{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RecordWildCards            #-}
--
--  (c) The University of Glasgow 2002-2006
--

-- | Bytecode assembler types
module GHC.ByteCode.Types
  ( CompiledByteCode(..), seqCompiledByteCode
  , FFIInfo(..)
  , RegBitmap(..)
  , TupleInfo(..), voidTupleInfo
  , ByteOff(..), WordOff(..)
  , UnlinkedBCO(..), BCOPtr(..), BCONPtr(..)
  , ItblEnv, ItblPtr(..)
  , CgBreakInfo(..)
  , ModBreaks (..), BreakIndex, emptyModBreaks
  , CCostCentre
  ) where

import GHC.Prelude

import GHC.Data.FastString
import GHC.Data.SizedSeq
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import GHC.Builtin.PrimOps
import GHC.Core.Type
import GHC.Types.SrcLoc
import GHCi.BreakArray
import GHCi.RemoteTypes
import GHCi.FFI
import Control.DeepSeq

import Foreign
import Data.Array
import Data.Array.Base  ( UArray(..) )
import Data.ByteString (ByteString)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.Maybe (catMaybes)
import qualified GHC.Exts.Heap as Heap
import GHC.Stack.CCS

-- -----------------------------------------------------------------------------
-- Compiled Byte Code

data CompiledByteCode = CompiledByteCode
  { bc_bcos   :: [UnlinkedBCO]  -- Bunch of interpretable bindings
  , bc_itbls  :: ItblEnv        -- A mapping from DataCons to their itbls
  , bc_ffis   :: [FFIInfo]      -- ffi blocks we allocated
  , bc_strs   :: [RemotePtr ()] -- malloc'd strings
  , bc_breaks :: Maybe ModBreaks -- breakpoint info (Nothing if we're not
                                 -- creating breakpoints, for some reason)
  }
                -- ToDo: we're not tracking strings that we malloc'd
newtype FFIInfo = FFIInfo (RemotePtr C_ffi_cif)
  deriving (Show, NFData)

instance Outputable CompiledByteCode where
  ppr CompiledByteCode{..} = ppr bc_bcos

-- Not a real NFData instance, because ModBreaks contains some things
-- we can't rnf
seqCompiledByteCode :: CompiledByteCode -> ()
seqCompiledByteCode CompiledByteCode{..} =
  rnf bc_bcos `seq`
  rnf (nameEnvElts bc_itbls) `seq`
  rnf bc_ffis `seq`
  rnf bc_strs `seq`
  rnf (fmap seqModBreaks bc_breaks)

newtype ByteOff = ByteOff Int
    deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)

newtype WordOff = WordOff Int
    deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)

newtype RegBitmap = RegBitmap { unRegBitmap :: Word32 }
    deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Bits, FiniteBits, Outputable)

{- Note [GHCi TupleInfo]
~~~~~~~~~~~~~~~~~~~~~~~~

   This contains the data we need for passing unboxed tuples between
   bytecode and native code

   In general we closely follow the native calling convention that
   GHC uses for unboxed tuples, but we don't use any registers in
   bytecode. All tuple elements are expanded to use a full register
   or a full word on the stack.

   The position of tuple elements that are returned on the stack in
   the native calling convention is unchanged when returning the same
   tuple in bytecode.

   The order of the remaining elements is determined by the register in
   which they would have been returned, rather than by their position in
   the tuple in the Haskell source code. This makes jumping between bytecode
   and native code easier: A map of live registers is enough to convert the
   tuple.

   See GHC.StgToByteCode.layoutTuple for more details.
-}
data TupleInfo = TupleInfo
  { tupleSize            :: !WordOff   -- total size of tuple in words
  , tupleVanillaRegs     :: !RegBitmap -- vanilla registers used
  , tupleLongRegs        :: !RegBitmap -- long registers used
  , tupleFloatRegs       :: !RegBitmap -- float registers used
  , tupleDoubleRegs      :: !RegBitmap -- double registers used
  , tupleNativeStackSize :: !WordOff {- words spilled on the stack by
                                        GHCs native calling convention -}
  } deriving (Show)

instance Outputable TupleInfo where
  ppr TupleInfo{..} = text "<size" <+> ppr tupleSize <+>
                      text "stack" <+> ppr tupleNativeStackSize <+>
                      text "regs"  <+>
                          char 'R' <> ppr tupleVanillaRegs <+>
                          char 'L' <> ppr tupleLongRegs <+>
                          char 'F' <> ppr tupleFloatRegs <+>
                          char 'D' <> ppr tupleDoubleRegs <>
                      char '>'

voidTupleInfo :: TupleInfo
voidTupleInfo = TupleInfo 0 0 0 0 0 0

type ItblEnv = NameEnv (Name, ItblPtr)
        -- We need the Name in the range so we know which
        -- elements to filter out when unloading a module

newtype ItblPtr = ItblPtr (RemotePtr Heap.StgInfoTable)
  deriving (Show, NFData)

data UnlinkedBCO
   = UnlinkedBCO {
        unlinkedBCOName   :: !Name,
        unlinkedBCOArity  :: {-# UNPACK #-} !Int,
        unlinkedBCOInstrs :: !(UArray Int Word16),      -- insns
        unlinkedBCOBitmap :: !(UArray Int Word64),      -- bitmap
        unlinkedBCOLits   :: !(SizedSeq BCONPtr),       -- non-ptrs
        unlinkedBCOPtrs   :: !(SizedSeq BCOPtr)         -- ptrs
   }

instance NFData UnlinkedBCO where
  rnf UnlinkedBCO{..} =
    rnf unlinkedBCOLits `seq`
    rnf unlinkedBCOPtrs

data BCOPtr
  = BCOPtrName   !Name
  | BCOPtrPrimOp !PrimOp
  | BCOPtrBCO    !UnlinkedBCO
  | BCOPtrBreakArray  -- a pointer to this module's BreakArray

instance NFData BCOPtr where
  rnf (BCOPtrBCO bco) = rnf bco
  rnf x = x `seq` ()

data BCONPtr
  = BCONPtrWord  {-# UNPACK #-} !Word
  | BCONPtrLbl   !FastString
  | BCONPtrItbl  !Name
  | BCONPtrStr   !ByteString

instance NFData BCONPtr where
  rnf x = x `seq` ()

-- | Information about a breakpoint that we know at code-generation time
data CgBreakInfo
   = CgBreakInfo
   { cgb_vars   :: [Maybe (Id,Word16)]
   , cgb_resty  :: Type
   }
-- See Note [Syncing breakpoint info] in GHC.Runtime.Eval

-- Not a real NFData instance because we can't rnf Id or Type
seqCgBreakInfo :: CgBreakInfo -> ()
seqCgBreakInfo CgBreakInfo{..} =
  rnf (map snd (catMaybes (cgb_vars))) `seq`
  seqType cgb_resty

instance Outputable UnlinkedBCO where
   ppr (UnlinkedBCO nm _arity _insns _bitmap lits ptrs)
      = sep [text "BCO", ppr nm, text "with",
             ppr (sizeSS lits), text "lits",
             ppr (sizeSS ptrs), text "ptrs" ]

instance Outputable CgBreakInfo where
   ppr info = text "CgBreakInfo" <+>
              parens (ppr (cgb_vars info) <+>
                      ppr (cgb_resty info))

-- -----------------------------------------------------------------------------
-- Breakpoints

-- | Breakpoint index
type BreakIndex = Int

-- | C CostCentre type
data CCostCentre

-- | All the information about the breakpoints for a module
data ModBreaks
   = ModBreaks
   { modBreaks_flags :: ForeignRef BreakArray
        -- ^ The array of flags, one per breakpoint,
        -- indicating which breakpoints are enabled.
   , modBreaks_locs :: !(Array BreakIndex SrcSpan)
        -- ^ An array giving the source span of each breakpoint.
   , modBreaks_vars :: !(Array BreakIndex [OccName])
        -- ^ An array giving the names of the free variables at each breakpoint.
   , modBreaks_decls :: !(Array BreakIndex [String])
        -- ^ An array giving the names of the declarations enclosing each breakpoint.
        -- See Note [Field modBreaks_decls]
   , modBreaks_ccs :: !(Array BreakIndex (RemotePtr CostCentre))
        -- ^ Array pointing to cost centre for each breakpoint
   , modBreaks_breakInfo :: IntMap CgBreakInfo
        -- ^ info about each breakpoint from the bytecode generator
   }

seqModBreaks :: ModBreaks -> ()
seqModBreaks ModBreaks{..} =
  rnf modBreaks_flags `seq`
  rnf modBreaks_locs `seq`
  rnf modBreaks_vars `seq`
  rnf modBreaks_decls `seq`
  rnf modBreaks_ccs `seq`
  rnf (fmap seqCgBreakInfo modBreaks_breakInfo)

-- | Construct an empty ModBreaks
emptyModBreaks :: ModBreaks
emptyModBreaks = ModBreaks
   { modBreaks_flags = error "ModBreaks.modBreaks_array not initialised"
         -- ToDo: can we avoid this?
   , modBreaks_locs  = array (0,-1) []
   , modBreaks_vars  = array (0,-1) []
   , modBreaks_decls = array (0,-1) []
   , modBreaks_ccs = array (0,-1) []
   , modBreaks_breakInfo = IntMap.empty
   }

{-
Note [Field modBreaks_decls]
~~~~~~~~~~~~~~~~~~~~~~
A value of eg ["foo", "bar", "baz"] in a `modBreaks_decls` field means:
The breakpoint is in the function called "baz" that is declared in a `let`
or `where` clause of a declaration called "bar", which itself is declared
in a `let` or `where` clause of the top-level function called "foo".
-}