporary files should go), you may use the -tmpdir (dir) (page 173) option
option to specify an alternate directory. For example, -tmpdir . says to put temporary
files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory
where temporary files should be put. GCC and other programs will honour the TMPDIR
variable as well.

7.8. Filenames and separate compilation 173

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.8.7 Other options related to interface files

-ddump-hi
Dumps the new interface to standard output.

-ddump-hi-diffs
The compiler does not overwrite an existing . hi interface file if the new one is the same
as the old one; this is friendly to make. When an interface does change, it is often enlight-
ening to be informed. The -ddump-hi-diffs (page 174) option will make GHC report
the differences between the old and new . hi files.

-ddump-minimal-imports
Dump to the file M.imports (where (M) is the name of the module being compiled) a
“minimal” set of import declarations. The directory where the . imports files are created
can be controlled via the -dumpdir (dir) (page 172) option.

You can safely replace all the import declarations in M. hs with those found in its respec-
tive .imports file. Why would you want to do that? Because the “minimal” imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can
be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface (file)
where (file) is the name of an interface file, dumps the contents of that interface in a
human-readable format. See Modes of operation (page 76).

7.8.8 Options related to extended interface files

GHC builds up a wealth of information about a Haskell source file as it compiles it. Extended
interface files are a way of persisting some of this information to disk so that external tools,
such as IDE’s, can avoid parsing, typechecking, and renaming all over again. These files
contain

* a simplified AST
- nodes are annotated with source positions and types
- identifiers are annotated with scope information
* the raw bytes of the initial Haskell source
The GHC API exposes functions for reading and writing these files.

-fwrite-ide-info
Writes out extended interface files alongside regular interface files. Just like regular
interface files, GHC has a recompilation check to detect out of date or missing extended
interface files.

-fvalidate-ide-info
Runs a series of sanity checks and lints on the extended interface files that are being
written out. These include testing things properties such as variables not occuring out-
side of their expected scopes.

The format in which GHC currently stores its typechecked AST, makes it costly to collect the
types for some expressions nodes. For the sake of performance, GHC currently chooses to
skip over these, so not all expression nodes should be expected to have type information on
them. See #16233 for more.

174 Chapter 7. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/16233

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.8.9 The recompilation checker

-fforce-recomp
Turn off recompilation checking (which is on by default). Recompilation checking nor-
mally stops compilation early, leaving an existing .o file in place, if it can be determined
that the module does not need to be recompiled.

-fignore-optim-changes
-fignore-hpc-changes

In the olden days, GHC compared the newly-generated .hi file with the previous version;
if they were identical, it left the old one alone and didn’t change its modification date. In
consequence, importers of a module with an unchanged output . hi file were not recompiled.

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So
changes to module A might require module C to be recompiled, and hence when A. hi changes
we should check whether C should be recompiled. However, the dependencies of C will only
list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So
now...

GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each decla-
ration within the interface file. It also keeps in every interface file a list of the fingerprints
of everything it used when it last compiled the file. If the source file’s modification date is
earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled),
and the recompilation checking is on, GHC will be clever. It compares the fingerprints on the
things it needs this time with the fingerprints on the things it needed last time (gleaned from
the interface file of the module being compiled); if they are all the same it stops compiling
early in the process saying “Compilation IS NOT required”. What a beautiful sight!

You can read about how all this works in the GHC commentary.

7.8.10 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs-boot file. Suppose that
modules A.hs and B. hs are Haskell source files, thus:

module A where
import B(TB(..))

newtype TA = MKTA Int

f :: TB -> TA
f (MKTB x) = MKTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MKTB !Int

g :: TA -> TB
g (MKTA x) = MKTB x

Here A imports B, but B imports A with a {-# SOURCE #-} pragma, which breaks the circular
dependency. Every loop in the module import graph must be broken by a {-# SOURCE #-}

7.8. Filenames and separate compilation 175

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/recompilation-avoidance

GHC User’s Guide Documentation, Release 8.10.0.20191123

import; or, equivalently, the module import graph must be acyclic if {-# SOURCE #-} imports
are ignored.

For every module A. hs that is {-# SOURCE #-}-imported in this way there must exist a source
file A.hs-boot. This file contains an abbreviated version of A.hs, thus:

module A where
newtype TA = MKTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot

ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o

ghc -o foo A.o B.o ~-- Linking the program

There are several points to note here:

* The file A.hs-boot is a programmer-written source file. It must live in the same directory
as its parent source file A. hs. Currently, if you use a literate source file A. lhs you must
also use a literate boot file, A. lhs-boot; and vice versa.

* A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A. hs-boot is compiled, it is checked for scope and type errors. When
its parent module A.hs is compiled, the two are compared, and an error is reported if
the two are inconsistent.

» Just as compiling A. hs produces an interface file A.hi, and an object file A. 0, so compil-
ing A.hs-boot produces an interface file A.hi-boot, and a pseudo-object file A.o0-boot:

- The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when
using a Makefile, to record when the A.hi-boot was last brought up to date (see
Using make (page 183)).

- The hi-boot generated by compiling a hs-boot file is in the same machine-
generated binary format as any other GHC-generated interface file (e.g. B.hi). You
can display its contents with ghc --show-iface. If you specify a directory for inter-
face files, the -ohidir flag, then that affects hi-boot files too.

» If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE
#-} import is considered to refer to the hs-boot file, then the module import graph must
have no cycles. The command ghc -M will report an error if a cycle is found.

* Amodule Mthat is {-# SOURCE #-}-imported in a program will usually also be ordinarily
imported elsewhere. If not, ghc --make automatically adds Mto the set of modules it tries
to compile and link, to ensure that M‘s implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrap-
ping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module(s) that import A recursively.

A hs-boot file is written in a subset of Haskell:

* The module header (including the export list), and import statements, are exactly as in
Haskell, and so are the scoping rules. Hence, to mention a non-Prelude type or class,
you must import it.

176 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

» There must be no value declarations, but there can be type signatures for values. For
example:

double :: Int -> Int

» Fixity declarations are exactly as in Haskell.
* Vanilla type synonym declarations are exactly as in Haskell.
* Open type and data family declarations are exactly as in Haskell.

* A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where ..

The .. is meant literally - you should write two dots in your file. Note that the where
clause is still necessary to distinguish closed families from open ones. If you give any
equations of a closed family, you must give all of them, in the same order as they appear
in the accompanying Haskell file.

* A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension:
see Data types with no constructors (page 295)), but in an hi-boot file it means “I don’t
know or care what the constructors are”. This is the most common form of data type
declaration, because it’s easy to get right. You can also write out the constructors but,
if you do so, you must write it out precisely as in its real definition.

If you do not write out the constructors, you may need to give a kind annotation
(Explicitly-kinded quantification (page 420)), to tell GHC the kind of the type variable, if
it is not “*”. (In source files, this is worked out from the way the type variable is used in
the constructors.) For example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration in-
stead.

* Class declarations is exactly as in Haskell, except that you may not put default method
declarations. You can also omit all the superclasses and class methods entirely; but you
must either omit them all or put them all in.

* You can include instance declarations just as in Haskell; but omit the “where” part.

* The default role for abstract datatype parameters is now representational. (An abstract
datatype is one with no constructors listed.) To get another role, use a role annotation.
(See Roles (page 502).)

7.8.11 Module signatures

GHC 8.2 supports module signatures (hsig files), which allow you to write a signature in
place of a module implementation, deferring the choice of implementation until a later point
in time. This feature is not intended to be used without Cabal; this manual entry will focus
on the syntax and semantics of signatures.

7.8. Filenames and separate compilation 177

http://www.haskell.org/cabal/

GHC User’s Guide Documentation, Release 8.10.0.20191123

To start with an example, suppose you had a module A which made use of some string oper-
ations. Using normal module imports, you would only be able to pick a particular implemen-
tation of strings:

module Str where
type Str = String

empty :: Str
empty = nn

toString :: Str -> String
toString s = s

module A where
import Str
z = toString empty

By replacing Str.hs with a signature Str.hsig, A (and any other modules in this package)
are now parametrized by a string implementation:

signature Str where
data Str
empty :: Str
toString :: Str -> String

We can typecheck A against this signature, or we can instantiate Str with a module that
provides the following declarations. Refer to Cabal’s documentation for a more in-depth dis-
cussion on how to instantiate signatures.

Module signatures actually consist of two closely related features:

* The ability to define an hsig file, containing type definitions and type signature for values
which can be used by modules that import the signature, and must be provided by the
eventual implementing module, and

» The ability to inherit required signatures from packages we depend upon, combining the
signatures into a single merged signature which reflects the requirements of any locally
defined signature, as well as the requirements of our dependencies.

A signature file is denoted by an hsig file; every required signature must have an hsig file
(even if it is an empty one), including required signatures inherited from dependencies. Sig-
natures can be imported using an ordinary import Sig declaration.

hsig files are written in a variant of Haskell similar to hs-boot files, but with some slight
changes:

* The header of a signature is signature A where ... (instead of the usual module A
where ...).

* Import statements and scoping rules are exactly as in Haskell. To mention a non-Prelude
type or class, you must import it.

» Unlike regular modules, the defined entities of a signature include not only those written
in the local hsig file, but also those from inherited signatures (as inferred from the -
package-id (unit-id) (page 189) flags). These entities are not considered in scope
when typechecking the local hsig file, but are available for import by any module or
signature which imports the signature. The one exception to this rule is the export list,
described below.

178 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

If a declaration occurs in multiple inherited signatures, they will be merged together.
For values, we require that the types from both signatures match exactly; however, other
declarations may merge in more interesting ways. The merging operation in these cases
has the effect of textually replacing all occurrences of the old name with a reference to
the new, merged declaration. For example, if we have the following two signatures:

signature A where
data T
f:i:rT->T

signature A where
data T = MkT
g:: T

the resulting merged signature would be:

signature A where

data T = MkT
firT->T
g :: T

» If no export list is provided for a signature, the exports of a signature are all of its defined
entities merged with the exports of all inherited signatures.

If you want to reexport an entity from a signature, you must also include a module Sig-
Name export, so that all of the entities defined in the signature are exported. For example,
the following module exports both f and Int from Prelude:

signature A(module A, Int) where
import Prelude (Int)
f :: Int

Reexports merge with local declarations; thus, the signature above would successfully
merge with:

signature A where
data Int

The only permissible implementation of such a signature is a module which reexports
precisely the same entity:

module A (f, Int) where
import Prelude (Int)
f =2 :: Int

Conversely, any entity requested by a signature can be provided by a reexport from the
implementing module. This is different from hs-boot files, which require every entity to
be defined locally in the implementing module.

* GHC has experimental support for signature thinning, which is used when a signature
has an explicit export list without a module export of the signature itself. In this case,
the export list applies to the final export list after merging, in particular, you may refer
to entities which are not declared in the body of the local hsig file.

The semantics in this case is that the set of required entities is defined exclusively by its
exports; if an entity is not mentioned in the export list, it is not required. The motivation
behind this feature is to allow a library author to provide an omnibus signature contain-
ing the type of every function someone might want to use, while a client thins down the

7.8. Filenames and separate compilation 179

GHC User’s Guide Documentation, Release 8.10.0.20191123

exports to the ones they actually require. For example, supposing that you have inher-
ited a signature for strings, you might write a local signature of this form, listing only
the entities that you need:

signature Str (Str, empty, append, concat) where
-- empty

A few caveats apply here. First, it is illegal to export an entity which refers to a locally
defined type which itself is not exported (GHC will report an error in this case). Second,
signatures which come from dependencies which expose modules cannot be thinned in
this way (after all, the dependency itself may need the entity); these requirements are
unconditionally exported. Finally, any module reexports must refer to modules imported
by the local signature (even if an inherited signature exported the module).

We may change the syntax and semantics of this feature in the future.

The declarations and types from signatures of dependencies that will be merged in are
not in scope when type checking an hsig file. To refer to any such type, you must declare
it yourself:

-- 0K, assuming we inherited an A that defines T
signature A (T) where

-- empty

-- Not OK

signature A (T, f) where
fi:T->T

-- 0K

signature A (T, f) where
data T
f::T->T

There must be no value declarations, but there can be type signatures for values. For
example, we might define the signature:

signature A where
double :: Int -> Int

A module implementing A would have to export the function double with a type defini-
tionally equal to the signature. Note that this means you can’t implement double using
a polymorphic function double :: Num a => a -> a.

Note that signature matching does check if fixity matches, so be sure specify fixity of
ordinary identifiers if you intend to use them with backticks.

Fixity, type synonym, open type/data family declarations are permitted as in normal
Haskell.

Closed type family declarations are permitted as in normal Haskell. They can also be
given abstractly, as in the following example:

type family ClosedFam a where ..

The .. is meant literally - you should write two dots in your file. The where clause
distinguishes closed families from open ones.

A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

180

Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

signature A where
data T a b

Abstract data types can be implemented not only with data declarations, but also new-
types and type synonyms (with the restriction that a type synonym must be fully eta-
reduced, e.g., type T = ... to be accepted.) For example, the following are all valid
implementations of the T above:

-- Algebraic data type
data T a b =MkT a b

-- Newtype
newtype T a b = MKT (a, b)

-- Type synonym
data T2 a b=MkT2 aabb
type T = T2

Data type declarations merge only with other data type declarations which match exactly,
except abstract data, which can merge with data, newtype or type declarations. Merges
with type synonyms are especially useful: suppose you are using a package of strings
which has left the type of characters in the string unspecified:

signature Str where
data Str
data Elem
head :: Str -> Elem

If you locally define a signature which specifies type Elem = Char, you can now use
head from the inherited signature as if it returned a Char.

If you do not write out the constructors, you may need to give a kind to tell GHC what
the kinds of the type variables are, if they are not the default *. Unlike regular data
type declarations, the return kind of an abstract data declaration can be anything (in
which case it probably will be implemented using a type synonym.) This can be used to
allow compile-time representation polymorphism (as opposed to run-time representation
polymorphism (page ??)), as in this example:

signature Number where
import GHC.Types
data Rep :: RuntimeRep
data Number :: TYPE Rep
plus :: Number -> Number -> Number

Roles of type parameters are subject to the subtyping relation phantom < representa-
tional < nominal: for example, an abstract type with a nominal type parameter can
be implemented using a concrete type with a representational type parameter. Merging
respects this subtyping relation (e.g., nominal merged with representationalis repre-
sentational.) Roles in signatures default to nominal, which gives maximum flexibility
on the implementor’s side. You should only need to give an explicit role annotation if
a client of the signature would like to coerce the abstract type in a type parameter (in
which case you should specify representational explicitly.) Unlike regular data types,
we do not assume that abstract data types are representationally injective: if we have
Coercible (T a) (T b), and T has role nominal, this does not imply that a ~ b.

e A class declarations can either be abstract or concrete. An abstract class is one with no
superclasses or class methods:

7.8. Filenames and separate compilation 181

GHC User’s Guide Documentation, Release 8.10.0.20191123

signature A where
class Key k

It can be implemented in any way, with any set of superclasses and methods; however,
modules depending on an abstract class are not permitted to define instances (as of GHC
8.2, this restriction is not checked, see #13086.) These declarations can be implemented
by type synonyms of kind Constraint; this can be useful if you want to parametrize over
a constraint in functions. For example, with the ConstraintKinds extension, this type
synonym is a valid implementation of the signature above:

module A where
type Key = Eq

A concrete class specifies its superclasses, methods, default method signatures (but not
their implementations) and a MINIMAL pragma. Unlike regular Haskell classes, you don’t
have to explicitly declare a default for a method to make it optional vis-a-vis the MINIMAL
pragma.

When merging class declarations, we require that the superclasses and methods match
exactly; however, MINIMAL pragmas are logically ORed together, and a method with a
default signature will merge successfully against one that does not.

* You can include instance declarations as in Haskell; just omit the “where” part. An
instance declaration need not be implemented directly; if an instance can be derived
based on instances in the environment, it is considered implemented. For example, the
following signature:

signature A where
data Str
instance Eq Str

is considered implemented by the following module, since there are instances of Eq for
[1 and Char which can be combined to form an instance Eq [Char]:

module A where
type Str = [Char]

Unlike other declarations, for which only the entities declared in a signature file are
brought into scope, instances from the implementation are always brought into scope,
even if they were not declared in the signature file. This means that a module may
typecheck against a signature, but not against a matching implementation. You can
avoid situations like this by never defining orphan instances inside a package that has
signatures.

Instance declarations are only merged if their heads are exactly the same, so it is possible
to get into a situation where GHC thinks that instances in a signature are overlapping,
even if they are implemented in a non-overlapping way. If this is giving you problems
give us a shout.

* Any orphan instances which are brought into scope by an import from a signature are
unconditionally considered in scope, even if the eventual implementing module doesn’t
actually import the same orphans.

Known limitations:

* Pattern synonyms are not supported.

182 Chapter 7. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/13086

GHC User’s Guide Documentation, Release 8.10.0.20191123

» Algebraic data types specified in a signature cannot be implemented using pattern syn-
onyms. See #12717

7.8.12 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name
your source files the same as your modules. Thus:

HC = ghc

HC_OPTS = -cpp $(EXTRA_HC_OPTS)
SRCS = Main.lhs Foo.lhs Bar.lhs
0BJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s
cool pgm : $(0BJS)

rm -f $@

$(HC) -0 $@ $(HC OPTS) $(0BJS)

Standard suffix rules

.0.hi:

@:
.lhs.o:

$(HC) -c $< $(HC OPTS)
.hs.o:

$(HC) -c $< $(HC _OPTS)

.0-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC _OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

Note: Sophisticated make variants may achieve some of the above more elegantly. Notably,
gmake’s pattern rules let you write the more comprehensible:

%.0 : %.Llhs
$(HC) -c $< $(HC OPTS)

What we’ve shown should work with any make.

Note the cheesy .0.hirule: It records the dependency of the interface (. hi) file on the source.
The rule says a . hi file can be made from a .o file by doing...nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and
once for hs-boot files (see How to compile mutually recursive modules (page 175)).

7.8. Filenames and separate compilation 183

https://gitlab.haskell.org/ghc/ghc/issues/12717

GHC User’s Guide Documentation, Release 8.10.0.20191123

Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.0, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks
for a rule to do so; one of the preceding suffix rules does the job nicely. These dependencies
can be generated automatically by ghc; see Dependency generation (page 184)

7.8.13 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required depen-
dencies. Add the following to your Makefile:

depend :
ghc -dep-suffix '' -M $(HC OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do
make depend before you do make cool pgm. The command ghc -M will append the needed
dependencies to your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its
imports (transitively), it adds to the Makefile:

* Aline recording the dependence of the object file on the source file.

’M.o : M.hs \

(or M. lhs if that is the filename you used).

* For each import declaration import Xin M, a line recording the dependence of M on X:

’M.o : X.hi ‘

* For each import declaration import {-# SOURCE #-} XinM, a line recording the depen-
dence of M on X:

’M.o : X.hi-boot ‘

(See How to compile mutually recursive modules (page 175) for details of hi-boot style
interface files.)

If M imports multiple modules, then there will be multiple lines with M. o as the target.

There is no need to list all of the source files as arguments to the ghc -M command; ghc traces
the dependencies, just like ghc - -make (a new feature in GHC 6.4).

Note that ghc -Mneeds to find a source file for each module in the dependency graph, so that
it can parse the import declarations and follow dependencies. Any pre-compiled modules
without source files must therefore belong to a package '.

By default, ghc -M generates all the dependencies, and then concatenates them onto the
end of makefile (or Makefile if makefile doesn’t exist) bracketed by the lines “# DO NOT
DELETE: Beginning of Haskell dependencies” and “# DO NOT DELETE: End of Haskell
dependencies”. If these lines already exist in the makefile, then the old dependencies are
deleted first.

1 This is a change in behaviour relative to 6.2 and earlier.

184 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Don’t forget to use the same -package options on the ghc -M command line as you would
when compiling; this enables the dependency generator to locate any imported modules that
come from packages. The package modules won’t be included in the dependencies generated,
though (but see the -include-pkg-deps option below).

The dependency generation phase of GHC can take some additional options, which you may
find useful. The options which affect dependency generation are:

-ddump-mod-cycles
Display a list of the cycles in the module graph. This is useful when trying to eliminate
such cycles.

-v2
Print a full list of the module dependencies to stdout. (This is the standard verbosity
flag, so the list will also be displayed with -v3 and -v4; see Verbosity options (page 79).)

-dep-makefile (file)
Use (file) as the makefile, rather than makefile or Makefile. If (file) doesn’t exist, mkde-
pendHS creates it. We often use -dep-makefile .depend to put the dependencies in
.depend and then include the file .depend into Makefile.

-dep-suffix (suffix)
Make dependencies that declare that files with suffix . (suf) (osuf) depend on interface
files with suffix . (suf)hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multiple -dep-
suffix flags are permitted. For example, -dep-suffix a -dep-suffix b _will make
dependencies for .hs on .hi, .a hson .a hi, and .b hs on .b_hi. Note that you must
provide at least one suffix; if you do not want a suffix then pass -dep-suffix "'

--exclude-module=(file)
Regard (file) as “stable”; i.e., exclude it from having dependencies on it.

-include-pkg-deps
Regard modules imported from packages as unstable, i.e., generate dependencies on
any imported package modules (including Prelude, and all other standard Haskell li-
braries). Dependencies are not traced recursively into packages; dependencies are only
generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system
libraries.

-include-cpp-deps

Output preprocessor dependencies. This only has an effect when the CPP language
extension is enabled. These dependencies are files included with the #include pre-
processor directive (as well as transitive includes) and implicitly included files such as
standard ¢ preprocessor headers and a GHC version header. One exception to this is
that GHC generates a temporary header file (during compilation) containing package
version macros. As this is only a temporary file that GHC will always generate, it is not
output as a dependency.

7.8.14 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module “be-
low” M is visible. (Module A is “below” M if A is imported directly by M, or if A is below a
module that M imports directly.) In principle, GHC must therefore read the interface files of
every module below M, just in case they contain an instance declaration that matters to M. This
would be a disaster in practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type

",

or class mentioned in the head of the instance declaration (the part after the “=>"; see Re-

7.8. Filenames and separate compilation 185

GHC User’s Guide Documentation, Release 8.10.0.20191123

laxed rules for instance contexts (page 358)), then GHC has to visit that interface file anyway.
Example:

module A where
instance C a => D (T a) where ...
data Ta= ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited
A‘s interface file to find T‘s definition.

The only problem comes when a module contains an instance declaration and GHC has no
other reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”.
GHC identifies orphan modules, and visits the interface file of every orphan module below the
module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But
suppose class E had a functional dependency:

module Lib where
class Exy | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be “improved” by setting
a = T, even though there is no explicit mention of T in M.

These considerations lead to the following definition of an orphan module:

* An orphan module orphan module contains at least one orphan instance or at least one
orphan rule.

* An instance declaration in a module M is an orphan instance if orphan instance
- The class of the instance declaration is not declared in M, and

- Either the class has no functional dependencies, and none of the type constructors
in the instance head is declared in M; or there is a functional dependency for which
none of the type constructors mentioned in the non-determined part of the instance
head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C’s
declaration to be in module A; it must be the declaration of D or T.

* A rewrite rule in a module M is an orphan rule orphan rule if none of the variables, type
constructors, or classes that are free in the left hand side of the rule are declared in M.

If you use the flag -Worphans (page 95), GHC will warn you if you are creating an orphan
module. Like any warning, you can switch the warning off with -Wno-orphans (page 95), and
-Werror (page 87) will make the compilation fail if the warning is issued.

186 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

You can identify an orphan module by looking in its interface file, M. hi, using the --show-
iface (file) (page 76) mode (page 76). If there is a [orphan module] on the first line, GHC
considers it an orphan module.

7.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several
packages: see the accompanying library documentation. More packages to install can be
obtained from HackageDB.

Using a package couldn’t be simpler: if you're using - -make or GHCi, then most of the in-
stalled packages will be automatically available to your program without any further options.
The exceptions to this rule are covered below in Using Packages (page 187).

Building your own packages is also quite straightforward: we provide the Cabal infrastructure
which automates the process of configuring, building, installing and distributing a package.
All you need to do is write a simple configuration file, put a few files in the right places, and
you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

7.9.1 Using Packages

GHC only knows about packages that are installed. Installed packages live in package
databases. For details on package databases and how to control which package databases or
specific set of packages are visible to GHC, see Package Databases (page 191).

To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:
Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
dph-par-0.4.0)
dph-prim-interface-0.4.0)
dph-prim-par-0.4.0)
dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0

(
(
(
(

ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)

ghc-prim-0.1.0.0
haskeline-0.6.2
haskel198-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2

7.9. Packages 187

http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
http://www.haskell.org/cabal/users-guide/

GHC User’s Guide Documentation, Release 8.10.0.20191123

old-locale-1.0.
old-time-1.0.0.
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4

unix-2.3.1.0
utf8-string-0.3.4

0.1
1

An installed package is either exposed or hidden by default. Packages hidden by default are
listed in parentheses (e.g. (lang-1.0)), or possibly in blue if your terminal supports colour,
in the output of ghc-pkg list. Command-line flags, described below, allow you to expose
a hidden package or hide an exposed one. Only modules from exposed packages may be
imported by your Haskell code; if you try to import a module from a hidden package, GHC
will emit an error message. It should be noted that a hidden package might still get linked
with your program as a dependency of an exposed package, it is only restricted from direct
imports.

If there are multiple exposed versions of a package, GHC will prefer the latest one. Addi-
tionally, some packages may be broken: that is, they are missing from the package database,
or one of their dependencies are broken; in this case; these packages are excluded from the
default set of packages.

Note: If you're using Cabal, then the exposed or hidden status of a package is irrelevant:
the available packages are instead determined by the dependencies listed in your .cabal
specification. The exposed/hidden status of packages is only relevant when using ghc or ghci
directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either
trusted or not trusted (distrusted). By default packages are distrusted. This property of a
package only plays a role when compiling code using GHC’s Safe Haskell feature (see Safe
Haskell (page 509)) with the -fpackage-trust flag enabled.

To see which modules are provided by a package use the ghc-pkg command (see Package
management (the ghc-pkg command) (page 196)):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,
Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

-package (pkg)
This option causes the installed package (pkg) to be exposed. The package (pkg) can be
specified in full with its version number (e.g. network-1.0) or the version number can
be omitted in which case GHC will automatically expose the latest non-broken version
from the installed versions of the package.

By default (when -hide-all-packages (page 189) is not specified), GHC exposes only

188 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

one version of a package, all other versions become hidden. If -package option is spec-
ified multiple times for the same package the last one overrides the previous ones. On
the other hand, if -hide-all-packages (page 189) is used, GHC allows you to expose
multiple versions of a package by using the -package option multiple times with different
versions of the same package.

-package supports thinning and renaming described in Thinning and renaming modules
(page 191).

The -package (pkg) option also causes package (pkg) to be linked into the resulting ex-
ecutable or shared object. Whether a packages’ library is linked statically or dynamically
is controlled by the flag pair -static (page 212)/ -dynamic (page 212).

In - -make (page 76) mode and --interactive (page 76) mode (see Modes of operation
(page 76)), the compiler normally determines which packages are required by the cur-
rent Haskell modules, and links only those. In batch mode however, the dependency
information isn’t available, and explicit -package options must be given when linking.
The one other time you might need to use -package to force linking a package is when
the package does not contain any Haskell modules (it might contain a C library only,
for example). In that case, GHC will never discover a dependency on it, so it has to be
mentioned explicitly.

For example, to link a program consisting of objects Foo.o0 and Main.o, where we made
use of the network package, we need to give GHC the -package flag thus:

’$ ghc -0 myprog Foo.o Main.o -package network ‘

The same flag is necessary even if we compiled the modules from source, because GHC
still reckons it’s in batch mode:

’$ ghc -0 myprog Foo.hs Main.hs -package network ‘

-package-id (unit-id)
Exposes a package like -package (pkg) (page 188), but the package is named by its
unit ID (i.e. the value of id in its entry in the installed package database, also previously
known as an installed package ID) rather than by name. This is a more robust way to
name packages, and can be used to select packages that would otherwise be shadowed.
Cabal passes -package-id flags to GHC. -package-id supports thinning and renaming
described in Thinning and renaming modules (page 191).

-hide-all-packages
Ignore the exposed flag on installed packages, and hide them all by default. If you use
this flag, then any packages you require (including base) need to be explicitly exposed
using -package (pkg) (page 188) options.

This is a good way to insulate your program from differences in the globally exposed
packages, and being explicit about package dependencies is a Good Thing. Cabal always
passes the -hide-all-packages flag to GHC, for exactly this reason.

-hide-package (pkg)
This option does the opposite of -package (pkg) (page 188): it causes the specified
package to be hidden, which means that none of its modules will be available for import
by Haskell import directives.

Note that the package might still end up being linked into the final program, if it is a
dependency (direct or indirect) of another exposed package.

-ignore-package (pkg)
Causes the compiler to behave as if package (pkg), and any packages that depend on

7.9. Packages 189

GHC User’s Guide Documentation, Release 8.10.0.20191123

(pkg), are not installed at all.

Saying -ignore-package (pkg) isthe same as giving -hide-package (pkg) (page 189)
flags for (pkg) and all the packages that depend on (pkg). Sometimes we don’t know
ahead of time which packages will be installed that depend on {pkg), which is when the
-ignore-package (pkg) (page 189) flag can be useful.

-no-auto-link-packages
By default, GHC will automatically link in the base and rts packages. This flag disables
that behaviour.

-this-unit-id (unit-id)
Tells GHC that the module being compiled forms part of unit ID (unit-id); internally, these
keys are used to determine type equality and linker symbols. As of GHC 8.0, unit IDs
must consist solely of alphanumeric characters, dashes, underscores and periods. GHC
reserves the right to interpret other characters in a special way in later releases.

-trust (pkg)
This option causes the install package (pkg) to be both exposed and trusted by GHC.
This command functions in a very similar way to the -package (pkg) (page 188) com-
mand but in addition sets the selected packages to be trusted by GHC, regardless of the
contents of the package database. (see Safe Haskell (page 509)).

-distrust (pkg)
This option causes the install package (pkg) to be both exposed and distrusted by GHC.
This command functions in a very similar way to the -package (pkg) (page 188) com-
mand but in addition sets the selected packages to be distrusted by GHC, regardless of
the contents of the package database. (see Safe Haskell (page 509)).

-distrust-all-packages
Ignore the trusted flag on installed packages, and distrust them by default. If you use
this flag and Safe Haskell then any packages you require to be trusted (including base)
need to be explicitly trusted using -trust (pkg) (page 517) options. This option does
not change the exposed/hidden status of a package, so it isn’t equivalent to applying -
distrust (pkg) (page 517) to all packages on the system. (see Safe Haskell (page 509)).

7.9.2 The main package

Every complete Haskell program must define main in module Main in package main. Omitting
the -this-unit-id (unit-id) (page 190) flag compiles code for package main. Failure to
do so leads to a somewhat obscure link-time error of the form:

/usr/bin/1ld: Undefined symbols:
~ZCMain main_closure

7.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two
modules with the same name: perhaps you used a package P that has a hidden module M,
and there is also a module M in your program. Or perhaps the dependencies of packages that
you used contain some overlapping modules. Perhaps the program even contains multiple
versions of a certain package, due to dependencies from other packages.

None of these scenarios gives rise to an error on its own ', but they may have some interesting

1 it used to in GHC 6.4, but not since 6.6

190 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

consequences. For instance, if you have a type M.T from version 1 of package P, then this is
not the same as the type M. T from version 2 of package P, and GHC will report an error if you
try to use one where the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely
identified by the pair of the module name in which it is defined and its name. In GHC, an
entity is uniquely defined by a triple: package, module, and name.

7.9.4 Thinning and renaming modules

When incorporating packages from multiple sources, you may end up in a situation where mul-
tiple packages publish modules with the same name. Previously, the only way to distinguish
between these modules was to use Package-qualified imports (page 291). However, since
GHC 7.10, the -package (pkg) (page 188) flags (and their variants) have been extended to
allow a user to explicitly control what modules a package brings into scope, by analogy to the
import lists that users can attach to module imports.

The basic syntax is that instead of specifying a package name P to the package flag - package,
instead we specify both a package name and a parenthesized, comma-separated list of mod-
ule names to import. For example, -package "base (Data.List,Data.Bool)" makes only
Data.List and Data.Bool visible from package base. We also support renaming of modules,
in case you need to refer to both modules simultaneously; this is supporting by writing 01d-
ModName as NewModName, e.g. -package "base (Data.Bool as Bool). You can also write
-package "base with (Data.Bool as Bool) to include all of the original bindings (e.g. the
renaming is strictly additive). It’s important to specify quotes so that your shell passes the
package name and thinning/renaming list as a single argument to GHC.

Package imports with thinning/renaming do not hide other versions of the package: e.g.
if containers-0.9 is already exposed, -package "containers-0.8 (Data.List as ListV8)"
will only add an additional binding to the environment. Similarly, -package "base
(Data.Bool as Bool)" -package "base (Data.List as List)" is equivalent to -package
"base (Data.Bool as Bool,Data.List as List)". Literal names must refer to modules
defined by the original package, so for example -package "base (Data.Bool as Bool,Bool
as Baz)" is invalid unless there was a Bool module defined in the original package. Hiding
a package also clears all of its renamings.

You can use renaming to provide an alternate prelude, e.g. -hide-all-packages -package
"basic-prelude (BasicPrelude as Prelude)", inlieu of the Rebindable syntax and the im-
plicit Prelude import (page 285) extension.

7.9.5 Package Databases

A package database is where the details about installed packages are stored. It is a directory,
usually called package.conf.d, that contains a file for each package, together with a binary
cache of the package data in the file package.cache. Normally you won’t need to look at or
modify the contents of a package database directly; all management of package databases
can be done through the ghc-pkg tool (see Package management (the ghc-pkg command)
(page 196)).

GHC knows about two package databases in particular:

» The global package database, which comes with your GHC installation, e.g.
/usr/1lib/ghc-6.12.1/package.conf.d.

* The user package database private to each user. On Unix systems this will be
$HOME/ .ghc/arch-os-version/package.conf.d, and on Windows it will be something

7.9. Packages 191

GHC User’s Guide Documentation, Release 8.10.0.20191123

like C:\Documents And Settings\user\ghc\package.conf.d. The ghc-pkg tool knows
where this file should be located, and will create it if it doesn’t exist (see Package man-
agement (the ghc-pkg command) (page 196)).

Package database stack: Package databases are arranged in a stack structure. When GHC
starts up it adds the global and the user package databases to the stack, in that order, unless
GHC PACKAGE PATH (page 192) is specified. When GHC PACKAGE PATH is specified then it
will determine the initial database stack. Several command line options described below can
further manipulate this initial stack. You can see GHC'’s effective package database stack by
running GHC with the -v (page 79) flag.

This stack structure means that the order of -package-db (file) (page 192) flags or
GHC PACKAGE PATH (page 192) is important. Each substack of the stack must be well formed
(packages in databases on top of the stack can refer to packages below, but not vice versa).

Package shadowing: When multiple package databases are in use it is possible, though rarely,
that the same installed package id is present in more than one database. In that case, pack-
ages closer to the top of the stack will override (shadow) those below them. If the conflicting
packages are found to be equivalent (by ABI hash comparison) then one of them replaces all
references to the other, otherwise the overridden package and all those depending on it will
be removed.

Package version selection: When selecting a package, GHC will search for packages in all
available databases. If multiple versions of the same package are available the latest non-
broken version will be chosen.

Version conflict resolution: If multiple instances of a package version chosen by GHC are
available then GHC will choose an unspecified instance.

You can control GHC’s package database stack using the following options:

-package-db (file)
Add the package database (file) on top of the current stack.

-no-global-package-db
Remove the global package database from the package database stack.

-no-user-package-db
Prevent loading of the user’s local package database in the initial stack.

-clear-package-db
Reset the current package database stack. This option removes every previously spec-
ified package database (including those read from the GHC PACKAGE PATH (page 192)
environment variable) from the package database stack.

-global-package-db
Add the global package database on top of the current stack. This option can be used
after -no-global-package-db (page 192) to specify the position in the stack where the
global package database should be loaded.

-user-package-db
Add the user’s package database on top of the current stack. This option can be used
after -no-user-package-db (page 192) to specify the position in the stack where the
user’s package database should be loaded.

The GHC_PACKAGE_PATH environment variable

GHC_PACKAGE_PATH
The GHC PACKAGE PATH environment variable may be set to a :-separated (;-

192 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

separated on Windows) list of files containing package databases. This list of package
databases, used by GHC and ghc-pkg, specifies a stack of package databases from top to
bottom. This order was chosen to match the behaviour of the PATH environment variable
where entries earlier in the PATH override ones that come later. See Package Databases
(page 191) for details on how the package database stack is used.

Normally GHC PACKAGE PATH replaces the default package stack. For example, all of
the following commands are equivalent, creating a stack with db1 at the top followed by
db2 (use ; instead of : on Windows):

$ ghc -clear-package-db -package-db db2.conf -package-db dbl.conf
$ env GHC_PACKAGE_PATH=dbl.conf:db2.conf ghc
$ env GHC PACKAGE PATH=db2.conf ghc -package-db dbl.conf

However, if GHC PACKAGE PATH ends in a separator, the default databases (i.e. the
user and global package databases, in that order) are appended to the path. For example,
to augment the usual set of packages with a database of your own, you could say (on
Unix):

$ export GHC PACKAGE PATH=$HOME/.my-ghc-packages.conf:

To check whether your GHC PACKAGE PATH setting is doing the right thing, ghc-pkg
list will list all the databases in use, in the reverse order they are searched.

Package environments

A package environment file is a file that tells ghc precisely which packages should be visible.
It can be used to create environments for ghc or ghci that are local to a shell session or to
some file system location. They are intended to be managed by build/package tools, to enable
ghc and ghci to automatically use an environment created by the tool.

The file contains package IDs and optionally package databases, one directive per line:

clear-package-db
global-package-db
user-package-db
package-db db.d/
package-id id 1
package-id id 2

package-id id n

If such a package environment is found, it is equivalent to passing these command line argu-
ments to ghc:

-hide-all-packages
-clear-package-db
-global-package-db
-user-package-db
-package-db db.d/
-package-id id 1
-package-id id 2

-package-id id n

Note the implicit -hide-all-packages (page 189) and the fact that it is -package-id (unit-
id) (page 189), not -package (pkg) (page 188). This is because the environment specifies

7.9. Packages 193

GHC User’s Guide Documentation, Release 8.10.0.20191123

precisely which packages should be visible.

Note that for the package-db directive, if a relative path is given it must be relative to the
location of the package environment file.

-package-env (file)|(name)
Use the package environment in (file), or in $HOME/.ghc/arch-os-
version/environments/(name) If set to - no package environment is read.

GHC_ENVIRONMENT
Specifies the path to the package environment file to be used by GHC. Overridden by
the -package-env (file)|(name) (page 194) flag if set.

In order, ghc will look for the package environment in the following locations:
* File (file) if you pass the option -package-env (file)|(name) (page 194).

» File $HOME/.ghc/arch-os-version/environments/name if you pass the option -
package-env (name).

* File (file) if the environment variable GHC ENVIRONMENT (page 194) is set to (file).

* File $HOME/.ghc/arch-os-version/environments/name if the environment variable
GHC ENVIRONMENT (page 194) is set to (name).

Additionally, unless -hide-all-packages is specified ghc will also look for the package envi-
ronment in the following locations:

* File .ghc.environment.arch-os-version if it exists in the current directory or any par-
ent directory (but not the user’s home directory).

» File $HOME/ .ghc/arch-os-version/environments/default if it exists.

Package environments can be modified by further command line arguments; for example, if
you specify -package foo on the command line, then package (foo) will be visible even if it’s
not listed in the currently active package environment.

7.9.6 Installed package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”), which distin-
guishes it from all other installed packages on the system. To see the installed package IDs
associated with each installed package, use ghc-pkg list -v:

$ ghc-pkg list -v

using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache

/usr/lib/ghc-6.12.1/package.conf.d
Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853af93593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbb157b9ae852096266e113b8fac4a2)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc)

The string in parentheses after the package name is the installed package ID: it normally be-
gins with the package name and version, and ends in a hash string derived from the compiled
package. Dependencies between packages are expressed in terms of installed package IDs,
rather than just packages and versions. For example, take a look at the dependencies of the
haskell98 package:

194 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

$ ghc-pkg field haskell98 depends

depends: array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d
base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc
directory-1.0.0.2-f51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e27f2b8e9
old-time-1.0.0.1-1c0d8ea38056e5087efle75cb0d139d1
process-1.0.1.1-d8fc6d3baf44678a29b9d59calad5780
random-1.0.0.1-423d08c90f004795fd10e60384ce6561

The purpose of the installed package ID is to detect problems caused by re-installing a pack-
age without also recompiling the packages that depend on it. Recompiling dependencies is
necessary, because the newly compiled package may have a different ABI (Application Binary
Interface) than the previous version, even if both packages were built from the same source
code using the same compiler. With installed package IDs, a recompiled package will have a
different installed package ID from the previous version, so packages that depended on the
previous version are now orphaned - one of their dependencies is not satisfied. Packages that
are broken in this way are shown in the ghc-pkg list output either in red (if possible) or oth-
erwise surrounded by braces. In the following example, we have recompiled and reinstalled
the filepath package, and this has caused various dependencies including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run 'ghc-pkg check' for more details.
/usr/lib/ghc-6.12.1/package.conf.d:
{Cabal-1.7.4}
array-0.2.0.1
base-3.0.3.0
. etc ...

Additionally, ghc-pkg list reminds you that there are broken packages and suggests ghc-
pkg check, which displays more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:

dependency "filepath-1.1.0.1-87511764eb0af2bced4db05e702750e63" doesn't exist
There are problems in package haskeline-0.6.2:

dependency "filepath-1.1.0.1-87511764eb0af2bced4db05e702750e63" doesn't exist
There are problems in package Cabal-1.7.4:

dependency "filepath-1.1.0.1-87511764eb0af2bced4db05e702750e63" doesn't exist
There are problems in package process-1.0.1.1:

dependency "filepath-1.1.0.1-87511764eb0@af2bce4db05e702750e63" doesn't exist
There are problems in package directory-1.0.0.2:

dependency "filepath-1.1.0.1-87511764eb0af2bced4db05e702750e63" doesn't exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.

ghc-6.12.1

haskeline-0.6.2

Cabal-1.7.4

process-1.0.1.1

directory-1.0.0.2

bin-package-db-0.0.0.0

hpc-0.5.0.2

haskell98-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependen-
cies. The easiest way to do this is to use cabal-install, or download the packages from
HackageDB and build and install them as normal.

7.9. Packages 195

http://hackage.haskell.org/packages/hackage.html

GHC User’s Guide Documentation, Release 8.10.0.20191123

Be careful not to recompile any packages that GHC itself depends on, as this may render the
ghc package itself broken, and ghc cannot be simply recompiled. The only way to recover
from this would be to re-install GHC.

7.9.7 Package management (the ghc-pkg command)

The ghc-pkg tool is for querying and modifying package databases. To see what pack-
age databases are in use, use ghc-pkg list. The stack of databases that ghc-pkg knows
about can be modified using the GHC PACKAGE PATH (page 192) environment variable (see
The GHC PACKAGE PATH environment variable (page 192), and using -package-db (file)
(page 192) options on the ghc-pkg command line.

When asked to modify a database, ghc-pkg modifies the global database by default. Speci-
fying - -user causes it to act on the user database, or - -package-db can be used to act on
another database entirely. When multiple of these options are given, the rightmost one is
used as the database to act upon.

Commands that query the package database (list, latest, describe, field, dot) operate on the
list of databases specified by the flags --user, --global, and - -package-db. If none of these
flags are given, the default is - -global --user.

If the environment variable GHC PACKAGE PATH (page 192) is set, and its value does not end
in a separator (: on Unix, ; on Windows), then the last database is considered to be the
global database, and will be modified by default by ghc-pkg. The intention here is that
GHC PACKAGE_PATH can be used to create a virtual package environment into which Cabal
packages can be installed without setting anything other than GHC PACKAGE PATH.

The ghc-pkg program may be run in the ways listed below. Where a package name is required,
the package can be named in full including the version number (e.g. network-1.0), or without
the version number. Naming a package without the version number matches all versions of
the package; the specified action will be applied to all the matching packages. A package
specifier that matches all version of the package can also be written (pkg) -*, to make it
clearer that multiple packages are being matched. To match against the installed package ID
instead of just package name and version, pass the --ipid flag.

ghc-pkg init path Creates a new, empty, package database at (path), which must not al-
ready exist.

ghc-pkg register (file) Reads a package specification from (file) (which may be “-” to
indicate standard input), and adds it to the database of installed packages. The syntax
of {file) is given in InstalledPackagelnfo: a package specification (page 200).

The package specification must be a package that isn’t already installed.

ghc-pkg update (file) The same as register, except that if a package of the same name
is already installed, it is replaced by the new one.

ghc-pkg unregister (P) Remove the specified package from the database.

ghc-pkg check Check consistency of dependencies in the package database, and report
packages that have missing dependencies.

ghc-pkg expose (P) Sets the exposed flag for package (P) to True.
ghc-pkg hide (P) Sets the exposed flag for package (P) to False.
ghc-pkg trust (P) Setsthe trusted flag for package (P) to True.
ghc-pkg distrust (P) Sets the trusted flag for package (P) to False.

196 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

ghc-pkg list [{(P)] [--simple-output] This option displays the currently installed pack-
ages, for each of the databases known to ghc-pkg. That includes the global database, the
user’s local database, and any further files specified using the - f option on the command
line.

Hidden packages (those for which the exposed flag is False) are shown in parentheses
in the list of packages.

If an optional package identifier (P) is given, then only packages matching that identifier
are shown.

If the option --simple-output is given, then the packages are listed on a single line
separated by spaces, and the database names are not included. This is intended to make
it easier to parse the output of ghc-pkg list using a script.

ghc-pkg find-module (M) [--simple-output] This option lists registered packages expos-
ing module (M). Examples:

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:
(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:
containers-0.1

Otherwise, it behaves like ghc-pkg 1list, including options.
ghc-pkg latest (P) Prints the latest available version of package (P).

ghc-pkg describe (P) Emit the full description of the specified package. The description is
in the form of an InstalledPackageInfo, the same as the input file format for ghc-pkg
register. See InstalledPackagelnfo: a package specification (page 200) for details.

If the pattern matches multiple packages, the description for each package is emitted,
separated by the string - - - on a line by itself.

ghc-pkg field (P) (field)[,(field)]* Show just a single field of the installed package
description for P. Multiple fields can be selected by separating them with commas

ghc-pkg dot Generate a graph of the package dependencies in a form suitable for input for
the graphviz tools. For example, to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc-pkg dump Emit the full description of every package, in the form of an InstalledPack-
ageInfo. Multiple package descriptions are separated by the string --- on a line by
itself.

This is almost the same as ghc-pkg describe '*', exceptthatghc-pkg dumpisintended
for use by tools that parse the results, so for example where ghc-pkg describe '*' will
emit an error if it can’t find any packages that match the pattern, ghc-pkg dump will
simply emit nothing.

ghc-pkg recache Re-creates the binary cache file package. cache for the selected database.
This may be necessary if the cache has somehow become out-of-sync with the contents
of the database (ghc-pkg will warn you if this might be the case).

The other time when ghc-pkg recache is useful is for registering packages manually:
it is possible to register a package by simply putting the appropriate file in the package

7.9. Packages 197

http://www.graphviz.org/

GHC User’s Guide Documentation, Release 8.10.0.20191123

database directory and invoking ghc-pkg recache to update the cache. This method of
registering packages may be more convenient for automated packaging systems.

Substring matching is supported for (M) in find-module and for (P) in list, describe, and
field, where a '*' indicates open substring ends (prefix*, *suffix, *infix*). Examples
(output omitted):

-- list all regex-related packages

ghc-pkg list '*regex*' --ignore-case

-- list all string-related packages

ghc-pkg list '*string*' --ignore-case

-- list OpenGL-related packages

ghc-pkg list '*gl*' --ignore-case

-- list packages exporting modules in the Data hierarchy
ghc-pkg find-module 'Data.*'

-- list packages exporting Monad modules

ghc-pkg find-module '*Monad*'

-- list names and maintainers for all packages
ghc-pkg field '*' name,maintainer

-- list location of haddock htmls for all packages
ghc-pkg field '*' haddock-html

-- dump the whole database

ghc-pkg describe '*!

Additionally, the following flags are accepted by ghc-pkg:

-f (file), -package-db (file) Adds (file) to the stack of package databases. Additionally,
(file) will also be the database modified by a register, unregister, expose or hide
command, unless it is overridden by a later - -package-db, --user or - -global option.

--force Causes ghc-pkg to ignore missing dependencies, directories and libraries when
registering a package, and just go ahead and add it anyway. This might be useful if
your package installation system needs to add the package to GHC before building and
installing the files.

--global Operate on the global package database (this is the default). This flag affects the
register, update, unregister, expose, and hide commands.

--help, -? Outputs the command-line syntax.

--user Operate on the current user’s local package database. This flag affects the register,
update, unregister, expose, and hide commands.

-v [{n)], --verbose [=(n)] Control verbosity. Verbosity levels range from 0-2, where the
default is 1, and -v alone selects level 2.

-V; --version Output the ghc-pkg version number.

--ipid Causes ghc-pkg to interpret arguments as installed package IDs (e.g., an identifier
like unix-2.3.1.0-de780311a8cdB88d2161b29b083c94240). This is useful if providing
just the package name and version are ambiguous (in old versions of GHC, this was
guaranteed to be unique, but this invariant no longer necessarily holds).

--package-key Causes ghc-pkg to interpret arguments as unit
IDs (e.g., an identifier like IS5BErHzyOmO7EBNpKBEeUv). Pack-
age keys are used to prefix symbol names GHC produces (e.qg.,
6VWy06pWzzJq9evDvK2d4w6 DataziByteStringziInternal unsafePackLenChars info),
so if you need to figure out what package a symbol belongs to, use ghc-pkg with this
flag.

198 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.9.8 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure
if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so a few hints for those brave souls
follow.

You need to build an “installed package info” file for passing to ghc-pkg when installing your
package. The contents of this file are described in InstalledPackagelnfo: a package specifi-
cation (page 200).

The Haskell code in a package may be built into one or more archive libraries (e.g. 1ibHS-
foo.a), or a single shared object (e.g. LibHSfoo.dll/.so/.dylib). The restriction to a sin-
gle shared object is because the package system is used to tell the compiler when it should
make an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-
object calls require an extra indirection).

» Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo-1.0.a A.o B.o C.o ...

where A.o, B.o and so on are the compiled Haskell modules, and 1ibHSfo0o0.a is the
library you wish to create. The syntax may differ slightly on your system, so check the
documentation if you run into difficulties.

* To load a package foo, GHCi can load its 1ibHSfoo0.a library directly, but it can also
load a package in the form of a single HSfoo.o0 file that has been pre-linked. Loading
the .o file is slightly quicker, but at the expense of having another copy of the compiled
package. The rule of thumb is that if the modules of the package were compiled with
-split-sections (page 211) then building the HSfo0.0 is worthwhile because it saves
time when loading the package into GHCi. Without -split-sections (page 211), there
is not much difference in load time between the .0 and . a libraries, so it is better to save
the disk space and only keep the .a around. In a GHC distribution we provide .o files
for most packages except the GHC package itself.

The HSfoo.o0 file is built by Cabal automatically; use --disable-library-for-ghci to
disable it. To build one manually, the following GNU 1ld command can be used:

1ld -r --whole-archive -o HSfoo.o libHSfoo.a

(replace --whole-archive with -all load on MacOS X)

* When building the package as shared library, GHC can be used to perform the link step.
This hides some of the details out the underlying linker and provides a common interface
to all shared object variants that are supported by GHC (DLLs, ELF DSOs, and Mac OS
dylibs). The shared object must be named in specific way for two reasons: (1) the name
must contain the GHC compiler version, so that two library variants don’t collide that
are compiled by different versions of GHC and that therefore are most likely incompat-
ible with respect to calling conventions, (2) it must be different from the static name
otherwise we would not be able to control the linker as precisely as necessary to make
the -static (page 212)/-dynamic (page 212) flags work, see Options affecting linking
(page 211).

ghc -shared -dynamic -o libHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC'’s version number in the shared object name allows different library versions
compiled by different GHC versions to be installed in standard system locations, e.g.

7.9. Packages 199

http://www.haskell.org/cabal/users-guide/

GHC User’s Guide Documentation, Release 8.10.0.20191123

under *nix /usr/lib. To obtain the version number of GHC invoke ghc --numeric-
version and use its output in place of (GHCVersion). See also Options affecting code
generation (page 210) on how object files must be prepared for shared object linking.

To compile a module which is to be part of a new package, use the - package-name (to identify
the name of the package) and -library-name (to identify the version and the version hashes
of its identities.) options (Using Packages (page 187)). Failure to use these options when
compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the
package name it was expecting the module to come from is not the same as the package name
stored in the .hi file.

It is worth noting with shared objects, when each package is built as a single shared object
file, since a reference to a shared object costs an extra indirection, intra-package references
are cheaper than inter-package references. Of course, this applies to the main package as
well.

7.9.9 InstalledPackageInfo: a package specification

A package specification is a Haskell record; in particular, it is the record
Distribution.InstalledPackagelnfo.InstalledPackageInfo in the module Distribu-
tion.InstalledPackagelnfo, which is part of the Cabal package distributed with GHC.

An InstalledPackageInfo has a human readable/writable syntax. The functions parse-
InstalledPackageInfo and showInstalledPackageInfo read and write this syntax respec-
tively. Here’s an example of the InstalledPackageInfo for the unix package:

$ ghc-pkg describe unix

name: unix

version: 2.3.1.0

id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240

license: BSD3

copyright:

maintainer: libraries@haskell.org

stability:

homepage:

package-url:

description: This package gives you access to the set of operating system
services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).

The package is not supported under Windows (except under Cygwin).

category: System

author:

exposed: True

exposed-modules: System.Posix System.Posix.DynamicLinker.Module
System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.I0 System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:

trusted: False

200 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
hs-libraries: HSunix-2.3.1.0

extra-libraries: rt util dl

extra-ghci-libraries:

include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include
includes: HsUnix.h execvpe.h

depends: base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc
hugs-options:

cc-options:

ld-options:

framework-dirs:

frameworks:

haddock-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock
haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:

A package description consists of a number of field/value pairs. A field starts with the field

“ .,

name in the left-hand column followed by a “:”, and the value continues until the next line
that begins in the left-hand column, or the end of file.

The syntax of the value depends on the field. The various field types are:
freeform Any arbitrary string, no interpretation or parsing is done.

string A sequence of non-space characters, or a sequence of arbitrary characters surrounded
by quotes "....".

string list A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, depen-
dencies).

The allowed fields, with their types, are:
name (string) The package’s name (without the version).
id (string) The installed package ID. It is up to you to choose a suitable one.

version (string) The package’s version, usually in the form A.B (any number of components
are allowed).

license (string) The type of license under which this package is distributed. This field is a
value of the Distribution.License.License type.

license-file (optional string) The name of a file giving detailed license information for this
package.

copyright (optional freeform) The copyright string.
maintainer (optional freeform) The email address of the package’s maintainer.

stability (optional freeform) A string describing the stability of the package (e.g. stable,
provisional or experimental).

homepage (optional freeform) URL of the package’s home page.

package-url (optional freeform) URL of a downloadable distribution for this package. The
distribution should be a Cabal package.

description (optional freeform) Description of the package.

7.9. Packages 201

GHC User’s Guide Documentation, Release 8.10.0.20191123

category (optional freeform) Which category the package belongs to. This field is for use in
conjunction with a future centralised package distribution framework, tentatively titled
Hackage.

author (optional freeform) Author of the package.
exposed (bool) Whether the package is exposed or not.
exposed-modules (string list) modules exposed by this package.

hidden-modules (string list) modules provided by this package, but not exposed to the pro-
grammer. These modules cannot be imported, but they are still subject to the overlap-
ping constraint: no other package in the same program may provide a module of the
same name.

reexported-modules Modules reexported by this package. This list takes the form of
pkg:0ldName as NewName (A@orig-pkg-0.1-HASH): the first portion of the string is the
user-written reexport specification (possibly omitting the package qualifier and the re-
naming), while the parenthetical is the original package which exposed the module under
are particular name. Reexported modules have a relaxed overlap constraint: it’s permis-
sible for two packages to reexport the same module as the same name if the reexported
moduleis identical.

trusted (bool) Whether the package is trusted or not.

import-dirs (string list) A list of directories containing interface files (.hi files) for this
package.

If the package contains profiling libraries, then the interface files for those library mod-
ules should have the suffix .p _hi. So the package can contain both normal and profiling
versions of the same library without conflict (see also library dirs below).

library-dirs (string list) A list of directories containing libraries for this package.

hs-libraries (string list) A list of libraries containing Haskell code for this package, with
the .a or .dl1 suffix omitted. When packages are built as libraries, the 1ib prefix is also
omitted.

For use with GHCIi, each library should have an object file too. The name of the object
file does not have a 1ib prefix, and has the normal object suffix for your platform.

For example, if we specify a Haskell library as HSfoo in the package spec, then the various
flavours of library that GHC actually uses will be called:

1ibHSfoo.a The name of the library on Unix and Windows (mingw) systems. Note that
we don’t support building dynamic libraries of Haskell code on Unix systems.

HSfoo.d1ll The name of the dynamic library on Windows systems (optional).
HSfoo.0; HSfoo.obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference be-
tween hs-libraries and extra-libraries is that hs-libraries normally have several
versions, to support profiling, parallel and other build options. The various versions
are given different suffixes to distinguish them, for example the profiling version of the
standard prelude library is named libHSbase p.a, with the p indicating that this is a
profiling version. The suffix is added automatically by GHC for hs-1libraries only, no
suffix is added for libraries in extra-1libraries.

The libraries listed in extra-1libraries may be any libraries supported by your system’s
linker, including dynamic libraries (.so on Unix, .DLL on Windows).

202 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Also, extra-libraries are placed on the linker command line after the hs-libraries
for the same package. If your package has dependencies in the other direction (i.e.
extra-libraries depends on hs-libraries), and the libraries are static, you might
need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.

includes (string list) A list of files to include for via-C compilations using this package.
Typically the include file(s) will contain function prototypes for any C functions used in
the package, in case they end up being called as a result of Haskell functions from the
package being inlined.

depends (package id list) Packages on which this package depends.
hugs-options (string list) Options to pass to Hugs for this package.

cc-options (string list) Extra arguments to be added to the gcc command line when this
package is being used (only for via-C compilations).

ld-options (string list) Extra arguments to be added to the gcc command line (for linking)
when this package is being used.

framework-dirs (stringlist) On Darwin/MacOS X, a list of directories containing frameworks
for this package. This corresponds to the - framework-path option. It is ignored on all
other platforms.

frameworks (stringlist) On Darwin/MacOS X, a list of frameworks to link to. This corresponds
to the -framework option. Take a look at Apple’s developer documentation to find out
what frameworks actually are. This entry is ignored on all other platforms.

haddock-interfaces (string list) A list of filenames containing Haddock interface files
(.haddock files) for this package.

haddock-html (optional string) The directory containing the Haddock-generated HTML for
this package.

7.10 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible
for taking the last intermediate representation that GHC uses (a form called Cmm that is a
simple, C like language) and compiling it to executable code. The backends that GHC support
are described below.

7.10.1 Native Code Generator (-fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to
assembly code. It is the fastest backend and generally produces good performance code. It
has the best support for compiling shared libraries. Select it with the - fasm flag.

7.10.2 LLVM Code Generator (-fllvm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It
generally produces code as with performance as good as the native code generator but for
some cases can produce much faster code. This is especially true for numeric, array heavy

7.10. GHC Backends 203

http://www.haskell.org/haddock/
http://llvm.org

GHC User’s Guide Documentation, Release 8.10.0.20191123

code using packages like vector. The penalty is a significant increase in compilation times.
Select the LLVM backend with the -fllvm (page 210) flag.

You must install and have LLVM available on your PATH for the LLVM code generator to work.
Specifically GHC needs to be able to call the opt and 11lc tools. Secondly, if you are run-
ning Mac OS X with LLVM 3.0 or greater then you also need the Clang C compiler compiler
available on your PATH.

Note: Note that this GHC release expects an LLVM version in the 9 release series.

To install LLVM and Clang:
* Linux: Use your package management tool.

* Mac OS X: Clang is included by default on recent OS X machines when XCode is installed
(from 10.6 and later). LLVM is not included. In order to use the LLVM based code
generator, you should install the Homebrew package manager for OS X. Alternatively
you can download binaries for LLVM and Clang from here.

* Windows: You should download binaries for LLVM and clang from here.

7.10.3 C Code Generator (-fvia-C)

-fvia-C
Use the C code generator. Only supposed in unregisterised GHC builds.

This is the oldest code generator in GHC and is generally not included any more having been
deprecated around GHC 7.0. Select it with the -fvia-C (page 204) flag.

The C code generator is only supported when GHC is built in unregisterised mode, a mode
where GHC produces “portable” C code as output to facilitate porting GHC itself to a new
platform. This mode produces much slower code though so it’s unlikely your version of GHC
was built this way. If it has then the native code generator probably won’t be available. You
can check this information by calling ghc --info (see - -info (page 77)).

7.10.4 Unregisterised compilation

The term “unregisterised” really means “compile via vanilla C”, disabling some of the
platform-specific tricks that GHC normally uses to make programs go faster. When compiling
unregisterised, GHC simply generates a C file which is compiled via gcc.

When GHC is build in unregisterised mode only the LLVM and C code generators will be
available. The native code generator won’t be. LLVM usually offers a substantial performance
benefit over the C backend in unregisterised mode.

Unregisterised compilation can be useful when porting GHC to a new machine, since it re-
duces the prerequisite tools to gcc, as, and 1d and nothing more, and furthermore the amount
of platform-specific code that needs to be written in order to get unregisterised compilation
going is usually fairly small.

Unregisterised compilation cannot be selected at compile-time; you have to build GHC with
the appropriate options set. Consult the GHC Building Guide for details.

You can check if your GHC is unregisterised by calling ghc --info (see --info (page 77)).

204 Chapter 7. Using GHC

http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.11 Options related to a particular phase

7.11.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation
system, in place of whatever the ghc has wired into it. For example, you might want to try
a different assembler. The following options allow you to change the external program used
for a given compilation phase:

-pgmL {cmd)
Use (cmd) as the literate pre-processor.

-pgmP (cmd)
Use (cmd) as the C pre-processor (with -cpp only).

-pgmc {cmd)
Use (cmd) as the C compiler.

-pgmlo (cmd)
Use (cmd) as the LLVM optimiser.

-pgmlc {(cmd)
Use (cmd) as the LLVM compiler.

-pgms (cmd)
Use (cmd) as the splitter.

-pgma {cmd)
Use (cmd) as the assembler.

-pgml (cmd)
Use (cmd) as the linker.

-pgmdll (cmd)
Use {(cmd) as the DLL generator.

-pgmF (cmd)
Use (cmd) as the pre-processor (with -F (page 209) only).

-pgmwindres (cmd)
Use (cmd) as the program to use for embedding manifests on Windows. Normally this
is the program windres, which is supplied with a GHC installation. See -fno-embed-
manifest in Options affecting linking (page 211).

-pgmlibtool (cmd)
Use (cmd) as the libtool command (when using -staticlib (page 211) only).

-pgmi (cmd)
Use (cmd) as the external interpreter command (see Running the interpreter in a sepa-
rate process (page 67)). Default: ghc-iserv-prof if -prof (page 233) is enabled, ghc-
iserv-dyn if -dynamic (page 212) is enabled, or ghc-iserv otherwise.

7.11.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:

-optL (option)
Pass {(option) to the literate pre-processor

7.11. Options related to a particular phase 205

GHC User’s Guide Documentation, Release 8.10.0.20191123

-optP (option)
Pass {(option) to CPP (makes sense only if -cpp is also on).

-optF (option)
Pass (option) to the custom pre-processor (see Options affecting a Haskell pre-processor
(page 209)).

-optc (option)
Pass {option) to the C compiler.

-optcxx (option)
Pass (option) to the C++ compiler.

-optlo (option)
Pass {(option) to the LLVM optimiser.

-optlc (option)
Pass {option) to the LLVM compiler.

-opta (option)
Pass {option) to the assembler.

-optl (option)
Pass (option) to the linker.

-optdll (option)
Pass {(option) to the DLL generator.

-optwindres {(option)
Pass (option) to windres when embedding manifests on Windows. See -fno-embed-
manifest in Options affecting linking (page 211).

-opti (option)
Pass (option) to the interpreter sub-process (see Running the interpreter in a separate
process (page 67)). A common use for this is to pass RTS options e.qg., -opti+RTS -opti-
A64m, or to enable verbosity with -opti-v to see what messages are being exchanged by
GHC and the interpreter.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver -
opta-Ewurble (the dash before the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime
system you can enclose them in +RTS ... -RTS (see Running a compiled program (page 151)).

7.11.3 Options affecting the C pre-processor

CPP
Since 6.8.1

The CPP (page 206) language extension enables the C pre-processor. This can be turned
into a command-line flag by prefixing it with -X; For example:

’$ ghc -XCPP foo.hs

|

The CPP (page 206) language extension can also be enabled using the LANGUAGE
(page 478) pragma; For example:

]{-# LANGUAGE CPP #-}

206 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-cpp
The C pre-processor cpp is run over your Haskell code if the -cpp option or -XCPP ex-
tension are given. Unless you are building a large system with significant doses of con-
ditional compilation, you really shouldn’t need it.

-D{symbol) [=(value)]
Define macro (symbol) in the usual way. When no value is given, the value is taken to be
1. For instance, -DUSE_MYLIB is equivalent to -DUSE_MYLIB=1.

Note: -D(symbol)[=(value)] (page 207) does not affect -D macros passed to the
C compiler when compiling an unregisterised build! In this case use the -optc-Dfoo
hack... (see Forcing options to a particular phase (page 205)).

-U{symbol)
Undefine macro (symbol) in the usual way.

-I(dir)
Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (. hs or . lhs
files).

Standard CPP macros

The symbols defined by GHC are listed below. To check which symbols are defined by your
local GHC installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn’t actually used).

__GLASGOW_HASKELL__ For version x.y.z of GHC, the value of GLASGOW HASKELL is the
integer (xyy) (if {(y) is a single digit, then a leading zero is added, so for example in version
6.2 of GHC, GLASGOW HASKELL ==602). More information in GHC version numbering
policy (page 6).
With any luck, GLASGOW HASKELL will be undefined in all other implementations that
support C-style pre-processing.

Note: The comparable symbols for other systems are: = HUGS for Hugs, NHC for
nhc98, and HBC _ for hbc).

NB. This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_PATCHLEVEL1__ ; _ GLASGOW_HASKELL_PATCHLEVEL2__ These macros
are available starting with GHC 7.10.1.

For three-part GHC version numbers x.y.z, the value of GLAS-
GOW HASKELL PATCHLEVEL1 is the integer (z).
For four-part GHC version numbers x.y.z.z', the value of GLAS-

GOW HASKELL PATCHLEVEL1 is the integer (z) while the wvalue of GLAS-
GOW HASKELL PATCHLEVEL2 is set to the integer (z’).

7.11. Options related to a particular phase 207

GHC User’s Guide Documentation, Release 8.10.0.20191123

These macros are provided for allowing finer granularity than is provided by = GLAS-
GOW _HASKELL . Usually, this should not be necessary as it’s expected for most APIs to
remain stable between patchlevel releases, but occasionally internal API changes are
necessary to fix bugs. Also conditional compilation on the patchlevel can be useful for
working around bugs in older releases.

Tip: These macros are set when pre-processing both Haskell source and C source,
including the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc
files).

MIN_VERSION_GLASGOW_HASKELL(x,y,z,z') This macro is available starting with GHC
7.10.1.

This macro is provided for convenience to write CPP conditionals testing whether the
GHC version used is version x.y.z.z' or later.

If compatibility with Haskell compilers (including GHC prior to version 7.10.1)
which do not define MIN VERSION GLASGOW HASKELL is required, the presence of the
MIN VERSION GLASGOW HASKELL macro needs to be ensured before it is called, e.g.:

#if defined (MIN VERSION GLASGOW HASKELL)

#if MIN VERSION GLASGOW HASKELL(7,10,2,0)

/* code that applies only to GHC 7.10.2 or later */
#endif

#endif

Tip: This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_TH__ This is set to 1 when the compiler supports Template Haskell, and
to 0 when not. The latter is the case for a stage-1 compiler during bootstrapping, or on
architectures where the interpreter is not available.

___GLASGOW_HASKELL_LLVM__ Only defined when -fllvm is specified. When GHC is using
version X.y.z of LLVM, the value of = GLASGOW HASKELL LLVM is the integer (xyy) (if
(y) is a single digit, then a leading zero is added, so for example when using version 3.7
of LLVM, GLASGOW HASKELL LLVM ==307).

__PARALLEL_HASKELL__ Only defined when -parallelisin use! This symbol is defined when
pre-processing Haskell (input) and pre-processing C (GHC output).

os_HOST_0S=1 This define allows conditional compilation based on the Operating System,
where(os) is the name of the current Operating System (eg. 1inux, mingw32 for Windows,
solaris, etc.).

arch_HOST_ARCH=1 This define allows conditional compilation based on the host architecture,
where(arch) is the name of the current architecture (eg. 1386, x86 64, powerpc, sparc,
etc.).

VERSION_pkgname This macro is available starting GHC 8.0. It is defined for every exposed
package. This macro expands to a string recording the version of pkgname that is exposed
for module import. It is identical in behavior to the VERSION pkgname macros that Cabal
defines.

MIN_VERSION_pkgname(x,y,z) This macro is available starting GHC 8.0. It is defined for
every exposed package. This macro is provided for convenience to write CPP condi-

208 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

tionals testing if a package version is x.y.z or later. It is identical in behavior to the
MIN_VERSION pkgname macros that Cabal defines.

CPP and string gaps

A small word of warning: -cpp (page 206) is not friendly to “string gaps”. In other words,
strings such as the following:

strmod = "\
\ p\

\||

don’t work with -cpp (page 206); /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp
and possibly other cpps) leaves the backslash-space pairs alone and the string gap works as
expected.

7.11.4 Options affecting a Haskell pre-processor

-F

A custom pre-processor is run over your Haskell source file only if the -F option is given.

Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The -F option lets you run a pre-processor as part of the overall GHC compilation
pipeline, which has the advantage over running a Haskell pre-processor separately in
that it works in interpreted mode and you can continue to take reap the benefits of
GHC'’s recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the Haskell
input, but after the literate markup has been stripped away and (possibly) the C pre-
processor has washed the Haskell input.

Use -pgmF (cmd) (page 205) to select the program to use as the preprocessor. When
invoked, the (cmd) pre-processor is given at least three arguments on its command-line:
the first argument is the name of the original source file, the second is the name of the
file holding the input, and the third is the name of the file where {(cmd) should write its
output to.

Additional arguments to the pre-processor can be passed in using the -optF (option)
(page 206) option. These are fed to (cmd) on the command line after the three standard
input and output arguments.

An example of a pre-processor is to convert your source files to the input encoding that
GHC expects, i.e. create a script convert.sh containing the lines:

#!1/bin/sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f 11 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The -f 11 option tells iconv to convert your
Latin-1 file, supplied in argument $2, while the “-t utf-8” options tell iconv to return a
UTF-8 encoded file. The result is redirected into argument $3. The echo "{-# LINE 1
\"$2\" #-1}" just makes sure that your error positions are reported as in the original
source file.

7.11. Options related to a particular phase 209

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.11.5 Options affecting code generation

-fasm
Use GHC'’s native code generator (page 203) rather than compiling via LLVM. -fasm is
the default.

-fllvm
Compile via LLVM (page 203) instead of using the native code generator. This will gen-
erally take slightly longer than the native code generator to compile. Produced code is
generally the same speed or faster than the other two code generators. Compiling via
LLVM requires LLVM’s opt and 1lc executables to be in PATH.

Note: Note that this GHC release expects an LLVM version in the 9 release series.

-fno-code
Omit code generation (and all later phases) altogether. This is useful if you're only in-
terested in type checking code.

-fwrite-interface
Always write interface files. GHC will normally write interface files automatically, but
this flag is useful with - fno-code (page 210), which normally suppresses generation of
interface files. This is useful if you want to type check over multiple runs of GHC without
compiling dependencies.

-fobject-code
Generate object code. This is the default outside of GHCi, and can be used with GHCi to
cause object code to be generated in preference to bytecode.

-fbyte-code
Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can
currently only be used in the interactive interpreter, not saved to disk. This option is
only useful for reversing the effect of - fobject-code (page 210).

-fPIC
Generate position-independent code (code that can be put into shared libraries). This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform.

-fexternal-dynamic-refs
When generating code, assume that entities imported from a different module might be
dynamically linked. This flag is enabled automatically by -dynamic (page 212).

-fPIE
Generate code in such a way to be linkable into a position-independent executable This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform. To link the final executable use -pie
(page 216).

-dynamic
Build code for dynamic linking. This can reduce code size tremendously, but may slow-
down cross-module calls of non-inlined functions. There can be some complications com-
bining -shared (page 212) with this flag relating to linking in the RTS under Linux. See
#10352.

Note that using this option when linking causes GHC to link against shared libraries.

-dynamic-too
Generates both dynamic and static object files in a single run of GHC. This option is

210 Chapter 7. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/10352

GHC User’s Guide Documentation, Release 8.10.0.20191123

functionally equivalent to running GHC twice, the second time adding -dynamic -osuf
dyn o -hisuf dyn hi.

Although it is equivalent to running GHC twice, using -dynamic-too is more efficient,
because the earlier phases of the compiler up to code generation are performed just
once.

When using -dynamic-too, the options -dyno, -dynosuf, and -dynhisuf are the coun-
terparts of -0, -osuf, and -hisuf respectively, but applying to the dynamic compilation.

7.11.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-
supplied, and system-supplied (- lm math library, for example).

-1 (lib)
Link in the (lib) library. On Unix systems, this will be in a file called liblib.a or
liblib.so which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter.
If library (foo) requires library (bar), then in general -1 {foo) should come before -1
(bar) on the command line.

There’s one other gotcha to bear in mind when using external libraries: if the library con-
tains a main () function, then this will be a link conflict with GHC’s own main() function
(eg. libf2c and lib1l have their own main()s).

You can use an external main function if you initialize the RTS manually and pass -no-
hs-main. See also Using your own main() (page 528).

Omits the link step. This option can be used with - -make (page 76) to avoid the automatic
linking that takes place if the program contains a Main module.

-package (name)
If you are using a Haskell “package” (see Packages (page 187)), don’t forget to add the
relevant -package option when linking the program too: it will cause the appropriate
libraries to be linked in with the program. Forgetting the -package option will likely
result in several pages of link errors.

-framework (name)
On Darwin/OS X/iOS only, link in the framework (name). This option corresponds to
the -framework option for Apple’s Linker. Please note that frameworks and packages
are two different things - frameworks don’t contain any Haskell code. Rather, they are
Apple’s way of packaging shared libraries. To link to Apple’s “Carbon” API, for example,
you’d use - framework Carbon.

-staticlib
Link all passed files into a static library suitable for linking. To control the name, use
the -0 (file) (page 171) option as usual. The default name is liba.a.

-L (dir)
Where to find user-supplied libraries... Prepend the directory (dir) to the library direc-
tories path.

-framework-path (dir)
On Darwin/OS X/iOS only, prepend the directory (dir) to the framework directories path.
This option corresponds to the -F option for Apple’s Linker (-F already means something
else for GHC).

7.11. Options related to a particular phase 211

GHC User’s Guide Documentation, Release 8.10.0.20191123

-split-sections
Place each generated function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of the data
item determines the section’s name in the output file.

When linking, the linker can automatically remove all unreferenced sections and thus
produce smaller executables.

-static
Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic
This flag tells GHC to link against shared Haskell libraries. This flag only affects the
selection of dependent libraries, not the form of the current target (see -shared). See
Using shared libraries (page 216) on how to create them.

Note that this option also has an effect on code generation (see above).

-shared
Instead of creating an executable, GHC produces a shared object with this linker flag.
Depending on the operating system target, this might be an ELF DSO, a Windows DLL,
or a Mac OS dylib. GHC hides the operating system details beneath this uniform flag.

The flags -dynamic (page 212) and -static (page 212) control whether the resulting
shared object links statically or dynamically to Haskell package libraries given as -
package (pkg) (page 188) option. Non-Haskell libraries are linked as gcc would reg-
ularly link it on your system, e.g. on most ELF system the linker uses the dynamic
libraries when found.

Object files linked into shared objects must be compiled with - fPIC (page 210), see
Options affecting code generation (page 210)

When creating shared objects for Haskell packages, the shared object must be named
properly, so that GHC recognizes the shared object when linked against this package.
See shared object name mangling.

-dynload
This flag selects one of a number of modes for finding shared libraries at runtime. See
Finding shared libraries at runtime (page 218) for a description of each mode.

-main-is (thing)
The normal rule in Haskell is that your program must supply a main function in module
Main. When testing, it is often convenient to change which function is the “main” one,
and the -main-1is flag allows you to do so. The (thing) can be one of:

*A lower-case identifier foo. GHC assumes that the main function is Main. foo.
*A module name A. GHC assumes that the main function is A.main.
*A qualified name A.foo. GHC assumes that the main function is A. foo.

Strictly speaking, -main-1is is not a link-phase flag at all; it has no effect on the link
step. The flag must be specified when compiling the module containing the specified
main function (e.g. module A in the latter two items above). It has no effect for other
modules, and hence can safely be given to ghc --make. However, if all the modules are
otherwise up to date, you may need to force recompilation both of the module where the
new “main” is, and of the module where the “main” function used to be; ghc is not clever
enough to figure out that they both need recompiling. You can force recompilation by
removing the object file, or by using the - fforce-recomp (page 175) flag.

212 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-no-hs-main
In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of main() at link-time, you will
have to. To signal that to the compiler when linking, use -no-hs-main. See also Using
your own main() (page 528).

Notice that since the command-line passed to the linker is rather involved, you probably
want to use ghc to do the final link of your ‘mixed-language’ application. This is not a
requirement though, just try linking once with -v (page 79) on to see what options the
driver passes through to the linker.

The -no-hs-main flag can also be used to persuade the compiler to do the link step in
--make (page 76) mode when there is no Haskell Main module present (normally the
compiler will not attempt linking when there is no Main).

The flags -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 213) and -with-
rtsopts=(opts) (page 214) have no effect when used with -no-hs-main (page 212),
because they are implemented by changing the definition of main that GHC
generates. See Using your own main() (page 528) for how to get the ef-
fect of -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 213) and -with-
rtsopts=(opts) (page 214) when using your own main.

-debug
Link the program with a debugging version of the runtime system. The debugging run-
time turns on numerous assertions and sanity checks, and provides extra options for
producing debugging output at runtime (run the program with +RTS -7 to see a list).

-threaded
Link the program with the “threaded” version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to the
default runtime system which is purely single-threaded.

Note that you do not need -threaded in order to use concurrency; the single-threaded
runtime supports concurrency between Haskell threads just fine.

The threaded runtime system provides the following benefits:

*It enables the -N (x) (page 115) RTS option to be used, which allows threads to run
in parallel on a multiprocessor or multicore machine. See Using SMP parallelism
(page 114).

*If a thread makes a foreign call (and the call is not marked unsafe), then other
Haskell threads in the program will continue to run while the foreign call is in
progress. Additionally, foreign exported Haskell functions may be called from
multiple OS threads simultaneously. See Multi-threading and the FFI (page 531).

-eventlog
Link the program with the “eventlog” version of the runtime system. A program linked
in this way can generate a runtime trace of events (such as thread start/stop) to a binary
file program.eventlog, which can then be interpreted later by various tools. See Tracing
(page 164) for more information.

-eventlog (page 213) can be used with -threaded (page 213). It is implied by -debug
(page 213).

-rtsopts[=(none|some|all|ignore|ignoreAll)]
Default some

This option affects the processing of RTS control options given either on the command
line or via the GHCRTS (page 152) environment variable. There are three possibilities:

7.11. Options related to a particular phase 213

GHC User’s Guide Documentation, Release 8.10.0.20191123

-rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the
command line, then the program will abort with an error message. If the GHCRTS
environment variable is set, then the program will emit a warning message, GHCRTS
will be ignored, and the program will run as normal.

-rtsopts=ignore Disables all processing of RTS options. Unlike none this treats all RTS
flags appearing on the command line the same way as regular arguments. (Passing
them on to your program as arguments). GHCRTS options will be processed normally.

-rtsopts=ignoreAll Same as ignore but also ignores GHCRTS.

-rtsopts=some [this is the default setting] Enable only the “safe” RTS options: (Cur-
rently only -? and --info.) Any other RTS options on the command line or in the
GHCRTS environment variable causes the program with to abort with an error mes-
sage.

-rtsopts=all or just -rtsopts Enable all RTS option processing, both on the com-
mand line and through the GHCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since
RTS options can be used to write logging data to arbitrary files under the security context
of the running program, there is a potential security problem. For this reason, GHC 7.0.1
and later default to - rtsopts=some.

Note that -rtsopts has no effect when used with -no-hs-main (page 212); see Using
your own main() (page 528) for details.

-rtsopts does not affect RTS options passed via -with-rtsopts; those are used regard-
less of -rtsopts.

-with-rtsopts=(opts)
This option allows you to set the default RTS options at link-time. For example, -with-
rtsopts="-H128m" sets the default heap size to 128MB. This will always be the default
heap size for this program, unless the user overrides it. (Depending on the setting of the
-rtsopts option, the user might not have the ability to change RTS options at run-time,
in which case -with-rtsopts would be the only way to set them.)

Use the runtime flag --info (page 167) on the executable program to see the options
set with -with-rtsopts.

Note that -with-rtsopts has no effect when used with -no-hs-main; see Using your
own main() (page 528) for details.

-no-rtsopts-suggestions
This option disables RTS suggestions about linking with -
rtsopts[=(none|some|all|ignore|ignoreAll)] (page 213) when they are not
available. These suggestions would be unhelpful if the users have installed Haskell
programs through their package managers. With this option enabled, these suggestions
will not appear. It is recommended for people distributing binaries to build with either
-rtsopts or -no-rtsopts-suggestions.

-fno-gen-manifest
On Windows, GHC normally generates a manifest file when linking a binary. The manifest
is placed in the file prog.exe.manifest” where (prog.exe) is the name of the executable.
The manifest file currently serves just one purpose: it disables the “installer detection”
in Windows Vista that attempts to elevate privileges for executables with certain names
(e.g. names containing “install”, “setup” or “patch”). Without the manifest file to turn
off installer detection, attempting to run an executable that Windows deems to be an
installer will return a permission error code to the invoker. Depending on the invoker,

214 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

the result might be a dialog box asking the user for elevated permissions, or it might
simply be a permission denied error.

Installer detection can be also turned off globally for the system using the security con-
trol panel, but GHC by default generates binaries that don’t depend on the user having
disabled installer detection.

The -fno-gen-manifest disables generation of the manifest file. One reason to do this
would be if you had a manifest file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.

-fno-gen-manifest (page 214) also implies - fno-embed-manifest (page 215), see be-
low.

-fno-embed-manifest
The manifest file that GHC generates when linking a binary on Windows is also embedded
in the executable itself, by default. This means that the binary can be distributed without
having to supply the manifest file too. The embedding is done by running windres; to
see exactly what GHC does to embed the manifest, use the -v (page 79) flag. A GHC
installation comes with its own copy of windres for this reason.

See also -pgmwindres (cmd) (page 205) (Replacing the program for one or more phases
(page 205)) and -optwindres (option) (page 206) (Forcing options to a particular
phase (page 205)).

-fno-shared-implib
DLLs on Windows are typically linked to by linking to a corresponding .1lib or .dl1l.a
— the so-called import library. GHC will typically generate such a file for every DLL you
create by compiling in -shared (page 212) mode. However, sometimes you don’t want
to pay the disk-space cost of creating this import library, which can be substantial — it
might require as much space as the code itself, as Haskell DLLs tend to export lots of
symbols.

As long as you are happy to only be able to link to the DLL using GetProcAddress and
friends, you can supply the -fno-shared-implib (page 215) flag to disable the creation
of the import library entirely.

-dylib-install-name (path)
On Darwin/OS X, dynamic libraries are stamped at build time with an “install name”,
which is the ultimate install path of the library file. Any libraries or executables that
subsequently link against it will pick up that path as their runtime search location for
it. By default, ghc sets the install name to the location where the library is built. This
option allows you to override it with the specified file path. (It passes -install name to
Apple’s linker.) Ignored on other platforms.

-rdynamic
This instructs the linker to add all symbols, not only used ones, to the dynamic symbol
table. Currently Linux and Windows/MinGW32 only. This is equivalent to using -optl
-rdynamic on Linux, and -optl -export-all-symbols on Windows.

-fwhole-archive-hs-1libs
When linking a binary executable, this inserts the flag -W1, - -whole-archive before any
-1 flags for Haskell libraries, and -Wl, --no-whole-archive afterwards (on OS X, the
flag is -Wl, -all_load, there is no equivalent for -Wl, - -no-whole-archive). This flag
also disables the use of -W1l, --gc-sections (-Wl, -dead strip on OS X).

This is for specialist applications that may require symbols defined in these Haskell li-
braries at runtime even though they aren’t referenced by any other code linked into

7.11. Options related to a particular phase 215

GHC User’s Guide Documentation, Release 8.10.0.20191123

the executable. If you're using -fwhole-archive-hs-1libs, you probably also want -
rdynamic.

-pie
Since 8.2.2

This instructs the linker to produce a position-independent executable. This flag is only
valid while producing executables and all object code being linked must have been pro-
duced with - fPIE (page 210).

Position independent executables are required by some platforms as they enable
address-space layout randomization (ASLR), a common security measure. They can also
be useful as they can be dynamically loaded and used as shared libraries by other exe-
cutables.

Position independent executables should be dynamically-linked (e.g. built with -dynamic
(page 212) and only loaded into other dynamically-linked executables to ensure that only
one LibHSrts is present if loaded into the address space of another Haskell process.

Also, you may need to use the - rdynamic (page 215) flag to ensure that that symbols are
not dropped from your PIE objects.

-keep-cafs
Since 8.8.1

Disables the RTS’s normal behaviour of garbage-collecting CAFs (Constant Applicative
Forms, in other words top-level expressions). This option is useful for specialised ap-
plications that do runtime dynamic linking, where code dynamically linked in the future
might require the value of a CAF that would otherwise be garbage-collected.

7.12 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries
are also sometimes known as dynamic libraries, in particular on Windows they are referred
to as dynamic link libraries (DLLs).

Shared libraries allow a single instance of some pre-compiled code to be shared between sev-
eral programs. In contrast, with static linking the code is copied into each program. Using
shared libraries can thus save disk space. They also allow a single copy of code to be shared
in memory between several programs that use it. Shared libraries are often used as a way of
structuring large projects, especially where different parts are written in different program-
ming languages. Shared libraries are also commonly used as a plugin mechanism by various
applications. This is particularly common on Windows using COM.

In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64
architectures). GHC version 7.0 adds support on Windows (see Building and using Win32
DLLs (page 572)), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86
and PowerPC).

Building and using shared libraries is slightly more complicated than building and using static
libraries. When using Cabal much of the detail is hidden, just use --enable-shared when
configuring a package to build it into a shared library, or to link it against other packages built
as shared libraries. The additional complexity when building code is to distinguish whether
the code will be used in a shared library or will use shared library versions of other packages
it depends on. There is additional complexity when installing and distributing shared libraries

216 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

or programs that use shared libraries, to ensure that all shared libraries that are required at
runtime are present in suitable locations.

7.12.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the
base libraries use the -dynamic (page 212) flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against
shared library versions of Haskell packages (such as base). The second is when linking, to
link against the shared versions of the packages’ libraries rather than the static versions.
Obviously this requires that the packages were built with shared libraries. On supported
platforms GHC comes with shared libraries for all the core packages, but if you install extra
packages (e.g. with Cabal) then they would also have to be built with shared libraries (- -
enable-shared for Cabal).

7.12.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other
Haskell programs. The easiest way is using Cabal, simply configure the Cabal package with
the - -enable-shared flag.

If you want to do the steps manually or are writing your own build system then there are
certain conventions that must be followed. Building a shared library that exports Haskell
code, to be used by other Haskell code is a bit more complicated than it is for one that exports
a C API and will be used by C code. If you get it wrong you will usually end up with linker
errors.

In particular Haskell shared libraries must be made into packages. You cannot freely assign
which modules go in which shared libraries. The Haskell shared libraries must match the
package boundaries. The reason for this is that GHC handles references to symbols within
the same shared library (or main executable binary) differently from references to symbols
between different shared libraries. GHC needs to know for each imported module if that
module lives locally in the same shared lib or in a separate shared lib. The way it does this is
by using packages. When using -dynamic (page 212), a module from a separate package is
assumed to come from a separate shared lib, while modules from the same package (or the
default “main” package) are assumed to be within the same shared lib (or main executable
binary).

Most of the conventions GHC expects when using packages are described in Building a pack-
age from Haskell source (page 199). In addition note that GHC expects the . hi files to use the
extension .dyn hi. The other requirements are the same as for C libraries and are described
below, in particular the use of the flags -dynamic (page 212), - fPIC (page 210) and -shared
(page 212).

7.12.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger
mixed-language project. While with static linking it is recommended to use GHC to perform
the final link step, with shared libraries a Haskell library can be treated just like any other
shared library. The linking can be done using the normal system C compiler or linker.

7.12. Using shared libraries 217

GHC User’s Guide Documentation, Release 8.10.0.20191123

It is possible to load shared libraries generated by GHC in other programs not written in
Haskell, so they are suitable for using as plugins. Of course to construct a plugin you will
have to use the FFI to export C functions and follow the rules about initialising the RTS. See
Making a Haskell library that can be called from foreign code (page 530). In particular you
will probably want to export a C function from your shared library to initialise the plugin
before any Haskell functions are called.

To build Haskell modules that export a C API into a shared library use the -dynamic
(page 212), -fPIC (page 210) and -shared (page 212) flags:

ghc --make -dynamic -shared -fPIC Foo.hs -o libfoo.so

As before, the -dynamic (page 212) flag specifies that this library links against the shared
library versions of the rts and base package. The -fPIC (page 210) flag is required for all
code that will end up in a shared library. The -shared (page 212) flag specifies to make a
shared library rather than a program. To make this clearer we can break this down into
separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc -dynamic -shared Foo.o -o libfoo.so

In principle you can use -shared (page 212) without -dynamic (page 212) in the link step.
That means to statically link the runtime system and all of the base libraries into your new
shared library. This would make a very big, but standalone shared library. On most platforms
however that would require all the static libraries to have been built with - fPIC (page 210) so
that the code is suitable to include into a shared library and we do not do that at the moment.

Warning: If your shared library exports a Haskell API then you cannot directly link it into
another Haskell program and use that Haskell API. You will get linker errors. You must
instead make it into a package as described in the section above.

7.12.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs
can find the libraries they need at runtime. The details of how this works varies between
platforms, in particular the three major systems: Unix ELF platforms, Windows and Mac OS
X.

Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations
that the dynamic linker knows about. For example /usr/lib or /usr/local/lib on most
systems. The other mechanism is to use a “runtime path” or “rpath” embedded into programs
and libraries themselves. These paths can either be absolute paths or on at least Linux and
Solaris they can be paths relative to the program or library itself. In principle this makes it
possible to construct fully relocatable sets of programs and libraries.

GHC has a -dynload linking flag to select the method that is used to find shared libraries at
runtime. There are currently two modes:

sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this
embeds RPATH/RUNPATH entries into the shared library or executable. In particular it uses
absolute paths to where the shared libraries for the rts and each package can be found.

218 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

This means the program can immediately be run and it will be able to find the libraries
it needs. However it may not be suitable for deployment if the libraries are installed in
a different location on another machine.

deploy This does not embed any runtime paths. It relies on the shared libraries being avail-
able in a standard location or in a directory given by the LD LIBRARY PATH environment
variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable
-rpath flag to the linker:

ghc -dynamic Main.hs -o main -1foo -L. -optl-Wl,-rpath, '$ORIGIN'

This assumes that the library libfoo.so is in the current directory and will be able to be
found in the same directory as the executable main once the program is deployed. Simi-
larly it would be possible to use a subdirectory relative to the executable e.g. -optl-W1, -
rpath, '$ORIGIN/lib"'.

This relative path technique can be used with either of the two -dynload modes, though it
makes most sense with the deploy mode. The difference is that with the deploy mode, the
above example will end up with an ELF RUNPATH of just $ORIGIN while with the sysdep mode
the RUNPATH will be $0RIGIN followed by all the library directories of all the packages that the
program depends on (e.g. base and rts packages etc.) which are typically absolute paths.
The unix tool readelf --dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF
shared libraries and executables.

On most UNIX platforms it is also possible to build executables that can be dlopen‘d like
shared libraries using the -pie (page 216) flag during linking.

Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at
build time with an “install name”, which is the full ultimate install path of the library file.
Any libraries or executables that subsequently link against it (even if it hasn’t been installed
yet) will pick up that path as their runtime search location for it. When compiling with ghc
directly, the install name is set by default to the location where it is built. You can override this
with the -dylib-install-name (path) (page 215) option (which passes -install name to
the Apple linker). Cabal does this for you. It automatically sets the install name for dynamic
libraries to the absolute path of the ultimate install location.

7.13 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

Dump flags

* Debugging the compiler (page 219)
- Dumping out compiler intermediate structures (page 220)

* Front-end (page 221)

* Type-checking and renaming (page 221)

7.13. Debugging the compiler 219

GHC User’s Guide Documentation, Release 8.10.0.20191123

*

Core representation and simplification (page 222)

*

STG representation (page 223)

*

C-\- representation (page 223)

*

LLVM code generator (page 224)

*

Native code generator (page 225)

*

Miscellaneous backend dumps (page 225)

Formatting dumps (page 226)

Suppressing unwanted information (page 226)

Checking for consistency (page 227)

Checking for determinism (page 228)
Other (page 228)

7.13.1 Dumping out compiler intermediate structures

-ddump-to-file
Causes the output from all of the flags listed below to be dumped to a file. The file name
depends upon the output produced; for instance, output from -ddump-simpl (page 223)
will end up in module.dump-simpl.

-ddump-file-prefix=(str)
Set the prefix of the filenames used for debugging output. For example, -ddump-file-
prefix=Foo will cause the output from -ddump-simpl (page 223) to be dumped to
Foo.dump-simpl.

-ddump-json
Dump error messages as JSON documents. This is intended to be consumed by external
tooling. A good way to use it is in conjunction with -ddump-to-file (page 220).

-dshow-passes
Print out each pass name, its runtime and heap allocations as it happens. Note that this
may come at a slight performance cost as the compiler will be a bit more eager in forcing
pass results to more accurately account for their costs.

Two types of messages are produced: Those beginning with *** do denote the beginning
of a compilation phase whereas those starting with !!'! mark the end of a pass and are
accompanied by allocation and runtime statistics.

-dfaststring-stats
Show statistics on the usage of fast strings by the compiler.

-dppr-debug
Debugging output is in one of several “styles.” Take the printing of types, for example. In
the “user” style (the default), the compiler’s internal ideas about types are presented in
Haskell source-level syntax, insofar as possible. In the “debug” style (which is the default
for debugging output), the types are printed in with explicit foralls, and variables have
their unique-id attached (so you can check for things that look the same but aren’t). This
flag makes debugging output appear in the more verbose debug style.

-ddump-timings
Show allocation and runtime statistics for various stages of compilation.

220 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

GHC is a large program consisting of a number of stages. You can tell GHC to dump infor-
mation from various stages of compilation using the -ddump- (pass) flags listed below. Note
that some of these tend to produce a lot of output. You can prevent them from clogging up
your standard output by passing -ddump-to-file (page 220).

Front-end

These flags dump various information from GHC’s frontend. This includes the parser and
interface file reader.

-ddump-parsed
Dump parser output

-ddump-parsed-ast
Dump parser output as a syntax tree

-ddump-if-trace
Make the interface loader be real chatty about what it is up to.

Type-checking and renaming

These flags dump various information from GHC'’s typechecker and renamer.

-ddump-tc-trace
Make the type checker be real chatty about what it is up to.

-ddump-rn-trace
Make the renamer be real chatty about what it is up to.

-ddump-ec-trace
Make the pattern match exhaustiveness checker be real chatty about what it is up to.

-ddump-rn-stats
Print out summary of what kind of information the renamer had to bring in.

-ddump-rn
Dump renamer output

-ddump-rn-ast
Dump renamer output as a syntax tree

-ddump-tc
Dump typechecker output. Note that this hides a great deal of detail by default; you
might consider using this with -fprint-typechecker-elaboration (page 82).

-ddump-tc-ast
Dump typechecker output as a syntax tree

-ddump-splices
Dump Template Haskell expressions that we splice in, and what Haskell code the expres-
sion evaluates to.

-dth-dec-file
Dump expansions of all top-level Template Haskell splices into module.th.hs for each
file module.hs.

-ddump-types
Dump a type signature for each value defined at the top level of the module. The list is
sorted alphabetically. Using -dppr-debug (page 220) dumps a type signature for all the
imported and system-defined things as well; useful for debugging the compiler.

7.13. Debugging the compiler 221

GHC User’s Guide Documentation, Release 8.10.0.20191123

-ddump-deriv
Dump derived instances

Core representation and simplification

These flags dump various phases of GHC’s Core-to-Core pipeline. This begins with the desug-
arer and includes the simplifier, worker-wrapper transformation, the rule engine, the spe-
cialiser, the strictness/occurrence analyser, and a common subexpression elimination pass.

-ddump-core-stats
Print a one-line summary of the size of the Core program at the end of the optimisation
pipeline.

-ddump-ds

-ddump-ds-preopt
Dump desugarer output. -ddump-ds (page 222) dumps the output after the very simple
optimiser has run (which discards a lot of clutter and hence is a sensible default. -
ddump-ds-preopt (page 222) shows the output after desugaring but before the very
simple optimiser.

-ddump-simpl-iterations
Show the output of each iteration of the simplifier (each run of the simplifier has a max-
imum number of iterations, normally 4).

-ddump-simpl-stats
Dump statistics about how many of each kind of transformation took place. If you add
-dppr-debug (page 220) you get more detailed information.

-dverbose-core2core
Show the output of the intermediate Core-to-Core pass. (lots of output!) So: when we're
really desperate:

% ghc -noC -0 -ddump-simpl -dverbose-core2core -dcore-1lint Foo.hs

-ddump-spec
Dump output of specialisation pass

-ddump-rules
Dumps all rewrite rules specified in this module; see Controlling what’s going on in
rewrite rules (page 497).

-ddump-rule-firings
Dumps the names of all rules that fired in this module

-ddump-rule-rewrites
Dumps detailed information about all rules that fired in this module

-drule-check=(str)
This flag is useful for debugging why a rule you expect to be firing isn't.

Rules are filtered by the user provided string, a rule is kept if a prefix of its name matches
the string. The pass then checks whether any of these rules could apply to the program
but which didn’t file for some reason. For example, specifying -drule-check=SPEC will
check whether there are any applications which might be subject to a rule created by
specialisation.

-dinline-check=(str)
This flag is useful for debugging why a definition is not inlined.

222 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

When a string is passed to this flag we report information about all functions whose name

shares a prefix with the string.

For example, if you are inspecting the core of your program and you observe that foo
is not being inlined. You can pass -dinline-check foo and you will see a report about

why foo is not inlined.

-ddump-simpl
Dump simplifier output (Core-to-Core passes)

-ddump-inlinings

Dumps inlining info from the simplifier. Note that if used in conjunction with -dverbose-
core2core (page 222) the compiler will also dump the inlinings that it considers but

passes up, along with its rationale.

-ddump-stranal
Dump strictness analyser output

-ddump-str-signatures
Dump strictness signatures

-ddump-cse
Dump common subexpression elimination (CSE) pass output

-ddump-worker-wrapper
Dump worker/wrapper split output

-ddump-occur-anal
Dump “occurrence analysis” output

-ddump-prep
Dump output of Core preparation pass

STG representation

These flags dump various phases of GHC’s STG pipeline.

-ddump-stg
Show the output of CoreToStg pass.

-dverbose-stg2stg
Show the output of the intermediate STG-to-STG pass. (lots of output!)

-ddump-stg-unarised
Show the output of the unarise pass.

-ddump-stg-final
Show the output of the last STG pass before we generate Cmm.

C-\- representation

These flags dump various phases of GHC’s C-\- pipeline.

-ddump-cmm-verbose-by-proc

Dump output from main C-\- pipeline stages. In case of . cmm compilation this also dumps
the result of file parsing. Not included are passes run by the chosen backend. Currently

only the NCG backends runs additional passes (-ddump-opt-cmm (page 225)).

Cmm dumps don’t include unreachable blocks since we print blocks in reverse post-

order.

7.13. Debugging the compiler

223

GHC User’s Guide Documentation, Release 8.10.0.20191123

-ddump-cmm-verbose
If used in conjunction with -ddump-to-file (page 220), writes dump output from main
C-\- pipeline stages to files (each stage per file).

-ddump-cmm-from-stg
Dump the result of STG-to-C-\- conversion

-ddump-cmm-raw
Dump the “raw” C-\-.

-ddump-cmm-cfg
Dump the results of the C-\- control flow optimisation pass.

-ddump-cmm-cbe
Dump the results of the C-\- Common Block Elimination (CBE) pass.

-ddump-cmm-switch
Dump the results of the C-\- switch lowering pass.

-ddump-cmm-proc
Dump the results of the C-\- proc-point analysis pass.

-ddump-cmm-sp
Dump the results of the C-\- stack layout pass.

-ddump-cmm-sink
Dump the results of the C-\- sinking pass.

-ddump-cmm-caf
Dump the results of the C-\- CAF analysis pass.

-ddump-cmm-procmap
Dump the results of the C-\- proc-point map pass.

-ddump-cmm-split
Dump the results of the C-\- proc-point splitting pass.

-ddump-cmm-info
Dump the results of the C-\- info table augmentation pass.

-ddump-cmm-cps
Dump the results of the CPS pass.

-ddump-cmm
Dump the result of the C-\- pipeline processing

-ddump-cfg-weights
Dumps the CFG with weights used by the new block layout code. Each CFG is dumped
in dot format graph making it easy to visualize them.

LLVM code generator

-ddump-1lvm
Implies -fllvm (page 210)
LLVM code from the LLVM code generator (page 203)

224 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

Native code generator
These flags dump various stages of the native code generator’s (page 203) pipeline, which
starts with C-\- and produces native assembler.

-ddump-opt-cmm
Dump the results of C-\- to C-\- optimising passes performed by the NCG.

-ddump-asm-native
Dump the initial assembler output produced from C-\-.

-ddump-asm-liveness
Dump the result of the register liveness pass.

-ddump-asm-regalloc
Dump the result of the register allocation pass.

-ddump-asm-regalloc-stages
Dump the build/spill stages of the - fregs-graph (page 108) register allocator.

-ddump-asm-stats
Dump statistics from the register allocator.

-ddump-asm-expanded
Dump the result of the synthetic instruction expansion pass.

-ddump-asm
Dump the final assembly produced by the native code generator.

Miscellaneous backend dumps

These flags dump various bits of information from other backends.

-ddump-bcos
Dump byte-code objects (BCOs) produced for the GHC’s byte-code interpreter.

-ddump-rtti
Trace runtime type inference done by various interpreter commands.

-ddump-foreign
Dump foreign export stubs.

-ddump-ticked
Dump the code instrumented by HPC (Observing Code Coverage (page 246)).

-ddump-hpc
An alias for -ddump-ticked (page 225).

-ddump-mod-map
Dump a mapping of modules to where they come from, and how:

*(hidden module): Module is hidden, and thus will never be available for import.
* (unusable module): Module is unavailable because the package is unusable.

*(hidden package): This module is in someone’s exported-modules list, but that
package is hidden.

* (exposed package): Module is available for import.

* (reexport by <PACKAGES>): This module is available from a reexport of some set
of exposed packages.

7.13. Debugging the compiler 225

GHC User’s Guide Documentation, Release 8.10.0.20191123

*(hidden reexport by <PACKAGES>): This module is available from a reexport of
some set of hidden packages.

* (package flag): This module export comes from a package flag.

7.13.2 Formatting dumps

-dppr-user-length
In error messages, expressions are printed to a certain “depth”, with subexpressions
beyond the depth replaced by ellipses. This flag sets the depth. Its default value is 5.

-dppr-cols=(n)
Set the width of debugging output. Use this if your code is wrapping too much. For
example: -dppr-cols=200.

-dppr-case-as-let
Print single alternative case expressions as though they were strict let expressions. This
is helpful when your code does a lot of unboxing.

-dhex-word-literals

Print values of type Word# and Word64# (but not values of type Int# and Int64#) in
hexadecimal instead of decimal. The hexadecimal is zero-padded to make the length of
the representation a power of two. For example: 0x0AOA##, OxOOOFFFFF##, OxC##.
This flag may be helpful when you are producing a bit pattern that to expect to work
correctly on a 32-bit or a 64-bit architecture. Dumping hexadecimal literals after opti-
mizations and constant folding makes it easier to confirm that the generated bit pattern
is correct.

-dno-debug-output
Suppress any unsolicited debugging output. When GHC has been built with the DEBUG
option it occasionally emits debug output of interest to developers. The extra output can
confuse the testing framework and cause bogus test failures, so this flag is provided to
turn it off.

7.13.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all
of it will be useful. Use these flags to suppress the parts that you are not interested in.

-dsuppress-all
Suppress everything that can be suppressed, except for unique ids as this often makes
the printout ambiguous. If you just want to see the overall structure of the code, then
start here.

-dsuppress-ticks
Suppress “ticks” in the pretty-printer output.

-dsuppress-uniques
Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear
where an occurrence of ‘x’ is bound), but it makes the output of two compiler runs have
many fewer gratuitous differences, so you can realistically apply diff. Once diff has
shown you where to look, you can try again without -dsuppress-uniques (page 226)

-dsuppress-idinfo
Suppress extended information about identifiers where they are bound. This includes
strictness information and inliner templates. Using this flag can cut the size of the core
dump in half, due to the lack of inliner templates

226 Chapter 7. Using GHC

GHC User’s Guide Documentation, Release 8.10.0.20191123

-dsuppress-unfoldings
Suppress the printing of the stable unfolding of a variable at its binding site.

-dsuppress-module-prefixes
Suppress the printing of module qualification prefixes. This is the Data.List in
Data.List.length.

-dsuppress-timestamps
Suppress the printing of timestamps. This makes it easier to diff dumps.

-dsuppress-type-signatures
Suppress the printing of type signatures.

-dsuppress-type-applications
Suppress the printing of type applications.

-dsuppress-coercions
Suppress the printing of type coercions.

-dsuppress-var-kinds
Suppress the printing of variable kinds

-dsuppress-stg-free-vars
Suppress the printing of closure free variable lists in STG output

7.13.4 Checking for consistency

-dcore-lint
Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks
GHC'’s sanity, not yours.)

-dstg-lint
Ditto for STG level.

-dcmm-1lint
Ditto for C-\- level.

-fllvm-fill-undef-with-garbage
Instructs the LLVM code generator to fill dead STG registers with garbage instead of
undef in calls. This makes it easier to catch subtle code generator and runtime system
bugs (e.g. see #11487).

-falignment-sanitisation
Compile with alignment checks for all info table dereferences. This can be useful when
finding pointer tagging issues.

-fproc-alignment
Align functions to multiples of the given value. Only valid values are powers of two.

-fproc-alignment=64 can be used to limit alignment impact on performance as each
function will start at a cache line. However forcing larger alignments in general reduces
performance.

-fcatch-bottoms
Instructs the simplifier to emit error expressions in the continuation of empty case anal-
yses (which should bottom and consequently not return). This is helpful when debugging
demand analysis bugs which can sometimes manifest as segmentation faults.

7.13. Debugging the compiler 227

https://gitlab.haskell.org/ghc/ghc/issues/11487

GHC User’s Guide Documentation, Release 8.10.0.20191123

7.13.5 Checking for determinism
-dinitial-unique=(s)
Start UniqSupply allocation from (s).

-dunique-increment=(i)
Set the increment for the generated Unique’s to (i).

This is useful in combination with -dinitial-unique=(s) (page 228) to test if the gen-
erated files depend on the order of Unique’s.

Some interesting values:
e-dinitial-unique=0 -dunique-increment=1 - current sequential UniqSupply

e-dinitial-unique=16777215 -dunique-increment=-1 - UniqSupply that gener-
ates in decreasing order

e-dinitial-unique=1 -dunique-increment=PRIME - where PRIME big enough to
overflow often - nonsequential order

7.13.6 Other

-dno-typeable-binds
This avoid generating Typeable-related bindings for modules and types. This is useful
when debugging because it gives smaller modules and dumps, but the compiler will panic
if you try to use Typeable instances of things that you built with this flag.

228 Chapter 7. Using GHC

CHAPTER
EIGHT

PROFILING

GHC comes with a time and space profiling system, so that you can answer questions like
“why is my program so slow?”, or “why is my program using so much memory?”.

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the -prof (page 233) option, and probably
one of the options for adding automatic annotations: -fprof-auto (page 234) is the most
common .

If you are using external packages with cabal, you may need to reinstall these pack-
ages with profiling support; typically this is done with cabal install -p package --
reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile.
For example, a simple time profile can be generated by running the program with +RTS
-p (see -p (page 234)), which generates a file named prog.prof where (prog) is the
name of your program (without the .exe extension, if you are on Windows).

There are many different kinds of profile that can be generated, selected by different
RTS options. We will be describing the various kinds of profile throughout the rest of this
chapter. Some profiles require further processing using additional tools after running
the program.

3. Examine the generated profiling information, use the information to optimise your pro-
gram, and repeat as necessary.

8.1 Cost centres and cost-centre stacks

GHC'’s profiling system assigns costs to cost centres. A cost is simply the time or space
(memory) required to evaluate an expression. Cost centres are program annotations around
expressions; all costs incurred by the annotated expression are assigned to the enclosing cost
centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given
expression at run-time and generate a call-tree of cost attributions.

Let’s take a look at an example:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

1 _fprof-auto (page 234) was known as -auto-all prior to GHC 7.4.1.

229

GHC User’s Guide Documentation, Release 8.10.0.20191123

$ ghc -prof -fprof-auto -rtsopts Main.hs
$./Main +4RTS -p

121393

$

When a GHC-compiled program is run with the -p (page 234) RTS option, it generates a file
called prog.prof. In this case, the file will contain something like this:

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)
Main +RTS -p -RTS

total time
total alloc

0.68 secs (34 ticks @ 20 ms)
204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0
individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total
memory allocation measured during the run of the program (note that the total memory al-
location figure isn’t the same as the amount of live memory needed by the program at any
one time; the latter can be determined using heap profiling, which we will describe later in
Profiling memory usage (page 237)).

The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namely fib,
and it was responsible for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is
roughly a call-tree profile of the program. In the example above, it is clear that the costly call
to fib came from main.

The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone,
and “inherited”, which includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 30 + g 30)

where
fn = fibn
gn = fib (n “div" 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

230 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main. f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

Now although we had two calls to fib in the program, it is immediately clear that it was the
call from f which took all the time. The functions f and g which are defined in the where
clause in main are given their own cost centres, main.f and main.g respectively.

The actual meaning of the various columns in the output is:
The number of times this particular point in the call tree was entered.

The percentage of the total run time of the program spent at this point in the call
tree.

The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call.

The percentage of the total run time of the program spent below this point in the
call tree.

The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call and all of its sub-calls.

In addition you can use the -P (page 234) RTS option to get the following additional informa-
tion:

ticks The raw number of time “ticks” which were attributed to this cost-centre; from this,
we get the %Stime figure mentioned above.

bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw
number from which we get the %alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the
costs attributed? Well, although GHC does keep information about which groups of functions
called each other recursively, this information isn’t displayed in the basic time and allocation
profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs
elsewhere on the current stack does not push another entry on the stack, instead the costs
for this call are aggregated into the caller 2.

8.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say -fprof-auto to the compiler, it
automatically inserts a cost centre annotation around every binding not marked INLINE in
your program, but you are entirely free to add cost centre annotations yourself.

The syntax of a cost centre annotation for expressions is

2 Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further,
feedback is welcome.

8.1. Cost centres and cost-centre stacks 231

GHC User’s Guide Documentation, Release 8.10.0.20191123

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it ap-
pears in the profiling output, and <expression> is any Haskell expression. An SCC annotation
extends as far to the right as possible when parsing. (SCC stands for “Set Cost Centre”). The
double quotes can be omitted if name is a Haskell identifier, for example:

{-# SCC id #-} <expression>

Cost centre annotations can also appear in the top-level or in a declaration context. In that
case you need to pass a function name defined in the same module or scope with the annota-
tion. Example:

fxy=...
where
gz=...
{-# SCC g #-}

{-# SCC f #-}

If you want to give a cost centre different name than the function name, you can pass a string
to the annotation

y = .
5

f x .
{-# SCC f "cost centre name" #-}

Here is an example of a program with a couple of SCCs:

main :: IO ()
main = do let xs = [1..1000000]
let ys = [1..2000000]
print $ {-# SCC last xs #-} last xs
print $ {-# SCC last init xs #-} last $ init xs
print $ {-# SCC last ys #-} last ys
print $ {-# SCC last init ys #-} last $ init ys

which gives this profile when run:

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last _init ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last _init xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

232 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

8.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind
the scenes, and attributes any costs (memory allocation and time) to whatever the current
cost-centre stack is at the time the cost is incurred.

The mechanism is simple: whenever the program evaluates an expression with an SCC an-
notation, {-# SCC c -#} E, the cost centre c is pushed on the current stack, and the entry
count for this stack is incremented by one. The stack also sometimes has to be saved and
restored; in particular when the program creates a thunk (a lazy suspension), the current
cost-centre stack is stored in the thunk, and restored when the thunk is evaluated. In this
way, the cost-centre stack is independent of the actual evaluation order used by GHC at run-
time.

At a function call, GHC takes the stack stored in the function being called (which for a top-
level function will be empty), and appends it to the current stack, ignoring any prefix that is
identical to a prefix of the current stack.

We mentioned earlier that lazy computations, i.e. thunks, capture the current stack when they
are created, and restore this stack when they are evaluated. What about top-level thunks?
They are “created” when the program is compiled, so what stack should we give them? The
technical name for a top-level thunk is a CAF (“Constant Applicative Form”). GHC assigns
every CAF in a module a stack consisting of the single cost centre M. CAF, where M is the name
of the module. It is also possible to give each CAF a different stack, using the option - fprof-
cafs (page 234). This is especially useful when compiling with -ffull-laziness (page 105)
(as is default with -0 (page 102) and higher), as constants in function bodies will be lifted to
the top-level and become CAFs. You will probably need to consult the Core (-ddump-simpl
(page 223)) in order to determine what these CAFs correspond to.

8.2 Compiler options for profiling

-prof
To make use of the profiling system all modules must be compiled and linked with the
-prof (page 233) option. Any SCC annotations you’ve put in your source will spring to
life.

Without a -prof (page 233) option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

There are a few other profiling-related compilation options. Use them in addition to -prof
(page 233). These do not have to be used consistently for all modules in a program.

-fprof-auto
All bindings not marked INLINE, whether exported or not, top level or nested, will be
given automatic SCC annotations. Functions marked INLINE must be given a cost centre
manually.

-fprof-auto-top
GHC will automatically add SCC annotations for all top-level bindings not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-exported
GHC will automatically add SCC annotations for all exported functions not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-calls
Adds an automatic SCC annotation to all call sites. This is particularly useful when

8.2. Compiler options for profiling 233

GHC User’s Guide Documentation, Release 8.10.0.20191123

using profiling for the purposes of generating stack traces; see the function De-
bug.Trace.traceShow, or the -xc (page 167) RTS flag (RTS options for hackers, debug-
gers, and over-interested souls (page 166)) for more details.

-fprof-cafs
The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre.
With this option, all CAFs get their own cost-centre. An “if all else fails” option...

-fno-prof-auto
Disables any previous -fprof-auto (page 234), -fprof-auto-top (page 233), or -
fprof-auto-exported (page 233) options.

-fno-prof-cafs
Disables any previous - fprof-cafs (page 234) option.

-fno-prof-count-entries
Tells GHC not to collect information about how often functions are entered at runtime
(the “entries” column of the time profile), for this module. This tends to make the profiled
code run faster, and hence closer to the speed of the unprofiled code, because GHC is
able to optimise more aggressively if it doesn’t have to maintain correct entry counts.
This option can be useful if you aren’t interested in the entry counts (for example, if you
only intend to do heap profiling).

8.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled
program when you run it (RTS options should be enclosed between +RTS ... -RTS as usual):

-P

-P

-pa
The -p (page 234) option produces a standard time profile report. It is written into
the file <stem>.prof; the stem is taken to be the program name by default, but can be
overridden by the -po (stem) (page 234) flag.

The -P (page 234) option produces a more detailed report containing the actual time and
allocation data as well. (Not used much.)

The -pa (page 234) option produces the most detailed report containing all cost centres
in addition to the actual time and allocation data.

-pj
The -pj (page 234) option produces a time/allocation profile report in JSON format writ-
ten into the file <program>.prof.
-po (stem)
The -po (stem) (page 234) option overrides the stem used to form the output file paths
for the cost-centre profiler (see -p (page 234) and -pj (page 234) flags above) and heap
profiler (see -h (page 164)).
For instance, running a program with +RTS -h -p -pohello-world would produce a
heap profile named hello-world.hp and a cost-centre profile named hello-world.prof.
-V (secs)

Default 0.02

234 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

Sets the interval that the RTS clock ticks at, which is also the sampling interval of the
time and allocation profile. The default is 0.02 seconds. The runtime uses a single timer
signal to count ticks; this timer signal is used to control the context switch timer (Using
Concurrent Haskell (page 114)) and the heap profiling timer RTS options for heap profil-
ing (page 238). Also, the time profiler uses the RTS timer signal directly to record time
profiling samples.

Normally, setting the -V (secs) (page 234) option directly is not necessary: the res-
olution of the RTS timer is adjusted automatically if a short interval is requested with
the -C (s) (page 114) or -i (secs) (page 240) options. However, setting -V (secs)
(page 234) is required in order to increase the resolution of the time profiler.

Using a value of zero disables the RTS clock completely, and has the effect of disabling
timers that depend on it: the context switch timer and the heap profiling timer. Context
switches will still happen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it eliminates a source of
non-determinism at runtime.

-XC
This option causes the runtime to print out the current cost-centre stack whenever an
exception is raised. This can be particularly useful for debugging the location of ex-
ceptions, such as the notorious Prelude.head: empty list error. See RTS options for
hackers, debuggers, and over-interested souls (page 166).

8.3.1 JSON profile format

When invoked with the -pj (page 234) flag the runtime will emit the cost-centre profile in a
machine-readable JSON format. The top-level object of this format has the following proper-
ties,

program (string) The name of the program
arguments (list of strings) The command line arguments passed to the program
rts_arguments (list of strings) The command line arguments passed to the runtime system

initial_capabilities (integral number) How many capabilities the program was started
with (e.g. using the -N (x) (page 115) option). Note that the number of capabilities may
change during execution due to the setNumCapabilities function.

total_time (number) The total wall time of the program’s execution in seconds.

total_ticks (integral number) How many profiler “ticks” elapsed over the course of the
program’s execution.

end_time (number) The approximate time when the program finished execution as a UNIX
epoch timestamp.

tick_interval (float) How much time between profiler ticks.
total_alloc (integer) The cumulative allocations of the program in bytes.
cost_centres (list of objects) A list of the program’s cost centres
profile (object) The profile tree itself

Each entry in cost centres is an object describing a cost-centre of the program having the
following properies,

id (integral number) A unique identifier used to refer to the cost-centre

is_caf (boolean) Whether the cost-centre is a Constant Applicative Form (CAF)

8.3. Time and allocation profiling 235

GHC User’s Guide Documentation, Release 8.10.0.20191123

label (string) A descriptive string roughly identifying the cost-centre.
src_Lloc (string) A string describing the source span enclosing the cost-centre.

The profile data itself is described by the profile field, which contains a tree-like object
(which we’ll call a “cost-centre stack” here) with the following properties,

id (integral number) The id of a cost-centre listed in the cost centres list.
entries (integral number) How many times was this cost-centre entered?

ticks (integral number) How many ticks was the program’s execution inside of this cost-
centre? This does not include child cost-centres.

alloc (integral number) How many bytes did the program allocate while inside of this cost-
centre? This does not include allocations while in child cost-centres.

children (list) A list containing child cost-centre stacks.

For instance, a simple profile might look like this,

{

"program": "Main",

"arguments": [
"nofib/shootout/n-body/Main",
"50000"

1,

"rts_arguments™: [

! 'p_] ! ’
n _hyll

1,

"end_time": "Thu Feb 23 17:15 2017",

"initial capabilities": 0,

"total_time": 1.7,

"total_ticks": 1700,

"tick_interval”: 1000,

"total_alloc": 3770785728,

"cost_centres": [

{
"id": 168,
"label": "IDLE",
"module": "IDLE",
"src_loc": "<built-in>",
"is caf": false
}
{
"id": 156,
"label": "CAF",
"module”: "GHC.Integer.Logarithms.Internals",
"src_loc": "<entire-module>",
"is caf": true
H
{
"id": 155,
"label": "CAF",
"module": "GHC.Integer.Logarithms",
"src_loc": "<entire-module>",
"is _caf": true
}
{

"id": 154,

236 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

"label™: "CAF",
"module”: "GHC.Event.Array",
"src_loc": "<entire-module>",
"is caf": true
}
1,
"profile": {
"id": 162,
"entries": 0,
"alloc": 688,
"ticks": 0,
"children": [
{
"id": 1,
"entries": 0,
"alloc": 208,
"ticks": 0,
"children": [
{
"id": 22,
"entries": 1,
"alloc": 80,
"ticks": 0,
“children": []

"id": 42,
"entries": 1,
"alloc": 1632,
"ticks": 0,
"children": []

8.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also gen-
erate a graph of its memory usage over time. This is useful for detecting the causes of space
leaks, when your program holds on to more memory at run-time that it needs to. Space leaks
lead to slower execution due to heavy garbage collector activity, and may even cause the
program to run out of memory altogether.

To generate a heap profile from your program:
1. Compile the program for profiling (Compiler options for profiling (page 233)).

2. Run it with one of the heap profiling options described below (eg. -h (page 164) for a
basic producer profile). This generates the file prog. hp.

If the event log (page 164) is enabled (with the -1 (flags) (page 164) runtime system
flag) heap samples will additionally be emitted to the GHC event log (see Heap profiler
event log output (page 587) for details about event format).

8.4. Profiling memory usage 237

GHC User’s Guide Documentation, Release 8.10.0.20191123

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail
in hp2ps - Rendering heap profiles to PostScript (page 242).

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a
Postscript-capable printer.

For example, here is a heap profile produced for the sphere program from GHC’s nofib
benchmark suite,

Main 100 +RTS -hc 9,661 bytes x seconds Fri Oct 2 15:01 2015

bytes

(54)PINNED
(92)GHC.10.Encoding.CAF
(77)GHC.I0.Handle.FD.CAF
30k | (84)GHC.Conc.Signal.CAF
(103)Main.CAF
(109)ray/run/main.Vmain/M...
25K (185)shade/tracepixel/ray....
(119)testspheres/Main.CAF
(217)vecsum/Main.CAF
20k (80)GHC.10.Encoding.lconv.CAF
(110)rbg/pixels/ppm/run/ma...
15k | (140)vecsub/camparams.firs...
(157)vecscale/camparams.sc...

(

147)vecscale/camparams.sc...

10k (221)vecadd/vecsum/shade.d...
(108)pixels/ppm/run/main.\...
(183)rbg.eight_bit/rbg/pix...

5k | (122)sphereintersect/trace...

(112)tracepixel/ray.f/ray/...
OTHER

HEEER N O EEENCNOEO

() [@ ——=
0.0 0.1 0.1 0.2 0.2 0.2 seconds

You might also want to take a look at hp2any, a more advanced suite of tools (not distributed
with GHC) for displaying heap profiles.

8.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile
types yield a graph of live heap against time, but they differ in how the live heap is broken
down into bands. The following RTS options select which break-down to use:

-hT
Breaks down the graph by heap closure type.

-hc

-h
Requires -prof (page 233). Breaks down the graph by the cost-centre stack which pro-
duced the data.

Note: The meaning of the shortened -h (page 164) is dependent on whether your pro-
gram was compiled for profiling. When compiled for profiling, -h (page 164) is equiva-

238 Chapter 8. Profiling

http://www.haskell.org/haskellwiki/Hp2any

GHC User’s Guide Documentation, Release 8.10.0.20191123

-hm

-hd

-hy

-hr

-hb

lent to -hc (page 238), but otherwise is equivalent to -hT (page 164) (see RTS options
for profiling (page 164)).

Requires -prof (page 233). Break down the live heap by the module containing the code
which produced the data.

Requires -prof (page 233). Breaks down the graph by closure description. For actual
data, the description is just the constructor name, for other closures it is a compiler-
generated string identifying the closure.

Requires -prof (page 233). Breaks down the graph by type. For closures which have
function type or unknown/polymorphic type, the string will represent an approximation
to the actual type.

Requires -prof (page 233). Break down the graph by retainer set. Retainer profiling is
described in more detail below (Retainer Profiling (page 240)).

Requires -prof (page 233). Break down the graph by biography. Biographical profiling
is described in more detail below (Biographical Profiling (page 241)).

Emit profile samples to the GHC event log (page 164). This format is both more expres-
sive than the old . hp format and can be correlated with other events over the program’s
runtime. See Heap profiler event log output (page 587) for details on the produced event
structure.

In addition, the profile can be restricted to heap data which satisfies certain criteria - for
example, you might want to display a profile by type but only for data produced by a certain
module, or a profile by retainer for a certain type of data. Restrictions are specified as follows:

-hc

-hC

-hm

-hd

-hy

-hr

-hb

{name)
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres at the top.

(name)
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres anywhere in the stack.

(module)
Restrict the profile to closures produced by the specified modules.

(desc)
Restrict the profile to closures with the specified description strings.

(type)
Restrict the profile to closures with the specified types.

(cc)

Restrict the profile to closures with retainer sets containing cost-centre stacks with one
of the specified cost centres at the top.

(bio)
Restrict the profile to closures with one of the specified biographies, where (bio) is one
of lag, drag, void, or use.

8.4.

Profiling memory usage 239

GHC User’s Guide Documentation, Release 8.10.0.20191123

For example, the following options will generate a retainer profile restricted to Branch and
Leaf constructors:

prog +RTS -hr -hdBranch,Leaf

There can only be one “break-down” option (eg. -hr (page 239) in the example above), but
there is no limit on the number of further restrictions that may be applied. All the options may
be combined, with one exception: GHC doesn’t currently support mixing the -hr (page 239)
and -hb (page 239) options.

There are three more options which relate to heap profiling:

-i (secs)
Set the profiling (sampling) interval to (secs) seconds (the default is 0.1 second). Frac-
tions are allowed: for example -i0.2 will get 5 samples per second. This only affects
heap profiling; time profiles are always sampled with the frequency of the RTS clock.
See Time and allocation profiling (page 234) for changing that.

-xt
Include the memory occupied by threads in a heap profile. Each thread takes up a small
area for its thread state in addition to the space allocated for its stack (stacks normally
start small and then grow as necessary).

This includes the main thread, so using -xt (page 240) is a good way to see how much
stack space the program is using.

Memory occupied by threads and their stacks is labelled as “TSO” and “STACK” respec-
tively when displaying the profile by closure description or type description.

-L (num)
Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

8.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?”.
We start by defining what we mean by a retainer:

A retaineris either the system stack, an unevaluated closure (thunk), or an explicitly
mutable object.

In particular, constructors are not retainers.

An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by re-
cursively following pointers starting from object B, but not meeting any other retainer objects
on the way. Each live object is retained by one or more retainer objects, collectively called
its retainer set, or its retainer set, or its retainers.

When retainer profiling is requested by giving the program the -hr option, a graph is gener-
ated which is broken down by retainer set. A retainer set is displayed as a set of cost-centre
stacks; because this is usually too large to fit on the profile graph, each retainer set is num-
bered and shown abbreviated on the graph along with its number, and the full list of retainer
sets is dumped into the file prog.prof.

Retainer profiling requires multiple passes over the live heap in order to discover the full
retainer set for each object, which can be quite slow. So we set a limit on the maximum
size of a retainer set, where all retainer sets larger than the maximum retainer set size are
replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with
the -R (size) (page 240) RTS option:

240 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

-R (size)
Restrict the number of elements in a retainer set to (size) (default 8).

Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: alarge struc-
ture is retained by an unevaluated computation, and will be released once the computation
is forced. A good example is looking up a value in a finite map, where unless the lookup is
forced in a timely manner the unevaluated lookup will cause the whole mapping to be retained.
These kind of space leaks can often be eliminated by forcing the relevant computations to be
performed eagerly, using seq or strictness annotations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only
the nearest of which will be reported by retainer profiling - for example A retains B, B retains
C, and C retains a large structure. There might be a large number of Bs but only a single A,
so A is really the one we’re interested in eliminating. However, retainer profiling will in this
case report B as the retainer of the large structure. To move further up the chain of retainers,
we can ask for another retainer profile but this time restrict the profile to B objects, so we get
a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the
retainers we are interested in, but we’ve found this to be a useful technique in most cases.

8.4.3 Biographical Profiling

A typical heap object may be in one of the following four states at each point in its lifetime:
* The lag stage, which is the time between creation and the first use of the object,
» the use stage, which lasts from the first use until the last use of the object, and

» The drag stage, which lasts from the final use until the last reference to the object is
dropped.

* An object which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states
listed above. Usually the most interesting states are the void and drag states: live heap in
these states is more likely to be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria,
by restricting a profile by biography. For example, to show the portion of the heap in the drag
or void state by producer:

’prog +RTS -hc -hbdrag,void

|

Once you know the producer or the type of the heap in the drag or void states, the next step
is usually to find the retainer(s):

’prog +RTS -hr -hccc...

Note: This two stage process is required because GHC cannot currently profile using both
biographical and retainer information simultaneously.

8.4. Profiling memory usage 241

GHC User’s Guide Documentation, Release 8.10.0.20191123

8.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory res-
idency of your program when you run it? You might see a large discrepancy between the
residency reported by the heap profiler, and the residency reported by tools on your system
(eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:

» There is an overhead of profiling itself, which is subtracted from the residency figures
by the profiler. This overhead goes away when compiling without profiling support, of
course. The space overhead is currently 2 extra words per heap object, which probably
results in about a 30% overhead.

* Garbage collection requires more memory than the actual residency. The factor depends
on the kind of garbage collection algorithm in use: a major GC in the standard generation
copying collector will usually require 3L bytes of memory, where L is the amount of live
data. This is because by default (see the RTS -F (factor) (page 156) option) we allow
the old generation to grow to twice its size (2L) before collecting it, and we require
additionally L bytes to copy the live data into. When using compacting collection (see
the -c (page 156) option), this is reduced to 2L, and can further be reduced by tweaking
the -F (factor) (page 156) option. Also add the size of the allocation area (see -A
(size) (page 155)).

» The stackisn’t counted in the heap profile by default. See the RTS - xt (page 240) option.

* The program text itself, the C stack, any non-heap data (e.g. data allocated by foreign
libraries, and data allocated by the RTS), and mmap () ‘d memory are not counted in the
heap profile.

8.5 hp2ps - Rendering heap profiles to PostScript

Usage:

’hprs [flags] [<file>[.hp]]

The program hp2ps program converts a .hp file produced by the -h<break-down> runtime
option into a PostScript graph of the heap profile. By convention, the file to be processed by
hp2ps has a . hp extension. The PostScript output is written to file@.ps. If <file> is omitted
entirely, then the program behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally de-
veloped by Dave Wakeling as part of the HBC/LML heap profiler.

The flags are:

-d
In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier.
The default sort ordering is for the bands with the largest area to be stacked on top of the
smaller ones. The -d option causes rougher bands (those representing series of values
with the largest standard deviations) to be stacked on top of smoother ones.

-b

Normally, hp2ps puts the title of the graph in a small box at the top of the page. However,
if the JOB string is too long to fit in a small box (more than 35 characters), then hp2ps
will choose to use a big box instead. The -b option forces hp2ps to use a big box.

-e(float)[in|mm|pt]
Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually,

242 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

the PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches
high, and hp2ps arranges for this area to be approximately centred on a sheet of a4 paper.
This format is convenient of studying the graph in detail, but it is unsuitable for inclusion
in LaTeX documents. The -e option causes the graph to be drawn in portrait mode, with
float specifying the width in inches, millimetres or points (the default). The resulting
PostScript file conforms to the Encapsulated PostScript (EPS) convention, and it can be
included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

Create output suitable for the gs PostScript previewer (or similar). In this case the graph
is printed in portrait mode without scaling. The output is unsuitable for a laser printer.

Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -1 flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with
many bands.

-m({int)

=S

Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -m flag specifies an alternative band limit (the maximum is 20).

-mO requests the band limit to be removed. As many bands as necessary are produced.
However no key is produced as it won’t fit! It is useful for displaying creation time
profiles with many bands.

Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series
of graphs for use in a presentation, it is often useful to draw a new graph using the
same scale, shading and ordering as a previous one. The -p flag causes the graph to be
drawn using the parameters determined by a previous run of hp2ps on file. These are
extracted from file@.aux.

Use a small box for the title.

-t(float)

Normally trace elements which sum to a total of less than 1% of the profile are removed
from the profile. The -t option allows this percentage to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring that all the data
will be displayed.
Generate colour output.

Ignore marks.

Print out usage information.

8.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)

The F00. hp file produced when you ask for the heap profile of a program FO0O is a text file with
a particularly simple structure. Here’s a representative example, with much of the actual data

8.5. hp2ps - Rendering heap profiles to PostScript 243

GHC User’s Guide Documentation, Release 8.10.0.20191123

omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN SAMPLE 0.00
END SAMPLE 0.00
BEGIN SAMPLE 15.07

. sample data ...
END SAMPLE 15.07
BEGIN SAMPLE 30.23

. sample data ...
END SAMPLE 30.23

. etc.

BEGIN SAMPLE 11695.47
END SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE _UNIT, VALUE UNIT) form a header. Each block of lines
starting with BEGIN SAMPLE and ending with END SAMPLE forms a single sample (you can think
of this as a vertical slice of your heap profile). The hp2ps utility should accept any input with
a properly-formatted header followed by a series of complete samples.

8.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the . hp file into
a text editor and deleting the unwanted samples. The resulting . hp file can be run through
hp2ps and viewed or printed.

8.5.3 Viewing the heap profile of a running program

The .hp file is generated incrementally as your program runs. In principle, running hp2ps on
the incomplete file should produce a snapshot of your program’s heap usage. However, the
last sample in the file may be incomplete, causing hp2ps to fail. If you are using a machine with
UNIX utilities installed, it’s not too hard to work around this problem (though the resulting
command line looks rather Byzantine):

head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps

The command fgrep -n END SAMPLE FO0O0.hp finds the end of every complete sample in
FOO. hp, and labels each sample with its ending line number. We then select the line number of
the last complete sample using tail and cut. This is used as a parameter to head; the result is
as if we deleted the final incomplete sample from FOO. hp. This results in a properly-formatted
.hp file which we feed directly to hp2ps.

8.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a “watch file” option can be used to view an up-to-
date heap profile of your program as it runs. Simply generate an incremental heap profile as
described in the previous section. Run gv on your profile:

244 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

gv -watch -orientation=seascape F00.ps

If you forget the -watch flag you can still select “Watch file” from the “State” menu. Now
each time you generate a new profile F00. ps the view will update automatically.

This can all be encapsulated in a little script:

#!/bin/sh
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° F0O.hp \
| hp2ps > F00.ps
gv -watch -orientation=seascape F00.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° F0O.hp \
| hp2ps > FO00.ps
done

Occasionally gv will choke as it tries to read an incomplete copy of F00.ps (because hp2ps
is still running as an update occurs). A slightly more complicated script works around this
problem, by using the fact that sending a SIGHUP to gv will cause it to re-read its input file:

#!/bin/sh
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps
gv F00.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head - fgrep -n END SAMPLE F0O.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps
kill -HUP $gvpsnum
done

8.6 Profiling Parallel and Concurrent Programs

Combining -threaded (page 213) and -prof (page 233) is perfectly fine, and indeed it is
possible to profile a program running on multiple processors with the RTS -N (x) (page 115)
option. 3

Some caveats apply, however. In the current implementation, a profiled program is likely to
scale much less well than the unprofiled program, because the profiling implementation uses
some shared data structures which require locking in the runtime system. Furthermore, the
memory allocation statistics collected by the profiled program are stored in shared memory
but not locked (for speed), which means that these figures might be inaccurate for parallel
programs.

We strongly recommend that you use -fno-prof-count-entries (page 234) when compiling
a program to be profiled on multiple cores, because the entry counts are also stored in shared
memory, and continuously updating them on multiple cores is extremely slow.

We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for
visualising parallel execution, and is complementary to the time and space profiling features
provided with GHC.

3 This feature was added in GHC 7.4.1.

8.6. Profiling Parallel and Concurrent Programs 245

http://www.haskell.org/haskellwiki/ThreadScope

GHC User’s Guide Documentation, Release 8.10.0.20191123

8.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been
actually executed, and which parts have never actually been invoked. GHC has an option
for generating instrumented code that records code coverage as part of the Haskell Program
Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the
generated code coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage
and boolean-control coverage. Source coverage is the extent to which every part of the pro-
gram was used, measured at three different levels: declarations (both top-level and local),
alternatives (among several equations or case branches) and expressions (at every level).
Boolean coverage is the extent to which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways: textual reports with summary
statistics (hpc report) and sources with color mark-up (hpc markup). For boolean coverage,
there are four possible outcomes for each guard, condition or qualifier: both True and False
values occur; only True; only False; never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the program that was never evaluated; a green
background indicates an always-True expression and a red background indicates an always-
False one.

8.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal repre-
sentations of reciprocals, with recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)
reciprocal n | n>1= ('0" : '.' : digits, recur)
| otherwise = error
"attempting to compute reciprocal of number <= 1"
where
(digits, recur) = divide n 1 []
divide :: Int -> Int -> [Int] -> (String, Int)
divide n c ¢s | ¢ “elem” ¢s = ([]1, position c cs)
| r==20 (show q, 0O)
| r /=20 (show q ++ digits, recur)

where
(g, r) = (c*10) “quotRem™ n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n== =1
| otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p=Tlengthd - r
(d, r) = reciprocal n

main = do
number <- readLn

246 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

putStrLn (showRecip number)
main

HPC instrumentation is enabled with the - fhpc (page 247) flag:

$ ghc -fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in
there, one for each module compiled. You don’t need to worry about these files: they contain
information needed by the hpc tool to generate the coverage data for compiled modules after
the program is run.

$./Recip
1/3
= 0.(3)

Running the program generates a file with the .tix suffix, in this case Recip.tix, which
contains the coverage data for this run of the program. The program may be run multiple
times (e.g. with different test data), and the coverage data from the separate runs is accumu-
lated in the .tix file. To reset the coverage data and start again, just remove the .tix file.
You can control where the .tix file is generated using the environment variable HPCTIXFILE
(page 247).

HPCTIXFILE
Set the HPC . tix file output path.

Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)
14% guards (1/7), 3 always True,
1 always False,
2 unevaluated
0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)
55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html,
hpc_index_alt.html, hpc_index_exp.html, hpc_index_ fun.html.

8.7.2 Options for instrumenting code for coverage

-fhpc
Enable code coverage for the current module or modules being compiled.

Modules compiled with this option can be freely mixed with modules compiled without
it; indeed, most libraries will typically be compiled without - fhpc (page 247). When
the program is run, coverage data will only be generated for those modules that were

8.7. Observing Code Coverage 247

GHC User’s Guide Documentation, Release 8.10.0.20191123

compiled with - fhpc (page 247), and the hpc tool will only show information about those
modules.

8.7.3 The hpc toolkit

The hpc command has several sub-commands:

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command
Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage
Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file
Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage
Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a . tix file after an instrumented binary has generated it.

The hpc tool assumes you are in the top-level directory of the location where you built your
application, and the .tix file is in the same top-level directory. You can use the flag - -srcdir
to use hpc for any other directory, and use --srcdir multiple times to analyse programs
compiled from difference locations, as is typical for packages.

We now explain in more details the major modes of hpc.

hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are
considered in generating report, unless include or exclude are used. The report is a summary
unless the - -per-module flag is used. The --xml-output option allows for tools to use hpc to
glean coverage.

$ hpc help report

Usage: hpc report [OPTION] .. <TIX FILE> [<MODULE> [<MODULE> ..]]
Options:
--per-module show module level detail
--decl-1list show unused decls

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]

--reset-hpcdirs empty the list of hpcdir's

248 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

--xml-output

[rarely used]
show output in XML

hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup
Usage: hpc markup [OPTION]

Options:
- -exclude=[PACKAGE:] [MODULE]
--include=[PACKAGE:] [MODULE]
--srcdir=DIR
--hpcdir=DIR
--reset-hpcdirs
--fun-entry-count

--highlight-covered
--destdir=DIR

. <TIX FILE> [<MODULE> [<MODULE> ..1]

exclude MODULE and/or PACKAGE

include MODULE and/or PACKAGE

path to source directory of .hs files
multi-use of srcdir possible

append sub-directory that contains .mix files
default .hpc [rarely used]

empty the list of hpcdir's

[rarely used]

show top-level function entry counts
highlight covered code, rather that code gaps
path to write output to

hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not
change the original .tix file; it generates a new .tix file.

$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX FILE> [<TIX FILE> [<TIX FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

exclude MODULE and/or PACKAGE

include MODULE and/or PACKAGE

output FILE

use the union of the module namespace (default is

--exclude=[PACKAGE:] [MODULE]
--include=[PACKAGE:] [MODULE]
--output=FILE
--union

—intersection)

hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between
.tix files, to subtract one .tix file from another, or to add two .tix files. hpc combine does
not change the original .tix file; it generates a new .tix file.

$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX FILE> <TIX FILE>
Combine two .tix files in a single .tix file

Options:

8.7. Observing Code Coverage 249

GHC User’s Guide Documentation, Release 8.10.0.20191123

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD
FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is,
—intersection)
hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it
generates a new .tix file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is,
—intersection)

hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is
used to generate a draft overlay from a .tix file, and hpc overlay generates a .tix files from an
overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY FILE> [<OVERLAY FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX FILE>

Options:

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

250 Chapter 8. Profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

default .hpc [rarely used]

--reset-hpcdirs empty the list of hpcdir's
[rarely used]
--output=FILE output FILE

8.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the
same directory will exhibit a race condition. At compile time, there is no way to change
the name of the .tix file generated; at runtime, the name of the generated .tix file can
be changed using HPCTIXFILE (page 247); the name of the .tix file will also change if you
rename the binary. HPC does not work with GHCi.

8.8 Using “ticky-ticky” profiling (for implementors)

-ticky
Enable ticky-ticky profiling.
Because ticky-ticky profiling requires a certain familiarity with GHC internals, we have moved

the documentation to the GHC developers wiki. Take a look at its overview of the profiling
options, which includeds a link to the ticky-ticky profiling page.

8.8. Using “ticky-ticky” profiling (for implementors) 251

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/profiling
https://gitlab.haskell.org/ghc/ghc/wikis/commentary/profiling

GHC User’s Guide Documentation, Release 8.10.0.20191123

252 Chapter 8. Profiling

CHAPTER
NINE

ADVICE ON: SOONER, FASTER, SMALLER, THRIFTIER

Please advise us of other “helpful hints” that should go here!

9.1 Sooner: producing a program more quickly

Don’t use -0 (page 102) or (especially) -02 (page 102): By using them, you are telling
GHC that you are willing to suffer longer compilation times for better-quality code.

GHC is surprisingly zippy for normal compilations without -0 (page 102)!

Use more memory: Within reason, more memory for heap space means less garbage collec-
tion for GHC, which means less compilation time. If you use the -Rghc-timing option,
you’ll get a garbage-collector report. (Again, you can use the cheap-and-nasty +RTS -S
-RTS option to send the GC stats straight to standard error.)

If it says you're using more than 20% of total time in garbage collecting, then more
memory might help: use the -H{size) (see -H [(size)] (page 158)) option. Increasing
the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A(size) -RTS option (see -A (size) (page 155)).

If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory! Assoon as GHC plus its “fellow citizens” (other processes on
your machine) start using more than the real memory on your machine, and the machine
starts “thrashing,” the party is over. Compile times will be worse than terrible! Use
something like the csh builtin time command to get a report on how many page faults
you're getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t
know the memory configuration of your machine, don’t try to be clever about memory
use: you’ll just make your life a misery (and for other people, too, probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be
large, it can take many real seconds to slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using remotely-mounted disks;
then link on a slow machine that had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.

GHC compiles some program constructs slowly: We’d rather you reported such be-
haviour as a bug, so that we can try to correct it.

To figure out which part of the compiler is badly behaved, the -v2 option is your friend.

253

GHC User’s Guide Documentation, Release 8.10.0.20191123

9.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately in Profiling (page 229). There is no substitute for finding where your
program’s time/space is really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program’s performance
dramatically is to use better algorithms. Once profiling has thrown the spotlight on the guilty
time-consumer(s), it may be better to re-think your program than to try all the tweaks listed
below.

Another extremely efficient way to make your program snappy is to use library code that has
been Seriously Tuned By Someone Else. You might be able to write a better quicksort than
the one in Data.List, but it will take you much longer than typing import Data.List.

Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credi-
ble competition in the performance department these days it’s hard to say what overly-slow
means, so just use your judgement! Of course, if a GHC compiled program runs slower than
the same program compiled with NHC or Hugs, then it’s definitely a bug.

Optimise, using -0 or -02: This is the most basic way to make your program go faster.
Compilation time will be slower, especially with -02.

At present, -02 is nearly indistinguishable from -0.

Compile via LLVM: The LLVM code generator (page 203) can sometimes do a far better job
at producing fast code than the native code generator (page 203). This is not universal
and depends on the code. Numeric heavy code seems to show the best improvement
when compiled via LLVM. You can also experiment with passing specific flags to LLVM
with the -optlo (option) (page 206) and -optlc (option) (page 206) flags. Be care-
ful though as setting these flags stops GHC from setting its usual flags for the LLVM
optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is
elegant, neat, etc., etc., but it is death to performance if left to linger in an inner loop.
How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported,
top-level functions is good software-engineering practice, anyway. (Tip: using the -
Wmissing-signatures (page 94) option can help enforce good signature-practice).

The automatic specialisation of overloaded functions (with -0) should take care of over-
loaded local and/or unexported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program.
See SPECIALIZE pragma (page 485) and SPECIALIZE instance pragma (page 487).

“But how do I know where overloading is creeping in?” A low-tech way: grep (search)
your interface files for overloaded type signatures. You can view interface files using
the --show-iface (file) (page 76) option (see Other options related to interface files
(page 174)).

$ ghc --show-iface Foo.hi | egrep '"“[a-z].*::.*=>'

Strict functions are your dear friends: And, among other things, lazy pattern-matching is
your enemy.

(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

254 Chapter 9. Advice on: sooner, faster, smaller, thriftier

GHC User’s Guide Documentation, Release 8.10.0.20191123

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of lets to get stricter code (a

good thing):
f (Wibble x y) # beautiful but slow
= let
(al, bl, cl) = unpackFoo x
(a2, b2, c2) = unpackFoo y
in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (al, bl, cl) ->
case (unpackFoo y) of { (a2, b2, c2) ->

35

GHC loves single-constructor data-types: It’'s all the better if a function is strict in a
single-constructor type (a type with only one data-constructor; for example, tuples are
single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a sin-
gle field, use a newtype declaration instead of a data declaration. The newtype will be
optimised away in most cases.

“How do I find out a function’s strictness?” Don’t guess—look it up.

Look for your function in the interface file, then for the third field in the pragma; it
should say Strictness: (string). The (string) gives the strictness of the function’s
arguments: see the GHC Commentary for a description of the strictness notation.

For an “unpackable” U(...) argument, the info inside tells the strictness of its com-
ponents. So, if the argument is a pair, and it says U(AU(LSS)), that means “the first
component of the pair isn’t used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”

If the function isn’t exported, just compile with the extra flag -ddump-simpl (page 223);
next to the signature for any binder, it will print the self-same pragmatic information as
would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain
functions that are used a lot can have a dramatic effect. See INLINE pragma (page 481).

Explicit export list: If you do not have an explicit export list in a module, GHC must assume
that everything in that module will be exported. This has various pessimising effects.
For example, if a bit of code is actually unused (perhaps because of unfolding effects),
GHC will not be able to throw it away, because it is exported and some other module
may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not
exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your
compilation with -ddump-simpl (page 223) (don’t forget the -0 (page 102)).

9.2. Faster: producing a program that runs quicker 255

https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/demand

GHC User’s Guide Documentation, Release 8.10.0.20191123

If profiling has pointed the finger at particular functions, look at their Core code. lets
are bad, cases are good, dictionaries (d. {Class).{Unique}) [or anything overloading-
ish] are bad, nested lambdas are bad, explicit data constructors are good, primitive op-
erations (e.g., eqInt#) are good, ...

Use strictness annotations: Putting a strictness annotation (!) on a constructor field helps

in two ways: it adds strictness to the program, which gives the strictness analyser more
to work with, and it might help to reduce space leaks.

It can also help in a third way: when used with - funbox-strict-fields (page 112) (see
-f*: platform-independent flags (page 102)), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be removed. Unpacking only
happens for single-constructor datatypes (Int is a good candidate, for example).

Using - funbox-strict-fields (page 112) is only really a good idea in conjunction with
-0 (page 102), because otherwise the extra packing and unpacking won’t be optimised
away. In fact, it is possible that - funbox-strict-fields (page 112) may worsen perfor-
mance even with -0 (page 102), but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you

Use

want to get right down to the “raw bits.” Please see Unboxed types (page 263) for some
information about using unboxed types.

Before resorting to explicit unboxed types, try using strict constructor fields and -
funbox-strict-fields (page 112) first (see above). That way, your code stays portable.

foreign import (a GHC extension) to plug into fast libraries: This may take real
work, but... There exist piles of massively-tuned library code, and the best thing is not
to compete with it, but link with it.

Foreign function interface (FFI) (page 521) describes the foreign function interface.

Don’t use Floats: If you're using Complex, definitely use Complex Double rather than Com-

plex Float (the former is specialised heavily, but the latter isn’t).

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With Doubles, you are much less
likely to hang yourself with numerical errors.

One time when Float might be a good idea is if you have a lot of them, say a giant array
of Floats. They take up half the space in the heap compared to Doubles. However, this
isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic

Use

arithmetic element types including Int and Char: see the Data.Array.Unboxed library
for details. These arrays are likely to be much faster than using standard Haskell 98
arrays from the Data.Array library.

a bigger heap! If your program’s GC stats (-S [(file)] (page 161) RTS option) indi-
cate that it’s doing lots of garbage-collection (say, more than 20% of execution time),
more memory might help — with the -H [(size)] (page 158) or -A (size) (page 155)
RTS options (see RTS options to control the garbage collector (page 155)). As a rule of
thumb, try setting -H [(size)] (page 158) to the amount of memory you're willing to
let your process consume, or perhaps try passing -H [{(size)] (page 158) without any
argument to let GHC calculate a value based on the amount of live data.

Compact your data: The GHC.Compact module provides a way to make garbage collection

more efficient for long-lived data structures. Compacting a data structure collects the

256

Chapter 9. Advice on: sooner, faster, smaller, thriftier

GHC User’s Guide Documentation, Release 8.10.0.20191123

objects together in memory, where they are treated as a single object by the garbage
collector and not traversed individually.

9.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -funfolding-
use-threshold=0 (page 113) option for the extreme case. (“Only unfoldings with zero cost
should proceed.”) Warning: except in certain specialised cases (like Happy parsers) this is
likely to actually increase the size of your program, because unfolding generally enables extra
simplifying optimisations to be performed.

Avoid Prelude.Read.

Use strip on your executables.

9.4 Thriftier: producing a program that gobbles less heap
space

“I think I have a space leak...”

Re-run your program with +RTS -S (page 161), and remove all doubt! (You'll see the heap
usage get bigger and bigger...) (Hmmm... this might be even easier with the -G1 (page 157)
RTS option; so... ./a.out +RTS -S -G1)

Once again, the profiling facilities (Profiling (page 229)) are the basic tool for demystifying
the space behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous
section. Strict functions get right down to business, rather than filling up the heap with
closures (the system’s notes to itself about how to evaluate something, should it eventually
be required).

9.3. Smaller: producing a program that is smaller 257

GHC User’s Guide Documentation, Release 8.10.0.20191123

258 Chapter 9. Advice on: sooner, faster, smaller, thriftier

CHAPTER
TEN

GHC LANGUAGE FEATURES

As with all known Haskell systems, GHC implements some extensions to the standard Haskell
language. They can all be enabled or disabled by command line flags or language pragmas.
By default GHC understands the most recent Haskell version it supports, plus a handful of
extensions.

Some of the Glasgow extensions serve to give you access to the underlying facilities with
which we implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write
some non-portable code at a more primitive level. You need not be “stuck” on performance
because of the implementation costs of Haskell’s “high-level” features—you can always code
“under” them. In an extreme case, you can write all your time-critical code in C, and then
just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., sloshing MutableByteAr-
ray#s around your program), you may wish to check if there are libraries that provide a
“Haskellised veneer” over the features you want. The separate libraries documentation de-
scribes all the libraries that come with GHC.

10.1 Language options

The language extensions control what variation of the language are permitted.

Language options can be controlled in two ways:

”

 Every language option can switched on by a command-line flag “-X...
(e.g. -XTemplateHaskell), and switched off by the flag “-XNo...”; (e.g. -
XNoTemplateHaskell).

* Language options recognised by Cabal can also be enabled using the LANGUAGE pragma,
thus {-# LANGUAGE TemplateHaskell #-} (see LANGUAGE pragma (page 478)).

GHC supports these language options:

Extension Description

AllowAmbiguousTypes (page 417) Allow the user to write ambiguous types, and the type infere
ApplicativeDo (page 277) Enable Applicative do-notation desugaring

Arrows (page 461) Enable arrow notation extension

BangPatterns (page 468) Enable bang patterns.

BinaryLiterals (page 270) Enable support for binary literals.

BlockArguments (page 293) Allow do blocks and other constructs as function arguments.
CApiFFI (page 525) Enable the CAPI calling convention.
ConstrainedClassMethods (page 349) Enable constrained class methods.

259

GHC User’s Guide Documentation, Release 8.10.0.20191123

Extension

Description

ConstraintKinds (page 411)

Enable a kind of constraints.

CPP (page 206)

Enable the C preprocessor.

CUSKs (page 394)

Enable detection of complete user-supplied kind signatures.

DataKinds (page 388)

Enable datatype promotion.

DatatypeContexts (page 296)

Allow contexts on data types.

DefaultSignatures (page 350)

Enable default signatures.

DeriveAnyClass (page 335)

Enable deriving for any class.

DeriveDataTypeable (page 328)

Enable deriving for the Data class. Implied by (deprecated) /

DeriveFoldable (page 324)

Enable deriving for the Foldable class. Implied by DeriveTre

DeriveFunctor (page 321)

Enable deriving for the Functor class. Implied by DeriveTra

DeriveGeneric (page 499)

Enable deriving for the Generic class.

DerivelLift (page 328)

Enable deriving for the Lift class

DeriveTraversable (page 326)

Enable deriving for the Traversable class. Implies DeriveFur

DerivingStrategies (page 337)

Enables deriving strategies.

DerivingVia (page 339)

Enable deriving instances via types of the same runtime rep

DisambiguateRecordFields (page 309)

Enable record field disambiguation. Implied by RecordWildC

DuplicateRecordFields (page 310)

Allow definition of record types with identically-named fields

EmptyCase (page 288)

Allow empty case alternatives.

EmptyDataDecls (page 295)

Allow definition of empty data types.

EmptyDataDeriving (page 318)

Allow deriving instances of standard type classes for empty ¢

ExistentialQuantification (page 299)

Enable liberalised type synonyms.

ExplicitForAll (page 416)

Enable explicit universal quantification. Implied by ScopedT)

ExplicitNamespaces (page 292)

Enable using the keyword type to specify the namespace of

ExtendedDefaultRules (page 36)

Use GHCi’s extended default rules in a normal module.

FlexibleContexts (page 349)

Enable flexible contexts.

FlexibleInstances (page 357)

Enable flexible instances. Implies TypeSynonymInstances (p

ForeignFunctionInterface (page 521)

Enable foreign function interface.

FunctionalDependencies (page 352)

Enable functional dependencies. Implies MultiParamTypeCl:

GADTs (page 307)

Enable generalised algebraic data types. Implies GADTSynta>

GADTSyntax (page 303)

Enable generalised algebraic data type syntax.

GeneralisedNewtypeDeriving (page 329)

Enable newtype deriving.

Haskell2010 (page 262)

Use the Haskell 2010 language variant.

Haskell98 (page 263)

Use the Haskell 2010 language variant.

HexFloatLiterals (page 270)

Enable support for hexadecimal floating point literals (page

ImplicitParams (page 428)

Enable Implicit Parameters.

ImplicitPrelude (page 285)

Don’t implicitly import Prelude. Implied by RebindableSyn

ImportQualifiedPost (page 292)

ImportQualifiedPost allows the syntax import M qualifie

ImpredicativeTypes (page 435)

Enable impredicative types. Implies RankNTypes (page 431).

IncoherentInstances (page 361)

Enable incoherent instances. Implies OverlappingInstance:

InstanceSigs (page 364)

Enable instance signatures.

InterruptibleFFI (page 525)

Enable interruptible FFI.

KindSignatures (page 420)

Enable kind signatures. Implied by TypeFamilies (page 371

LambdaCase (page 288)

Enable lambda-case expressions.

LiberalTypeSynonyms (page 298)

Enable liberalised type synonyms.

MagicHash (page 269)

Allow # as a postfix modifier on identifiers.

MonadComprehensions (page 283)

Enable monad comprehensions.

MonadFailDesugaring (page 285)

Enable monadfail desugaring.

MonoLocalBinds (page 425)

Enable do not generalise local bindings. Implied by TypeFam.

MonomorphismRestriction (page 425)

Disable the monomorphism restriction.

260

Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Extension

Description

MultiParamTypeClasses (page 348)

Enable multi parameter type classes. Implied by Functional

MultiwWayIf (page 289)

Enable multi-way if-expressions.

NamedFieldPuns (page 312)

Enable record puns.

NamedWildCards (page 445)

Enable named wildcards.

ndecreasingIndentation (page 578)

Allow nested contexts to be at the same indentation level as

NegativelLiterals (page 270)

Enable support for negative literals.

NPlusKPatterns (page 274)

Enable support for n+k patterns. Implied by Haskel198 (pag:

NullaryTypeClasses (page 351)

Deprecated, does nothing. nullary (no parameter) type classt

NumDecimals (page 270)

Enable support for ‘fractional’ integer literals.

NumericUnderscores (page 271)

Enable support for numeric underscores (page 271).

OverlappingInstances (page 361)

Enable overlapping instances.

OverloadedLabels (page 366)

Enable overloaded labels.

OverloadedLists (page 368)

Enable overloaded lists.

OverloadedStrings (page 365)

Enable overloaded string literals.

PackageImports (page 291)

Enable package-qualified imports.

ParallelListComp (page 280)

Enable parallel list comprehensions.

PartialTypeSignatures (page 443)

Enable partial type signatures.

PatternGuards (page 272)

Disable pattern guards. Implied by Haskell198 (page 263).

PatternSynonyms (page 340)

Enable pattern synonyms.

PolyKinds (page 391)

Enable kind polymorphism. Implies KindSignatures (page 4

PostfixOperators (page 287)

Enable postfix operators.

QuantifiedConstraints (page 412)

Allow forall quantifiers in constraints.

QuasiQuotes (page 459)

Enable quasiquotation.

Rank2Types (page 431)

Enable rank-2 types. Synonym for RankNTypes (page 431).

RankNTypes (page 431)

Enable rank-N types. Implied by ImpredicativeTypes (page

RebindableSyntax (page 285)

Employ rebindable syntax. Implies NoImplicitPrelude (pag

RecordWildCards (page 313)

Enable record wildcards. Implies DisambiguateRecordFielc

RecursiveDo (page 275)

Enable recursive do (mdo) notation.

RoleAnnotations (page 504)

Enable role annotations.

Safe (page 518)

Enable the Safe Haskell (page 509) Safe mode.

ScopedTypeVariables (page 420)

Enable lexically-scoped type variables.

StandaloneDeriving (page 319)

Enable standalone deriving.

StandaloneKindSignatures (page 396)

Allow the use of standalone kind signatures.

StarIsType (page 404)

Treat * as Data.Kind.Type.

StaticPointers (page 475)

Enable static pointers.

Strict (page 470)

Make bindings in the current module strict by default.

StrictData (page 469)

Enable default strict datatype fields.

TemplateHaskell (page 451)

Enable Template Haskell.

TemplateHaskellQuotes (page 452)

Enable quotation subset of Template Haskell (page 451).

TraditionalRecordSyntax (page 309)

Disable support for traditional record syntax (as supported b

TransformListComp (page 281)

Enable generalised list comprehensions.

Trustworthy (page 518)

Enable the Safe Haskell (page 509) Trustworthy mode.

TupleSections (page 287)

Enable tuple sections.

TypeApplications (page 426)

Enable type application syntax in terms and types.

TypeFamilies (page 371)

Enable type families. Implies ExplicitNamespaces (page 29:

TypeFamilyDependencies (page 386)

Enable injective type families. Implies TypeFamilies (page -

TypelInType (page 391)

Deprecated. Enable kind polymorphism and datatype promo

TypeOperators (page 297)

Enable type operators. Implies ExplicitNamespaces (page 2

TypeSynonymInstances (page 357)

Enable type synonyms in instance heads. Implied by Flexib]

10.1. Language options

261

GHC User’s Guide Documentation, Release 8.10.0.20191123

Extension

Description

UnboxedSums (page 266)

Enable unboxed sums.

UnboxedTuples (page 265)

Enable the use of unboxed tuple syntax.

UndecidableInstances (page 358)

Enable undecidable instances.

UndecidableSuperClasses (page 370)

Allow all superclass constraints, including those that may re:

UnicodeSyntax (page 268)

Enable unicode syntax.

UnliftedFFITypes (page 522)

Enable unlifted FFI types

UnliftedNewtypes (page 267)

Enable unlifted newtypes.

Unsafe (page 518)

Enable Safe Haskell (page 509) Unsafe mode.

ViewPatterns (page 272)

Enable view patterns.

Although not recommended, the deprecated - fglasgow-exts (page 262) flag enables a large
swath of the extensions supported by GHC at once.

-fglasgow-exts

The flag - fglasgow-exts is equivalent to enabling the following extensions:

*ConstrainedClassMethods (page 349)

*DeriveDataTypeable (page 328)

*DeriveFoldable (page 324)
*DeriveFunctor (page 321)
*DeriveGeneric (page 499)

*DeriveTraversable (page 326)
*EmptyDataDecls (page 295)
*ExistentialQuantification (page 299)
*ExplicitNamespaces (page 292)
*FlexibleContexts (page 349)
*FlexibleInstances (page 357)
*ForeignFunctionInterface (page 521)
*FunctionalDependencies (page 352)
*GeneralizedNewtypeDeriving (page 329)
eImplicitParams (page 428)
eInterruptibleFFI (page 525)
eKindSignatures (page 420)
eLiberalTypeSynonyms (page 298)
*MagicHash (page 269)
*MultiParamTypeClasses (page 348)
*ParallelListComp (page 280)
*PatternGuards (page 272)
*PostfixOperators (page 287)
*RankNTypes (page 431)

*RecursiveDo (page 275)
*ScopedTypeVariables (page 420)
*StandaloneDeriving (page 319)
*TypeOperators (page 297)
*TypeSynonymInstances (page 357)
*UnboxedTuples (page 265)
eUnicodeSyntax (page 268)
eUnliftedFFITypes (page 522)

Enabling these options is the only effect of - fglasgow-exts. We are trying to move away
from this portmanteau flag, and towards enabling features individually.

Haskell2010

262

Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Compile Haskell 2010 language variant. Enables the following language extensions:

*ImplicitPrelude (page 285)
*StarIsType (page 404)

*CUSKs (page 394)
*MonomorphismRestriction (page 425)
*DatatypeContexts (page 296)
*TraditionalRecordSyntax (page 309)
*EmptyDataDecls (page 295)
*ForeignFunctionInterface (page 521)
*PatternGuards (page 272)
*DoAndIfThenElse

*RelaxedPolyRec

Haskell98
Compile using Haskell 98 language variant. Enables the following language extensions:

eImplicitPrelude (page 285)
*StarIsType (page 404)

*CUSKs (page 394)
*MonomorphismRestriction (page 425)
*NPlusKPatterns (page 274)
*DatatypeContexts (page 296)
*TraditionalRecordSyntax (page 309)
*NondecreasingIndentation (page 578)

10.2 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; “primitive” in the sense that
they cannot be defined in Haskell itself. While you really can use this stuff to write fast code,
we generally find it a lot less painful, and more satisfying in the long run, to use higher-level
language features and libraries. With any luck, the code you write will be optimised to the
efficient unboxed version in any case. And if it isn’t, we’d like to know about it.

All these primitive data types and operations are exported by the library GHC.Prim, for which
there is detailed online documentation <GHC.Prim.>. (This documentation is generated from
the file compiler/prelude/primops.txt.pp.)

If you want to mention any of the primitive data types or operations in your program, you
must first import GHC.Prim to bring them into scope. Many of them have names ending in #,
and to mention such names you need the MagicHash (page 269) extension.

The primops make extensive use of unboxed types (page 263) and unboxed tuples (page 265),
which we briefly summarise here.

10.2.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a
pointer to a heap object. The representation of a Haskell Int, for example, is a two-word
heap object. An unboxed type, however, is represented by the value itself, no pointers or
heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int),
Double# (double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are

10.2. Unboxed types and primitive operations 263

GHC User’s Guide Documentation, Release 8.10.0.20191123

what you might expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we
all know and love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the lan-
guage and compiler. Primitive types are always unlifted; that is, a value of a primitive type
cannot be bottom. (Note: a “boxed” type means that a value is represented by a pointer to a
heap object; a “lifted” type means that terms of that type may be bottom. See the next para-
graph for an example.) We use the convention (but it is only a convention) that primitive types,
values, and operations have a # suffix (see The magic hash (page 269)). For some primitive
types we have special syntax for literals, also described in the same section (page 269).

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#.
But this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples include Array#, the type of primitive arrays. Thus, Array#
is an unlifted, boxed type. A primitive array is heap-allocated because it is too big a value to
fit in a register, and would be too expensive to copy around; in a sense, it is accidental that it
is represented by a pointer. If a pointer represents a primitive value, then it really does point
to that value: no unevaluated thunks, no indirections. Nothing can be at the other end of the
pointer than the primitive value. A numerically-intensive program using unboxed types can
go a lot faster than its “standard” counterpart—we saw a threefold speedup on one example.

10.2.2 Unboxed type kinds

Because unboxed types are represented without the use of pointers, we cannot store them
in use a polymorphic datatype at an unboxed type. For example, the Just node of Just
42# would have to be different from the Just node of Just 42; the former stores an integer
directly, while the latter stores a pointer. GHC currently does not support this variety of Just
nodes (nor for any other datatype). Accordingly, the kind of an unboxed type is different from
the kind of a boxed type.

The Haskell Report describes that * (spelled Type and imported from Data.Kind in the GHC
dialect of Haskell) is the kind of ordinary datatypes, such as Int. Furthermore, type construc-
tors can have kinds with arrows; for example, Maybe has kind Type -> Type. Unboxed types
have a kind that specifies their runtime representation. For example, the type Int# has kind
TYPE 'IntRep and Double# has kind TYPE 'DoubleRep. These kinds say that the runtime rep-
resentation of an Int# is a machine integer, and the runtime representation of a Double# is a
machine double-precision floating point. In contrast, the kind Type is actually just a synonym
for TYPE 'LiftedRep. More details of the TYPE mechanisms appear in the section on runtime
representation polymorphism (page 406).

Given that Int#‘s kind is not Type, it then it follows that Maybe Int# is disallowed. Similarly,
because type variables tend to be of kind Type (for example, in (.) :: (b -> c) -> (a ->
b) -> a -> c, all the type variables have kind Type), polymorphism tends not to work over
primitive types. Stepping back, this makes some sense, because a polymorphic function needs
to manipulate the pointers to its data, and most primitive types are unboxed.

There are some restrictions on the use of primitive types:

* You cannot define a newtype whose representation type (the argument type of the data
constructor) is an unboxed type. Thus, this is illegal:

newtype A = MkA Int#

However, this restriction can be relaxed by enabling UnliftedNewtypes (page 267). The
section on unlifted newtypes (page 267) details the behavior of such types.

* You cannot bind a variable with an unboxed type in a top-level binding.

264 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

* You cannot bind a variable with an unboxed type in a recursive binding.

* You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding,
but you must make any such pattern-match strict. (Failing to do so emits a warning
-Wunbanged-strict-patterns (page 100).) For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

10.2.3 Unboxed tuples

UnboxedTuples
Since 6.8.1

Unboxed tuples aren’t really exported by GHC. Exts; they are a syntactic extension (Unboxed-
Tuples (page 265)). An unboxed tuple looks like this:

(#e1, ..., en #)

where e 1..e n are expressions of any type (primitive or non-primitive). The type of an
unboxed tuple looks the same.

Note that when unboxed tuples are enabled, (# is a single lexeme, so for example when using
operators like # and #- you need to write (#) and (#-) rather than (#) and (#-).

Unboxed tuples are used for functions that need to return multiple values, but they avoid the
heap allocation normally associated with using fully-fledged tuples. When an unboxed tuple
is returned, the components are put directly into registers or on the stack; the unboxed tuple
itself does not have a composite representation. Many of the primitive operations listed in
primops.txt.pp return unboxed tuples. In particular, the I0 and ST monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.

There are some restrictions on the use of unboxed tuples:

» The typical use of unboxed tuples is simply to return multiple values, binding those mul-
tiple results with a case expression, thus:

y = (# x+1, y-1 #)

f x
g X case f x x of { (# a, b #) ->a + b}

You can have an unboxed tuple in a pattern binding, thus

f x =Tlet (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell
pattern binding. The above example desugars like this:

10.2. Unboxed types and primitive operations 265

GHC User’s Guide Documentation, Release 8.10.0.20191123

f x=71let t = case h x of { (# p,q #) -> (p,q) }
p=fstt
g =snd t
in ..body..

Indeed, the bindings can even be recursive.

10.2.4 Unboxed sums

UnboxedSums
Since 8.2.1
Enable the use of unboxed sum syntax.

-XUnboxedSums enables new syntax for anonymous, unboxed sum types. The syntax for an
unboxed sum type with N alternatives is

’(#t71|t72| oo | tN #) ‘

where t 1 ... t N are types (which can be unlifted, including unboxed tuples and sums).

Unboxed tuples can be used for multi-arity alternatives. For example:

](# (# Int, String #) | Bool #) \

The term level syntax is similar. Leading and preceding bars (|) indicate which alternative it
is. Here are two terms of the type shown above:

(# (# 1, "foo" #) | #) -- first alternative

(# | True #) -- second alternative

The pattern syntax reflects the term syntax:

case x of
(# (# 1, str #) | #) -> ...
(# | bool #) -> ...

Unboxed sums are “unboxed” in the sense that, instead of allocating sums in the heap and
representing values as pointers, unboxed sums are represented as their components, just like
unboxed tuples. These “components” depend on alternatives of a sum type. Like unboxed
tuples, unboxed sums are lazy in their lifted components.

The code generator tries to generate as compact layout as possible for each unboxed sum. In
the best case, size of an unboxed sum is size of its biggest alternative plus one word (for a
tag). The algorithm for generating the memory layout for a sum type works like this:

» All types are classified as one of these classes: 32bit word, 64bit word, 32bit float, 64bit
float, pointer.

* For each alternative of the sum type, a layout that consists of these fields is generated.
For example, if an alternative has Int, Float# and String fields, the layout will have an
32bit word, 32bit float and pointer fields.

* Layout fields are then overlapped so that the final layout will be as compact as possible.
For example, suppose we have the unboxed sum:

266 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

(# (# Word32#, String, Float# #)
| (# Float#, Float#, Maybe Int #) #)

The final layout will be something like

Int32, Float32, Float32, Word32, Pointer

The first Int32 is for the tag. There are two Float32 fields because floating point types
can’t overlap with other types, because of limitations of the code generator that we’re
hoping to overcome in the future. The second alternative needs two Float32 fields:
The Word32 field is for the Word32# in the first alternative. The Pointer field is shared
between String and Maybe Int values of the alternatives.

As another example, this is the layout for the unboxed version of Maybe a type, (# (#
#) | a #):

’Int32, Pointer

The Pointer field is not used when tag says that it’s Nothing. Otherwise Pointer points
to the value in Just. As mentioned above, this type is lazy in its lifted field. Therefore,
the type

’data Maybe' a = Maybe' (# (# #) | a #) ‘

is precisely isomorphic to the type Maybe a, although its memory representation is dif-
ferent.

In the degenerate case where all the alternatives have zero width, such as the Bool-
like (# (# #) | (# #) #), the unboxed sum layout only has an Int32 tag field (i.e., the
whole thing is represented by an integer).

10.2.5 Unlifted Newtypes

UnliftedNewtypes
Since 8.10.1
Enable the use of newtypes over types with non-lifted runtime representations.

GHC implements an UnliftedNewtypes (page 267) extension as specified in this GHC pro-
posal. UnliftedNewtypes (page 267) relaxes the restrictions around what types can appear
inside of a newtype. For example, the type

newtype A = MkA Int#

is accepted when this extension is enabled. This creates a type A :: TYPE 'IntRep and
a data constructor MkA :: Int# -> A. Although the kind of A is inferred by GHC, there is
nothing visually distictive about this type that indicated that is it not of kind Type like newtypes
typically are. GADTSyntax (page 303) can be used to provide a kind signature for additional
clarity

newtype A :: TYPE 'IntRep where
MKkA :: Int# -> A

The Coercible machinery works with unlifted newtypes just like it does with lifted types. In
either of the equivalent formulations of A given above, users would additionally have access
to a coercion between A and Int#.

10.2. Unboxed types and primitive operations 267

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0013-unlifted-newtypes.rst

GHC User’s Guide Documentation, Release 8.10.0.20191123

As a consequence of the levity-polymorphic binder restriction (page 406), levity-polymorphic
fields are disallowed in data constructors of data types declared using data. However, since
newtype data constructor application is implemented as a coercion instead of as function
application, this restriction does not apply to the field inside a newtype data constructor.
Thus, the type checker accepts

newtype Identity# :: forall (r :: RuntimeRep). TYPE r -> TYPE r where
MkIdentity# :: forall (r :: RuntimeRep) (a :: TYPE r). a -> Identity# a

And with UnboxedSums (page 266) enabled

newtype Maybe# :: forall (r :: RuntimeRep). TYPE r -> TYPE (SumRep '[r, TupleRep
—'[1]1) where
MkMaybe# :: forall (r :: RuntimeRep) (a :: TYPE r). (# a | (# #) #) -> Maybe# a

This extension also relaxes some of the restrictions around data family instances. In particu-
lar, UnliftedNewtypes (page 267) permits a newtype instance to be given a return kind of
TYPE r, not just Type. For example, the following newtype instance declarations would be
permitted:

class Foo a where
data FooKey a :: TYPE 'IntRep
class Bar (r :: RuntimeRep) where
data BarType r :: TYPE r

instance Foo Bool where
newtype FooKey Bool = FooKeyBoolC Int#
instance Bar 'WordRep where
newtype BarType 'WordRep = BarTypeWordRepC Word#

It is worth noting that UnliftedNewtypes (page 267) is not required to give the data families
themselves return kinds involving TYPE, such as the FooKey and BarType examples above.
The extension is only required for newtype instance declarations, such as FooKeyBoolC and
BarTypeWorkRepC above.

This extension impacts the determination of whether or not a newtype has a Complete
User-Specified Kind Signature (CUSK). The exact impact is specified the section on CUSKs
(page 394).

10.3 Syntactic extensions

10.3.1 Unicode syntax

UnicodeSyntax
Since 6.8.1
Enable the use of Unicode characters in place of their equivalent ASCII sequences.

The language extension UnicodeSyntax (page 268) enables Unicode characters to be used to
stand for certain ASCII character sequences. The following alternatives are provided:

268 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

ASCII Unicode Code Name
alternative point

: 0 0x2237 PROPORTION

=> = 0x21D2 RIGHTWARDS DOUBLE ARROW

-> — 0x2192 RIGHTWARDS ARROW

<- — 0x2190 LEFTWARDS ARROW

>- - 0x291a RIGHTWARDS ARROW-TAIL

-< — 0x2919 LEFTWARDS ARROW-TAIL

>>- » 0x291C RIGHTWARDS DOUBLE ARROW-TAIL

-<< —« 0x291B LEFTWARDS DOUBLE ARROW-TAIL

* 0 0x2605 BLACK STAR

forall |V 0x2200 FOR ALL

(] 0 0x2987 Z NOTATION LEFT IMAGE BRACKET

[) 0 0x2988 Z NOTATION RIGHT IMAGE BRACKET

[] 0 0x27E6 MATHEMATICAL LEFT WHITE SQUARE
BRACKET

] a 0x27E7 MATHEMATICAL RIGHT WHITE SQUARE
BRACKET

10.3.2 The magic hash

MagicHash
Since 6.8.1
Enables the use of the hash character (#) as an identifier suffix.

The language extension MagicHash (page 269) allows # as a postfix modifier to identifiers.
Thus, x# is a valid variable, and T# is a valid type constructor or data constructor.

The hash sign does not change semantics at all. We tend to use variable names ending in “#”
for unboxed values or types (e.g. Int#), but there is no requirement to do so; they are just
plain ordinary variables. Nor does the MagicHash (page 269) extension bring anything into
scope. For example, to bring Int# into scope you must import GHC.Prim (see Unboxed types
and primitive operations (page 263)); the MagicHash (page 269) extension then allows you to
refer to the Int# that is now in scope. Note that with this option, the meaning of x#y = 0 is
changed: it defines a function x# taking a single argument y; to define the operator #, put a
space: X # y = 0.

The MagicHash (page 269) also enables some new forms of literals (see Unboxed types
(page 263)):

* 'X'# has type Char#
* "foo"# has type Addr#

* 3# has type Int#. In general, any Haskell integer lexeme followed by a # is an Int#
literal, e.g. -Ox3A# as well as 32#.

» 3## has type Word#. In general, any non-negative Haskell integer lexeme followed by ##
is a Word#.

3.2# has type Float#.
3.2## has type Double#

10.3. Syntactic extensions 269

GHC User’s Guide Documentation, Release 8.10.0.20191123

10.3.3 Negative literals

NegativelLiterals
Since 7.8.1
Enable the use of un-parenthesized negative numeric literals.

The literal -123 is, according to Haskell98 and Haskell 2010, desugared as negate
(fromInteger 123). The language extension NegativelLiterals (page 270) means that it
is instead desugared as fromInteger (-123).

This can make a difference when the positive and negative range of a numeric data type don't
match up. For example, in 8-bit arithmetic -128 is representable, but +128 is not. So negate
(fromInteger 128) will elicit an unexpected integer-literal-overflow message.

10.3.4 Fractional looking integer literals

NumDecimals
Since 7.8.1
Allow the use of floating-point literal syntax for integral types.

Haskell 2010 and Haskell 98 define floating literals with the syntax 1.2e6. These literals have
the type Fractional a => a.

The language extension NumDecimals (page 270) allows you to also use the floating literal
syntax for instances of Integral, and have values like (1.2e6 :: Num a => a)

10.3.5 Binary integer literals

BinaryLiterals
Since 7.10.1
Allow the use of binary notation in integer literals.

Haskell 2010 and Haskell 98 allows for integer literals to be given in decimal, octal (prefixed
by 00 or 00), or hexadecimal notation (prefixed by 0x or 0X).

The language extension BinarylLiterals (page 270) adds support for expressing integer
literals in binary notation with the prefix Ob or 0B. For instance, the binary integer literal
0b11001001 will be desugared into fromInteger 201 when BinarylLiterals (page 270) is
enabled.

10.3.6 Hexadecimal floating point literals

HexFloatLiterals
Since 8.4.1
Allow writing floating point literals using hexadecimal notation.

The hexadecimal notation for floating point literals is useful when you need to specify floating
point constants precisely, as the literal notation corresponds closely to the underlying bit-
encoding of the number.

270 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

In this notation floating point numbers are written using hexadecimal digits, and so the digits
are interpreted using base 16, rather then the usual 10. This means that digits left of the
decimal point correspond to positive powers of 16, while the ones to the right correspond to
negative ones.

You may also write an explicit exponent, which is similar to the exponent in decimal notation
with the following differences: - the exponent begins with p instead of e - the exponent is
written in base 10 (not 16) - the base of the exponent is 2 (not 16).

In terms of the underlying bit encoding, each hexadecimal digit corresponds to 4 bits, and
you may think of the exponent as “moving” the floating point by one bit left (negative) or right
(positive). Here are some examples:

* 0x0.1 is the same as 1/16

* 0x0.01 is the same as 1/256

* OXxF.FF is the same as 15 + 15/16 + 15/256
* 0x0.1p4 is the same as 1

* 0x0.1p-4 is the same as 1/256

* 0x0.1pl2 is the same as 256

10.3.7 Numeric underscores

NumericUnderscores
Since 8.6.1
Allow the use of underscores in numeric literals.

GHC allows for numeric literals to be given in decimal, octal, hexadecimal, binary, or float
notation.

The language extension NumericUnderscores (page 271) adds support for expressing under-
scores in numeric literals. For instance, the numeric literal 1 000 000 will be parsed into
1000000 when NumericUnderscores (page 271) is enabled. That is, underscores in numeric
literals are ignored when NumericUnderscores (page 271) is enabled. See also #14473.

For example:

-- decimal

million = 1 000 000

billion = 1 000 000 000
lightspeed = 299 792 458

version =8 041

date = 2017 12 31

-- hexadecimal

red mask = Oxff 00 00

sizelG = Ox3fff ffff

-- binary

bit8th = 0bO1l 0000 0000
packbits = Obl 11 01 0000 0 111
bigbits = 0b1100 1011 11160 1111 0101 0011
-- float

pi = 3.141 592 653 589 793

10.3. Syntactic extensions 271

https://gitlab.haskell.org/ghc/ghc/issues/14473

GHC User’s Guide Documentation, Release 8.10.0.20191123

faraday = 96 485.332 89
avogadro = 6.022 140 857e+23
-- function

isUnderMillion = (< 1 000 000)
clip64M x
| x > Ox3ff ffff = Ox3ff ffff
| otherwise = x

test8bit x = (0bO1_0000_0000 .&. x) /=0

About validity:

x0 =1 000 000 -- valid
x1 =1 000000 -- valid
x2 = 1000000 -- invalid
x3 = 1000000 -- invalid
ed = 0.0001 -- valid
el = 0.000 1 -- valid
e2 = 0_.0001 -- invalid
e3 = 0.0001 -- invalid
e4 = 0. 0001 -- invalid
e5 = 0.0001_ -- invalid
f0 = le+23 -- valid
fl =1 e+23 -- valid
f2 =1 e+23 -- valid
f3 = le +23 -- invalid
g0 = le+23 -- valid
gl = le+ 23 -- invalid
g2 = le+23 -- invalid
ho = Oxffff -- valid
hl = oxff ff -- valid
h2 = ox ffff -- valid
h3 = Ox_ ffff -- valid
h4 = Oxffff -- invalid

10.3.8 Pattern guards

NoPatternGuards
Implied by Haskell98 (page 263)
Since 6.8.1

Disable pattern guards.

10.3.9 View patterns

ViewPatterns
Since 6.10.1

272

Chapter 10. GHC Language Features

http://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-460003.13

GHC User’s Guide Documentation, Release 8.10.0.20191123

Allow use of view pattern syntax.

View patterns are enabled by the language extension ViewPatterns (page 272). More infor-
mation and examples of view patterns can be found on the Wiki page.

View patterns are somewhat like pattern guards that can be nested inside of other patterns.
They are a convenient way of pattern-matching against values of abstract types. For example,
in a programming language implementation, we might represent the syntax of the types of
the language as follows:

type Typ

data TypView = Unit
| Arrow Typ Typ

view :: Typ -> TypView

-- additional operations for constructing Typ's ...

The representation of Typ is held abstract, permitting implementations to use a fancy repre-
sentation (e.g., hash-consing to manage sharing). Without view patterns, using this signature
is a little inconvenient:

size :: Typ -> Integer
size t = case view t of
Unit -> 1

Arrow tl t2 -> size tl + size t2

It is necessary to iterate the case, rather than using an equational function definition. And the
situation is even worse when the matching against t is buried deep inside another pattern.

View patterns permit calling the view function inside the pattern and matching against the
result:

size (view -> Unit) =1
size (view -> Arrow tl t2) = size tl + size t2

That is, we add a new form of pattern, written (expression) -> (pattern) that means “apply
the expression to whatever we’re trying to match against, and then match the result of that
application against the pattern”. The expression can be any Haskell expression of function
type, and view patterns can be used wherever patterns are used.

The semantics of a pattern ((exp) -> (pat)) are as follows:
* Scoping: The variables bound by the view pattern are the variables bound by (pat).

Any variables in (exp) are bound occurrences, but variables bound “to the left” in a
pattern are in scope. This feature permits, for example, one argument to a function to
be used in the view of another argument. For example, the function clunky from Pattern
guards (page 272) can be written using view patterns as follows:

clunky env (lookup env -> Just vall) (lookup env -> Just val2) = vall + val2
...other equations for clunky...

More precisely, the scoping rules are:

- In a single pattern, variables bound by patterns to the left of a view pattern expres-
sion are in scope. For example:

10.3. Syntactic extensions 273

https://gitlab.haskell.org/ghc/ghc/wikis/view-patterns

GHC User’s Guide Documentation, Release 8.10.0.20191123

example :: Maybe ((String -> Integer,Integer), String) -> Bool
example (Just ((f,_), f -> 4)) = True

Additionally, in function definitions, variables bound by matching earlier curried
arguments may be used in view pattern expressions in later arguments:

example :: (String -> Integer) -> String -> Bool
example f (f -> 4) = True

That is, the scoping is the same as it would be if the curried arguments were col-
lected into a tuple.

- In mutually recursive bindings, such as let, where, or the top level, view patterns
in one declaration may not mention variables bound by other declarations. That is,
each declaration must be self-contained. For example, the following program is not

allowed:
let {(x ->y) =el ;
(y -> x) =e2 } in x

(For some amplification on this design choice see #4061.

Typing: If (exp) has type (T1) -> (T2) and (pat) matches a (T2), then the whole view
pattern matches a (T1).

Matching: To the equations in Section 3.17.3 of the Haskell 98 Report, add the following:

case v of { (e ->p) ->el ; ->e2}

case (ev) of { p->el; _->e2}

That is, to match a variable (v) against a pattern ((exp) -> (pat)), evaluate ({exp) (v)
) and match the result against (pat).

Efficiency: When the same view function is applied in multiple branches of a function
definition or a case expression (e.g., in size above), GHC makes an attempt to collect
these applications into a single nested case expression, so that the view function is only
applied once. Pattern compilation in GHC follows the matrix algorithm described in
Chapter 4 of The Implementation of Functional Programming Languages. When the top
rows of the first column of a matrix are all view patterns with the “same” expression,
these patterns are transformed into a single nested case. This includes, for example,
adjacent view patterns that line up in a tuple, as in

el
e2

f ((view -> A, pl), p2)
f ((view -> B, p3), p4)

The current notion of when two view pattern expressions are “the same” is very re-
stricted: it is not even full syntactic equality. However, it does include variables, literals,
applications, and tuples; e.g., two instances of view ("hi","there") will be collected.
However, the current implementation does not compare up to alpha-equivalence, so two
instances of (x,view x -> y) will not be coalesced.

10.3.10 n+k patterns

NPlusKPatterns

Implied by Haskell98 (page 263)

274

Chapter 10. GHC Language Features

https://gitlab.haskell.org/ghc/ghc/issues/4061
http://www.haskell.org/onlinereport/
http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/

GHC User’s Guide Documentation, Release 8.10.0.20191123

Since 6.12.1

Enable use of n+k patterns.

10.3.11 The recursive do-notation

RecursiveDo
Since 6.8.1
Allow the use of recursive do notation.

The do-notation of Haskell 98 does not allow recursive bindings, that is, the variables bound
in a do-expression are visible only in the textually following code block. Compare this to a
let-expression, where bound variables are visible in the entire binding group.

It turns out that such recursive bindings do indeed make sense for a variety of monads, but
not all. In particular, recursion in this sense requires a fixed-point operator for the underlying
monad, captured by the mfix method of the MonadFix class, defined in Control.Monad.Fix
as follows:

class Monad m => MonadFix m where
mfix :: (@ -=>ma) ->m a

Haskell’s Maybe, [] (list), ST (both strict and lazy versions), I0, and many other monads have
MonadFix instances. On the negative side, the continuation monad, with the signature (a ->
r) -> r, does not.

For monads that do belong to the MonadFix class, GHC provides an extended version of the
do-notation that allows recursive bindings. The RecursiveDo (page 275) (language pragma:
RecursiveDo) provides the necessary syntactic support, introducing the keywords mdo and
rec for higher and lower levels of the notation respectively. Unlike bindings in a do ex-
pression, those introduced by mdo and rec are recursively defined, much like in an ordinary
let-expression. Due to the new keyword mdo, we also call this notation the mdo-notation.

Here is a simple (albeit contrived) example:

{-# LANGUAGE RecursiveDo #-}
justOnes = mdo { xs <- Just (1l:xs)
; return (map negate xs) }

or equivalently

{-# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (1l:xs) }
; return (map negate xs) }

As you can guess justOnes will evaluate to Just [-1,-1,-1,...

GHC'’s implementation the mdo-notation closely follows the original translation as described
in the paper A recursive do for Haskell, which in turn is based on the work Value Recursion in
Monadic Computations. Furthermore, GHC extends the syntax described in the former paper
with a lower level syntax flagged by the rec keyword, as we describe next.

Recursive binding groups

The extension RecursiveDo (page 275) also introduces a new keyword rec, which wraps a
mutually-recursive group of monadic statements inside a do expression, producing a single

10.3. Syntactic extensions 275

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf

GHC User’s Guide Documentation, Release 8.10.0.20191123

statement. Similar to a let statement inside a do, variables bound in the rec are visible
throughout the rec group, and below it. For example, compare

do { a <- getChar do { a <- getChar
; let { rl =far2 ; rec {rl <-far2
; ; r2=qgrl} ; i r2<-grl}
; return (rl1 ++ r2) } ; return (rl ++ r2) }

In both cases, rl and r2 are available both throughout the let or rec block, and in the state-
ments that follow it. The difference is that let is non-monadic, while rec is monadic. (In
Haskell let is really letrec, of course.)

The semantics of rec is fairly straightforward. Whenever GHC finds a rec group, it will
compute its set of bound variables, and will introduce an appropriate call to the underlying
monadic value-recursion operator mfix, belonging to the MonadFix class. Here is an example:

rec { b<-fac ===> (b,c) <- mfix (\ ~(b,c) ->do { b<-fac
;j c<-fbal} i c<-fba
; return (b,c) })

As usual, the meta-variables b, ¢ etc., can be arbitrary patterns. In general, the statement
rec ss is desugared to the statement

vs <- mfix (\ ~vs -> do { ss; return vs })

where vs is a tuple of the variables bound by ss.

Note in particular that the translation for a rec block only involves wrapping a call to mfix: it
performs no other analysis on the bindings. The latter is the task for the mdo notation, which
is described next.

The mdo notation

A rec-block tells the compiler where precisely the recursive knot should be tied. It turns out
that the placement of the recursive knots can be rather delicate: in particular, we would like
the knots to be wrapped around as minimal groups as possible. This process is known as
segmentation, and is described in detail in Section 3.2 of A recursive do for Haskell. Seg-
mentation improves polymorphism and reduces the size of the recursive knot. Most impor-
tantly, it avoids unnecessary interference caused by a fundamental issue with the so-called
right-shrinking axiom for monadic recursion. In brief, most monads of interest (IO, strict
state, etc.) do not have recursion operators that satisfy this axiom, and thus not performing
segmentation can cause unnecessary interference, changing the termination behavior of the
resulting translation. (Details can be found in Sections 3.1 and 7.2.2 of Value Recursion in
Monadic Computations.)

The mdo notation removes the burden of placing explicit rec blocks in the code. Unlike an
ordinary do expression, in which variables bound by statements are only in scope for later
statements, variables bound in an mdo expression are in scope for all statements of the ex-
pression. The compiler then automatically identifies minimal mutually recursively dependent
segments of statements, treating them as if the user had wrapped a rec qualifier around
them.

The definition is syntactic:
* A generator (g) depends on a textually following generator (g’), if

- (g’) defines a variable that is used by (g), or

276 Chapter 10. GHC Language Features

http://leventerkok.github.io/papers/recdo.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf
http://leventerkok.github.io/papers/erkok-thesis.pdf

GHC User’s Guide Documentation, Release 8.10.0.20191123

- (g’) textually appears between (g) and (g’‘), where (g) depends on (g’*).

* A segment of a given mdo-expression is a minimal sequence of generators such that no
generator of the sequence depends on an outside generator. As a special case, although
it is not a generator, the final expression in an mdo-expression is considered to form a
segment by itself.

Segments in this sense are related to strongly-connected components analysis, with the ex-
ception that bindings in a segment cannot be reordered and must be contiguous.

Here is an example mdo-expression, and its translation to rec blocks:

mdo { a <- getChar ===> do { a <- getChar
i b<-fac ; rec { b<-fac
; c<-fba ; ; c<-fbal
;7 z<-hab ;7 z<-hab
; d<-gde ; rec {d<-gde
; e<-gaz ; i e<-gaz}
; putChar c } ; putChar c }

Note that a given mdo expression can cause the creation of multiple rec blocks. If there are no
recursive dependencies, mdo will introduce no rec blocks. In this latter case an mdo expression
is precisely the same as a do expression, as one would expect.

In summary, given an mdo expression, GHC first performs segmentation, introducing rec
blocks to wrap over minimal recursive groups. Then, each resulting rec is desugared, using
a call to Control.Monad.Fix.mfix as described in the previous section. The original mdo-
expression typechecks exactly when the desugared version would do so.

Here are some other important points in using the recursive-do notation:

* It is enabled with the extension RecursiveDo (page 275), or the LANGUAGE RecursiveDo
pragma. (The same extension enables both mdo-notation, and the use of rec blocks inside
do expressions.)

* rec blocks can also be used inside mdo-expressions, which will be treated as a single
statement. However, it is good style to either use mdo or rec blocks in a single expression.

» If recursive bindings are required for a monad, then that monad must be declared an
instance of the MonadFix class.

» The following instances of MonadFix are automatically provided: List, Maybe, I0. Fur-
thermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the in-
stances of the MonadFix class for Haskell’s internal state monad (strict and lazy, respec-
tively).

* Like let and where bindings, name shadowing is not allowed within an mdo-expression
or a rec-block; that is, all the names bound in a single rec must be distinct. (GHC will
complain if this is not the case.)

10.3.12 Applicative do-notation

ApplicativeDo
Since 8.0.1

Allow use of Applicative do notation.

10.3. Syntactic extensions 277

GHC User’s Guide Documentation, Release 8.10.0.20191123

The language option ApplicativeDo (page 277) enables an alternative translation for the do-
notation, which uses the operators <$>, <*>, along with join as far as possible. There are
two main reasons for wanting to do this:

* We can use do-notation with types that are an instance of Applicative and Functor, but
not Monad

* In some monads, using the applicative operators is more efficient than monadic bind.
For example, it may enable more parallelism.

Applicative do-notation desugaring preserves the original semantics, provided that the Ap-
plicative instance satisfies <*> = ap and pure = return (these are true of all the common
monadic types). Thus, you can normally turn on ApplicativeDo (page 277) without fear of
breaking your program. There is one pitfall to watch out for; see Things to watch out for
(page 280).

There are no syntactic changes with ApplicativeDo (page 277). The only way it shows up at
the source level is that you can have a do expression that doesn’t require a Monad constraint.
For example, in GHCi:

Prelude> :set -XApplicativeDo
Prelude> :t \m -> do { x <- m; return (not x) }
\m -> do { x <- m; return (not x) }

:: Functor f => f Bool -> f Bool

This example only requires Functor, because it is translated into (\x -> not x) <$> m. A
more complex example requires Applicative,

Prelude> :t \m ->do { x <-m 'a'; y <-=m 'b'; return (x || y) }
\m ->do { x <-m 'a'; y<-m'b'; return (x || y) }
:: Applicative f => (Char -> f Bool) -> f Bool

Here GHC has translated the expression into

(\x y -=>x || y) <$>m 'a" <k>m 'b’

It is possible to see the actual translation by using -ddump-ds (page 222), but be warned, the
output is quite verbose.

Note that if the expression can’t be translated into uses of <$>, <*> only, then it will incur a
Monad constraint as usual. This happens when there is a dependency on a value produced by
an earlier statement in the do-block:

Prelude> :t \m -> do { x <- m True; y <- m x; return (x || y) }
\m ->do { x <- m True; y <- m x; return (x || y) }
:: Monad m => (Bool -> m Bool) -> m Bool

Here, m x depends on the value of x produced by the first statement, so the expression cannot
be translated using <*>.

In general, the rule for when a do statement incurs a Monad constraint is as follows. If the
do-expression has the following form:

do pl <- E1; ...; pn <- En; return E

where none of the variables defined by pl...pn are mentioned in E1...En, and pl...pn are
all variables or lazy patterns, then the expression will only require Applicative. Otherwise,
the expression will require Monad. The block may return a pure expression E depending upon
the results pl...pn with either return or pure.

278 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Note: the final statement must match one of these patterns exactly:
* return E
e return $ E
* pure E
e pure $ E

otherwise GHC cannot recognise it as a return statement, and the transformation to use <$>
that we saw above does not apply. In particular, slight variations such as return . Just $
xorlet x = e in return x would not be recognised.

If the final statement is not of one of these forms, GHC falls back to standard do desugaring,
and the expression will require a Monad constraint.

When the statements of a do expression have dependencies between them, and Applica-
tiveDo cannot infer an Applicative type, it uses a heuristic algorithm to try to use <*> as
much as possible. This algorithm usually finds the best solution, but in rare complex cases it
might miss an opportunity. There is an algorithm that finds the optimal solution, provided as
an option:

-foptimal-applicative-do
Since 8.0.1

Enables an alternative algorithm for choosing where to use <*> in conjunction with the
ApplicativeDo language extension. This algorithm always finds the optimal solution,
but it is expensive: 0(n"3), so this option can lead to long compile times when there are
very large do expressions (over 100 statements). The default ApplicativeDo algorithm
is 0(n"2).

Strict patterns

A strict pattern match in a bind statement prevents ApplicativeDo from transforming that
statement to use Applicative. This is because the transformation would change the seman-
tics by making the expression lazier.

For example, this code will require a Monad constraint:

> :t \m -> do { (x:xs) <- m; return x }
\m -> do { (x:xs) <- m; return x } :: Monad m =>m [b] ->m b

but making the pattern match lazy allows it to have a Functor constraint:

>t \m -> do { ~(x:xs) <- m; return x }
\m -> do { ~(x:xs) <- m; return x } :: Functor f => f [b] -> f b

A “strict pattern match” is any pattern match that can fail. For example, (), (x:xs), !z, and C
X are strict patterns, but x and ~(1,2) are not. For the purposes of ApplicativeDo, a pattern
match against a newtype constructor is considered strict.

When there’s a strict pattern match in a sequence of statements, ApplicativeDo places a
>>= between that statement and the one that follows it. The sequence may be transformed to
use <*> elsewhere, but the strict pattern match and the following statement will always be
connected with >>=, to retain the same strictness semantics as the standard do-notation. If
you don’t want this, simply put a ~ on the pattern match to make it lazy.

10.3. Syntactic extensions 279

GHC User’s Guide Documentation, Release 8.10.0.20191123

Things to watch out for

Your code should just work as before when ApplicativeDo (page 277) is enabled, provided
you use conventional Applicative instances. However, if you define a Functor or Applica-
tive instance using do-notation, then it will likely get turned into an infinite loop by GHC.
For example, if you do this:

instance Functor MyType where
fmap f m = do x <- m; return (f x)

Then applicative desugaring will turn it into

instance Functor MyType where
fmap f m = fmap (\x -> f x) m

And the program will loop at runtime. Similarly, an Applicative instance like this

instance Applicative MyType where
pure = return
x <*>vy =do f <- x; a <- y; return (f a)

will result in an infinte loop when <*> is called.

Just as you wouldn’t define a Monad instance using the do-notation, you shouldn’t define Func-
tor or Applicative instance using do-notation (when using ApplicativeDo) either. The cor-
rect way to define these instances in terms of Monad is to use the Monad operations directly,

e.g.

instance Functor MyType where
fmap f m = m >>= return . f

instance Applicative MyType where
pure = return
(<*>) = ap

10.3.13 Parallel List Comprehensions

ParallelListComp
Since 6.8.1
Allow parallel list comprehension syntax.

Parallel list comprehensions are a natural extension to list comprehensions. List comprehen-
sions can be thought of as a nice syntax for writing maps and filters. Parallel comprehensions
extend this to include the zipWith family.

A parallel list comprehension has multiple independent branches of qualifier lists, each sep-
arated by a | symbol. For example, the following zips together two lists:

[(X, y) | x<-xs | y<-ys]

The behaviour of parallel list comprehensions follows that of zip, in that the resulting list will
have the same length as the shortest branch.

We can define parallel list comprehensions by translation to regular comprehensions. Here’s
the basic idea:

280 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Given a parallel comprehension of the form:

[e | pl <- ell, p2 <- el2,
| g1 <- e21, g2 <- e22,

1

This will be translated to:

[e | ((pllpz)r (qquz)r) <= leN [(pllpz) | pl <- elll p2 <- elzl]
[(g91,92) | ql <- e21, g2 <- €22, ...]

1

where zipN is the appropriate zip for the given number of branches.

10.3.14 Generalised (SQL-like) List Comprehensions

TransformListComp
Since 6.10.1

Allow use of generalised list (SQL-like) comprehension syntax. This introduces the
group, by, and using keywords.

Generalised list comprehensions are a further enhancement to the list comprehension syn-
tactic sugar to allow operations such as sorting and grouping which are familiar from SQL.
They are fully described in the paper Comprehensive comprehensions: comprehensions with
“order by” and “group by”, except that the syntax we use differs slightly from the paper.

The extension is enabled with the extension TransformListComp (page 281).

Here is an example:

employees = [("Simon", "MS", 80)

, ("Erik", "MS", 100)

, ("Phil", "Ed", 40)

, ("Gordon", "Ed", 45)

, ("Paul", "Yale", 60) 1
output = (the dept, sum salary)

then group by dept using groupWith
then sortWith by (sum salary)

[
| (name, dept, salary) <- employees
, then take 5 1]

In this example, the list output would take on the value:

[("Yale", 60), ("Ed", 85), ("MS", 180)]

There are three new keywords: group, by, and using. (The functions sortWith and groupWith
are not keywords; they are ordinary functions that are exported by GHC.Exts.)

There are five new forms of comprehension qualifier, all introduced by the (existing) keyword
then:

*|then f

10.3. Syntactic extensions 281

https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/09/list-comp.pdf

GHC User’s Guide Documentation, Release 8.10.0.20191123

This statement requires that f have the type forall a. [a] -> [a] . You can see an example
of its use in the motivating example, as this form is used to apply take 5 .

then f by e

This form is similar to the previous one, but allows you to create a function which will be
passed as the first argument to f. As a consequence f must have the type forall a. (a
-> t) -> [a] -> [a]. As you can see from the type, this function lets f “project out”
some information from the elements of the list it is transforming.

An example is shown in the opening example, where sortWith is supplied with a function
that lets it find out the sum salary for any item in the list comprehension it transforms.

then group by e using f

This is the most general of the grouping-type statements. In this form, f is required
to have type forall a. (a -> t) -> [a] -> [[a]]. As with the then f by e case
above, the first argument is a function supplied to f by the compiler which lets it compute
e on every element of the list being transformed. However, unlike the non-grouping case,
f additionally partitions the list into a number of sublists: this means that at every point
after this statement, binders occurring before it in the comprehension refer to lists of
possible values, not single values. To help understand this, let’s look at an example:

-- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y -> f x == f y)

output = [(the x, y)

| x <- ([1..3] ++ [1..2])

, Yy <- [4..6]

, then group by x using groupRuns]

This results in the variable output taking on the value below:

’[(1. (4, 5, 61), (2, [4, 5, 6]), (3, [4, 5, 61), (1, [4, 5, 6]), (2, [4, 5, 6])] ‘

Note that we have used the the function to change the type of x from a list to its original

numeric type. The variable y, in contrast, is left unchanged from the list form introduced
by the grouping.

*|then group using f

With this form of the group statement, f is required to simply have the type forall a.
[a]l] -> [[all, which will be used to group up the comprehension so far directly. An
example of this form is as follows:

output = [x

| v <- [1..5]

, X <= "hello"

, then group using inits]

This will yield a list containing every prefix of the word “hello” written out 5 times:

["","nh","he","hel","hell","hello", "helloh", "hellohe", "hellohel", "hellohell",
—~"hellohello", "hellohelloh",...]

282

Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

10.3.15 Monad comprehensions

MonadComprehensions
Since 7.2.1

Enable list comprehension syntax for arbitrary monads.

Monad comprehensions generalise the list comprehension notation, including parallel com-
prehensions (Parallel List Comprehensions (page 280)) and transform comprehensions (Gen-

eralised (SQL-like) List Comprehensions (page 281)) to work for any monad.
Monad comprehensions support:

* Bindings:

[Xx +y | x<-Just 1, y <- Just 2]

Bindings are translated with the (>>=) and return functions to the usual do-notation:

do x <- Just 1
y <- Just 2
return (x+y)

e Guards:

[x | x <= [1..10], x <=5]

Guards are translated with the guard function, which requires a MonadPlus instance:

do x <- [1..10]
guard (x <= 5)
return x

* Transform statements (as with TransformListComp (page 281)):

[x+ty | x <= [1..10], y <- [1..x], then take 2]

This translates to:

do (x,y) <- take 2 (do x <- [1..10]
y <- [1..x]
return (x,y))
return (x+y)

Group statements (as with TransformListComp (page 281)):

[x | x <-[1,1,2,2,3], then group by x using GHC.Exts.groupWith]
[x | x<-11,1,2,2,3], then group using myGroup]

Parallel statements (as with ParallelListComp (page 280)):

[(x+y) | x <- [1..10]
| v <- [11..20]
1

Parallel statements are translated using the mzip function, which requires a MonadZip

instance defined in Control.Monad.Zip:

10.3. Syntactic extensions

283

GHC User’s Guide Documentation, Release 8.10.0.20191123

do (x,y) <- mzip (do x <- [1..10]
return x)
(do y <- [11..20]
return y)
return (x+y)

All these features are enabled by default if the MonadComprehensions (page 283) extension is
enabled. The types and more detailed examples on how to use comprehensions are explained
in the previous chapters Generalised (SQL-like) List Comprehensions (page 281) and Parallel
List Comprehensions (page 280). In general you just have to replace the type [a] with the
type Monad m => m a for monad comprehensions.

Note: Even though most of these examples are using the list monad, monad comprehensions
work for any monad. The base package offers all necessary instances for lists, which make
MonadComprehensions (page 283) backward compatible to built-in, transform and parallel list
comprehensions.

More formally, the desugaring is as follows. We write D[e | Q] to mean the desugaring of
the monad comprehension [e | Ql:

Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S

-- Basic forms

D[e | 1] = return e

D[e | p<-e, Q] =e>=\p ->D[e | Q]

D[e | e, Q] = guard e >> \p ->D[e | Q]

D[e | let d, Q] = let d in D[e | Q]

-- Parallel comprehensions (iterate for multiple parallel branches)

D[e]| (Q | R), S] =mzip D[Qv | Q] D[Rv | R] >>= \(Qv,Rv) -> D[e | S 1]

-- Transform comprehensions
D[e | Q then f, R]

fD[Qv | Q11>>=\Qv->D[e | R]

D[e | Q then f by b, R]

f (\Qv ->b) D[Qv | Q] >>=\Qv -> D[e | R]

D[e | Q then group using f, R 1]

fDLQv | Q] >=\ys ->
case (fmap selQvl ys, ..., fmap selQvn ys) of
Qv -> D[e | R]

D[e | Q then group by b using f, R 1 =1f (\Qv -> b) D[Qv | Q] >>= \ys ->
case (fmap selQvl ys, ..., fmap selQvn ys) of

Qu ->D[e | R]

where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv

Operator Standard binding Expected type

return GHC.Base tl ->m t2

(>>=) GHC.Base ml tl -> (t2 -> m2 t3) -> m3 t3
(>>) GHC.Base ml tl -> m2 t2 -> m3 t3
guard Control.Monad tl ->m t2

fmap GHC.Base forall a b. (a->b) ->na ->nb

284 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

mzip Control.Monad.Zip foralla b. ma ->mb ->m (a,b)

The comprehension should typecheck when its desugaring would typecheck, except that
(as discussed in Generalised (SQL-like) List Comprehensions (page 281)) in the “then f”
and “then group using f” clauses, when the “by b” qualifier is omitted, argument f should
have a polymorphic type. In particular, “then Data.List.sort” and “then group using
Data.List.group” are insufficiently polymorphic.

Monad comprehensions support rebindable syntax (Rebindable syntax and the implicit Pre-
lude import (page 285)). Without rebindable syntax, the operators from the “standard bind-
ing” module are used; with rebindable syntax, the operators are looked up in the current
lexical scope. For example, parallel comprehensions will be typechecked and desugared us-
ing whatever “mzip” is in scope.

The rebindable operators must have the “Expected type” given in the table above. These
types are surprisingly general. For example, you can use a bind operator with the type

(>>=) :: Txya->(a->Tyzb) ->Txzb

In the case of transform comprehensions, notice that the groups are parameterised over some
arbitrary type n (provided it has an fmap, as well as the comprehension being over an arbitrary
monad.

10.3.16 New monadic failure desugaring mechanism

MonadFailDesugaring
Since 8.0.1

Use the MonadFail.fail instead of the legacy Monad.fail function when desugaring
refutable patterns in do blocks.

The -XMonadFailDesugaring extension switches the desugaring of do-blocks to use Monad-
Fail.fail instead of Monad. fail.

This extension is enabled by default since GHC 8.6.1, under the MonadFail Proposal (MFP).

This extension is temporary, and will be deprecated in a future release.

10.3.17 Rebindable syntax and the implicit Prelude import

NoImplicitPrelude
Since 6.8.1
Don’t import Prelude by default.

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a -
XNoImplicitPrelude option. The idea is that you can then import a Prelude of your own.
(But don’t call it Prelude; the Haskell module namespace is flat, and you must not conflict
with any Prelude module.)

RebindableSyntax
Implies NoImplicitPrelude (page 285)
Since 7.0.1

Enable rebinding of a variety of usually-built-in operations.

10.3. Syntactic extensions 285

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC User’s Guide Documentation, Release 8.10.0.20191123

Suppose you are importing a Prelude of your own in order to define your own numeric class
hierarchy. It completely defeats that purpose if the literal “1” means “Prelude. fromInteger
1”, which is what the Haskell Report specifies. So the RebindableSyntax (page 285) extension
causes the following pieces of built-in syntax to refer to whatever is in scope, not the Prelude
versions:

* An integer literal 368 means “fromInteger (368::Integer)”, rather than
“Prelude. fromInteger (368::Integer)”.

» Fractional literals are handled in just the same way, except that the translation is from-
Rational (3.68::Rational).

» String literals are also handled the same way, except that the translation is fromString
("368"::String).

* The equality test in an overloaded numeric pattern uses whatever (==) is in scope.

* The subtraction operation, and the greater-than-or-equal test, in n+k patterns use what-
ever (-) and (>=) are in scope.

* Negation (e.g. “- (f x)”) means “negate (f x)”, both in numeric patterns, and expres-
sions.

* Conditionals (e.g. “if el then e2 else e€3”) means “ifThenElse el e2 e3”. However
case expressions are unaffected.

* “Do” notation is translated using whatever functions (>>=), (>>), and fail, are in
scope (not the Prelude versions). List comprehensions, mdo (The recursive do-notation
(page 275)), and parallel array comprehensions, are unaffected.

* Arrow notation (see Arrow notation (page 461)) uses whatever arr, (>>>), first, app,
(]|]) and loop functions are in scope. But unlike the other constructs, the types of
these functions must match the Prelude types very closely. Details are in flux; if you
want to use this, ask!

» List notation, such as [x,y] or [m..n] can also be treated via rebindable syntax if you
use -XOverloadedLists; see Overloaded lists (page 368).

e An overloaded label “#foo” means “fromLabel @"foo"”, rather than
“GHC.OverloadedLabels. fromLabel @"foo"” (see Overloaded labels (page 366)).

RebindableSyntax (page 285) implies NoImplicitPrelude (page 285).

In all cases (apart from arrow notation), the static semantics should be that of the desugared
form, even if that is a little unexpected. For example, the static semantics of the literal 368
is exactly that of fromInteger (368::Integer); it’s fine for fromInteger to have any of the

types:

fromInteger :: Integer -> Integer

fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use -dcore-1lint
to typecheck the desugared program. If Core Lint is happy you should be all right.

Things unaffected by RebindableSyntax

RebindableSyntax (page 285) does not apply to any code generated from a deriving clause
or declaration. To see why, consider the following code:

286 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

{-# LANGUAGE RebindableSyntax, OverloadedStrings #-}
newtype Text = Text String

fromString :: String -> Text
fromString = Text

data Foo = Foo deriving Show

This will generate code to the effect of:

instance Show Foo where
showsPrec _ Foo = showString "Foo"

But because RebindableSyntax (page 285) and OverloadedStrings (page 365) are enabled,
the "Foo" string literal would now be of type Text, not String, which showString doesn’t
accept! This causes the generated Show instance to fail to typecheck. It’s hard to imagine
any scenario where it would be desirable have RebindableSyntax (page 285) behavior within
derived code, so GHC simply ignores RebindableSyntax (page 285) entirely when checking
derived code.

10.3.18 Postfix operators

PostfixOperators
Since 7.10.1
Allow the use of post-fix operators

The PostfixOperators (page 287) extension enables a small extension to the syntax of left
operator sections, which allows you to define postfix operators. The extension is this: the left
section

(e D) |

is equivalent (from the point of view of both type checking and execution) to the expression

(1) e) |

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section
is equivalent to

’(\y -> (1) ey) ‘

That is, the operator must be a function of two arguments. GHC allows it to take only one
argument, and that in turn allows you to write the function postfix.

The extension does not extend to the left-hand side of function definitions; you must define
such a function in prefix form.

10.3.19 Tuple sections

TupleSections
Since 6.12

Allow the use of tuple section syntax

10.3. Syntactic extensions 287

GHC User’s Guide Documentation, Release 8.10.0.20191123

The TupleSections (page 287) extension enables partially applied tuple constructors. For
example, the following program

’ (, True)

is considered to be an alternative notation for the more unwieldy alternative

’\x -> (x, True)

You can omit any combination of arguments to the tuple, as in the following

’(, "I, , , "Love", , 1337)

which translates to

’\a bcd->(a, "I", b, ¢, "Love", d, 1337)

If you have unboxed tuples (page 265) enabled, tuple sections will also be available for them,
like so

’(# , True #)

Because there is no unboxed unit tuple, the following expression

](# #)

continues to stand for the unboxed singleton tuple data constructor.

10.3.20 Lambda-case

LambdaCase
Since 7.6.1
Allow the use of lambda-case syntax.

The LambdaCase (page 288) extension enables expressions of the form

’\case {pl ->el; ...; pN -> eN }

which is equivalent to

’\freshName -> case freshName of { pl -> el; ...; pN -> eN }

Note that \case starts a layout, so you can write

\case
pl -> el
pN -> eN

10.3.21 Empty case alternatives

EmptyCase
Since 7.8.1

288 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Allow empty case expressions.

The EmptyCase (page 288) extension enables case expressions, or lambda-case expressions,
that have no alternatives, thus:

’case e of {} -- No alternatives ‘
or
’\case {1} -- -XLambdaCase is also required ‘

This can be useful when you know that the expression being scrutinised has no non-bottom
values. For example:

data Void
f :: Void -> Int
f x = case x of { }

With dependently-typed features it is more useful (see #2431). For example, consider these
two candidate definitions of absurd:

data a :~: b where
Refl :: a :~: a
absurd :: True :~: False -> a
absurd x = error "absurd" -- (A)
absurd x = case x of {} -- (B)
We much prefer (B). Why? Because GHC can figure out that (True :~: False) is an empty

type. So (B) has no partiality and GHC is able to compile with -Wincomplete-patterns
(page 93) and -Werror (page 87). On the other hand (A) looks dangerous, and GHC doesn’t
check to make sure that, in fact, the function can never get called.

10.3.22 Multi-way if-expressions

MultiwayIf
Since 7.6.1
Allow the use of multi-way-if syntax.

With MultiWayIf (page 289) extension GHC accepts conditional expressions with multiple
branches:

if | guardl -> exprl
| .

| guardN -> exprN

which is roughly equivalent to

case () of
_ | guardl -> exprl

_ | quardN -> exprN

Multi-way if expressions introduce a new layout context. So the example above is equivalent
to:

10.3. Syntactic extensions 289

https://gitlab.haskell.org/ghc/ghc/issues/2431

GHC User’s Guide Documentation, Release 8.10.0.20191123

if { | guardl -> exprl
HE I
}

| guardN -> exprN

The following behaves as expected:

if | guardl -> if | guard2 -> expr2
| guard3 -> expr3
| guard4 -> exprd

because layout translates it as

if { | guardl -> if { | guard2 -> expr2
; | guard3 -> expr3
}

; | guard4 -> expré

Layout with multi-way if works in the same way as other layout contexts, except that the
semi-colons between guards in a multi-way if are optional. So it is not necessary to line up
all the guards at the same column; this is consistent with the way guards work in function
definitions and case expressions.

10.3.23 Local Fixity Declarations

A careful reading of the Haskell 98 Report reveals that fixity declarations (infix, infix1,
and infixr) are permitted to appear inside local bindings such those introduced by let and
where. However, the Haskell Report does not specify the semantics of such bindings very
precisely.

In GHC, a fixity declaration may accompany a local binding:

let f = ...
infixr 3 °f°
in

and the fixity declaration applies wherever the binding is in scope. For example, in a let, it
applies in the right-hand sides of other let-bindings and the body of the letC. Or, in recursive
do expressions (The recursive do-notation (page 275)), the local fixity declarations of a let
statement scope over other statements in the group, just as the bound name does.

Moreover, a local fixity declaration must accompany a local binding of that name: it is not
possible to revise the fixity of name bound elsewhere, as in

let infixr 9 $ in ...

Because local fixity declarations are technically Haskell 98, no extension is necessary to en-
able them.

10.3.24 Import and export extensions

290 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

Hiding things the imported module doesn’t export

Technically in Haskell 2010 this is illegal:

module A(f) where
f = True

module B where
import A hiding(g) -- A does not export g
g="f

The import A hiding(g) in module B is technically an error (Haskell Report, 5.3.1) be-
cause A does not export g. However GHC allows it, in the interests of supporting backward
compatibility; for example, a newer version of A might export g, and you want B to work in
either case.

The warning -Wdodgy-imports (page 91), which is off by default but included with -W
(page 86), warns if you hide something that the imported module does not export.

Package-qualified imports

PackageImports
Since 6.10.1
Allow the use of package-qualified import syntax.

With the PackageImports (page 291) extension, GHC allows import declarations to be quali-
fied by the package name that the module is intended to be imported from. For example:

import "network" Network.Socket

would import the module Network.Socket from the package network (any version). This may
be used to disambiguate an import when the same module is available from multiple packages,
or is present in both the current package being built and an external package.

The special package name this can be used to refer to the current package being built.

Note: You probably don’t need to use this feature, it was added mainly so that we can
build backwards-compatible versions of packages when APIs change. It can lead to fragile
dependencies in the common case: modules occasionally move from one package to another,
rendering any package-qualified imports broken. See also Thinning and renaming modules
(page 191) for an alternative way of disambiguating between module names.

Safe imports

Safe
Since 7.2.1
Declare the Safe Haskell state of the current module.
Trustworthy
Since 7.2.1

Declare the Safe Haskell state of the current module.

10.3. Syntactic extensions 291

http://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-1020005.3.1

GHC User’s Guide Documentation, Release 8.10.0.20191123

Unsafe
Since 7.4.1
Declare the Safe Haskell state of the current module.

With the Safe (page 518), Trustworthy (page 518) and Unsafe (page 518) language flags,
GHC extends the import declaration syntax to take an optional safe keyword after the import
keyword. This feature is part of the Safe Haskell GHC extension. For example:

import safe qualified Network.Socket as NS

would import the module Network.Socket with compilation only succeeding if Net-
work.Socket can be safely imported. For a description of when a import is considered safe
see Safe Haskell (page 509).

Explicit namespaces in import/export

ExplicitNamespaces
Since 7.6.1
Enable use of explicit namespaces in module export lists.

In an import or export list, such as

module M(f, (++)) where ...
import N(f, (++))

the entities f and (++) are values. However, with type operators (Type operators (page 297))
it becomes possible to declare (++) as a type constructor. In that case, how would you export
or import it?

The ExplicitNamespaces (page 292) extension allows you to prefix the name of a type con-
structor in an import or export list with “type” to disambiguate this case, thus:

module M(f, type (++)) where ...
import N(f, type (++))

module N(f, type (++)) where
data family a ++ b =L a | R b

The extension ExplicitNamespaces (page 292) is implied by TypeOperators (page 297) and
(for some reason) by TypeFamilies (page 371).

In addition, with PatternSynonyms (page 340) you can prefix the name of a data constructor
in an import or export list with the keyword pattern, to allow the import or export of a data
constructor without its parent type constructor (see Import and export of pattern synonyms
(page 344)).

Writing qualified in postpositive position

ImportQualifiedPost
Since 8.10.1

ImportQualifiedPost allows the syntax import M qualified, that is, to annotate a
module as qualified by writing qualified after the module name.

292 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

To import a qualified module usually you must specify qualified in prepositive position :
import qualified M. This often leads to a “hanging indent” (which is automatically inserted
by some autoformatters and common in many code bases. For example:

import qualified A
import B
import C

The ImportQualifiedPost extension allows qualified to appear in postpositive position :
import M qualified. With this extension enabled, one can write:

import A qualified
import B
import C

It is an error if qualified appears in both pre and postpositive positions.

The warning -Wprepositive-qualified-syntax (off by default) reports on any occurrences
of imports annotated qualified using prepositive syntax.

10.3.25 More liberal syntax for function arguments

BlockArguments
Since 8.6.1

Allow do expressions, lambda expressions, etc. to be directly used as a function argu-
ment.

In Haskell 2010, certain kinds of expressions can be used without parentheses as an argument
to an operator, but not as an argument to a function. They include do, lambda, if, case, and
let expressions. Some GHC extensions also define language constructs of this type: mdo
(The recursive do-notation (page 275)), \case (Lambda-case (page 288)), and proc (Arrow
notation (page 461)).

The BlockArguments (page 293) extension allows these constructs to be directly used as a
function argument. For example:

when (x > 0) do
print x
exitFailure

will be parsed as:

when (x > 0) (do
print x
exitFailure)

and

’withForeignPtr fptr \ptr -> c_memcpy buf ptr size

will be parsed as:

’withForeignPtr fptr (\ptr -> c_memcpy buf ptr size)

10.3. Syntactic extensions 293

GHC User’s Guide Documentation, Release 8.10.0.20191123

Changes to the grammar

The Haskell report defines the lexp nonterminal thus (* indicates a rule of interest)

lexp — \ apatl .. apatn -> exp (lambda abstraction, n = 1) *

| let decls in exp (let expression) *
| if exp [;] then exp [;] else exp (conditional) *
| case exp of { alts } (case expression) *
| do { stmts } (do expression) *
| fexp

fexp — [fexp] aexp (function application)

aexp — qvar (variable)
| gcon (general constructor)
| Tliteral
| (exp) (parenthesized expression)
| qcon { fbindl .. fbindn } (labeled construction)
|
I

aexp { fbindl .. fbindn } (labelled update)

The BlockArguments (page 293) extension moves these production rules under aexp

lexp — fexp

fexp — [fexp] aexp (function application)
aexp — qvar (variable)
gcon (general constructor)
literal

(exp) parenthesized expression)
gcon { fbindl .. fbindn } labeled construction)
aexp { fbindl .. fbindn } labelled update)

|
I
|
I
| \ apatl .. apatn -> exp lambda abstraction, n = 1)
|
I
|
I

if exp [;] then exp [;] else exp (conditional)
case exp of { alts } case expression)

(

(

(

(

let decls in exp (let expression)
(

(

do { stmts } (do expression)

¥ ¥ ¥ X ¥

Now the lexp nonterminal is redundant and can be dropped from the grammar.
Note that this change relies on an existing meta-rule to resolve ambiguities:

The grammar is ambiguous regarding the extent of lambda abstractions, let ex-
pressions, and conditionals. The ambiguity is resolved by the meta-rule that each
of these constructs extends as far to the right as possible.

For example, f \a -> a b will be parsedas f (\a -> a b), notasf (\a -> a) b.

10.3.26 Summary of stolen syntax

Turning on an option that enables special syntax might cause working Haskell 98 code to
fail to compile, perhaps because it uses a variable name which has become a reserved word.
This section lists the syntax that is “stolen” by language extensions. We use notation and
nonterminal names from the Haskell 98 lexical syntax (see the Haskell 98 Report). We only
list syntax changes here that might affect existing working programs (i.e. “stolen” syntax).

294 Chapter 10. GHC Language Features

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-220003

GHC User’s Guide Documentation, Release 8.10.0.20191123

Many of these extensions will also enable new context-free syntax, but in all cases programs
written to use the new syntax would not be compilable without the option enabled.

There are two classes of special syntax:

* New reserved words and symbols: character sequences which are no longer available
for use as identifiers in the program.

* Other special syntax: sequences of characters that have a different meaning when this
particular option is turned on.

The following syntax is stolen:

forall Stolen (in types) by default (see Lexical syntax (page 577)). forall is a reserved
keyword and never a type variable, in accordance with GHC Proposal #43.

mdo Stolen by: RecursiveDo (page 275)

foreign Stolen by: ForeignFunctionInterface (page 521)

rec, proc, -<, >-, -<<, >>-, (|, |) Stolen by: Arrows (page 461)
?varid Stolen by: ImplicitParams (page 428)

[], [e], [p|, [d], [t], []], [e]] Stolen by: QuasiQuotes (page 459). Moreover, this intro-
duces an ambiguity with list comprehension syntax. See the discussion on quasi-quoting
(page 460) for details.

$(, $$(, $varid, $$varid Stolen by: TemplateHaskell (page 451)
[varid| Stolen by: QuasiQuotes (page 459)

(varid), #{char), #, (string), #, (integer), #, (float), #, (float), ## Stolen by: MagicHash
(page 269)

(#, #) Stolen by: UnboxedTuples (page 265)

(varid), !, (varid) Stolen by: BangPatterns (page 468)
pattern Stolen by: PatternSynonyms (page 340)
static Stolen by: StaticPointers (page 475)

10.4 Extensions to data types and type synonyms

10.4.1 Data types with no constructors

EmptyDataDecls
Since 6.8.1
Allow definition of empty data types.

With the EmptyDataDecls (page 295) extension, GHC lets you declare a data type with no
constructors.

You only need to enable this extension if the language you’re using is Haskell 98, in which
a data type must have at least one constructor. Haskell 2010 relaxed this rule to allow data
types with no constructors, and thus EmptyDataDecls (page 295) is enabled by default when
the language is Haskell 2010.

For example:

10.4. Extensions to data types and type synonyms 295

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0043-forall-keyword.rst

GHC User’s Guide Documentation, Release 8.10.0.20191123

data S -- S :: Type
data T a -- T :: Type -> Type

Syntactically, the declaration lacks the “= constrs” part. The type can be parameterised over
types of any kind, but if the kind is not Type then an explicit kind annotation must be used
(see Explicitly-kinded quantification (page 420)).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when
defining “phantom types”.

In conjunction with the EmptyDataDeriving (page 318) extension, empty data declarations
can also derive instances of standard type classes (see Deriving instances for empty data

types (page 318)).

10.4.2 Data type contexts

DatatypeContexts
Since 7.0.1
Allow contexts on data types.

Haskell allows datatypes to be given contexts, e.g.

data Eq a => Set a = NilSet | ConsSet a (Set a)

give constructors with types:

NilSet :: Set a
ConsSet :: Eq a => a -> Set a -> Set a

This is widely considered a misfeature, and is going to be removed from the language. In
GHC, it is controlled by the deprecated extension DatatypeContexts.

10.4.3 Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written
infix, very much like expressions. More specifically:

» A type constructor or class can be any non-reserved operator. Symbols used in types are
always like capitalized identifiers; they are never variables. Note that this is different
from the lexical syntax of data constructors, which are required to begin with a :.

* Data type and type-synonym declarations can be written infix, parenthesised if you want
further arguments. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) x
type (a :++: b) y

Baz a b x
Either (a,b) y

Types, and class constraints, can be written infix. For example

X :: Int :*: Bool
f:: (a =1 b) =>a->b

296 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

* Back-quotes work as for expressions, both for type constructors and type variables;
e.g. Int “Either® Bool, or Int "a’ Bool. Similarly, parentheses work the same; e.g.
(:*:) Int Bool.

» Fixities may be declared for type constructors, or classes, just as for data constructors.
However, one cannot distinguish between the two in a fixity declaration; a fixity decla-
ration sets the fixity for a data constructor and the corresponding type constructor. For
example:

infixl1 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for : *:.
Int "a’ Bool.

» The function arrow -> is infixr with fixity -1.

10.4.4 Type operators

TypeOperators
Implies ExplicitNamespaces (page 292)
Since 6.8.1
Allow the use and definition of types with operator names.

In types, an operator symbol like (+) is normally treated as a type variable, just like a. Thus
in Haskell 98 you can say

type T (+) = ((+), (+))
- Just like: type T a = (a,a)

f:: T Int -> Int
f (x,y)= x

As you can see, using operators in this way is not very useful, and Haskell 98 does not even
allow you to write them infix.

The language TypeOperators (page 297) changes this behaviour:
* Operator symbols become type constructors rather than type variables.

* Operator symbols in types can be written infix, both in definitions and uses. For example:

data a + b = Plus a b
type Foo = Int + Bool

* There is now some potential ambiguity in import and export lists; for example if you
write import M((+)) do you mean the function (+) or the type constructor (+)? The
default is the former, but with ExplicitNamespaces (page 292) (which is implied by
TypeOperators (page 297)) GHC allows you to specify the latter by preceding it with the
keyword type, thus:

import M(type (+))

See Explicit namespaces in import/export (page 292).

* The fixity of a type operator may be set using the usual fixity declarations but, as in
Infix type constructors, classes, and type variables (page 296), the function and type
constructor share a single fixity.

10.4. Extensions to data types and type synonyms 297

GHC User’s Guide Documentation, Release 8.10.0.20191123

10.4.5 Liberalised type synonyms

LiberalTypeSynonyms
Implies ExplicitForAll (page 416)
Since 6.8.1
Relax many of the Haskell 98 rules on type synonym definitions.

Type synonyms are like macros at the type level, but Haskell 98 imposes many rules on in-
dividual synonym declarations. With the LiberalTypeSynonyms (page 298) extension, GHC
does validity checking on types only after expanding type synonyms. That means that GHC
can be very much more liberal about type synonyms than Haskell 98.

* You can write a forall (including overloading) in a type synonym, thus:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f xy = (x, show y)

g :: Discard Int -> (Int,String) -- A rank-2 type
g f=1°f3 True

» If you also use UnboxedTuples (page 265), you can write an unboxed tuple in a type
synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

* You can apply a type synonym to a forall type:

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

* You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> 0 x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be
changed).

After expanding type synonyms, GHC does validity checking on types, looking for the follow-
ing malformedness which isn’t detected simply by kind checking:

298 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

» Type constructor applied to a type involving for-alls (if ImpredicativeTypes (page 435)
is off)
» Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = forall a. a

h :: [Pr]
h=...

because GHC does not allow type constructors applied to for-all types.

10.4.6 Existentially quantified data constructors

ExistentialQuantification
Implies ExplicitForAll (page 416)
Since 6.8.1
Allow existentially quantified type variables in types.

The idea of using existential quantification in data type declarations was suggested by Perry,
and implemented in Hope+ (Nigel Perry, The Implementation of Practical Functional Pro-
gramming Languages, PhD Thesis, University of London, 1991). It was later formalised by
Laufer and Odersky (Polymorphic type inference and abstract data types, TOPLAS, 16(5), pp.
1411-1430, 1994). It’s been in Lennart Augustsson’s hbc Haskell compiler for several years,
and proved very useful. Here’s the idea. Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself,
which is plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo 'c' isUpper] :: [Fool]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool;
and MkFoo 'c' isUpper packages a character with a compatible function. These two things
are each of type Foo and can be put in a list.

What can we do with a value of type Foo? In particular, what happens when we pattern-match
on MkFoo?

f (MkFoo val fn) = 77?7

Since all we know about val and fn is that they are compatible, the only (useful) thing we
can do with them is to apply fn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

10.4. Extensions to data types and type synonyms 299

GHC User’s Guide Documentation, Release 8.10.0.20191123

What this allows us to do is to package heterogeneous values together with a bunch of func-
tions that manipulate them, and then treat that collection of packages in a uniform manner.
You can express quite a bit of object-oriented-like programming this way.

Why existential?

What has this to do with existential quantification? Simply that MkFoo has the (nearly) iso-
morphic type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given
above, thereby avoiding adding a new existential quantification construct.

Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

data Baz = forall a. Eq a => Bazl a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Bazl :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1l the matched values can be compared for equality, and
when pattern matching on Baz2 the first matched value can be converted to a string (as well
as applying the function to it). So this program is legal:

f :: Baz -> String
f (Bazl pq) | p==g¢g

| otherwise
f (Baz2 v fn)

IIYeSII
IINOII
show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1l and Baz2 must
store the dictionaries for Eq and Show respectively, and extract it on pattern matching.

Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter

{ this 1 oself
, _inc 11 self -> self
, _display :: self -> IO ()
, tag R
}
Here tag is a public field, with a well-typed selector function tag :: Counter a -> a. The

self type is hidden from the outside; any attempt to apply this, inc or display as func-
tions will raise a compile-time error. In other words, GHC defines a record selector function

300 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

only for fields whose type does not mention the existentially-quantified variables. (This exam-
ple used an underscore in the fields for which record selectors will not be defined, but that is
only programming style; GHC ignores them.)

To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter
{ this =i x, inc = i, display =d, tag=1t }

display :: Counter a -> IO ()
display NewCounter{ this = x, display =d } =d x

Now we can define counters with different underlying implementations:

counterA :: Counter String
counterA = NewCounter
{ this =0, inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counterB = NewCounter

{ this ="", inc = ('#':), .display = putStrLn, tag = "B" }
main = do

display (inc counterA) -- prints "1"

display (inc (inc counterB)) -- prints "##"

Record update syntax is supported for existentials (and GADTSs):

setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag =t }

The rule for record update is this:

the types of the updated fields may mention only the universally-quantified type
variables of the data constructor. For GADTSs, the field may mention only types that
appear as a simple type-variable argument in the constructor’s result type.

For example:

data T a b where { T1 { fl::a, f2::b, f3::(b,c) } :: Tab } -- c is existential

updl t x =t { fl=x } -- OK: updl :: Tab ->a' ->Ta'b

upd2 t x =t { f3=x } -- BAD (f3's type mentions c, which is
-- existentially quantified)

data G a b where { G1 { gl::a, g2::c } :: G a [c] }

upd3 g x = g { gl=x } -- OK: upd3 :: Gab ->c->Gcb

upd4 g x = g { g2=x } -- BAD (f2's type mentions ¢, which is not a simple
-- type-variable argument in Gl's result type)

Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can
be used.

* When pattern matching, each pattern match introduces a new, distinct, type for each
existential type variable. These types cannot be unified with any other type, nor can

10.4. Extensions to data types and type synonyms 301

GHC User’s Guide Documentation, Release 8.10.0.20191123

they escape from the scope of the pattern match. For example, these fragments are
incorrect:

’fl (MkFoo a f) = a ‘

Here, the type bound by MkFoo “escapes”, because a is the result of f1. One way to see
why this is wrong is to ask what type f1 has:

’fl :: Foo -> a - Weird! ‘

What is this “a” in the result type? Clearly we don’t mean this:

’fl :: forall a. Foo -> a -- Wrong! ‘

The original program is just plain wrong. Here’s another sort of error

’fz (Bazl a b) (Bazl p q) = a== ‘

It’s ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types
arising from the two Baz1 constructors.

* You can’t pattern-match on an existentially quantified constructorin a let or where group
of bindings. So this is illegal:

’f3 X = a==b where { Bazl a b = x } ‘

Instead, use a case expression:

’f3 X = case x of Bazl a b -> a==b ‘

In general, you can only pattern-match on an existentially-quantified constructor in a
case expression or in the patterns of a function definition. The reason for this restriction
is really an implementation one. Type-checking binding groups is already a nightmare
without existentials complicating the picture. Also an existential pattern binding at the
top level of a module doesn’t make sense, because it’s not clear how to prevent the
existentially-quantified type “escaping”. So for now, there’s a simple-to-state restriction.
We’ll see how annoying it is.

* You can’t use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and
a value of type t. That contradicts the idea that newtype should have no concrete rep-
resentation. You can get just the same efficiency and effect by using data instead of
newtype. If there is no overloading involved, then there is more of a case for allowing
an existentially-quantified newtype, because the data version does carry an implemen-
tation cost, but single-field existentially quantified constructors aren’t much use. So the
simple restriction (no existential stuff on newtype) stands, unless there are convincing
reasons to change it.

* You can’t use deriving to define instances of a data type with existentially quantified
data constructors. Reason: in most cases it would not make sense. For example:;

data T = forall a. MkT [a] deriving(Eq)

To derive Eq in the standard way we would need to have equality between the single
component of two MKT constructors:

302 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

instance Eq T where
(MKT a) == (MKT b) = 7??

But a and b have distinct types, and so can’t be compared. It’s just about possible to
imagine examples in which the derived instance would make sense, but it seems alto-
gether simpler simply to prohibit such declarations. Define your own instances!

10.4.7 Declaring data types with explicit constructor signatures

GADTSyntax
Since 7.2.1

Allow the use of GADT syntax in data type definitions (but not GADTs themselves; for
this see GADTs (page 307))

When the GADTSyntax extension is enabled, GHC allows you to declare an algebraic data type
by giving the type signatures of constructors explicitly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

The form is called a “GADT-style declaration” because Generalised Algebraic Data Types,
described in Generalised Algebraic Data Types (GADTs) (page 307), can only be declared
using this form.

Notice that GADT-style syntax generalises existential types (Existentially quantified data con-
structors (page 299)). For example, these two declarations are equivalent:

data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }

Any data type that can be declared in standard Haskell 98 syntax can also be declared using
GADT-style syntax. The choice is largely stylistic, but GADT-style declarations differ in one
important respect: they treat class constraints on the data constructors differently. Specifi-
cally, if the constructor is given a type-class context, that context is made available by pattern
matching. For example:

data Set a where
MkSet :: Eq a => [a] -> Set a

makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a “elem” as = MkSet as
| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a)
constraint, as you would expect. The new feature is that pattern-matching on MkSet (as in the
definition of insert) makes available an (Eq a) context. In implementation terms, the MkSet
constructor has a hidden field that stores the (Eq a) dictionary that is passed to MkSet; so
when pattern-matching that dictionary becomes available for the right-hand side of the match.
In the example, the equality dictionary is used to satisfy the equality constraint generated by
the call to elem, so that the type of insert itself has no Eq constraint.

10.4. Extensions to data types and type synonyms 303

GHC User’s Guide Documentation, Release 8.10.0.20191123

For example, one possible application is to reify dictionaries:

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a -> a -> a -> a
plus MkNumInst p g = p + q

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.

All this applies to constructors declared using the syntax of Existentials and type classes
(page 300). For example, the NumInst data type above could equivalently be declared like
this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existential, there is no forall, because the
Num constrains the data type’s universally quantified type variable a. A constructor may have
both universal and existential type variables: for example, the following two declarations are
equivalent:

data T1 a

= forall b. (Num a, Eq b) => MkT1 a b
data T2 a where

MkT2 :: (Num a, Eq b) =>a ->b -> T2 a

All this behaviour contrasts with Haskell 98’s peculiar treatment of contexts on a data type
declaration (Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set' a = MkSet' [a]

gives MkSet' the same type as MkSet above. But instead of making available an (Eq a) con-
straint, pattern-matching on MkSet' requires an (Eq a) constraint! GHC faithfully imple-
ments this behaviour, odd though it is. But for GADT-style declarations, GHC’s behaviour is
much more useful, as well as much more intuitive.

The rest of this section gives further details about GADT-style data type declarations.

* The result type of each data constructor must begin with the type constructor being
defined. If the result type of all constructors has the form T al ... an, where al
an are distinct type variables, then the data type is ordinary; otherwise is a generalised
data type (Generalised Algebraic Data Types (GADTs) (page 307)).

* As with other type signatures, you can give a single signature for several data construc-
tors. In this example we give a single signature for T1 and T2:

data T a where
T1,T2 :: a -=> T a
T3 :: T a

» The type signature of each constructor is independent, and is implicitly universally quan-
tified as usual. In particular, the type variable(s) in the “data T a where” header have
no scope, and different constructors may have different universally-quantified type vari-
ables:

304 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

data T a where -- The 'a' has no scope
T1,T2 :: b ->Tb -- Means forall b. b ->T b
T3 :: Ta -- Means forall a. T a

* A constructor signature may mention type class constraints, which can differ for different
constructors. For example, this is fine:

data T a where
T1 :: Eg b=>b ->b ->Tb
T2 :: (Show c, Ix c) =>c¢c -> [c] -> T c

When pattern matching, these constraints are made available to discharge constraints
in the body of the match. For example:

f :: T a -> String

f (Tl x y) | x==y = "yes"
| otherwise = "no"
f (T2 a b) = show a

Note that f is not overloaded; the Eq constraint arising from the use of == is discharged
by the pattern match on Tl and similarly the Show constraint arising from the use of
show.

* Unlike a Haskell-98-style data type declaration, the type variable(s) in the “data Set a
where” header have no scope. Indeed, one can write a kind signature instead:

’data Set :: Type -> Type where ... ‘

or even a mixture of the two:

’data Bar a :: (Type -> Type) -> Type where ... ‘

The type variables (if given) may be explicitly kinded, so we could also write the header
for Foo like this:

’data Bar a (b :: Type -> Type) where ... ‘

* You can use strictness annotations, in the obvious places in the constructor type:

data Term a where

Lit :: 1Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

* You can use a deriving clause on a GADT-style data type declaration. For example, these
two declarations are equivalent

data Maybel a where {
Nothingl :: Maybel a ;
Justl :: a -> Maybel a
} deriving(Eq, Ord)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eq, Ord)

» The type signature may have quantified type variables that do not appear in the result
type:

10.4. Extensions to data types and type synonyms 305

GHC User’s Guide Documentation, Release 8.10.0.20191123

data Foo where
MkFoo :: a -> (a->Bool) -> Foo
Nil :: Foo

Here the type variable a does not appear in the result type of either constructor. Although
it is universally quantified in the type of the constructor, such a type variable is often
called “existential”. Indeed, the above declaration declares precisely the same type as
the data Foo in Existentially quantified data constructors (page 299).

The type may contain a class context too, of course:

data Showable where
MkShowable :: Show a => a -> Showable

You can use record syntax on a GADT-style data type declaration:

data Person where
Adult :: { name :: String, children :: [Person] } -> Person
Child :: Show a => { name :: !String, funny :: a } -> Person

As usual, for every constructor that has a field f, the type of field f must be the same
(modulo alpha conversion). The Child constructor above shows that the signature may
have a context, existentially-quantified variables, and strictness annotations, just as in
the non-record case. (NB: the “type” that follows the double-colon is not really a type,
because of the record syntax and strictness annotations. A “type” of this form can appear
only in a constructor signature.)

Record updates are allowed with GADT-style declarations, only fields that have the fol-
lowing property: the type of the field mentions no existential type variables.

As in the case of existentials declared using the Haskell-98-like record syntax (Record
Constructors (page 300)), record-selector functions are generated only for those fields
that have well-typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where

NewCounter :: { this 11 oself
, _inc 11 self -> self
_display :: self -> IO ()
tag it a

’
’
} -> Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you
can still use all the field names in pattern matching and record construction.

In a GADT-style data type declaration there is no obvious way to specify that a data con-
structor should be infix, which makes a difference if you derive Show for the type. (Data
constructors declared infix are displayed infix by the derived show.) So GHC implements
the following design: a data constructor declared in a GADT-style data type declaration
is displayed infix by Show iff (a) it is an operator symbol, (b) it has two arguments, (c) it
has a programmer-supplied fixity declaration. For example

infix 6 (:--:)
data T a where
(:--:) :: Int -> Bool -> T Int

306

Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

10.4.8 Generalised Algebraic Data Types (GADTSs)

GADTs
Implies MonolLocalBinds (page 425), GADTSyntax (page 303)
Since 6.8.1
Allow use of Generalised Algebraic Data Types (GADTSs).

Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing con-
structors to have richer return types. Here is an example:

data Term a where

Lit :: Int -> Term Int

Succ :: Term Int -> Term Int

IsZero :: Term Int -> Term Bool

If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with
ordinary data types. This generality allows us to write a well-typed eval function for these
Terms:

if eval b then eval el else eval e2
(eval el, eval e2)

eval (If b el e2)
eval (Pair el e2)

eval :: Term a -> a

eval (Lit i) =1

eval (Succ t) =1+ eval t
eval (IsZero t) =eval t == 0

The key point about GADTs is that pattern matching causes type refinement. For example, in
the right hand side of the equation

eval :: Term a -> a
eval (Lit i) =

the type a is refined to Int. That’s the whole point! A precise specification of the type rules is
beyond what this user manual aspires to, but the design closely follows that described in the
paper Simple unification-based type inference for GADTs, (ICFP 2006). The general principle
is this: type refinement is only carried out based on user-supplied type annotations. So if no
type signature is supplied for eval, no type refinement happens, and lots of obscure error
messages will occur. However, the refinement is quite general. For example, if we had:

eval :: Term a -> a -> a
eval (Lit i) j = i+j

the pattern match causes the type a to be refined to Int (because of the type of the construc-
tor Lit), and that refinement also applies to the type of j, and the result type of the case
expression. Hence the addition i+j is legal.

These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is
a longer introduction on the wiki, and Ralf Hinze’s Fun with phantom types also has a number
of examples. Note that papers may use different notation to that implemented in GHC.

The rest of this section outlines the extensions to GHC that support GADTs. The extension
is enabled with GADTs (page 307). The GADTs (page 307) extension also sets GADTSyntax
(page 303) and MonoLocalBinds (page 425).

10.4. Extensions to data types and type synonyms 307

http://research.microsoft.com/%7Esimonpj/papers/gadt/
http://www.haskell.org/haskellwiki/GADT
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf

GHC User’s Guide Documentation, Release 8.10.0.20191123

A GADT can only be declared using GADT-style syntax (Declaring data types with ex-
plicit constructor signatures (page 303)); the old Haskell 98 syntax for data declarations
always declares an ordinary data type. The result type of each constructor must begin
with the type constructor being defined, but for a GADT the arguments to the type con-
structor can be arbitrary monotypes. For example, in the Term data type above, the type
of each constructor must end with Term ty, but the ty need not be a type variable (e.g.
the Lit constructor).

It is permitted to declare an ordinary algebraic data type using GADT-style syntax. What
makes a GADT into a GADT is not the syntax, but rather the presence of data constructors
whose result type is not just T a b.

You cannot use a deriving clause for a GADT; only for an ordinary data type.

As mentioned in Declaring data types with explicit constructor signatures (page 303),
record syntax is supported. For example:

data Term a where

Lit :: {val :: Int} -> Term Int
Succ { num :: Term Int } -> Term Int
Pred :: { num :: Term Int } -> Term Int
IsZero :: { arg :: Term Int } -> Term Bool
Pair { argl :: Term a

arg2 :: Term b

} -> Term (a,b)
If : { cnd :: Term Bool

, tru :: Term a

, fls :: Term a

}

-> Term a

However, for GADTs there is the following additional constraint: every constructor that
has a field f must have the same result type (modulo alpha conversion) Hence, in the
above example, we cannot merge the num and arg fields above into a single name. Al-
though their field types are both Term Int, their selector functions actually have differ-
ent types:

num :: Term Int -> Term Int
arg :: Term Bool -> Term Int

When pattern-matching against data constructors drawn from a GADT, for example in a
case expression, the following rules apply:

- The type of the scrutinee must be rigid.
- The type of the entire case expression must be rigid.
- The type of any free variable mentioned in any of the case alternatives must be rigid.

A type is “rigid” if it is completely known to the compiler at its binding site. The easiest
way to ensure that a variable a rigid type is to give it a type signature. For more precise
details see Simple unification-based type inference for GADTs. The criteria implemented
by GHC are given in the Appendix.

308

Chapter 10. GHC Language Features

http://research.microsoft.com/%7Esimonpj/papers/gadt/

GHC User’s Guide Documentation, Release 8.10.0.20191123

10.5 Extensions to the record system

10.5.1 Traditional record syntax

NoTraditionalRecordSyntax
Since 7.4.1
Disallow use of record syntax.

Traditional record syntax, such as C {f = x}, is enabled by default. To disable it, you can
use the NoTraditionalRecordSyntax (page 309) extension.

10.5.2 Record field disambiguation

DisambiguateRecordFields
Since 6.8.1

Allow the compiler to automatically choose between identically-named record selectors
based on type (if the choice is unambiguous).

In record construction and record pattern matching it is entirely unambiguous which field is
referred to, even if there are two different data types in scope with a common field name. For
example:

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where
import M

data T = MKT { x :: Int }

okl (MkS { x = n }) = n+l -- Unambiguous
ok2 n = MkT { x = n+l } -- Unambiguous
badl k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous

Even though there are two x’s in scope, it is clear that the x in the pattern in the definition
of okl can only mean the field x from type S. Similarly for the function ok2. However, in the
record update in badl and the record selection in bad?2 it is not clear which of the two types
is intended.

Haskell 98 regards all four as ambiguous, but with the DisambiguateRecordFields
(page 309) extension, GHC will accept the former two. The rules are precisely the same
as those for instance declarations in Haskell 98, where the method names on the left-hand
side of the method bindings in an instance declaration refer unambiguously to the method of
that class (provided they are in scope at all), even if there are other variables in scope with
the same name. This reduces the clutter of qualified names when you import two records
from different modules that use the same field name.

Some details:

» Field disambiguation can be combined with punning (see Record puns (page 312)). For
example:

10.5. Extensions to the record system 309

GHC User’s Guide Documentation, Release 8.10.0.20191123

module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 -- Uses both disambiguation and punning

* With DisambiguateRecordFields (page 309) you can use unqualified field names even
if the corresponding selector is only in scope qualified For example, assuming the same
module M as in our earlier example, this is legal:

module Foo where
import qualified M -- Note qualified
ok4d (M.MkS { x = n }) = n+l -- Unambiguous

Since the constructor MkS is only in scope qualified, you must name it M. MkS, but the field
x does not need to be qualified even though M. x is in scope but x is not (In effect, it is
qualified by the constructor).

10.5.3 Duplicate record fields

DuplicateRecordFields
Implies DisambiguateRecordFields (page 309)
Since 8.0.1
Allow definition of record types with identically-named fields.

Going beyond DisambiguateRecordFields (page 309) (see Record field disambiguation
(page 309)), the DuplicateRecordFields (page 310) extension allows multiple datatypes to
be declared using the same field names in a single module. For example, it allows this:

module M where
data S = MkS { x :: Int }
data T = MKT { x :: Bool }

Uses of fields that are always unambiguous because they mention the constructor, including
construction and pattern-matching, may freely use duplicated field names. For example, the
following are permitted (just as with DisambiguateRecordFields (page 309)):

s =MkS { x =31}

f (MkT { x=b13}) =b

Field names used as selector functions or in record updates must be unambiguous, either
because there is only one such field in scope, or because a type signature is supplied, as
described in the following sections.

Selector functions

Fields may be used as selector functions only if they are unambiguous, so this is still not
allowed if both S(x) and T(x) are in scope:

bad r = x r

310 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

An ambiguous selector may be disambiguated by the type being “pushed down” to the occur-
rence of the selector (see Type inference (page 434) for more details on what “pushed down”
means). For example, the following are permitted:

okl = x :: S -> Int

ok2 :: S -> Int
ok2 X

ok3

k x -- assuming we already have k :: (S -> Int) ->

In addition, the datatype that is meant may be given as a type signature on the argument to
the selector:

ok4d s = x (s :: S)

However, we do not infer the type of the argument to determine the datatype, or have any
way of deferring the choice to the constraint solver. Thus the following is ambiguous:

bad :: S -> Int
bad s = x s

Even though a field label is duplicated in its defining module, it may be possible to use the
selector unambiguously elsewhere. For example, another module could import S(x) but not
T(x), and then use x unambiguously.

Record updates

Inarecord update suchase { x = 1 }, ifthere are multiple x fields in scope, then the type of
the context must fix which record datatype is intended, or a type annotation must be supplied.
Consider the following definitions:

data S = MkS { foo :: Int }
data T = MKT { foo :: Int, bar :: Int }
data U = MkU { bar :: Int, baz :: Int }

Without DuplicateRecordFields (page 310), an update mentioning foo will always be am-
biguous if all these definitions were in scope. When the extension is enabled, there are several
options for disambiguating updates:

* Check for types that have all the fields being updated. For example:

f x=x{ foo =3, bar =2}

Here f must be updating T because neither S nor U have both fields.

» Use the type being pushed in to the record update, as in the following:

gl :: T ->T
gl x = x { foo = 3 }
g2 x=x{foo=3}%}::T

g3 = k (x { foo =3 }) -- assuming we already have k :: T ->

* Use an explicit type signature on the record expression, as in:

10.5. Extensions to the record system 311

GHC User’s Guide Documentation, Release 8.10.0.20191123

hx=(x::T) { foo =31}

The type of the expression being updated will not be inferred, and no constraint-solving will
be performed, so the following will be rejected as ambiguous:

let x :: T
x = blah
in x { foo = 3 }

\x => [x { foo =3}, blah :: T 1

\ (x :: T) ->x { foo =3}

Import and export of record fields

When DuplicateRecordFields (page 310) is enabled, an ambiguous field must be exported
as part of its datatype, rather than at the top level. For example, the following is legal:

module M (S(x), T(..)) where
data S = MkS { x :: Int }
data T MKT { x :: Bool }

However, this would not be permitted, because x is ambiguous:

module M (x) where ...

Similar restrictions apply on import.

10.5.4 Record puns

NamedFieldPuns
Since 6.10.1
Allow use of record puns.
Record puns are enabled by the language extension NamedFieldPuns (page 312).

When using records, it is common to write a pattern that binds a variable with the same name
as a record field, such as:

data C = C {a :: Int}
f (C{a=a}) =a

Record punning permits the variable name to be elided, so one can simply write

]f(c {a}) = a \

to mean the same pattern as above. That is, in a record pattern, the pattern a expands into
the pattern a = a for the same name a.

Note that:

* Record punning can also be used in an expression, writing, for example,

let a =1 in C {a}

312 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

instead of

let a =1 in C {a = a}

The expansion is purely syntactic, so the expanded right-hand side expression refers to
the nearest enclosing variable that is spelled the same as the field name.

* Puns and other patterns can be mixed in the same record:

data C = C {a :: Int, b :: Int}
f (C {a, b=4}) =a

* Puns can be used wherever record patterns occur (e.g. in let bindings or at the top-
level).

* A pun on a qualified field name is expanded by stripping off the module qualifier. For
example:

’f (C {M.a})

]
Q

means

’f (M.C {M.a a}) = a ‘

(This is useful if the field selector a for constructor M. C is only in scope in qualified form.)

10.5.5 Record wildcards

RecordwWildCards
Implies DisambiguateRecordFields (page 309).
Since 6.8.1
Allow the use of wildcards in record construction and pattern matching.

Record wildcards are enabled by the language extension RecordWildCards (page 313). This
exension implies DisambiguateRecordFields (page 309).

For records with many fields, it can be tiresome to write out each field individually in a record
pattern, as in

data C = C {a ::

Int, b :: Int, c :: Int, d :: Int}
f(C{a=1, b=">b, c=

c,d=d}) =b+c+d

”

Record wildcard syntax permits a “..” in a record pattern, where each elided field f is re-
placed by the pattern f = f. For example, the above pattern can be written as

f(C{a=1, ..})=b+c+d

More details:

* Record wildcards in patterns can be mixed with other patterns, including puns (Record
puns (page 312)); for example, in a pattern (C {a = 1,b,..}). Additionally, record
wildcards can be used wherever record patterns occur, including in let bindings and at
the top-level. For example, the top-level binding

C{a=1, ..} =e

10.5. Extensions to the record system 313

GHC User’s Guide Documentation, Release 8.10.0.20191123

defines b, ¢, and d.

* Record wildcards can also be used in an expression, when constructing a record. For

example,

’1et{a=1;b=2;c=3;d=4}inC{..} ‘
in place of

llet {a=1; b=2; c=3; d=4} in C {a=a, b=b, c=c, d=d} ‘

The expansion is purely syntactic, so the record wildcard expression refers to the nearest
enclosing variables that are spelled the same as the omitted field names.

”

* For both pattern and expression wildcards, the “..” expands to the missing in-scope
record fields. Specifically the expansion of “C {..}” includes f if and only if:

- f is a record field of constructor C.
- The record field f is in scope somehow (either qualified or unqualified).

These rules restrict record wildcards to the situations in which the user could have writ-
ten the expanded version. For example

module M where
data R=R { a,b,c :: Int }
module X where
import M(R(R,a,c))
fab=R{ ..}

The R{..} expands to R{a=a}, omitting b since the record field is not in scope, and
omitting c since the variable c is not in scope (apart from the binding of the record
selector c, of course).

* When record wildcards are use in record construction, a field f is initialised only if f is
in scope, and is not imported or bound at top level. For example, f can be bound by an
enclosing pattern match or let/where-binding. For example

module M where
import A(a)

data R=R { a,b,c,d :: Int }
c=3:: Int

fb=R{ ..} --Expands toR{ b=D>b, d=4d}

Here, a is imported, and c is bound at top level, so neither contribute to the expansion of
the “..”. The motivation here is that it should be easy for the reader to figure out what
the “..” expands to.

* Record wildcards cannot be used (a) in a record update construct, and (b) for data con-
structors that are not declared with record fields. For example:

f x=x{ v=True, .. } -- Illegal (a)

data T = MKT Int Bool

314 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

MKT { .. } -- Illegal (b)

g:
h (MKT { .. }) = True -- Illegal (b)

10.5.6 Record field selector polymorphism

The module GHC.Records defines the following:

class HasField (x :: k) ra | x r -> a where
getField :: r -> a

A HasField x r a constraint represents the fact that x is a field of type a belonging to a
record type r. The getField method gives the record selector function.

This allows definitions that are polymorphic over record types with a specified field. For
example, the following works with any record type that has a field name :: String:

foo :: HasField "name" r String => r -> String
foo r = reverse (getField @"name" r)

HasField is a magic built-in typeclass (similar to Coercible, for example). It is given special
treatment by the constraint solver (see Solving HasField constraints (page 315)). Users may
define their own instances of HasField also (see Virtual record fields (page 316)).

Solving HasField constraints

If the constraint solver encounters a constraint HasField x r a where r is a concrete
datatype with a field x in scope, it will automatically solve the constraint using the field
selector as the dictionary, unifying a with the type of the field if necessary. This happens
irrespective of which extensions are enabled.

For example, if the following datatype is in scope

data Person = Person { name :: String }

the end result is rather like having an instance

instance HasField "name" Person String where
getField = name

except that this instance is not actually generated anywhere, rather the constraint is solved
directly by the constraint solver.

A field must be in scope for the corresponding HasField constraint to be solved. This retains
the existing representation hiding mechanism, whereby a module may choose not to export
a field, preventing client modules from accessing or updating it directly.

Solving HasField constraints depends on the field selector functions that are generated for
each datatype definition:

» If a record field does not have a selector function because its type would allow an exis-
tential variable to escape, the corresponding HasField constraint will not be solved. For
example,

{-# LANGUAGE ExistentialQuantification #-}
data Exists t = forall x . MkExists { unExists :: t x }

10.5. Extensions to the record system 315

GHC User’s Guide Documentation, Release 8.10.0.20191123

does not give rise to a selector unExists :: Exists t -> t x and we will not solve
HasField "unExists" (Exists t) a automatically.

» If a record field has a polymorphic type (and hence the selector function is higher-rank),
the corresponding HasField constraint will not be solved, because doing so would violate
the functional dependency on HasField and/or require impredicativity. For example,

{-# LANGUAGE RankNTypes #-}
data Higher = MkHigher { unHigher :: forall t . t -> t }

gives rise to a selector unHigher :: Higher -> (forall t . t -> t) but does not
lead to solution of the constraint HasField "unHigher" Higher a.

* A record GADT may have a restricted type for a selector function, which may lead to
additional unification when solving HasField constraints. For example,

{-# LANGUAGE GADTs #-}
data Gadt t where
MkGadt :: { unGadt :: Maybe v } -> Gadt [v]

gives rise to a selector unGadt :: Gadt [v] -> Maybe v, so the solver will reduce the
constraint HasField "unGadt" (Gadt t) b by unifying t ~ [v] and b ~ Maybe v for
some fresh metavariable v, rather as if we had an instance

instance (t ~ [v], b ~ Maybe v) => HasField "unGadt" (Gadt t) b

» If a record type has an old-fashioned datatype context, the HasField constraint will be
reduced to solving the constraints from the context. For example,

{-# LANGUAGE DatatypeContexts #-}
data Eq a => Silly a = MkSilly { unSilly :: a }

gives rise to a selector unSilly :: Eq a => Silly a -> a, so the solver will reduce
the constraint HasField "unSilly" (Silly a) bto Eq a (and unify a with b), rather as
if we had an instance

instance (Eq a, a ~ b) => HasField "unSilly" (Silly a) b

Virtual record fields

Users may define their own instances of HasField, provided they do not conflict with the built-
in constraint solving behaviour. This allows “virtual” record fields to be defined for datatypes
that do not otherwise have them.

For example, this instance would make the name field of Person accessible using #fullname
as well:

instance HasField "fullname" Person String where
getField = name

More substantially, an anonymous records library could provide HasField instances for its
anonymous records, and thus be compatible with the polymorphic record selectors introduced
by this proposal. For example, something like this makes it possible to use getField to access
Record values with the appropriate string in the type-level list of fields:

316 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

data Record (xs :: [(k, Type)l) where

Nil :: Record '[]
Cons :: Proxy x -> a -> Record xs -> Record ('(x, a) ': Xs)
instance HasField x (Record ('(x, a) ': xs)) a where
getField (Cons v) =v
instance HasField x (Record xs) a => HasField x (Record ('(y, b) ': xs)) a where
getField (Cons = r) = getField @x r
r :: Record '['("name", String)]

r

Cons Proxy "R" Nil)

X getField @"name" r

Since representations such as this can support field labels with kinds other than Symbol, the
HasField class is poly-kinded (even though the built-in constraint solving works only at kind
Symbol). In particular, this allows users to declare scoped field labels such as in the following
example:

data PersonFields = Name

s :: Record '['(Name, String) 1
s = Cons Proxy "S" Nil

y getField @Name s

In order to avoid conflicting with the built-in constraint solving, the following user-defined
HasField instances are prohibited (in addition to the usual rules, such as the prohibition on
type families appearing in instance heads):

* HasField _ r _ where ris a variable;

* HasField (T ...) _if T is a data family (because it might have fields introduced
later, using data instance declarations);

* HasField x (T ...) _if xis a variable and T has any fields at all (but this instance is
permitted if T has no fields);

* HasField "foo" (T ...) _if T has a field foo (but this instance is permitted if it does
not).

If a field has a higher-rank or existential type, the corresponding HasField constraint will
not be solved automatically (as described above), but in the interests of simplicity we do not
permit users to define their own instances either. If a field is not in scope, the corresponding
instance is still prohibited, to avoid conflicts in downstream modules.

10.6 Extensions to the “deriving” mechanism

Haskell 98 allows the programmer to add a deriving clause to a data type declaration, to
generate a standard instance declaration for specified class. GHC extends this mechanism
along several axes:

* The derivation mechanism can be used separately from the data type declaration, using
the standalone deriving mechanism (page 319).

* In Haskell 98, the only derivable classes are Eq, Ord, Enum, Ix, Bounded, Read, and Show.
Various language extensions (page 321) extend this list.

10.6. Extensions to the “deriving” mechanism 317

GHC User’s Guide Documentation, Release 8.10.0.20191123

* Besides the stock approach to deriving instances by generating all method definitions,
GHC supports two additional deriving strategies, which can derive arbitrary classes:

- Generalised newtype deriving (page 329) for newtypes and
- deriving any class (page 335) using an empty instance declaration.

The user can optionally declare the desired deriving strategy (page ??), especially if the
compiler chooses the wrong one by default (page 338).

10.6.1 Deriving instances for empty data types

EmptyDataDeriving
Since 8.4.1
Allow deriving instances of standard type classes for empty data types.

One can write data types with no constructors using the EmptyDataDecls (page 295) flag (see
Data types with no constructors (page 295)), which is on by default in Haskell 2010. What is
not on by default is the ability to derive type class instances for these types. This ability is
enabled through use of the EmptyDataDeriving (page 318) flag. For instance, this lets one
write:

data Empty deriving (Eq, Ord, Read, Show)

This would generate the following instances:

instance Eq Empty where
_ == _ = True

instance Ord Empty where
compare _ _ = EQ

instance Read Empty where
readPrec = pfail

instance Show Empty where
showsPrec _ x = case x of {}

The EmptyDataDeriving (page 318) flag is only required to enable deriving of these four
“standard” type classes (which are mentioned in the Haskell Report). Other extensions to
the deriving mechanism, which are explained below in greater detail, do not require Emp-
tyDataDeriving (page 318) to be used in conjunction with empty data types. These include:

» StandaloneDeriving (page 319) (see Stand-alone deriving declarations (page 319))

» Type classes which require their own extensions to be enabled to be derived, such as De-
riveFunctor (page 321) (see Deriving instances of extra classes (Data, etc.) (page 321))

* DeriveAnyClass (page 335) (see Deriving any other class (page 335))

10.6.2 Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

318 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

data TO f a = MKTO a deriving(Eq)
data T1 f a = MKT1 (f a) deriving(Eq)
data T2 f a = MkT2 (f (f a)) deriving(Eq)

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (TO f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is still fine, although less obviously. The third
is not Haskell 98, and risks losing termination of instances.

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this:
each constraint in the inferred instance context must consist only of type variables, with no
repetitions.

This rule is applied regardless of flags. If you want a more exotic context, you can write it
yourself, using the standalone deriving mechanism (page 319).

10.6.3 Stand-alone deriving declarations

StandaloneDeriving
Since 6.8.1
Allow the use of stand-alone deriving declarations.

GHC allows stand-alone deriving declarations, enabled by StandaloneDeriving (page 319):

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
deriving, and (b) the absence of the where part.

However, standalone deriving differs from a deriving clause in a number of important ways:

* The standalone deriving declaration does not need to be in the same module as the data
type declaration. (But be aware of the dangers of orphan instances (Orphan modules
and instance declarations (page 185)).

* In most cases, you must supply an explicit context (in the example the context is (Eq
a)), exactly as you would in an ordinary instance declaration. (In contrast, in a deriving
clause attached to a data type declaration, the context is inferred.)

The exception to this rule is that the context of a standalone deriving declaration can
infer its context when a single, extra-wildcards constraint is used as the context, such
as in:

deriving instance _ => Eq (Foo a)

This is essentially the same as if you had written deriving Eq after the declaration for
data Foo a. Using this feature requires the use of PartialTypeSignatures (page 443)
(Partial Type Signatures (page 443)).

10.6. Extensions to the “deriving” mechanism 319

GHC User’s Guide Documentation, Release 8.10.0.20191123

* Unlike a deriving declaration attached to a data declaration, the instance can be more
specific than the data type (assuming you also use FlexibleInstances (page 357), Re-
laxed rules for instance contexts (page 358)). Consider for example

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo [a])
deriving instance Eq a => Eq (Foo (Maybe a))

This will generate a derived instance for (Foo [a]) and (Foo (Maybe a)), but other
types such as (Foo (Int,Bool)) will not be an instance of Eq.

* Unlike a deriving declaration attached to a data declaration, GHC does not restrict the
form of the data type. Instead, GHC simply generates the appropriate boilerplate code
for the specified class, and typechecks it. If there is a type error, it is your problem.
(GHC will show you the offending code if it has a type error.)

The merit of this is that you can derive instances for GADTs and other exotic data types,
providing only that the boilerplate code does indeed typecheck. For example:

data T a where
Tl :: T Int
T2 :: T Bool

deriving instance Show (T a)

In this example, you cannot say ... deriving(Show) on the data type declaration for
T, because T is a GADT, but you can generate the instance declaration using stand-alone
deriving.

The down-side is that, if the boilerplate code fails to typecheck, you will get an error
message about that code, which you did not write. Whereas, with a deriving clause the
side-conditions are necessarily more conservative, but any error message may be more
comprehensible.

* Under most circumstances, you cannot use standalone deriving to create an instance for
a data type whose constructors are not all in scope. This is because the derived instance
would generate code that uses the constructors behind the scenes, which would break
abstraction.

The one exception to this rule is DeriveAnyClass (page 335), since deriving an instance
via DeriveAnyClass (page 335) simply generates an empty instance declaration, which
does not require the use of any constructors. See the deriving any class (page 335)
section for more details.

In other ways, however, a standalone deriving obeys the same rules as ordinary deriving:

* A deriving instance declaration must obey the same rules concerning form and ter-
mination as ordinary instance declarations, controlled by the same flags; see Instance
declarations (page 356).

* The stand-alone syntax is generalised for newtypes in exactly the same way that or-
dinary deriving clauses are generalised (Generalised derived instances for newtypes
(page 329)). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

320 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

GHC always treats the last parameter of the instance (Foo in this example) as the type
whose instance is being derived.

10.6.4 Deriving instances of extra classes (Data, etc.)

Haskell 98 allows the programmer to add “deriving(Eq,O0rd)” to a data type declaration,
to generate a standard instance declaration for classes specified in the deriving clause. In
Haskell 98, the only classes that may appear in the deriving clause are the standard classes
Eq, Ord, Enum, Ix, Bounded, Read, and Show.

GHC extends this list with several more classes that may be automatically derived:

* With DeriveGeneric (page 499), you can derive instances of the classes Generic and
Genericl, defined in GHC.Generics. You can use these to define generic functions, as
described in Generic programming (page 498).

* With DeriveFunctor (page 321), you can derive instances of the class Functor, defined
in GHC.Base.

* With DeriveDataTypeable (page 328), you can derive instances of the class Data, defined
in Data.Data.

» WithDeriveFoldable (page 324), you can derive instances of the class Foldable, defined
in Data.Foldable.

* With DeriveTraversable (page 326), you can derive instances of the class Traversable,
defined in Data.Traversable. Since the Traversable instance dictates the instances of
Functor and Foldable, you’ll probably want to derive them too, so DeriveTraversable
(page 326) implies DeriveFunctor (page 321) and DeriveFoldable (page 324).

» With DerivelLift (page 328), you can derive instances of the class Lift, defined in the
Language.Haskell.TH.Syntax module of the template-haskell package.

You can also use a standalone deriving declaration instead (see Stand-alone deriving decla-
rations (page 319)).

In each case the appropriate class must be in scope before it can be mentioned in the deriving
clause.

Deriving Functor instances

DeriveFunctor
Since 7.10.1
Allow automatic deriving of instances for the Functor typeclass.

With DeriveFunctor (page 321), one can derive Functor instances for data types of kind Type
-> Type. For example, this declaration:

data Example a = Ex a Char (Example a) (Example Char)
deriving Functor

would generate the following instance:

instance Functor Example where
fmap f (Ex al a2 a3 a4) = Ex (f al) a2 (fmap f a3) a4

10.6. Extensions to the “deriving” mechanism 321

GHC User’s Guide Documentation, Release 8.10.0.20191123

The basic algorithm for DeriveFunctor (page 321) walks the arguments of each constructor
of a data type, applying a mapping function depending on the type of each argument. If a
plain type variable is found that is syntactically equivalent to the last type parameter of the
data type (a in the above example), then we apply the function f directly to it. If a type is
encountered that is not syntactically equivalent to the last type parameter but does mention
the last type parameter somewhere in it, then a recursive call to fmap is made. If a type is
found which doesn’t mention the last type parameter at all, then it is left alone.

The second of those cases, in which a type is unequal to the type parameter but does contain
the type parameter, can be surprisingly tricky. For example, the following example compiles:

’newtype Right a = Right (Either Int a) deriving Functor

|

Modifying the code slightly, however, produces code which will not compile:

’newtype Wrong a = Wrong (Either a Int) deriving Functor

The difference involves the placement of the last type parameter, a. In the Right case, a
occurs within the type Either Int a, and moreover, it appears as the last type argument of
Either. In the Wrong case, however, a is not the last type argument to Either; rather, Int is.

This distinction is important because of the way DeriveFunctor (page 321) works. The de-
rived Functor Right instance would be:

instance Functor Right where
fmap f (Right a) = Right (fmap f a)

Given a value of type Right a, GHC must produce a value of type Right b. Since the argu-
ment to the Right constructor has type Either Int a, the code recursively calls fmap on it
to produce a value of type Either Int b, which is used in turn to construct a final value of
type Right b.

The generated code for the Functor Wrong instance would look exactly the same, except with
Wrong replacing every occurrence of Right. The problem is now that fmap is being applied
recursively to a value of type Either a Int. This cannot possibly produce a value of type
Either b Int, as fmap can only change the last type parameter! This causes the generated
code to be ill-typed.

As a general rule, if a data type has a derived Functor instance and its last type parameter
occurs on the right-hand side of the data declaration, then either it must (1) occur bare (e.g.,
newtype Id a = Id a), or (2) occur as the last argument of a type constructor (as in Right
above).

There are two exceptions to this rule:

1. Tuple types. When a non-unit tuple is used on the right-hand side of a data declaration,
DeriveFunctor (page 321) treats it as a product of distinct types. In other words, the
following code:

newtype Triple a = Triple (a, Int, [a]) deriving Functor

Would result in a generated Functor instance like so:

instance Functor Triple where
fmap f (Triple a) =
Triple (case a of
(al, a2, a3) -> (f al, a2, fmap f a3))

322 Chapter 10. GHC Language Features

GHC User’s Guide Documentation, Release 8.10.0.20191123

That is, DeriveFunctor (page 321) pattern-matches its way into tuples and maps over
each type that constitutes the tuple. The generated code is reminiscent of what would
be generated from data Triple a = Triple a Int [a], except with extra machinery
to handle the tuple.

. Function types. The last type parameter can appear anywhere in a function type as long
as it occurs in a covariant position. To illustrate what this means, consider the following
three examples:

CovFunl (Int -> a) deriving Functor
CovFun2 ((a -> Int) -> a) deriving Functor
CovFun3 (((Int -> a) -> Int) -> a) deriving Functor

newtype CovFunl a
newtype CovFun2 a
newtype CovFun3 a

All three of these examples would compile without issue. On the other hand:

ContraFunl (a -> Int) deriving Functor
ContraFun2 ((Int -> a) -> Int) deriving Functor
ContraFun3 (((a -> Int) -> a) -> Int) deriving Functor

newtype ContraFunl a
newtype ContraFun2 a
newtype ContraFun3 a

While these examples look similar, none of them would successfully compile. This is
because all occurrences of the last type parameter a occur in contravariant positions,
not covariant ones.

Intuitively, a covariant type is produced, and a contravariant type is consumed. Most
types in Haskell are covariant, but the function type is special in that the lefthand side
of a function arrow reverses variance. If a function type a -> b appears in a covariant
position (e.g., CovFunl above), then a is in a contravariant position and b is in a covariant
position. Similarly, if a -> b appears in a contravariant position (e.g., CovFun2 above),
then a is in a covariant position and b is in a contravariant position.

To see why a data type with a contravariant occurrence of its last type parameter can-
not have a derived Functor instance, let’s suppose that a Functor ContraFunl instance
exists. The implementation would look something like this:

instance Functor ContraFunl where
fmap f (ContraFun g) = ContraFun (\x ->)

We have f :: a -> b