{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE CPP, TupleSections, ViewPatterns #-} module TcValidity ( Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType, ContextKind(..), expectedKindInCtxt, checkValidTheta, checkValidFamPats, checkValidInstance, validDerivPred, checkInstTermination, checkTySynRhs, ClsInstInfo, checkValidCoAxiom, checkValidCoAxBranch, checkValidTyFamEqn, arityErr, badATErr, checkValidTelescope, checkZonkValidTelescope, checkValidInferredKinds, allDistinctTyVars ) where #include "HsVersions.h" import GhcPrelude import Maybes -- friends: import TcUnify ( tcSubType_NC ) import TcSimplify ( simplifyAmbiguityCheck ) import TyCoRep import TcType hiding ( sizeType, sizeTypes ) import TcMType import PrelNames import Type import Coercion import Kind import CoAxiom import Class import TyCon -- others: import HsSyn -- HsType import TcRnMonad -- TcType, amongst others import TcEnv ( tcGetInstEnvs, tcInitTidyEnv, tcInitOpenTidyEnv ) import FunDeps import InstEnv ( InstMatch, lookupInstEnv ) import FamInstEnv ( isDominatedBy, injectiveBranches, InjectivityCheckResult(..) ) import FamInst ( makeInjectivityErrors ) import Name import VarEnv import VarSet import UniqSet import Var ( TyVarBndr(..), mkTyVar ) import ErrUtils import DynFlags import Util import ListSetOps import SrcLoc import Outputable import Module import Unique ( mkAlphaTyVarUnique ) import qualified GHC.LanguageExtensions as LangExt import Control.Monad import Data.List ( (\\) ) import qualified Data.List.NonEmpty as NE {- ************************************************************************ * * Checking for ambiguity * * ************************************************************************ Note [The ambiguity check for type signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ checkAmbiguity is a check on *user-supplied type signatures*. It is *purely* there to report functions that cannot possibly be called. So for example we want to reject: f :: C a => Int The idea is there can be no legal calls to 'f' because every call will give rise to an ambiguous constraint. We could soundly omit the ambiguity check on type signatures entirely, at the expense of delaying ambiguity errors to call sites. Indeed, the flag -XAllowAmbiguousTypes switches off the ambiguity check. What about things like this: class D a b | a -> b where .. h :: D Int b => Int The Int may well fix 'b' at the call site, so that signature should not be rejected. Moreover, using *visible* fundeps is too conservative. Consider class X a b where ... class D a b | a -> b where ... instance D a b => X [a] b where... h :: X a b => a -> a Here h's type looks ambiguous in 'b', but here's a legal call: ...(h [True])... That gives rise to a (X [Bool] beta) constraint, and using the instance means we need (D Bool beta) and that fixes 'beta' via D's fundep! Behind all these special cases there is a simple guiding principle. Consider f :: <type> f = ...blah... g :: <type> g = f You would think that the definition of g would surely typecheck! After all f has exactly the same type, and g=f. But in fact f's type is instantiated and the instantiated constraints are solved against the originals, so in the case an ambiguous type it won't work. Consider our earlier example f :: C a => Int. Then in g's definition, we'll instantiate to (C alpha) and try to deduce (C alpha) from (C a), and fail. So in fact we use this as our *definition* of ambiguity. We use a very similar test for *inferred* types, to ensure that they are unambiguous. See Note [Impedance matching] in TcBinds. This test is very conveniently implemented by calling tcSubType <type> <type> This neatly takes account of the functional dependecy stuff above, and implicit parameter (see Note [Implicit parameters and ambiguity]). And this is what checkAmbiguity does. What about this, though? g :: C [a] => Int Is every call to 'g' ambiguous? After all, we might have instance C [a] where ... at the call site. So maybe that type is ok! Indeed even f's quintessentially ambiguous type might, just possibly be callable: with -XFlexibleInstances we could have instance C a where ... and now a call could be legal after all! Well, we'll reject this unless the instance is available *here*. Note [When to call checkAmbiguity] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We call checkAmbiguity (a) on user-specified type signatures (b) in checkValidType Conncerning (b), you might wonder about nested foralls. What about f :: forall b. (forall a. Eq a => b) -> b The nested forall is ambiguous. Originally we called checkAmbiguity in the forall case of check_type, but that had two bad consequences: * We got two error messages about (Eq b) in a nested forall like this: g :: forall a. Eq a => forall b. Eq b => a -> a * If we try to check for ambiguity of a nested forall like (forall a. Eq a => b), the implication constraint doesn't bind all the skolems, which results in "No skolem info" in error messages (see Trac #10432). To avoid this, we call checkAmbiguity once, at the top, in checkValidType. (I'm still a bit worried about unbound skolems when the type mentions in-scope type variables.) In fact, because of the co/contra-variance implemented in tcSubType, this *does* catch function f above. too. Concerning (a) the ambiguity check is only used for *user* types, not for types coming from inteface files. The latter can legitimately have ambiguous types. Example class S a where s :: a -> (Int,Int) instance S Char where s _ = (1,1) f:: S a => [a] -> Int -> (Int,Int) f (_::[a]) x = (a*x,b) where (a,b) = s (undefined::a) Here the worker for f gets the type fw :: forall a. S a => Int -> (# Int, Int #) Note [Implicit parameters and ambiguity] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Only a *class* predicate can give rise to ambiguity An *implicit parameter* cannot. For example: foo :: (?x :: [a]) => Int foo = length ?x is fine. The call site will supply a particular 'x' Furthermore, the type variables fixed by an implicit parameter propagate to the others. E.g. foo :: (Show a, ?x::[a]) => Int foo = show (?x++?x) The type of foo looks ambiguous. But it isn't, because at a call site we might have let ?x = 5::Int in foo and all is well. In effect, implicit parameters are, well, parameters, so we can take their type variables into account as part of the "tau-tvs" stuff. This is done in the function 'FunDeps.grow'. -} checkAmbiguity :: UserTypeCtxt -> Type -> TcM () checkAmbiguity ctxt ty | wantAmbiguityCheck ctxt = do { traceTc "Ambiguity check for" (ppr ty) -- Solve the constraints eagerly because an ambiguous type -- can cause a cascade of further errors. Since the free -- tyvars are skolemised, we can safely use tcSimplifyTop ; allow_ambiguous <- xoptM LangExt.AllowAmbiguousTypes ; (_wrap, wanted) <- addErrCtxt (mk_msg allow_ambiguous) $ captureConstraints $ tcSubType_NC ctxt ty ty ; simplifyAmbiguityCheck ty wanted ; traceTc "Done ambiguity check for" (ppr ty) } | otherwise = return () where mk_msg allow_ambiguous = vcat [ text "In the ambiguity check for" <+> what , ppUnless allow_ambiguous ambig_msg ] ambig_msg = text "To defer the ambiguity check to use sites, enable AllowAmbiguousTypes" what | Just n <- isSigMaybe ctxt = quotes (ppr n) | otherwise = pprUserTypeCtxt ctxt wantAmbiguityCheck :: UserTypeCtxt -> Bool wantAmbiguityCheck ctxt = case ctxt of -- See Note [When we don't check for ambiguity] GhciCtxt -> False TySynCtxt {} -> False TypeAppCtxt -> False _ -> True checkUserTypeError :: Type -> TcM () -- Check to see if the type signature mentions "TypeError blah" -- anywhere in it, and fail if so. -- -- Very unsatisfactorily (Trac #11144) we need to tidy the type -- because it may have come from an /inferred/ signature, not a -- user-supplied one. This is really only a half-baked fix; -- the other errors in checkValidType don't do tidying, and so -- may give bad error messages when given an inferred type. checkUserTypeError = check where check ty | Just msg <- userTypeError_maybe ty = fail_with msg | Just (_,ts) <- splitTyConApp_maybe ty = mapM_ check ts | Just (t1,t2) <- splitAppTy_maybe ty = check t1 >> check t2 | Just (_,t1) <- splitForAllTy_maybe ty = check t1 | otherwise = return () fail_with msg = do { env0 <- tcInitTidyEnv ; let (env1, tidy_msg) = tidyOpenType env0 msg ; failWithTcM (env1, pprUserTypeErrorTy tidy_msg) } {- Note [When we don't check for ambiguity] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a few places we do not want to check a user-specified type for ambiguity * GhciCtxt: Allow ambiguous types in GHCi's :kind command E.g. type family T a :: * -- T :: forall k. k -> * Then :k T should work in GHCi, not complain that (T k) is ambiguous! * TySynCtxt: type T a b = C a b => blah It may be that when we /use/ T, we'll give an 'a' or 'b' that somehow cure the ambiguity. So we defer the ambiguity check to the use site. There is also an implementation reason (Trac #11608). In the RHS of a type synonym we don't (currently) instantiate 'a' and 'b' with TcTyVars before calling checkValidType, so we get asertion failures from doing an ambiguity check on a type with TyVars in it. Fixing this would not be hard, but let's wait till there's a reason. * TypeAppCtxt: visible type application f @ty No need to check ty for ambiguity ************************************************************************ * * Checking validity of a user-defined type * * ************************************************************************ When dealing with a user-written type, we first translate it from an HsType to a Type, performing kind checking, and then check various things that should be true about it. We don't want to perform these checks at the same time as the initial translation because (a) they are unnecessary for interface-file types and (b) when checking a mutually recursive group of type and class decls, we can't "look" at the tycons/classes yet. Also, the checks are rather diverse, and used to really mess up the other code. One thing we check for is 'rank'. Rank 0: monotypes (no foralls) Rank 1: foralls at the front only, Rank 0 inside Rank 2: foralls at the front, Rank 1 on left of fn arrow, basic ::= tyvar | T basic ... basic r2 ::= forall tvs. cxt => r2a r2a ::= r1 -> r2a | basic r1 ::= forall tvs. cxt => r0 r0 ::= r0 -> r0 | basic Another thing is to check that type synonyms are saturated. This might not necessarily show up in kind checking. type A i = i data T k = MkT (k Int) f :: T A -- BAD! -} checkValidType :: UserTypeCtxt -> Type -> TcM () -- Checks that a user-written type is valid for the given context -- Assumes argument is fully zonked -- Not used for instance decls; checkValidInstance instead checkValidType ctxt ty = do { traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (typeKind ty)) ; rankn_flag <- xoptM LangExt.RankNTypes ; impred_flag <- xoptM LangExt.ImpredicativeTypes ; let gen_rank :: Rank -> Rank gen_rank r | rankn_flag = ArbitraryRank | otherwise = r rank1 = gen_rank r1 rank0 = gen_rank r0 r0 = rankZeroMonoType r1 = LimitedRank True r0 rank = case ctxt of DefaultDeclCtxt-> MustBeMonoType ResSigCtxt -> MustBeMonoType PatSigCtxt -> rank0 RuleSigCtxt _ -> rank1 TySynCtxt _ -> rank0 ExprSigCtxt -> rank1 TypeAppCtxt | impred_flag -> ArbitraryRank | otherwise -> tyConArgMonoType -- Normally, ImpredicativeTypes is handled in check_arg_type, -- but visible type applications don't go through there. -- So we do this check here. FunSigCtxt {} -> rank1 InfSigCtxt _ -> ArbitraryRank -- Inferred type ConArgCtxt _ -> rank1 -- We are given the type of the entire -- constructor, hence rank 1 PatSynCtxt _ -> rank1 ForSigCtxt _ -> rank1 SpecInstCtxt -> rank1 ThBrackCtxt -> rank1 GhciCtxt -> ArbitraryRank _ -> panic "checkValidType" -- Can't happen; not used for *user* sigs ; env <- tcInitOpenTidyEnv (tyCoVarsOfTypeList ty) -- Check the internal validity of the type itself ; check_type env ctxt rank ty ; checkUserTypeError ty -- Check for ambiguous types. See Note [When to call checkAmbiguity] -- NB: this will happen even for monotypes, but that should be cheap; -- and there may be nested foralls for the subtype test to examine ; checkAmbiguity ctxt ty ; traceTc "checkValidType done" (ppr ty <+> text "::" <+> ppr (typeKind ty)) } checkValidMonoType :: Type -> TcM () -- Assumes argument is fully zonked checkValidMonoType ty = do { env <- tcInitOpenTidyEnv (tyCoVarsOfTypeList ty) ; check_type env SigmaCtxt MustBeMonoType ty } checkTySynRhs :: UserTypeCtxt -> TcType -> TcM () checkTySynRhs ctxt ty | returnsConstraintKind actual_kind = do { ck <- xoptM LangExt.ConstraintKinds ; if ck then when (isConstraintKind actual_kind) (do { dflags <- getDynFlags ; check_pred_ty emptyTidyEnv dflags ctxt ty }) else addErrTcM (constraintSynErr emptyTidyEnv actual_kind) } | otherwise = return () where actual_kind = typeKind ty -- | The kind expected in a certain context. data ContextKind = TheKind Kind -- ^ a specific kind | AnythingKind -- ^ any kind will do | OpenKind -- ^ something of the form @TYPE _@ -- Depending on the context, we might accept any kind (for instance, in a TH -- splice), or only certain kinds (like in type signatures). expectedKindInCtxt :: UserTypeCtxt -> ContextKind expectedKindInCtxt (TySynCtxt _) = AnythingKind expectedKindInCtxt ThBrackCtxt = AnythingKind expectedKindInCtxt GhciCtxt = AnythingKind -- The types in a 'default' decl can have varying kinds -- See Note [Extended defaults]" in TcEnv expectedKindInCtxt DefaultDeclCtxt = AnythingKind expectedKindInCtxt TypeAppCtxt = AnythingKind expectedKindInCtxt (ForSigCtxt _) = TheKind liftedTypeKind expectedKindInCtxt InstDeclCtxt = TheKind constraintKind expectedKindInCtxt SpecInstCtxt = TheKind constraintKind expectedKindInCtxt _ = OpenKind {- Note [Higher rank types] ~~~~~~~~~~~~~~~~~~~~~~~~ Technically Int -> forall a. a->a is still a rank-1 type, but it's not Haskell 98 (Trac #5957). So the validity checker allow a forall after an arrow only if we allow it before -- that is, with Rank2Types or RankNTypes -} data Rank = ArbitraryRank -- Any rank ok | LimitedRank -- Note [Higher rank types] Bool -- Forall ok at top Rank -- Use for function arguments | MonoType SDoc -- Monotype, with a suggestion of how it could be a polytype | MustBeMonoType -- Monotype regardless of flags rankZeroMonoType, tyConArgMonoType, synArgMonoType, constraintMonoType :: Rank rankZeroMonoType = MonoType (text "Perhaps you intended to use RankNTypes or Rank2Types") tyConArgMonoType = MonoType (text "GHC doesn't yet support impredicative polymorphism") synArgMonoType = MonoType (text "Perhaps you intended to use LiberalTypeSynonyms") constraintMonoType = MonoType (text "A constraint must be a monotype") funArgResRank :: Rank -> (Rank, Rank) -- Function argument and result funArgResRank (LimitedRank _ arg_rank) = (arg_rank, LimitedRank (forAllAllowed arg_rank) arg_rank) funArgResRank other_rank = (other_rank, other_rank) forAllAllowed :: Rank -> Bool forAllAllowed ArbitraryRank = True forAllAllowed (LimitedRank forall_ok _) = forall_ok forAllAllowed _ = False ---------------------------------------- check_type :: TidyEnv -> UserTypeCtxt -> Rank -> Type -> TcM () -- The args say what the *type context* requires, independent -- of *flag* settings. You test the flag settings at usage sites. -- -- Rank is allowed rank for function args -- Rank 0 means no for-alls anywhere check_type env ctxt rank ty | not (null tvs && null theta) = do { traceTc "check_type" (ppr ty $$ ppr (forAllAllowed rank)) ; checkTcM (forAllAllowed rank) (forAllTyErr env rank ty) -- Reject e.g. (Maybe (?x::Int => Int)), -- with a decent error message ; check_valid_theta env' SigmaCtxt theta -- Allow type T = ?x::Int => Int -> Int -- but not type T = ?x::Int ; check_type env' ctxt rank tau -- Allow foralls to right of arrow ; checkTcM (not (any (`elemVarSet` tyCoVarsOfType phi_kind) tvs)) (forAllEscapeErr env' ty tau_kind) } where (tvs, theta, tau) = tcSplitSigmaTy ty tau_kind = typeKind tau (env', _) = tidyTyCoVarBndrs env tvs phi_kind | null theta = tau_kind | otherwise = liftedTypeKind -- If there are any constraints, the kind is *. (#11405) check_type _ _ _ (TyVarTy _) = return () check_type env ctxt rank (FunTy arg_ty res_ty) = do { check_type env ctxt arg_rank arg_ty ; check_type env ctxt res_rank res_ty } where (arg_rank, res_rank) = funArgResRank rank check_type env ctxt rank (AppTy ty1 ty2) = do { check_arg_type env ctxt rank ty1 ; check_arg_type env ctxt rank ty2 } check_type env ctxt rank ty@(TyConApp tc tys) | isTypeSynonymTyCon tc || isTypeFamilyTyCon tc = check_syn_tc_app env ctxt rank ty tc tys | isUnboxedTupleTyCon tc = check_ubx_tuple env ctxt ty tys | otherwise = mapM_ (check_arg_type env ctxt rank) tys check_type _ _ _ (LitTy {}) = return () check_type env ctxt rank (CastTy ty _) = check_type env ctxt rank ty check_type _ _ _ ty = pprPanic "check_type" (ppr ty) ---------------------------------------- check_syn_tc_app :: TidyEnv -> UserTypeCtxt -> Rank -> KindOrType -> TyCon -> [KindOrType] -> TcM () -- Used for type synonyms and type synonym families, -- which must be saturated, -- but not data families, which need not be saturated check_syn_tc_app env ctxt rank ty tc tys | tys `lengthAtLeast` tc_arity -- Saturated -- Check that the synonym has enough args -- This applies equally to open and closed synonyms -- It's OK to have an *over-applied* type synonym -- data Tree a b = ... -- type Foo a = Tree [a] -- f :: Foo a b -> ... = do { -- See Note [Liberal type synonyms] ; liberal <- xoptM LangExt.LiberalTypeSynonyms ; if not liberal || isTypeFamilyTyCon tc then -- For H98 and synonym families, do check the type args mapM_ check_arg tys else -- In the liberal case (only for closed syns), expand then check case tcView ty of Just ty' -> check_type env ctxt rank ty' Nothing -> pprPanic "check_tau_type" (ppr ty) } | GhciCtxt <- ctxt -- Accept under-saturated type synonyms in -- GHCi :kind commands; see Trac #7586 = mapM_ check_arg tys | otherwise = failWithTc (tyConArityErr tc tys) where tc_arity = tyConArity tc check_arg | isTypeFamilyTyCon tc = check_arg_type env ctxt rank | otherwise = check_type env ctxt synArgMonoType ---------------------------------------- check_ubx_tuple :: TidyEnv -> UserTypeCtxt -> KindOrType -> [KindOrType] -> TcM () check_ubx_tuple env ctxt ty tys = do { ub_tuples_allowed <- xoptM LangExt.UnboxedTuples ; checkTcM ub_tuples_allowed (ubxArgTyErr env ty) ; impred <- xoptM LangExt.ImpredicativeTypes ; let rank' = if impred then ArbitraryRank else tyConArgMonoType -- c.f. check_arg_type -- However, args are allowed to be unlifted, or -- more unboxed tuples, so can't use check_arg_ty ; mapM_ (check_type env ctxt rank') tys } ---------------------------------------- check_arg_type :: TidyEnv -> UserTypeCtxt -> Rank -> KindOrType -> TcM () -- The sort of type that can instantiate a type variable, -- or be the argument of a type constructor. -- Not an unboxed tuple, but now *can* be a forall (since impredicativity) -- Other unboxed types are very occasionally allowed as type -- arguments depending on the kind of the type constructor -- -- For example, we want to reject things like: -- -- instance Ord a => Ord (forall s. T s a) -- and -- g :: T s (forall b.b) -- -- NB: unboxed tuples can have polymorphic or unboxed args. -- This happens in the workers for functions returning -- product types with polymorphic components. -- But not in user code. -- Anyway, they are dealt with by a special case in check_tau_type check_arg_type _ _ _ (CoercionTy {}) = return () check_arg_type env ctxt rank ty = do { impred <- xoptM LangExt.ImpredicativeTypes ; let rank' = case rank of -- Predictive => must be monotype MustBeMonoType -> MustBeMonoType -- Monotype, regardless _other | impred -> ArbitraryRank | otherwise -> tyConArgMonoType -- Make sure that MustBeMonoType is propagated, -- so that we don't suggest -XImpredicativeTypes in -- (Ord (forall a.a)) => a -> a -- and so that if it Must be a monotype, we check that it is! ; check_type env ctxt rank' ty } ---------------------------------------- forAllTyErr :: TidyEnv -> Rank -> Type -> (TidyEnv, SDoc) forAllTyErr env rank ty = ( env , vcat [ hang herald 2 (ppr_tidy env ty) , suggestion ] ) where (tvs, _theta, _tau) = tcSplitSigmaTy ty herald | null tvs = text "Illegal qualified type:" | otherwise = text "Illegal polymorphic type:" suggestion = case rank of LimitedRank {} -> text "Perhaps you intended to use RankNTypes or Rank2Types" MonoType d -> d _ -> Outputable.empty -- Polytype is always illegal forAllEscapeErr :: TidyEnv -> Type -> Kind -> (TidyEnv, SDoc) forAllEscapeErr env ty tau_kind = ( env , hang (vcat [ text "Quantified type's kind mentions quantified type variable" , text "(skolem escape)" ]) 2 (vcat [ text " type:" <+> ppr_tidy env ty , text "of kind:" <+> ppr_tidy env tau_kind ]) ) ubxArgTyErr :: TidyEnv -> Type -> (TidyEnv, SDoc) ubxArgTyErr env ty = (env, sep [text "Illegal unboxed tuple type as function argument:", ppr_tidy env ty]) {- Note [Liberal type synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If -XLiberalTypeSynonyms is on, expand closed type synonyms *before* doing validity checking. This allows us to instantiate a synonym defn with a for-all type, or with a partially-applied type synonym. e.g. type T a b = a type S m = m () f :: S (T Int) Here, T is partially applied, so it's illegal in H98. But if you expand S first, then T we get just f :: Int which is fine. IMPORTANT: suppose T is a type synonym. Then we must do validity checking on an appliation (T ty1 ty2) *either* before expansion (i.e. check ty1, ty2) *or* after expansion (i.e. expand T ty1 ty2, and then check) BUT NOT BOTH If we do both, we get exponential behaviour!! data TIACons1 i r c = c i ::: r c type TIACons2 t x = TIACons1 t (TIACons1 t x) type TIACons3 t x = TIACons2 t (TIACons1 t x) type TIACons4 t x = TIACons2 t (TIACons2 t x) type TIACons7 t x = TIACons4 t (TIACons3 t x) ************************************************************************ * * \subsection{Checking a theta or source type} * * ************************************************************************ Note [Implicit parameters in instance decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implicit parameters _only_ allowed in type signatures; not in instance decls, superclasses etc. The reason for not allowing implicit params in instances is a bit subtle. If we allowed instance (?x::Int, Eq a) => Foo [a] where ... then when we saw (e :: (?x::Int) => t) it would be unclear how to discharge all the potential uses of the ?x in e. For example, a constraint Foo [Int] might come out of e, and applying the instance decl would show up two uses of ?x. Trac #8912. -} checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM () -- Assumes argument is fully zonked checkValidTheta ctxt theta = do { env <- tcInitOpenTidyEnv (tyCoVarsOfTypesList theta) ; addErrCtxtM (checkThetaCtxt ctxt theta) $ check_valid_theta env ctxt theta } ------------------------- check_valid_theta :: TidyEnv -> UserTypeCtxt -> [PredType] -> TcM () check_valid_theta _ _ [] = return () check_valid_theta env ctxt theta = do { dflags <- getDynFlags ; warnTcM (Reason Opt_WarnDuplicateConstraints) (wopt Opt_WarnDuplicateConstraints dflags && notNull dups) (dupPredWarn env dups) ; traceTc "check_valid_theta" (ppr theta) ; mapM_ (check_pred_ty env dflags ctxt) theta } where (_,dups) = removeDups nonDetCmpType theta -- It's OK to use nonDetCmpType because dups only appears in the -- warning ------------------------- {- Note [Validity checking for constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We look through constraint synonyms so that we can see the underlying constraint(s). For example type Foo = ?x::Int instance Foo => C T We should reject the instance because it has an implicit parameter in the context. But we record, in 'under_syn', whether we have looked under a synonym to avoid requiring language extensions at the use site. Main example (Trac #9838): {-# LANGUAGE ConstraintKinds #-} module A where type EqShow a = (Eq a, Show a) module B where import A foo :: EqShow a => a -> String We don't want to require ConstraintKinds in module B. -} check_pred_ty :: TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> TcM () -- Check the validity of a predicate in a signature -- See Note [Validity checking for constraints] check_pred_ty env dflags ctxt pred = do { check_type env SigmaCtxt constraintMonoType pred ; check_pred_help False env dflags ctxt pred } check_pred_help :: Bool -- True <=> under a type synonym -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> TcM () check_pred_help under_syn env dflags ctxt pred | Just pred' <- tcView pred -- Switch on under_syn when going under a -- synonym (Trac #9838, yuk) = check_pred_help True env dflags ctxt pred' | otherwise = case splitTyConApp_maybe pred of Just (tc, tys) | isTupleTyCon tc -> check_tuple_pred under_syn env dflags ctxt pred tys -- NB: this equality check must come first, because (~) is a class, -- too. | tc `hasKey` heqTyConKey || tc `hasKey` eqTyConKey || tc `hasKey` eqPrimTyConKey -> check_eq_pred env dflags pred tc tys | Just cls <- tyConClass_maybe tc -> check_class_pred env dflags ctxt pred cls tys -- Includes Coercible _ -> check_irred_pred under_syn env dflags ctxt pred check_eq_pred :: TidyEnv -> DynFlags -> PredType -> TyCon -> [TcType] -> TcM () check_eq_pred env dflags pred tc tys = -- Equational constraints are valid in all contexts if type -- families are permitted do { checkTc (tys `lengthIs` tyConArity tc) (tyConArityErr tc tys) ; checkTcM (xopt LangExt.TypeFamilies dflags || xopt LangExt.GADTs dflags) (eqPredTyErr env pred) } check_tuple_pred :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> [PredType] -> TcM () check_tuple_pred under_syn env dflags ctxt pred ts = do { -- See Note [ConstraintKinds in predicates] checkTcM (under_syn || xopt LangExt.ConstraintKinds dflags) (predTupleErr env pred) ; mapM_ (check_pred_help under_syn env dflags ctxt) ts } -- This case will not normally be executed because without -- -XConstraintKinds tuple types are only kind-checked as * check_irred_pred :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> TcM () check_irred_pred under_syn env dflags ctxt pred -- The predicate looks like (X t1 t2) or (x t1 t2) :: Constraint -- where X is a type function = do { -- If it looks like (x t1 t2), require ConstraintKinds -- see Note [ConstraintKinds in predicates] -- But (X t1 t2) is always ok because we just require ConstraintKinds -- at the definition site (Trac #9838) failIfTcM (not under_syn && not (xopt LangExt.ConstraintKinds dflags) && hasTyVarHead pred) (predIrredErr env pred) -- Make sure it is OK to have an irred pred in this context -- See Note [Irreducible predicates in superclasses] ; failIfTcM (is_superclass ctxt && not (xopt LangExt.UndecidableInstances dflags) && has_tyfun_head pred) (predSuperClassErr env pred) } where is_superclass ctxt = case ctxt of { ClassSCCtxt _ -> True; _ -> False } has_tyfun_head ty = case tcSplitTyConApp_maybe ty of Just (tc, _) -> isTypeFamilyTyCon tc Nothing -> False {- Note [ConstraintKinds in predicates] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Don't check for -XConstraintKinds under a type synonym, because that was done at the type synonym definition site; see Trac #9838 e.g. module A where type C a = (Eq a, Ix a) -- Needs -XConstraintKinds module B where import A f :: C a => a -> a -- Does *not* need -XConstraintKinds Note [Irreducible predicates in superclasses] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Allowing type-family calls in class superclasses is somewhat dangerous because we can write: type family Fooish x :: * -> Constraint type instance Fooish () = Foo class Fooish () a => Foo a where This will cause the constraint simplifier to loop because every time we canonicalise a (Foo a) class constraint we add a (Fooish () a) constraint which will be immediately solved to add+canonicalise another (Foo a) constraint. -} ------------------------- check_class_pred :: TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> Class -> [TcType] -> TcM () check_class_pred env dflags ctxt pred cls tys | isIPClass cls = do { check_arity ; checkTcM (okIPCtxt ctxt) (badIPPred env pred) } | otherwise = do { check_arity ; warn_simp <- woptM Opt_WarnSimplifiableClassConstraints ; when warn_simp check_simplifiable_class_constraint ; checkTcM arg_tys_ok (predTyVarErr env pred) } where check_arity = checkTc (tys `lengthIs` classArity cls) (tyConArityErr (classTyCon cls) tys) -- Check the arguments of a class constraint flexible_contexts = xopt LangExt.FlexibleContexts dflags undecidable_ok = xopt LangExt.UndecidableInstances dflags arg_tys_ok = case ctxt of SpecInstCtxt -> True -- {-# SPECIALISE instance Eq (T Int) #-} is fine InstDeclCtxt -> checkValidClsArgs (flexible_contexts || undecidable_ok) cls tys -- Further checks on head and theta -- in checkInstTermination _ -> checkValidClsArgs flexible_contexts cls tys -- See Note [Simplifiable given constraints] check_simplifiable_class_constraint | xopt LangExt.MonoLocalBinds dflags = return () | DataTyCtxt {} <- ctxt -- Don't do this check for the "stupid theta" = return () -- of a data type declaration | otherwise = do { envs <- tcGetInstEnvs ; case lookupInstEnv False envs cls tys of ([m], [], _) -> addWarnTc (Reason Opt_WarnSimplifiableClassConstraints) (simplifiable_constraint_warn m) _ -> return () } simplifiable_constraint_warn :: InstMatch -> SDoc simplifiable_constraint_warn (match, _) = vcat [ hang (text "The constraint" <+> quotes (ppr (tidyType env pred))) 2 (text "matches an instance declaration") , ppr match , hang (text "This makes type inference for inner bindings fragile;") 2 (text "either use MonoLocalBinds, or simplify it using the instance") ] {- Note [Simplifiable given constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A type signature like f :: Eq [(a,b)] => a -> b is very fragile, for reasons described at length in TcInteract Note [Instance and Given overlap]. As that Note discusses, for the most part the clever stuff in TcInteract means that we don't use a top-level instance if a local Given might fire, so there is no fragility. But if we /infer/ the type of a local let-binding, things can go wrong (Trac #11948 is an example, discussed in the Note). So this warning is switched on only if we have NoMonoLocalBinds; in that case the warning discourages users from writing simplifiable class constraints. The warning only fires if the constraint in the signature matches the top-level instances in only one way, and with no unifiers -- that is, under the same circumstances that TcInteract.matchInstEnv fires an interaction with the top level instances. For example (Trac #13526), consider instance {-# OVERLAPPABLE #-} Eq (T a) where ... instance Eq (T Char) where .. f :: Eq (T a) => ... We don't want to complain about this, even though the context (Eq (T a)) matches an instance, because the user may be deliberately deferring the choice so that the Eq (T Char) has a chance to fire when 'f' is called. And the fragility only matters when there's a risk that the instance might fire instead of the local 'given'; and there is no such risk in this case. Just use the same rules as for instance firing! -} ------------------------- okIPCtxt :: UserTypeCtxt -> Bool -- See Note [Implicit parameters in instance decls] okIPCtxt (FunSigCtxt {}) = True okIPCtxt (InfSigCtxt {}) = True okIPCtxt ExprSigCtxt = True okIPCtxt TypeAppCtxt = True okIPCtxt PatSigCtxt = True okIPCtxt ResSigCtxt = True okIPCtxt GenSigCtxt = True okIPCtxt (ConArgCtxt {}) = True okIPCtxt (ForSigCtxt {}) = True -- ?? okIPCtxt ThBrackCtxt = True okIPCtxt GhciCtxt = True okIPCtxt SigmaCtxt = True okIPCtxt (DataTyCtxt {}) = True okIPCtxt (PatSynCtxt {}) = True okIPCtxt (TySynCtxt {}) = True -- e.g. type Blah = ?x::Int -- Trac #11466 okIPCtxt (ClassSCCtxt {}) = False okIPCtxt (InstDeclCtxt {}) = False okIPCtxt (SpecInstCtxt {}) = False okIPCtxt (RuleSigCtxt {}) = False okIPCtxt DefaultDeclCtxt = False {- Note [Kind polymorphic type classes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiParam check: class C f where... -- C :: forall k. k -> Constraint instance C Maybe where... The dictionary gets type [C * Maybe] even if it's not a MultiParam type class. Flexibility check: class C f where... -- C :: forall k. k -> Constraint data D a = D a instance C D where The dictionary gets type [C * (D *)]. IA0_TODO it should be generalized actually. -} checkThetaCtxt :: UserTypeCtxt -> ThetaType -> TidyEnv -> TcM (TidyEnv, SDoc) checkThetaCtxt ctxt theta env = return ( env , vcat [ text "In the context:" <+> pprTheta (tidyTypes env theta) , text "While checking" <+> pprUserTypeCtxt ctxt ] ) eqPredTyErr, predTupleErr, predIrredErr, predSuperClassErr :: TidyEnv -> PredType -> (TidyEnv, SDoc) eqPredTyErr env pred = ( env , text "Illegal equational constraint" <+> ppr_tidy env pred $$ parens (text "Use GADTs or TypeFamilies to permit this") ) predTupleErr env pred = ( env , hang (text "Illegal tuple constraint:" <+> ppr_tidy env pred) 2 (parens constraintKindsMsg) ) predIrredErr env pred = ( env , hang (text "Illegal constraint:" <+> ppr_tidy env pred) 2 (parens constraintKindsMsg) ) predSuperClassErr env pred = ( env , hang (text "Illegal constraint" <+> quotes (ppr_tidy env pred) <+> text "in a superclass context") 2 (parens undecidableMsg) ) predTyVarErr :: TidyEnv -> PredType -> (TidyEnv, SDoc) predTyVarErr env pred = (env , vcat [ hang (text "Non type-variable argument") 2 (text "in the constraint:" <+> ppr_tidy env pred) , parens (text "Use FlexibleContexts to permit this") ]) badIPPred :: TidyEnv -> PredType -> (TidyEnv, SDoc) badIPPred env pred = ( env , text "Illegal implicit parameter" <+> quotes (ppr_tidy env pred) ) constraintSynErr :: TidyEnv -> Type -> (TidyEnv, SDoc) constraintSynErr env kind = ( env , hang (text "Illegal constraint synonym of kind:" <+> quotes (ppr_tidy env kind)) 2 (parens constraintKindsMsg) ) dupPredWarn :: TidyEnv -> [NE.NonEmpty PredType] -> (TidyEnv, SDoc) dupPredWarn env dups = ( env , text "Duplicate constraint" <> plural primaryDups <> text ":" <+> pprWithCommas (ppr_tidy env) primaryDups ) where primaryDups = map NE.head dups tyConArityErr :: TyCon -> [TcType] -> SDoc -- For type-constructor arity errors, be careful to report -- the number of /visible/ arguments required and supplied, -- ignoring the /invisible/ arguments, which the user does not see. -- (e.g. Trac #10516) tyConArityErr tc tks = arityErr (ppr (tyConFlavour tc)) (tyConName tc) tc_type_arity tc_type_args where vis_tks = filterOutInvisibleTypes tc tks -- tc_type_arity = number of *type* args expected -- tc_type_args = number of *type* args encountered tc_type_arity = count isVisibleTyConBinder (tyConBinders tc) tc_type_args = length vis_tks arityErr :: Outputable a => SDoc -> a -> Int -> Int -> SDoc arityErr what name n m = hsep [ text "The" <+> what, quotes (ppr name), text "should have", n_arguments <> comma, text "but has been given", if m==0 then text "none" else int m] where n_arguments | n == 0 = text "no arguments" | n == 1 = text "1 argument" | True = hsep [int n, text "arguments"] {- ************************************************************************ * * \subsection{Checking for a decent instance head type} * * ************************************************************************ @checkValidInstHead@ checks the type {\em and} its syntactic constraints: it must normally look like: @instance Foo (Tycon a b c ...) ...@ The exceptions to this syntactic checking: (1)~if the @GlasgowExts@ flag is on, or (2)~the instance is imported (they must have been compiled elsewhere). In these cases, we let them go through anyway. We can also have instances for functions: @instance Foo (a -> b) ...@. -} checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM () checkValidInstHead ctxt clas cls_args = do { dflags <- getDynFlags ; mod <- getModule ; checkTc (getUnique clas `notElem` abstractClassKeys || nameModule (getName clas) == mod) (instTypeErr clas cls_args abstract_class_msg) ; when (clas `hasKey` hasFieldClassNameKey) $ checkHasFieldInst clas cls_args -- Check language restrictions; -- but not for SPECIALISE instance pragmas ; let ty_args = filterOutInvisibleTypes (classTyCon clas) cls_args ; unless spec_inst_prag $ do { checkTc (xopt LangExt.TypeSynonymInstances dflags || all tcInstHeadTyNotSynonym ty_args) (instTypeErr clas cls_args head_type_synonym_msg) ; checkTc (xopt LangExt.FlexibleInstances dflags || all tcInstHeadTyAppAllTyVars ty_args) (instTypeErr clas cls_args head_type_args_tyvars_msg) ; checkTc (xopt LangExt.MultiParamTypeClasses dflags || lengthIs ty_args 1 || -- Only count type arguments (xopt LangExt.NullaryTypeClasses dflags && null ty_args)) (instTypeErr clas cls_args head_one_type_msg) } ; mapM_ checkValidTypePat ty_args } where spec_inst_prag = case ctxt of { SpecInstCtxt -> True; _ -> False } head_type_synonym_msg = parens ( text "All instance types must be of the form (T t1 ... tn)" $$ text "where T is not a synonym." $$ text "Use TypeSynonymInstances if you want to disable this.") head_type_args_tyvars_msg = parens (vcat [ text "All instance types must be of the form (T a1 ... an)", text "where a1 ... an are *distinct type variables*,", text "and each type variable appears at most once in the instance head.", text "Use FlexibleInstances if you want to disable this."]) head_one_type_msg = parens ( text "Only one type can be given in an instance head." $$ text "Use MultiParamTypeClasses if you want to allow more, or zero.") abstract_class_msg = text "Manual instances of this class are not permitted." tcInstHeadTyNotSynonym :: Type -> Bool -- Used in Haskell-98 mode, for the argument types of an instance head -- These must not be type synonyms, but everywhere else type synonyms -- are transparent, so we need a special function here tcInstHeadTyNotSynonym ty = case ty of -- Do not use splitTyConApp, -- because that expands synonyms! TyConApp tc _ -> not (isTypeSynonymTyCon tc) _ -> True tcInstHeadTyAppAllTyVars :: Type -> Bool -- Used in Haskell-98 mode, for the argument types of an instance head -- These must be a constructor applied to type variable arguments. -- But we allow kind instantiations. tcInstHeadTyAppAllTyVars ty | Just (tc, tys) <- tcSplitTyConApp_maybe (dropCasts ty) = ok (filterOutInvisibleTypes tc tys) -- avoid kinds | otherwise = False where -- Check that all the types are type variables, -- and that each is distinct ok tys = equalLength tvs tys && hasNoDups tvs where tvs = mapMaybe tcGetTyVar_maybe tys dropCasts :: Type -> Type -- See Note [Casts during validity checking] -- This function can turn a well-kinded type into an ill-kinded -- one, so I've kept it local to this module -- To consider: drop only UnivCo(HoleProv) casts dropCasts (CastTy ty _) = dropCasts ty dropCasts (AppTy t1 t2) = mkAppTy (dropCasts t1) (dropCasts t2) dropCasts (FunTy t1 t2) = mkFunTy (dropCasts t1) (dropCasts t2) dropCasts (TyConApp tc tys) = mkTyConApp tc (map dropCasts tys) dropCasts (ForAllTy b ty) = ForAllTy (dropCastsB b) (dropCasts ty) dropCasts ty = ty -- LitTy, TyVarTy, CoercionTy dropCastsB :: TyVarBinder -> TyVarBinder dropCastsB b = b -- Don't bother in the kind of a forall abstractClassKeys :: [Unique] abstractClassKeys = [ heqTyConKey , eqTyConKey , coercibleTyConKey ] -- See Note [Equality class instances] instTypeErr :: Class -> [Type] -> SDoc -> SDoc instTypeErr cls tys msg = hang (hang (text "Illegal instance declaration for") 2 (quotes (pprClassPred cls tys))) 2 msg -- | See Note [Validity checking of HasField instances] checkHasFieldInst :: Class -> [Type] -> TcM () checkHasFieldInst cls tys@[_k_ty, x_ty, r_ty, _a_ty] = case splitTyConApp_maybe r_ty of Nothing -> whoops (text "Record data type must be specified") Just (tc, _) | isFamilyTyCon tc -> whoops (text "Record data type may not be a data family") | otherwise -> case isStrLitTy x_ty of Just lbl | isJust (lookupTyConFieldLabel lbl tc) -> whoops (ppr tc <+> text "already has a field" <+> quotes (ppr lbl)) | otherwise -> return () Nothing | null (tyConFieldLabels tc) -> return () | otherwise -> whoops (ppr tc <+> text "has fields") where whoops = addErrTc . instTypeErr cls tys checkHasFieldInst _ tys = pprPanic "checkHasFieldInst" (ppr tys) {- Note [Casts during validity checking] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the (bogus) instance Eq Char# We elaborate to 'Eq (Char# |> UnivCo(hole))' where the hole is an insoluble equality constraint for * ~ #. We'll report the insoluble constraint separately, but we don't want to *also* complain that Eq is not applied to a type constructor. So we look gaily look through CastTys here. Another example: Eq (Either a). Then we actually get a cast in the middle: Eq ((Either |> g) a) Note [Validity checking of HasField instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HasField class has magic constraint solving behaviour (see Note [HasField instances] in TcInteract). However, we permit users to declare their own instances, provided they do not clash with the built-in behaviour. In particular, we forbid: 1. `HasField _ r _` where r is a variable 2. `HasField _ (T ...) _` if T is a data family (because it might have fields introduced later) 3. `HasField x (T ...) _` where x is a variable, if T has any fields at all 4. `HasField "foo" (T ...) _` if T has a "foo" field The usual functional dependency checks also apply. Note [Valid 'deriving' predicate] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ validDerivPred checks for OK 'deriving' context. See Note [Exotic derived instance contexts] in TcDeriv. However the predicate is here because it uses sizeTypes, fvTypes. It checks for three things * No repeated variables (hasNoDups fvs) * No type constructors. This is done by comparing sizeTypes tys == length (fvTypes tys) sizeTypes counts variables and constructors; fvTypes returns variables. So if they are the same, there must be no constructors. But there might be applications thus (f (g x)). Note that tys only includes the visible arguments of the class type constructor. Including the non-visible arguments can cause the following, perfectly valid instance to be rejected: class Category (cat :: k -> k -> *) where ... newtype T (c :: * -> * -> *) a b = MkT (c a b) instance Category c => Category (T c) where ... since the first argument to Category is a non-visible *, which sizeTypes would count as a constructor! See Trac #11833. * Also check for a bizarre corner case, when the derived instance decl would look like instance C a b => D (T a) where ... Note that 'b' isn't a parameter of T. This gives rise to all sorts of problems; in particular, it's hard to compare solutions for equality when finding the fixpoint, and that means the inferContext loop does not converge. See Trac #5287. Note [Equality class instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We can't have users writing instances for the equality classes. But we still need to be able to write instances for them ourselves. So we allow instances only in the defining module. -} validDerivPred :: TyVarSet -> PredType -> Bool -- See Note [Valid 'deriving' predicate] validDerivPred tv_set pred = case classifyPredType pred of ClassPred cls tys -> cls `hasKey` typeableClassKey -- Typeable constraints are bigger than they appear due -- to kind polymorphism, but that's OK || check_tys cls tys EqPred {} -> False -- reject equality constraints _ -> True -- Non-class predicates are ok where check_tys cls tys = hasNoDups fvs -- use sizePred to ignore implicit args && lengthIs fvs (sizePred pred) && all (`elemVarSet` tv_set) fvs where tys' = filterOutInvisibleTypes (classTyCon cls) tys fvs = fvTypes tys' {- ************************************************************************ * * \subsection{Checking instance for termination} * * ************************************************************************ -} {- Note [Instances and constraint synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Currently, we don't allow instances for constraint synonyms at all. Consider these (Trac #13267): type C1 a = Show (a -> Bool) instance C1 Int where -- I1 show _ = "ur" This elicits "show is not a (visible) method of class C1", which isn't a great message. But it comes from the renamer, so it's hard to improve. This needs a bit more care: type C2 a = (Show a, Show Int) instance C2 Int -- I2 If we use (splitTyConApp_maybe tau) in checkValidInstance to decompose the instance head, we'll expand the synonym on fly, and it'll look like instance (%,%) (Show Int, Show Int) and we /really/ don't want that. So we carefully do /not/ expand synonyms, by matching on TyConApp directly. -} checkValidInstance :: UserTypeCtxt -> LHsSigType GhcRn -> Type -> TcM ([TyVar], ThetaType, Class, [Type]) checkValidInstance ctxt hs_type ty | not is_tc_app = failWithTc (text "Instance head is not headed by a class") | isNothing mb_cls = failWithTc (vcat [ text "Illegal instance for a" <+> ppr (tyConFlavour tc) , text "A class instance must be for a class" ]) | not arity_ok = failWithTc (text "Arity mis-match in instance head") | otherwise = do { setSrcSpan head_loc (checkValidInstHead ctxt clas inst_tys) ; traceTc "checkValidInstance {" (ppr ty) ; checkValidTheta ctxt theta -- The Termination and Coverate Conditions -- Check that instance inference will terminate (if we care) -- For Haskell 98 this will already have been done by checkValidTheta, -- but as we may be using other extensions we need to check. -- -- Note that the Termination Condition is *more conservative* than -- the checkAmbiguity test we do on other type signatures -- e.g. Bar a => Bar Int is ambiguous, but it also fails -- the termination condition, because 'a' appears more often -- in the constraint than in the head ; undecidable_ok <- xoptM LangExt.UndecidableInstances ; if undecidable_ok then checkAmbiguity ctxt ty else checkInstTermination inst_tys theta ; traceTc "cvi 2" (ppr ty) ; case (checkInstCoverage undecidable_ok clas theta inst_tys) of IsValid -> return () -- Check succeeded NotValid msg -> addErrTc (instTypeErr clas inst_tys msg) ; traceTc "End checkValidInstance }" empty ; return (tvs, theta, clas, inst_tys) } where (tvs, theta, tau) = tcSplitSigmaTy ty is_tc_app = case tau of { TyConApp {} -> True; _ -> False } TyConApp tc inst_tys = tau -- See Note [Instances and constraint synonyms] mb_cls = tyConClass_maybe tc Just clas = mb_cls arity_ok = inst_tys `lengthIs` classArity clas -- The location of the "head" of the instance head_loc = getLoc (getLHsInstDeclHead hs_type) {- Note [Paterson conditions] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Termination test: the so-called "Paterson conditions" (see Section 5 of "Understanding functional dependencies via Constraint Handling Rules, JFP Jan 2007). We check that each assertion in the context satisfies: (1) no variable has more occurrences in the assertion than in the head, and (2) the assertion has fewer constructors and variables (taken together and counting repetitions) than the head. This is only needed with -fglasgow-exts, as Haskell 98 restrictions (which have already been checked) guarantee termination. The underlying idea is that for any ground substitution, each assertion in the context has fewer type constructors than the head. -} checkInstTermination :: [TcType] -> ThetaType -> TcM () -- See Note [Paterson conditions] checkInstTermination tys theta = check_preds theta where head_fvs = fvTypes tys head_size = sizeTypes tys check_preds :: [PredType] -> TcM () check_preds preds = mapM_ check preds check :: PredType -> TcM () check pred = case classifyPredType pred of EqPred {} -> return () -- See Trac #4200. IrredPred {} -> check2 pred (sizeType pred) ClassPred cls tys | isTerminatingClass cls -> return () | isCTupleClass cls -- Look inside tuple predicates; Trac #8359 -> check_preds tys | otherwise -> check2 pred (sizeTypes $ filterOutInvisibleTypes (classTyCon cls) tys) -- Other ClassPreds check2 pred pred_size | not (null bad_tvs) = addErrTc (noMoreMsg bad_tvs what) | pred_size >= head_size = addErrTc (smallerMsg what) | otherwise = return () where what = text "constraint" <+> quotes (ppr pred) bad_tvs = fvType pred \\ head_fvs smallerMsg :: SDoc -> SDoc smallerMsg what = vcat [ hang (text "The" <+> what) 2 (text "is no smaller than the instance head") , parens undecidableMsg ] noMoreMsg :: [TcTyVar] -> SDoc -> SDoc noMoreMsg tvs what = vcat [ hang (text "Variable" <> plural tvs <+> quotes (pprWithCommas ppr tvs) <+> occurs <+> text "more often") 2 (sep [ text "in the" <+> what , text "than in the instance head" ]) , parens undecidableMsg ] where occurs = if isSingleton tvs then text "occurs" else text "occur" undecidableMsg, constraintKindsMsg :: SDoc undecidableMsg = text "Use UndecidableInstances to permit this" constraintKindsMsg = text "Use ConstraintKinds to permit this" {- Note [Associated type instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We allow this: class C a where type T x a instance C Int where type T (S y) Int = y type T Z Int = Char Note that a) The variable 'x' is not bound by the class decl b) 'x' is instantiated to a non-type-variable in the instance c) There are several type instance decls for T in the instance All this is fine. Of course, you can't give any *more* instances for (T ty Int) elsewhere, because it's an *associated* type. Note [Checking consistent instantiation] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See Trac #11450 for background discussion on this check. class C a b where type T a x b With this class decl, if we have an instance decl instance C ty1 ty2 where ... then the type instance must look like type T ty1 v ty2 = ... with exactly 'ty1' for 'a', 'ty2' for 'b', and some type 'v' for 'x'. For example: instance C [p] Int type T [p] y Int = (p,y,y) Note that * We used to allow completely different bound variables in the associated type instance; e.g. instance C [p] Int type T [q] y Int = ... But from GHC 8.2 onwards, we don't. It's much simpler this way. See Trac #11450. * When the class variable isn't used on the RHS of the type instance, it's tempting to allow wildcards, thus instance C [p] Int type T [_] y Int = (y,y) But it's awkward to do the test, and it doesn't work if the variable is repeated: instance C (p,p) Int type T (_,_) y Int = (y,y) Even though 'p' is not used on the RHS, we still need to use 'p' on the LHS to establish the repeated pattern. So to keep it simple we just require equality. * For variables in associated type families that are not bound by the class itself, we do _not_ check if they are over-specific. In other words, it's perfectly acceptable to have an instance like this: instance C [p] Int where type T [p] (Maybe x) Int = x While the first and third arguments to T are required to be exactly [p] and Int, respectively, since they are bound by C, the second argument is allowed to be more specific than just a type variable. Furthermore, it is permissible to define multiple equations for T that differ only in the non-class-bound argument: instance C [p] Int where type T [p] (Maybe x) Int = x type T [p] (Either x y) Int = x -> y We once considered requiring that non-class-bound variables in associated type family instances be instantiated with distinct type variables. However, that requirement proved too restrictive in practice, as there were examples of extremely simple associated type family instances that this check would reject, and fixing them required tiresome boilerplate in the form of auxiliary type families. For instance, you would have to define the above example as: instance C [p] Int where type T [p] x Int = CAux x type family CAux x where CAux (Maybe x) = x CAux (Either x y) = x -> y We decided that this restriction wasn't buying us much, so we opted not to pursue that design (see also GHC Trac #13398). Implementation * Form the mini-envt from the class type variables a,b to the instance decl types [p],Int: [a->[p], b->Int] * Look at the tyvars a,x,b of the type family constructor T (it shares tyvars with the class C) * Apply the mini-evnt to them, and check that the result is consistent with the instance types [p] y Int. (where y can be any type, as it is not scoped over the class type variables. We make all the instance type variables scope over the type instances, of course, which picks up non-obvious kinds. Eg class Foo (a :: k) where type F a instance Foo (b :: k -> k) where type F b = Int Here the instance is kind-indexed and really looks like type F (k->k) (b::k->k) = Int But if the 'b' didn't scope, we would make F's instance too poly-kinded. -} -- | Extra information about the parent instance declaration, needed -- when type-checking associated types. The 'Class' is the enclosing -- class, the [TyVar] are the type variable of the instance decl, -- and and the @VarEnv Type@ maps class variables to their instance -- types. type ClsInstInfo = (Class, [TyVar], VarEnv Type) type AssocInstArgShape = (Maybe Type, Type) -- AssocInstArgShape is used only for associated family instances -- (mb_exp, actual) -- mb_exp = Just ty => this arg corresponds to a class variable -- = Nothing => it doesn't correspond to a class variable -- e.g. class C b where -- type F a b c -- instance C [x] where -- type F p [x] q -- We get [AssocInstArgShape] = [ (Nothing, p) -- , (Just [x], [x]) -- , (Nothing, q)] checkConsistentFamInst :: Maybe ClsInstInfo -> TyCon -- ^ Family tycon -> [Type] -- ^ Type patterns from instance -> SDoc -- ^ pretty-printed user-written instance head -> TcM () -- See Note [Checking consistent instantiation] checkConsistentFamInst Nothing _ _ _ = return () checkConsistentFamInst (Just (clas, inst_tvs, mini_env)) fam_tc at_tys pp_hs_pats = do { -- Check that the associated type indeed comes from this class checkTc (Just clas == tyConAssoc_maybe fam_tc) (badATErr (className clas) (tyConName fam_tc)) -- Check type args first (more comprehensible) ; checkTc (all check_arg type_shapes) pp_wrong_at_arg -- And now kind args ; checkTcM (all check_arg kind_shapes) (tidy_env2, pp_wrong_at_arg $$ ppSuggestExplicitKinds) ; traceTc "cfi" (vcat [ ppr inst_tvs , ppr arg_shapes , ppr mini_env ]) } where arg_shapes :: [AssocInstArgShape] arg_shapes = [ (lookupVarEnv mini_env fam_tc_tv, at_ty) | (fam_tc_tv, at_ty) <- tyConTyVars fam_tc `zip` at_tys ] (kind_shapes, type_shapes) = partitionInvisibles fam_tc snd arg_shapes check_arg :: AssocInstArgShape -> Bool check_arg (Just exp_ty, at_ty) = exp_ty `tcEqType` at_ty check_arg (Nothing, _ ) = True -- Arg position does not correspond -- to a class variable pp_wrong_at_arg = vcat [ text "Type indexes must match class instance head" , pp_exp_act ] pp_exp_act = vcat [ text "Expected:" <+> ppr (mkTyConApp fam_tc expected_args) , text " Actual:" <+> pp_hs_pats , sdocWithDynFlags $ \dflags -> ppWhen (has_poly_args dflags) $ vcat [ text "where the `<tv>' arguments are type variables," , text "distinct from each other and from the instance variables" ] ] -- We need to tidy, since it's possible that expected_args will contain -- inferred kind variables with names identical to those in at_tys. If we -- don't, we'll end up with horrible messages like this one (#13972): -- -- Expected: T (a -> Either a b) -- Actual: T (a -> Either a b) (tidy_env1, _) = tidyOpenTypes emptyTidyEnv at_tys (tidy_env2, expected_args) = tidyOpenTypes tidy_env1 [ exp_ty `orElse` mk_tv at_ty | (exp_ty, at_ty) <- arg_shapes ] mk_tv at_ty = mkTyVarTy (mkTyVar tv_name (typeKind at_ty)) tv_name = mkInternalName (mkAlphaTyVarUnique 1) (mkTyVarOcc "<tv>") noSrcSpan has_poly_args dflags = any (isNothing . fst) shapes where shapes | gopt Opt_PrintExplicitKinds dflags = arg_shapes | otherwise = type_shapes badATErr :: Name -> Name -> SDoc badATErr clas op = hsep [text "Class", quotes (ppr clas), text "does not have an associated type", quotes (ppr op)] {- ************************************************************************ * * Checking type instance well-formedness and termination * * ************************************************************************ -} checkValidCoAxiom :: CoAxiom Branched -> TcM () checkValidCoAxiom ax@(CoAxiom { co_ax_tc = fam_tc, co_ax_branches = branches }) = do { mapM_ (checkValidCoAxBranch Nothing fam_tc) branch_list ; foldlM_ check_branch_compat [] branch_list } where branch_list = fromBranches branches injectivity = tyConInjectivityInfo fam_tc check_branch_compat :: [CoAxBranch] -- previous branches in reverse order -> CoAxBranch -- current branch -> TcM [CoAxBranch]-- current branch : previous branches -- Check for -- (a) this branch is dominated by previous ones -- (b) failure of injectivity check_branch_compat prev_branches cur_branch | cur_branch `isDominatedBy` prev_branches = do { addWarnAt NoReason (coAxBranchSpan cur_branch) $ inaccessibleCoAxBranch ax cur_branch ; return prev_branches } | otherwise = do { check_injectivity prev_branches cur_branch ; return (cur_branch : prev_branches) } -- Injectivity check: check whether a new (CoAxBranch) can extend -- already checked equations without violating injectivity -- annotation supplied by the user. -- See Note [Verifying injectivity annotation] in FamInstEnv check_injectivity prev_branches cur_branch | Injective inj <- injectivity = do { let conflicts = fst $ foldl (gather_conflicts inj prev_branches cur_branch) ([], 0) prev_branches ; mapM_ (\(err, span) -> setSrcSpan span $ addErr err) (makeInjectivityErrors ax cur_branch inj conflicts) } | otherwise = return () gather_conflicts inj prev_branches cur_branch (acc, n) branch -- n is 0-based index of branch in prev_branches = case injectiveBranches inj cur_branch branch of InjectivityUnified ax1 ax2 | ax1 `isDominatedBy` (replace_br prev_branches n ax2) -> (acc, n + 1) | otherwise -> (branch : acc, n + 1) InjectivityAccepted -> (acc, n + 1) -- Replace n-th element in the list. Assumes 0-based indexing. replace_br :: [CoAxBranch] -> Int -> CoAxBranch -> [CoAxBranch] replace_br brs n br = take n brs ++ [br] ++ drop (n+1) brs -- Check that a "type instance" is well-formed (which includes decidability -- unless -XUndecidableInstances is given). -- checkValidCoAxBranch :: Maybe ClsInstInfo -> TyCon -> CoAxBranch -> TcM () checkValidCoAxBranch mb_clsinfo fam_tc (CoAxBranch { cab_tvs = tvs, cab_cvs = cvs , cab_lhs = typats , cab_rhs = rhs, cab_loc = loc }) = checkValidTyFamEqn mb_clsinfo fam_tc tvs cvs typats rhs pp_lhs loc where pp_lhs = ppr (mkTyConApp fam_tc typats) -- | Do validity checks on a type family equation, including consistency -- with any enclosing class instance head, termination, and lack of -- polytypes. checkValidTyFamEqn :: Maybe ClsInstInfo -> TyCon -- ^ of the type family -> [TyVar] -- ^ bound tyvars in the equation -> [CoVar] -- ^ bound covars in the equation -> [Type] -- ^ type patterns -> Type -- ^ rhs -> SDoc -- ^ user-written LHS -> SrcSpan -> TcM () checkValidTyFamEqn mb_clsinfo fam_tc tvs cvs typats rhs pp_lhs loc = setSrcSpan loc $ do { checkValidFamPats mb_clsinfo fam_tc tvs cvs typats [] pp_lhs -- The argument patterns, and RHS, are all boxed tau types -- E.g Reject type family F (a :: k1) :: k2 -- type instance F (forall a. a->a) = ... -- type instance F Int# = ... -- type instance F Int = forall a. a->a -- type instance F Int = Int# -- See Trac #9357 ; checkValidMonoType rhs -- We have a decidable instance unless otherwise permitted ; undecidable_ok <- xoptM LangExt.UndecidableInstances ; unless undecidable_ok $ mapM_ addErrTc (checkFamInstRhs typats (tcTyFamInsts rhs)) } -- Make sure that each type family application is -- (1) strictly smaller than the lhs, -- (2) mentions no type variable more often than the lhs, and -- (3) does not contain any further type family instances. -- checkFamInstRhs :: [Type] -- lhs -> [(TyCon, [Type])] -- type family instances -> [MsgDoc] checkFamInstRhs lhsTys famInsts = mapMaybe check famInsts where size = sizeTypes lhsTys fvs = fvTypes lhsTys check (tc, tys) | not (all isTyFamFree tys) = Just (nestedMsg what) | not (null bad_tvs) = Just (noMoreMsg bad_tvs what) | size <= sizeTypes tys = Just (smallerMsg what) | otherwise = Nothing where what = text "type family application" <+> quotes (pprType (TyConApp tc tys)) bad_tvs = fvTypes tys \\ fvs checkValidFamPats :: Maybe ClsInstInfo -> TyCon -> [TyVar] -> [CoVar] -> [Type] -- ^ patterns the user wrote -> [Type] -- ^ "extra" patterns from a data instance kind sig -> SDoc -- ^ pretty-printed user-written instance head -> TcM () -- Patterns in a 'type instance' or 'data instance' decl should -- a) contain no type family applications -- (vanilla synonyms are fine, though) -- b) properly bind all their free type variables -- e.g. we disallow (Trac #7536) -- type T a = Int -- type instance F (T a) = a -- c) For associated types, are consistently instantiated checkValidFamPats mb_clsinfo fam_tc tvs cvs user_ty_pats extra_ty_pats pp_hs_pats = do { mapM_ checkValidTypePat user_ty_pats ; let unbound_tcvs = filterOut (`elemVarSet` exactTyCoVarsOfTypes user_ty_pats) (tvs ++ cvs) ; checkTc (null unbound_tcvs) (famPatErr fam_tc unbound_tcvs user_ty_pats) -- Check that type patterns match the class instance head ; checkConsistentFamInst mb_clsinfo fam_tc (user_ty_pats `chkAppend` extra_ty_pats) pp_hs_pats } checkValidTypePat :: Type -> TcM () -- Used for type patterns in class instances, -- and in type/data family instances checkValidTypePat pat_ty = do { -- Check that pat_ty is a monotype checkValidMonoType pat_ty -- One could imagine generalising to allow -- instance C (forall a. a->a) -- but we don't know what all the consequences might be -- Ensure that no type family instances occur a type pattern ; checkTc (isTyFamFree pat_ty) $ tyFamInstIllegalErr pat_ty } -- Error messages inaccessibleCoAxBranch :: CoAxiom br -> CoAxBranch -> SDoc inaccessibleCoAxBranch fi_ax cur_branch = text "Type family instance equation is overlapped:" $$ nest 2 (pprCoAxBranch fi_ax cur_branch) tyFamInstIllegalErr :: Type -> SDoc tyFamInstIllegalErr ty = hang (text "Illegal type synonym family application in instance" <> colon) 2 $ ppr ty nestedMsg :: SDoc -> SDoc nestedMsg what = sep [ text "Illegal nested" <+> what , parens undecidableMsg ] famPatErr :: TyCon -> [TyVar] -> [Type] -> SDoc famPatErr fam_tc tvs pats = hang (text "Family instance purports to bind type variable" <> plural tvs <+> pprQuotedList tvs) 2 (hang (text "but the real LHS (expanding synonyms) is:") 2 (pprTypeApp fam_tc (map expandTypeSynonyms pats) <+> text "= ...")) {- ************************************************************************ * * Telescope checking * * ************************************************************************ Note [Bad telescopes] ~~~~~~~~~~~~~~~~~~~~~ Now that we can mix type and kind variables, there are an awful lot of ways to shoot yourself in the foot. Here are some. data SameKind :: k -> k -> * -- just to force unification 1. data T1 a k (b :: k) (x :: SameKind a b) The problem here is that we discover that a and b should have the same kind. But this kind mentions k, which is bound *after* a. (Testcase: dependent/should_fail/BadTelescope) 2. data T2 a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d) Note that b is not bound. Yet its kind mentions a. Because we have a nice rule that all implicitly bound variables come before others, this is bogus. (We could probably figure out to put b between a and c. But I think this is doing users a disservice, in the long run.) (Testcase: dependent/should_fail/BadTelescope4) 3. t3 :: forall a. (forall k (b :: k). SameKind a b) -> () This is a straightforward skolem escape. Note that a and b need to have the same kind. (Testcase: polykinds/T11142) How do we deal with all of this? For TyCons, we have checkValidTyConTyVars. That function looks to see if any of the tyConTyVars are repeated, but it's really a telescope check. It works because all tycons are kind-generalized. If there is a bad telescope, the kind-generalization will end up generalizing over a variable bound later in the telescope. For non-tycons, we do scope checking when we bring tyvars into scope, in tcImplicitTKBndrs and tcExplicitTKBndrs. Note that we also have to sort implicit binders into a well-scoped order whenever we have implicit binders to worry about. This is done in quantifyTyVars and in tcImplicitTKBndrs. -} -- | Check a list of binders to see if they make a valid telescope. -- The key property we're checking for is scoping. For example: -- > data SameKind :: k -> k -> * -- > data X a k (b :: k) (c :: SameKind a b) -- Kind inference says that a's kind should be k. But that's impossible, -- because k isn't in scope when a is bound. This check has to come before -- general validity checking, because once we kind-generalise, this sort -- of problem is harder to spot (as we'll generalise over the unbound -- k in a's type.) See also Note [Bad telescopes]. checkValidTelescope :: SDoc -- the original user-written telescope -> [TyVar] -- explicit vars (not necessarily zonked) -> SDoc -- note to put at bottom of message -> TcM () checkValidTelescope hs_tvs orig_tvs extra = discardResult $ checkZonkValidTelescope hs_tvs orig_tvs extra -- | Like 'checkZonkValidTelescope', but returns the zonked tyvars checkZonkValidTelescope :: SDoc -> [TyVar] -> SDoc -> TcM [TyVar] checkZonkValidTelescope hs_tvs orig_tvs extra = do { orig_tvs <- mapM zonkTyCoVarKind orig_tvs ; let (_, sorted_tidied_tvs) = tidyTyCoVarBndrs emptyTidyEnv $ toposortTyVars orig_tvs ; unless (go [] emptyVarSet orig_tvs) $ addErr $ vcat [ hang (text "These kind and type variables:" <+> hs_tvs $$ text "are out of dependency order. Perhaps try this ordering:") 2 (sep (map pprTyVar sorted_tidied_tvs)) , extra ] ; return orig_tvs } where go :: [TyVar] -- misplaced variables -> TyVarSet -> [TyVar] -> Bool go errs in_scope [] = null (filter (`elemVarSet` in_scope) errs) -- report an error only when the variable in the kind is brought -- into scope later in the telescope. Otherwise, we'll just quantify -- over it in kindGeneralize, as we should. go errs in_scope (tv:tvs) = let bad_tvs = filterOut (`elemVarSet` in_scope) $ tyCoVarsOfTypeList (tyVarKind tv) in go (bad_tvs ++ errs) (in_scope `extendVarSet` tv) tvs -- | After inferring kinds of type variables, check to make sure that the -- inferred kinds any of the type variables bound in a smaller scope. -- This is a skolem escape check. See also Note [Bad telescopes]. checkValidInferredKinds :: [TyVar] -- ^ vars to check (zonked) -> TyVarSet -- ^ vars out of scope -> SDoc -- ^ suffix to error message -> TcM () checkValidInferredKinds orig_kvs out_of_scope extra = do { let bad_pairs = [ (tv, kv) | kv <- orig_kvs , Just tv <- map (lookupVarSet out_of_scope) (tyCoVarsOfTypeList (tyVarKind kv)) ] report (tidyTyVarOcc env -> tv, tidyTyVarOcc env -> kv) = addErr $ text "The kind of variable" <+> quotes (ppr kv) <> text ", namely" <+> quotes (ppr (tyVarKind kv)) <> comma $$ text "depends on variable" <+> quotes (ppr tv) <+> text "from an inner scope" $$ text "Perhaps bind" <+> quotes (ppr kv) <+> text "sometime after binding" <+> quotes (ppr tv) $$ extra ; mapM_ report bad_pairs } where (env1, _) = tidyTyCoVarBndrs emptyTidyEnv orig_kvs (env, _) = tidyTyCoVarBndrs env1 (nonDetEltsUniqSet out_of_scope) -- It's OK to use nonDetEltsUniqSet here because it's only used for -- generating the error message {- ************************************************************************ * * \subsection{Auxiliary functions} * * ************************************************************************ -} -- Free variables of a type, retaining repetitions, and expanding synonyms fvType :: Type -> [TyCoVar] fvType ty | Just exp_ty <- tcView ty = fvType exp_ty fvType (TyVarTy tv) = [tv] fvType (TyConApp _ tys) = fvTypes tys fvType (LitTy {}) = [] fvType (AppTy fun arg) = fvType fun ++ fvType arg fvType (FunTy arg res) = fvType arg ++ fvType res fvType (ForAllTy (TvBndr tv _) ty) = fvType (tyVarKind tv) ++ filter (/= tv) (fvType ty) fvType (CastTy ty co) = fvType ty ++ fvCo co fvType (CoercionTy co) = fvCo co fvTypes :: [Type] -> [TyVar] fvTypes tys = concat (map fvType tys) fvCo :: Coercion -> [TyCoVar] fvCo (Refl _ ty) = fvType ty fvCo (TyConAppCo _ _ args) = concatMap fvCo args fvCo (AppCo co arg) = fvCo co ++ fvCo arg fvCo (ForAllCo tv h co) = filter (/= tv) (fvCo co) ++ fvCo h fvCo (FunCo _ co1 co2) = fvCo co1 ++ fvCo co2 fvCo (CoVarCo v) = [v] fvCo (AxiomInstCo _ _ args) = concatMap fvCo args fvCo (UnivCo p _ t1 t2) = fvProv p ++ fvType t1 ++ fvType t2 fvCo (SymCo co) = fvCo co fvCo (TransCo co1 co2) = fvCo co1 ++ fvCo co2 fvCo (NthCo _ co) = fvCo co fvCo (LRCo _ co) = fvCo co fvCo (InstCo co arg) = fvCo co ++ fvCo arg fvCo (CoherenceCo co1 co2) = fvCo co1 ++ fvCo co2 fvCo (KindCo co) = fvCo co fvCo (SubCo co) = fvCo co fvCo (AxiomRuleCo _ cs) = concatMap fvCo cs fvProv :: UnivCoProvenance -> [TyCoVar] fvProv UnsafeCoerceProv = [] fvProv (PhantomProv co) = fvCo co fvProv (ProofIrrelProv co) = fvCo co fvProv (PluginProv _) = [] fvProv (HoleProv h) = pprPanic "fvProv falls into a hole" (ppr h) sizeType :: Type -> Int -- Size of a type: the number of variables and constructors sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty sizeType (TyVarTy {}) = 1 sizeType (TyConApp _ tys) = sizeTypes tys + 1 sizeType (LitTy {}) = 1 sizeType (AppTy fun arg) = sizeType fun + sizeType arg sizeType (FunTy arg res) = sizeType arg + sizeType res + 1 sizeType (ForAllTy _ ty) = sizeType ty sizeType (CastTy ty _) = sizeType ty sizeType (CoercionTy _) = 1 sizeTypes :: [Type] -> Int sizeTypes = sum . map sizeType -- Size of a predicate -- -- We are considering whether class constraints terminate. -- Equality constraints and constraints for the implicit -- parameter class always terminate so it is safe to say "size 0". -- (Implicit parameter constraints always terminate because -- there are no instances for them---they are only solved by -- "local instances" in expressions). -- See Trac #4200. sizePred :: PredType -> Int sizePred ty = goClass ty where goClass p = go (classifyPredType p) go (ClassPred cls tys') | isTerminatingClass cls = 0 | otherwise = sizeTypes (filterOutInvisibleTypes (classTyCon cls) tys') go (EqPred {}) = 0 go (IrredPred ty) = sizeType ty -- | When this says "True", ignore this class constraint during -- a termination check isTerminatingClass :: Class -> Bool isTerminatingClass cls = isIPClass cls || cls `hasKey` typeableClassKey || cls `hasKey` coercibleTyConKey || cls `hasKey` eqTyConKey || cls `hasKey` heqTyConKey -- | Tidy before printing a type ppr_tidy :: TidyEnv -> Type -> SDoc ppr_tidy env ty = pprType (tidyType env ty) allDistinctTyVars :: TyVarSet -> [KindOrType] -> Bool -- (allDistinctTyVars tvs tys) returns True if tys are -- a) all tyvars -- b) all distinct -- c) disjoint from tvs allDistinctTyVars _ [] = True allDistinctTyVars tkvs (ty : tys) = case getTyVar_maybe ty of Nothing -> False Just tv | tv `elemVarSet` tkvs -> False | otherwise -> allDistinctTyVars (tkvs `extendVarSet` tv) tys