{-# LANGUAGE CPP               #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs             #-}
{-# LANGUAGE LambdaCase        #-}

-- | This module coverage checks pattern matches. It finds
--
--     * Uncovered patterns, certifying non-exhaustivity
--     * Redundant equations
--     * Equations with an inaccessible right-hand-side
--
-- The algorithm is based on the paper
-- [Lower Your Guards: A Compositional Pattern-Match Coverage Checker"](https://dl.acm.org/doi/abs/10.1145/3408989)
--
-- There is an overview Figure 2 in there that's probably helpful.
-- Here is an overview of how it's implemented, which follows the structure of
-- the entry points such as 'pmcMatches':
--
--  1. Desugar source syntax (like 'LMatch') to guard tree variants (like
--     'GrdMatch'), with one of the desugaring functions (like 'desugarMatch').
--     See "GHC.HsToCore.Pmc.Desugar".
--     Follows Section 3.1 in the paper.
--  2. Coverage check guard trees (with a function like 'checkMatch') to get a
--     'CheckResult'. See "GHC.HsToCore.Pmc.Check".
--     The normalised refinement types 'Nabla' are tested for inhabitants by
--     "GHC.HsToCore.Pmc.Solver".
--  3. Collect redundancy information into a 'CIRB' with a function such
--     as 'cirbsMatch'. Follows the R function from Figure 6 of the paper.
--  4. Format and report uncovered patterns and redundant equations ('CIRB')
--     with 'formatReportWarnings'. Basically job of the G function, plus proper
--     pretty printing of the warnings (Section 5.4 of the paper).
--  5. Return 'Nablas' reaching syntactic sub-components for
--     Note [Long-distance information]. Collected by functions such as
--     'ldiMatch'. See Section 4.1 of the paper.
module GHC.HsToCore.Pmc (
        -- Checking and printing
        pmcPatBind, pmcMatches, pmcGRHSs,
        isMatchContextPmChecked,

        -- See Note [Long-distance information]
        addTyCs, addCoreScrutTmCs, addHsScrutTmCs
    ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.HsToCore.Pmc.Types
import GHC.HsToCore.Pmc.Utils
import GHC.HsToCore.Pmc.Desugar
import GHC.HsToCore.Pmc.Check
import GHC.HsToCore.Pmc.Solver
import GHC.HsToCore.Pmc.Ppr
import GHC.Types.Basic (Origin(..))
import GHC.Core (CoreExpr)
import GHC.Driver.Session
import GHC.Driver.Env
import GHC.Hs
import GHC.Types.Id
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Types.Var (EvVar)
import GHC.Tc.Types
import GHC.Tc.Utils.TcType (evVarPred)
import {-# SOURCE #-} GHC.HsToCore.Expr (dsLExpr)
import GHC.HsToCore.Monad
import GHC.Data.Bag
import GHC.Data.IOEnv (updEnv, unsafeInterleaveM)
import GHC.Data.OrdList
import GHC.Utils.Monad (mapMaybeM)

import Control.Monad (when, forM_)
import qualified Data.Semigroup as Semi
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.List.NonEmpty as NE
import Data.Coerce

--
-- * Exported entry points to the checker
--

-- | A non-empty delta that is initialised from the ambient refinement type
-- capturing long-distance information, or the trivially habitable 'Nablas' if
-- the former is uninhabited.
-- See Note [Recovering from unsatisfiable pattern-matching constraints].
getLdiNablas :: DsM Nablas
getLdiNablas = do
  nablas <- getPmNablas
  isInhabited nablas >>= \case
    True  -> pure nablas
    False -> pure initNablas

-- | We need to call the Hs desugarer to get the Core of a let-binding or where
-- clause. We don't want to run the coverage checker when doing so! Efficiency
-- is one concern, but also a lack of properly set up long-distance information
-- might trigger warnings that we normally wouldn't emit.
noCheckDs :: DsM a -> DsM a
noCheckDs k = do
  dflags <- getDynFlags
  let dflags' = foldl' wopt_unset dflags allPmCheckWarnings
  updEnv (\env -> env{env_top = (env_top env) {hsc_dflags = dflags'} }) k

-- | Check a pattern binding (let, where) for exhaustiveness.
pmcPatBind :: DsMatchContext -> Id -> Pat GhcTc -> DsM ()
-- See Note [pmcPatBind only checks PatBindRhs]
pmcPatBind ctxt@(DsMatchContext PatBindRhs loc) var p = do
  !missing <- getLdiNablas
  pat_bind <- noCheckDs $ desugarPatBind loc var p
  tracePm "pmcPatBind {" (vcat [ppr ctxt, ppr var, ppr p, ppr pat_bind, ppr missing])
  result <- unCA (checkPatBind pat_bind) missing
  tracePm "}: " (ppr (cr_uncov result))
  formatReportWarnings cirbsPatBind ctxt [var] result
pmcPatBind _ _ _ = pure ()

-- | Exhaustive for guard matches, is used for guards in pattern bindings and
-- in @MultiIf@ expressions. Returns the 'Nablas' covered by the RHSs.
pmcGRHSs
  :: HsMatchContext GhcRn         -- ^ Match context, for warning messages
  -> GRHSs GhcTc (LHsExpr GhcTc)  -- ^ The GRHSs to check
  -> DsM (NonEmpty Nablas)        -- ^ Covered 'Nablas' for each RHS, for long
                                  --   distance info
pmcGRHSs hs_ctxt guards@(GRHSs _ grhss _) = do
  let combined_loc = foldl1 combineSrcSpans (map getLoc grhss)
      ctxt = DsMatchContext hs_ctxt combined_loc
  !missing <- getLdiNablas
  matches  <- noCheckDs $ desugarGRHSs combined_loc empty guards
  tracePm "pmcGRHSs" (hang (vcat [ppr ctxt
                                , text "Guards:"])
                                2
                                (pprGRHSs hs_ctxt guards $$ ppr missing))
  result <- unCA (checkGRHSs matches) missing
  tracePm "}: " (ppr (cr_uncov result))
  formatReportWarnings cirbsGRHSs ctxt [] result
  return (ldiGRHSs (cr_ret result))

-- | Check a list of syntactic 'Match'es (part of case, functions, etc.), each
-- with a 'Pat' and one or more 'GRHSs':
--
-- @
--   f x y | x == y    = 1   -- match on x and y with two guarded RHSs
--         | otherwise = 2
--   f _ _             = 3   -- clause with a single, un-guarded RHS
-- @
--
-- Returns one non-empty 'Nablas' for 1.) each pattern of a 'Match' and 2.)
-- each of a 'Match'es 'GRHS' for Note [Long-distance information].
--
-- Special case: When there are /no matches/, then the functionassumes it
-- checks and @-XEmptyCase@ with only a single match variable.
-- See Note [Checking EmptyCase].
pmcMatches
  :: DsMatchContext                  -- ^ Match context, for warnings messages
  -> [Id]                            -- ^ Match variables, i.e. x and y above
  -> [LMatch GhcTc (LHsExpr GhcTc)]  -- ^ List of matches
  -> DsM [(Nablas, NonEmpty Nablas)] -- ^ One covered 'Nablas' per Match and
                                     --   GRHS, for long distance info.
pmcMatches ctxt vars matches = do
  -- We have to force @missing@ before printing out the trace message,
  -- otherwise we get interleaved output from the solver. This function
  -- should be strict in @missing@ anyway!
  !missing <- getLdiNablas
  tracePm "pmcMatches {" $
          hang (vcat [ppr ctxt, ppr vars, text "Matches:"])
               2
               (vcat (map ppr matches) $$ ppr missing)
  case NE.nonEmpty matches of
    Nothing -> do
      -- This must be an -XEmptyCase. See Note [Checking EmptyCase]
      let var = only vars
      empty_case <- noCheckDs $ desugarEmptyCase var
      result <- unCA (checkEmptyCase empty_case) missing
      tracePm "}: " (ppr (cr_uncov result))
      formatReportWarnings cirbsEmptyCase ctxt vars result
      return []
    Just matches -> do
      matches <- noCheckDs $ desugarMatches vars matches
      result <- unCA (checkMatchGroup matches) missing
      tracePm "}: " (ppr (cr_uncov result))
      formatReportWarnings cirbsMatchGroup ctxt vars result
      return (NE.toList (ldiMatchGroup (cr_ret result)))

{- Note [pmcPatBind only checks PatBindRhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@pmcPatBind@'s sole purpose is to check vanilla pattern bindings, like
@x :: Int; Just x = e@, which is in a @PatBindRhs@ context.
But its caller is also called for individual pattern guards in a @StmtCtxt@.
For example, both pattern guards in @f x y | True <- x, False <- y = ...@ will
go through this function. It makes no sense to do coverage checking there:
  * Pattern guards may well fail. Fall-through is not an unrecoverable panic,
    but rather behavior the programmer expects, so inexhaustivity should not be
    reported.
  * Redundancy is already reported for the whole GRHS via one of the other
    exported coverage checking functions. Also reporting individual redundant
    guards is... redundant. See #17646.
Note that we can't just omit checking of @StmtCtxt@ altogether (by adjusting
'isMatchContextPmChecked'), because that affects the other checking functions,
too.
-}

--
-- * Collecting long-distance information
--

ldiMatchGroup :: PmMatchGroup Post -> NonEmpty (Nablas, NonEmpty Nablas)
ldiMatchGroup (PmMatchGroup matches) = ldiMatch <$> matches

ldiMatch :: PmMatch Post -> (Nablas, NonEmpty Nablas)
ldiMatch (PmMatch { pm_pats = red, pm_grhss = grhss }) =
  (rs_cov red, ldiGRHSs grhss)

ldiGRHSs :: PmGRHSs Post -> NonEmpty Nablas
ldiGRHSs (PmGRHSs { pgs_grhss = grhss }) = ldiGRHS <$> grhss

ldiGRHS :: PmGRHS Post -> Nablas
ldiGRHS (PmGRHS { pg_grds = red }) = rs_cov red

--
-- * Collecting redundancy information
--

-- | The result of redundancy checking:
--    * RHSs classified as /C/overed, /I/naccessible and /R/edundant
--    * And redundant /B/ang patterns. See Note [Dead bang patterns].
data CIRB
  = CIRB
  { cirb_cov   :: !(OrdList SrcInfo) -- ^ Covered clauses
  , cirb_inacc :: !(OrdList SrcInfo) -- ^ Inaccessible clauses
  , cirb_red   :: !(OrdList SrcInfo) -- ^ Redundant clauses
  , cirb_bangs :: !(OrdList SrcInfo) -- ^ Redundant bang patterns
  }

instance Semigroup CIRB where
  CIRB a b c d <> CIRB e f g h = CIRB (a <> e) (b <> f) (c <> g) (d <> h)
    where (<>) = (Semi.<>)

instance Monoid CIRB where
  mempty = CIRB mempty mempty mempty mempty

-- See Note [Determining inaccessible clauses]
ensureOneNotRedundant :: CIRB -> CIRB
ensureOneNotRedundant ci = case ci of
  CIRB { cirb_cov = NilOL, cirb_inacc = NilOL, cirb_red = ConsOL r rs }
    -> ci { cirb_inacc = unitOL r, cirb_red = rs }
  _ -> ci

-- | Only adds the redundant bangs to the @CIRB@ if there is at least one
-- non-redundant 'SrcInfo'. There is no point in remembering a redundant bang
-- if the whole match is redundant!
addRedundantBangs :: OrdList SrcInfo -> CIRB -> CIRB
addRedundantBangs _red_bangs cirb@CIRB { cirb_cov = NilOL, cirb_inacc = NilOL } =
  cirb
addRedundantBangs red_bangs  cirb =
  cirb { cirb_bangs = cirb_bangs cirb Semi.<> red_bangs }

-- | Checks the 'Nablas' in a 'RedSets' for inhabitants and returns
--    1. Whether the Covered set was inhabited
--    2. Whether the Diverging set was inhabited
--    3. All source bangs whose 'Nablas' were empty, which means they are
--       redundant.
testRedSets :: RedSets -> DsM (Bool, Bool, OrdList SrcInfo)
testRedSets RedSets { rs_cov = cov, rs_div = div, rs_bangs = bangs } = do
  is_covered  <- isInhabited cov
  may_diverge <- isInhabited div
  red_bangs   <- flip mapMaybeM (fromOL bangs) $ \(nablas, bang) ->
    isInhabited nablas >>= \case
      True  -> pure Nothing
      False -> pure (Just bang)
  pure (is_covered, may_diverge, toOL red_bangs)

cirbsMatchGroup :: PmMatchGroup Post -> DsM CIRB
cirbsMatchGroup (PmMatchGroup matches) =
  Semi.sconcat <$> traverse cirbsMatch matches

cirbsMatch :: PmMatch Post -> DsM CIRB
cirbsMatch PmMatch { pm_pats = red, pm_grhss = grhss } = do
  (_is_covered, may_diverge, red_bangs) <- testRedSets red
  -- Don't look at is_covered: If it is True, all children are redundant anyway,
  -- unless there is a 'considerAccessible', which may break that rule
  -- intentionally. See Note [considerAccessible] in "GHC.HsToCore.Pmc.Check".
  cirb <- cirbsGRHSs grhss
  pure $ addRedundantBangs red_bangs
       -- See Note [Determining inaccessible clauses]
       $ applyWhen may_diverge ensureOneNotRedundant
       $ cirb

cirbsGRHSs :: PmGRHSs Post -> DsM CIRB
cirbsGRHSs (PmGRHSs { pgs_grhss = grhss }) = Semi.sconcat <$> traverse cirbsGRHS grhss

cirbsGRHS :: PmGRHS Post -> DsM CIRB
cirbsGRHS PmGRHS { pg_grds = red, pg_rhs = info } = do
  (is_covered, may_diverge, red_bangs) <- testRedSets red
  let cirb | is_covered  = mempty { cirb_cov   = unitOL info }
           | may_diverge = mempty { cirb_inacc = unitOL info }
           | otherwise   = mempty { cirb_red   = unitOL info }
  pure (addRedundantBangs red_bangs cirb)

cirbsEmptyCase :: PmEmptyCase -> DsM CIRB
cirbsEmptyCase _ = pure mempty

cirbsPatBind :: PmPatBind Post -> DsM CIRB
cirbsPatBind = coerce cirbsGRHS

{- Note [Determining inaccessible clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  f _  True = ()
  f () True = ()
  f _  _    = ()
Is f's second clause redundant? The perhaps surprising answer is, no, it isn't!
@f (error "boom") False@ will force the error with clause 2, but will return
() if it was deleted, so clearly not redundant. Yet for now combination of
arguments we can ever reach clause 2's RHS, so we say it has inaccessible RHS
(as opposed to being completely redundant).

We detect an inaccessible RHS simply by pretending it's redundant, until we see
-}

--
-- * Formatting and reporting warnings
--

-- | Given a function that collects 'CIRB's, this function will emit warnings
-- for a 'CheckResult'.
formatReportWarnings :: (ann -> DsM CIRB) -> DsMatchContext -> [Id] -> CheckResult ann -> DsM ()
formatReportWarnings collect ctx vars cr@CheckResult { cr_ret = ann } = do
  cov_info <- collect ann
  dflags <- getDynFlags
  reportWarnings dflags ctx vars cr{cr_ret=cov_info}

-- | Issue all the warnings
-- (redundancy, inaccessibility, exhaustiveness, redundant bangs).
reportWarnings :: DynFlags -> DsMatchContext -> [Id] -> CheckResult CIRB -> DsM ()
reportWarnings dflags ctx@(DsMatchContext kind loc) vars
  CheckResult { cr_ret    = CIRB { cirb_inacc = inaccessible_rhss
                                 , cirb_red   = redundant_rhss
                                 , cirb_bangs = redundant_bangs }
              , cr_uncov  = uncovered
              , cr_approx = precision }
  = when (flag_i || flag_u || flag_b) $ do
      unc_examples <- getNFirstUncovered vars (maxPatterns + 1) uncovered
      let exists_r = flag_i && notNull redundant_rhss
          exists_i = flag_i && notNull inaccessible_rhss
          exists_u = flag_u && notNull unc_examples
          exists_b = flag_b && notNull redundant_bangs
          approx   = precision == Approximate

      when (approx && (exists_u || exists_i)) $
        putSrcSpanDs loc (warnDs NoReason approx_msg)

      when exists_b $ forM_ redundant_bangs $ \(SrcInfo (L l q)) ->
        putSrcSpanDs l (warnDs (Reason Opt_WarnRedundantBangPatterns)
                               (pprEqn q "has redundant bang"))

      when exists_r $ forM_ redundant_rhss $ \(SrcInfo (L l q)) ->
        putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
                               (pprEqn q "is redundant"))
      when exists_i $ forM_ inaccessible_rhss $ \(SrcInfo (L l q)) ->
        putSrcSpanDs l (warnDs (Reason Opt_WarnOverlappingPatterns)
                               (pprEqn q "has inaccessible right hand side"))

      when exists_u $ putSrcSpanDs loc $ warnDs flag_u_reason $
        pprEqns vars unc_examples
  where
    flag_i = overlapping dflags kind
    flag_u = exhaustive dflags kind
    flag_b = redundantBang dflags
    flag_u_reason = maybe NoReason Reason (exhaustiveWarningFlag kind)

    maxPatterns = maxUncoveredPatterns dflags

    -- Print a single clause (for redundant/with-inaccessible-rhs)
    pprEqn q txt = pprContext True ctx (text txt) $ \f ->
      f (q <+> matchSeparator kind <+> text "...")

    -- Print several clauses (for uncovered clauses)
    pprEqns vars nablas = pprContext False ctx (text "are non-exhaustive") $ \_ ->
      case vars of -- See #11245
           [] -> text "Guards do not cover entire pattern space"
           _  -> let us = map (\nabla -> pprUncovered nabla vars) nablas
                     pp_tys = pprQuotedList $ map idType vars
                 in  hang
                       (text "Patterns of type" <+> pp_tys <+> text "not matched:")
                       4
                       (vcat (take maxPatterns us) $$ dots maxPatterns us)

    approx_msg = vcat
      [ hang
          (text "Pattern match checker ran into -fmax-pmcheck-models="
            <> int (maxPmCheckModels dflags)
            <> text " limit, so")
          2
          (  bullet <+> text "Redundant clauses might not be reported at all"
          $$ bullet <+> text "Redundant clauses might be reported as inaccessible"
          $$ bullet <+> text "Patterns reported as unmatched might actually be matched")
      , text "Increase the limit or resolve the warnings to suppress this message." ]

getNFirstUncovered :: [Id] -> Int -> Nablas -> DsM [Nabla]
getNFirstUncovered vars n (MkNablas nablas) = go n (bagToList nablas)
  where
    go 0 _              = pure []
    go _ []             = pure []
    go n (nabla:nablas) = do
      front <- generateInhabitingPatterns vars n nabla
      back <- go (n - length front) nablas
      pure (front ++ back)

dots :: Int -> [a] -> SDoc
dots maxPatterns qs
    | qs `lengthExceeds` maxPatterns = text "..."
    | otherwise                      = empty

pprContext :: Bool -> DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pprContext singular (DsMatchContext kind _loc) msg rest_of_msg_fun
  = vcat [text txt <+> msg,
          sep [ text "In" <+> ppr_match <> char ':'
              , nest 4 (rest_of_msg_fun pref)]]
  where
    txt | singular  = "Pattern match"
        | otherwise = "Pattern match(es)"

    (ppr_match, pref)
        = case kind of
             FunRhs { mc_fun = L _ fun }
                  -> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
             _    -> (pprMatchContext kind, \ pp -> pp)

--
-- * Adding external long-distance information
--

-- | Locally update 'dsl_nablas' with the given action, but defer evaluation
-- with 'unsafeInterleaveM' in order not to do unnecessary work.
locallyExtendPmNablas :: (Nablas -> DsM Nablas) -> DsM a -> DsM a
locallyExtendPmNablas ext k = do
  nablas <- getLdiNablas
  nablas' <- unsafeInterleaveM $ ext nablas
  updPmNablas nablas' k

-- | Add in-scope type constraints if the coverage checker might run and then
-- run the given action.
addTyCs :: Origin -> Bag EvVar -> DsM a -> DsM a
addTyCs origin ev_vars m = do
  dflags <- getDynFlags
  applyWhen (needToRunPmCheck dflags origin)
            (locallyExtendPmNablas $ \nablas ->
              addPhiCtsNablas nablas (PhiTyCt . evVarPred <$> ev_vars))
            m

-- | Add equalities for the 'CoreExpr' scrutinee to the local 'DsM' environment
-- when checking a case expression:
--     case e of x { matches }
-- When checking matches we record that (x ~ e) where x is the initial
-- uncovered. All matches will have to satisfy this equality.
addCoreScrutTmCs :: Maybe CoreExpr -> [Id] -> DsM a -> DsM a
addCoreScrutTmCs Nothing    _   k = k
addCoreScrutTmCs (Just scr) [x] k =
  flip locallyExtendPmNablas k $ \nablas ->
    addPhiCtsNablas nablas (unitBag (PhiCoreCt x scr))
addCoreScrutTmCs _   _   _ = panic "addCoreScrutTmCs: scrutinee, but more than one match id"

-- | 'addCoreScrutTmCs', but desugars the 'LHsExpr' first.
addHsScrutTmCs :: Maybe (LHsExpr GhcTc) -> [Id] -> DsM a -> DsM a
addHsScrutTmCs Nothing    _    k = k
addHsScrutTmCs (Just scr) vars k = do
  scr_e <- dsLExpr scr
  addCoreScrutTmCs (Just scr_e) vars k

{- Note [Long-distance information]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  data Color = R | G | B
  f :: Color -> Int
  f R = …
  f c = … (case c of
          G -> True
          B -> False) …

Humans can make the "long-distance connection" between the outer pattern match
and the nested case pattern match to see that the inner pattern match is
exhaustive: @c@ can't be @R@ anymore because it was matched in the first clause
of @f@.

To achieve similar reasoning in the coverage checker, we keep track of the set
of values that can reach a particular program point (often loosely referred to
as "Covered set") in 'GHC.HsToCore.Monad.dsl_nablas'.
We fill that set with Covered Nablas returned by the exported checking
functions, which the call sites put into place with
'GHC.HsToCore.Monad.updPmNablas'.
Call sites also extend this set with facts from type-constraint dictionaries,
case scrutinees, etc. with the exported functions 'addTyCs', 'addCoreScrutTmCs'
and 'addHsScrutTmCs'.

Note [Recovering from unsatisfiable pattern-matching constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following code (see #12957 and #15450):

  f :: Int ~ Bool => ()
  f = case True of { False -> () }

We want to warn that the pattern-matching in `f` is non-exhaustive. But GHC
used not to do this; in fact, it would warn that the match was /redundant/!
This is because the constraint (Int ~ Bool) in `f` is unsatisfiable, and the
coverage checker deems any matches with unsatisfiable constraint sets to be
unreachable.

We make sure to always start from an inhabited 'Nablas' by calling
'getLdiNablas', which falls back to the trivially inhabited 'Nablas' if the
long-distance info returned by 'GHC.HsToCore.Monad.getPmNablas' is empty.
-}