{-# LANGUAGE CPP                        #-}
{-# LANGUAGE DeriveDataTypeable         #-}
{-# LANGUAGE DeriveGeneric              #-}
{-# LANGUAGE FlexibleContexts           #-}
{-# LANGUAGE PolyKinds                  #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE Trustworthy                #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Semigroup
-- Copyright   :  (C) 2011-2015 Edward Kmett
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- A type @a@ is a 'Semigroup' if it provides an associative function ('<>')
-- that lets you combine any two values of type @a@ into one. Where being
-- associative means that the following must always hold:
--
-- prop> (a <> b) <> c == a <> (b <> c)
--
-- ==== __Examples__
--
-- The 'Min' 'Semigroup' instance for 'Int' is defined to always pick the smaller
-- number:
-- >>> Min 1 <> Min 2 <> Min 3 <> Min 4 :: Min Int
-- Min {getMin = 1}
--
-- If we need to combine multiple values we can use the 'sconcat' function
-- to do so. We need to ensure however that we have at least one value to
-- operate on, since otherwise our result would be undefined. It is for this
-- reason that 'sconcat' uses "Data.List.NonEmpty.NonEmpty" - a list that
-- can never be empty:
--
-- >>> (1 :| [])
-- 1 :| []               -- equivalent to [1] but guaranteed to be non-empty.
--
-- >>> (1 :| [2, 3, 4])
-- 1 :| [2,3,4]          -- equivalent to [1,2,3,4] but guaranteed to be non-empty.
--
-- Equipped with this guaranteed to be non-empty data structure, we can combine
-- values using 'sconcat' and a 'Semigroup' of our choosing. We can try the 'Min'
-- and 'Max' instances of 'Int' which pick the smallest, or largest number
-- respectively:
--
-- >>> sconcat (1 :| [2, 3, 4]) :: Min Int
-- Min {getMin = 1}
-- >>> sconcat (1 :| [2, 3, 4]) :: Max Int
-- Max {getMax = 4}
--
-- String concatenation is another example of a 'Semigroup' instance:
--
-- >>> "foo" <> "bar"
-- "foobar"
--
-- A 'Semigroup' is a generalization of a 'Monoid'. Yet unlike the 'Semigroup', the 'Monoid'
-- requires the presence of a neutral element ('mempty') in addition to the associative
-- operator. The requirement for a neutral element prevents many types from being a full Monoid,
-- like "Data.List.NonEmpty.NonEmpty".
--
-- Note that the use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by "Data.Monoid". However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
-- @since 4.9.0.0
----------------------------------------------------------------------------
module Data.Semigroup (
    Semigroup(..)
  , stimesMonoid
  , stimesIdempotent
  , stimesIdempotentMonoid
  , mtimesDefault
  -- * Semigroups
  , Min(..)
  , Max(..)
  , First(..)
  , Last(..)
  , WrappedMonoid(..)
  -- * Re-exported monoids from Data.Monoid
  , Dual(..)
  , Endo(..)
  , All(..)
  , Any(..)
  , Sum(..)
  , Product(..)
  -- * Difference lists of a semigroup
  , diff
  , cycle1
  -- * ArgMin, ArgMax
  , Arg(..)
  , ArgMin
  , ArgMax
  ) where

import           Prelude             hiding (foldr1)

import GHC.Base (Semigroup(..))

import           Data.Semigroup.Internal

import           Control.Applicative
import           Control.Monad.Fix
import           Data.Bifoldable
import           Data.Bifunctor
import           Data.Bitraversable
import           Data.Coerce
import           Data.Data
import           GHC.Generics

-- $setup
-- >>> import Prelude
-- >>> import Data.List.NonEmpty (NonEmpty (..))

-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'

-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
--
-- === __Example:__
-- >>> let hello = diff "Hello, "
-- >>> appEndo hello "World!"
-- "Hello, World!"
-- >>> appEndo (hello <> mempty) "World!"
-- "Hello, World!"
-- >>> appEndo (mempty <> hello) "World!"
-- "Hello, World!"
-- >>> let world = diff "World"
-- >>> let excl = diff "!"
-- >>> appEndo (hello <> (world <> excl)) mempty
-- "Hello, World!"
-- >>> appEndo ((hello <> world) <> excl) mempty
-- "Hello, World!"
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)

newtype Min a = Min { getMin :: a }
  deriving ( Bounded  -- ^ @since 4.9.0.0
           , Eq       -- ^ @since 4.9.0.0
           , Ord      -- ^ @since 4.9.0.0
           , Show     -- ^ @since 4.9.0.0
           , Read     -- ^ @since 4.9.0.0
           , Data     -- ^ @since 4.9.0.0
           , Generic  -- ^ @since 4.9.0.0
           , Generic1 -- ^ @since 4.9.0.0
           )

-- | @since 4.9.0.0
instance Enum a => Enum (Min a) where
  succ (Min a) = Min (succ a)
  pred (Min a) = Min (pred a)
  toEnum = Min . toEnum
  fromEnum = fromEnum . getMin
  enumFrom (Min a) = Min <$> enumFrom a
  enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
  enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
  enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c


-- | @since 4.9.0.0
instance Ord a => Semigroup (Min a) where
  (<>) = coerce (min :: a -> a -> a)
  stimes = stimesIdempotent

-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Min a) where
  mempty = maxBound

-- | @since 4.9.0.0
instance Functor Min where
  fmap f (Min x) = Min (f x)

-- | @since 4.9.0.0
instance Foldable Min where
  foldMap f (Min a) = f a

-- | @since 4.9.0.0
instance Traversable Min where
  traverse f (Min a) = Min <$> f a

-- | @since 4.9.0.0
instance Applicative Min where
  pure = Min
  a <* _ = a
  _ *> a = a
  (<*>) = coerce
  liftA2 = coerce

-- | @since 4.9.0.0
instance Monad Min where
  (>>) = (*>)
  Min a >>= f = f a

-- | @since 4.9.0.0
instance MonadFix Min where
  mfix f = fix (f . getMin)

-- | @since 4.9.0.0
instance Num a => Num (Min a) where
  (Min a) + (Min b) = Min (a + b)
  (Min a) * (Min b) = Min (a * b)
  (Min a) - (Min b) = Min (a - b)
  negate (Min a) = Min (negate a)
  abs    (Min a) = Min (abs a)
  signum (Min a) = Min (signum a)
  fromInteger    = Min . fromInteger

newtype Max a = Max { getMax :: a }
  deriving ( Bounded  -- ^ @since 4.9.0.0
           , Eq       -- ^ @since 4.9.0.0
           , Ord      -- ^ @since 4.9.0.0
           , Show     -- ^ @since 4.9.0.0
           , Read     -- ^ @since 4.9.0.0
           , Data     -- ^ @since 4.9.0.0
           , Generic  -- ^ @since 4.9.0.0
           , Generic1 -- ^ @since 4.9.0.0
           )

-- | @since 4.9.0.0
instance Enum a => Enum (Max a) where
  succ (Max a) = Max (succ a)
  pred (Max a) = Max (pred a)
  toEnum = Max . toEnum
  fromEnum = fromEnum . getMax
  enumFrom (Max a) = Max <$> enumFrom a
  enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
  enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
  enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c

-- | @since 4.9.0.0
instance Ord a => Semigroup (Max a) where
  (<>) = coerce (max :: a -> a -> a)
  stimes = stimesIdempotent

-- | @since 4.9.0.0
instance (Ord a, Bounded a) => Monoid (Max a) where
  mempty = minBound

-- | @since 4.9.0.0
instance Functor Max where
  fmap f (Max x) = Max (f x)

-- | @since 4.9.0.0
instance Foldable Max where
  foldMap f (Max a) = f a

-- | @since 4.9.0.0
instance Traversable Max where
  traverse f (Max a) = Max <$> f a

-- | @since 4.9.0.0
instance Applicative Max where
  pure = Max
  a <* _ = a
  _ *> a = a
  (<*>) = coerce
  liftA2 = coerce

-- | @since 4.9.0.0
instance Monad Max where
  (>>) = (*>)
  Max a >>= f = f a

-- | @since 4.9.0.0
instance MonadFix Max where
  mfix f = fix (f . getMax)

-- | @since 4.9.0.0
instance Num a => Num (Max a) where
  (Max a) + (Max b) = Max (a + b)
  (Max a) * (Max b) = Max (a * b)
  (Max a) - (Max b) = Max (a - b)
  negate (Max a) = Max (negate a)
  abs    (Max a) = Max (abs a)
  signum (Max a) = Max (signum a)
  fromInteger    = Max . fromInteger

-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be
-- placed inside 'Min' and 'Max' to compute an arg min or arg max.
--
-- >>> minimum [ Arg (x * x) x | x <- [-10 .. 10] ]
-- Arg 0 0
data Arg a b = Arg
  a
  -- ^ The argument used for comparisons in 'Eq' and 'Ord'.
  b
  -- ^ The "value" exposed via the 'Functor', 'Foldable' etc. instances.
  deriving
  ( Show     -- ^ @since 4.9.0.0
  , Read     -- ^ @since 4.9.0.0
  , Data     -- ^ @since 4.9.0.0
  , Generic  -- ^ @since 4.9.0.0
  , Generic1 -- ^ @since 4.9.0.0
  )

-- |
-- >>> Min (Arg 0 ()) <> Min (Arg 1 ())
-- Min {getMin = Arg 0 ()}
type ArgMin a b = Min (Arg a b)

-- |
-- >>> Max (Arg 0 ()) <> Max (Arg 1 ())
-- Max {getMax = Arg 1 ()}
type ArgMax a b = Max (Arg a b)

-- | @since 4.9.0.0
instance Functor (Arg a) where
  fmap f (Arg x a) = Arg x (f a)

-- | @since 4.9.0.0
instance Foldable (Arg a) where
  foldMap f (Arg _ a) = f a

-- | @since 4.9.0.0
instance Traversable (Arg a) where
  traverse f (Arg x a) = Arg x <$> f a

-- | @since 4.9.0.0
instance Eq a => Eq (Arg a b) where
  Arg a _ == Arg b _ = a == b

-- | @since 4.9.0.0
instance Ord a => Ord (Arg a b) where
  Arg a _ `compare` Arg b _ = compare a b
  min x@(Arg a _) y@(Arg b _)
    | a <= b    = x
    | otherwise = y
  max x@(Arg a _) y@(Arg b _)
    | a >= b    = x
    | otherwise = y

-- | @since 4.9.0.0
instance Bifunctor Arg where
  bimap f g (Arg a b) = Arg (f a) (g b)

-- | @since 4.10.0.0
instance Bifoldable Arg where
  bifoldMap f g (Arg a b) = f a <> g b

-- | @since 4.10.0.0
instance Bitraversable Arg where
  bitraverse f g (Arg a b) = Arg <$> f a <*> g b

newtype First a = First { getFirst :: a }
  deriving ( Bounded  -- ^ @since 4.9.0.0
           , Eq       -- ^ @since 4.9.0.0
           , Ord      -- ^ @since 4.9.0.0
           , Show     -- ^ @since 4.9.0.0
           , Read     -- ^ @since 4.9.0.0
           , Data     -- ^ @since 4.9.0.0
           , Generic  -- ^ @since 4.9.0.0
           , Generic1 -- ^ @since 4.9.0.0
           )

-- | @since 4.9.0.0
instance Enum a => Enum (First a) where
  succ (First a) = First (succ a)
  pred (First a) = First (pred a)
  toEnum = First . toEnum
  fromEnum = fromEnum . getFirst
  enumFrom (First a) = First <$> enumFrom a
  enumFromThen (First a) (First b) = First <$> enumFromThen a b
  enumFromTo (First a) (First b) = First <$> enumFromTo a b
  enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c

-- | @since 4.9.0.0
instance Semigroup (First a) where
  a <> _ = a
  stimes = stimesIdempotent

-- | @since 4.9.0.0
instance Functor First where
  fmap f (First x) = First (f x)

-- | @since 4.9.0.0
instance Foldable First where
  foldMap f (First a) = f a

-- | @since 4.9.0.0
instance Traversable First where
  traverse f (First a) = First <$> f a

-- | @since 4.9.0.0
instance Applicative First where
  pure x = First x
  a <* _ = a
  _ *> a = a
  (<*>) = coerce
  liftA2 = coerce

-- | @since 4.9.0.0
instance Monad First where
  (>>) = (*>)
  First a >>= f = f a

-- | @since 4.9.0.0
instance MonadFix First where
  mfix f = fix (f . getFirst)

newtype Last a = Last { getLast :: a }
  deriving ( Bounded  -- ^ @since 4.9.0.0
           , Eq       -- ^ @since 4.9.0.0
           , Ord      -- ^ @since 4.9.0.0
           , Show     -- ^ @since 4.9.0.0
           , Read     -- ^ @since 4.9.0.0
           , Data     -- ^ @since 4.9.0.0
           , Generic  -- ^ @since 4.9.0.0
           , Generic1 -- ^ @since 4.9.0.0
           )

-- | @since 4.9.0.0
instance Enum a => Enum (Last a) where
  succ (Last a) = Last (succ a)
  pred (Last a) = Last (pred a)
  toEnum = Last . toEnum
  fromEnum = fromEnum . getLast
  enumFrom (Last a) = Last <$> enumFrom a
  enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
  enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
  enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c

-- | @since 4.9.0.0
instance Semigroup (Last a) where
  _ <> b = b
  stimes = stimesIdempotent

-- | @since 4.9.0.0
instance Functor Last where
  fmap f (Last x) = Last (f x)
  a <$ _ = Last a

-- | @since 4.9.0.0
instance Foldable Last where
  foldMap f (Last a) = f a

-- | @since 4.9.0.0
instance Traversable Last where
  traverse f (Last a) = Last <$> f a

-- | @since 4.9.0.0
instance Applicative Last where
  pure = Last
  a <* _ = a
  _ *> a = a
  (<*>) = coerce
  liftA2 = coerce

-- | @since 4.9.0.0
instance Monad Last where
  (>>) = (*>)
  Last a >>= f = f a

-- | @since 4.9.0.0
instance MonadFix Last where
  mfix f = fix (f . getLast)

-- | Provide a Semigroup for an arbitrary Monoid.
--
-- __NOTE__: This is not needed anymore since 'Semigroup' became a superclass of
-- 'Monoid' in /base-4.11/ and this newtype be deprecated at some point in the future.
newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m }
  deriving ( Bounded  -- ^ @since 4.9.0.0
           , Eq       -- ^ @since 4.9.0.0
           , Ord      -- ^ @since 4.9.0.0
           , Show     -- ^ @since 4.9.0.0
           , Read     -- ^ @since 4.9.0.0
           , Data     -- ^ @since 4.9.0.0
           , Generic  -- ^ @since 4.9.0.0
           , Generic1 -- ^ @since 4.9.0.0
           )

-- | @since 4.9.0.0
instance Monoid m => Semigroup (WrappedMonoid m) where
  (<>) = coerce (mappend :: m -> m -> m)

-- | @since 4.9.0.0
instance Monoid m => Monoid (WrappedMonoid m) where
  mempty = WrapMonoid mempty

-- | @since 4.9.0.0
instance Enum a => Enum (WrappedMonoid a) where
  succ (WrapMonoid a) = WrapMonoid (succ a)
  pred (WrapMonoid a) = WrapMonoid (pred a)
  toEnum = WrapMonoid . toEnum
  fromEnum = fromEnum . unwrapMonoid
  enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
  enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
  enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
  enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) =
      WrapMonoid <$> enumFromThenTo a b c

-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a  -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
  | n == 0    = mempty
  | otherwise = unwrapMonoid (stimes n (WrapMonoid x))