{- Describes predicates as they are considered by the solver. -} module GHC.Core.Predicate ( Pred(..), classifyPredType, isPredTy, isEvVarType, -- Equality predicates EqRel(..), eqRelRole, isEqPrimPred, isEqPred, getEqPredTys, getEqPredTys_maybe, getEqPredRole, predTypeEqRel, mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole, mkHeteroPrimEqPred, mkHeteroReprPrimEqPred, -- Class predicates mkClassPred, isDictTy, isClassPred, isEqPredClass, isCTupleClass, getClassPredTys, getClassPredTys_maybe, classMethodTy, classMethodInstTy, -- Implicit parameters isIPLikePred, hasIPSuperClasses, isIPTyCon, isIPClass, -- Evidence variables DictId, isEvVar, isDictId ) where import GHC.Prelude import GHC.Core.Type import GHC.Core.Class import GHC.Core.TyCon import GHC.Types.Var import GHC.Core.Coercion import GHC.Builtin.Names import GHC.Utils.Outputable import GHC.Utils.Misc import GHC.Core.Multiplicity ( scaledThing ) -- | A predicate in the solver. The solver tries to prove Wanted predicates -- from Given ones. data Pred = ClassPred Class [Type] | EqPred EqRel Type Type | IrredPred PredType | ForAllPred [TyVar] [PredType] PredType -- ForAllPred: see Note [Quantified constraints] in GHC.Tc.Solver.Canonical -- NB: There is no TuplePred case -- Tuple predicates like (Eq a, Ord b) are just treated -- as ClassPred, as if we had a tuple class with two superclasses -- class (c1, c2) => (%,%) c1 c2 classifyPredType :: PredType -> Pred classifyPredType ev_ty = case splitTyConApp_maybe ev_ty of Just (tc, [_, _, ty1, ty2]) | tc `hasKey` eqReprPrimTyConKey -> EqPred ReprEq ty1 ty2 | tc `hasKey` eqPrimTyConKey -> EqPred NomEq ty1 ty2 Just (tc, tys) | Just clas <- tyConClass_maybe tc -> ClassPred clas tys _ | (tvs, rho) <- splitForAllTys ev_ty , (theta, pred) <- splitFunTys rho , not (null tvs && null theta) -> ForAllPred tvs (map scaledThing theta) pred | otherwise -> IrredPred ev_ty -- --------------------- Dictionary types --------------------------------- mkClassPred :: Class -> [Type] -> PredType mkClassPred clas tys = mkTyConApp (classTyCon clas) tys isDictTy :: Type -> Bool isDictTy = isClassPred getClassPredTys :: HasDebugCallStack => PredType -> (Class, [Type]) getClassPredTys ty = case getClassPredTys_maybe ty of Just (clas, tys) -> (clas, tys) Nothing -> pprPanic "getClassPredTys" (ppr ty) getClassPredTys_maybe :: PredType -> Maybe (Class, [Type]) getClassPredTys_maybe ty = case splitTyConApp_maybe ty of Just (tc, tys) | Just clas <- tyConClass_maybe tc -> Just (clas, tys) _ -> Nothing classMethodTy :: Id -> Type -- Takes a class selector op :: forall a. C a => meth_ty -- and returns the type of its method, meth_ty -- The selector can be a superclass selector, in which case -- you get back a superclass classMethodTy sel_id = funResultTy $ -- meth_ty dropForAlls $ -- C a => meth_ty varType sel_id -- forall a. C n => meth_ty classMethodInstTy :: Id -> [Type] -> Type -- Takes a class selector op :: forall a b. C a b => meth_ty -- and the types [ty1, ty2] at which it is instantiated, -- returns the instantiated type of its method, meth_ty[t1/a,t2/b] -- The selector can be a superclass selector, in which case -- you get back a superclass classMethodInstTy sel_id arg_tys = funResultTy $ piResultTys (varType sel_id) arg_tys -- --------------------- Equality predicates --------------------------------- -- | A choice of equality relation. This is separate from the type 'Role' -- because 'Phantom' does not define a (non-trivial) equality relation. data EqRel = NomEq | ReprEq deriving (Eq, Ord) instance Outputable EqRel where ppr NomEq = text "nominal equality" ppr ReprEq = text "representational equality" eqRelRole :: EqRel -> Role eqRelRole NomEq = Nominal eqRelRole ReprEq = Representational getEqPredTys :: PredType -> (Type, Type) getEqPredTys ty = case splitTyConApp_maybe ty of Just (tc, [_, _, ty1, ty2]) | tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey -> (ty1, ty2) _ -> pprPanic "getEqPredTys" (ppr ty) getEqPredTys_maybe :: PredType -> Maybe (Role, Type, Type) getEqPredTys_maybe ty = case splitTyConApp_maybe ty of Just (tc, [_, _, ty1, ty2]) | tc `hasKey` eqPrimTyConKey -> Just (Nominal, ty1, ty2) | tc `hasKey` eqReprPrimTyConKey -> Just (Representational, ty1, ty2) _ -> Nothing getEqPredRole :: PredType -> Role getEqPredRole ty = eqRelRole (predTypeEqRel ty) -- | Get the equality relation relevant for a pred type. predTypeEqRel :: PredType -> EqRel predTypeEqRel ty | Just (tc, _) <- splitTyConApp_maybe ty , tc `hasKey` eqReprPrimTyConKey = ReprEq | otherwise = NomEq {------------------------------------------- Predicates on PredType --------------------------------------------} {- Note [Evidence for quantified constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The superclass mechanism in GHC.Tc.Solver.Canonical.makeSuperClasses risks taking a quantified constraint like (forall a. C a => a ~ b) and generate superclass evidence (forall a. C a => a ~# b) This is a funny thing: neither isPredTy nor isCoVarType are true of it. So we are careful not to generate it in the first place: see Note [Equality superclasses in quantified constraints] in GHC.Tc.Solver.Canonical. -} isEvVarType :: Type -> Bool -- True of (a) predicates, of kind Constraint, such as (Eq a), and (a ~ b) -- (b) coercion types, such as (t1 ~# t2) or (t1 ~R# t2) -- See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep -- See Note [Evidence for quantified constraints] isEvVarType ty = isCoVarType ty || isPredTy ty isEqPredClass :: Class -> Bool -- True of (~) and (~~) isEqPredClass cls = cls `hasKey` eqTyConKey || cls `hasKey` heqTyConKey isClassPred, isEqPred, isEqPrimPred :: PredType -> Bool isClassPred ty = case tyConAppTyCon_maybe ty of Just tyCon | isClassTyCon tyCon -> True _ -> False isEqPred ty -- True of (a ~ b) and (a ~~ b) -- ToDo: should we check saturation? | Just tc <- tyConAppTyCon_maybe ty , Just cls <- tyConClass_maybe tc = isEqPredClass cls | otherwise = False isEqPrimPred ty = isCoVarType ty -- True of (a ~# b) (a ~R# b) isCTupleClass :: Class -> Bool isCTupleClass cls = isTupleTyCon (classTyCon cls) {- ********************************************************************* * * Implicit parameters * * ********************************************************************* -} isIPTyCon :: TyCon -> Bool isIPTyCon tc = tc `hasKey` ipClassKey -- Class and its corresponding TyCon have the same Unique isIPClass :: Class -> Bool isIPClass cls = cls `hasKey` ipClassKey isIPLikePred :: Type -> Bool -- See Note [Local implicit parameters] isIPLikePred = is_ip_like_pred initIPRecTc is_ip_like_pred :: RecTcChecker -> Type -> Bool is_ip_like_pred rec_clss ty | Just (tc, tys) <- splitTyConApp_maybe ty , Just rec_clss' <- if isTupleTyCon tc -- Tuples never cause recursion then Just rec_clss else checkRecTc rec_clss tc , Just cls <- tyConClass_maybe tc = isIPClass cls || has_ip_super_classes rec_clss' cls tys | otherwise = False -- Includes things like (D []) where D is -- a Constraint-ranged family; #7785 hasIPSuperClasses :: Class -> [Type] -> Bool -- See Note [Local implicit parameters] hasIPSuperClasses = has_ip_super_classes initIPRecTc has_ip_super_classes :: RecTcChecker -> Class -> [Type] -> Bool has_ip_super_classes rec_clss cls tys = any ip_ish (classSCSelIds cls) where -- Check that the type of a superclass determines its value -- sc_sel_id :: forall a b. C a b -> <superclass type> ip_ish sc_sel_id = is_ip_like_pred rec_clss $ classMethodInstTy sc_sel_id tys initIPRecTc :: RecTcChecker initIPRecTc = setRecTcMaxBound 1 initRecTc {- Note [Local implicit parameters] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The function isIPLikePred tells if this predicate, or any of its superclasses, is an implicit parameter. Why are implicit parameters special? Unlike normal classes, we can have local instances for implicit parameters, in the form of let ?x = True in ... So in various places we must be careful not to assume that any value of the right type will do; we must carefully look for the innermost binding. So isIPLikePred checks whether this is an implicit parameter, or has a superclass that is an implicit parameter. Several wrinkles * We must be careful with superclasses, as #18649 showed. Haskell doesn't allow an implicit parameter as a superclass class (?x::a) => C a where ... but with a constraint tuple we might have (% Eq a, ?x::Int %) and /its/ superclasses, namely (Eq a) and (?x::Int), /do/ include an implicit parameter. With ConstraintKinds this can apply to /any/ class, e.g. class sc => C sc where ... Then (C (?x::Int)) has (?x::Int) as a superclass. So we must instantiate and check each superclass, one by one, in hasIPSuperClasses. * With -XRecursiveSuperClasses, the superclass hunt can go on forever, so we need a RecTcChecker to cut it off. * Another apparent additional complexity involves type families. For example, consider type family D (v::*->*) :: Constraint type instance D [] = () f :: D v => v Char -> Int If we see a call (f "foo"), we'll pass a "dictionary" () |> (g :: () ~ D []) and it's good to specialise f at this dictionary. So the question is: can an implicit parameter "hide inside" a type-family constraint like (D a). Well, no. We don't allow type instance D Maybe = ?x:Int Hence the umbrella 'otherwise' case in is_ip_like_pred. See #7785. Small worries (Sept 20): * I don't see what stops us having that 'type instance'. Indeed I think nothing does. * I'm a little concerned about type variables; such a variable might be instantiated to an implicit parameter. I don't think this matters in the cases for which isIPLikePred is used, and it's pretty obscure anyway. * The superclass hunt stops when it encounters the same class again, but in principle we could have the same class, differently instantiated, and the second time it could have an implicit parameter I'm going to treat these as problems for another day. They are all exotic. -} {- ********************************************************************* * * Evidence variables * * ********************************************************************* -} isEvVar :: Var -> Bool isEvVar var = isEvVarType (varType var) isDictId :: Id -> Bool isDictId id = isDictTy (varType id)