{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.IO.Encoding.Failure -- Copyright : (c) The University of Glasgow, 2008-2011 -- License : see libraries/base/LICENSE -- -- Maintainer : libraries@haskell.org -- Stability : internal -- Portability : non-portable -- -- Types for specifying how text encoding/decoding fails -- ----------------------------------------------------------------------------- module GHC.IO.Encoding.Failure ( CodingFailureMode(..), codingFailureModeSuffix, isSurrogate, recoverDecode, recoverEncode ) where import GHC.IO import GHC.IO.Buffer import GHC.IO.Exception import GHC.Base import GHC.Char import GHC.Word import GHC.Show import GHC.Num import GHC.Real ( fromIntegral ) --import System.Posix.Internals -- | The 'CodingFailureMode' is used to construct 'System.IO.TextEncoding's, -- and specifies how they handle illegal sequences. data CodingFailureMode = ErrorOnCodingFailure -- ^ Throw an error when an illegal sequence is encountered | IgnoreCodingFailure -- ^ Attempt to ignore and recover if an illegal sequence is -- encountered | TransliterateCodingFailure -- ^ Replace with the closest visual match upon an illegal -- sequence | RoundtripFailure -- ^ Use the private-use escape mechanism to attempt to allow -- illegal sequences to be roundtripped. deriving ( Show -- ^ @since 4.4.0.0 ) -- This will only work properly for those encodings which are -- strict supersets of ASCII in the sense that valid ASCII data -- is also valid in that encoding. This is not true for -- e.g. UTF-16, because ASCII characters must be padded to two -- bytes to retain their meaning. -- Note [Roundtripping] -- ~~~~~~~~~~~~~~~~~~~~ -- -- Roundtripping is based on the ideas of PEP383. -- -- We used to use the range of private-use characters from 0xEF80 to -- 0xEFFF designated for "encoding hacks" by the ConScript Unicode Registery -- to encode these characters. -- -- However, people didn't like this because it means we don't get -- guaranteed roundtripping for byte sequences that look like a UTF-8 -- encoded codepoint 0xEFxx. -- -- So now like PEP383 we use lone surrogate codepoints 0xDCxx to escape -- undecodable bytes, even though that may confuse Unicode processing -- software written in Haskell. This guarantees roundtripping because -- unicode input that includes lone surrogate codepoints is invalid by -- definition. -- -- -- When we used private-use characters there was a technical problem when it -- came to encoding back to bytes using iconv. The iconv code will not fail when -- it tries to encode a private-use character (as it would if trying to encode -- a surrogate), which means that we wouldn't get a chance to replace it -- with the byte we originally escaped. -- -- To work around this, when filling the buffer to be encoded (in -- writeBlocks/withEncodedCString/newEncodedCString), we replaced the -- private-use characters with lone surrogates again! Likewise, when -- reading from a buffer (unpack/unpack_nl/peekEncodedCString) we had -- to do the inverse process. -- -- The user of String would never see these lone surrogates, but it -- ensured that iconv will throw an error when encountering them. We -- used lone surrogates in the range 0xDC00 to 0xDCFF for this purpose. codingFailureModeSuffix :: CodingFailureMode -> String codingFailureModeSuffix ErrorOnCodingFailure = "" codingFailureModeSuffix IgnoreCodingFailure = "//IGNORE" codingFailureModeSuffix TransliterateCodingFailure = "//TRANSLIT" codingFailureModeSuffix RoundtripFailure = "//ROUNDTRIP" -- | In transliterate mode, we use this character when decoding -- unknown bytes. -- -- This is the defined Unicode replacement character: -- <http://www.fileformat.info/info/unicode/char/0fffd/index.htm> unrepresentableChar :: Char unrepresentableChar = '\xFFFD' -- It is extraordinarily important that this series of -- predicates/transformers gets inlined, because they tend to be used -- in inner loops related to text encoding. In particular, -- surrogatifyRoundtripCharacter must be inlined (see #5536) -- | Some characters are actually "surrogate" codepoints defined for -- use in UTF-16. We need to signal an invalid character if we detect -- them when encoding a sequence of 'Char's into 'Word8's because they -- won't give valid Unicode. -- -- We may also need to signal an invalid character if we detect them -- when encoding a sequence of 'Char's into 'Word8's because the -- 'RoundtripFailure' mode creates these to round-trip bytes through -- our internal UTF-16 encoding. {-# INLINE isSurrogate #-} isSurrogate :: Char -> Bool isSurrogate c = (0xD800 <= x && x <= 0xDBFF) || (0xDC00 <= x && x <= 0xDFFF) where x = ord c -- Bytes (in Buffer Word8) --> lone surrogates (in Buffer CharBufElem) {-# INLINE escapeToRoundtripCharacterSurrogate #-} escapeToRoundtripCharacterSurrogate :: Word8 -> Char escapeToRoundtripCharacterSurrogate b | b < 128 = chr (fromIntegral b) -- Disallow 'smuggling' of ASCII bytes. For roundtripping to -- work, this assumes encoding is ASCII-superset. | otherwise = chr (0xDC00 + fromIntegral b) -- Lone surrogates (in Buffer CharBufElem) --> bytes (in Buffer Word8) {-# INLINE unescapeRoundtripCharacterSurrogate #-} unescapeRoundtripCharacterSurrogate :: Char -> Maybe Word8 unescapeRoundtripCharacterSurrogate c | 0xDC80 <= x && x < 0xDD00 = Just (fromIntegral x) -- Discard high byte | otherwise = Nothing where x = ord c recoverDecode :: CodingFailureMode -> Buffer Word8 -> Buffer Char -> IO (Buffer Word8, Buffer Char) recoverDecode cfm input@Buffer{ bufRaw=iraw, bufL=ir, bufR=_ } output@Buffer{ bufRaw=oraw, bufL=_, bufR=ow } = do --puts $ "recoverDecode " ++ show ir case cfm of ErrorOnCodingFailure -> ioe_decodingError IgnoreCodingFailure -> return (input { bufL=ir+1 }, output) TransliterateCodingFailure -> do ow' <- writeCharBuf oraw ow unrepresentableChar return (input { bufL=ir+1 }, output { bufR=ow' }) RoundtripFailure -> do b <- readWord8Buf iraw ir ow' <- writeCharBuf oraw ow (escapeToRoundtripCharacterSurrogate b) return (input { bufL=ir+1 }, output { bufR=ow' }) recoverEncode :: CodingFailureMode -> Buffer Char -> Buffer Word8 -> IO (Buffer Char, Buffer Word8) recoverEncode cfm input@Buffer{ bufRaw=iraw, bufL=ir, bufR=_ } output@Buffer{ bufRaw=oraw, bufL=_, bufR=ow } = do (c,ir') <- readCharBuf iraw ir --puts $ "recoverEncode " ++ show ir ++ " " ++ show ir' case cfm of IgnoreCodingFailure -> return (input { bufL=ir' }, output) TransliterateCodingFailure -> do if c == '?' then return (input { bufL=ir' }, output) else do -- XXX: evil hack! To implement transliteration, we just -- poke an ASCII ? into the input buffer and tell the caller -- to try and decode again. This is *probably* safe given -- current uses of TextEncoding. -- -- The "if" test above ensures we skip if the encoding fails -- to deal with the ?, though this should never happen in -- practice as all encodings are in fact capable of -- reperesenting all ASCII characters. _ir' <- writeCharBuf iraw ir '?' return (input, output) -- This implementation does not work because e.g. UTF-16 -- requires 2 bytes to encode a simple ASCII value --writeWord8Buf oraw ow unrepresentableByte --return (input { bufL=ir' }, output { bufR=ow+1 }) RoundtripFailure | Just x <- unescapeRoundtripCharacterSurrogate c -> do writeWord8Buf oraw ow x return (input { bufL=ir' }, output { bufR=ow+1 }) _ -> ioe_encodingError ioe_decodingError :: IO a ioe_decodingError = ioException (IOError Nothing InvalidArgument "recoverDecode" "invalid byte sequence" Nothing Nothing) ioe_encodingError :: IO a ioe_encodingError = ioException (IOError Nothing InvalidArgument "recoverEncode" "invalid character" Nothing Nothing)