{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[HsBinds]{Abstract syntax: top-level bindings and signatures} Datatype for: @BindGroup@, @Bind@, @Sig@, @Bind@. -} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types] -- in module PlaceHolder {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE BangPatterns #-} module HsBinds where import {-# SOURCE #-} HsExpr ( pprExpr, LHsExpr, MatchGroup, pprFunBind, GRHSs, pprPatBind ) import {-# SOURCE #-} HsPat ( LPat ) import PlaceHolder ( PostTc,PostRn,DataId,OutputableBndrId ) import HsTypes import PprCore () import CoreSyn import TcEvidence import Type import Name import NameSet import BasicTypes import Outputable import SrcLoc import Var import Bag import FastString import BooleanFormula (LBooleanFormula) import DynFlags import Data.Data hiding ( Fixity ) import Data.List hiding ( foldr ) import Data.Ord import Data.Foldable ( Foldable(..) ) {- ************************************************************************ * * \subsection{Bindings: @BindGroup@} * * ************************************************************************ Global bindings (where clauses) -} -- During renaming, we need bindings where the left-hand sides -- have been renamed but the the right-hand sides have not. -- the ...LR datatypes are parametrized by two id types, -- one for the left and one for the right. -- Other than during renaming, these will be the same. -- | Haskell Local Bindings type HsLocalBinds id = HsLocalBindsLR id id -- | Located Haskell local bindings type LHsLocalBinds id = Located (HsLocalBinds id) -- | Haskell Local Bindings with separate Left and Right identifier types -- -- Bindings in a 'let' expression -- or a 'where' clause data HsLocalBindsLR idL idR = HsValBinds (HsValBindsLR idL idR) -- ^ Haskell Value Bindings -- There should be no pattern synonyms in the HsValBindsLR -- These are *local* (not top level) bindings -- The parser accepts them, however, leaving the the -- renamer to report them | HsIPBinds (HsIPBinds idR) -- ^ Haskell Implicit Parameter Bindings | EmptyLocalBinds -- ^ Empty Local Bindings type LHsLocalBindsLR idL idR = Located (HsLocalBindsLR idL idR) deriving instance (DataId idL, DataId idR) => Data (HsLocalBindsLR idL idR) -- | Haskell Value Bindings type HsValBinds id = HsValBindsLR id id -- | Haskell Value bindings with separate Left and Right identifier types -- (not implicit parameters) -- Used for both top level and nested bindings -- May contain pattern synonym bindings data HsValBindsLR idL idR = -- | Value Bindings In -- -- Before renaming RHS; idR is always RdrName -- Not dependency analysed -- Recursive by default ValBindsIn (LHsBindsLR idL idR) [LSig idR] -- | Value Bindings Out -- -- After renaming RHS; idR can be Name or Id Dependency analysed, -- later bindings in the list may depend on earlier ones. | ValBindsOut [(RecFlag, LHsBinds idL)] [LSig Name] deriving instance (DataId idL, DataId idR) => Data (HsValBindsLR idL idR) -- | Located Haskell Binding type LHsBind id = LHsBindLR id id -- | Located Haskell Bindings type LHsBinds id = LHsBindsLR id id -- | Haskell Binding type HsBind id = HsBindLR id id -- | Located Haskell Bindings with separate Left and Right identifier types type LHsBindsLR idL idR = Bag (LHsBindLR idL idR) -- | Located Haskell Binding with separate Left and Right identifier types type LHsBindLR idL idR = Located (HsBindLR idL idR) {- Note [Varieties of binding pattern matches] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The distinction between FunBind and PatBind is a bit subtle. FunBind covers patterns which resemble function bindings and simple variable bindings. f x = e f !x = e f = e !x = e -- FunRhs has SrcStrict x `f` y = e -- FunRhs has Infix The actual patterns and RHSs of a FunBind are encoding in fun_matches. The m_ctxt field of Match will be FunRhs and carries two bits of information about the match, * the mc_strictness field describes whether the match is decorated with a bang (e.g. `!x = e`) * the mc_fixity field describes the fixity of the function binder By contrast, PatBind represents data constructor patterns, as well as a few other interesting cases. Namely, Just x = e (x) = e x :: Ty = e -} -- | Haskell Binding with separate Left and Right id's data HsBindLR idL idR = -- | Function-like Binding -- -- FunBind is used for both functions @f x = e@ -- and variables @f = \x -> e@ -- and strict variables @!x = x + 1@ -- -- Reason 1: Special case for type inference: see 'TcBinds.tcMonoBinds'. -- -- Reason 2: Instance decls can only have FunBinds, which is convenient. -- If you change this, you'll need to change e.g. rnMethodBinds -- -- But note that the form @f :: a->a = ...@ -- parses as a pattern binding, just like -- @(f :: a -> a) = ... @ -- -- Strict bindings have their strictness recorded in the 'SrcStrictness' of their -- 'MatchContext'. See Note [Varieties of binding pattern matches] for -- details about the relationship between FunBind and PatBind. -- -- 'ApiAnnotation.AnnKeywordId's -- -- - 'ApiAnnotation.AnnFunId', attached to each element of fun_matches -- -- - 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnWhere', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose', -- For details on above see note [Api annotations] in ApiAnnotation FunBind { fun_id :: Located idL, -- Note [fun_id in Match] in HsExpr fun_matches :: MatchGroup idR (LHsExpr idR), -- ^ The payload fun_co_fn :: HsWrapper, -- ^ Coercion from the type of the MatchGroup to the type of -- the Id. Example: -- -- @ -- f :: Int -> forall a. a -> a -- f x y = y -- @ -- -- Then the MatchGroup will have type (Int -> a' -> a') -- (with a free type variable a'). The coercion will take -- a CoreExpr of this type and convert it to a CoreExpr of -- type Int -> forall a'. a' -> a' -- Notice that the coercion captures the free a'. bind_fvs :: PostRn idL NameSet, -- ^ After the renamer, this contains -- the locally-bound -- free variables of this defn. -- See Note [Bind free vars] fun_tick :: [Tickish Id] -- ^ Ticks to put on the rhs, if any } -- | Pattern Binding -- -- The pattern is never a simple variable; -- That case is done by FunBind. -- See Note [Varieties of binding pattern matches] for details about the -- relationship between FunBind and PatBind. -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnBang', -- 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnWhere', -- 'ApiAnnotation.AnnOpen','ApiAnnotation.AnnClose', -- For details on above see note [Api annotations] in ApiAnnotation | PatBind { pat_lhs :: LPat idL, pat_rhs :: GRHSs idR (LHsExpr idR), pat_rhs_ty :: PostTc idR Type, -- ^ Type of the GRHSs bind_fvs :: PostRn idL NameSet, -- ^ See Note [Bind free vars] pat_ticks :: ([Tickish Id], [[Tickish Id]]) -- ^ Ticks to put on the rhs, if any, and ticks to put on -- the bound variables. } -- | Variable Binding -- -- Dictionary binding and suchlike. -- All VarBinds are introduced by the type checker | VarBind { var_id :: idL, var_rhs :: LHsExpr idR, -- ^ Located only for consistency var_inline :: Bool -- ^ True <=> inline this binding regardless -- (used for implication constraints only) } -- | Abstraction Bindings | AbsBinds { -- Binds abstraction; TRANSLATION abs_tvs :: [TyVar], abs_ev_vars :: [EvVar], -- ^ Includes equality constraints -- | AbsBinds only gets used when idL = idR after renaming, -- but these need to be idL's for the collect... code in HsUtil -- to have the right type abs_exports :: [ABExport idL], -- | Evidence bindings -- Why a list? See TcInstDcls -- Note [Typechecking plan for instance declarations] abs_ev_binds :: [TcEvBinds], -- | Typechecked user bindings abs_binds :: LHsBinds idL } -- | Abstraction Bindings Signature | AbsBindsSig { -- Simpler form of AbsBinds, used with a type sig -- in tcPolyCheck. Produces simpler desugaring and -- is necessary to avoid #11405, comment:3. abs_tvs :: [TyVar], abs_ev_vars :: [EvVar], abs_sig_export :: idL, -- like abe_poly abs_sig_prags :: TcSpecPrags, abs_sig_ev_bind :: TcEvBinds, -- no list needed here abs_sig_bind :: LHsBind idL -- always only one, and it's always a -- FunBind } -- | Patterns Synonym Binding | PatSynBind (PatSynBind idL idR) -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnPattern', -- 'ApiAnnotation.AnnLarrow','ApiAnnotation.AnnEqual', -- 'ApiAnnotation.AnnWhere' -- 'ApiAnnotation.AnnOpen' @'{'@,'ApiAnnotation.AnnClose' @'}'@ -- For details on above see note [Api annotations] in ApiAnnotation deriving instance (DataId idL, DataId idR) => Data (HsBindLR idL idR) -- Consider (AbsBinds tvs ds [(ftvs, poly_f, mono_f) binds] -- -- Creates bindings for (polymorphic, overloaded) poly_f -- in terms of monomorphic, non-overloaded mono_f -- -- Invariants: -- 1. 'binds' binds mono_f -- 2. ftvs is a subset of tvs -- 3. ftvs includes all tyvars free in ds -- -- See Note [AbsBinds] -- | Abtraction Bindings Export data ABExport id = ABE { abe_poly :: id -- ^ Any INLINE pragmas is attached to this Id , abe_mono :: id , abe_wrap :: HsWrapper -- ^ See Note [ABExport wrapper] -- Shape: (forall abs_tvs. abs_ev_vars => abe_mono) ~ abe_poly , abe_prags :: TcSpecPrags -- ^ SPECIALISE pragmas } deriving Data -- | - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnPattern', -- 'ApiAnnotation.AnnEqual','ApiAnnotation.AnnLarrow' -- 'ApiAnnotation.AnnWhere','ApiAnnotation.AnnOpen' @'{'@, -- 'ApiAnnotation.AnnClose' @'}'@, -- For details on above see note [Api annotations] in ApiAnnotation -- | Pattern Synonym binding data PatSynBind idL idR = PSB { psb_id :: Located idL, -- ^ Name of the pattern synonym psb_fvs :: PostRn idR NameSet, -- ^ See Note [Bind free vars] psb_args :: HsPatSynDetails (Located idR), -- ^ Formal parameter names psb_def :: LPat idR, -- ^ Right-hand side psb_dir :: HsPatSynDir idR -- ^ Directionality } deriving instance (DataId idL, DataId idR) => Data (PatSynBind idL idR) {- Note [AbsBinds] ~~~~~~~~~~~~~~~ The AbsBinds constructor is used in the output of the type checker, to record *typechecked* and *generalised* bindings. Consider a module M, with this top-level binding, where there is no type signature for M.reverse, M.reverse [] = [] M.reverse (x:xs) = M.reverse xs ++ [x] In Hindley-Milner, a recursive binding is typechecked with the *recursive* uses being *monomorphic*. So after typechecking *and* desugaring we will get something like this M.reverse :: forall a. [a] -> [a] = /\a. letrec reverse :: [a] -> [a] = \xs -> case xs of [] -> [] (x:xs) -> reverse xs ++ [x] in reverse Notice that 'M.reverse' is polymorphic as expected, but there is a local definition for plain 'reverse' which is *monomorphic*. The type variable 'a' scopes over the entire letrec. That's after desugaring. What about after type checking but before desugaring? That's where AbsBinds comes in. It looks like this: AbsBinds { abs_tvs = [a] , abs_exports = [ABE { abe_poly = M.reverse :: forall a. [a] -> [a], , abe_mono = reverse :: [a] -> [a]}] , abs_binds = { reverse :: [a] -> [a] = \xs -> case xs of [] -> [] (x:xs) -> reverse xs ++ [x] } } Here, * abs_tvs says what type variables are abstracted over the binding group, just 'a' in this case. * abs_binds is the *monomorphic* bindings of the group * abs_exports describes how to get the polymorphic Id 'M.reverse' from the monomorphic one 'reverse' Notice that the *original* function (the polymorphic one you thought you were defining) appears in the abe_poly field of the abs_exports. The bindings in abs_binds are for fresh, local, Ids with a *monomorphic* Id. If there is a group of mutually recursive (see Note [Polymorphic recursion]) functions without type signatures, we get one AbsBinds with the monomorphic versions of the bindings in abs_binds, and one element of abe_exports for each variable bound in the mutually recursive group. This is true even for pattern bindings. Example: (f,g) = (\x -> x, f) After type checking we get AbsBinds { abs_tvs = [a] , abs_exports = [ ABE { abe_poly = M.f :: forall a. a -> a , abe_mono = f :: a -> a } , ABE { abe_poly = M.g :: forall a. a -> a , abe_mono = g :: a -> a }] , abs_binds = { (f,g) = (\x -> x, f) } Note [Polymorphic recursion] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider Rec { f x = ...(g ef)... ; g :: forall a. [a] -> [a] ; g y = ...(f eg)... } These bindings /are/ mutually recursive (f calls g, and g calls f). But we can use the type signature for g to break the recursion, like this: 1. Add g :: forall a. [a] -> [a] to the type environment 2. Typecheck the definition of f, all by itself, including generalising it to find its most general type, say f :: forall b. b -> b -> [b] 3. Extend the type environment with that type for f 4. Typecheck the definition of g, all by itself, checking that it has the type claimed by its signature Steps 2 and 4 each generate a separate AbsBinds, so we end up with Rec { AbsBinds { ...for f ... } ; AbsBinds { ...for g ... } } This approach allows both f and to call each other polymorphically, even though only g has a signature. We get an AbsBinds that encompasses multiple source-program bindings only when * Each binding in the group has at least one binder that lacks a user type signature * The group forms a strongly connected component Note [ABExport wrapper] ~~~~~~~~~~~~~~~~~~~~~~~ Consider (f,g) = (\x.x, \y.y) This ultimately desugars to something like this: tup :: forall a b. (a->a, b->b) tup = /\a b. (\x:a.x, \y:b.y) f :: forall a. a -> a f = /\a. case tup a Any of (fm::a->a,gm:Any->Any) -> fm ...similarly for g... The abe_wrap field deals with impedance-matching between (/\a b. case tup a b of { (f,g) -> f }) and the thing we really want, which may have fewer type variables. The action happens in TcBinds.mkExport. Note [Bind free vars] ~~~~~~~~~~~~~~~~~~~~~ The bind_fvs field of FunBind and PatBind records the free variables of the definition. It is used for the following purposes a) Dependency analysis prior to type checking (see TcBinds.tc_group) b) Deciding whether we can do generalisation of the binding (see TcBinds.decideGeneralisationPlan) c) Deciding whether the binding can be used in static forms (see TcExpr.checkClosedInStaticForm for the HsStatic case and TcBinds.isClosedBndrGroup). Specifically, * bind_fvs includes all free vars that are defined in this module (including top-level things and lexically scoped type variables) * bind_fvs excludes imported vars; this is just to keep the set smaller * Before renaming, and after typechecking, the field is unused; it's just an error thunk -} instance (OutputableBndrId idL, OutputableBndrId idR) => Outputable (HsLocalBindsLR idL idR) where ppr (HsValBinds bs) = ppr bs ppr (HsIPBinds bs) = ppr bs ppr EmptyLocalBinds = empty instance (OutputableBndrId idL, OutputableBndrId idR) => Outputable (HsValBindsLR idL idR) where ppr (ValBindsIn binds sigs) = pprDeclList (pprLHsBindsForUser binds sigs) ppr (ValBindsOut sccs sigs) = getPprStyle $ \ sty -> if debugStyle sty then -- Print with sccs showing vcat (map ppr sigs) $$ vcat (map ppr_scc sccs) else pprDeclList (pprLHsBindsForUser (unionManyBags (map snd sccs)) sigs) where ppr_scc (rec_flag, binds) = pp_rec rec_flag <+> pprLHsBinds binds pp_rec Recursive = text "rec" pp_rec NonRecursive = text "nonrec" pprLHsBinds :: (OutputableBndrId idL, OutputableBndrId idR) => LHsBindsLR idL idR -> SDoc pprLHsBinds binds | isEmptyLHsBinds binds = empty | otherwise = pprDeclList (map ppr (bagToList binds)) pprLHsBindsForUser :: (OutputableBndrId idL, OutputableBndrId idR, OutputableBndrId id2) => LHsBindsLR idL idR -> [LSig id2] -> [SDoc] -- pprLHsBindsForUser is different to pprLHsBinds because -- a) No braces: 'let' and 'where' include a list of HsBindGroups -- and we don't want several groups of bindings each -- with braces around -- b) Sort by location before printing -- c) Include signatures pprLHsBindsForUser binds sigs = map snd (sort_by_loc decls) where decls :: [(SrcSpan, SDoc)] decls = [(loc, ppr sig) | L loc sig <- sigs] ++ [(loc, ppr bind) | L loc bind <- bagToList binds] sort_by_loc decls = sortBy (comparing fst) decls pprDeclList :: [SDoc] -> SDoc -- Braces with a space -- Print a bunch of declarations -- One could choose { d1; d2; ... }, using 'sep' -- or d1 -- d2 -- .. -- using vcat -- At the moment we chose the latter -- Also we do the 'pprDeeperList' thing. pprDeclList ds = pprDeeperList vcat ds ------------ emptyLocalBinds :: HsLocalBindsLR a b emptyLocalBinds = EmptyLocalBinds isEmptyLocalBinds :: HsLocalBindsLR a b -> Bool isEmptyLocalBinds (HsValBinds ds) = isEmptyValBinds ds isEmptyLocalBinds (HsIPBinds ds) = isEmptyIPBinds ds isEmptyLocalBinds EmptyLocalBinds = True eqEmptyLocalBinds :: HsLocalBindsLR a b -> Bool eqEmptyLocalBinds EmptyLocalBinds = True eqEmptyLocalBinds _ = False isEmptyValBinds :: HsValBindsLR a b -> Bool isEmptyValBinds (ValBindsIn ds sigs) = isEmptyLHsBinds ds && null sigs isEmptyValBinds (ValBindsOut ds sigs) = null ds && null sigs emptyValBindsIn, emptyValBindsOut :: HsValBindsLR a b emptyValBindsIn = ValBindsIn emptyBag [] emptyValBindsOut = ValBindsOut [] [] emptyLHsBinds :: LHsBindsLR idL idR emptyLHsBinds = emptyBag isEmptyLHsBinds :: LHsBindsLR idL idR -> Bool isEmptyLHsBinds = isEmptyBag ------------ plusHsValBinds :: HsValBinds a -> HsValBinds a -> HsValBinds a plusHsValBinds (ValBindsIn ds1 sigs1) (ValBindsIn ds2 sigs2) = ValBindsIn (ds1 `unionBags` ds2) (sigs1 ++ sigs2) plusHsValBinds (ValBindsOut ds1 sigs1) (ValBindsOut ds2 sigs2) = ValBindsOut (ds1 ++ ds2) (sigs1 ++ sigs2) plusHsValBinds _ _ = panic "HsBinds.plusHsValBinds" {- What AbsBinds means ~~~~~~~~~~~~~~~~~~~ AbsBinds tvs [d1,d2] [(tvs1, f1p, f1m), (tvs2, f2p, f2m)] BIND means f1p = /\ tvs -> \ [d1,d2] -> letrec DBINDS and BIND in fm gp = ...same again, with gm instead of fm This is a pretty bad translation, because it duplicates all the bindings. So the desugarer tries to do a better job: fp = /\ [a,b] -> \ [d1,d2] -> case tp [a,b] [d1,d2] of (fm,gm) -> fm ..ditto for gp.. tp = /\ [a,b] -> \ [d1,d2] -> letrec DBINDS and BIND in (fm,gm) -} instance (OutputableBndrId idL, OutputableBndrId idR) => Outputable (HsBindLR idL idR) where ppr mbind = ppr_monobind mbind ppr_monobind :: (OutputableBndrId idL, OutputableBndrId idR) => HsBindLR idL idR -> SDoc ppr_monobind (PatBind { pat_lhs = pat, pat_rhs = grhss }) = pprPatBind pat grhss ppr_monobind (VarBind { var_id = var, var_rhs = rhs }) = sep [pprBndr CasePatBind var, nest 2 $ equals <+> pprExpr (unLoc rhs)] ppr_monobind (FunBind { fun_id = fun, fun_co_fn = wrap, fun_matches = matches, fun_tick = ticks }) = pprTicks empty (if null ticks then empty else text "-- ticks = " <> ppr ticks) $$ ifPprDebug (pprBndr LetBind (unLoc fun)) $$ pprFunBind matches $$ ifPprDebug (ppr wrap) ppr_monobind (PatSynBind psb) = ppr psb ppr_monobind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dictvars , abs_exports = exports, abs_binds = val_binds , abs_ev_binds = ev_binds }) = sdocWithDynFlags $ \ dflags -> if gopt Opt_PrintTypecheckerElaboration dflags then -- Show extra information (bug number: #10662) hang (text "AbsBinds" <+> brackets (interpp'SP tyvars) <+> brackets (interpp'SP dictvars)) 2 $ braces $ vcat [ text "Exports:" <+> brackets (sep (punctuate comma (map ppr exports))) , text "Exported types:" <+> vcat [pprBndr LetBind (abe_poly ex) | ex <- exports] , text "Binds:" <+> pprLHsBinds val_binds , text "Evidence:" <+> ppr ev_binds ] else pprLHsBinds val_binds ppr_monobind (AbsBindsSig { abs_tvs = tyvars , abs_ev_vars = dictvars , abs_sig_export = poly_id , abs_sig_ev_bind = ev_bind , abs_sig_bind = bind }) = sdocWithDynFlags $ \ dflags -> if gopt Opt_PrintTypecheckerElaboration dflags then hang (text "AbsBindsSig" <+> brackets (interpp'SP tyvars) <+> brackets (interpp'SP dictvars)) 2 $ braces $ vcat [ text "Exported type:" <+> pprBndr LetBind poly_id , text "Bind:" <+> ppr bind , text "Evidence:" <+> ppr ev_bind ] else ppr bind instance (OutputableBndr id) => Outputable (ABExport id) where ppr (ABE { abe_wrap = wrap, abe_poly = gbl, abe_mono = lcl, abe_prags = prags }) = vcat [ ppr gbl <+> text "<=" <+> ppr lcl , nest 2 (pprTcSpecPrags prags) , nest 2 (text "wrap:" <+> ppr wrap)] instance (OutputableBndr idL, OutputableBndrId idR) => Outputable (PatSynBind idL idR) where ppr (PSB{ psb_id = (L _ psyn), psb_args = details, psb_def = pat, psb_dir = dir }) = ppr_lhs <+> ppr_rhs where ppr_lhs = text "pattern" <+> ppr_details ppr_simple syntax = syntax <+> ppr pat ppr_details = case details of InfixPatSyn v1 v2 -> hsep [ppr v1, pprInfixOcc psyn, ppr v2] PrefixPatSyn vs -> hsep (pprPrefixOcc psyn : map ppr vs) RecordPatSyn vs -> pprPrefixOcc psyn <> braces (sep (punctuate comma (map ppr vs))) ppr_rhs = case dir of Unidirectional -> ppr_simple (text "<-") ImplicitBidirectional -> ppr_simple equals ExplicitBidirectional mg -> ppr_simple (text "<-") <+> ptext (sLit "where") $$ (nest 2 $ pprFunBind mg) pprTicks :: SDoc -> SDoc -> SDoc -- Print stuff about ticks only when -dppr-debug is on, to avoid -- them appearing in error messages (from the desugarer); see Trac # 3263 -- Also print ticks in dumpStyle, so that -ddump-hpc actually does -- something useful. pprTicks pp_no_debug pp_when_debug = getPprStyle (\ sty -> if debugStyle sty || dumpStyle sty then pp_when_debug else pp_no_debug) {- ************************************************************************ * * Implicit parameter bindings * * ************************************************************************ -} -- | Haskell Implicit Parameter Bindings data HsIPBinds id = IPBinds [LIPBind id] TcEvBinds -- Only in typechecker output; binds -- uses of the implicit parameters deriving instance (DataId id) => Data (HsIPBinds id) isEmptyIPBinds :: HsIPBinds id -> Bool isEmptyIPBinds (IPBinds is ds) = null is && isEmptyTcEvBinds ds -- | Located Implicit Parameter Binding type LIPBind id = Located (IPBind id) -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnSemi' when in a -- list -- For details on above see note [Api annotations] in ApiAnnotation -- | Implicit parameter bindings. -- -- These bindings start off as (Left "x") in the parser and stay -- that way until after type-checking when they are replaced with -- (Right d), where "d" is the name of the dictionary holding the -- evidence for the implicit parameter. -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnEqual' -- For details on above see note [Api annotations] in ApiAnnotation data IPBind id = IPBind (Either (Located HsIPName) id) (LHsExpr id) deriving instance (DataId name) => Data (IPBind name) instance (OutputableBndrId id ) => Outputable (HsIPBinds id) where ppr (IPBinds bs ds) = pprDeeperList vcat (map ppr bs) $$ ifPprDebug (ppr ds) instance (OutputableBndrId id ) => Outputable (IPBind id) where ppr (IPBind lr rhs) = name <+> equals <+> pprExpr (unLoc rhs) where name = case lr of Left (L _ ip) -> pprBndr LetBind ip Right id -> pprBndr LetBind id {- ************************************************************************ * * \subsection{@Sig@: type signatures and value-modifying user pragmas} * * ************************************************************************ It is convenient to lump ``value-modifying'' user-pragmas (e.g., ``specialise this function to these four types...'') in with type signatures. Then all the machinery to move them into place, etc., serves for both. -} -- | Located Signature type LSig name = Located (Sig name) -- | Signatures and pragmas data Sig name = -- | An ordinary type signature -- -- > f :: Num a => a -> a -- -- After renaming, this list of Names contains the named and unnamed -- wildcards brought into scope by this signature. For a signature -- @_ -> _a -> Bool@, the renamer will give the unnamed wildcard @_@ -- a freshly generated name, e.g. @_w@. @_w@ and the named wildcard @_a@ -- are then both replaced with fresh meta vars in the type. Their names -- are stored in the type signature that brought them into scope, in -- this third field to be more specific. -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon', -- 'ApiAnnotation.AnnComma' -- For details on above see note [Api annotations] in ApiAnnotation TypeSig [Located name] -- LHS of the signature; e.g. f,g,h :: blah (LHsSigWcType name) -- RHS of the signature; can have wildcards -- | A pattern synonym type signature -- -- > pattern Single :: () => (Show a) => a -> [a] -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnPattern', -- 'ApiAnnotation.AnnDcolon','ApiAnnotation.AnnForall' -- 'ApiAnnotation.AnnDot','ApiAnnotation.AnnDarrow' -- For details on above see note [Api annotations] in ApiAnnotation | PatSynSig [Located name] (LHsSigType name) -- P :: forall a b. Req => Prov => ty -- | A signature for a class method -- False: ordinary class-method signature -- True: generic-default class method signature -- e.g. class C a where -- op :: a -> a -- Ordinary -- default op :: Eq a => a -> a -- Generic default -- No wildcards allowed here -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDefault', -- 'ApiAnnotation.AnnDcolon' | ClassOpSig Bool [Located name] (LHsSigType name) -- | A type signature in generated code, notably the code -- generated for record selectors. We simply record -- the desired Id itself, replete with its name, type -- and IdDetails. Otherwise it's just like a type -- signature: there should be an accompanying binding | IdSig Id -- | An ordinary fixity declaration -- -- > infixl 8 *** -- -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnInfix', -- 'ApiAnnotation.AnnVal' -- For details on above see note [Api annotations] in ApiAnnotation | FixSig (FixitySig name) -- | An inline pragma -- -- > {#- INLINE f #-} -- -- - 'ApiAnnotation.AnnKeywordId' : -- 'ApiAnnotation.AnnOpen' @'{-\# INLINE'@ and @'['@, -- 'ApiAnnotation.AnnClose','ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnVal','ApiAnnotation.AnnTilde', -- 'ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation | InlineSig (Located name) -- Function name InlinePragma -- Never defaultInlinePragma -- | A specialisation pragma -- -- > {-# SPECIALISE f :: Int -> Int #-} -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnOpen' @'{-\# SPECIALISE'@ and @'['@, -- 'ApiAnnotation.AnnTilde', -- 'ApiAnnotation.AnnVal', -- 'ApiAnnotation.AnnClose' @']'@ and @'\#-}'@, -- 'ApiAnnotation.AnnDcolon' -- For details on above see note [Api annotations] in ApiAnnotation | SpecSig (Located name) -- Specialise a function or datatype ... [LHsSigType name] -- ... to these types InlinePragma -- The pragma on SPECIALISE_INLINE form. -- If it's just defaultInlinePragma, then we said -- SPECIALISE, not SPECIALISE_INLINE -- | A specialisation pragma for instance declarations only -- -- > {-# SPECIALISE instance Eq [Int] #-} -- -- (Class tys); should be a specialisation of the -- current instance declaration -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnInstance','ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation | SpecInstSig SourceText (LHsSigType name) -- Note [Pragma source text] in BasicTypes -- | A minimal complete definition pragma -- -- > {-# MINIMAL a | (b, c | (d | e)) #-} -- -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen', -- 'ApiAnnotation.AnnVbar','ApiAnnotation.AnnComma', -- 'ApiAnnotation.AnnClose' -- For details on above see note [Api annotations] in ApiAnnotation | MinimalSig SourceText (LBooleanFormula (Located name)) -- Note [Pragma source text] in BasicTypes -- | A "set cost centre" pragma for declarations -- -- > {-# SCC funName #-} -- -- or -- -- > {-# SCC funName "cost_centre_name" #-} | SCCFunSig SourceText -- Note [Pragma source text] in BasicTypes (Located name) -- Function name (Maybe (Located StringLiteral)) -- | A complete match pragma -- -- > {-# COMPLETE C, D [:: T] #-} -- -- Used to inform the pattern match checker about additional -- complete matchings which, for example, arise from pattern -- synonym definitions. | CompleteMatchSig SourceText (Located [Located name]) (Maybe (Located name)) deriving instance (DataId name) => Data (Sig name) -- | Located Fixity Signature type LFixitySig name = Located (FixitySig name) -- | Fixity Signature data FixitySig name = FixitySig [Located name] Fixity deriving Data -- | Type checker Specialisation Pragmas -- -- 'TcSpecPrags' conveys @SPECIALISE@ pragmas from the type checker to the desugarer data TcSpecPrags = IsDefaultMethod -- ^ Super-specialised: a default method should -- be macro-expanded at every call site | SpecPrags [LTcSpecPrag] deriving Data -- | Located Type checker Specification Pragmas type LTcSpecPrag = Located TcSpecPrag -- | Type checker Specification Pragma data TcSpecPrag = SpecPrag Id HsWrapper InlinePragma -- ^ The Id to be specialised, an wrapper that specialises the -- polymorphic function, and inlining spec for the specialised function deriving Data noSpecPrags :: TcSpecPrags noSpecPrags = SpecPrags [] hasSpecPrags :: TcSpecPrags -> Bool hasSpecPrags (SpecPrags ps) = not (null ps) hasSpecPrags IsDefaultMethod = False isDefaultMethod :: TcSpecPrags -> Bool isDefaultMethod IsDefaultMethod = True isDefaultMethod (SpecPrags {}) = False isFixityLSig :: LSig name -> Bool isFixityLSig (L _ (FixSig {})) = True isFixityLSig _ = False isTypeLSig :: LSig name -> Bool -- Type signatures isTypeLSig (L _(TypeSig {})) = True isTypeLSig (L _(ClassOpSig {})) = True isTypeLSig (L _(IdSig {})) = True isTypeLSig _ = False isSpecLSig :: LSig name -> Bool isSpecLSig (L _(SpecSig {})) = True isSpecLSig _ = False isSpecInstLSig :: LSig name -> Bool isSpecInstLSig (L _ (SpecInstSig {})) = True isSpecInstLSig _ = False isPragLSig :: LSig name -> Bool -- Identifies pragmas isPragLSig (L _ (SpecSig {})) = True isPragLSig (L _ (InlineSig {})) = True isPragLSig (L _ (SCCFunSig {})) = True isPragLSig (L _ (CompleteMatchSig {})) = True isPragLSig _ = False isInlineLSig :: LSig name -> Bool -- Identifies inline pragmas isInlineLSig (L _ (InlineSig {})) = True isInlineLSig _ = False isMinimalLSig :: LSig name -> Bool isMinimalLSig (L _ (MinimalSig {})) = True isMinimalLSig _ = False isSCCFunSig :: LSig name -> Bool isSCCFunSig (L _ (SCCFunSig {})) = True isSCCFunSig _ = False isCompleteMatchSig :: LSig name -> Bool isCompleteMatchSig (L _ (CompleteMatchSig {} )) = True isCompleteMatchSig _ = False hsSigDoc :: Sig name -> SDoc hsSigDoc (TypeSig {}) = text "type signature" hsSigDoc (PatSynSig {}) = text "pattern synonym signature" hsSigDoc (ClassOpSig is_deflt _ _) | is_deflt = text "default type signature" | otherwise = text "class method signature" hsSigDoc (IdSig {}) = text "id signature" hsSigDoc (SpecSig {}) = text "SPECIALISE pragma" hsSigDoc (InlineSig _ prag) = ppr (inlinePragmaSpec prag) <+> text "pragma" hsSigDoc (SpecInstSig {}) = text "SPECIALISE instance pragma" hsSigDoc (FixSig {}) = text "fixity declaration" hsSigDoc (MinimalSig {}) = text "MINIMAL pragma" hsSigDoc (SCCFunSig {}) = text "SCC pragma" hsSigDoc (CompleteMatchSig {}) = text "COMPLETE pragma" {- Check if signatures overlap; this is used when checking for duplicate signatures. Since some of the signatures contain a list of names, testing for equality is not enough -- we have to check if they overlap. -} instance (OutputableBndrId name ) => Outputable (Sig name) where ppr sig = ppr_sig sig ppr_sig :: (OutputableBndrId name ) => Sig name -> SDoc ppr_sig (TypeSig vars ty) = pprVarSig (map unLoc vars) (ppr ty) ppr_sig (ClassOpSig is_deflt vars ty) | is_deflt = text "default" <+> pprVarSig (map unLoc vars) (ppr ty) | otherwise = pprVarSig (map unLoc vars) (ppr ty) ppr_sig (IdSig id) = pprVarSig [id] (ppr (varType id)) ppr_sig (FixSig fix_sig) = ppr fix_sig ppr_sig (SpecSig var ty inl@(InlinePragma { inl_inline = spec })) = pragSrcBrackets (inl_src inl) pragmaSrc (pprSpec (unLoc var) (interpp'SP ty) inl) where pragmaSrc = case spec of EmptyInlineSpec -> "{-# SPECIALISE" _ -> "{-# SPECIALISE_INLINE" ppr_sig (InlineSig var inl) = pragSrcBrackets (inl_src inl) "{-# INLINE" (pprInline inl <+> pprPrefixOcc (unLoc var)) ppr_sig (SpecInstSig src ty) = pragSrcBrackets src "{-# SPECIALISE" (text "instance" <+> ppr ty) ppr_sig (MinimalSig src bf) = pragSrcBrackets src "{-# MINIMAL" (pprMinimalSig bf) ppr_sig (PatSynSig names sig_ty) = text "pattern" <+> pprVarSig (map unLoc names) (ppr sig_ty) ppr_sig (SCCFunSig src fn mlabel) = pragSrcBrackets src "{-# SCC" (ppr fn <+> maybe empty ppr mlabel ) ppr_sig (CompleteMatchSig src cs mty) = pragSrcBrackets src "{-# COMPLETE" ((hsep (punctuate comma (map ppr (unLoc cs)))) <+> opt_sig) where opt_sig = maybe empty ((\t -> dcolon <+> ppr t) . unLoc) mty instance OutputableBndr name => Outputable (FixitySig name) where ppr (FixitySig names fixity) = sep [ppr fixity, pprops] where pprops = hsep $ punctuate comma (map (pprInfixOcc . unLoc) names) pragBrackets :: SDoc -> SDoc pragBrackets doc = text "{-#" <+> doc <+> text "#-}" -- | Using SourceText in case the pragma was spelled differently or used mixed -- case pragSrcBrackets :: SourceText -> String -> SDoc -> SDoc pragSrcBrackets (SourceText src) _ doc = text src <+> doc <+> text "#-}" pragSrcBrackets NoSourceText alt doc = text alt <+> doc <+> text "#-}" pprVarSig :: (OutputableBndr id) => [id] -> SDoc -> SDoc pprVarSig vars pp_ty = sep [pprvars <+> dcolon, nest 2 pp_ty] where pprvars = hsep $ punctuate comma (map pprPrefixOcc vars) pprSpec :: (OutputableBndr id) => id -> SDoc -> InlinePragma -> SDoc pprSpec var pp_ty inl = pp_inl <+> pprVarSig [var] pp_ty where pp_inl | isDefaultInlinePragma inl = empty | otherwise = pprInline inl pprTcSpecPrags :: TcSpecPrags -> SDoc pprTcSpecPrags IsDefaultMethod = text "<default method>" pprTcSpecPrags (SpecPrags ps) = vcat (map (ppr . unLoc) ps) instance Outputable TcSpecPrag where ppr (SpecPrag var _ inl) = text "SPECIALIZE" <+> pprSpec var (text "<type>") inl pprMinimalSig :: (OutputableBndr name) => LBooleanFormula (Located name) -> SDoc pprMinimalSig (L _ bf) = ppr (fmap unLoc bf) {- ************************************************************************ * * \subsection[PatSynBind]{A pattern synonym definition} * * ************************************************************************ -} -- | Haskell Pattern Synonym Details data HsPatSynDetails a = InfixPatSyn a a -- ^ Infix Pattern Synonym | PrefixPatSyn [a] -- ^ Prefix Pattern Synonym | RecordPatSyn [RecordPatSynField a] -- ^ Record Pattern Synonym deriving Data -- See Note [Record PatSyn Fields] -- | Record Pattern Synonym Field data RecordPatSynField a = RecordPatSynField { recordPatSynSelectorId :: a -- Selector name visible in rest of the file , recordPatSynPatVar :: a -- Filled in by renamer, the name used internally -- by the pattern } deriving Data {- Note [Record PatSyn Fields] Consider the following two pattern synonyms. pattern P x y = ([x,True], [y,'v']) pattern Q{ x, y } =([x,True], [y,'v']) In P, we just have two local binders, x and y. In Q, we have local binders but also top-level record selectors x :: ([Bool], [Char]) -> Bool and similarly for y. It would make sense to support record-like syntax pattern Q{ x=x1, y=y1 } = ([x1,True], [y1,'v']) when we have a different name for the local and top-level binder the distinction between the two names clear -} instance Functor RecordPatSynField where fmap f (RecordPatSynField { recordPatSynSelectorId = visible , recordPatSynPatVar = hidden }) = RecordPatSynField { recordPatSynSelectorId = f visible , recordPatSynPatVar = f hidden } instance Outputable a => Outputable (RecordPatSynField a) where ppr (RecordPatSynField { recordPatSynSelectorId = v }) = ppr v instance Foldable RecordPatSynField where foldMap f (RecordPatSynField { recordPatSynSelectorId = visible , recordPatSynPatVar = hidden }) = f visible `mappend` f hidden instance Traversable RecordPatSynField where traverse f (RecordPatSynField { recordPatSynSelectorId =visible , recordPatSynPatVar = hidden }) = (\ sel_id pat_var -> RecordPatSynField { recordPatSynSelectorId = sel_id , recordPatSynPatVar = pat_var }) <$> f visible <*> f hidden instance Functor HsPatSynDetails where fmap f (InfixPatSyn left right) = InfixPatSyn (f left) (f right) fmap f (PrefixPatSyn args) = PrefixPatSyn (fmap f args) fmap f (RecordPatSyn args) = RecordPatSyn (map (fmap f) args) instance Foldable HsPatSynDetails where foldMap f (InfixPatSyn left right) = f left `mappend` f right foldMap f (PrefixPatSyn args) = foldMap f args foldMap f (RecordPatSyn args) = foldMap (foldMap f) args foldl1 f (InfixPatSyn left right) = left `f` right foldl1 f (PrefixPatSyn args) = Data.List.foldl1 f args foldl1 f (RecordPatSyn args) = Data.List.foldl1 f (map (Data.Foldable.foldl1 f) args) foldr1 f (InfixPatSyn left right) = left `f` right foldr1 f (PrefixPatSyn args) = Data.List.foldr1 f args foldr1 f (RecordPatSyn args) = Data.List.foldr1 f (map (Data.Foldable.foldr1 f) args) length (InfixPatSyn _ _) = 2 length (PrefixPatSyn args) = Data.List.length args length (RecordPatSyn args) = Data.List.length args null (InfixPatSyn _ _) = False null (PrefixPatSyn args) = Data.List.null args null (RecordPatSyn args) = Data.List.null args toList (InfixPatSyn left right) = [left, right] toList (PrefixPatSyn args) = args toList (RecordPatSyn args) = foldMap toList args instance Traversable HsPatSynDetails where traverse f (InfixPatSyn left right) = InfixPatSyn <$> f left <*> f right traverse f (PrefixPatSyn args) = PrefixPatSyn <$> traverse f args traverse f (RecordPatSyn args) = RecordPatSyn <$> traverse (traverse f) args -- | Haskell Pattern Synonym Direction data HsPatSynDir id = Unidirectional | ImplicitBidirectional | ExplicitBidirectional (MatchGroup id (LHsExpr id)) deriving instance (DataId id) => Data (HsPatSynDir id)