{-# LANGUAGE CPP #-}

-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------
#include "HsVersions.h"

module GHC.CmmToAsm.SPARC.Instr
   ( Instr(..)
   , RI(..)
   , riZero
   , fpRelEA
   , moveSp
   , isUnconditionalJump
   , maxSpillSlots
   , patchRegsOfInstr
   , patchJumpInstr
   , mkRegRegMoveInstr
   , mkLoadInstr
   , mkSpillInstr
   , mkJumpInstr
   , takeDeltaInstr
   , isMetaInstr
   , isJumpishInstr
   , jumpDestsOfInstr
   , takeRegRegMoveInstr
   , regUsageOfInstr
   )
where

import GHC.Prelude
import GHC.Platform

import GHC.CmmToAsm.SPARC.Stack
import GHC.CmmToAsm.SPARC.Imm
import GHC.CmmToAsm.SPARC.AddrMode
import GHC.CmmToAsm.SPARC.Cond
import GHC.CmmToAsm.SPARC.Regs
import GHC.CmmToAsm.SPARC.Base
import GHC.CmmToAsm.Reg.Target
import GHC.CmmToAsm.Format
import GHC.CmmToAsm.Config
import GHC.CmmToAsm.Instr (RegUsage(..), noUsage)

import GHC.Platform.Reg.Class
import GHC.Platform.Reg
import GHC.Platform.Regs

import GHC.Cmm.CLabel
import GHC.Cmm.BlockId
import GHC.Cmm
import GHC.Data.FastString
import GHC.Utils.Panic


-- | Register or immediate
data RI
        = RIReg Reg
        | RIImm Imm

-- | Check if a RI represents a zero value.
--      - a literal zero
--      - register %g0, which is always zero.
--
riZero :: RI -> Bool
riZero (RIImm (ImmInt 0))                       = True
riZero (RIImm (ImmInteger 0))                   = True
riZero (RIReg (RegReal (RealRegSingle 0)))      = True
riZero _                                        = False


-- | Calculate the effective address which would be used by the
--      corresponding fpRel sequence.
fpRelEA :: Int -> Reg -> Instr
fpRelEA n dst
   = ADD False False fp (RIImm (ImmInt (n * wordLength))) dst


-- | Code to shift the stack pointer by n words.
moveSp :: Int -> Instr
moveSp n
   = ADD False False sp (RIImm (ImmInt (n * wordLength))) sp

-- | An instruction that will cause the one after it never to be exectuted
isUnconditionalJump :: Instr -> Bool
isUnconditionalJump ii
 = case ii of
        CALL{}          -> True
        JMP{}           -> True
        JMP_TBL{}       -> True
        BI ALWAYS _ _   -> True
        BF ALWAYS _ _   -> True
        _               -> False


-- | SPARC instruction set.
--      Not complete. This is only the ones we need.
--
data Instr

        -- meta ops --------------------------------------------------
        -- comment pseudo-op
        = COMMENT FastString

        -- some static data spat out during code generation.
        -- Will be extracted before pretty-printing.
        | LDATA   Section RawCmmStatics

        -- Start a new basic block.  Useful during codegen, removed later.
        -- Preceding instruction should be a jump, as per the invariants
        -- for a BasicBlock (see Cmm).
        | NEWBLOCK BlockId

        -- specify current stack offset for benefit of subsequent passes.
        | DELTA   Int

        -- real instrs -----------------------------------------------
        -- Loads and stores.
        | LD            Format AddrMode Reg             -- format, src, dst
        | ST            Format Reg AddrMode             -- format, src, dst

        -- Int Arithmetic.
        --      x:   add/sub with carry bit.
        --              In SPARC V9 addx and friends were renamed addc.
        --
        --      cc:  modify condition codes
        --
        | ADD           Bool Bool Reg RI Reg            -- x?, cc?, src1, src2, dst
        | SUB           Bool Bool Reg RI Reg            -- x?, cc?, src1, src2, dst

        | UMUL          Bool Reg RI Reg                 --     cc?, src1, src2, dst
        | SMUL          Bool Reg RI Reg                 --     cc?, src1, src2, dst


        -- The SPARC divide instructions perform 64bit by 32bit division
        --   The Y register is xored into the first operand.

        --   On _some implementations_ the Y register is overwritten by
        --   the remainder, so we have to make sure it is 0 each time.

        --   dst <- ((Y `shiftL` 32) `or` src1) `div` src2
        | UDIV          Bool Reg RI Reg                 --     cc?, src1, src2, dst
        | SDIV          Bool Reg RI Reg                 --     cc?, src1, src2, dst

        | RDY           Reg                             -- move contents of Y register to reg
        | WRY           Reg  Reg                        -- Y <- src1 `xor` src2

        -- Logic operations.
        | AND           Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | ANDN          Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | OR            Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | ORN           Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | XOR           Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | XNOR          Bool Reg RI Reg                 -- cc?, src1, src2, dst
        | SLL           Reg RI Reg                      -- src1, src2, dst
        | SRL           Reg RI Reg                      -- src1, src2, dst
        | SRA           Reg RI Reg                      -- src1, src2, dst

        -- Load immediates.
        | SETHI         Imm Reg                         -- src, dst

        -- Do nothing.
        -- Implemented by the assembler as SETHI 0, %g0, but worth an alias
        | NOP

        -- Float Arithmetic.
        -- Note that we cheat by treating F{ABS,MOV,NEG} of doubles as single
        -- instructions right up until we spit them out.
        --
        | FABS          Format Reg Reg                  -- src dst
        | FADD          Format Reg Reg Reg              -- src1, src2, dst
        | FCMP          Bool Format Reg Reg             -- exception?, src1, src2, dst
        | FDIV          Format Reg Reg Reg              -- src1, src2, dst
        | FMOV          Format Reg Reg                  -- src, dst
        | FMUL          Format Reg Reg Reg              -- src1, src2, dst
        | FNEG          Format Reg Reg                  -- src, dst
        | FSQRT         Format Reg Reg                  -- src, dst
        | FSUB          Format Reg Reg Reg              -- src1, src2, dst
        | FxTOy         Format Format Reg Reg           -- src, dst

        -- Jumping around.
        | BI            Cond Bool BlockId               -- cond, annul?, target
        | BF            Cond Bool BlockId               -- cond, annul?, target

        | JMP           AddrMode                        -- target

        -- With a tabled jump we know all the possible destinations.
        -- We also need this info so we can work out what regs are live across the jump.
        --
        | JMP_TBL       AddrMode [Maybe BlockId] CLabel

        | CALL          (Either Imm Reg) Int Bool       -- target, args, terminal


-- | regUsage returns the sets of src and destination registers used
--      by a particular instruction.  Machine registers that are
--      pre-allocated to stgRegs are filtered out, because they are
--      uninteresting from a register allocation standpoint.  (We wouldn't
--      want them to end up on the free list!)  As far as we are concerned,
--      the fixed registers simply don't exist (for allocation purposes,
--      anyway).

--      regUsage doesn't need to do any trickery for jumps and such.  Just
--      state precisely the regs read and written by that insn.  The
--      consequences of control flow transfers, as far as register
--      allocation goes, are taken care of by the register allocator.
--
regUsageOfInstr :: Platform -> Instr -> RegUsage
regUsageOfInstr platform instr
 = case instr of
    LD    _ addr reg            -> usage (regAddr addr,         [reg])
    ST    _ reg addr            -> usage (reg : regAddr addr,   [])
    ADD   _ _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SUB   _ _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    UMUL    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SMUL    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    UDIV    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SDIV    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    RDY       rd                -> usage ([],                   [rd])
    WRY       r1 r2             -> usage ([r1, r2],             [])
    AND     _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    ANDN    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    OR      _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    ORN     _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    XOR     _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    XNOR    _ r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SLL       r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SRL       r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SRA       r1 ar r2          -> usage (r1 : regRI ar,        [r2])
    SETHI   _ reg               -> usage ([],                   [reg])
    FABS    _ r1 r2             -> usage ([r1],                 [r2])
    FADD    _ r1 r2 r3          -> usage ([r1, r2],             [r3])
    FCMP    _ _  r1 r2          -> usage ([r1, r2],             [])
    FDIV    _ r1 r2 r3          -> usage ([r1, r2],             [r3])
    FMOV    _ r1 r2             -> usage ([r1],                 [r2])
    FMUL    _ r1 r2 r3          -> usage ([r1, r2],             [r3])
    FNEG    _ r1 r2             -> usage ([r1],                 [r2])
    FSQRT   _ r1 r2             -> usage ([r1],                 [r2])
    FSUB    _ r1 r2 r3          -> usage ([r1, r2],             [r3])
    FxTOy   _ _  r1 r2          -> usage ([r1],                 [r2])

    JMP     addr                -> usage (regAddr addr, [])
    JMP_TBL addr _ _            -> usage (regAddr addr, [])

    CALL  (Left _  )  _ True    -> noUsage
    CALL  (Left _  )  n False   -> usage (argRegs n, callClobberedRegs)
    CALL  (Right reg) _ True    -> usage ([reg], [])
    CALL  (Right reg) n False   -> usage (reg : (argRegs n), callClobberedRegs)
    _                           -> noUsage

  where
    usage (src, dst)
     = RU (filter (interesting platform) src)
          (filter (interesting platform) dst)

    regAddr (AddrRegReg r1 r2)  = [r1, r2]
    regAddr (AddrRegImm r1 _)   = [r1]

    regRI (RIReg r)             = [r]
    regRI  _                    = []


-- | Interesting regs are virtuals, or ones that are allocatable
--      by the register allocator.
interesting :: Platform -> Reg -> Bool
interesting platform reg
 = case reg of
        RegVirtual _                    -> True
        RegReal (RealRegSingle r1)      -> freeReg platform r1
        RegReal (RealRegPair r1 _)      -> freeReg platform r1



-- | Apply a given mapping to tall the register references in this instruction.
patchRegsOfInstr :: Instr -> (Reg -> Reg) -> Instr
patchRegsOfInstr instr env = case instr of
    LD    fmt addr reg          -> LD fmt (fixAddr addr) (env reg)
    ST    fmt reg addr          -> ST fmt (env reg) (fixAddr addr)

    ADD   x cc r1 ar r2         -> ADD   x cc  (env r1) (fixRI ar) (env r2)
    SUB   x cc r1 ar r2         -> SUB   x cc  (env r1) (fixRI ar) (env r2)
    UMUL    cc r1 ar r2         -> UMUL    cc  (env r1) (fixRI ar) (env r2)
    SMUL    cc r1 ar r2         -> SMUL    cc  (env r1) (fixRI ar) (env r2)
    UDIV    cc r1 ar r2         -> UDIV    cc  (env r1) (fixRI ar) (env r2)
    SDIV    cc r1 ar r2         -> SDIV    cc  (env r1) (fixRI ar) (env r2)
    RDY   rd                    -> RDY         (env rd)
    WRY   r1 r2                 -> WRY         (env r1) (env r2)
    AND   b r1 ar r2            -> AND   b     (env r1) (fixRI ar) (env r2)
    ANDN  b r1 ar r2            -> ANDN  b     (env r1) (fixRI ar) (env r2)
    OR    b r1 ar r2            -> OR    b     (env r1) (fixRI ar) (env r2)
    ORN   b r1 ar r2            -> ORN   b     (env r1) (fixRI ar) (env r2)
    XOR   b r1 ar r2            -> XOR   b     (env r1) (fixRI ar) (env r2)
    XNOR  b r1 ar r2            -> XNOR  b     (env r1) (fixRI ar) (env r2)
    SLL   r1 ar r2              -> SLL         (env r1) (fixRI ar) (env r2)
    SRL   r1 ar r2              -> SRL         (env r1) (fixRI ar) (env r2)
    SRA   r1 ar r2              -> SRA         (env r1) (fixRI ar) (env r2)

    SETHI imm reg               -> SETHI imm (env reg)

    FABS  s r1 r2               -> FABS    s   (env r1) (env r2)
    FADD  s r1 r2 r3            -> FADD    s   (env r1) (env r2) (env r3)
    FCMP  e s r1 r2             -> FCMP e  s   (env r1) (env r2)
    FDIV  s r1 r2 r3            -> FDIV    s   (env r1) (env r2) (env r3)
    FMOV  s r1 r2               -> FMOV    s   (env r1) (env r2)
    FMUL  s r1 r2 r3            -> FMUL    s   (env r1) (env r2) (env r3)
    FNEG  s r1 r2               -> FNEG    s   (env r1) (env r2)
    FSQRT s r1 r2               -> FSQRT   s   (env r1) (env r2)
    FSUB  s r1 r2 r3            -> FSUB    s   (env r1) (env r2) (env r3)
    FxTOy s1 s2 r1 r2           -> FxTOy s1 s2 (env r1) (env r2)

    JMP     addr                -> JMP     (fixAddr addr)
    JMP_TBL addr ids l          -> JMP_TBL (fixAddr addr) ids l

    CALL  (Left i) n t          -> CALL (Left i) n t
    CALL  (Right r) n t         -> CALL (Right (env r)) n t
    _                           -> instr

  where
    fixAddr (AddrRegReg r1 r2)  = AddrRegReg   (env r1) (env r2)
    fixAddr (AddrRegImm r1 i)   = AddrRegImm   (env r1) i

    fixRI (RIReg r)             = RIReg (env r)
    fixRI other                 = other


--------------------------------------------------------------------------------
isJumpishInstr :: Instr -> Bool
isJumpishInstr instr
 = case instr of
        BI{}            -> True
        BF{}            -> True
        JMP{}           -> True
        JMP_TBL{}       -> True
        CALL{}          -> True
        _               -> False

jumpDestsOfInstr :: Instr -> [BlockId]
jumpDestsOfInstr insn
  = case insn of
        BI   _ _ id     -> [id]
        BF   _ _ id     -> [id]
        JMP_TBL _ ids _ -> [id | Just id <- ids]
        _               -> []


patchJumpInstr :: Instr -> (BlockId -> BlockId) -> Instr
patchJumpInstr insn patchF
  = case insn of
        BI cc annul id  -> BI cc annul (patchF id)
        BF cc annul id  -> BF cc annul (patchF id)
        JMP_TBL n ids l -> JMP_TBL n (map (fmap patchF) ids) l
        _               -> insn


--------------------------------------------------------------------------------
-- | Make a spill instruction.
--      On SPARC we spill below frame pointer leaving 2 words/spill
mkSpillInstr
    :: NCGConfig
    -> Reg      -- ^ register to spill
    -> Int      -- ^ current stack delta
    -> Int      -- ^ spill slot to use
    -> Instr

mkSpillInstr config reg _ slot
 = let  platform = ncgPlatform config
        off      = spillSlotToOffset config slot
        off_w    = 1 + (off `div` 4)
        fmt      = case targetClassOfReg platform reg of
                        RcInteger -> II32
                        RcFloat   -> FF32
                        RcDouble  -> FF64

    in ST fmt reg (fpRel (negate off_w))


-- | Make a spill reload instruction.
mkLoadInstr
    :: NCGConfig
    -> Reg      -- ^ register to load into
    -> Int      -- ^ current stack delta
    -> Int      -- ^ spill slot to use
    -> Instr

mkLoadInstr config reg _ slot
  = let platform = ncgPlatform config
        off      = spillSlotToOffset config slot
        off_w    = 1 + (off `div` 4)
        fmt      = case targetClassOfReg platform reg of
                        RcInteger -> II32
                        RcFloat   -> FF32
                        RcDouble  -> FF64

        in LD fmt (fpRel (- off_w)) reg


--------------------------------------------------------------------------------
-- | See if this instruction is telling us the current C stack delta
takeDeltaInstr
        :: Instr
        -> Maybe Int

takeDeltaInstr instr
 = case instr of
        DELTA i         -> Just i
        _               -> Nothing


isMetaInstr
        :: Instr
        -> Bool

isMetaInstr instr
 = case instr of
        COMMENT{}       -> True
        LDATA{}         -> True
        NEWBLOCK{}      -> True
        DELTA{}         -> True
        _               -> False


-- | Make a reg-reg move instruction.
--      On SPARC v8 there are no instructions to move directly between
--      floating point and integer regs. If we need to do that then we
--      have to go via memory.
--
mkRegRegMoveInstr
    :: Platform
    -> Reg
    -> Reg
    -> Instr

mkRegRegMoveInstr platform src dst
        | srcClass      <- targetClassOfReg platform src
        , dstClass      <- targetClassOfReg platform dst
        , srcClass == dstClass
        = case srcClass of
                RcInteger -> ADD  False False src (RIReg g0) dst
                RcDouble  -> FMOV FF64 src dst
                RcFloat   -> FMOV FF32 src dst

        | otherwise
        = panic "SPARC.Instr.mkRegRegMoveInstr: classes of src and dest not the same"


-- | Check whether an instruction represents a reg-reg move.
--      The register allocator attempts to eliminate reg->reg moves whenever it can,
--      by assigning the src and dest temporaries to the same real register.
--
takeRegRegMoveInstr :: Instr -> Maybe (Reg,Reg)
takeRegRegMoveInstr instr
 = case instr of
        ADD False False src (RIReg src2) dst
         | g0 == src2           -> Just (src, dst)

        FMOV FF64 src dst       -> Just (src, dst)
        FMOV FF32  src dst      -> Just (src, dst)
        _                       -> Nothing


-- | Make an unconditional branch instruction.
mkJumpInstr
        :: BlockId
        -> [Instr]

mkJumpInstr id
 =       [BI ALWAYS False id
        , NOP]                  -- fill the branch delay slot.