{-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE PatternGuards #-} #if __GLASGOW_HASKELL__ {-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-} #endif #if !defined(TESTING) && defined(__GLASGOW_HASKELL__) {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE TypeFamilies #-} #endif {-# OPTIONS_HADDOCK not-home #-} #include "containers.h" ----------------------------------------------------------------------------- -- | -- Module : Data.Set.Internal -- Copyright : (c) Daan Leijen 2002 -- License : BSD-style -- Maintainer : libraries@haskell.org -- Portability : portable -- -- = WARNING -- -- This module is considered __internal__. -- -- The Package Versioning Policy __does not apply__. -- -- The contents of this module may change __in any way whatsoever__ -- and __without any warning__ between minor versions of this package. -- -- Authors importing this module are expected to track development -- closely. -- -- = Description -- -- An efficient implementation of sets. -- -- These modules are intended to be imported qualified, to avoid name -- clashes with Prelude functions, e.g. -- -- > import Data.Set (Set) -- > import qualified Data.Set as Set -- -- The implementation of 'Set' is based on /size balanced/ binary trees (or -- trees of /bounded balance/) as described by: -- -- * Stephen Adams, \"/Efficient sets: a balancing act/\", -- Journal of Functional Programming 3(4):553-562, October 1993, -- <http://www.swiss.ai.mit.edu/~adams/BB/>. -- * J. Nievergelt and E.M. Reingold, -- \"/Binary search trees of bounded balance/\", -- SIAM journal of computing 2(1), March 1973. -- -- Bounds for 'union', 'intersection', and 'difference' are as given -- by -- -- * Guy Blelloch, Daniel Ferizovic, and Yihan Sun, -- \"/Just Join for Parallel Ordered Sets/\", -- <https://arxiv.org/abs/1602.02120v3>. -- -- Note that the implementation is /left-biased/ -- the elements of a -- first argument are always preferred to the second, for example in -- 'union' or 'insert'. Of course, left-biasing can only be observed -- when equality is an equivalence relation instead of structural -- equality. -- -- /Warning/: The size of the set must not exceed @maxBound::Int@. Violation of -- this condition is not detected and if the size limit is exceeded, the -- behavior of the set is completely undefined. -- -- @since 0.5.9 ----------------------------------------------------------------------------- -- [Note: Using INLINABLE] -- ~~~~~~~~~~~~~~~~~~~~~~~ -- It is crucial to the performance that the functions specialize on the Ord -- type when possible. GHC 7.0 and higher does this by itself when it sees th -- unfolding of a function -- that is why all public functions are marked -- INLINABLE (that exposes the unfolding). -- [Note: Using INLINE] -- ~~~~~~~~~~~~~~~~~~~~ -- For other compilers and GHC pre 7.0, we mark some of the functions INLINE. -- We mark the functions that just navigate down the tree (lookup, insert, -- delete and similar). That navigation code gets inlined and thus specialized -- when possible. There is a price to pay -- code growth. The code INLINED is -- therefore only the tree navigation, all the real work (rebalancing) is not -- INLINED by using a NOINLINE. -- -- All methods marked INLINE have to be nonrecursive -- a 'go' function doing -- the real work is provided. -- [Note: Type of local 'go' function] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- If the local 'go' function uses an Ord class, it sometimes heap-allocates -- the Ord dictionary when the 'go' function does not have explicit type. -- In that case we give 'go' explicit type. But this slightly decrease -- performance, as the resulting 'go' function can float out to top level. -- [Note: Local 'go' functions and capturing] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- As opposed to IntSet, when 'go' function captures an argument, increased -- heap-allocation can occur: sometimes in a polymorphic function, the 'go' -- floats out of its enclosing function and then it heap-allocates the -- dictionary and the argument. Maybe it floats out too late and strictness -- analyzer cannot see that these could be passed on stack. -- [Note: Order of constructors] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- The order of constructors of Set matters when considering performance. -- Currently in GHC 7.0, when type has 2 constructors, a forward conditional -- jump is made when successfully matching second constructor. Successful match -- of first constructor results in the forward jump not taken. -- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip -- improves the benchmark by up to 10% on x86. module Data.Set.Internal ( -- * Set type Set(..) -- instance Eq,Ord,Show,Read,Data,Typeable , Size -- * Operators , (\\) -- * Query , null , size , member , notMember , lookupLT , lookupGT , lookupLE , lookupGE , isSubsetOf , isProperSubsetOf , disjoint -- * Construction , empty , singleton , insert , delete , alterF , powerSet -- * Combine , union , unions , difference , intersection , cartesianProduct , disjointUnion -- * Filter , filter , takeWhileAntitone , dropWhileAntitone , spanAntitone , partition , split , splitMember , splitRoot -- * Indexed , lookupIndex , findIndex , elemAt , deleteAt , take , drop , splitAt -- * Map , map , mapMonotonic -- * Folds , foldr , foldl -- ** Strict folds , foldr' , foldl' -- ** Legacy folds , fold -- * Min\/Max , lookupMin , lookupMax , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , maxView , minView -- * Conversion -- ** List , elems , toList , fromList -- ** Ordered list , toAscList , toDescList , fromAscList , fromDistinctAscList , fromDescList , fromDistinctDescList -- * Debugging , showTree , showTreeWith , valid -- Internals (for testing) , bin , balanced , link , merge ) where import Prelude hiding (filter,foldl,foldr,null,map,take,drop,splitAt) import Control.Applicative (Const(..)) import qualified Data.List as List import Data.Bits (shiftL, shiftR) #if !MIN_VERSION_base(4,8,0) import Data.Monoid (Monoid(..)) #endif #if MIN_VERSION_base(4,9,0) import Data.Semigroup (Semigroup(stimes)) #endif #if !(MIN_VERSION_base(4,11,0)) && MIN_VERSION_base(4,9,0) import Data.Semigroup (Semigroup((<>))) #endif #if MIN_VERSION_base(4,9,0) import Data.Semigroup (stimesIdempotentMonoid) import Data.Functor.Classes #endif #if MIN_VERSION_base(4,8,0) import Data.Functor.Identity (Identity) #endif import qualified Data.Foldable as Foldable #if !MIN_VERSION_base(4,8,0) import Data.Foldable (Foldable (foldMap)) #endif import Data.Typeable import Control.DeepSeq (NFData(rnf)) import Utils.Containers.Internal.StrictPair import Utils.Containers.Internal.PtrEquality #if __GLASGOW_HASKELL__ import GHC.Exts ( build, lazy ) #if __GLASGOW_HASKELL__ >= 708 import qualified GHC.Exts as GHCExts #endif import Text.Read ( readPrec, Read (..), Lexeme (..), parens, prec , lexP, readListPrecDefault ) import Data.Data #endif {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 \\ -- -- | /O(m*log(n\/m+1)), m <= n/. See 'difference'. (\\) :: Ord a => Set a -> Set a -> Set a m1 \\ m2 = difference m1 m2 #if __GLASGOW_HASKELL__ {-# INLINABLE (\\) #-} #endif {-------------------------------------------------------------------- Sets are size balanced trees --------------------------------------------------------------------} -- | A set of values @a@. -- See Note: Order of constructors data Set a = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a) | Tip type Size = Int #if __GLASGOW_HASKELL__ >= 708 type role Set nominal #endif instance Ord a => Monoid (Set a) where mempty = empty mconcat = unions #if !(MIN_VERSION_base(4,9,0)) mappend = union #else mappend = (<>) -- | @since 0.5.7 instance Ord a => Semigroup (Set a) where (<>) = union stimes = stimesIdempotentMonoid #endif -- | Folds in order of increasing key. instance Foldable.Foldable Set where fold = go where go Tip = mempty go (Bin 1 k _ _) = k go (Bin _ k l r) = go l `mappend` (k `mappend` go r) {-# INLINABLE fold #-} foldr = foldr {-# INLINE foldr #-} foldl = foldl {-# INLINE foldl #-} foldMap f t = go t where go Tip = mempty go (Bin 1 k _ _) = f k go (Bin _ k l r) = go l `mappend` (f k `mappend` go r) {-# INLINE foldMap #-} foldl' = foldl' {-# INLINE foldl' #-} foldr' = foldr' {-# INLINE foldr' #-} #if MIN_VERSION_base(4,8,0) length = size {-# INLINE length #-} null = null {-# INLINE null #-} toList = toList {-# INLINE toList #-} elem = go where go !_ Tip = False go x (Bin _ y l r) = x == y || go x l || go x r {-# INLINABLE elem #-} minimum = findMin {-# INLINE minimum #-} maximum = findMax {-# INLINE maximum #-} sum = foldl' (+) 0 {-# INLINABLE sum #-} product = foldl' (*) 1 {-# INLINABLE product #-} #endif #if __GLASGOW_HASKELL__ {-------------------------------------------------------------------- A Data instance --------------------------------------------------------------------} -- This instance preserves data abstraction at the cost of inefficiency. -- We provide limited reflection services for the sake of data abstraction. instance (Data a, Ord a) => Data (Set a) where gfoldl f z set = z fromList `f` (toList set) toConstr _ = fromListConstr gunfold k z c = case constrIndex c of 1 -> k (z fromList) _ -> error "gunfold" dataTypeOf _ = setDataType dataCast1 f = gcast1 f fromListConstr :: Constr fromListConstr = mkConstr setDataType "fromList" [] Prefix setDataType :: DataType setDataType = mkDataType "Data.Set.Internal.Set" [fromListConstr] #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is this the empty set? null :: Set a -> Bool null Tip = True null (Bin {}) = False {-# INLINE null #-} -- | /O(1)/. The number of elements in the set. size :: Set a -> Int size Tip = 0 size (Bin sz _ _ _) = sz {-# INLINE size #-} -- | /O(log n)/. Is the element in the set? member :: Ord a => a -> Set a -> Bool member = go where go !_ Tip = False go x (Bin _ y l r) = case compare x y of LT -> go x l GT -> go x r EQ -> True #if __GLASGOW_HASKELL__ {-# INLINABLE member #-} #else {-# INLINE member #-} #endif -- | /O(log n)/. Is the element not in the set? notMember :: Ord a => a -> Set a -> Bool notMember a t = not $ member a t #if __GLASGOW_HASKELL__ {-# INLINABLE notMember #-} #else {-# INLINE notMember #-} #endif -- | /O(log n)/. Find largest element smaller than the given one. -- -- > lookupLT 3 (fromList [3, 5]) == Nothing -- > lookupLT 5 (fromList [3, 5]) == Just 3 lookupLT :: Ord a => a -> Set a -> Maybe a lookupLT = goNothing where goNothing !_ Tip = Nothing goNothing x (Bin _ y l r) | x <= y = goNothing x l | otherwise = goJust x y r goJust !_ best Tip = Just best goJust x best (Bin _ y l r) | x <= y = goJust x best l | otherwise = goJust x y r #if __GLASGOW_HASKELL__ {-# INLINABLE lookupLT #-} #else {-# INLINE lookupLT #-} #endif -- | /O(log n)/. Find smallest element greater than the given one. -- -- > lookupGT 4 (fromList [3, 5]) == Just 5 -- > lookupGT 5 (fromList [3, 5]) == Nothing lookupGT :: Ord a => a -> Set a -> Maybe a lookupGT = goNothing where goNothing !_ Tip = Nothing goNothing x (Bin _ y l r) | x < y = goJust x y l | otherwise = goNothing x r goJust !_ best Tip = Just best goJust x best (Bin _ y l r) | x < y = goJust x y l | otherwise = goJust x best r #if __GLASGOW_HASKELL__ {-# INLINABLE lookupGT #-} #else {-# INLINE lookupGT #-} #endif -- | /O(log n)/. Find largest element smaller or equal to the given one. -- -- > lookupLE 2 (fromList [3, 5]) == Nothing -- > lookupLE 4 (fromList [3, 5]) == Just 3 -- > lookupLE 5 (fromList [3, 5]) == Just 5 lookupLE :: Ord a => a -> Set a -> Maybe a lookupLE = goNothing where goNothing !_ Tip = Nothing goNothing x (Bin _ y l r) = case compare x y of LT -> goNothing x l EQ -> Just y GT -> goJust x y r goJust !_ best Tip = Just best goJust x best (Bin _ y l r) = case compare x y of LT -> goJust x best l EQ -> Just y GT -> goJust x y r #if __GLASGOW_HASKELL__ {-# INLINABLE lookupLE #-} #else {-# INLINE lookupLE #-} #endif -- | /O(log n)/. Find smallest element greater or equal to the given one. -- -- > lookupGE 3 (fromList [3, 5]) == Just 3 -- > lookupGE 4 (fromList [3, 5]) == Just 5 -- > lookupGE 6 (fromList [3, 5]) == Nothing lookupGE :: Ord a => a -> Set a -> Maybe a lookupGE = goNothing where goNothing !_ Tip = Nothing goNothing x (Bin _ y l r) = case compare x y of LT -> goJust x y l EQ -> Just y GT -> goNothing x r goJust !_ best Tip = Just best goJust x best (Bin _ y l r) = case compare x y of LT -> goJust x y l EQ -> Just y GT -> goJust x best r #if __GLASGOW_HASKELL__ {-# INLINABLE lookupGE #-} #else {-# INLINE lookupGE #-} #endif {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. The empty set. empty :: Set a empty = Tip {-# INLINE empty #-} -- | /O(1)/. Create a singleton set. singleton :: a -> Set a singleton x = Bin 1 x Tip Tip {-# INLINE singleton #-} {-------------------------------------------------------------------- Insertion, Deletion --------------------------------------------------------------------} -- | /O(log n)/. Insert an element in a set. -- If the set already contains an element equal to the given value, -- it is replaced with the new value. -- See Note: Type of local 'go' function -- See Note: Avoiding worker/wrapper (in Data.Map.Internal) insert :: Ord a => a -> Set a -> Set a insert x0 = go x0 x0 where go :: Ord a => a -> a -> Set a -> Set a go orig !_ Tip = singleton (lazy orig) go orig !x t@(Bin sz y l r) = case compare x y of LT | l' `ptrEq` l -> t | otherwise -> balanceL y l' r where !l' = go orig x l GT | r' `ptrEq` r -> t | otherwise -> balanceR y l r' where !r' = go orig x r EQ | lazy orig `seq` (orig `ptrEq` y) -> t | otherwise -> Bin sz (lazy orig) l r #if __GLASGOW_HASKELL__ {-# INLINABLE insert #-} #else {-# INLINE insert #-} #endif #ifndef __GLASGOW_HASKELL__ lazy :: a -> a lazy a = a #endif -- Insert an element to the set only if it is not in the set. -- Used by `union`. -- See Note: Type of local 'go' function -- See Note: Avoiding worker/wrapper (in Data.Map.Internal) insertR :: Ord a => a -> Set a -> Set a insertR x0 = go x0 x0 where go :: Ord a => a -> a -> Set a -> Set a go orig !_ Tip = singleton (lazy orig) go orig !x t@(Bin _ y l r) = case compare x y of LT | l' `ptrEq` l -> t | otherwise -> balanceL y l' r where !l' = go orig x l GT | r' `ptrEq` r -> t | otherwise -> balanceR y l r' where !r' = go orig x r EQ -> t #if __GLASGOW_HASKELL__ {-# INLINABLE insertR #-} #else {-# INLINE insertR #-} #endif -- | /O(log n)/. Delete an element from a set. -- See Note: Type of local 'go' function delete :: Ord a => a -> Set a -> Set a delete = go where go :: Ord a => a -> Set a -> Set a go !_ Tip = Tip go x t@(Bin _ y l r) = case compare x y of LT | l' `ptrEq` l -> t | otherwise -> balanceR y l' r where !l' = go x l GT | r' `ptrEq` r -> t | otherwise -> balanceL y l r' where !r' = go x r EQ -> glue l r #if __GLASGOW_HASKELL__ {-# INLINABLE delete #-} #else {-# INLINE delete #-} #endif -- | /O(log n)/ @('alterF' f x s)@ can delete or insert @x@ in @s@ depending on -- whether an equal element is found in @s@. -- -- In short: -- -- @ -- 'member' x \<$\> 'alterF' f x s = f ('member' x s) -- @ -- -- Note that unlike 'insert', 'alterF' will /not/ replace an element equal to -- the given value. -- -- Note: 'alterF' is a variant of the @at@ combinator from "Control.Lens.At". -- -- @since 0.6.3.1 alterF :: (Ord a, Functor f) => (Bool -> f Bool) -> a -> Set a -> f (Set a) alterF f k s = fmap choose (f member_) where (member_, inserted, deleted) = case alteredSet k s of Deleted d -> (True , s, d) Inserted i -> (False, i, s) choose True = inserted choose False = deleted #ifndef __GLASGOW_HASKELL__ {-# INLINE alterF #-} #else {-# INLINABLE [2] alterF #-} {-# RULES "alterF/Const" forall k (f :: Bool -> Const a Bool) . alterF f k = \s -> Const . getConst . f $ member k s #-} #endif #if MIN_VERSION_base(4,8,0) {-# SPECIALIZE alterF :: Ord a => (Bool -> Identity Bool) -> a -> Set a -> Identity (Set a) #-} #endif data AlteredSet a -- | The needle is present in the original set. -- We return the set where the needle is deleted. = Deleted !(Set a) -- | The needle is not present in the original set. -- We return the set with the needle inserted. | Inserted !(Set a) alteredSet :: Ord a => a -> Set a -> AlteredSet a alteredSet x0 s0 = go x0 s0 where go :: Ord a => a -> Set a -> AlteredSet a go x Tip = Inserted (singleton x) go x (Bin _ y l r) = case compare x y of LT -> case go x l of Deleted d -> Deleted (balanceR y d r) Inserted i -> Inserted (balanceL y i r) GT -> case go x r of Deleted d -> Deleted (balanceL y l d) Inserted i -> Inserted (balanceR y l i) EQ -> Deleted (glue l r) #if __GLASGOW_HASKELL__ {-# INLINABLE alteredSet #-} #else {-# INLINE alteredSet #-} #endif {-------------------------------------------------------------------- Subset --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. -- @(s1 \`isProperSubsetOf\` s2)@ indicates whether @s1@ is a -- proper subset of @s2@. -- -- @ -- s1 \`isProperSubsetOf\` s2 = s1 ``isSubsetOf`` s2 && s1 /= s2 -- @ isProperSubsetOf :: Ord a => Set a -> Set a -> Bool isProperSubsetOf s1 s2 = size s1 < size s2 && isSubsetOfX s1 s2 #if __GLASGOW_HASKELL__ {-# INLINABLE isProperSubsetOf #-} #endif -- | /O(m*log(n\/m + 1)), m <= n/. -- @(s1 \`isSubsetOf\` s2)@ indicates whether @s1@ is a subset of @s2@. -- -- @ -- s1 \`isSubsetOf\` s2 = all (``member`` s2) s1 -- s1 \`isSubsetOf\` s2 = null (s1 ``difference`` s2) -- s1 \`isSubsetOf\` s2 = s1 ``union`` s2 == s2 -- s1 \`isSubsetOf\` s2 = s1 ``intersection`` s2 == s1 -- @ isSubsetOf :: Ord a => Set a -> Set a -> Bool isSubsetOf t1 t2 = size t1 <= size t2 && isSubsetOfX t1 t2 #if __GLASGOW_HASKELL__ {-# INLINABLE isSubsetOf #-} #endif -- Test whether a set is a subset of another without the *initial* -- size test. -- -- This function is structured very much like `difference`, `union`, -- and `intersection`. Whereas the bounds proofs for those in Blelloch -- et al needed to accound for both "split work" and "merge work", we -- only have to worry about split work here, which is the same as in -- those functions. isSubsetOfX :: Ord a => Set a -> Set a -> Bool isSubsetOfX Tip _ = True isSubsetOfX _ Tip = False -- Skip the final split when we hit a singleton. isSubsetOfX (Bin 1 x _ _) t = member x t isSubsetOfX (Bin _ x l r) t = found && -- Cheap size checks can sometimes save expensive recursive calls when the -- result will be False. Suppose we check whether [1..10] (with root 4) is -- a subset of [0..9]. After the first split, we have to check if [1..3] is -- a subset of [0..3] and if [5..10] is a subset of [5..9]. But we can bail -- immediately because size [5..10] > size [5..9]. -- -- Why not just call `isSubsetOf` on each side to do the size checks? -- Because that could make a recursive call on the left even though the -- size check would fail on the right. In principle, we could take this to -- extremes by maintaining a queue of pairs of sets to be checked, working -- through the tree level-wise. But that would impose higher administrative -- costs without obvious benefits. It might be worth considering if we find -- a way to use it to tighten the bounds in some useful/comprehensible way. size l <= size lt && size r <= size gt && isSubsetOfX l lt && isSubsetOfX r gt where (lt,found,gt) = splitMember x t #if __GLASGOW_HASKELL__ {-# INLINABLE isSubsetOfX #-} #endif {-------------------------------------------------------------------- Disjoint --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. Check whether two sets are disjoint -- (i.e., their intersection is empty). -- -- > disjoint (fromList [2,4,6]) (fromList [1,3]) == True -- > disjoint (fromList [2,4,6,8]) (fromList [2,3,5,7]) == False -- > disjoint (fromList [1,2]) (fromList [1,2,3,4]) == False -- > disjoint (fromList []) (fromList []) == True -- -- @ -- xs ``disjoint`` ys = null (xs ``intersection`` ys) -- @ -- -- @since 0.5.11 disjoint :: Ord a => Set a -> Set a -> Bool disjoint Tip _ = True disjoint _ Tip = True -- Avoid a split for the singleton case. disjoint (Bin 1 x _ _) t = x `notMember` t disjoint (Bin _ x l r) t -- Analogous implementation to `subsetOfX` = not found && disjoint l lt && disjoint r gt where (lt,found,gt) = splitMember x t {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- We perform call-pattern specialization manually on lookupMin -- and lookupMax. Otherwise, GHC doesn't seem to do it, which is -- unfortunate if, for example, someone uses findMin or findMax. lookupMinSure :: a -> Set a -> a lookupMinSure x Tip = x lookupMinSure _ (Bin _ x l _) = lookupMinSure x l -- | /O(log n)/. The minimal element of a set. -- -- @since 0.5.9 lookupMin :: Set a -> Maybe a lookupMin Tip = Nothing lookupMin (Bin _ x l _) = Just $! lookupMinSure x l -- | /O(log n)/. The minimal element of a set. findMin :: Set a -> a findMin t | Just r <- lookupMin t = r | otherwise = error "Set.findMin: empty set has no minimal element" lookupMaxSure :: a -> Set a -> a lookupMaxSure x Tip = x lookupMaxSure _ (Bin _ x _ r) = lookupMaxSure x r -- | /O(log n)/. The maximal element of a set. -- -- @since 0.5.9 lookupMax :: Set a -> Maybe a lookupMax Tip = Nothing lookupMax (Bin _ x _ r) = Just $! lookupMaxSure x r -- | /O(log n)/. The maximal element of a set. findMax :: Set a -> a findMax t | Just r <- lookupMax t = r | otherwise = error "Set.findMax: empty set has no maximal element" -- | /O(log n)/. Delete the minimal element. Returns an empty set if the set is empty. deleteMin :: Set a -> Set a deleteMin (Bin _ _ Tip r) = r deleteMin (Bin _ x l r) = balanceR x (deleteMin l) r deleteMin Tip = Tip -- | /O(log n)/. Delete the maximal element. Returns an empty set if the set is empty. deleteMax :: Set a -> Set a deleteMax (Bin _ _ l Tip) = l deleteMax (Bin _ x l r) = balanceL x l (deleteMax r) deleteMax Tip = Tip {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} -- | The union of the sets in a Foldable structure : (@'unions' == 'foldl' 'union' 'empty'@). unions :: (Foldable f, Ord a) => f (Set a) -> Set a unions = Foldable.foldl' union empty #if __GLASGOW_HASKELL__ {-# INLINABLE unions #-} #endif -- | /O(m*log(n\/m + 1)), m <= n/. The union of two sets, preferring the first set when -- equal elements are encountered. union :: Ord a => Set a -> Set a -> Set a union t1 Tip = t1 union t1 (Bin 1 x _ _) = insertR x t1 union (Bin 1 x _ _) t2 = insert x t2 union Tip t2 = t2 union t1@(Bin _ x l1 r1) t2 = case splitS x t2 of (l2 :*: r2) | l1l2 `ptrEq` l1 && r1r2 `ptrEq` r1 -> t1 | otherwise -> link x l1l2 r1r2 where !l1l2 = union l1 l2 !r1r2 = union r1 r2 #if __GLASGOW_HASKELL__ {-# INLINABLE union #-} #endif {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. Difference of two sets. -- -- Return elements of the first set not existing in the second set. -- -- > difference (fromList [5, 3]) (fromList [5, 7]) == singleton 3 difference :: Ord a => Set a -> Set a -> Set a difference Tip _ = Tip difference t1 Tip = t1 difference t1 (Bin _ x l2 r2) = case split x t1 of (l1, r1) | size l1l2 + size r1r2 == size t1 -> t1 | otherwise -> merge l1l2 r1r2 where !l1l2 = difference l1 l2 !r1r2 = difference r1 r2 #if __GLASGOW_HASKELL__ {-# INLINABLE difference #-} #endif {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(m*log(n\/m + 1)), m <= n/. The intersection of two sets. -- Elements of the result come from the first set, so for example -- -- > import qualified Data.Set as S -- > data AB = A | B deriving Show -- > instance Ord AB where compare _ _ = EQ -- > instance Eq AB where _ == _ = True -- > main = print (S.singleton A `S.intersection` S.singleton B, -- > S.singleton B `S.intersection` S.singleton A) -- -- prints @(fromList [A],fromList [B])@. intersection :: Ord a => Set a -> Set a -> Set a intersection Tip _ = Tip intersection _ Tip = Tip intersection t1@(Bin _ x l1 r1) t2 | b = if l1l2 `ptrEq` l1 && r1r2 `ptrEq` r1 then t1 else link x l1l2 r1r2 | otherwise = merge l1l2 r1r2 where !(l2, b, r2) = splitMember x t2 !l1l2 = intersection l1 l2 !r1r2 = intersection r1 r2 #if __GLASGOW_HASKELL__ {-# INLINABLE intersection #-} #endif {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all elements that satisfy the predicate. filter :: (a -> Bool) -> Set a -> Set a filter _ Tip = Tip filter p t@(Bin _ x l r) | p x = if l `ptrEq` l' && r `ptrEq` r' then t else link x l' r' | otherwise = merge l' r' where !l' = filter p l !r' = filter p r -- | /O(n)/. Partition the set into two sets, one with all elements that satisfy -- the predicate and one with all elements that don't satisfy the predicate. -- See also 'split'. partition :: (a -> Bool) -> Set a -> (Set a,Set a) partition p0 t0 = toPair $ go p0 t0 where go _ Tip = (Tip :*: Tip) go p t@(Bin _ x l r) = case (go p l, go p r) of ((l1 :*: l2), (r1 :*: r2)) | p x -> (if l1 `ptrEq` l && r1 `ptrEq` r then t else link x l1 r1) :*: merge l2 r2 | otherwise -> merge l1 r1 :*: (if l2 `ptrEq` l && r2 `ptrEq` r then t else link x l2 r2) {---------------------------------------------------------------------- Map ----------------------------------------------------------------------} -- | /O(n*log n)/. -- @'map' f s@ is the set obtained by applying @f@ to each element of @s@. -- -- It's worth noting that the size of the result may be smaller if, -- for some @(x,y)@, @x \/= y && f x == f y@ map :: Ord b => (a->b) -> Set a -> Set b map f = fromList . List.map f . toList #if __GLASGOW_HASKELL__ {-# INLINABLE map #-} #endif -- | /O(n)/. The -- -- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is strictly increasing. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapMonotonic f s == map f s -- > where ls = toList s mapMonotonic :: (a->b) -> Set a -> Set b mapMonotonic _ Tip = Tip mapMonotonic f (Bin sz x l r) = Bin sz (f x) (mapMonotonic f l) (mapMonotonic f r) {-------------------------------------------------------------------- Fold --------------------------------------------------------------------} -- | /O(n)/. Fold the elements in the set using the given right-associative -- binary operator. This function is an equivalent of 'foldr' and is present -- for compatibility only. -- -- /Please note that fold will be deprecated in the future and removed./ fold :: (a -> b -> b) -> b -> Set a -> b fold = foldr {-# INLINE fold #-} -- | /O(n)/. Fold the elements in the set using the given right-associative -- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'toAscList'@. -- -- For example, -- -- > toAscList set = foldr (:) [] set foldr :: (a -> b -> b) -> b -> Set a -> b foldr f z = go z where go z' Tip = z' go z' (Bin _ x l r) = go (f x (go z' r)) l {-# INLINE foldr #-} -- | /O(n)/. A strict version of 'foldr'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldr' :: (a -> b -> b) -> b -> Set a -> b foldr' f z = go z where go !z' Tip = z' go z' (Bin _ x l r) = go (f x (go z' r)) l {-# INLINE foldr' #-} -- | /O(n)/. Fold the elements in the set using the given left-associative -- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'toAscList'@. -- -- For example, -- -- > toDescList set = foldl (flip (:)) [] set foldl :: (a -> b -> a) -> a -> Set b -> a foldl f z = go z where go z' Tip = z' go z' (Bin _ x l r) = go (f (go z' l) x) r {-# INLINE foldl #-} -- | /O(n)/. A strict version of 'foldl'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldl' :: (a -> b -> a) -> a -> Set b -> a foldl' f z = go z where go !z' Tip = z' go z' (Bin _ x l r) = go (f (go z' l) x) r {-# INLINE foldl' #-} {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(n)/. An alias of 'toAscList'. The elements of a set in ascending order. -- Subject to list fusion. elems :: Set a -> [a] elems = toAscList {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} #if __GLASGOW_HASKELL__ >= 708 -- | @since 0.5.6.2 instance (Ord a) => GHCExts.IsList (Set a) where type Item (Set a) = a fromList = fromList toList = toList #endif -- | /O(n)/. Convert the set to a list of elements. Subject to list fusion. toList :: Set a -> [a] toList = toAscList -- | /O(n)/. Convert the set to an ascending list of elements. Subject to list fusion. toAscList :: Set a -> [a] toAscList = foldr (:) [] -- | /O(n)/. Convert the set to a descending list of elements. Subject to list -- fusion. toDescList :: Set a -> [a] toDescList = foldl (flip (:)) [] -- List fusion for the list generating functions. #if __GLASGOW_HASKELL__ -- The foldrFB and foldlFB are foldr and foldl equivalents, used for list fusion. -- They are important to convert unfused to{Asc,Desc}List back, see mapFB in prelude. foldrFB :: (a -> b -> b) -> b -> Set a -> b foldrFB = foldr {-# INLINE[0] foldrFB #-} foldlFB :: (a -> b -> a) -> a -> Set b -> a foldlFB = foldl {-# INLINE[0] foldlFB #-} -- Inline elems and toList, so that we need to fuse only toAscList. {-# INLINE elems #-} {-# INLINE toList #-} -- The fusion is enabled up to phase 2 included. If it does not succeed, -- convert in phase 1 the expanded to{Asc,Desc}List calls back to -- to{Asc,Desc}List. In phase 0, we inline fold{lr}FB (which were used in -- a list fusion, otherwise it would go away in phase 1), and let compiler do -- whatever it wants with to{Asc,Desc}List -- it was forbidden to inline it -- before phase 0, otherwise the fusion rules would not fire at all. {-# NOINLINE[0] toAscList #-} {-# NOINLINE[0] toDescList #-} {-# RULES "Set.toAscList" [~1] forall s . toAscList s = build (\c n -> foldrFB c n s) #-} {-# RULES "Set.toAscListBack" [1] foldrFB (:) [] = toAscList #-} {-# RULES "Set.toDescList" [~1] forall s . toDescList s = build (\c n -> foldlFB (\xs x -> c x xs) n s) #-} {-# RULES "Set.toDescListBack" [1] foldlFB (\xs x -> x : xs) [] = toDescList #-} #endif -- | /O(n*log n)/. Create a set from a list of elements. -- -- If the elements are ordered, a linear-time implementation is used, -- with the performance equal to 'fromDistinctAscList'. -- For some reason, when 'singleton' is used in fromList or in -- create, it is not inlined, so we inline it manually. fromList :: Ord a => [a] -> Set a fromList [] = Tip fromList [x] = Bin 1 x Tip Tip fromList (x0 : xs0) | not_ordered x0 xs0 = fromList' (Bin 1 x0 Tip Tip) xs0 | otherwise = go (1::Int) (Bin 1 x0 Tip Tip) xs0 where not_ordered _ [] = False not_ordered x (y : _) = x >= y {-# INLINE not_ordered #-} fromList' t0 xs = Foldable.foldl' ins t0 xs where ins t x = insert x t go !_ t [] = t go _ t [x] = insertMax x t go s l xs@(x : xss) | not_ordered x xss = fromList' l xs | otherwise = case create s xss of (r, ys, []) -> go (s `shiftL` 1) (link x l r) ys (r, _, ys) -> fromList' (link x l r) ys -- The create is returning a triple (tree, xs, ys). Both xs and ys -- represent not yet processed elements and only one of them can be nonempty. -- If ys is nonempty, the keys in ys are not ordered with respect to tree -- and must be inserted using fromList'. Otherwise the keys have been -- ordered so far. create !_ [] = (Tip, [], []) create s xs@(x : xss) | s == 1 = if not_ordered x xss then (Bin 1 x Tip Tip, [], xss) else (Bin 1 x Tip Tip, xss, []) | otherwise = case create (s `shiftR` 1) xs of res@(_, [], _) -> res (l, [y], zs) -> (insertMax y l, [], zs) (l, ys@(y:yss), _) | not_ordered y yss -> (l, [], ys) | otherwise -> case create (s `shiftR` 1) yss of (r, zs, ws) -> (link y l r, zs, ws) #if __GLASGOW_HASKELL__ {-# INLINABLE fromList #-} #endif {-------------------------------------------------------------------- Building trees from ascending/descending lists can be done in linear time. Note that if [xs] is ascending that: fromAscList xs == fromList xs --------------------------------------------------------------------} -- | /O(n)/. Build a set from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscList :: Eq a => [a] -> Set a fromAscList xs = fromDistinctAscList (combineEq xs) #if __GLASGOW_HASKELL__ {-# INLINABLE fromAscList #-} #endif -- | /O(n)/. Build a set from a descending list in linear time. -- /The precondition (input list is descending) is not checked./ -- -- @since 0.5.8 fromDescList :: Eq a => [a] -> Set a fromDescList xs = fromDistinctDescList (combineEq xs) #if __GLASGOW_HASKELL__ {-# INLINABLE fromDescList #-} #endif -- [combineEq xs] combines equal elements with [const] in an ordered list [xs] -- -- TODO: combineEq allocates an intermediate list. It *should* be better to -- make fromAscListBy and fromDescListBy the fundamental operations, and to -- implement the rest using those. combineEq :: Eq a => [a] -> [a] combineEq [] = [] combineEq (x : xs) = combineEq' x xs where combineEq' z [] = [z] combineEq' z (y:ys) | z == y = combineEq' z ys | otherwise = z : combineEq' y ys -- | /O(n)/. Build a set from an ascending list of distinct elements in linear time. -- /The precondition (input list is strictly ascending) is not checked./ -- For some reason, when 'singleton' is used in fromDistinctAscList or in -- create, it is not inlined, so we inline it manually. fromDistinctAscList :: [a] -> Set a fromDistinctAscList [] = Tip fromDistinctAscList (x0 : xs0) = go (1::Int) (Bin 1 x0 Tip Tip) xs0 where go !_ t [] = t go s l (x : xs) = case create s xs of (r :*: ys) -> let !t' = link x l r in go (s `shiftL` 1) t' ys create !_ [] = (Tip :*: []) create s xs@(x : xs') | s == 1 = (Bin 1 x Tip Tip :*: xs') | otherwise = case create (s `shiftR` 1) xs of res@(_ :*: []) -> res (l :*: (y:ys)) -> case create (s `shiftR` 1) ys of (r :*: zs) -> (link y l r :*: zs) -- | /O(n)/. Build a set from a descending list of distinct elements in linear time. -- /The precondition (input list is strictly descending) is not checked./ -- For some reason, when 'singleton' is used in fromDistinctDescList or in -- create, it is not inlined, so we inline it manually. -- -- @since 0.5.8 fromDistinctDescList :: [a] -> Set a fromDistinctDescList [] = Tip fromDistinctDescList (x0 : xs0) = go (1::Int) (Bin 1 x0 Tip Tip) xs0 where go !_ t [] = t go s r (x : xs) = case create s xs of (l :*: ys) -> let !t' = link x l r in go (s `shiftL` 1) t' ys create !_ [] = (Tip :*: []) create s xs@(x : xs') | s == 1 = (Bin 1 x Tip Tip :*: xs') | otherwise = case create (s `shiftR` 1) xs of res@(_ :*: []) -> res (r :*: (y:ys)) -> case create (s `shiftR` 1) ys of (l :*: zs) -> (link y l r :*: zs) {-------------------------------------------------------------------- Eq converts the set to a list. In a lazy setting, this actually seems one of the faster methods to compare two trees and it is certainly the simplest :-) --------------------------------------------------------------------} instance Eq a => Eq (Set a) where t1 == t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2) {-------------------------------------------------------------------- Ord --------------------------------------------------------------------} instance Ord a => Ord (Set a) where compare s1 s2 = compare (toAscList s1) (toAscList s2) {-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance Show a => Show (Set a) where showsPrec p xs = showParen (p > 10) $ showString "fromList " . shows (toList xs) #if MIN_VERSION_base(4,9,0) -- | @since 0.5.9 instance Eq1 Set where liftEq eq m n = size m == size n && liftEq eq (toList m) (toList n) -- | @since 0.5.9 instance Ord1 Set where liftCompare cmp m n = liftCompare cmp (toList m) (toList n) -- | @since 0.5.9 instance Show1 Set where liftShowsPrec sp sl d m = showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m) #endif {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance (Read a, Ord a) => Read (Set a) where #ifdef __GLASGOW_HASKELL__ readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- readPrec return (fromList xs) readListPrec = readListPrecDefault #else readsPrec p = readParen (p > 10) $ \ r -> do ("fromList",s) <- lex r (xs,t) <- reads s return (fromList xs,t) #endif {-------------------------------------------------------------------- Typeable/Data --------------------------------------------------------------------} INSTANCE_TYPEABLE1(Set) {-------------------------------------------------------------------- NFData --------------------------------------------------------------------} instance NFData a => NFData (Set a) where rnf Tip = () rnf (Bin _ y l r) = rnf y `seq` rnf l `seq` rnf r {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ -- where @set1@ comprises the elements of @set@ less than @x@ and @set2@ -- comprises the elements of @set@ greater than @x@. split :: Ord a => a -> Set a -> (Set a,Set a) split x t = toPair $ splitS x t {-# INLINABLE split #-} splitS :: Ord a => a -> Set a -> StrictPair (Set a) (Set a) splitS _ Tip = (Tip :*: Tip) splitS x (Bin _ y l r) = case compare x y of LT -> let (lt :*: gt) = splitS x l in (lt :*: link y gt r) GT -> let (lt :*: gt) = splitS x r in (link y l lt :*: gt) EQ -> (l :*: r) {-# INLINABLE splitS #-} -- | /O(log n)/. Performs a 'split' but also returns whether the pivot -- element was found in the original set. splitMember :: Ord a => a -> Set a -> (Set a,Bool,Set a) splitMember _ Tip = (Tip, False, Tip) splitMember x (Bin _ y l r) = case compare x y of LT -> let (lt, found, gt) = splitMember x l !gt' = link y gt r in (lt, found, gt') GT -> let (lt, found, gt) = splitMember x r !lt' = link y l lt in (lt', found, gt) EQ -> (l, True, r) #if __GLASGOW_HASKELL__ {-# INLINABLE splitMember #-} #endif {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Return the /index/ of an element, which is its zero-based -- index in the sorted sequence of elements. The index is a number from /0/ up -- to, but not including, the 'size' of the set. Calls 'error' when the element -- is not a 'member' of the set. -- -- > findIndex 2 (fromList [5,3]) Error: element is not in the set -- > findIndex 3 (fromList [5,3]) == 0 -- > findIndex 5 (fromList [5,3]) == 1 -- > findIndex 6 (fromList [5,3]) Error: element is not in the set -- -- @since 0.5.4 -- See Note: Type of local 'go' function findIndex :: Ord a => a -> Set a -> Int findIndex = go 0 where go :: Ord a => Int -> a -> Set a -> Int go !_ !_ Tip = error "Set.findIndex: element is not in the set" go idx x (Bin _ kx l r) = case compare x kx of LT -> go idx x l GT -> go (idx + size l + 1) x r EQ -> idx + size l #if __GLASGOW_HASKELL__ {-# INLINABLE findIndex #-} #endif -- | /O(log n)/. Lookup the /index/ of an element, which is its zero-based index in -- the sorted sequence of elements. The index is a number from /0/ up to, but not -- including, the 'size' of the set. -- -- > isJust (lookupIndex 2 (fromList [5,3])) == False -- > fromJust (lookupIndex 3 (fromList [5,3])) == 0 -- > fromJust (lookupIndex 5 (fromList [5,3])) == 1 -- > isJust (lookupIndex 6 (fromList [5,3])) == False -- -- @since 0.5.4 -- See Note: Type of local 'go' function lookupIndex :: Ord a => a -> Set a -> Maybe Int lookupIndex = go 0 where go :: Ord a => Int -> a -> Set a -> Maybe Int go !_ !_ Tip = Nothing go idx x (Bin _ kx l r) = case compare x kx of LT -> go idx x l GT -> go (idx + size l + 1) x r EQ -> Just $! idx + size l #if __GLASGOW_HASKELL__ {-# INLINABLE lookupIndex #-} #endif -- | /O(log n)/. Retrieve an element by its /index/, i.e. by its zero-based -- index in the sorted sequence of elements. If the /index/ is out of range (less -- than zero, greater or equal to 'size' of the set), 'error' is called. -- -- > elemAt 0 (fromList [5,3]) == 3 -- > elemAt 1 (fromList [5,3]) == 5 -- > elemAt 2 (fromList [5,3]) Error: index out of range -- -- @since 0.5.4 elemAt :: Int -> Set a -> a elemAt !_ Tip = error "Set.elemAt: index out of range" elemAt i (Bin _ x l r) = case compare i sizeL of LT -> elemAt i l GT -> elemAt (i-sizeL-1) r EQ -> x where sizeL = size l -- | /O(log n)/. Delete the element at /index/, i.e. by its zero-based index in -- the sorted sequence of elements. If the /index/ is out of range (less than zero, -- greater or equal to 'size' of the set), 'error' is called. -- -- > deleteAt 0 (fromList [5,3]) == singleton 5 -- > deleteAt 1 (fromList [5,3]) == singleton 3 -- > deleteAt 2 (fromList [5,3]) Error: index out of range -- > deleteAt (-1) (fromList [5,3]) Error: index out of range -- -- @since 0.5.4 deleteAt :: Int -> Set a -> Set a deleteAt !i t = case t of Tip -> error "Set.deleteAt: index out of range" Bin _ x l r -> case compare i sizeL of LT -> balanceR x (deleteAt i l) r GT -> balanceL x l (deleteAt (i-sizeL-1) r) EQ -> glue l r where sizeL = size l -- | Take a given number of elements in order, beginning -- with the smallest ones. -- -- @ -- take n = 'fromDistinctAscList' . 'Prelude.take' n . 'toAscList' -- @ -- -- @since 0.5.8 take :: Int -> Set a -> Set a take i m | i >= size m = m take i0 m0 = go i0 m0 where go i !_ | i <= 0 = Tip go !_ Tip = Tip go i (Bin _ x l r) = case compare i sizeL of LT -> go i l GT -> link x l (go (i - sizeL - 1) r) EQ -> l where sizeL = size l -- | Drop a given number of elements in order, beginning -- with the smallest ones. -- -- @ -- drop n = 'fromDistinctAscList' . 'Prelude.drop' n . 'toAscList' -- @ -- -- @since 0.5.8 drop :: Int -> Set a -> Set a drop i m | i >= size m = Tip drop i0 m0 = go i0 m0 where go i m | i <= 0 = m go !_ Tip = Tip go i (Bin _ x l r) = case compare i sizeL of LT -> link x (go i l) r GT -> go (i - sizeL - 1) r EQ -> insertMin x r where sizeL = size l -- | /O(log n)/. Split a set at a particular index. -- -- @ -- splitAt !n !xs = ('take' n xs, 'drop' n xs) -- @ splitAt :: Int -> Set a -> (Set a, Set a) splitAt i0 m0 | i0 >= size m0 = (m0, Tip) | otherwise = toPair $ go i0 m0 where go i m | i <= 0 = Tip :*: m go !_ Tip = Tip :*: Tip go i (Bin _ x l r) = case compare i sizeL of LT -> case go i l of ll :*: lr -> ll :*: link x lr r GT -> case go (i - sizeL - 1) r of rl :*: rr -> link x l rl :*: rr EQ -> l :*: insertMin x r where sizeL = size l -- | /O(log n)/. Take while a predicate on the elements holds. -- The user is responsible for ensuring that for all elements @j@ and @k@ in the set, -- @j \< k ==\> p j \>= p k@. See note at 'spanAntitone'. -- -- @ -- takeWhileAntitone p = 'fromDistinctAscList' . 'Data.List.takeWhile' p . 'toList' -- takeWhileAntitone p = 'filter' p -- @ -- -- @since 0.5.8 takeWhileAntitone :: (a -> Bool) -> Set a -> Set a takeWhileAntitone _ Tip = Tip takeWhileAntitone p (Bin _ x l r) | p x = link x l (takeWhileAntitone p r) | otherwise = takeWhileAntitone p l -- | /O(log n)/. Drop while a predicate on the elements holds. -- The user is responsible for ensuring that for all elements @j@ and @k@ in the set, -- @j \< k ==\> p j \>= p k@. See note at 'spanAntitone'. -- -- @ -- dropWhileAntitone p = 'fromDistinctAscList' . 'Data.List.dropWhile' p . 'toList' -- dropWhileAntitone p = 'filter' (not . p) -- @ -- -- @since 0.5.8 dropWhileAntitone :: (a -> Bool) -> Set a -> Set a dropWhileAntitone _ Tip = Tip dropWhileAntitone p (Bin _ x l r) | p x = dropWhileAntitone p r | otherwise = link x (dropWhileAntitone p l) r -- | /O(log n)/. Divide a set at the point where a predicate on the elements stops holding. -- The user is responsible for ensuring that for all elements @j@ and @k@ in the set, -- @j \< k ==\> p j \>= p k@. -- -- @ -- spanAntitone p xs = ('takeWhileAntitone' p xs, 'dropWhileAntitone' p xs) -- spanAntitone p xs = partition p xs -- @ -- -- Note: if @p@ is not actually antitone, then @spanAntitone@ will split the set -- at some /unspecified/ point where the predicate switches from holding to not -- holding (where the predicate is seen to hold before the first element and to fail -- after the last element). -- -- @since 0.5.8 spanAntitone :: (a -> Bool) -> Set a -> (Set a, Set a) spanAntitone p0 m = toPair (go p0 m) where go _ Tip = Tip :*: Tip go p (Bin _ x l r) | p x = let u :*: v = go p r in link x l u :*: v | otherwise = let u :*: v = go p l in u :*: link x v r {-------------------------------------------------------------------- Utility functions that maintain the balance properties of the tree. All constructors assume that all values in [l] < [x] and all values in [r] > [x], and that [l] and [r] are valid trees. In order of sophistication: [Bin sz x l r] The type constructor. [bin x l r] Maintains the correct size, assumes that both [l] and [r] are balanced with respect to each other. [balance x l r] Restores the balance and size. Assumes that the original tree was balanced and that [l] or [r] has changed by at most one element. [link x l r] Restores balance and size. Furthermore, we can construct a new tree from two trees. Both operations assume that all values in [l] < all values in [r] and that [l] and [r] are valid: [glue l r] Glues [l] and [r] together. Assumes that [l] and [r] are already balanced with respect to each other. [merge l r] Merges two trees and restores balance. --------------------------------------------------------------------} {-------------------------------------------------------------------- Link --------------------------------------------------------------------} link :: a -> Set a -> Set a -> Set a link x Tip r = insertMin x r link x l Tip = insertMax x l link x l@(Bin sizeL y ly ry) r@(Bin sizeR z lz rz) | delta*sizeL < sizeR = balanceL z (link x l lz) rz | delta*sizeR < sizeL = balanceR y ly (link x ry r) | otherwise = bin x l r -- insertMin and insertMax don't perform potentially expensive comparisons. insertMax,insertMin :: a -> Set a -> Set a insertMax x t = case t of Tip -> singleton x Bin _ y l r -> balanceR y l (insertMax x r) insertMin x t = case t of Tip -> singleton x Bin _ y l r -> balanceL y (insertMin x l) r {-------------------------------------------------------------------- [merge l r]: merges two trees. --------------------------------------------------------------------} merge :: Set a -> Set a -> Set a merge Tip r = r merge l Tip = l merge l@(Bin sizeL x lx rx) r@(Bin sizeR y ly ry) | delta*sizeL < sizeR = balanceL y (merge l ly) ry | delta*sizeR < sizeL = balanceR x lx (merge rx r) | otherwise = glue l r {-------------------------------------------------------------------- [glue l r]: glues two trees together. Assumes that [l] and [r] are already balanced with respect to each other. --------------------------------------------------------------------} glue :: Set a -> Set a -> Set a glue Tip r = r glue l Tip = l glue l@(Bin sl xl ll lr) r@(Bin sr xr rl rr) | sl > sr = let !(m :*: l') = maxViewSure xl ll lr in balanceR m l' r | otherwise = let !(m :*: r') = minViewSure xr rl rr in balanceL m l r' -- | /O(log n)/. Delete and find the minimal element. -- -- > deleteFindMin set = (findMin set, deleteMin set) deleteFindMin :: Set a -> (a,Set a) deleteFindMin t | Just r <- minView t = r | otherwise = (error "Set.deleteFindMin: can not return the minimal element of an empty set", Tip) -- | /O(log n)/. Delete and find the maximal element. -- -- > deleteFindMax set = (findMax set, deleteMax set) deleteFindMax :: Set a -> (a,Set a) deleteFindMax t | Just r <- maxView t = r | otherwise = (error "Set.deleteFindMax: can not return the maximal element of an empty set", Tip) minViewSure :: a -> Set a -> Set a -> StrictPair a (Set a) minViewSure = go where go x Tip r = x :*: r go x (Bin _ xl ll lr) r = case go xl ll lr of xm :*: l' -> xm :*: balanceR x l' r -- | /O(log n)/. Retrieves the minimal key of the set, and the set -- stripped of that element, or 'Nothing' if passed an empty set. minView :: Set a -> Maybe (a, Set a) minView Tip = Nothing minView (Bin _ x l r) = Just $! toPair $ minViewSure x l r maxViewSure :: a -> Set a -> Set a -> StrictPair a (Set a) maxViewSure = go where go x l Tip = x :*: l go x l (Bin _ xr rl rr) = case go xr rl rr of xm :*: r' -> xm :*: balanceL x l r' -- | /O(log n)/. Retrieves the maximal key of the set, and the set -- stripped of that element, or 'Nothing' if passed an empty set. maxView :: Set a -> Maybe (a, Set a) maxView Tip = Nothing maxView (Bin _ x l r) = Just $! toPair $ maxViewSure x l r {-------------------------------------------------------------------- [balance x l r] balances two trees with value x. The sizes of the trees should balance after decreasing the size of one of them. (a rotation). [delta] is the maximal relative difference between the sizes of two trees, it corresponds with the [w] in Adams' paper. [ratio] is the ratio between an outer and inner sibling of the heavier subtree in an unbalanced setting. It determines whether a double or single rotation should be performed to restore balance. It is correspondes with the inverse of $\alpha$ in Adam's article. Note that according to the Adam's paper: - [delta] should be larger than 4.646 with a [ratio] of 2. - [delta] should be larger than 3.745 with a [ratio] of 1.534. But the Adam's paper is errorneous: - it can be proved that for delta=2 and delta>=5 there does not exist any ratio that would work - delta=4.5 and ratio=2 does not work That leaves two reasonable variants, delta=3 and delta=4, both with ratio=2. - A lower [delta] leads to a more 'perfectly' balanced tree. - A higher [delta] performs less rebalancing. In the benchmarks, delta=3 is faster on insert operations, and delta=4 has slightly better deletes. As the insert speedup is larger, we currently use delta=3. --------------------------------------------------------------------} delta,ratio :: Int delta = 3 ratio = 2 -- The balance function is equivalent to the following: -- -- balance :: a -> Set a -> Set a -> Set a -- balance x l r -- | sizeL + sizeR <= 1 = Bin sizeX x l r -- | sizeR > delta*sizeL = rotateL x l r -- | sizeL > delta*sizeR = rotateR x l r -- | otherwise = Bin sizeX x l r -- where -- sizeL = size l -- sizeR = size r -- sizeX = sizeL + sizeR + 1 -- -- rotateL :: a -> Set a -> Set a -> Set a -- rotateL x l r@(Bin _ _ ly ry) | size ly < ratio*size ry = singleL x l r -- | otherwise = doubleL x l r -- rotateR :: a -> Set a -> Set a -> Set a -- rotateR x l@(Bin _ _ ly ry) r | size ry < ratio*size ly = singleR x l r -- | otherwise = doubleR x l r -- -- singleL, singleR :: a -> Set a -> Set a -> Set a -- singleL x1 t1 (Bin _ x2 t2 t3) = bin x2 (bin x1 t1 t2) t3 -- singleR x1 (Bin _ x2 t1 t2) t3 = bin x2 t1 (bin x1 t2 t3) -- -- doubleL, doubleR :: a -> Set a -> Set a -> Set a -- doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4) -- doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4) -- -- It is only written in such a way that every node is pattern-matched only once. -- -- Only balanceL and balanceR are needed at the moment, so balance is not here anymore. -- In case it is needed, it can be found in Data.Map. -- Functions balanceL and balanceR are specialised versions of balance. -- balanceL only checks whether the left subtree is too big, -- balanceR only checks whether the right subtree is too big. -- balanceL is called when left subtree might have been inserted to or when -- right subtree might have been deleted from. balanceL :: a -> Set a -> Set a -> Set a balanceL x l r = case r of Tip -> case l of Tip -> Bin 1 x Tip Tip (Bin _ _ Tip Tip) -> Bin 2 x l Tip (Bin _ lx Tip (Bin _ lrx _ _)) -> Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip) (Bin _ lx ll@(Bin _ _ _ _) Tip) -> Bin 3 lx ll (Bin 1 x Tip Tip) (Bin ls lx ll@(Bin lls _ _ _) lr@(Bin lrs lrx lrl lrr)) | lrs < ratio*lls -> Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip) | otherwise -> Bin (1+ls) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+size lrr) x lrr Tip) (Bin rs _ _ _) -> case l of Tip -> Bin (1+rs) x Tip r (Bin ls lx ll lr) | ls > delta*rs -> case (ll, lr) of (Bin lls _ _ _, Bin lrs lrx lrl lrr) | lrs < ratio*lls -> Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r) | otherwise -> Bin (1+ls+rs) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+rs+size lrr) x lrr r) (_, _) -> error "Failure in Data.Map.balanceL" | otherwise -> Bin (1+ls+rs) x l r {-# NOINLINE balanceL #-} -- balanceR is called when right subtree might have been inserted to or when -- left subtree might have been deleted from. balanceR :: a -> Set a -> Set a -> Set a balanceR x l r = case l of Tip -> case r of Tip -> Bin 1 x Tip Tip (Bin _ _ Tip Tip) -> Bin 2 x Tip r (Bin _ rx Tip rr@(Bin _ _ _ _)) -> Bin 3 rx (Bin 1 x Tip Tip) rr (Bin _ rx (Bin _ rlx _ _) Tip) -> Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip) (Bin rs rx rl@(Bin rls rlx rll rlr) rr@(Bin rrs _ _ _)) | rls < ratio*rrs -> Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr | otherwise -> Bin (1+rs) rlx (Bin (1+size rll) x Tip rll) (Bin (1+rrs+size rlr) rx rlr rr) (Bin ls _ _ _) -> case r of Tip -> Bin (1+ls) x l Tip (Bin rs rx rl rr) | rs > delta*ls -> case (rl, rr) of (Bin rls rlx rll rlr, Bin rrs _ _ _) | rls < ratio*rrs -> Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr | otherwise -> Bin (1+ls+rs) rlx (Bin (1+ls+size rll) x l rll) (Bin (1+rrs+size rlr) rx rlr rr) (_, _) -> error "Failure in Data.Map.balanceR" | otherwise -> Bin (1+ls+rs) x l r {-# NOINLINE balanceR #-} {-------------------------------------------------------------------- The bin constructor maintains the size of the tree --------------------------------------------------------------------} bin :: a -> Set a -> Set a -> Set a bin x l r = Bin (size l + size r + 1) x l r {-# INLINE bin #-} {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- | /O(1)/. Decompose a set into pieces based on the structure of the underlying -- tree. This function is useful for consuming a set in parallel. -- -- No guarantee is made as to the sizes of the pieces; an internal, but -- deterministic process determines this. However, it is guaranteed that the pieces -- returned will be in ascending order (all elements in the first subset less than all -- elements in the second, and so on). -- -- Examples: -- -- > splitRoot (fromList [1..6]) == -- > [fromList [1,2,3],fromList [4],fromList [5,6]] -- -- > splitRoot empty == [] -- -- Note that the current implementation does not return more than three subsets, -- but you should not depend on this behaviour because it can change in the -- future without notice. -- -- @since 0.5.4 splitRoot :: Set a -> [Set a] splitRoot orig = case orig of Tip -> [] Bin _ v l r -> [l, singleton v, r] {-# INLINE splitRoot #-} -- | Calculate the power set of a set: the set of all its subsets. -- -- @ -- t ``member`` powerSet s == t ``isSubsetOf`` s -- @ -- -- Example: -- -- @ -- powerSet (fromList [1,2,3]) = -- fromList $ map fromList [[],[1],[1,2],[1,2,3],[1,3],[2],[2,3],[3]] -- @ -- -- @since 0.5.11 powerSet :: Set a -> Set (Set a) powerSet xs0 = insertMin empty (foldr' step Tip xs0) where step x pxs = insertMin (singleton x) (insertMin x `mapMonotonic` pxs) `glue` pxs -- | /O(m*n)/ (conjectured). Calculate the Cartesian product of two sets. -- -- @ -- cartesianProduct xs ys = fromList $ liftA2 (,) (toList xs) (toList ys) -- @ -- -- Example: -- -- @ -- cartesianProduct (fromList [1,2]) (fromList [\'a\',\'b\']) = -- fromList [(1,\'a\'), (1,\'b\'), (2,\'a\'), (2,\'b\')] -- @ -- -- @since 0.5.11 cartesianProduct :: Set a -> Set b -> Set (a, b) -- I don't know for sure if this implementation (slightly modified from one -- that Edward Kmett hacked together) is optimal. TODO: try to prove or -- refute it. -- -- We could definitely get big-O optimal (O(m * n)) in a rather simple way: -- -- cartesianProduct _as Tip = Tip -- cartesianProduct as bs = fromDistinctAscList -- [(a,b) | a <- toList as, b <- toList bs] -- -- Unfortunately, this is much slower in practice, at least when the sets are -- constructed from ascending lists. I tried doing the same thing using a -- known-length (perfect balancing) variant of fromDistinctAscList, but it -- still didn't come close to the performance of Kmett's version in my very -- informal tests. -- When the second argument has at most one element, we can be a little -- clever. cartesianProduct !_as Tip = Tip cartesianProduct as (Bin 1 b _ _) = mapMonotonic (flip (,) b) as cartesianProduct as bs = getMergeSet $ foldMap (\a -> MergeSet $ mapMonotonic ((,) a) bs) as -- A version of Set with peculiar Semigroup and Monoid instances. -- The result of xs <> ys will only be a valid set if the greatest -- element of xs is strictly less than the least element of ys. -- This is used to define cartesianProduct. newtype MergeSet a = MergeSet { getMergeSet :: Set a } #if (MIN_VERSION_base(4,9,0)) instance Semigroup (MergeSet a) where MergeSet xs <> MergeSet ys = MergeSet (merge xs ys) #endif instance Monoid (MergeSet a) where mempty = MergeSet empty #if (MIN_VERSION_base(4,9,0)) mappend = (<>) #else mappend (MergeSet xs) (MergeSet ys) = MergeSet (merge xs ys) #endif -- | Calculate the disjoint union of two sets. -- -- @ disjointUnion xs ys = map Left xs ``union`` map Right ys @ -- -- Example: -- -- @ -- disjointUnion (fromList [1,2]) (fromList ["hi", "bye"]) = -- fromList [Left 1, Left 2, Right "hi", Right "bye"] -- @ -- -- @since 0.5.11 disjointUnion :: Set a -> Set b -> Set (Either a b) disjointUnion as bs = merge (mapMonotonic Left as) (mapMonotonic Right bs) {-------------------------------------------------------------------- Debugging --------------------------------------------------------------------} -- | /O(n)/. Show the tree that implements the set. The tree is shown -- in a compressed, hanging format. showTree :: Show a => Set a -> String showTree s = showTreeWith True False s {- | /O(n)/. The expression (@showTreeWith hang wide map@) shows the tree that implements the set. If @hang@ is @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. > Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5] > 4 > +--2 > | +--1 > | +--3 > +--5 > > Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5] > 4 > | > +--2 > | | > | +--1 > | | > | +--3 > | > +--5 > > Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5] > +--5 > | > 4 > | > | +--3 > | | > +--2 > | > +--1 -} showTreeWith :: Show a => Bool -> Bool -> Set a -> String showTreeWith hang wide t | hang = (showsTreeHang wide [] t) "" | otherwise = (showsTree wide [] [] t) "" showsTree :: Show a => Bool -> [String] -> [String] -> Set a -> ShowS showsTree wide lbars rbars t = case t of Tip -> showsBars lbars . showString "|\n" Bin _ x Tip Tip -> showsBars lbars . shows x . showString "\n" Bin _ x l r -> showsTree wide (withBar rbars) (withEmpty rbars) r . showWide wide rbars . showsBars lbars . shows x . showString "\n" . showWide wide lbars . showsTree wide (withEmpty lbars) (withBar lbars) l showsTreeHang :: Show a => Bool -> [String] -> Set a -> ShowS showsTreeHang wide bars t = case t of Tip -> showsBars bars . showString "|\n" Bin _ x Tip Tip -> showsBars bars . shows x . showString "\n" Bin _ x l r -> showsBars bars . shows x . showString "\n" . showWide wide bars . showsTreeHang wide (withBar bars) l . showWide wide bars . showsTreeHang wide (withEmpty bars) r showWide :: Bool -> [String] -> String -> String showWide wide bars | wide = showString (concat (reverse bars)) . showString "|\n" | otherwise = id showsBars :: [String] -> ShowS showsBars bars = case bars of [] -> id _ -> showString (concat (reverse (tail bars))) . showString node node :: String node = "+--" withBar, withEmpty :: [String] -> [String] withBar bars = "| ":bars withEmpty bars = " ":bars {-------------------------------------------------------------------- Assertions --------------------------------------------------------------------} -- | /O(n)/. Test if the internal set structure is valid. valid :: Ord a => Set a -> Bool valid t = balanced t && ordered t && validsize t ordered :: Ord a => Set a -> Bool ordered t = bounded (const True) (const True) t where bounded lo hi t' = case t' of Tip -> True Bin _ x l r -> (lo x) && (hi x) && bounded lo (<x) l && bounded (>x) hi r balanced :: Set a -> Bool balanced t = case t of Tip -> True Bin _ _ l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) && balanced l && balanced r validsize :: Set a -> Bool validsize t = (realsize t == Just (size t)) where realsize t' = case t' of Tip -> Just 0 Bin sz _ l r -> case (realsize l,realsize r) of (Just n,Just m) | n+m+1 == sz -> Just sz _ -> Nothing