module GHC.Tc.Gen.Expr
( tcCheckPolyExpr,
tcCheckMonoExpr, tcCheckMonoExprNC, tcMonoExpr, tcMonoExprNC,
tcInferSigma, tcInferRho, tcInferRhoNC,
tcExpr,
tcSyntaxOp, tcSyntaxOpGen, SyntaxOpType(..), synKnownType,
tcCheckId,
addAmbiguousNameErr,
getFixedTyVars ) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Tc.Gen.Splice( tcSpliceExpr, tcTypedBracket, tcUntypedBracket )
import GHC.Builtin.Names.TH( liftStringName, liftName )
import GHC.Hs
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Unify
import GHC.Types.Basic
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Gen.Bind ( chooseInferredQuantifiers, tcLocalBinds )
import GHC.Tc.Gen.Sig ( tcUserTypeSig, tcInstSig )
import GHC.Tc.Solver ( simplifyInfer, InferMode(..) )
import GHC.Tc.Instance.Family ( tcGetFamInstEnvs, tcLookupDataFamInst, tcLookupDataFamInst_maybe )
import GHC.Core.FamInstEnv ( FamInstEnvs )
import GHC.Rename.Env ( addUsedGRE )
import GHC.Rename.Utils ( addNameClashErrRn, unknownSubordinateErr )
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.Arrow
import GHC.Tc.Gen.Match
import GHC.Tc.Gen.HsType
import GHC.Tc.TyCl.PatSyn ( tcPatSynBuilderOcc, nonBidirectionalErr )
import GHC.Tc.Gen.Pat
import GHC.Tc.Utils.TcMType
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType as TcType
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCo.Subst (substTyWithInScope)
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Types.Var.Set
import GHC.Builtin.Types
import GHC.Builtin.PrimOps( tagToEnumKey )
import GHC.Builtin.Names
import GHC.Driver.Session
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Types.Var.Env ( emptyTidyEnv, mkInScopeSet )
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Utils.Outputable as Outputable
import GHC.Data.FastString
import Control.Monad
import GHC.Core.Class(classTyCon)
import GHC.Types.Unique.Set ( nonDetEltsUniqSet )
import qualified GHC.LanguageExtensions as LangExt
import Data.Function
import Data.List (partition, sortBy, groupBy, intersect)
import qualified Data.Set as Set
tcCheckPolyExpr, tcCheckPolyExprNC
:: LHsExpr GhcRn
-> TcSigmaType
-> TcM (LHsExpr GhcTc)
tcCheckPolyExpr expr res_ty = tcPolyExpr expr (mkCheckExpType res_ty)
tcCheckPolyExprNC expr res_ty = tcPolyExprNC expr (mkCheckExpType res_ty)
tcPolyExpr, tcPolyExprNC
:: LHsExpr GhcRn -> ExpSigmaType
-> TcM (LHsExpr GhcTc)
tcPolyExpr expr res_ty
= addExprCtxt expr $
do { traceTc "tcPolyExpr" (ppr res_ty)
; tcPolyExprNC expr res_ty }
tcPolyExprNC (L loc expr) res_ty
= set_loc_and_ctxt loc expr $
do { traceTc "tcPolyExprNC" (ppr res_ty)
; (wrap, expr') <- tcSkolemiseET GenSigCtxt res_ty $ \ res_ty ->
tcExpr expr res_ty
; return $ L loc (mkHsWrap wrap expr') }
where
set_loc_and_ctxt l e m = do
inGenCode <- inGeneratedCode
if inGenCode && not (isGeneratedSrcSpan l)
then setSrcSpan l $ addExprCtxt (L l e) m
else setSrcSpan l m
tcInferSigma :: LHsExpr GhcRn -> TcM (LHsExpr GhcTc, TcSigmaType)
tcInferSigma le@(L loc expr)
= addExprCtxt le $ setSrcSpan loc $
do { (fun, args, ty) <- tcInferApp expr
; return (L loc (applyHsArgs fun args), ty) }
tcCheckMonoExpr, tcCheckMonoExprNC
:: LHsExpr GhcRn
-> TcRhoType
-> TcM (LHsExpr GhcTc)
tcCheckMonoExpr expr res_ty = tcMonoExpr expr (mkCheckExpType res_ty)
tcCheckMonoExprNC expr res_ty = tcMonoExprNC expr (mkCheckExpType res_ty)
tcMonoExpr, tcMonoExprNC
:: LHsExpr GhcRn
-> ExpRhoType
-> TcM (LHsExpr GhcTc)
tcMonoExpr expr res_ty
= addExprCtxt expr $
tcMonoExprNC expr res_ty
tcMonoExprNC (L loc expr) res_ty
= setSrcSpan loc $
do { expr' <- tcExpr expr res_ty
; return (L loc expr') }
tcInferRho, tcInferRhoNC :: LHsExpr GhcRn -> TcM (LHsExpr GhcTc, TcRhoType)
tcInferRho le = addExprCtxt le (tcInferRhoNC le)
tcInferRhoNC (L loc expr)
= setSrcSpan loc $
do { (expr', rho) <- tcInfer (tcExpr expr)
; return (L loc expr', rho) }
tcLExpr, tcLExprNC
:: LHsExpr GhcRn
-> ExpRhoType
-> TcM (LHsExpr GhcTc)
tcLExpr expr res_ty
= setSrcSpan (getLoc expr) $ addExprCtxt expr (tcLExprNC expr res_ty)
tcLExprNC (L loc expr) res_ty
= setSrcSpan loc $
do { expr' <- tcExpr expr res_ty
; return (L loc expr') }
tcExpr :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
tcExpr (HsVar _ (L _ name)) res_ty = tcCheckId name res_ty
tcExpr e@(HsUnboundVar _ uv) res_ty = tcUnboundId e uv res_ty
tcExpr e@(HsApp {}) res_ty = tcApp e res_ty
tcExpr e@(HsAppType {}) res_ty = tcApp e res_ty
tcExpr e@(HsLit x lit) res_ty
= do { let lit_ty = hsLitType lit
; tcWrapResult e (HsLit x (convertLit lit)) lit_ty res_ty }
tcExpr (HsPar x expr) res_ty = do { expr' <- tcLExprNC expr res_ty
; return (HsPar x expr') }
tcExpr (HsPragE x prag expr) res_ty
= do { expr' <- tcLExpr expr res_ty
; return (HsPragE x (tcExprPrag prag) expr') }
tcExpr (HsOverLit x lit) res_ty
= do { lit' <- newOverloadedLit lit res_ty
; return (HsOverLit x lit') }
tcExpr (NegApp x expr neg_expr) res_ty
= do { (expr', neg_expr')
<- tcSyntaxOp NegateOrigin neg_expr [SynAny] res_ty $
\[arg_ty] [arg_mult] ->
tcScalingUsage arg_mult $ tcLExpr expr (mkCheckExpType arg_ty)
; return (NegApp x expr' neg_expr') }
tcExpr e@(HsIPVar _ x) res_ty
= do {
ip_ty <- newOpenFlexiTyVarTy
; let ip_name = mkStrLitTy (hsIPNameFS x)
; ipClass <- tcLookupClass ipClassName
; ip_var <- emitWantedEvVar origin (mkClassPred ipClass [ip_name, ip_ty])
; tcWrapResult e
(fromDict ipClass ip_name ip_ty (HsVar noExtField (noLoc ip_var)))
ip_ty res_ty }
where
fromDict ipClass x ty = mkHsWrap $ mkWpCastR $
unwrapIP $ mkClassPred ipClass [x,ty]
origin = IPOccOrigin x
tcExpr e@(HsOverLabel _ mb_fromLabel l) res_ty
= do {
loc <- getSrcSpanM
; case mb_fromLabel of
Just fromLabel -> tcExpr (applyFromLabel loc fromLabel) res_ty
Nothing -> do { isLabelClass <- tcLookupClass isLabelClassName
; alpha <- newFlexiTyVarTy liftedTypeKind
; let pred = mkClassPred isLabelClass [lbl, alpha]
; loc <- getSrcSpanM
; var <- emitWantedEvVar origin pred
; tcWrapResult e
(fromDict pred (HsVar noExtField (L loc var)))
alpha res_ty } }
where
fromDict pred = mkHsWrap $ mkWpCastR $ unwrapIP pred
origin = OverLabelOrigin l
lbl = mkStrLitTy l
applyFromLabel loc fromLabel =
HsAppType noExtField
(L loc (HsVar noExtField (L loc fromLabel)))
(mkEmptyWildCardBndrs (L loc (HsTyLit noExtField (HsStrTy NoSourceText l))))
tcExpr (HsLam x match) res_ty
= do { (wrap, match') <- tcMatchLambda herald match_ctxt match res_ty
; return (mkHsWrap wrap (HsLam x match')) }
where
match_ctxt = MC { mc_what = LambdaExpr, mc_body = tcBody }
herald = sep [ text "The lambda expression" <+>
quotes (pprSetDepth (PartWay 1) $
pprMatches match),
text "has"]
tcExpr e@(HsLamCase x matches) res_ty
= do { (wrap, matches')
<- tcMatchLambda msg match_ctxt matches res_ty
; return (mkHsWrap wrap $ HsLamCase x matches') }
where
msg = sep [ text "The function" <+> quotes (ppr e)
, text "requires"]
match_ctxt = MC { mc_what = CaseAlt, mc_body = tcBody }
tcExpr e@(ExprWithTySig _ expr hs_ty) res_ty
= do { (expr', poly_ty) <- tcExprWithSig expr hs_ty
; tcWrapResult e expr' poly_ty res_ty }
tcExpr expr@(OpApp fix arg1 op arg2) res_ty
| (L loc (HsVar _ (L lv op_name))) <- op
, op_name `hasKey` dollarIdKey
= do { traceTc "Application rule" (ppr op)
; (arg1', arg1_ty) <- addErrCtxt (funAppCtxt op arg1 1) $
tcInferRhoNC arg1
; let doc = text "The first argument of ($) takes"
orig1 = lexprCtOrigin arg1
; (wrap_arg1, [arg2_sigma], op_res_ty) <-
matchActualFunTysRho doc orig1 (Just (unLoc arg1)) 1 arg1_ty
; mult_wrap <- tcSubMult AppOrigin Many (scaledMult arg2_sigma)
; arg2' <- tcArg nl_op arg2 arg2_sigma 2
; _ <- unifyKind (Just (XHsType $ NHsCoreTy (scaledThing arg2_sigma)))
(tcTypeKind (scaledThing arg2_sigma)) liftedTypeKind
; op_id <- tcLookupId op_name
; let op' = L loc (mkHsWrap (mkWpTyApps [ getRuntimeRep op_res_ty
, scaledThing arg2_sigma
, op_res_ty])
(HsVar noExtField (L lv op_id)))
expr' = OpApp fix (mkLHsWrap (wrap_arg1 <.> mult_wrap) arg1') op' arg2'
; tcWrapResult expr expr' op_res_ty res_ty }
| L loc (HsRecFld _ (Ambiguous _ lbl)) <- op
, Just sig_ty <- obviousSig (unLoc arg1)
= do { sig_tc_ty <- tcHsSigWcType ExprSigCtxt sig_ty
; sel_name <- disambiguateSelector lbl sig_tc_ty
; let op' = L loc (HsRecFld noExtField (Unambiguous sel_name lbl))
; tcExpr (OpApp fix arg1 op' arg2) res_ty
}
| otherwise
= do { traceTc "Non Application rule" (ppr op)
; (op', op_ty) <- tcInferRhoNC op
; (wrap_fun, [arg1_ty, arg2_ty], op_res_ty)
<- matchActualFunTysRho (mk_op_msg op) fn_orig
(Just (unLoc op)) 2 op_ty
; arg1' <- tcArg nl_op arg1 arg1_ty 1
; arg2' <- tcArg nl_op arg2 arg2_ty 2
; let expr' = OpApp fix arg1' (mkLHsWrap wrap_fun op') arg2'
; tcWrapResult expr expr' op_res_ty res_ty }
where
fn_orig = exprCtOrigin nl_op
nl_op = unLoc op
tcExpr expr@(SectionR x op arg2) res_ty
= do { (op', op_ty) <- tcInferRhoNC op
; (wrap_fun, [Scaled arg1_mult arg1_ty, arg2_ty], op_res_ty)
<- matchActualFunTysRho (mk_op_msg op) fn_orig
(Just (unLoc op)) 2 op_ty
; arg2' <- tcArg (unLoc op) arg2 arg2_ty 2
; let expr' = SectionR x (mkLHsWrap wrap_fun op') arg2'
act_res_ty = mkVisFunTy arg1_mult arg1_ty op_res_ty
; tcWrapResultMono expr expr' act_res_ty res_ty }
where
fn_orig = lexprCtOrigin op
tcExpr expr@(SectionL x arg1 op) res_ty
= do { (op', op_ty) <- tcInferRhoNC op
; dflags <- getDynFlags
; let n_reqd_args | xopt LangExt.PostfixOperators dflags = 1
| otherwise = 2
; (wrap_fn, (arg1_ty:arg_tys), op_res_ty)
<- matchActualFunTysRho (mk_op_msg op) fn_orig
(Just (unLoc op)) n_reqd_args op_ty
; arg1' <- tcArg (unLoc op) arg1 arg1_ty 1
; let expr' = SectionL x arg1' (mkLHsWrap wrap_fn op')
act_res_ty = mkVisFunTys arg_tys op_res_ty
; tcWrapResultMono expr expr' act_res_ty res_ty }
where
fn_orig = lexprCtOrigin op
tcExpr expr@(ExplicitTuple x tup_args boxity) res_ty
| all tupArgPresent tup_args
= do { let arity = length tup_args
tup_tc = tupleTyCon boxity arity
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp tup_tc res_ty
; let arg_tys' = case boxity of Unboxed -> drop arity arg_tys
Boxed -> arg_tys
; tup_args1 <- tcTupArgs tup_args arg_tys'
; return $ mkHsWrapCo coi (ExplicitTuple x tup_args1 boxity) }
| otherwise
=
do { let arity = length tup_args
; arg_tys <- case boxity of
{ Boxed -> newFlexiTyVarTys arity liftedTypeKind
; Unboxed -> replicateM arity newOpenFlexiTyVarTy }
; tup_args1 <- tcTupArgs tup_args arg_tys
; let expr' = ExplicitTuple x tup_args1 boxity
missing_tys = [Scaled mult ty | (L _ (Missing (Scaled mult _)), ty) <- zip tup_args1 arg_tys]
act_res_ty
= mkVisFunTys missing_tys (mkTupleTy1 boxity arg_tys)
; traceTc "ExplicitTuple" (ppr act_res_ty $$ ppr res_ty)
; tcWrapResultMono expr expr' act_res_ty res_ty }
tcExpr (ExplicitSum _ alt arity expr) res_ty
= do { let sum_tc = sumTyCon arity
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp sum_tc res_ty
;
let arg_tys' = drop arity arg_tys
; expr' <- tcCheckPolyExpr expr (arg_tys' `getNth` (alt 1))
; return $ mkHsWrapCo coi (ExplicitSum arg_tys' alt arity expr' ) }
tcExpr (ExplicitList _ witness exprs) res_ty
= case witness of
Nothing -> do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; exprs' <- mapM (tc_elt elt_ty) exprs
; return $
mkHsWrapCo coi $ ExplicitList elt_ty Nothing exprs' }
Just fln -> do { ((exprs', elt_ty), fln')
<- tcSyntaxOp ListOrigin fln
[synKnownType intTy, SynList] res_ty $
\ [elt_ty] [_int_mul, list_mul] ->
do { exprs' <-
mapM (tcScalingUsage list_mul . tc_elt elt_ty) exprs
; return (exprs', elt_ty) }
; return $ ExplicitList elt_ty (Just fln') exprs' }
where tc_elt elt_ty expr = tcCheckPolyExpr expr elt_ty
tcExpr (HsLet x (L l binds) expr) res_ty
= do { (binds', expr') <- tcLocalBinds binds $
tcLExpr expr res_ty
; return (HsLet x (L l binds') expr') }
tcExpr (HsCase x scrut matches) res_ty
= do {
let mult = Many
; (scrut', scrut_ty) <- tcScalingUsage mult $ tcInferRho scrut
; traceTc "HsCase" (ppr scrut_ty)
; matches' <- tcMatchesCase match_ctxt (Scaled mult scrut_ty) matches res_ty
; return (HsCase x scrut' matches') }
where
match_ctxt = MC { mc_what = CaseAlt,
mc_body = tcBody }
tcExpr (HsIf x pred b1 b2) res_ty
= do { pred' <- tcLExpr pred (mkCheckExpType boolTy)
; (u1,b1') <- tcCollectingUsage $ tcLExpr b1 res_ty
; (u2,b2') <- tcCollectingUsage $ tcLExpr b2 res_ty
; tcEmitBindingUsage (supUE u1 u2)
; return (HsIf x pred' b1' b2') }
tcExpr (HsMultiIf _ alts) res_ty
= do { alts' <- mapM (wrapLocM $ tcGRHS match_ctxt res_ty) alts
; res_ty <- readExpType res_ty
; return (HsMultiIf res_ty alts') }
where match_ctxt = MC { mc_what = IfAlt, mc_body = tcBody }
tcExpr (HsDo _ do_or_lc stmts) res_ty
= do { expr' <- tcDoStmts do_or_lc stmts res_ty
; return expr' }
tcExpr (HsProc x pat cmd) res_ty
= do { (pat', cmd', coi) <- tcProc pat cmd res_ty
; return $ mkHsWrapCo coi (HsProc x pat' cmd') }
tcExpr (HsStatic fvs expr) res_ty
= do { res_ty <- expTypeToType res_ty
; (co, (p_ty, expr_ty)) <- matchExpectedAppTy res_ty
; (expr', lie) <- captureConstraints $
addErrCtxt (hang (text "In the body of a static form:")
2 (ppr expr)
) $
tcCheckPolyExprNC expr expr_ty
; mapM_ checkClosedInStaticForm $ nonDetEltsUniqSet fvs
; typeableClass <- tcLookupClass typeableClassName
; _ <- emitWantedEvVar StaticOrigin $
mkTyConApp (classTyCon typeableClass)
[liftedTypeKind, expr_ty]
; emitStaticConstraints lie
; fromStaticPtr <- newMethodFromName StaticOrigin fromStaticPtrName
[p_ty]
; let wrap = mkWpTyApps [expr_ty]
; loc <- getSrcSpanM
; return $ mkHsWrapCo co $ HsApp noExtField
(L loc $ mkHsWrap wrap fromStaticPtr)
(L loc (HsStatic fvs expr'))
}
tcExpr expr@(RecordCon { rcon_con_name = L loc con_name
, rcon_flds = rbinds }) res_ty
= do { con_like <- tcLookupConLike con_name
; checkMissingFields con_like rbinds
; (con_expr, con_sigma) <- tcInferId con_name
; (con_wrap, con_tau) <- topInstantiate orig con_sigma
; let arity = conLikeArity con_like
Right (arg_tys, actual_res_ty) = tcSplitFunTysN arity con_tau
; case conLikeWrapId_maybe con_like of {
Nothing -> nonBidirectionalErr (conLikeName con_like) ;
Just con_id ->
do { rbinds' <- tcRecordBinds con_like (map scaledThing arg_tys) rbinds
; let rcon_tc = RecordConTc
{ rcon_con_like = con_like
, rcon_con_expr = mkHsWrap con_wrap con_expr }
expr' = RecordCon { rcon_ext = rcon_tc
, rcon_con_name = L loc con_id
, rcon_flds = rbinds' }
; tcWrapResultMono expr expr' actual_res_ty res_ty } } }
where
orig = OccurrenceOf con_name
tcExpr expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = rbnds }) res_ty
= ASSERT( notNull rbnds )
do {
(record_expr', record_rho) <- tcScalingUsage Many $ tcInferRho record_expr
; rbinds <- disambiguateRecordBinds record_expr record_rho rbnds res_ty
; let upd_flds = map (unLoc . hsRecFieldLbl . unLoc) rbinds
upd_fld_occs = map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc) upd_flds
sel_ids = map selectorAmbiguousFieldOcc upd_flds
; let bad_guys = [ setSrcSpan loc $ addErrTc (notSelector fld_name)
| fld <- rbinds,
let L loc sel_id = hsRecUpdFieldId (unLoc fld),
not (isRecordSelector sel_id),
let fld_name = idName sel_id ]
; unless (null bad_guys) (sequence bad_guys >> failM)
; let (data_sels, pat_syn_sels) =
partition isDataConRecordSelector sel_ids
; MASSERT( all isPatSynRecordSelector pat_syn_sels )
; checkTc ( null data_sels || null pat_syn_sels )
( mixedSelectors data_sels pat_syn_sels )
; let
sel_id : _ = sel_ids
mtycon :: Maybe TyCon
mtycon = case idDetails sel_id of
RecSelId (RecSelData tycon) _ -> Just tycon
_ -> Nothing
con_likes :: [ConLike]
con_likes = case idDetails sel_id of
RecSelId (RecSelData tc) _
-> map RealDataCon (tyConDataCons tc)
RecSelId (RecSelPatSyn ps) _
-> [PatSynCon ps]
_ -> panic "tcRecordUpd"
relevant_cons = conLikesWithFields con_likes upd_fld_occs
; checkTc (not (null relevant_cons)) (badFieldsUpd rbinds con_likes)
; let con1 = ASSERT( not (null relevant_cons) ) head relevant_cons
(con1_tvs, _, _, _prov_theta, req_theta, scaled_con1_arg_tys, _)
= conLikeFullSig con1
con1_arg_tys = map scaledThing scaled_con1_arg_tys
con1_flds = map flLabel $ conLikeFieldLabels con1
con1_tv_tys = mkTyVarTys con1_tvs
con1_res_ty = case mtycon of
Just tc -> mkFamilyTyConApp tc con1_tv_tys
Nothing -> conLikeResTy con1 con1_tv_tys
; unless (isJust $ conLikeWrapId_maybe con1)
(nonBidirectionalErr (conLikeName con1))
; let flds1_w_tys = zipEqual "tcExpr:RecConUpd" con1_flds con1_arg_tys
bad_upd_flds = filter bad_fld flds1_w_tys
con1_tv_set = mkVarSet con1_tvs
bad_fld (fld, ty) = fld `elem` upd_fld_occs &&
not (tyCoVarsOfType ty `subVarSet` con1_tv_set)
; checkTc (null bad_upd_flds) (badFieldTypes bad_upd_flds)
; let fixed_tvs = getFixedTyVars upd_fld_occs con1_tvs relevant_cons
is_fixed_tv tv = tv `elemVarSet` fixed_tvs
mk_inst_ty :: TCvSubst -> (TyVar, TcType) -> TcM (TCvSubst, TcType)
mk_inst_ty subst (tv, result_inst_ty)
| is_fixed_tv tv
= return (extendTvSubst subst tv result_inst_ty, result_inst_ty)
| otherwise
= do { (subst', new_tv) <- newMetaTyVarX subst tv
; return (subst', mkTyVarTy new_tv) }
; (result_subst, con1_tvs') <- newMetaTyVars con1_tvs
; let result_inst_tys = mkTyVarTys con1_tvs'
init_subst = mkEmptyTCvSubst (getTCvInScope result_subst)
; (scrut_subst, scrut_inst_tys) <- mapAccumLM mk_inst_ty init_subst
(con1_tvs `zip` result_inst_tys)
; let rec_res_ty = TcType.substTy result_subst con1_res_ty
scrut_ty = TcType.substTy scrut_subst con1_res_ty
con1_arg_tys' = map (TcType.substTy result_subst) con1_arg_tys
; co_scrut <- unifyType (Just (unLoc record_expr)) record_rho scrut_ty
; rbinds' <- tcRecordUpd con1 con1_arg_tys' rbinds
; let theta' = substThetaUnchecked scrut_subst (conLikeStupidTheta con1)
; instStupidTheta RecordUpdOrigin theta'
; let fam_co :: HsWrapper
fam_co | Just tycon <- mtycon
, Just co_con <- tyConFamilyCoercion_maybe tycon
= mkWpCastR (mkTcUnbranchedAxInstCo co_con scrut_inst_tys [])
| otherwise
= idHsWrapper
; let req_theta' = substThetaUnchecked scrut_subst req_theta
; req_wrap <- instCallConstraints RecordUpdOrigin req_theta'
; let upd_tc = RecordUpdTc { rupd_cons = relevant_cons
, rupd_in_tys = scrut_inst_tys
, rupd_out_tys = result_inst_tys
, rupd_wrap = req_wrap }
expr' = RecordUpd { rupd_expr = mkLHsWrap fam_co $
mkLHsWrapCo co_scrut record_expr'
, rupd_flds = rbinds'
, rupd_ext = upd_tc }
; tcWrapResult expr expr' rec_res_ty res_ty }
tcExpr e@(HsRecFld _ f) res_ty
= tcCheckRecSelId e f res_ty
tcExpr (ArithSeq _ witness seq) res_ty
= tcArithSeq witness seq res_ty
tcExpr (HsSpliceE _ (HsSpliced _ mod_finalizers (HsSplicedExpr expr)))
res_ty
= do addModFinalizersWithLclEnv mod_finalizers
tcExpr expr res_ty
tcExpr (HsSpliceE _ splice) res_ty = tcSpliceExpr splice res_ty
tcExpr e@(HsBracket _ brack) res_ty = tcTypedBracket e brack res_ty
tcExpr e@(HsRnBracketOut _ brack ps) res_ty = tcUntypedBracket e brack ps res_ty
tcExpr (XExpr (HsExpanded a b)) t
= fmap (XExpr . ExpansionExpr . HsExpanded a) $
setSrcSpan generatedSrcSpan (tcExpr b t)
tcExpr other _ = pprPanic "tcLExpr" (ppr other)
tcExprPrag :: HsPragE GhcRn -> HsPragE GhcTc
tcExprPrag (HsPragSCC x1 src ann) = HsPragSCC x1 src ann
tcExprPrag (HsPragTick x1 src info srcInfo) = HsPragTick x1 src info srcInfo
tcExprWithSig :: LHsExpr GhcRn -> LHsSigWcType (NoGhcTc GhcRn)
-> TcM (HsExpr GhcTc, TcSigmaType)
tcExprWithSig expr hs_ty
= do { sig_info <- checkNoErrs $
tcUserTypeSig loc hs_ty Nothing
; (expr', poly_ty) <- tcExprSig expr sig_info
; return (ExprWithTySig noExtField expr' hs_ty, poly_ty) }
where
loc = getLoc (hsSigWcType hs_ty)
tcArithSeq :: Maybe (SyntaxExpr GhcRn) -> ArithSeqInfo GhcRn -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcArithSeq witness seq@(From expr) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr' <-tcScalingUsage elt_mult $ tcCheckPolyExpr expr elt_ty
; enum_from <- newMethodFromName (ArithSeqOrigin seq)
enumFromName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from wit' (From expr') }
tcArithSeq witness seq@(FromThen expr1 expr2) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; enum_from_then <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_then wit' (FromThen expr1' expr2') }
tcArithSeq witness seq@(FromTo expr1 expr2) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; enum_from_to <- newMethodFromName (ArithSeqOrigin seq)
enumFromToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_to wit' (FromTo expr1' expr2') }
tcArithSeq witness seq@(FromThenTo expr1 expr2 expr3) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; expr3' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr3 elt_ty
; eft <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq eft wit' (FromThenTo expr1' expr2' expr3') }
arithSeqEltType :: Maybe (SyntaxExpr GhcRn) -> ExpRhoType
-> TcM (HsWrapper, Mult, TcType, Maybe (SyntaxExpr GhcTc))
arithSeqEltType Nothing res_ty
= do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; return (mkWpCastN coi, One, elt_ty, Nothing) }
arithSeqEltType (Just fl) res_ty
= do { ((elt_mult, elt_ty), fl')
<- tcSyntaxOp ListOrigin fl [SynList] res_ty $
\ [elt_ty] [elt_mult] -> return (elt_mult, elt_ty)
; return (idHsWrapper, elt_mult, elt_ty, Just fl') }
data HsExprArg id
= HsEValArg SrcSpan
(LHsExpr (GhcPass id))
| HsETypeArg SrcSpan
(LHsWcType (NoGhcTc (GhcPass id)))
!(XExprTypeArg id)
| HsEPrag SrcSpan
(HsPragE (GhcPass id))
| HsEPar SrcSpan
| HsEWrap !(XArgWrap id)
type LHsExprArgIn = HsExprArg 'Renamed
type LHsExprArgOut = HsExprArg 'Typechecked
instance OutputableBndrId id => Outputable (HsExprArg id) where
ppr (HsEValArg _ tm) = ppr tm
ppr (HsEPrag _ p) = text "HsPrag" <+> ppr p
ppr (HsETypeArg _ hs_ty _) = char '@' <> ppr hs_ty
ppr (HsEPar _) = text "HsEPar"
ppr (HsEWrap w) = case ghcPass @id of
GhcTc -> text "HsEWrap" <+> ppr w
_ -> empty
type family XExprTypeArg id where
XExprTypeArg 'Parsed = NoExtField
XExprTypeArg 'Renamed = NoExtField
XExprTypeArg 'Typechecked = Type
type family XArgWrap id where
XArgWrap 'Parsed = NoExtCon
XArgWrap 'Renamed = NoExtCon
XArgWrap 'Typechecked = HsWrapper
addArgWrap :: HsWrapper -> [LHsExprArgOut] -> [LHsExprArgOut]
addArgWrap wrap args
| isIdHsWrapper wrap = args
| otherwise = HsEWrap wrap : args
collectHsArgs :: HsExpr GhcRn -> (HsExpr GhcRn, [LHsExprArgIn])
collectHsArgs e = go e []
where
go (HsPar _ (L l fun)) args = go fun (HsEPar l : args)
go (HsPragE _ p (L l fun)) args = go fun (HsEPrag l p : args)
go (HsApp _ (L l fun) arg) args = go fun (HsEValArg l arg : args)
go (HsAppType _ (L l fun) hs_ty) args = go fun (HsETypeArg l hs_ty noExtField : args)
go e args = (e,args)
applyHsArgs :: HsExpr GhcTc -> [LHsExprArgOut]-> HsExpr GhcTc
applyHsArgs fun args
= go fun args
where
go fun [] = fun
go fun (HsEWrap wrap : args) = go (mkHsWrap wrap fun) args
go fun (HsEValArg l arg : args) = go (HsApp noExtField (L l fun) arg) args
go fun (HsETypeArg l hs_ty ty : args) = go (HsAppType ty (L l fun) hs_ty) args
go fun (HsEPar l : args) = go (HsPar noExtField (L l fun)) args
go fun (HsEPrag l p : args) = go (HsPragE noExtField p (L l fun)) args
isHsValArg :: HsExprArg id -> Bool
isHsValArg (HsEValArg {}) = True
isHsValArg _ = False
isArgPar :: HsExprArg id -> Bool
isArgPar (HsEPar {}) = True
isArgPar _ = False
getFunLoc :: [HsExprArg 'Renamed] -> Maybe SrcSpan
getFunLoc [] = Nothing
getFunLoc (a:_) = Just $ case a of
HsEValArg l _ -> l
HsETypeArg l _ _ -> l
HsEPrag l _ -> l
HsEPar l -> l
tcApp :: HsExpr GhcRn
-> ExpRhoType -> TcM (HsExpr GhcTc)
tcApp expr res_ty
= do { (fun, args, app_res_ty) <- tcInferApp expr
; if isTagToEnum fun
then tcTagToEnum expr fun args app_res_ty res_ty
else
do { let expr' = applyHsArgs fun args
; addFunResCtxt True fun app_res_ty res_ty $
tcWrapResult expr expr' app_res_ty res_ty } }
tcInferApp :: HsExpr GhcRn
-> TcM ( HsExpr GhcTc
, [LHsExprArgOut]
, TcSigmaType)
tcInferApp expr
|
HsRecFld _ fld_lbl <- fun
, Ambiguous _ lbl <- fld_lbl
, HsEValArg _ (L _ arg) : _ <- filterOut isArgPar args
, Just sig_ty <- obviousSig arg
= do { sig_tc_ty <- tcHsSigWcType ExprSigCtxt sig_ty
; sel_name <- disambiguateSelector lbl sig_tc_ty
; (tc_fun, fun_ty) <- tcInferRecSelId (Unambiguous sel_name lbl)
; tcInferApp_finish fun tc_fun fun_ty args }
| otherwise
= do { (tc_fun, fun_ty) <- set_fun_loc (tcInferAppHead fun)
; tcInferApp_finish fun tc_fun fun_ty args }
where
(fun, args) = collectHsArgs expr
set_fun_loc thing_inside
= case getFunLoc args of
Nothing -> thing_inside
Just loc -> setSrcSpan loc thing_inside
tcInferApp_finish
:: HsExpr GhcRn
-> HsExpr GhcTc -> TcSigmaType
-> [LHsExprArgIn]
-> TcM (HsExpr GhcTc, [LHsExprArgOut], TcSigmaType)
tcInferApp_finish rn_fun tc_fun fun_sigma rn_args
= do { (tc_args, actual_res_ty) <- tcArgs rn_fun fun_sigma rn_args
; return (tc_fun, tc_args, actual_res_ty) }
mk_op_msg :: LHsExpr GhcRn -> SDoc
mk_op_msg op = text "The operator" <+> quotes (ppr op) <+> text "takes"
tcInferAppHead :: HsExpr GhcRn -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferAppHead e
= case e of
HsVar _ (L _ nm) -> tcInferId nm
HsRecFld _ f -> tcInferRecSelId f
ExprWithTySig _ e hs_ty -> add_ctxt $ tcExprWithSig e hs_ty
_ -> add_ctxt $ tcInfer (tcExpr e)
where
add_ctxt thing = addErrCtxt (exprCtxt e) thing
tcArgs :: HsExpr GhcRn
-> TcSigmaType
-> [LHsExprArgIn]
-> TcM ([LHsExprArgOut], TcSigmaType)
tcArgs fun orig_fun_ty orig_args
= go 1 [] orig_fun_ty orig_args
where
fun_orig = exprCtOrigin fun
herald = sep [ text "The function" <+> quotes (ppr fun)
, text "is applied to"]
n_val_args = count isHsValArg orig_args
fun_is_out_of_scope
= case fun of
HsUnboundVar {} -> True
_ -> False
go :: Int
-> [Scaled TcSigmaType]
-> TcSigmaType
-> [LHsExprArgIn] -> TcM ([LHsExprArgOut], TcSigmaType)
go _ _ fun_ty [] = traceTc "tcArgs:ret" (ppr fun_ty) >> return ([], fun_ty)
go n so_far fun_ty (HsEPar sp : args)
= do { (args', res_ty) <- go n so_far fun_ty args
; return (HsEPar sp : args', res_ty) }
go n so_far fun_ty (HsEPrag sp prag : args)
= do { (args', res_ty) <- go n so_far fun_ty args
; return (HsEPrag sp (tcExprPrag prag) : args', res_ty) }
go n so_far fun_ty (HsETypeArg loc hs_ty_arg _ : args)
| fun_is_out_of_scope
= go (n+1) so_far fun_ty args
| otherwise
= do { (wrap1, upsilon_ty) <- topInstantiateInferred fun_orig fun_ty
; case tcSplitForAllTy_maybe upsilon_ty of
Just (tvb, inner_ty)
| binderArgFlag tvb == Specified ->
do { let tv = binderVar tvb
kind = tyVarKind tv
; ty_arg <- tcHsTypeApp hs_ty_arg kind
; inner_ty <- zonkTcType inner_ty
; let in_scope = mkInScopeSet (tyCoVarsOfTypes [upsilon_ty, ty_arg])
insted_ty = substTyWithInScope in_scope [tv] [ty_arg] inner_ty
; traceTc "VTA" (vcat [ppr tv, debugPprType kind
, debugPprType ty_arg
, debugPprType (tcTypeKind ty_arg)
, debugPprType inner_ty
, debugPprType insted_ty ])
; (args', res_ty) <- go (n+1) so_far insted_ty args
; return ( addArgWrap wrap1 $ HsETypeArg loc hs_ty_arg ty_arg : args'
, res_ty ) }
_ -> ty_app_err upsilon_ty hs_ty_arg }
go n so_far fun_ty (HsEValArg loc arg : args)
= do { (wrap, arg_ty, res_ty)
<- matchActualFunTySigma herald fun_orig (Just fun)
(n_val_args, so_far) fun_ty
; arg' <- tcArg fun arg arg_ty n
; (args', inner_res_ty) <- go (n+1) (arg_ty:so_far) res_ty args
; return ( addArgWrap wrap $ HsEValArg loc arg' : args'
, inner_res_ty ) }
ty_app_err ty arg
= do { (_, ty) <- zonkTidyTcType emptyTidyEnv ty
; failWith $
text "Cannot apply expression of type" <+> quotes (ppr ty) $$
text "to a visible type argument" <+> quotes (ppr arg) }
tcArg :: HsExpr GhcRn
-> LHsExpr GhcRn
-> Scaled TcSigmaType
-> Int
-> TcM (LHsExpr GhcTc)
tcArg fun arg (Scaled mult ty) arg_no
= addErrCtxt (funAppCtxt fun arg arg_no) $
do { traceTc "tcArg" $
vcat [ ppr arg_no <+> text "of" <+> ppr fun
, text "arg type:" <+> ppr ty
, text "arg:" <+> ppr arg ]
; tcScalingUsage mult $ tcCheckPolyExprNC arg ty }
tcTupArgs :: [LHsTupArg GhcRn] -> [TcSigmaType] -> TcM [LHsTupArg GhcTc]
tcTupArgs args tys
= ASSERT( equalLength args tys ) mapM go (args `zip` tys)
where
go (L l (Missing {}), arg_ty) = do { mult <- newFlexiTyVarTy multiplicityTy
; return (L l (Missing (Scaled mult arg_ty))) }
go (L l (Present x expr), arg_ty) = do { expr' <- tcCheckPolyExpr expr arg_ty
; return (L l (Present x expr')) }
tcSyntaxOp :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType]
-> ExpRhoType
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, SyntaxExprTc)
tcSyntaxOp orig expr arg_tys res_ty
= tcSyntaxOpGen orig expr arg_tys (SynType res_ty)
tcSyntaxOpGen :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType]
-> SyntaxOpType
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, SyntaxExprTc)
tcSyntaxOpGen orig (SyntaxExprRn op) arg_tys res_ty thing_inside
= do { (expr, sigma) <- tcInferAppHead op
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma)
; (result, expr_wrap, arg_wraps, res_wrap)
<- tcSynArgA orig sigma arg_tys res_ty $
thing_inside
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma )
; return (result, SyntaxExprTc { syn_expr = mkHsWrap expr_wrap expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap }) }
tcSyntaxOpGen _ NoSyntaxExprRn _ _ _ = panic "tcSyntaxOpGen"
tcSynArgE :: CtOrigin
-> TcSigmaType
-> SyntaxOpType
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, HsWrapper)
tcSynArgE orig sigma_ty syn_ty thing_inside
= do { (skol_wrap, (result, ty_wrapper))
<- tcSkolemise GenSigCtxt sigma_ty $ \ rho_ty ->
go rho_ty syn_ty
; return (result, skol_wrap <.> ty_wrapper) }
where
go rho_ty SynAny
= do { result <- thing_inside [rho_ty] []
; return (result, idHsWrapper) }
go rho_ty SynRho
= do { result <- thing_inside [rho_ty] []
; return (result, idHsWrapper) }
go rho_ty SynList
= do { (list_co, elt_ty) <- matchExpectedListTy rho_ty
; result <- thing_inside [elt_ty] []
; return (result, mkWpCastN list_co) }
go rho_ty (SynFun arg_shape res_shape)
= do { ( match_wrapper
, ( ( (result, arg_ty, res_ty, op_mult)
, res_wrapper )
, arg_wrapper1, [], arg_wrapper2 ) )
<- matchExpectedFunTys herald GenSigCtxt 1 (mkCheckExpType rho_ty) $
\ [arg_ty] res_ty ->
do { arg_tc_ty <- expTypeToType (scaledThing arg_ty)
; res_tc_ty <- expTypeToType res_ty
; MASSERT2( case arg_shape of
SynFun {} -> False;
_ -> True
, text "Too many nested arrows in SyntaxOpType" $$
pprCtOrigin orig )
; let arg_mult = scaledMult arg_ty
; tcSynArgA orig arg_tc_ty [] arg_shape $
\ arg_results arg_res_mults ->
tcSynArgE orig res_tc_ty res_shape $
\ res_results res_res_mults ->
do { result <- thing_inside (arg_results ++ res_results) ([arg_mult] ++ arg_res_mults ++ res_res_mults)
; return (result, arg_tc_ty, res_tc_ty, arg_mult) }}
; return ( result
, match_wrapper <.>
mkWpFun (arg_wrapper2 <.> arg_wrapper1) res_wrapper
(Scaled op_mult arg_ty) res_ty doc ) }
where
herald = text "This rebindable syntax expects a function with"
doc = text "When checking a rebindable syntax operator arising from" <+> ppr orig
go rho_ty (SynType the_ty)
= do { wrap <- tcSubTypePat orig GenSigCtxt the_ty rho_ty
; result <- thing_inside [] []
; return (result, wrap) }
tcSynArgA :: CtOrigin
-> TcSigmaType
-> [SyntaxOpType]
-> SyntaxOpType
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, HsWrapper, [HsWrapper], HsWrapper)
tcSynArgA orig sigma_ty arg_shapes res_shape thing_inside
= do { (match_wrapper, arg_tys, res_ty)
<- matchActualFunTysRho herald orig Nothing
(length arg_shapes) sigma_ty
; ((result, res_wrapper), arg_wrappers)
<- tc_syn_args_e (map scaledThing arg_tys) arg_shapes $ \ arg_results arg_res_mults ->
tc_syn_arg res_ty res_shape $ \ res_results ->
thing_inside (arg_results ++ res_results) (map scaledMult arg_tys ++ arg_res_mults)
; return (result, match_wrapper, arg_wrappers, res_wrapper) }
where
herald = text "This rebindable syntax expects a function with"
tc_syn_args_e :: [TcSigmaType] -> [SyntaxOpType]
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, [HsWrapper])
tc_syn_args_e (arg_ty : arg_tys) (arg_shape : arg_shapes) thing_inside
= do { ((result, arg_wraps), arg_wrap)
<- tcSynArgE orig arg_ty arg_shape $ \ arg1_results arg1_mults ->
tc_syn_args_e arg_tys arg_shapes $ \ args_results args_mults ->
thing_inside (arg1_results ++ args_results) (arg1_mults ++ args_mults)
; return (result, arg_wrap : arg_wraps) }
tc_syn_args_e _ _ thing_inside = (, []) <$> thing_inside [] []
tc_syn_arg :: TcSigmaType -> SyntaxOpType
-> ([TcSigmaType] -> TcM a)
-> TcM (a, HsWrapper)
tc_syn_arg res_ty SynAny thing_inside
= do { result <- thing_inside [res_ty]
; return (result, idHsWrapper) }
tc_syn_arg res_ty SynRho thing_inside
= do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
; result <- thing_inside [rho_ty]
; return (result, inst_wrap) }
tc_syn_arg res_ty SynList thing_inside
= do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
; (list_co, elt_ty) <- matchExpectedListTy rho_ty
; result <- thing_inside [elt_ty]
; return (result, mkWpCastN (mkTcSymCo list_co) <.> inst_wrap) }
tc_syn_arg _ (SynFun {}) _
= pprPanic "tcSynArgA hits a SynFun" (ppr orig)
tc_syn_arg res_ty (SynType the_ty) thing_inside
= do { wrap <- tcSubType orig GenSigCtxt res_ty the_ty
; result <- thing_inside []
; return (result, wrap) }
tcExprSig :: LHsExpr GhcRn -> TcIdSigInfo -> TcM (LHsExpr GhcTc, TcType)
tcExprSig expr (CompleteSig { sig_bndr = poly_id, sig_loc = loc })
= setSrcSpan loc $
do { let poly_ty = idType poly_id
; (wrap, expr') <- tcSkolemiseScoped ExprSigCtxt poly_ty $ \rho_ty ->
tcCheckMonoExprNC expr rho_ty
; return (mkLHsWrap wrap expr', poly_ty) }
tcExprSig expr sig@(PartialSig { psig_name = name, sig_loc = loc })
= setSrcSpan loc $
do { (tclvl, wanted, (expr', sig_inst))
<- pushLevelAndCaptureConstraints $
do { sig_inst <- tcInstSig sig
; expr' <- tcExtendNameTyVarEnv (mapSnd binderVar $ sig_inst_skols sig_inst) $
tcExtendNameTyVarEnv (sig_inst_wcs sig_inst) $
tcCheckPolyExprNC expr (sig_inst_tau sig_inst)
; return (expr', sig_inst) }
; let tau = sig_inst_tau sig_inst
infer_mode | null (sig_inst_theta sig_inst)
, isNothing (sig_inst_wcx sig_inst)
= ApplyMR
| otherwise
= NoRestrictions
; (qtvs, givens, ev_binds, residual, _)
<- simplifyInfer tclvl infer_mode [sig_inst] [(name, tau)] wanted
; emitConstraints residual
; tau <- zonkTcType tau
; let inferred_theta = map evVarPred givens
tau_tvs = tyCoVarsOfType tau
; (binders, my_theta) <- chooseInferredQuantifiers inferred_theta
tau_tvs qtvs (Just sig_inst)
; let inferred_sigma = mkInfSigmaTy qtvs inferred_theta tau
my_sigma = mkInvisForAllTys binders (mkPhiTy my_theta tau)
; wrap <- if inferred_sigma `eqType` my_sigma
then return idHsWrapper
else tcSubTypeSigma ExprSigCtxt inferred_sigma my_sigma
; traceTc "tcExpSig" (ppr qtvs $$ ppr givens $$ ppr inferred_sigma $$ ppr my_sigma)
; let poly_wrap = wrap
<.> mkWpTyLams qtvs
<.> mkWpLams givens
<.> mkWpLet ev_binds
; return (mkLHsWrap poly_wrap expr', my_sigma) }
tcCheckId :: Name -> ExpRhoType -> TcM (HsExpr GhcTc)
tcCheckId name res_ty
| name `hasKey` tagToEnumKey
= failWithTc (text "tagToEnum# must appear applied to one argument")
| otherwise
= do { (expr, actual_res_ty) <- tcInferId name
; traceTc "tcCheckId" (vcat [ppr name, ppr actual_res_ty, ppr res_ty])
; addFunResCtxt False expr actual_res_ty res_ty $
tcWrapResultO (OccurrenceOf name) (HsVar noExtField (noLoc name)) expr
actual_res_ty res_ty }
tcCheckRecSelId :: HsExpr GhcRn -> AmbiguousFieldOcc GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
tcCheckRecSelId rn_expr f@(Unambiguous {}) res_ty
= do { (expr, actual_res_ty) <- tcInferRecSelId f
; tcWrapResult rn_expr expr actual_res_ty res_ty }
tcCheckRecSelId rn_expr (Ambiguous _ lbl) res_ty
= case tcSplitFunTy_maybe =<< checkingExpType_maybe res_ty of
Nothing -> ambiguousSelector lbl
Just (arg, _) -> do { sel_name <- disambiguateSelector lbl (scaledThing arg)
; tcCheckRecSelId rn_expr (Unambiguous sel_name lbl)
res_ty }
tcInferRecSelId :: AmbiguousFieldOcc GhcRn -> TcM (HsExpr GhcTc, TcRhoType)
tcInferRecSelId (Unambiguous sel (L _ lbl))
= do { (expr', ty) <- tc_infer_id lbl sel
; return (expr', ty) }
tcInferRecSelId (Ambiguous _ lbl)
= ambiguousSelector lbl
tcInferId :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferId id_name
| id_name `hasKey` assertIdKey
= do { dflags <- getDynFlags
; if gopt Opt_IgnoreAsserts dflags
then tc_infer_id (nameRdrName id_name) id_name
else tc_infer_assert id_name }
| otherwise
= do { (expr, ty) <- tc_infer_id (nameRdrName id_name) id_name
; traceTc "tcInferId" (ppr id_name <+> dcolon <+> ppr ty)
; return (expr, ty) }
tc_infer_assert :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_assert assert_name
= do { assert_error_id <- tcLookupId assertErrorName
; (wrap, id_rho) <- topInstantiate (OccurrenceOf assert_name)
(idType assert_error_id)
; return (mkHsWrap wrap (HsVar noExtField (noLoc assert_error_id)), id_rho)
}
tc_infer_id :: RdrName -> Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_id lbl id_name
= do { thing <- tcLookup id_name
; case thing of
ATcId { tct_id = id }
-> do { check_naughty id
; checkThLocalId id
; tcEmitBindingUsage $ unitUE id_name One
; return_id id }
AGlobal (AnId id)
-> do { check_naughty id
; return_id id }
AGlobal (AConLike cl) -> case cl of
RealDataCon con -> return_data_con con
PatSynCon ps -> tcPatSynBuilderOcc ps
_ -> failWithTc $
ppr thing <+> text "used where a value identifier was expected" }
where
return_id id = return (HsVar noExtField (noLoc id), idType id)
return_data_con con
= do { let tvs = dataConUserTyVarBinders con
theta = dataConOtherTheta con
args = dataConOrigArgTys con
res = dataConOrigResTy con
; mul_vars <- newFlexiTyVarTys (length args) multiplicityTy
; let scaleArgs args' = zipWithEqual "return_data_con" combine mul_vars args'
combine var (Scaled One ty) = Scaled var ty
combine _ scaled_ty = scaled_ty
etaWrapper arg_tys = foldr (\scaled_ty wr -> WpFun WpHole wr scaled_ty empty) WpHole arg_tys
; let shouldInstantiate = (not (null (dataConStupidTheta con)) ||
isKindLevPoly (tyConResKind (dataConTyCon con)))
; case shouldInstantiate of
True -> do { (subst, tvs') <- newMetaTyVars (binderVars tvs)
; let tys' = mkTyVarTys tvs'
theta' = substTheta subst theta
args' = substScaledTys subst args
res' = substTy subst res
; wrap <- instCall (OccurrenceOf id_name) tys' theta'
; let scaled_arg_tys = scaleArgs args'
eta_wrap = etaWrapper scaled_arg_tys
; addDataConStupidTheta con tys'
; return ( mkHsWrap (eta_wrap <.> wrap)
(HsConLikeOut noExtField (RealDataCon con))
, mkVisFunTys scaled_arg_tys res')
}
False -> let scaled_arg_tys = scaleArgs args
wrap1 = mkWpTyApps (mkTyVarTys $ binderVars tvs)
eta_wrap = etaWrapper (map unrestricted theta ++ scaled_arg_tys)
wrap2 = mkWpTyLams $ binderVars tvs
in return ( mkHsWrap (wrap2 <.> eta_wrap <.> wrap1)
(HsConLikeOut noExtField (RealDataCon con))
, mkInvisForAllTys tvs $ mkInvisFunTysMany theta $ mkVisFunTys scaled_arg_tys res)
}
check_naughty id
| isNaughtyRecordSelector id = failWithTc (naughtyRecordSel lbl)
| otherwise = return ()
tcUnboundId :: HsExpr GhcRn -> OccName -> ExpRhoType -> TcM (HsExpr GhcTc)
tcUnboundId rn_expr occ res_ty
= do { ty <- newOpenFlexiTyVarTy
; name <- newSysName occ
; let ev = mkLocalId name Many ty
; emitNewExprHole occ ev ty
; tcWrapResultO (UnboundOccurrenceOf occ) rn_expr
(HsVar noExtField (noLoc ev)) ty res_ty }
isTagToEnum :: HsExpr GhcTc -> Bool
isTagToEnum (HsVar _ (L _ fun_id)) = fun_id `hasKey` tagToEnumKey
isTagToEnum _ = False
tcTagToEnum :: HsExpr GhcRn -> HsExpr GhcTc -> [LHsExprArgOut]
-> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcTagToEnum expr fun args app_res_ty res_ty
= do { res_ty <- readExpType res_ty
; ty' <- zonkTcType res_ty
; case tcSplitTyConApp_maybe ty' of {
Nothing -> do { addErrTc (mk_error ty' doc1)
; vanilla_result } ;
Just (tc, tc_args) ->
do {
; fam_envs <- tcGetFamInstEnvs
; case tcLookupDataFamInst_maybe fam_envs tc tc_args of {
Nothing -> do { check_enumeration ty' tc
; vanilla_result } ;
Just (rep_tc, rep_args, coi) ->
do {
check_enumeration ty' rep_tc
; let val_arg = dropWhile (not . isHsValArg) args
rep_ty = mkTyConApp rep_tc rep_args
fun' = mkHsWrap (WpTyApp rep_ty) fun
expr' = applyHsArgs fun' val_arg
df_wrap = mkWpCastR (mkTcSymCo coi)
; return (mkHsWrap df_wrap expr') }}}}}
where
vanilla_result
= do { let expr' = applyHsArgs fun args
; tcWrapResult expr expr' app_res_ty res_ty }
check_enumeration ty' tc
| isEnumerationTyCon tc = return ()
| otherwise = addErrTc (mk_error ty' doc2)
doc1 = vcat [ text "Specify the type by giving a type signature"
, text "e.g. (tagToEnum# x) :: Bool" ]
doc2 = text "Result type must be an enumeration type"
mk_error :: TcType -> SDoc -> SDoc
mk_error ty what
= hang (text "Bad call to tagToEnum#"
<+> text "at type" <+> ppr ty)
2 what
checkThLocalId :: Id -> TcM ()
checkThLocalId id
= do { mb_local_use <- getStageAndBindLevel (idName id)
; case mb_local_use of
Just (top_lvl, bind_lvl, use_stage)
| thLevel use_stage > bind_lvl
-> checkCrossStageLifting top_lvl id use_stage
_ -> return ()
}
checkCrossStageLifting :: TopLevelFlag -> Id -> ThStage -> TcM ()
checkCrossStageLifting top_lvl id (Brack _ (TcPending ps_var lie_var q))
| isTopLevel top_lvl
= when (isExternalName id_name) (keepAlive id_name)
| otherwise
=
do { let id_ty = idType id
; checkTc (isTauTy id_ty) (polySpliceErr id)
; lift <- if isStringTy id_ty then
do { sid <- tcLookupId GHC.Builtin.Names.TH.liftStringName
; return (HsVar noExtField (noLoc sid)) }
else
setConstraintVar lie_var $
newMethodFromName (OccurrenceOf id_name)
GHC.Builtin.Names.TH.liftName
[getRuntimeRep id_ty, id_ty]
; ps <- readMutVar ps_var
; let pending_splice = PendingTcSplice id_name
(nlHsApp (mkLHsWrap (applyQuoteWrapper q) (noLoc lift))
(nlHsVar id))
; writeMutVar ps_var (pending_splice : ps)
; return () }
where
id_name = idName id
checkCrossStageLifting _ _ _ = return ()
polySpliceErr :: Id -> SDoc
polySpliceErr id
= text "Can't splice the polymorphic local variable" <+> quotes (ppr id)
getFixedTyVars :: [FieldLabelString] -> [TyVar] -> [ConLike] -> TyVarSet
getFixedTyVars upd_fld_occs univ_tvs cons
= mkVarSet [tv1 | con <- cons
, let (u_tvs, _, eqspec, prov_theta
, req_theta, arg_tys, _)
= conLikeFullSig con
theta = eqSpecPreds eqspec
++ prov_theta
++ req_theta
flds = conLikeFieldLabels con
fixed_tvs = exactTyCoVarsOfTypes (map scaledThing fixed_tys)
`unionVarSet` tyCoVarsOfTypes theta
fixed_tys = [ty | (fl, ty) <- zip flds arg_tys
, not (flLabel fl `elem` upd_fld_occs)]
, (tv1,tv) <- univ_tvs `zip` u_tvs
, tv `elemVarSet` fixed_tvs ]
disambiguateSelector :: Located RdrName -> Type -> TcM Name
disambiguateSelector lr@(L _ rdr) parent_type
= do { fam_inst_envs <- tcGetFamInstEnvs
; case tyConOf fam_inst_envs parent_type of
Nothing -> ambiguousSelector lr
Just p ->
do { xs <- lookupParents rdr
; let parent = RecSelData p
; case lookup parent xs of
Just gre -> do { addUsedGRE True gre
; return (gre_name gre) }
Nothing -> failWithTc (fieldNotInType parent rdr) } }
ambiguousSelector :: Located RdrName -> TcM a
ambiguousSelector (L _ rdr)
= do { addAmbiguousNameErr rdr
; failM }
addAmbiguousNameErr :: RdrName -> TcM ()
addAmbiguousNameErr rdr
= do { env <- getGlobalRdrEnv
; let gres = lookupGRE_RdrName rdr env
; setErrCtxt [] $ addNameClashErrRn rdr gres}
disambiguateRecordBinds :: LHsExpr GhcRn -> TcRhoType
-> [LHsRecUpdField GhcRn] -> ExpRhoType
-> TcM [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
disambiguateRecordBinds record_expr record_rho rbnds res_ty
= case mapM isUnambiguous rbnds of
Just rbnds' -> mapM lookupSelector rbnds'
Nothing ->
do { fam_inst_envs <- tcGetFamInstEnvs
; rbnds_with_parents <- getUpdFieldsParents
; let possible_parents = map (map fst . snd) rbnds_with_parents
; p <- identifyParent fam_inst_envs possible_parents
; checkNoErrs $ mapM (pickParent p) rbnds_with_parents }
where
isUnambiguous :: LHsRecUpdField GhcRn -> Maybe (LHsRecUpdField GhcRn,Name)
isUnambiguous x = case unLoc (hsRecFieldLbl (unLoc x)) of
Unambiguous sel_name _ -> Just (x, sel_name)
Ambiguous{} -> Nothing
getUpdFieldsParents :: TcM [(LHsRecUpdField GhcRn
, [(RecSelParent, GlobalRdrElt)])]
getUpdFieldsParents
= fmap (zip rbnds) $ mapM
(lookupParents . unLoc . hsRecUpdFieldRdr . unLoc)
rbnds
identifyParent :: FamInstEnvs -> [[RecSelParent]] -> TcM RecSelParent
identifyParent fam_inst_envs possible_parents
= case foldr1 intersect possible_parents of
[] -> failWithTc (noPossibleParents rbnds)
[p] -> return p
_:_ | Just p <- tyConOfET fam_inst_envs res_ty -> return (RecSelData p)
| Just {} <- obviousSig (unLoc record_expr)
, Just tc <- tyConOf fam_inst_envs record_rho
-> return (RecSelData tc)
_ -> failWithTc badOverloadedUpdate
pickParent :: RecSelParent
-> (LHsRecUpdField GhcRn, [(RecSelParent, GlobalRdrElt)])
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
pickParent p (upd, xs)
= case lookup p xs of
Just gre -> do { unless (null (tail xs)) $ do
let L loc _ = hsRecFieldLbl (unLoc upd)
setSrcSpan loc $ addUsedGRE True gre
; lookupSelector (upd, gre_name gre) }
Nothing -> do { addErrTc (fieldNotInType p
(unLoc (hsRecUpdFieldRdr (unLoc upd))))
; lookupSelector (upd, gre_name (snd (head xs))) }
lookupSelector :: (LHsRecUpdField GhcRn, Name)
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
lookupSelector (L l upd, n)
= do { i <- tcLookupId n
; let L loc af = hsRecFieldLbl upd
lbl = rdrNameAmbiguousFieldOcc af
; return $ L l upd { hsRecFieldLbl
= L loc (Unambiguous i (L loc lbl)) } }
tyConOf :: FamInstEnvs -> TcSigmaType -> Maybe TyCon
tyConOf fam_inst_envs ty0
= case tcSplitTyConApp_maybe ty of
Just (tc, tys) -> Just (fstOf3 (tcLookupDataFamInst fam_inst_envs tc tys))
Nothing -> Nothing
where
(_, _, ty) = tcSplitSigmaTy ty0
tyConOfET :: FamInstEnvs -> ExpRhoType -> Maybe TyCon
tyConOfET fam_inst_envs ty0 = tyConOf fam_inst_envs =<< checkingExpType_maybe ty0
lookupParents :: RdrName -> RnM [(RecSelParent, GlobalRdrElt)]
lookupParents rdr
= do { env <- getGlobalRdrEnv
; let gres = lookupGRE_RdrName rdr env
; mapM lookupParent gres }
where
lookupParent :: GlobalRdrElt -> RnM (RecSelParent, GlobalRdrElt)
lookupParent gre = do { id <- tcLookupId (gre_name gre)
; if isRecordSelector id
then return (recordSelectorTyCon id, gre)
else failWithTc (notSelector (gre_name gre)) }
obviousSig :: HsExpr GhcRn -> Maybe (LHsSigWcType GhcRn)
obviousSig (ExprWithTySig _ _ ty) = Just ty
obviousSig (HsPar _ p) = obviousSig (unLoc p)
obviousSig _ = Nothing
tcRecordBinds
:: ConLike
-> [TcType]
-> HsRecordBinds GhcRn
-> TcM (HsRecordBinds GhcTc)
tcRecordBinds con_like arg_tys (HsRecFields rbinds dd)
= do { mb_binds <- mapM do_bind rbinds
; return (HsRecFields (catMaybes mb_binds) dd) }
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordBinds" fields arg_tys
do_bind :: LHsRecField GhcRn (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecField GhcTc (LHsExpr GhcTc)))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = f
, hsRecFieldArg = rhs }))
= do { mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') -> return (Just (L l (fld { hsRecFieldLbl = f'
, hsRecFieldArg = rhs' }))) }
tcRecordUpd
:: ConLike
-> [TcType]
-> [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-> TcM [LHsRecUpdField GhcTc]
tcRecordUpd con_like arg_tys rbinds = fmap catMaybes $ mapM do_bind rbinds
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordUpd" fields arg_tys
do_bind :: LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecUpdField GhcTc))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = L loc af
, hsRecFieldArg = rhs }))
= do { let lbl = rdrNameAmbiguousFieldOcc af
sel_id = selectorAmbiguousFieldOcc af
f = L loc (FieldOcc (idName sel_id) (L loc lbl))
; mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') ->
return (Just
(L l (fld { hsRecFieldLbl
= L loc (Unambiguous
(extFieldOcc (unLoc f'))
(L loc lbl))
, hsRecFieldArg = rhs' }))) }
tcRecordField :: ConLike -> Assoc Name Type
-> LFieldOcc GhcRn -> LHsExpr GhcRn
-> TcM (Maybe (LFieldOcc GhcTc, LHsExpr GhcTc))
tcRecordField con_like flds_w_tys (L loc (FieldOcc sel_name lbl)) rhs
| Just field_ty <- assocMaybe flds_w_tys sel_name
= addErrCtxt (fieldCtxt field_lbl) $
do { rhs' <- tcCheckPolyExprNC rhs field_ty
; let field_id = mkUserLocal (nameOccName sel_name)
(nameUnique sel_name)
Many field_ty loc
; return (Just (L loc (FieldOcc field_id lbl), rhs')) }
| otherwise
= do { addErrTc (badFieldCon con_like field_lbl)
; return Nothing }
where
field_lbl = occNameFS $ rdrNameOcc (unLoc lbl)
checkMissingFields :: ConLike -> HsRecordBinds GhcRn -> TcM ()
checkMissingFields con_like rbinds
| null field_labels
= if any isBanged field_strs then
addErrTc (missingStrictFields con_like [])
else do
warn <- woptM Opt_WarnMissingFields
when (warn && notNull field_strs && null field_labels)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like []))
| otherwise = do
unless (null missing_s_fields)
(addErrTc (missingStrictFields con_like missing_s_fields))
warn <- woptM Opt_WarnMissingFields
when (warn && notNull missing_ns_fields)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like missing_ns_fields))
where
missing_s_fields
= [ flLabel fl | (fl, str) <- field_info,
isBanged str,
not (fl `elemField` field_names_used)
]
missing_ns_fields
= [ flLabel fl | (fl, str) <- field_info,
not (isBanged str),
not (fl `elemField` field_names_used)
]
field_names_used = hsRecFields rbinds
field_labels = conLikeFieldLabels con_like
field_info = zipEqual "missingFields"
field_labels
field_strs
field_strs = conLikeImplBangs con_like
fl `elemField` flds = any (\ fl' -> flSelector fl == fl') flds
fieldCtxt :: FieldLabelString -> SDoc
fieldCtxt field_name
= text "In the" <+> quotes (ppr field_name) <+> ptext (sLit "field of a record")
addExprCtxt :: LHsExpr GhcRn -> TcRn a -> TcRn a
addExprCtxt e thing_inside = addErrCtxt (exprCtxt (unLoc e)) thing_inside
exprCtxt :: HsExpr GhcRn -> SDoc
exprCtxt expr = hang (text "In the expression:") 2 (ppr (stripParensHsExpr expr))
addFunResCtxt :: Bool
-> HsExpr GhcTc -> TcType -> ExpRhoType
-> TcM a -> TcM a
addFunResCtxt has_args fun fun_res_ty env_ty
= addLandmarkErrCtxtM (\env -> (env, ) <$> mk_msg)
where
mk_msg
= do { mb_env_ty <- readExpType_maybe env_ty
; fun_res' <- zonkTcType fun_res_ty
; env' <- case mb_env_ty of
Just env_ty -> zonkTcType env_ty
Nothing ->
do { dumping <- doptM Opt_D_dump_tc_trace
; MASSERT( dumping )
; newFlexiTyVarTy liftedTypeKind }
; let
(_, _, fun_tau) = tcSplitNestedSigmaTys fun_res'
(_, _, env_tau) = tcSplitSigmaTy env'
(args_fun, res_fun) = tcSplitFunTys fun_tau
(args_env, res_env) = tcSplitFunTys env_tau
n_fun = length args_fun
n_env = length args_env
info | n_fun == n_env = Outputable.empty
| n_fun > n_env
, not_fun res_env
= text "Probable cause:" <+> quotes (ppr fun)
<+> text "is applied to too few arguments"
| has_args
, not_fun res_fun
= text "Possible cause:" <+> quotes (ppr fun)
<+> text "is applied to too many arguments"
| otherwise
= Outputable.empty
; return info }
where
not_fun ty
= case tcSplitTyConApp_maybe ty of
Just (tc, _) -> isAlgTyCon tc
Nothing -> False
badFieldTypes :: [(FieldLabelString,TcType)] -> SDoc
badFieldTypes prs
= hang (text "Record update for insufficiently polymorphic field"
<> plural prs <> colon)
2 (vcat [ ppr f <+> dcolon <+> ppr ty | (f,ty) <- prs ])
badFieldsUpd
:: [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-> [ConLike]
-> SDoc
badFieldsUpd rbinds data_cons
= hang (text "No constructor has all these fields:")
2 (pprQuotedList conflictingFields)
where
conflictingFields = case nonMembers of
(nonMember, _) : _ -> [aMember, nonMember]
[] -> let
growingSets :: [(FieldLabelString, [Bool])]
growingSets = scanl1 combine membership
combine (_, setMem) (field, fldMem)
= (field, zipWith (&&) setMem fldMem)
in
map (fst . head) $ groupBy ((==) `on` snd) growingSets
aMember = ASSERT( not (null members) ) fst (head members)
(members, nonMembers) = partition (or . snd) membership
membership :: [(FieldLabelString, [Bool])]
membership = sortMembership $
map (\fld -> (fld, map (Set.member fld) fieldLabelSets)) $
map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc . unLoc . hsRecFieldLbl . unLoc) rbinds
fieldLabelSets :: [Set.Set FieldLabelString]
fieldLabelSets = map (Set.fromList . map flLabel . conLikeFieldLabels) data_cons
sortMembership =
map snd .
sortBy (compare `on` fst) .
map (\ item@(_, membershipRow) -> (countTrue membershipRow, item))
countTrue = count id
naughtyRecordSel :: RdrName -> SDoc
naughtyRecordSel sel_id
= text "Cannot use record selector" <+> quotes (ppr sel_id) <+>
text "as a function due to escaped type variables" $$
text "Probable fix: use pattern-matching syntax instead"
notSelector :: Name -> SDoc
notSelector field
= hsep [quotes (ppr field), text "is not a record selector"]
mixedSelectors :: [Id] -> [Id] -> SDoc
mixedSelectors data_sels@(dc_rep_id:_) pat_syn_sels@(ps_rep_id:_)
= ptext
(sLit "Cannot use a mixture of pattern synonym and record selectors") $$
text "Record selectors defined by"
<+> quotes (ppr (tyConName rep_dc))
<> text ":"
<+> pprWithCommas ppr data_sels $$
text "Pattern synonym selectors defined by"
<+> quotes (ppr (patSynName rep_ps))
<> text ":"
<+> pprWithCommas ppr pat_syn_sels
where
RecSelPatSyn rep_ps = recordSelectorTyCon ps_rep_id
RecSelData rep_dc = recordSelectorTyCon dc_rep_id
mixedSelectors _ _ = panic "GHC.Tc.Gen.Expr: mixedSelectors emptylists"
missingStrictFields :: ConLike -> [FieldLabelString] -> SDoc
missingStrictFields con fields
= header <> rest
where
rest | null fields = Outputable.empty
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Constructor" <+> quotes (ppr con) <+>
text "does not have the required strict field(s)"
missingFields :: ConLike -> [FieldLabelString] -> SDoc
missingFields con fields
= header <> rest
where
rest | null fields = Outputable.empty
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Fields of" <+> quotes (ppr con) <+>
text "not initialised"
noPossibleParents :: [LHsRecUpdField GhcRn] -> SDoc
noPossibleParents rbinds
= hang (text "No type has all these fields:")
2 (pprQuotedList fields)
where
fields = map (hsRecFieldLbl . unLoc) rbinds
badOverloadedUpdate :: SDoc
badOverloadedUpdate = text "Record update is ambiguous, and requires a type signature"
fieldNotInType :: RecSelParent -> RdrName -> SDoc
fieldNotInType p rdr
= unknownSubordinateErr (text "field of type" <+> quotes (ppr p)) rdr
data NotClosedReason = NotLetBoundReason
| NotTypeClosed VarSet
| NotClosed Name NotClosedReason
checkClosedInStaticForm :: Name -> TcM ()
checkClosedInStaticForm name = do
type_env <- getLclTypeEnv
case checkClosed type_env name of
Nothing -> return ()
Just reason -> addErrTc $ explain name reason
where
checkClosed :: TcTypeEnv -> Name -> Maybe NotClosedReason
checkClosed type_env n = checkLoop type_env (unitNameSet n) n
checkLoop :: TcTypeEnv -> NameSet -> Name -> Maybe NotClosedReason
checkLoop type_env visited n = do
case lookupNameEnv type_env n of
Just (ATcId { tct_id = tcid, tct_info = info }) -> case info of
ClosedLet -> Nothing
NotLetBound -> Just NotLetBoundReason
NonClosedLet fvs type_closed -> listToMaybe $
[ NotClosed n' reason
| n' <- nameSetElemsStable fvs
, not (elemNameSet n' visited)
, Just reason <- [checkLoop type_env (extendNameSet visited n') n']
] ++
if type_closed then
[]
else
[ NotTypeClosed $ tyCoVarsOfType (idType tcid) ]
_ -> Nothing
explain :: Name -> NotClosedReason -> SDoc
explain name reason =
quotes (ppr name) <+> text "is used in a static form but it is not closed"
<+> text "because it"
$$
sep (causes reason)
causes :: NotClosedReason -> [SDoc]
causes NotLetBoundReason = [text "is not let-bound."]
causes (NotTypeClosed vs) =
[ text "has a non-closed type because it contains the"
, text "type variables:" <+>
pprVarSet vs (hsep . punctuate comma . map (quotes . ppr))
]
causes (NotClosed n reason) =
let msg = text "uses" <+> quotes (ppr n) <+> text "which"
in case reason of
NotClosed _ _ -> msg : causes reason
_ -> let (xs0, xs1) = splitAt 1 $ causes reason
in fmap (msg <+>) xs0 ++ xs1