module GHC.ThToHs
( convertToHsExpr
, convertToPat
, convertToHsDecls
, convertToHsType
, thRdrNameGuesses
)
where
import GHC.Prelude
import GHC.Hs as Hs
import GHC.Builtin.Names
import GHC.Types.Name.Reader
import qualified GHC.Types.Name as Name
import GHC.Unit.Module
import GHC.Parser.PostProcess
import GHC.Types.Name.Occurrence as OccName
import GHC.Types.SrcLoc
import GHC.Core.Type as Hs
import qualified GHC.Core.Coercion as Coercion ( Role(..) )
import GHC.Builtin.Types
import GHC.Types.Basic as Hs
import GHC.Types.Fixity as Hs
import GHC.Types.ForeignCall
import GHC.Types.Unique
import GHC.Types.SourceText
import GHC.Utils.Error
import GHC.Data.Bag
import GHC.Utils.Lexeme
import GHC.Utils.Misc
import GHC.Data.FastString
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import qualified Data.ByteString as BS
import Control.Monad( unless, ap )
import Data.Maybe( catMaybes, isNothing )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH
import Foreign.ForeignPtr
import Foreign.Ptr
import System.IO.Unsafe
convertToHsDecls :: Origin -> SrcSpan -> [TH.Dec] -> Either SDoc [LHsDecl GhcPs]
convertToHsDecls origin loc ds = initCvt origin loc (fmap catMaybes (mapM cvt_dec ds))
where
cvt_dec d = wrapMsg "declaration" d (cvtDec d)
convertToHsExpr :: Origin -> SrcSpan -> TH.Exp -> Either SDoc (LHsExpr GhcPs)
convertToHsExpr origin loc e
= initCvt origin loc $ wrapMsg "expression" e $ cvtl e
convertToPat :: Origin -> SrcSpan -> TH.Pat -> Either SDoc (LPat GhcPs)
convertToPat origin loc p
= initCvt origin loc $ wrapMsg "pattern" p $ cvtPat p
convertToHsType :: Origin -> SrcSpan -> TH.Type -> Either SDoc (LHsType GhcPs)
convertToHsType origin loc t
= initCvt origin loc $ wrapMsg "type" t $ cvtType t
newtype CvtM a = CvtM { unCvtM :: Origin -> SrcSpan -> Either SDoc (SrcSpan, a) }
deriving (Functor)
instance Applicative CvtM where
pure x = CvtM $ \_ loc -> Right (loc,x)
(<*>) = ap
instance Monad CvtM where
(CvtM m) >>= k = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc',v) -> unCvtM (k v) origin loc'
initCvt :: Origin -> SrcSpan -> CvtM a -> Either SDoc a
initCvt origin loc (CvtM m) = fmap snd (m origin loc)
force :: a -> CvtM ()
force a = a `seq` return ()
failWith :: SDoc -> CvtM a
failWith m = CvtM (\_ _ -> Left m)
getOrigin :: CvtM Origin
getOrigin = CvtM (\origin loc -> Right (loc,origin))
getL :: CvtM SrcSpan
getL = CvtM (\_ loc -> Right (loc,loc))
setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ _ -> Right (loc, ()))
returnL :: a -> CvtM (Located a)
returnL x = CvtM (\_ loc -> Right (loc, L loc x))
returnLA :: e -> CvtM (GenLocated (SrcSpanAnn' (EpAnn' ann)) e)
returnLA x = CvtM (\_ loc -> Right (loc, L (noAnnSrcSpan loc) x))
returnJustLA :: a -> CvtM (Maybe (LocatedA a))
returnJustLA = fmap Just . returnLA
wrapParLA :: (LocatedA a -> a) -> a -> CvtM a
wrapParLA add_par x = CvtM (\_ loc -> Right (loc, add_par (L (noAnnSrcSpan loc) x)))
wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
wrapMsg what item (CvtM m)
= CvtM $ \origin loc -> case m origin loc of
Left err -> Left (err $$ msg)
Right v -> Right v
where
msg = hang (text "When splicing a TH" <+> text what <> colon)
2 (getPprDebug $ \case
True -> text (show item)
False -> text (pprint item))
wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L loc v)
wrapLN :: CvtM a -> CvtM (LocatedN a)
wrapLN (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)
wrapLA :: CvtM a -> CvtM (LocatedA a)
wrapLA (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs]
cvtDecs = fmap catMaybes . mapM cvtDec
cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs))
cvtDec (TH.ValD pat body ds)
| TH.VarP s <- pat
= do { s' <- vNameN s
; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds)
; th_origin <- getOrigin
; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin s' [cl'] }
| otherwise
= do { pat' <- cvtPat pat
; body' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") ds
; returnJustLA $ Hs.ValD noExtField $
PatBind { pat_lhs = pat'
, pat_rhs = GRHSs noExtField body' ds'
, pat_ext = noAnn
, pat_ticks = ([],[]) } }
cvtDec (TH.FunD nm cls)
| null cls
= failWith (text "Function binding for"
<+> quotes (text (TH.pprint nm))
<+> text "has no equations")
| otherwise
= do { nm' <- vNameN nm
; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls
; th_origin <- getOrigin
; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin nm' cls' }
cvtDec (TH.SigD nm typ)
= do { nm' <- vNameN nm
; ty' <- cvtSigType typ
; returnJustLA $ Hs.SigD noExtField
(TypeSig noAnn [nm'] (mkHsWildCardBndrs ty')) }
cvtDec (TH.KiSigD nm ki)
= do { nm' <- tconNameN nm
; ki' <- cvtSigKind ki
; let sig' = StandaloneKindSig noAnn nm' ki'
; returnJustLA $ Hs.KindSigD noExtField sig' }
cvtDec (TH.InfixD fx nm)
= do { nm' <- vcNameN nm
; returnJustLA (Hs.SigD noExtField (FixSig noAnn
(FixitySig noExtField [nm'] (cvtFixity fx)))) }
cvtDec (PragmaD prag)
= cvtPragmaD prag
cvtDec (TySynD tc tvs rhs)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; rhs' <- cvtType rhs
; returnJustLA $ TyClD noExtField $
SynDecl { tcdSExt = noAnn, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdRhs = rhs' } }
cvtDec (DataD ctxt tc tvs ksig constrs derivs)
= do { let isGadtCon (GadtC _ _ _) = True
isGadtCon (RecGadtC _ _ _) = True
isGadtCon (ForallC _ _ c) = isGadtCon c
isGadtCon _ = False
isGadtDecl = all isGadtCon constrs
isH98Decl = all (not . isGadtCon) constrs
; unless (isGadtDecl || isH98Decl)
(failWith (text "Cannot mix GADT constructors with Haskell 98"
<+> text "constructors"))
; unless (isNothing ksig || isGadtDecl)
(failWith (text "Kind signatures are only allowed on GADTs"))
; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noAnn
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = Just ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustLA $ TyClD noExtField $
DataDecl { tcdDExt = noAnn
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn } }
cvtDec (NewtypeD ctxt tc tvs ksig constr derivs)
= do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noAnn
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = Just ctxt'
, dd_kindSig = ksig'
, dd_cons = [con']
, dd_derivs = derivs' }
; returnJustLA $ TyClD noExtField $
DataDecl { tcdDExt = noAnn
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn } }
cvtDec (ClassD ctxt cl tvs fds decs)
= do { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
; fds' <- mapM cvt_fundep fds
; (binds', sigs', fams', at_defs', adts') <- cvt_ci_decs (text "a class declaration") decs
; unless (null adts')
(failWith $ (text "Default data instance declarations"
<+> text "are not allowed:")
$$ (Outputable.ppr adts'))
; returnJustLA $ TyClD noExtField $
ClassDecl { tcdCExt = (noAnn, NoAnnSortKey, NoLayoutInfo)
, tcdCtxt = Just cxt', tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs'
, tcdMeths = binds'
, tcdATs = fams', tcdATDefs = at_defs', tcdDocs = [] }
}
cvtDec (InstanceD o ctxt ty decs)
= do { let doc = text "an instance declaration"
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
; unless (null fams') (failWith (mkBadDecMsg doc fams'))
; ctxt' <- cvtContext funPrec ctxt
; (L loc ty') <- cvtType ty
; let inst_ty' = L loc $ mkHsImplicitSigType $
mkHsQualTy ctxt loc ctxt' $ L loc ty'
; returnJustLA $ InstD noExtField $ ClsInstD noExtField $
ClsInstDecl { cid_ext = (noAnn, NoAnnSortKey), cid_poly_ty = inst_ty'
, cid_binds = binds'
, cid_sigs = Hs.mkClassOpSigs sigs'
, cid_tyfam_insts = ats', cid_datafam_insts = adts'
, cid_overlap_mode
= fmap (L (l2l loc) . overlap) o } }
where
overlap pragma =
case pragma of
TH.Overlaps -> Hs.Overlaps (SourceText "OVERLAPS")
TH.Overlappable -> Hs.Overlappable (SourceText "OVERLAPPABLE")
TH.Overlapping -> Hs.Overlapping (SourceText "OVERLAPPING")
TH.Incoherent -> Hs.Incoherent (SourceText "INCOHERENT")
cvtDec (ForeignD ford)
= do { ford' <- cvtForD ford
; returnJustLA $ ForD noExtField ford' }
cvtDec (DataFamilyD tc tvs kind)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; result <- cvtMaybeKindToFamilyResultSig kind
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn DataFamily TopLevel tc' tvs' Prefix result Nothing }
cvtDec (DataInstD ctxt bndrs tys ksig constrs derivs)
= do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noAnn
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = Just ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustLA $ InstD noExtField $ DataFamInstD
{ dfid_ext = noAnn
, dfid_inst = DataFamInstDecl { dfid_eqn =
FamEqn { feqn_ext = noAnn
, feqn_tycon = tc'
, feqn_bndrs = bndrs'
, feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (NewtypeInstD ctxt bndrs tys ksig constr derivs)
= do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noAnn
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = Just ctxt'
, dd_kindSig = ksig'
, dd_cons = [con'], dd_derivs = derivs' }
; returnJustLA $ InstD noExtField $ DataFamInstD
{ dfid_ext = noAnn
, dfid_inst = DataFamInstDecl { dfid_eqn =
FamEqn { feqn_ext = noAnn
, feqn_tycon = tc'
, feqn_bndrs = bndrs'
, feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (TySynInstD eqn)
= do { (L _ eqn') <- cvtTySynEqn eqn
; returnJustLA $ InstD noExtField $ TyFamInstD
{ tfid_ext = noExtField
, tfid_inst = TyFamInstDecl { tfid_xtn = noAnn, tfid_eqn = eqn' } }}
cvtDec (OpenTypeFamilyD head)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn OpenTypeFamily TopLevel tc' tyvars' Prefix result' injectivity'
}
cvtDec (ClosedTypeFamilyD head eqns)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; eqns' <- mapM cvtTySynEqn eqns
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn (ClosedTypeFamily (Just eqns')) TopLevel tc' tyvars' Prefix
result' injectivity' }
cvtDec (TH.RoleAnnotD tc roles)
= do { tc' <- tconNameN tc
; let roles' = map (noLoc . cvtRole) roles
; returnJustLA
$ Hs.RoleAnnotD noExtField (RoleAnnotDecl noAnn tc' roles') }
cvtDec (TH.StandaloneDerivD ds cxt ty)
= do { cxt' <- cvtContext funPrec cxt
; ds' <- traverse cvtDerivStrategy ds
; (L loc ty') <- cvtType ty
; let inst_ty' = L loc $ mkHsImplicitSigType $
mkHsQualTy cxt loc cxt' $ L loc ty'
; returnJustLA $ DerivD noExtField $
DerivDecl { deriv_ext = noAnn
, deriv_strategy = ds'
, deriv_type = mkHsWildCardBndrs inst_ty'
, deriv_overlap_mode = Nothing } }
cvtDec (TH.DefaultSigD nm typ)
= do { nm' <- vNameN nm
; ty' <- cvtSigType typ
; returnJustLA $ Hs.SigD noExtField
$ ClassOpSig noAnn True [nm'] ty'}
cvtDec (TH.PatSynD nm args dir pat)
= do { nm' <- cNameN nm
; args' <- cvtArgs args
; dir' <- cvtDir nm' dir
; pat' <- cvtPat pat
; returnJustLA $ Hs.ValD noExtField $ PatSynBind noExtField $
PSB noAnn nm' args' pat' dir' }
where
cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixCon noTypeArgs <$> mapM vNameN args
cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixCon <$> vNameN a1 <*> vNameN a2
cvtArgs (TH.RecordPatSyn sels)
= do { sels' <- mapM (fmap (\ (L li i) -> FieldOcc noExtField (L li i)) . vNameN) sels
; vars' <- mapM (vNameN . mkNameS . nameBase) sels
; return $ Hs.RecCon $ zipWith RecordPatSynField sels' vars' }
cvtDir _ Unidir = return Unidirectional
cvtDir _ ImplBidir = return ImplicitBidirectional
cvtDir n (ExplBidir cls) =
do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls
; th_origin <- getOrigin
; return $ ExplicitBidirectional $ mkMatchGroup th_origin (noLocA ms) }
cvtDec (TH.PatSynSigD nm ty)
= do { nm' <- cNameN nm
; ty' <- cvtPatSynSigTy ty
; returnJustLA $ Hs.SigD noExtField $ PatSynSig noAnn [nm'] ty'}
cvtDec (TH.ImplicitParamBindD _ _)
= failWith (text "Implicit parameter binding only allowed in let or where")
cvtTySynEqn :: TySynEqn -> CvtM (LTyFamInstEqn GhcPs)
cvtTySynEqn (TySynEqn mb_bndrs lhs rhs)
= do { mb_bndrs' <- traverse (mapM cvt_tv) mb_bndrs
; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs mb_bndrs'
; (head_ty, args) <- split_ty_app lhs
; case head_ty of
ConT nm -> do { nm' <- tconNameN nm
; rhs' <- cvtType rhs
; let args' = map wrap_tyarg args
; returnLA
$ FamEqn { feqn_ext = noAnn
, feqn_tycon = nm'
, feqn_bndrs = outer_bndrs
, feqn_pats = args'
, feqn_fixity = Prefix
, feqn_rhs = rhs' } }
InfixT t1 nm t2 -> do { nm' <- tconNameN nm
; args' <- mapM cvtType [t1,t2]
; rhs' <- cvtType rhs
; returnLA
$ FamEqn { feqn_ext = noAnn
, feqn_tycon = nm'
, feqn_bndrs = outer_bndrs
, feqn_pats =
(map HsValArg args') ++ args
, feqn_fixity = Hs.Infix
, feqn_rhs = rhs' } }
_ -> failWith $ text "Invalid type family instance LHS:"
<+> text (show lhs)
}
cvt_ci_decs :: SDoc -> [TH.Dec]
-> CvtM (LHsBinds GhcPs,
[LSig GhcPs],
[LFamilyDecl GhcPs],
[LTyFamInstDecl GhcPs],
[LDataFamInstDecl GhcPs])
cvt_ci_decs doc decs
= do { decs' <- cvtDecs decs
; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
; let (adts', no_ats') = partitionWith is_datafam_inst bind_sig_decs'
; let (sigs', prob_binds') = partitionWith is_sig no_ats'
; let (binds', prob_fams') = partitionWith is_bind prob_binds'
; let (fams', bads) = partitionWith is_fam_decl prob_fams'
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (listToBag binds', sigs', fams', ats', adts') }
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr ()]
-> CvtM ( LHsContext GhcPs
, LocatedN RdrName
, LHsQTyVars GhcPs)
cvt_tycl_hdr cxt tc tvs
= do { cxt' <- cvtContext funPrec cxt
; tc' <- tconNameN tc
; tvs' <- cvtTvs tvs
; return (cxt', tc', mkHsQTvs tvs')
}
cvt_datainst_hdr :: TH.Cxt -> Maybe [TH.TyVarBndr ()] -> TH.Type
-> CvtM ( LHsContext GhcPs
, LocatedN RdrName
, HsOuterFamEqnTyVarBndrs GhcPs
, HsTyPats GhcPs)
cvt_datainst_hdr cxt bndrs tys
= do { cxt' <- cvtContext funPrec cxt
; bndrs' <- traverse (mapM cvt_tv) bndrs
; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs bndrs'
; (head_ty, args) <- split_ty_app tys
; case head_ty of
ConT nm -> do { nm' <- tconNameN nm
; let args' = map wrap_tyarg args
; return (cxt', nm', outer_bndrs, args') }
InfixT t1 nm t2 -> do { nm' <- tconNameN nm
; args' <- mapM cvtType [t1,t2]
; return (cxt', nm', outer_bndrs,
((map HsValArg args') ++ args)) }
_ -> failWith $ text "Invalid type instance header:"
<+> text (show tys) }
cvt_tyfam_head :: TypeFamilyHead
-> CvtM ( LocatedN RdrName
, LHsQTyVars GhcPs
, Hs.LFamilyResultSig GhcPs
, Maybe (Hs.LInjectivityAnn GhcPs))
cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity)
= do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars
; result' <- cvtFamilyResultSig result
; injectivity' <- traverse cvtInjectivityAnnotation injectivity
; return (tc', tyvars', result', injectivity') }
is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs)
is_fam_decl (L loc (TyClD _ (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl
is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs)
is_tyfam_inst (L loc (Hs.InstD _ (TyFamInstD { tfid_inst = d })))
= Left (L loc d)
is_tyfam_inst decl
= Right decl
is_datafam_inst :: LHsDecl GhcPs
-> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs)
is_datafam_inst (L loc (Hs.InstD _ (DataFamInstD { dfid_inst = d })))
= Left (L loc d)
is_datafam_inst decl
= Right decl
is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs)
is_sig (L loc (Hs.SigD _ sig)) = Left (L loc sig)
is_sig decl = Right decl
is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs)
is_bind (L loc (Hs.ValD _ bind)) = Left (L loc bind)
is_bind decl = Right decl
is_ip_bind :: TH.Dec -> Either (String, TH.Exp) TH.Dec
is_ip_bind (TH.ImplicitParamBindD n e) = Left (n, e)
is_ip_bind decl = Right decl
mkBadDecMsg :: Outputable a => SDoc -> [a] -> SDoc
mkBadDecMsg doc bads
= sep [ text "Illegal declaration(s) in" <+> doc <> colon
, nest 2 (vcat (map Outputable.ppr bads)) ]
cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs)
cvtConstr (NormalC c strtys)
= do { c' <- cNameN c
; tys' <- mapM cvt_arg strtys
; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing (PrefixCon noTypeArgs (map hsLinear tys')) }
cvtConstr (RecC c varstrtys)
= do { c' <- cNameN c
; args' <- mapM cvt_id_arg varstrtys
; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing
(RecCon (noLocA args')) }
cvtConstr (InfixC st1 c st2)
= do { c' <- cNameN c
; st1' <- cvt_arg st1
; st2' <- cvt_arg st2
; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing
(InfixCon (hsLinear st1') (hsLinear st2')) }
cvtConstr (ForallC tvs ctxt con)
= do { tvs' <- cvtTvs tvs
; ctxt' <- cvtContext funPrec ctxt
; L _ con' <- cvtConstr con
; returnLA $ add_forall tvs' ctxt' con' }
where
add_cxt lcxt Nothing = Just lcxt
add_cxt (L loc cxt1) (Just (L _ cxt2))
= Just (L loc (cxt1 ++ cxt2))
add_forall :: [LHsTyVarBndr Hs.Specificity GhcPs] -> LHsContext GhcPs
-> ConDecl GhcPs -> ConDecl GhcPs
add_forall tvs' cxt' con@(ConDeclGADT { con_bndrs = L l outer_bndrs, con_mb_cxt = cxt })
= con { con_bndrs = L l outer_bndrs'
, con_mb_cxt = add_cxt cxt' cxt }
where
outer_bndrs'
| null all_tvs = mkHsOuterImplicit
| otherwise = mkHsOuterExplicit noAnn all_tvs
all_tvs = tvs' ++ outer_exp_tvs
outer_exp_tvs = hsOuterExplicitBndrs outer_bndrs
add_forall tvs' cxt' con@(ConDeclH98 { con_ex_tvs = ex_tvs, con_mb_cxt = cxt })
= con { con_forall = not (null all_tvs)
, con_ex_tvs = all_tvs
, con_mb_cxt = add_cxt cxt' cxt }
where
all_tvs = tvs' ++ ex_tvs
cvtConstr (GadtC [] _strtys _ty)
= failWith (text "GadtC must have at least one constructor name")
cvtConstr (GadtC c strtys ty)
= do { c' <- mapM cNameN c
; args <- mapM cvt_arg strtys
; ty' <- cvtType ty
; returnLA $ mk_gadt_decl c' (PrefixConGADT $ map hsLinear args) ty'}
cvtConstr (RecGadtC [] _varstrtys _ty)
= failWith (text "RecGadtC must have at least one constructor name")
cvtConstr (RecGadtC c varstrtys ty)
= do { c' <- mapM cNameN c
; ty' <- cvtType ty
; rec_flds <- mapM cvt_id_arg varstrtys
; returnLA $ mk_gadt_decl c' (RecConGADT $ noLocA rec_flds) ty' }
mk_gadt_decl :: [LocatedN RdrName] -> HsConDeclGADTDetails GhcPs -> LHsType GhcPs
-> ConDecl GhcPs
mk_gadt_decl names args res_ty
= ConDeclGADT { con_g_ext = noAnn
, con_names = names
, con_bndrs = noLocA mkHsOuterImplicit
, con_mb_cxt = Nothing
, con_g_args = args
, con_res_ty = res_ty
, con_doc = Nothing }
cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness
cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack
cvtSrcUnpackedness SourceNoUnpack = SrcNoUnpack
cvtSrcUnpackedness SourceUnpack = SrcUnpack
cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness
cvtSrcStrictness NoSourceStrictness = NoSrcStrict
cvtSrcStrictness SourceLazy = SrcLazy
cvtSrcStrictness SourceStrict = SrcStrict
cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs)
cvt_arg (Bang su ss, ty)
= do { ty'' <- cvtType ty
; let ty' = parenthesizeHsType appPrec ty''
su' = cvtSrcUnpackedness su
ss' = cvtSrcStrictness ss
; returnLA $ HsBangTy noAnn (HsSrcBang NoSourceText su' ss') ty' }
cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs)
cvt_id_arg (i, str, ty)
= do { L li i' <- vNameN i
; ty' <- cvt_arg (str,ty)
; return $ noLocA (ConDeclField
{ cd_fld_ext = noAnn
, cd_fld_names
= [L (locA li) $ FieldOcc noExtField (L li i')]
, cd_fld_type = ty'
, cd_fld_doc = Nothing}) }
cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs)
cvtDerivs cs = do { cs' <- mapM cvtDerivClause cs
; return cs' }
cvt_fundep :: TH.FunDep -> CvtM (LHsFunDep GhcPs)
cvt_fundep (TH.FunDep xs ys) = do { xs' <- mapM tNameN xs
; ys' <- mapM tNameN ys
; returnLA (Hs.FunDep noAnn xs' ys') }
cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs)
cvtForD (ImportF callconv safety from nm ty)
| callconv == TH.Prim || callconv == TH.JavaScript
= mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing
(CFunction (StaticTarget (SourceText from)
(mkFastString from) Nothing
True))
(noLoc $ quotedSourceText from))
| Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety')
(mkFastString (TH.nameBase nm))
from (noLoc $ quotedSourceText from)
= mk_imp impspec
| otherwise
= failWith $ text (show from) <+> text "is not a valid ccall impent"
where
mk_imp impspec
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; return (ForeignImport { fd_i_ext = noAnn
, fd_name = nm'
, fd_sig_ty = ty'
, fd_fi = impspec })
}
safety' = case safety of
Unsafe -> PlayRisky
Safe -> PlaySafe
Interruptible -> PlayInterruptible
cvtForD (ExportF callconv as nm ty)
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; let e = CExport (noLoc (CExportStatic (SourceText as)
(mkFastString as)
(cvt_conv callconv)))
(noLoc (SourceText as))
; return $ ForeignExport { fd_e_ext = noAnn
, fd_name = nm'
, fd_sig_ty = ty'
, fd_fe = e } }
cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall = CCallConv
cvt_conv TH.StdCall = StdCallConv
cvt_conv TH.CApi = CApiConv
cvt_conv TH.Prim = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv
cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs))
cvtPragmaD (InlineP nm inline rm phases)
= do { nm' <- vNameN nm
; let dflt = dfltActivation inline
; let src TH.NoInline = "{-# NOINLINE"
src TH.Inline = "{-# INLINE"
src TH.Inlinable = "{-# INLINABLE"
; let ip = InlinePragma { inl_src = SourceText $ src inline
, inl_inline = cvtInline inline
, inl_rule = cvtRuleMatch rm
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustLA $ Hs.SigD noExtField $ InlineSig noAnn nm' ip }
cvtPragmaD (SpecialiseP nm ty inline phases)
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; let src TH.NoInline = "{-# SPECIALISE NOINLINE"
src TH.Inline = "{-# SPECIALISE INLINE"
src TH.Inlinable = "{-# SPECIALISE INLINE"
; let (inline', dflt,srcText) = case inline of
Just inline1 -> (cvtInline inline1, dfltActivation inline1,
src inline1)
Nothing -> (NoUserInlinePrag, AlwaysActive,
"{-# SPECIALISE")
; let ip = InlinePragma { inl_src = SourceText srcText
, inl_inline = inline'
, inl_rule = Hs.FunLike
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustLA $ Hs.SigD noExtField $ SpecSig noAnn nm' [ty'] ip }
cvtPragmaD (SpecialiseInstP ty)
= do { ty' <- cvtSigType ty
; returnJustLA $ Hs.SigD noExtField $
SpecInstSig noAnn (SourceText "{-# SPECIALISE") ty' }
cvtPragmaD (RuleP nm ty_bndrs tm_bndrs lhs rhs phases)
= do { let nm' = mkFastString nm
; let act = cvtPhases phases AlwaysActive
; ty_bndrs' <- traverse cvtTvs ty_bndrs
; tm_bndrs' <- mapM cvtRuleBndr tm_bndrs
; lhs' <- cvtl lhs
; rhs' <- cvtl rhs
; returnJustLA $ Hs.RuleD noExtField
$ HsRules { rds_ext = noAnn
, rds_src = SourceText "{-# RULES"
, rds_rules = [noLocA $
HsRule { rd_ext = noAnn
, rd_name = (noLoc (quotedSourceText nm,nm'))
, rd_act = act
, rd_tyvs = ty_bndrs'
, rd_tmvs = tm_bndrs'
, rd_lhs = lhs'
, rd_rhs = rhs' }] }
}
cvtPragmaD (AnnP target exp)
= do { exp' <- cvtl exp
; target' <- case target of
ModuleAnnotation -> return ModuleAnnProvenance
TypeAnnotation n -> do
n' <- tconName n
return (TypeAnnProvenance (noLocA n'))
ValueAnnotation n -> do
n' <- vcName n
return (ValueAnnProvenance (noLocA n'))
; returnJustLA $ Hs.AnnD noExtField
$ HsAnnotation noAnn (SourceText "{-# ANN") target' exp'
}
cvtPragmaD (LineP line file)
= do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
; return Nothing
}
cvtPragmaD (CompleteP cls mty)
= do { cls' <- noLoc <$> mapM cNameN cls
; mty' <- traverse tconNameN mty
; returnJustLA $ Hs.SigD noExtField
$ CompleteMatchSig noAnn NoSourceText cls' mty' }
dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _ = AlwaysActive
cvtInline :: TH.Inline -> Hs.InlineSpec
cvtInline TH.NoInline = Hs.NoInline
cvtInline TH.Inline = Hs.Inline
cvtInline TH.Inlinable = Hs.Inlinable
cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike
cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases dflt = dflt
cvtPhases (FromPhase i) _ = ActiveAfter NoSourceText i
cvtPhases (BeforePhase i) _ = ActiveBefore NoSourceText i
cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs)
cvtRuleBndr (RuleVar n)
= do { n' <- vNameN n
; return $ noLoc $ Hs.RuleBndr noAnn n' }
cvtRuleBndr (TypedRuleVar n ty)
= do { n' <- vNameN n
; ty' <- cvtType ty
; return $ noLoc $ Hs.RuleBndrSig noAnn n' $ mkHsPatSigType ty' }
cvtLocalDecs :: SDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs)
cvtLocalDecs doc ds
= case partitionWith is_ip_bind ds of
([], []) -> return (EmptyLocalBinds noExtField)
([], _) -> do
ds' <- cvtDecs ds
let (binds, prob_sigs) = partitionWith is_bind ds'
let (sigs, bads) = partitionWith is_sig prob_sigs
unless (null bads) (failWith (mkBadDecMsg doc bads))
return (HsValBinds noAnn (ValBinds NoAnnSortKey (listToBag binds) sigs))
(ip_binds, []) -> do
binds <- mapM (uncurry cvtImplicitParamBind) ip_binds
return (HsIPBinds noAnn (IPBinds noExtField binds))
((_:_), (_:_)) ->
failWith (text "Implicit parameters mixed with other bindings")
cvtClause :: HsMatchContext GhcPs
-> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtClause ctxt (Clause ps body wheres)
= do { ps' <- cvtPats ps
; let pps = map (parenthesizePat appPrec) ps'
; g' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") wheres
; returnLA $ Hs.Match noAnn ctxt pps (GRHSs noExtField g' ds') }
cvtImplicitParamBind :: String -> TH.Exp -> CvtM (LIPBind GhcPs)
cvtImplicitParamBind n e = do
n' <- wrapL (ipName n)
e' <- cvtl e
returnLA (IPBind noAnn (Left n') e')
cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs)
cvtl e = wrapLA (cvt e)
where
cvt (VarE s) = do { s' <- vName s; return $ HsVar noExtField (noLocA s') }
cvt (ConE s) = do { s' <- cName s; return $ HsVar noExtField (noLocA s') }
cvt (LitE l)
| overloadedLit l = go cvtOverLit (HsOverLit noComments)
(hsOverLitNeedsParens appPrec)
| otherwise = go cvtLit (HsLit noComments)
(hsLitNeedsParens appPrec)
where
go :: (Lit -> CvtM (l GhcPs))
-> (l GhcPs -> HsExpr GhcPs)
-> (l GhcPs -> Bool)
-> CvtM (HsExpr GhcPs)
go cvt_lit mk_expr is_compound_lit = do
l' <- cvt_lit l
let e' = mk_expr l'
return $ if is_compound_lit l' then HsPar noAnn (noLocA e') else e'
cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noComments (mkLHsPar x')
(mkLHsPar y')}
cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noComments (mkLHsPar x')
(mkLHsPar y')}
cvt (AppTypeE e t) = do { e' <- cvtl e
; t' <- cvtType t
; let tp = parenthesizeHsType appPrec t'
; return $ HsAppType noSrcSpan e'
$ mkHsWildCardBndrs tp }
cvt (LamE [] e) = cvt e
cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e
; let pats = map (parenthesizePat appPrec) ps'
; th_origin <- getOrigin
; return $ HsLam noExtField (mkMatchGroup th_origin
(noLocA [mkSimpleMatch LambdaExpr
pats e']))}
cvt (LamCaseE ms) = do { ms' <- mapM (cvtMatch CaseAlt) ms
; th_origin <- getOrigin
; return $ HsLamCase noAnn
(mkMatchGroup th_origin (noLocA ms'))
}
cvt (TupE es) = cvt_tup es Boxed
cvt (UnboxedTupE es) = cvt_tup es Unboxed
cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e
; unboxedSumChecks alt arity
; return $ ExplicitSum noAnn
alt arity e'}
cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
; return $ mkHsIf x' y' z' noAnn }
cvt (MultiIfE alts)
| null alts = failWith (text "Multi-way if-expression with no alternatives")
| otherwise = do { alts' <- mapM cvtpair alts
; return $ HsMultiIf noAnn alts' }
cvt (LetE ds e) = do { ds' <- cvtLocalDecs (text "a let expression") ds
; e' <- cvtl e; return $ HsLet noAnn ds' e'}
cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms
; th_origin <- getOrigin
; return $ HsCase noAnn e'
(mkMatchGroup th_origin (noLocA ms')) }
cvt (DoE m ss) = cvtHsDo (DoExpr (mk_mod <$> m)) ss
cvt (MDoE m ss) = cvtHsDo (MDoExpr (mk_mod <$> m)) ss
cvt (CompE ss) = cvtHsDo ListComp ss
cvt (ArithSeqE dd) = do { dd' <- cvtDD dd
; return $ ArithSeq noAnn Nothing dd' }
cvt (ListE xs)
| Just s <- allCharLs xs = do { l' <- cvtLit (StringL s)
; return (HsLit noComments l') }
| otherwise = do { xs' <- mapM cvtl xs
; return $ ExplicitList noAnn xs'
}
cvt (InfixE (Just x) s (Just y)) = ensureValidOpExp s $
do { x' <- cvtl x
; s' <- cvtl s
; y' <- cvtl y
; let px = parenthesizeHsExpr opPrec x'
py = parenthesizeHsExpr opPrec y'
; wrapParLA (HsPar noAnn)
$ OpApp noAnn px s' py }
cvt (InfixE Nothing s (Just y)) = ensureValidOpExp s $
do { s' <- cvtl s; y' <- cvtl y
; wrapParLA (HsPar noAnn) $
SectionR noComments s' y' }
cvt (InfixE (Just x) s Nothing ) = ensureValidOpExp s $
do { x' <- cvtl x; s' <- cvtl s
; wrapParLA (HsPar noAnn) $
SectionL noComments x' s' }
cvt (InfixE Nothing s Nothing ) = ensureValidOpExp s $
do { s' <- cvtl s
; return $ HsPar noAnn s' }
cvt (UInfixE x s y) = ensureValidOpExp s $
do { x' <- cvtl x
; let x'' = case unLoc x' of
OpApp {} -> x'
_ -> mkLHsPar x'
; cvtOpApp x'' s y }
cvt (ParensE e) = do { e' <- cvtl e; return $ HsPar noAnn e' }
cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtSigType t
; let pe = parenthesizeHsExpr sigPrec e'
; return $ ExprWithTySig noAnn pe (mkHsWildCardBndrs t') }
cvt (RecConE c flds) = do { c' <- cNameN c
; flds' <- mapM (cvtFld (mkFieldOcc . noLocA)) flds
; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) noAnn }
cvt (RecUpdE e flds) = do { e' <- cvtl e
; flds'
<- mapM (cvtFld (mkAmbiguousFieldOcc . noLocA))
flds
; return $ RecordUpd noAnn e' (Left flds') }
cvt (StaticE e) = fmap (HsStatic noAnn) $ cvtl e
cvt (UnboundVarE s) = do
{ s' <- vcName s
; return $ HsVar noExtField (noLocA s') }
cvt (LabelE s) = return $ HsOverLabel noComments (fsLit s)
cvt (ImplicitParamVarE n) = do { n' <- ipName n; return $ HsIPVar noComments n' }
ensureValidOpExp :: TH.Exp -> CvtM a -> CvtM a
ensureValidOpExp (VarE _n) m = m
ensureValidOpExp (ConE _n) m = m
ensureValidOpExp (UnboundVarE _n) m = m
ensureValidOpExp _e _m =
failWith (text "Non-variable expression is not allowed in an infix expression")
cvtFld :: (RdrName -> t) -> (TH.Name, TH.Exp)
-> CvtM (LHsRecField' GhcPs t (LHsExpr GhcPs))
cvtFld f (v,e)
= do { v' <- vNameL v; e' <- cvtl e
; return (noLocA $ HsRecField { hsRecFieldAnn = noAnn
, hsRecFieldLbl = reLoc $ fmap f v'
, hsRecFieldArg = e'
, hsRecPun = False}) }
cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs)
cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }
cvt_tup :: [Maybe Exp] -> Boxity -> CvtM (HsExpr GhcPs)
cvt_tup es boxity = do { let cvtl_maybe Nothing = return (missingTupArg noAnn)
cvtl_maybe (Just e) = fmap (Present noAnn) (cvtl e)
; es' <- mapM cvtl_maybe es
; return $ ExplicitTuple
noAnn
es'
boxity }
cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs)
cvtOpApp x op1 (UInfixE y op2 z)
= do { l <- wrapLA $ cvtOpApp x op1 y
; cvtOpApp l op2 z }
cvtOpApp x op y
= do { op' <- cvtl op
; y' <- cvtl y
; return (OpApp noAnn x op' y') }
cvtHsDo :: HsStmtContext GhcRn -> [TH.Stmt] -> CvtM (HsExpr GhcPs)
cvtHsDo do_or_lc stmts
| null stmts = failWith (text "Empty stmt list in do-block")
| otherwise
= do { stmts' <- cvtStmts stmts
; let Just (stmts'', last') = snocView stmts'
; last'' <- case last' of
(L loc (BodyStmt _ body _ _))
-> return (L loc (mkLastStmt body))
_ -> failWith (bad_last last')
; return $ HsDo noAnn do_or_lc (noLocA (stmts'' ++ [last''])) }
where
bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAStmtContext do_or_lc <> colon
, nest 2 $ Outputable.ppr stmt
, text "(It should be an expression.)" ]
cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)]
cvtStmts = mapM cvtStmt
cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs))
cvtStmt (NoBindS e) = do { e' <- cvtl e; returnLA $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnLA $ mkPsBindStmt noAnn p' e' }
cvtStmt (TH.LetS ds) = do { ds' <- cvtLocalDecs (text "a let binding") ds
; returnLA $ LetStmt noAnn ds' }
cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss
; returnLA $ ParStmt noExtField dss' noExpr noSyntaxExpr }
where
cvt_one ds = do { ds' <- cvtStmts ds
; return (ParStmtBlock noExtField ds' undefined noSyntaxExpr) }
cvtStmt (TH.RecS ss) = do { ss' <- mapM cvtStmt ss; returnLA (mkRecStmt noAnn (noLocA ss')) }
cvtMatch :: HsMatchContext GhcPs
-> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtMatch ctxt (TH.Match p body decs)
= do { p' <- cvtPat p
; let lp = case p' of
(L loc SigPat{}) -> L loc (ParPat noAnn p')
_ -> p'
; g' <- cvtGuard body
; decs' <- cvtLocalDecs (text "a where clause") decs
; returnLA $ Hs.Match noAnn ctxt [lp] (GRHSs noExtField g' decs') }
cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e) = do { e' <- cvtl e
; g' <- returnL $ GRHS noAnn [] e'; return [g'] }
cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
; g' <- returnLA $ mkBodyStmt ge'
; returnL $ GRHS noAnn [g'] rhs' }
cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
; returnL $ GRHS noAnn gs' rhs' }
cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs)
cvtOverLit (IntegerL i)
= do { force i; return $ mkHsIntegral (mkIntegralLit i) }
cvtOverLit (RationalL r)
= do { force r; return $ mkHsFractional (mkTHFractionalLit r) }
cvtOverLit (StringL s)
= do { let { s' = mkFastString s }
; force s'
; return $ mkHsIsString (quotedSourceText s) s'
}
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
allCharLs :: [TH.Exp] -> Maybe String
allCharLs xs
= case xs of
LitE (CharL c) : ys -> go [c] ys
_ -> Nothing
where
go cs [] = Just (reverse cs)
go cs (LitE (CharL c) : ys) = go (c:cs) ys
go _ _ = Nothing
cvtLit :: Lit -> CvtM (HsLit GhcPs)
cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim NoSourceText i }
cvtLit (WordPrimL w) = do { force w; return $ HsWordPrim NoSourceText w }
cvtLit (FloatPrimL f)
= do { force f; return $ HsFloatPrim noExtField (mkTHFractionalLit f) }
cvtLit (DoublePrimL f)
= do { force f; return $ HsDoublePrim noExtField (mkTHFractionalLit f) }
cvtLit (CharL c) = do { force c; return $ HsChar NoSourceText c }
cvtLit (CharPrimL c) = do { force c; return $ HsCharPrim NoSourceText c }
cvtLit (StringL s) = do { let { s' = mkFastString s }
; force s'
; return $ HsString (quotedSourceText s) s' }
cvtLit (StringPrimL s) = do { let { !s' = BS.pack s }
; return $ HsStringPrim NoSourceText s' }
cvtLit (BytesPrimL (Bytes fptr off sz)) = do
let bs = unsafePerformIO $ withForeignPtr fptr $ \ptr ->
BS.packCStringLen (ptr `plusPtr` fromIntegral off, fromIntegral sz)
force bs
return $ HsStringPrim NoSourceText bs
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
quotedSourceText :: String -> SourceText
quotedSourceText s = SourceText $ "\"" ++ s ++ "\""
cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs]
cvtPats pats = mapM cvtPat pats
cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs)
cvtPat pat = wrapLA (cvtp pat)
cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtp (TH.LitP l)
| overloadedLit l = do { l' <- cvtOverLit l
; return (mkNPat (noLoc l') Nothing noAnn) }
| otherwise = do { l' <- cvtLit l; return $ Hs.LitPat noExtField l' }
cvtp (TH.VarP s) = do { s' <- vName s
; return $ Hs.VarPat noExtField (noLocA s') }
cvtp (TupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noAnn ps' Boxed }
cvtp (UnboxedTupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noAnn ps' Unboxed }
cvtp (UnboxedSumP p alt arity)
= do { p' <- cvtPat p
; unboxedSumChecks alt arity
; return $ SumPat noAnn p' alt arity }
cvtp (ConP s ts ps) = do { s' <- cNameN s
; ps' <- cvtPats ps
; ts' <- mapM cvtType ts
; let pps = map (parenthesizePat appPrec) ps'
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = s'
, pat_args = PrefixCon (map mkHsPatSigType ts') pps
}
}
cvtp (InfixP p1 s p2) = do { s' <- cNameN s; p1' <- cvtPat p1; p2' <- cvtPat p2
; wrapParLA (ParPat noAnn) $
ConPat
{ pat_con_ext = noAnn
, pat_con = s'
, pat_args = InfixCon
(parenthesizePat opPrec p1')
(parenthesizePat opPrec p2')
}
}
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 }
cvtp (ParensP p) = do { p' <- cvtPat p;
; case unLoc p' of
ParPat {} -> return $ unLoc p'
_ -> return $ ParPat noAnn p' }
cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat noAnn p' }
cvtp (BangP p) = do { p' <- cvtPat p; return $ BangPat noAnn p' }
cvtp (TH.AsP s p) = do { s' <- vNameN s; p' <- cvtPat p
; return $ AsPat noAnn s' p' }
cvtp TH.WildP = return $ WildPat noExtField
cvtp (RecP c fs) = do { c' <- cNameN c; fs' <- mapM cvtPatFld fs
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = c'
, pat_args = Hs.RecCon $ HsRecFields fs' Nothing
}
}
cvtp (ListP ps) = do { ps' <- cvtPats ps
; return
$ ListPat noAnn ps'}
cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t
; return $ SigPat noAnn p' (mkHsPatSigType t') }
cvtp (ViewP e p) = do { e' <- cvtl e; p' <- cvtPat p
; return $ ViewPat noAnn e' p'}
cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs))
cvtPatFld (s,p)
= do { L ls s' <- vNameN s
; p' <- cvtPat p
; return (noLocA $ HsRecField { hsRecFieldAnn = noAnn
, hsRecFieldLbl
= L (locA ls) $ mkFieldOcc (L ls s')
, hsRecFieldArg = p'
, hsRecPun = False}) }
cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtOpAppP x op1 (UInfixP y op2 z)
= do { l <- wrapLA $ cvtOpAppP x op1 y
; cvtOpAppP l op2 z }
cvtOpAppP x op y
= do { op' <- cNameN op
; y' <- cvtPat y
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = op'
, pat_args = InfixCon x y'
}
}
class CvtFlag flag flag' | flag -> flag' where
cvtFlag :: flag -> flag'
instance CvtFlag () () where
cvtFlag () = ()
instance CvtFlag TH.Specificity Hs.Specificity where
cvtFlag TH.SpecifiedSpec = Hs.SpecifiedSpec
cvtFlag TH.InferredSpec = Hs.InferredSpec
cvtTvs :: CvtFlag flag flag' => [TH.TyVarBndr flag] -> CvtM [LHsTyVarBndr flag' GhcPs]
cvtTvs tvs = mapM cvt_tv tvs
cvt_tv :: CvtFlag flag flag' => (TH.TyVarBndr flag) -> CvtM (LHsTyVarBndr flag' GhcPs)
cvt_tv (TH.PlainTV nm fl)
= do { nm' <- tNameN nm
; let fl' = cvtFlag fl
; returnLA $ UserTyVar noAnn fl' nm' }
cvt_tv (TH.KindedTV nm fl ki)
= do { nm' <- tNameN nm
; let fl' = cvtFlag fl
; ki' <- cvtKind ki
; returnLA $ KindedTyVar noAnn fl' nm' ki' }
cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR = Just Coercion.Phantom
cvtRole TH.InferR = Nothing
cvtContext :: PprPrec -> TH.Cxt -> CvtM (LHsContext GhcPs)
cvtContext p tys = do { preds' <- mapM cvtPred tys
; parenthesizeHsContext p <$> returnLA preds' }
cvtPred :: TH.Pred -> CvtM (LHsType GhcPs)
cvtPred = cvtType
cvtDerivClauseTys :: TH.Cxt -> CvtM (LDerivClauseTys GhcPs)
cvtDerivClauseTys tys
= do { tys' <- mapM cvtSigType tys
; case tys' of
[ty'@(L l (HsSig { sig_bndrs = HsOuterImplicit{}
, sig_body = L _ (HsTyVar _ NotPromoted _) }))]
-> return $ L (l2l l) $ DctSingle noExtField ty'
_ -> returnLA $ DctMulti noExtField tys' }
cvtDerivClause :: TH.DerivClause
-> CvtM (LHsDerivingClause GhcPs)
cvtDerivClause (TH.DerivClause ds tys)
= do { tys' <- cvtDerivClauseTys tys
; ds' <- traverse cvtDerivStrategy ds
; returnL $ HsDerivingClause noAnn ds' tys' }
cvtDerivStrategy :: TH.DerivStrategy -> CvtM (Hs.LDerivStrategy GhcPs)
cvtDerivStrategy TH.StockStrategy = returnL (Hs.StockStrategy noAnn)
cvtDerivStrategy TH.AnyclassStrategy = returnL (Hs.AnyclassStrategy noAnn)
cvtDerivStrategy TH.NewtypeStrategy = returnL (Hs.NewtypeStrategy noAnn)
cvtDerivStrategy (TH.ViaStrategy ty) = do
ty' <- cvtSigType ty
returnL $ Hs.ViaStrategy (XViaStrategyPs noAnn ty')
cvtType :: TH.Type -> CvtM (LHsType GhcPs)
cvtType = cvtTypeKind "type"
cvtSigType :: TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigType = cvtSigTypeKind "type"
cvtSigTypeKind :: String -> TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigTypeKind ty_str ty = do
ty' <- cvtTypeKind ty_str ty
pure $ hsTypeToHsSigType ty'
cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs)
cvtTypeKind ty_str ty
= do { (head_ty, tys') <- split_ty_app ty
; let m_normals = mapM extract_normal tys'
where extract_normal (HsValArg ty) = Just ty
extract_normal _ = Nothing
; case head_ty of
TupleT n
| Just normals <- m_normals
, normals `lengthIs` n
-> returnLA (HsTupleTy noAnn HsBoxedOrConstraintTuple normals)
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted
(noLocA (getRdrName (tupleTyCon Boxed n))))
tys'
UnboxedTupleT n
| Just normals <- m_normals
, normals `lengthIs` n
-> returnLA (HsTupleTy noAnn HsUnboxedTuple normals)
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted
(noLocA (getRdrName (tupleTyCon Unboxed n))))
tys'
UnboxedSumT n
| n < 2
-> failWith $
vcat [ text "Illegal sum arity:" <+> text (show n)
, nest 2 $
text "Sums must have an arity of at least 2" ]
| Just normals <- m_normals
, normals `lengthIs` n
-> returnLA (HsSumTy noAnn normals)
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted (noLocA (getRdrName (sumTyCon n))))
tys'
ArrowT
| Just normals <- m_normals
, [x',y'] <- normals -> do
x'' <- case unLoc x' of
HsFunTy{} -> returnLA (HsParTy noAnn x')
HsForAllTy{} -> returnLA (HsParTy noAnn x')
HsQualTy{} -> returnLA (HsParTy noAnn x')
_ -> return $
parenthesizeHsType sigPrec x'
let y'' = parenthesizeHsType sigPrec y'
returnLA (HsFunTy noAnn (HsUnrestrictedArrow NormalSyntax) x'' y'')
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted (noLocA (getRdrName unrestrictedFunTyCon)))
tys'
MulArrowT
| Just normals <- m_normals
, [w',x',y'] <- normals -> do
x'' <- case unLoc x' of
HsFunTy{} -> returnLA (HsParTy noAnn x')
HsForAllTy{} -> returnLA (HsParTy noAnn x')
HsQualTy{} -> returnLA (HsParTy noAnn x')
_ -> return $
parenthesizeHsType sigPrec x'
let y'' = parenthesizeHsType sigPrec y'
w'' = hsTypeToArrow w'
returnLA (HsFunTy noAnn w'' x'' y'')
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted (noLocA (getRdrName funTyCon)))
tys'
ListT
| Just normals <- m_normals
, [x'] <- normals ->
returnLA (HsListTy noAnn x')
| otherwise
-> mk_apps
(HsTyVar noAnn NotPromoted (noLocA (getRdrName listTyCon)))
tys'
VarT nm -> do { nm' <- tNameN nm
; mk_apps (HsTyVar noAnn NotPromoted nm') tys' }
ConT nm -> do { nm' <- tconName nm
; let prom = name_promotedness nm'
; mk_apps (HsTyVar noAnn prom (noLocA nm')) tys'}
ForallT tvs cxt ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; cxt' <- cvtContext funPrec cxt
; ty' <- cvtType ty
; loc <- getL
; let loc' = noAnnSrcSpan loc
; let tele = mkHsForAllInvisTele noAnn tvs'
hs_ty = mkHsForAllTy loc' tele rho_ty
rho_ty = mkHsQualTy cxt loc' cxt' ty'
; return hs_ty }
ForallVisT tvs ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; ty' <- cvtType ty
; loc <- getL
; let loc' = noAnnSrcSpan loc
; let tele = mkHsForAllVisTele noAnn tvs'
; pure $ mkHsForAllTy loc' tele ty' }
SigT ty ki
-> do { ty' <- cvtType ty
; ki' <- cvtKind ki
; mk_apps (HsKindSig noAnn ty' ki') tys'
}
LitT lit
-> mk_apps (HsTyLit noExtField (cvtTyLit lit)) tys'
WildCardT
-> mk_apps mkAnonWildCardTy tys'
InfixT t1 s t2
-> do { s' <- tconName s
; t1' <- cvtType t1
; t2' <- cvtType t2
; let prom = name_promotedness s'
; mk_apps
(HsTyVar noAnn prom (noLocA s'))
([HsValArg t1', HsValArg t2'] ++ tys')
}
UInfixT t1 s t2
-> do { t2' <- cvtType t2
; t <- cvtOpAppT t1 s t2'
; mk_apps (unLoc t) tys'
}
ParensT t
-> do { t' <- cvtType t
; mk_apps (HsParTy noAnn t') tys'
}
PromotedT nm -> do { nm' <- cName nm
; mk_apps (HsTyVar noAnn IsPromoted
(noLocA nm'))
tys' }
PromotedTupleT n
| Just normals <- m_normals
, normals `lengthIs` n
-> returnLA (HsExplicitTupleTy noAnn normals)
| otherwise
-> mk_apps
(HsTyVar noAnn IsPromoted
(noLocA (getRdrName (tupleDataCon Boxed n))))
tys'
PromotedNilT
-> mk_apps (HsExplicitListTy noAnn IsPromoted []) tys'
PromotedConsT
| Just normals <- m_normals
, [ty1, L _ (HsExplicitListTy _ ip tys2)] <- normals
-> returnLA (HsExplicitListTy noAnn ip (ty1:tys2))
| otherwise
-> mk_apps
(HsTyVar noAnn IsPromoted (noLocA (getRdrName consDataCon)))
tys'
StarT
-> mk_apps
(HsTyVar noAnn NotPromoted
(noLocA (getRdrName liftedTypeKindTyCon)))
tys'
ConstraintT
-> mk_apps
(HsTyVar noAnn NotPromoted
(noLocA (getRdrName constraintKindTyCon)))
tys'
EqualityT
| Just normals <- m_normals
, [x',y'] <- normals ->
let px = parenthesizeHsType opPrec x'
py = parenthesizeHsType opPrec y'
in returnLA (HsOpTy noExtField px (noLocA eqTyCon_RDR) py)
| otherwise ->
mk_apps (HsTyVar noAnn NotPromoted
(noLocA eqTyCon_RDR)) tys'
ImplicitParamT n t
-> do { n' <- wrapL $ ipName n
; t' <- cvtType t
; returnLA (HsIParamTy noAnn n' t')
}
_ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty))
}
hsTypeToArrow :: LHsType GhcPs -> HsArrow GhcPs
hsTypeToArrow w = case unLoc w of
HsTyVar _ _ (L _ (isExact_maybe -> Just n))
| n == oneDataConName -> HsLinearArrow NormalSyntax Nothing
| n == manyDataConName -> HsUnrestrictedArrow NormalSyntax
_ -> HsExplicitMult NormalSyntax Nothing w
name_promotedness :: RdrName -> Hs.PromotionFlag
name_promotedness nm
| isRdrDataCon nm = IsPromoted
| otherwise = NotPromoted
mk_apps :: HsType GhcPs -> [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
mk_apps head_ty type_args = do
head_ty' <- returnLA head_ty
let phead_ty :: LHsType GhcPs
phead_ty = parenthesizeHsType sigPrec head_ty'
go :: [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
go [] = pure head_ty'
go (arg:args) =
case arg of
HsValArg ty -> do p_ty <- add_parens ty
mk_apps (HsAppTy noExtField phead_ty p_ty) args
HsTypeArg l ki -> do p_ki <- add_parens ki
mk_apps (HsAppKindTy l phead_ty p_ki) args
HsArgPar _ -> mk_apps (HsParTy noAnn phead_ty) args
go type_args
where
add_parens lt@(L _ t)
| hsTypeNeedsParens appPrec t = returnLA (HsParTy noAnn lt)
| otherwise = return lt
wrap_tyarg :: LHsTypeArg GhcPs -> LHsTypeArg GhcPs
wrap_tyarg (HsValArg ty) = HsValArg $ parenthesizeHsType appPrec ty
wrap_tyarg (HsTypeArg l ki) = HsTypeArg l $ parenthesizeHsType appPrec ki
wrap_tyarg ta@(HsArgPar {}) = ta
split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsTypeArg GhcPs])
split_ty_app ty = go ty []
where
go (AppT f a) as' = do { a' <- cvtType a; go f (HsValArg a':as') }
go (AppKindT ty ki) as' = do { ki' <- cvtKind ki
; go ty (HsTypeArg noSrcSpan ki':as') }
go (ParensT t) as' = do { loc <- getL; go t (HsArgPar loc: as') }
go f as = return (f,as)
cvtTyLit :: TH.TyLit -> HsTyLit
cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i
cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s)
cvtTyLit (TH.CharTyLit c) = HsCharTy NoSourceText c
cvtOpAppT :: TH.Type -> TH.Name -> LHsType GhcPs -> CvtM (LHsType GhcPs)
cvtOpAppT (UInfixT x op2 y) op1 z
= do { l <- cvtOpAppT y op1 z
; cvtOpAppT x op2 l }
cvtOpAppT x op y
= do { op' <- tconNameN op
; x' <- cvtType x
; returnLA (mkHsOpTy x' op' y) }
cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs)
cvtKind = cvtTypeKind "kind"
cvtSigKind :: TH.Kind -> CvtM (LHsSigType GhcPs)
cvtSigKind = cvtSigTypeKind "kind"
cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind
-> CvtM (LFamilyResultSig GhcPs)
cvtMaybeKindToFamilyResultSig Nothing = returnL (Hs.NoSig noExtField)
cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki
; returnL (Hs.KindSig noExtField ki') }
cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs)
cvtFamilyResultSig TH.NoSig = returnL (Hs.NoSig noExtField)
cvtFamilyResultSig (TH.KindSig ki) = do { ki' <- cvtKind ki
; returnL (Hs.KindSig noExtField ki') }
cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr
; returnL (Hs.TyVarSig noExtField tv) }
cvtInjectivityAnnotation :: TH.InjectivityAnn
-> CvtM (Hs.LInjectivityAnn GhcPs)
cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS)
= do { annLHS' <- tNameN annLHS
; annRHS' <- mapM tNameN annRHS
; returnL (Hs.InjectivityAnn noAnn annLHS' annRHS') }
cvtPatSynSigTy :: TH.Type -> CvtM (LHsSigType GhcPs)
cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty))
| null exis, null provs = cvtSigType (ForallT univs reqs ty)
| null univs, null reqs = do { l' <- getL
; let l = noAnnSrcSpan l'
; ty' <- cvtType (ForallT exis provs ty)
; return $ L l $ mkHsImplicitSigType
$ L l (HsQualTy { hst_ctxt = Nothing
, hst_xqual = noExtField
, hst_body = ty' }) }
| null reqs = do { l' <- getL
; let l'' = noAnnSrcSpan l'
; univs' <- cvtTvs univs
; ty' <- cvtType (ForallT exis provs ty)
; let forTy = mkHsExplicitSigType noAnn univs' $ L l'' cxtTy
cxtTy = HsQualTy { hst_ctxt = Nothing
, hst_xqual = noExtField
, hst_body = ty' }
; return $ L (noAnnSrcSpan l') forTy }
| otherwise = cvtSigType (ForallT univs reqs (ForallT exis provs ty))
cvtPatSynSigTy ty = cvtSigType ty
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir)
where
cvt_dir TH.InfixL = Hs.InfixL
cvt_dir TH.InfixR = Hs.InfixR
cvt_dir TH.InfixN = Hs.InfixN
overloadedLit :: Lit -> Bool
overloadedLit (IntegerL _) = True
overloadedLit (RationalL _) = True
overloadedLit _ = False
unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM ()
unboxedSumChecks alt arity
| alt > arity
= failWith $ text "Sum alternative" <+> text (show alt)
<+> text "exceeds its arity," <+> text (show arity)
| alt <= 0
= failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt)
, nest 2 $ text "Sum alternatives must start from 1" ]
| arity < 2
= failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity)
, nest 2 $ text "Sums must have an arity of at least 2" ]
| otherwise
= return ()
mkHsForAllTy :: SrcSpanAnnA
-> HsForAllTelescope GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
mkHsForAllTy loc tele rho_ty
| no_tvs = rho_ty
| otherwise = L loc $ HsForAllTy { hst_tele = tele
, hst_xforall = noExtField
, hst_body = rho_ty }
where
no_tvs = case tele of
HsForAllVis { hsf_vis_bndrs = bndrs } -> null bndrs
HsForAllInvis { hsf_invis_bndrs = bndrs } -> null bndrs
mkHsQualTy :: TH.Cxt
-> SrcSpanAnnA
-> LHsContext GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
mkHsQualTy ctxt loc ctxt' ty
| null ctxt = ty
| otherwise = L loc $ HsQualTy { hst_xqual = noExtField
, hst_ctxt = Just ctxt'
, hst_body = ty }
mkHsOuterFamEqnTyVarBndrs :: Maybe [LHsTyVarBndr () GhcPs] -> HsOuterFamEqnTyVarBndrs GhcPs
mkHsOuterFamEqnTyVarBndrs = maybe mkHsOuterImplicit (mkHsOuterExplicit noAnn)
vNameN, cNameN, vcNameN, tNameN, tconNameN :: TH.Name -> CvtM (LocatedN RdrName)
vNameL :: TH.Name -> CvtM (LocatedA RdrName)
vName, cName, vcName, tName, tconName :: TH.Name -> CvtM RdrName
vNameN n = wrapLN (vName n)
vNameL n = wrapLA (vName n)
vName n = cvtName OccName.varName n
cNameN n = wrapLN (cName n)
cName n = cvtName OccName.dataName n
vcNameN n = wrapLN (vcName n)
vcName n = if isVarName n then vName n else cName n
tNameN n = wrapLN (tName n)
tName n = cvtName OccName.tvName n
tconNameN n = wrapLN (tconName n)
tconName n = cvtName OccName.tcClsName n
ipName :: String -> CvtM HsIPName
ipName n
= do { unless (okVarOcc n) (failWith (badOcc OccName.varName n))
; return (HsIPName (fsLit n)) }
cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
| not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
| otherwise
= do { loc <- getL
; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
; force rdr_name
; return rdr_name }
where
occ_str = TH.occString occ
okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
| OccName.isVarNameSpace ns = okVarOcc str
| OccName.isDataConNameSpace ns = okConOcc str
| otherwise = okTcOcc str
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
= case TH.occString occ of
"" -> False
(c:_) -> startsVarId c || startsVarSym c
badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
= text "Illegal" <+> pprNameSpace ctxt_ns
<+> text "name:" <+> quotes (text occ)
thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
thRdrName loc ctxt_ns th_occ th_name
= case th_name of
TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
TH.NameQ mod -> (mkRdrQual $! mk_mod mod) $! occ
TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq (fromInteger uniq)) $! occ) loc)
TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq (fromInteger uniq)) $! occ) loc)
TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
| otherwise -> mkRdrUnqual $! occ
where
occ :: OccName.OccName
occ = mk_occ ctxt_ns th_occ
thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod =
let occ' = mk_occ (mk_ghc_ns th_ns) occ
in case isBuiltInOcc_maybe occ' of
Just name -> nameRdrName name
Nothing -> (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! occ'
thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
| TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
| otherwise = [ thRdrName noSrcSpan gns occ_str flavour
| gns <- guessed_nss]
where
guessed_nss
| isLexCon (mkFastString occ_str) = [OccName.tcName, OccName.dataName]
| otherwise = [OccName.varName, OccName.tvName]
occ_str = TH.occString occ
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ
mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName = OccName.varName
mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)
mk_pkg :: TH.PkgName -> Unit
mk_pkg pkg = stringToUnit (TH.pkgString pkg)
mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u