GHC User’s Guide Documentation
Release 9.8.1

GHC Team

Oct 07, 2023

CONTENTS

1 Introduction 3
1.1 Obtaining GHC e e e e e e e e e e e e e e e e 3
1.2 Meta-information: Web sites, mailing lists, etc. 4
1.3 Reporting bugsin GHC e e 4
1.4 GHC version numbering policy i i i i i e e e 4
1.5 The Glasgow Haskell Compiler License 5

2 Release notes 7
2.1 Version 9.8.1 L e e e e e e e e e e e e 7

2.1.1 Breaking changes e e 7
2.1.2LangUuageo e 8
2.1.3 Compiler e e e e e e 8
2.1 4 GHCGi e e e e e e e e e 10
2. 1.5 Runtime system e e e 10
2.1.6 baselibrary. e e e e e 11
2.1.7 ghc-primlibrary o e e e e e 11
2.1.8 ghclibrary e e e e e 12
2.1.9 template-haskelllibrary 12
2.1.10 text library L e e e e e e e e 12
2.1.11 Included libraries e e e e 12

3 Using GHCi 15
3.1 Introduction to GHCi e e e e e e 15
3.2 Loading source files e e e e e e e e 16

3.2.1 Modules vs. filenames e 17
3.2.2 Making changes and recompilation 17

3.3 Loading compiled code e e e e e 17
3.4 Interactive evaluation atthe prompt 19
3.4.11/O actionsattheprompt 20
3.4.2 Using do notation at the prompt 20
3.4.3 Multiline input e e e 22
3.4.4 Type, class and other declarations 23
3.4.5 What’s really in scope at the prompt? 24
3.4.5.1 The effect of :load on whatisinscope 25

3.4.5.2 Controlling what is in scope with import 25

3.4.5.3 Controlling what is in scope with the :module command 26

3.4.5.4 Qualified names e 26

3.4.5.5 :moduleand :load 27

3.4.5.6 Shadowing and the Ghcil module name 27

3.4.6 The itvariable e 28

3.4.7 Type defaultingin GHCi 29

3.4.7.1 Interactive classes e e e e 30

3.4.7.2 Extended rules around default declarations. 30

3.4.8 Using a custom interactive printing function 30
3.4.9 Stack Tracesin GHCi it 31

3.5 The GHCi Debugger e e e e e e e e e e e e e 32
3.5.1 Breakpoints and inspecting variables, 32
3.5.1.1 Setting breakpoints o 35

3.5.1.2 Managing breakpoints 0 0oL, 36

3.5.2 Single-stepping o e e e e e e e 37
3.5.3 Nested breakpoints e 37
3.54The resultvariable 38
3.5.5 Tracingand history e 38
3.5.6 Debugging exceptions e 40
3.5.7 Example: inspecting functions 41
3.5.8 Limitations e e e e e 42

3.6 Invoking GHCi e e e e e e e e e 42
3.6.1 Packages i i e e e e e e e e e e e 43
3.6.2 Extra libraries e e e e 43

3.7 GHCicommands it ittt e e e e e e e e e e e e e e e e 44
3.8 The :setand :seticommands ieein... 56
3.8 1 GHCIioptions i e e e e e e e e e e e 56
3.8.2 Setting GHC command-line optionsin GHCi 57
3.8.3 Setting options for interactive evaluationonly 57

3.9 The .ghci and .haskelinefiles. 58
3.9.1The .ghcifiles. e e 58
3.9.2 The .haskelinefile. e 60

3.10 Compiling to object code inside GHCi 60
3.11 Running the interpreter in a separate process 60
3.12 Running the interpreter on a differenthost 61
3.13 Building GHCi libraries e e e 61
3.14 FAQ and Things To Watch Out For 61
4 Using runghc 63
4.1 USAGE v v v o e 63
4.2runghc flags o o e e e e e e e e e e 63
4.3 GHC Flags o v i it i e e e e e e e e e e e e e e e 64
5 Using GHC 65
5.1 Using GHC e e e e e e 65
5.1.1 Getting started: compiling programs 65
5.1.2 Options overview e e e e e e e e e e e e e e 66
5.1.2.1 Command-line arguments, 66

5.1.2.2 Command line options in source files 66

5.1.2.3 Setting options in GHCi., 67

5.1.3 Dynamic and Mode options 67
5.1.4 Meaningful file suffixes oo 67
5.1.5 Modes of operation e 68
5.1.5.1 Using ghc --make e 71

5.1.5.2 GHC Jobserver Protocol 72

5.1.5.3 Multiple Home Units 73

5.1.5.4 Expression evaluationmode 74

5.1.5.5 Batch compilermode, 75

5.1.6 Verbosity options e e e e e 76

5.1.7 Platform-specific Flags e 81
5.1.8 Haddock e e e e e 83
5.1.9 Miscellaneous flags e e e e e 84
5.1.9.1 Other environment variables 84

5.2 Warnings and sanity-checking L L o 84
5.2.1 Warning groups o o i e 85
5.2.2 Treating warnings as fatalerrors 87
5.2.3 Individual warning options o e 87

5.3 Optimisation (code improvement) 111
5.3.1 -0*: convenient “packages” of optimisation flags. 111
5.3.2 -f*: platform-independent flags 112
5.4 Using Concurrent Haskell 130
5.5 Using SMP parallelism e e e 130
5.5.1 Compile-time options for SMP parallelism 130
5.5.2 RTS options for SMP parallelism 131
5.5.3 Hints for using SMP parallelism 132

5.6 Flagreference i e e e 132
5.6.1 Verbosity options e e e e 132
5.6.2 Alternative modes of operation 135
5.6.3 Which phasestorun 137
5.6.4 Redirecting output e 138
5.6.5 Keeping intermediate files 139
5.6.6 Temporary files e e e e e 139
5.6.7 Finding imports e e e e e e e e e 140
5.6.8 Interface file options e 140
5.6.9 Extended interface fileoptions 140
5.6.10 Recompilation checking 140
5.6.11 Interactive-mode options e 141
5.6.12 Packages e e e e e e e e e e e 142
5.6.13 Language options e e e e e e e e e e e e e e 143
5.6.14 Warnings ¢ o v i i i e e e e e e e e e e e e e e e e e e 143
5.6.15 Optimisation levels e 153
5.6.16 Individual optimisations, 153
5.6.17 Profiling options o e e e e e 160
5.6.18 Program coverage options e 161
5.6.19 C pre-processor options i i i i e 162
5.6.20 Code generation options i e 162
5.6.21 Linking options e e e 163
5.6.22 Plugin options e e e e e e e e e e e 165
5.6.23 Replacing phases e e e 166
5.6.24 Forcing options to particularphases 167
5.6.25 Platform-specificoptions 168
5.6.26 Compiler debuggingoptions 168
5.6.27 Miscellaneous compileroptions, 175

5.7 Runtime system (RTS) options i it 176
5.7.1 Setting RTS options i it it e e e e e 176
5.7.1.1 Setting RTS options on the command line 176

5.7.1.2 Setting RTS options at compile time 177

5.7.1.3 Setting RTS options with the GHCRTS environment variable 177

5.7.1.4 “Hooks” to change RTS behaviour 178

5.7.2 Miscellaneous RTS options, 179
5.7.3 RTS options to control the garbage collector 181
5.7.4 RTS options to produce runtime statistics 188
5.7.5 RTS options for concurrency and parallelism 191

5.7.6 RTS options for profiling 191

5.7.7TraCing o v v i i e et e e e e e e e e e e e e e e e e 192
5.7.8 RTS options for hackers, debuggers, and over-interested souls 193
5.7.9 Getting information aboutthe RTS 195
5.8 Filenames and separate compilation 196
5.8.1 Haskell source files e 197
5.8.2 Outputfiles e e e e e e 197
5.8.3Thesearchpath i e, 198
5.8.4 Redirecting the compilation output(s) 198
5.8.5 Keeping Intermediate Files 201
5.8.6 Redirecting temporary files 201
5.8.7 Other options related to interfacefiles 202
5.8.8 Options related to extended interfacefiles 202
5.8.9 The recompilation checker 203
5.8.9.1 Recompilation for Template Haskell and Plugins 203
5.8.10 How to compile mutually recursive modules 204
5.8.11 Module signatures e e e e e e e e 206
5.8.12 Using make e e e e e e e e e e e 212
5.8.13 Dependency generation 213
5.8.14 Orphan modules and instance declarations 214
5.9Packages e e e 216
5.9.1 Using Packages i i i i i e e e e e e e 216
5.9.2 Themainpackage o i i i i i i e e e e e e e e 219
5.9.3 Consequences of packages for the Haskell language 219
5.9.4 Thinning and renaming modules 220
5.9.5 Package Databases e 220
5.9.5.1 The GHC PACKAGE PATH environment variable 222
5.9.5.2 Package environments e 222

5.9.6 Installed package IDs, dependencies, and broken packages 223
5.9.7 Package management (the ghc-pkg command) 225
5.9.8 Building a package from Haskell source 228
5.9.9 InstalledPackageInfo: a package specification 229
5.9.10 Linking against C++ libraries 232
5.10 GHC Backends i e e e e 233
5.10.1 Native Code Generator (-fasm) 233
5.10.2 LLVM Code Generator (-fllvm). i 233
5.10.3 C Code Generator (-fvia-C) 233
5.10.4 JavaScript Code Generator. e 234
5.10.5 Unregisterised compilation 234
5.11 Options related to a particularphase 234
5.11.1 Replacing the program for one or more phases 234
5.11.2 Forcing options to a particularphase 235
5.11.3 Options affecting the C pre-processor 237
5.11.3.1 Standard CPP macros v i i v i e e 237
5.11.3.2 CPP and string gaps « « v v v v v i i e e e e e e 239
5.11.4 Options affecting a Haskell pre-processor 239
5.11.5 Options affecting code generation 240
5.11.6 Options affecting linking 242
5.12 Using shared libraries e e 248
5.12.1 Building programs that use shared libraries 249
5.12.2 Shared libraries for Haskell packages 249
5.12.3 Shared libraries that exporta CAPI 249
5.12.4 Finding shared libraries at runtime 250

5.12.4.1UnixX L L e 250

5.12.42Mac OS X e e 251

5.13 Debugging the compiler. e e 251
5.13.1 Dumping out compiler intermediate structures 252
5.13.1.1 Front-end e e 253
5.13.1.2 Type-checking and renaming 253
5.13.1.3 Core representation and simplification. 254
5.13.1.4 STG representation, 257
5.13.1.5C-\-representation o e 257
5.13.1.6 LLVM code generator i v i i ittt 258
5.13.1.7Ccode generator e e 258
5.13.1.8 Native code generator. 258
5.13.1.9 JavaScript code generator 259
5.13.1.10 Miscellaneous backend dumps 259
5.13.2 Formatting dumps e e e e e e e e e e e 260
5.13.3 Suppressing unwanted information 260
5.13.4 Checking for consistency i e 261
5.13.5 Checking for determinism 263
5.13.6 Other e e e e e e 263
6 Language extensions 265
6.1 Introduction e e e e e e e e e e 265
6.1.1 Controlling extensions e 265
6.1.2 Overview of all language extensions 268
6.1.3 Summary of stolen syntax 271
0.2 Syntax e e e e e e e e e e e 271
6.2.1 Unicode syntax @ i i it e e e e e 271
6.2.2 Themagichash e e 272
6.2.3 The recursive do-notation 273
6.2.3.1 Recursive binding groups 0. 274
6.2.3.2 Themdo notation 274

6.2.4 Applicative do-notation 276
6.2.4.1 Strictpatterns 277
6.2.4.2 Things towatchoutfor 278

6.2.5 Qualified do-notation e 278
6.2.5.1 Examples e e e e e e 280
6.2.6 Parallel List Comprehensions 282
6.2.7 Generalised (SQL-like) List Comprehensions 282
6.2.8 Monad comprehensions 284
6.2.9 Overloaded lists e 287
6.2.9.1 The IsListclass i i i i it i i i e e e 287
6.2.9.2 Rebindable syntax e 289
6.2.9.3 Defaulting e e 289
6.2.9.4 Speculation about the future 289
6.2.10 Rebindable syntax and the implicit Prelude import 289
6.2.10.1 Custom Prelude modules named Prelude 291
6.2.10.2 Things unaffected by RebindableSyntax 291
6.2.11 Postfix operators e e e e e e 292
6.2.12 Tuple sections i i e e e e e 292
6.2.13 Lambda-case e e e e e 293
6.2.14 Empty case alternatives e 294
6.2.15 Multi-way if-expressions e 295
6.2.16 Local Fixity Declarations, 296
6.2.17 More liberal syntax for function arguments 296
6.2.17.1 Changestothegrammar 297

6.2.18 Typed Holes i i e e e e e e e e 298

6.2.18.1 Valid Hole Fits e 302
6.2.19 Arrownotation L e e 305
6.2.19.1 do-notation forcommands 307
6.2.19.2 Conditional commands 308
6.2.19.3 Defining your own control structures. 308
6.2.19.4 Primitive constructs e 310
6.2.19.5 Differences withthepaper 311
6.2.19.6 Portability e 311
6.2.20 Lexical negation e e 311
6.3 Import and export e e e e e e e e 312
6.3.1 Hiding things the imported module doesn’texport 312
6.3.2 Package-qualified imports 313
6.3.3 Safeimports e e e e e 313
6.3.4 Explicit namespaces in import/export 313
6.3.5 Writing qualified in postpositive position 314
0.4 TYPES . . v o i e 315
6.4.1 Data types with no constructors 315
6.4.2 Data type contexts e 315
6.4.3 Infix type constructors, classes, and type variables. 316
6.4.4 Type operators i v i i i e e e e e e e e e e e e e e e 316
6.4.5 Liberalised type synonyms v v v it it e e e e e e 317
6.4.6 Existentially quantified data constructors 318
6.4.6.1 Why existential? 319
6.4.6.2 Existentials and typeclasses 319
6.4.6.3 Record Constructors 320
6.4.6.4 Restrictions i e e e e e e 321

6.4.7 Declaring data types with explicit constructor signatures. 322
6.4.7.1 Formal syntax for GADTs i i i i i i 324
6.4.7.2 GADT syntax oddsandends 326

6.4.8 Generalised Algebraic Data Types (GADTs) 328
6.4.9 Type families e e e 332
6.4.9.1 Data families e 333
6.4.9.2 Synonym families e 335
6.4.9.3 Wildcards on the LHS of data and type family instances 341
6.4.9.4 Associated data and type families 342
6.4.9.5 Import and export e e e 346
6.4.9.6 Type families and instance declarations 348
6.4.9.7 Injective type families L Lo o 349
6.4.10 Datatype promotion e e e e 351
6.4.10.1 Motivation e e e e e e e 351
6.4.10.2 OVEIVIEW o it e e e e e e e e e e e e e e e 351
6.4.10.3 Distinguishing between types and constructors 352
6.4.10.4 Type-level literals 353
6.4.10.5 Promoted list and tuple types 353
6.4.10.6 Promoting existential data constructors 353
6.4.11 Type-level data declarations 354
6.4.12 Kind polymorphism e 355
6.4.12.1 Overview of kind polymorphism 355
6.4.12.2 Overview of Type-in-Type 356
6.4.12.3 Principles of kind inference, 356
6.4.12.4 Kind inference in type signatures 357
6.4.12.5 Explicit kind quantification, 357

6.4.12.6 Inferring the order of variables in a type/class declaration 357

6.4.12.7 Complete user-supplied kind signatures and polymorphic recursion358

6.4.12.8 Standalone kind signatures and polymorphic recursion 360
6.4.12.9 Standalone kind signatures and declaration headers 362
6.4.12.10 Kind inference in data type declarations 364
6.4.12.11 Kind inference for data/newtype instance declarations 365
6.4.12.12 Kind inference in class instance declarations 365
6.4.12.13 Kind inference in type synonyms and type family instances ... 366
6.4.12.14 Kind inference in closed type families 368
6.4.12.15 Higher-rank kinds 368
6.4.12.16 The kind Type o . i i i i e 369
6.4.12.17 Inferring dependency in datatype declarations 369
6.4.12.18 Inferring dependency in user-written foralls 370
6.4.12.19 Kind defaulting without PolyKinds 370
6.4.12.20 Pretty-printing in the presence of kind polymorphism 371
6.4.12.21 Datatypereturn kinds oo, 371
6.4.13 Representation polymorphism 372
6.4.13.1 Levity polymorphism, 373
6.4.13.2 No representation-polymorphic variables or arguments 373
6.4.13.3 Representation-polymorphic bottoms 374
6.4.13.4 Printing representation-polymorphic types 374
6.4.14 Type-Level Literals i e 374
6.4.14.1 Runtime Values for Type-Level Literals 375
6.4.14.2 Computing With Type-Level Naturals 376
6.4.15 Visible type application 376
6.4.15.1 Inferred vs. specified type variables 377
6.4.15.2 Ordering of specified variables 378
6.4.15.3 Manually defining inferred variables 379
6.4.16 Type abstractions e 380
6.4.16.1 Type Abstractions in Patterns 380
6.4.16.2 Invisible Binders in Type Declarations 382
6.4.17 Arbitrary-rank polymorphism 383
6.4.17.1 Examples e e e e e e e 384
6.4.17.2 Subsumption e 386
6.4.17.3 Type inference i e 387
6.4.17.4 Implicit quantification oo 388
6.4.18 Impredicative polymorphism 389
6.4.19 Linear types i i e e e e e e e e e e e 390
6.4.19.1 Datatypes i i e e e e e e e 390
6.4.19.2 Printing multiplicity-polymorphic types 391
6.4.19.3 Limitations e e 392
6.4.19.4 Design and furtherreading. 392
6.4.20 Custom compile-time errors e 393
6.4.21 Deferring type errors toruntime 394
6.4.21.1 Enabling deferring of typeerrors 394
6.4.21.2 Deferred type errors in GHCi 395
6.4.21.3 Limitations of deferred type errors 396
6.4.22 Roles e e e e e e e 396
6.4.22.1 Nominal, Representational, and Phantom 397
6.4.22.2 Roleinference 398
6.4.22.3 Role annotations e 398

6.5 Records e e e e e e e e e 400
6.5.1 Record field name resolution 400
6.5.2 Traditional record syntax e 401
6.5.3 Field selectors and TypeApplications 401

vii

6.5.3.1 Field selectors for Haskell98-style data constructors 401
6.5.3.2 Field selectors for GADT constructors 402
6.5.3.3 Field selectors for pattern synonyms 403

6.5.4 Record field disambiguation 403
6.5.5 Duplicate record fields 405
6.5.5.1 Import and export of record fields 405

6.5.6 Field selectors e e e 406
6.5.6.1 Import and export of selector functions 407

6.5.7 ReCOTd PUNS i i it e e e e e e e e e e e e e e e e e e 407
6.5.8 Record wildcards e e 408
6.5.9 Record field selector polymorphism 410
6.5.9.1 Solving HasField constraints 410
6.5.9.2 Virtualrecord fields 412
6.5.10 Overloaded record dot 413
6.5.11 Overloaded record update, 413
6.6 Deriving mechanism e e e e e 415
6.6.1 Deriving instances for empty datatypes 415
6.6.2 Inferred context for deriving clauses 416
6.6.3 Stand-alone deriving declarations 416
6.6.4 Deriving instances of extra classes (Data, etc.) 418
6.6.4.1 Deriving Functorinstances 419
6.6.4.2 Deriving Foldable instances 422
6.6.4.3 Deriving Traversableinstances 424
6.6.4.4 Deriving Datainstances, 425
6.6.4.5 Deriving Typeable instances 425
6.6.4.6 Deriving Liftinstances, 426

6.6.5 Generalised derived instances fornewtypes 427
6.6.5.1 Generalising the derivingclause 428
6.6.5.2 A more precise specification L. 430
6.6.5.3 Associated type families 431

6.6.6 Deriving any otherclass e 433
6.6.7 Deriving strategies i i e e e e e e e 435
6.6.7.1 Default deriving strategyo e 436

6.6.8 Deriving via i e e e e e e e e e e e e e e e e e 437
0.7 Patterns e e e e e e e e e e e e e e e e e e e 439
6.7.1 Patternguards e e e 439
6.7.2 View patterns e e e 439
6.7.3n+kpatterns e e 441
6.7.4 Pattern synonyms 0 it e e e e e e e e e e e e e e 441
6.7.4.1 Record Pattern Synonyms 444
6.7.4.2 Syntax and scoping of pattern synonyms 444
6.7.4.3 Import and export of pattern synonyms 445
6.7.4.4 Typing of pattern synonyms 446
6.7.4.5 Matching of pattern synonyms 448
6.7.4.6 Pragmas for pattern synonyms 449

6.8 Class and instances declarations 449
6.8.1 Multi-parameter type classes e 450
6.8.2 Undecidable (or recursive) superclasses 450
6.8.3 Constrained class method types 451
6.8.4 Default method signatures 452
6.8.5 Detailed requirements for default type signatures 453
6.8.6 Nullary type classes @ i i i i i e e 455
6.8.7 Functional dependencies 455
6.8.7.1 Rules for functional dependencies 456

viii

6.8.7.2 Background on functional dependencies 456

6.8.8 Instance declarations and resolution 460
6.8.8.1 Relaxed rules for the instance head 460
6.8.8.2 Formal syntax for instance declaration types. 461
6.8.8.3 Instance terminationrules 463
6.8.8.4 Undecidable instances and loopy superclasses. 464
6.8.8.5 Overlapping instances 466
6.8.8.6 Instance signatures: type signatures in instance declarations ... 470

6.9 Literals e e e e e e e e e e 471

6.9.1 Negative literals e 471

6.9.2 Binary integerliterals 471

6.9.3 Hexadecimal floating point literals. 472

6.9.4 Fractional looking integerliterals 472

6.9.5 Sized primitive literal syntax 473

6.9.6 Numeric UndersCores v v v v v v i i e e e e e e e e e e e e e 474

6.9.7 Overloaded string literals 475

6.9.8 Overloaded labels e 476

6.10 Constraints e e e e e e e e 477

6.10.1 Loosening restrictions on classcontexts 477

6.10.2 Equality constraints and Coercible constraint 478
6.10.2.1 Equality constraints oo, 478
6.10.2.2 Heterogeneous equality 479
6.10.2.3 Unlifted heterogeneous equality 479
6.10.2.4 The Coercible constraint 479

6.10.3 The Constraintkind 479

6.10.4 Quantified constraints L e 481
6.10.4.1 Motivation e e e e e 481
6.10.4.2 Syntax changes e e e e 482
6.10.4.3 Typingchanges i i i i e 483
6.10.4.4 Superclasses e e e e e 483
6.10.4.50verlap o i e e e e e e e e 483
6.10.4.6 Instance lookup 484
6.10.4.7 Termination o 0 i i i e e e e e e e e e 485
6.10.4.8 Coherence i i i e e e e e e e e 485

6.11 Type signatures o i e e e e e e e e e e e 485

6.11.1 Explicit universal quantification (forall) 485
6.11.1.1 The forall-or-nothingrule. 486

6.11.2 Ambiguous types and the ambiguitycheck 488

6.11.3 Explicitly-kinded quantification 0 0. 490

6.11.4 Lexically scoped type variables 491
6.11.4.1 OVEIVIEW . . v v v v e 492
6.11.4.2 Declaration type signatures, 492
6.11.4.3 Expression type signatures 0 e 493
6.11.4.4 Pattern type signatures o 493
6.11.4.5 Class and instance declarations 495

6.11.5 Implicit parameters e e e e e 496
6.11.5.1 Implicit-parameter type constraints 496
6.11.5.2 Implicit-parameter bindings 497
6.11.5.3 Implicit parameters and polymorphic recursion 498
6.11.5.4 Implicit parameters scoping guarantees 498
6.11.5.5 Implicit parameters and monomorphism 499

6.11.6 Partial Type Signatures i e 499
6.11.6.1 Syntax e e e e e e e 500
6.11.6.2 Where can they occur? 503

ix

6.12 Bindings and generalisation o o o 504

6.12.1 Switching off the Monomorphism Restriction 504
6.12.2 Let-generalisation e 505
6.13 Template Haskell e 506
6.13.1 Syntax e e e e e e e e e e 507
6.13.2 Using Template Haskell 513
6.13.3 Viewing Template Haskell generatedcode 514
6.13.4 A Template Haskell Worked Example 514
6.13.5 Template Haskell quotes and Rebindable Syntax 516
6.13.6 Using Template Haskell with Profiling 516
6.13.7 Template Haskell Quasi-quotation 517
6.14 Bang patterns and Strict Haskell 519
6.14.1 Bang patterns e e e e e 520
6.14.1.1 Strict bindings e 521
6.14.2 Strict-by-default datatypes 521
6.14.3 Strict-by-default pattern bindings 522
6.14.4 Modularity e e e e e 524
6.14.5 Dynamic semantics of bangpatterns. 524
6.15 Parallel and Concurrent e e e e e 528
6.15.1 Concurrent and Parallel Haskell 529
6.15.1.1 Concurrent Haskell 529
6.15.1.2 Parallel Haskell 529
6.15.1.3 Annotating pure code for parallelism. 529
6.15.2 Software Transactional Memory 530
6.15.3 Static pointers e e 531
6.15.3.1 Using static pointers. e 531
6.15.3.2 Static semantics of static pointers 532
6.16 Unboxed types and primitive operations 533
6.16.1 Unboxed types i i i i e e e e e e e e 533
6.16.2 Unboxed type kinds 534
6.16.3 Unboxed tuples e 535
6.16.4 Unboxed SUMS i i v it et e e e e e e e e e e e e e 536
6.16.5 Unlifted Newtypes o i i it e e s e e e e 537
6.16.6 Unlifted Datatypes. o v i i i e e e e e 538
6.17 Foreign function interface (FFI) 540
6.17.1 GHC differences to the FFI Chapter 540
6.17.1.1 Guaranteed callsafety, 540
6.17.1.2 Interactions between safe calls and bound threads 541
6.17.1.3 Varargs not supported by ccall calling convention 541
6.17.2 GHC extensions to the FFI Chapter 541
6.17.2.1 Unlifted FFITypes 0 i i it e e e e e e e e 541
6.17.2.2 Newtype wrapping of the IOmonad 543
6.17.2.3 Explicit “forall”s in foreign types 544
6.17.2.4 Primitive imports 544
6.17.2.5 Interruptible foreigncalls, 544
6.17.2.6 The CAPI calling convention 545
6.17.2.7 hs_thread done() 546
6.17.2.8 Freeing many stable pointers efficiently 547
6.17.3 Using the FFIwith GHC, 547
6.17.3.1 Using foreign export and foreign import ccall "wrapper"
with GHC e e e 547
6.17.3.2 Using headerfiles 551
6.17.3.3 Memory Allocation 551
6.17.3.4 Multi-threadingandthe FFI 552

6.17.3.5 Floating pointand the FFI 555

6.17.3.6 Pinned Byte Arrays. e 556

6.18 Safe Haskell e e e e e e e e e e e 556
6.18.1 Uses of Safe Haskell 557
6.18.1.1 Strict type-safety (good style) 557
6.18.1.2 Building secure systems (restricted IO Monads) 557
6.18.2 Safe Language i e e e e e e e e e 559
6.18.2.1 Safe Overlapping Instances 560
6.18.3 Safe Imports e e e e e e 562
6.18.4 Trust and Safe Haskell Modes 562
6.18.4.1 Trust check (-fpackage-trustdisabled) 562
6.18.4.2 Trust check (-fpackage-trustenabled) 563

6.18. 4.3 Example e e e 564
6.18.4.4 Trustworthy Requirements 564
6.18.4.5Package Trust e 564
6.18.5 Safe Haskell Inference, 565
6.18.6 Safe Haskell Flag Summary, 565
6.18.7 Safe Compilation e 567
6.19 Miscellaneous e e e e e e e e e e e 568
6.19.1 Rewriterules e e e e 568
6.19.1.1 Syntax e e e e e e e e 568
6.19.1.2 SemantiCs i e e e e e e e 570
6.19.1.3 How rules interact with INLINE/NOINLINE pragmas 572
6.19.1.4 How rules interact with CONLIKE pragmas 572
6.19.1.5 How rules interact with class methods 573
6.19.1.6 Listfusion e 574
6.19.1.7 Specialisation 575
6.19.1.8 Controlling what’s going on in rewriterules 575
6.19.2 Special built-infunctions L o 576
6.19.3 Generic programming v v v e v et e e e e e e e e e e e e e 576
6.19.3.1 Deriving representations 577
6.19.3.2 Writing generic functions 578
6.19.3.3 Unlifted representationtypes 579
6.19.3.4 Genericdefaults e 580
6.19.3.5 More information. L e 580
0.19.4 ASSertions e e e e e e e e e e e e e 580
6.19.5 HasCallStack e e 581
6.19.5.1 Compared with other sources of stacktraces. 583
6.19.6 Whitespace i e e e e e e e e 583
6.20 Pragmas i e e e e e e e e e e e e e e e e e 583
6.20.1 LANGUAGE pragma v v v e e e e e e e e e e e e e e e e e 584
6.20.2 OPTIONS GHC pragma v v i v vt e ettt e e et e e e 584
6.20.3 INCLUDE pragma v v i i e e e e e e e e e e e e e e e e e 585
6.20.4 WARNING and DEPRECATED pragmas v v v v v v v v e e e e oo e e u 585
6.20.5 MINIMAL Pragma v v v v v e 587
6.20.6 INLINE and NOINLINE pragmas v v v v v v vt et et e e oo a 587
6.20.6.1 INLINE pragma ¢ v v i it e e e e e e e e e e e e e 588
6.20.6.2 INLINABLE pragma« v v v i e e e e e e e e e e e e e e e e 590
6.20.6.3 NOINLINE pragma v v v v v i it e e e et e e e e e 591
6.20.6.4 CONLIKE modifier ittt e e e et 591
6.20.6.5 Phase control e 591
6.20.7 OPAQUE PTragma« v v v v e 592
6.20.8 LINE pragma o v i it e e e e e e e e e e e e e e e 592
6.20.9 COLUMN PTagmma . . « v v v v v e 593

Xi

6.20.10 RULES pragma i v it e e e e e e e e e e e e e
6.20.11 SPECIALIZE pragma v v v v e e e e e e e e e e e e e e e e e
6.20.11.1 SPECIALIZE INLINE it e it
6.20.11.2 SPECIALIZE for imported functions
6.20.12 SPECTALIZE instance pragma o v v v v v v v v v v v oo v oo
6.20.13 UNPACK Pragma v v v e
6.20.14 NOUNPACK pragma ¢ v v v o i e
6.20.15 SOURCE Pragma ¢ v v v e i e e e e e e e e e e e e e e e e e e
6.20.16 COMPLETE Pragmas . . . « v ¢ v v v v v e e e e e e e e e e e e e e e e e e e
6.20.17 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas

7 Extending and using GHC as a Library

7.1 Source annotations e e e e e e e e e e e
7.1.1 Annotating values e
7.1.2 Annotating types e e e e e e e e e e e e e e
7.1.3 Annotating modules e

7.2 Using GHC asa Library e et e e e e e e
7.3 Compiler Plugins e e e e e e e e e e e e e
7.3.1 Using compiler plugins. e
7.3.2 Writing compilerplugins e
7.3.3 Core pluginsin more detail
7.3.3.1 Manipulating bindings oL,

7.3.3.2 Using Annotations e

7.3.4 Typechecker plugins i e
7.3.4.1 Constraint solving with plugins

7.3.4.2 Type family rewriting with plugins

7.3.5 Source plugins e e e e e e e e e e e e e
7.3.5.1 Parsed representation. o 0oL,

7.3.5.2 Type checked representation
7.3.5.3Evaluatedcode e

7.3.5.4 Interface files e

7.3.5.5 Source pluginexample 0 0.

7.3.6 Hole fit plugins e e e e e
7.3.6.1 Stateful hole fitplugins,

7.3.6.2 Hole fit pluginexample

7.3.7 Defaulting plugins. e
7.3.8 Controlling Recompilation
7.3.9 Frontend plugins e e e e
7.3.10 DynFlags plugins @ i i i e e e e e e e e e e e e

7.4 Referring to back ends L e
7.4.1 Client code that only names backends
7.4.2 Client code that discriminates among backends
7.4.3 General migration strategy for clientcode

8 Profiling
8.1 Cost centres and cost-centre stacks
8.1.1 Inserting cost centresby hand
8.1.2 Rules for attributingcosts
8.2 Profiling and foreign calls e
8.3 Compiler options for profiling
8.3.1 Automatically placing cost-centres.,
8.4 Time and allocation profiling e
8.4.1 JSON profileformat
8.4.2 Eventlog profile format.

xii

8.5 Profiling memory USage v v v v v v it e e e e e e e e e e e e e e e e
8.5.1 RTS options for heap profiling
8.5.2 Retainer Profiling

8.5.2.1 Hints for using retainer profiling
8.5.3 Precise Retainer Analysis i
8.5.4 Biographical Profiling e
8.5.5 Actual memory residency e e e e

8.6 hp2ps - Rendering heap profiles to PostScript

8.7 Profiling Parallel and Concurrent Programs

8.8 Observing Code COVErage v v v v v ittt e e e e e e e e e e e i e e e
8.8.1 A small example: Reciprocation
8.8.2 Options for instrumenting code for coverage
8.8.3 The hpctoolkit e

8.8.3.1 hpcreport e e e e
8.8.3.2hpcmarkup
8.8.3.3hpcsum e e e e e
8.8.3.4 hpccombine
8.8.3.5hpcmap e e
8.8.3.6 hpc overlay and hpcdraft
8.8.4 Caveats and Shortcomings of Haskell Program Coverage

8.9 Using “ticky-ticky” profiling (for implementors)
8.9.1 Additional Ticky Flags i i i e e e
8.9.2 Understanding the Output of Ticky-Ticky profiles.
8.9.3 Information about name-specificcounters
8.9.4 Examples e e e e e e e e e
8.9.5 Notes about ticky profiling

9 Debugging compiled programs

9.1 Tutorial e e e e
9.2 Requesting a stack trace from Haskellcode
9.3 Requesting a stack trace with SIGQUIT
9.4 Implementor’s notes: DWARF annotations
9.4.1 Debugging information entities. L oo L.

9.4.1.1 DW TAG ghc src note

9.5 Further Reading e e e
9.6 Direct Mapping« v i v i e e e e e e e e e e e e e e e
9.7 Querying the Info Table Map i it

10 What to do when something goes wrong
10.1 When the compiler “does the wrong thing”
10.2 When your program “does the wrong thing”

11 Hints

11.1 Sooner: producing a program more quickly,
11.2 Faster: producing a program that runs quicker
11.3 Smaller: producing a program thatissmaller
11.4 Thriftier: producing a program that gobbles less heapspace
11.5 Controlling inlining via optimisation flags.

11.5.1 Unfolding creation e

11.5.2 Inlining decisions e e e e e e

11.5.3 Inlining generics i i e e e e e e e e e
11.6 Understanding how OS memory usage corresponds to livedata

12 Other Haskell utility programs
12.1 “Yacc for Haskell”: happy o i i i e e e e e e e e e e e e e

12.2 Writing Haskell interfaces to C code: hsc2hs 677

12.2.1 command line syntax e e e e e e e 678
12.2.2 Input syntax e e e e e e e e e e e e e e 678
12.2.3 Custom constructs e 680
12.2.4 Cross-compilation e 680
13 Running GHC on Win32 systems 681
13.1 Starting GHC on Windows platforms 681
13.2 Running GHCion Windows i i i it e e e e e e e e 681
13.3 Interacting with the terminal, 682
13.4 Differences in library behaviour 682
13.5 File paths under Windows i i i ittt 682
13.6 Using GHC (and other GHC-compiled executables) with Cygwin 683
13.6.1 Background e e e e e e e 683
13.6.2 The problem e 683
13.6.3Thingstodo i e e e e e 683
13.7 Building and using Win32 DLLs 0 0 it it e e e e 684
13.7.1 Creatinga DLL e e e e e e e e e e e e 684
13.7.2 Making DLLs to be called from other languages 685
13.7.2.1 Using from VBA e e 686
13.7.2.2 Using from C++ e e e e 687
14 FFI and the JavaScript Backend 689
14.1JSVal .« . e e e 689
14.2 JavaScript FELI Types o o i i e e e e e e e e e e e e e e e 690
14.3 JavaScript Callbacks e e e e e e e e 690
14.4 Callbacks as Foreign Exports 691
15 Using the GHC WebAssembly backend 693
15.1 What does the WebAssembly “backend” mean 693
15.2 Setting up the GHC wasm backend 693
15.3 Using the GHC wasm backend to compile & linkcode 693
15.4 Running the GHC wasm backend’soutput. 694
16 Known bugs and infelicities 695
16.1 Haskell standards vs. Glasgow Haskell: language non-compliance 695
16.1.1 Divergence from Haskell 98 and Haskell 2010. 695
16.1.1.1 Lexical syntax o v i i e e e e e e 695
16.1.1.2 Context-free syntax 697
16.1.1.3 Expressions and patterns, 697
16.1.1.4 Failable patterns e 698
16.1.1.5 Typechecking of recursive binding groups 698
16.1.1.6 Default Module headers with -main-is 699
16.1.1.7 Module system and interfacefiles. 700
16.1.1.8 Numbers, basic types, and built-inclasses 700
16.1.1.9In Prelude support. i i i e 701
16.1.1.10 The Foreign Function Interface 702

16.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 o e e e e e e e e 702
16.2 Known bugs or infelicities 703
16.2.1 Bugsin GHC e e e e e e e 703
16.2.2 Bugs in GHCIi (the interactive GHC) 705
17 Eventlog encodings 707
17.1 Eventlog format e e e 707

xiv

17.2 Runtime system diagnostics e
17.2.1 Capability sets e e e e e
17.2.2 Environment information. o Lo oo
17.2.3 Thread and schedulingevents.
17.2.4 Garbage collectorevents
17.2.5 Heap events and statistics
17.2.6 Spark events e e e e e e e e e
17.2.7 Capability events e
17.2.8 Task events i e e e e e e e
17.2.9 Tracing events e e e e e

17.3 Heap profiler eventlogoutput
17.3.1 Metadata event types e e e e e e e

17.3.1.1 Beginning of sample stream
17.3.1.2 Cost centre definitions
17.3.1.3 Info Table Provenance definitions
17.3.1.4 Sample event types e
17.3.1.5 Cost-centre break-down
17.3.1.6 String break-down e

17.4 Time profiler event logoutput
17.4.1 Profile beginevent e
17.4.2 Profile sample event. e

17.5 Biographical profile sampleevent,

17.6 Non-moving GC event output
17.6.1 Non-moving heap CeNSUS i i i i i i e e e e e e e e
17.6.2 Ticky counters @ i i i it e e e e e e e e e e e

18 Glossary

19 Care and feeding of your GHC User’s Guide

19.1 BaSICS . . v v v ot i e
19.1.1 Headings i i i i it e e e e e e e e e e e e e e e e
19.1.2 Formattingcode e e e e e e e
19.1.2.1 Haskell e e e

19.1.2.2 Other languages i i i i i ittt
19.1.3LINKS e e e e
19.1.3.1 Withinthe User’'sGuide

19.1.3.2 TOGHC reSOUICES . . . v v v v v v e e e e e e e e e e e e e e

19.1.3.3 To external resources,

19.1.3.4 To core library Haddock documentation
19.1.3.5Math e e e

19.14 Index entries o 0 i i e e e e e e e e e e e e

19.2 Citations o e e e e e e e e
19.3 Admonitions o e e e e e e e e e e e e e e
19.4 Documenting command-line options and GHCi commands
19.4.1 Command-line options e
19.4.2 GHCicommands i v v it e e e e e e e e e e e e e e

19.5 Style Conventions i i e e e e e e e e e e
19.6 reST reference materials e

20 Indices and tables
Bibliography

Index

Xv

GHC User’s Guide Documentation, Release 9.8.1

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 9.8.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCIi),
described in Using GHCi (page 15), and a batch compiler, described throughout Using GHC
(page 65). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function inter-
face, exceptions, type system extensions such as multi-parameter type classes, local universal
and existential quantification, functional dependencies, scoped type variables and explicit un-
boxed types. These are all described in Language extensions (page 265).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 629) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

https://www.haskell.org/
https://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building

GHC User’s Guide Documentation, Release 9.8.1

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page
* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to https://www.haskell.org/mailman/listinfo/ for the full list.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x .y, where {y) is even. Releases on the stable branch
X.y are numbered Xx.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels
are bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will need
to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 237)) for a major release x.y.z is the integer (xyy) (if {(y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
__ GLASGOW HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

4 Chapter 1. Introduction

https://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc
https://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
https://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
https://www.haskell.org/mailman/listinfo/ghc-devs
https://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
https://www.haskell.org/ghc/dist/latest/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 9.8.1

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 76)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when CPP (page 237) is used).
See Standard CPP macros (page 237) for details.

1.5 The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5. The Glasgow Haskell Compiler License 5

GHC User’s Guide Documentation, Release 9.8.1

6 Chapter 1. Introduction

CHAPTER
TWO

RELEASE NOTES

2.1 Version 9.8.1

The significant changes to the various parts of the compiler are listed in the following sections.

See the migration guide on the GHC Wiki for specific guidance on migrating programs to this
release.

The LLVM backend (page 240) of this release is to be used with LLVM 11, 12, 13, 14 or 15.

2.1.1 Breaking changes

* In accordance with GHC proposal #425 GHC no longer implicitly quantifies over type
variables that appear only in the RHS of type and data family instances. This code will
no longer work:

type family F1 a :: k
type instance F1 Int = Any :: j -> j

Instead you should write:

’type instance F1 @(j -> j) Int = Any :: j -> j

Or:

’type instance forall j . F1 Int = Any :: j -> j

|

* Data types with deriving clauses now reject inferred instance contexts that mention
TypeError constraints (see Custom compile-time errors (page 393)), such as this one:

newtype Foo = Foo Int

class Bar a where
bar :: a

instance (TypeError (Text "Boo")) => Bar Foo where
bar = undefined

newtype Baz = Baz Foo
deriving Bar

Here, the derived Bar instance for Baz would look like this:

https://gitlab.haskell.org/ghc/ghc/-/wikis/migration/9.8
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0425-decl-invis-binders.rst

GHC User’s Guide Documentation, Release 9.8.1

instance TypeError (Text "Boo") => Bar Baz

While GHC would accept this before, GHC 9.8 now rejects it, emitting “Boo” in the re-
sulting error message. If you really want to derive this instance and defer the error to
sites where the instance is used, you must do so manually with StandaloneDeriving
(page 416), e.g.

deriving instance TypeError (Text "Boo") => Bar Baz

2.1.2 Language

» There is a new extension ExtendedLiterals (page 473), which enables sized primitive
numeric literals, e.g. 123#Int8 is a literal of type Int8#. See the GHC proposal #451.
Derived Show instances for datatypes containing sized literals (Int8#, Word8#, Int16#
etc.) now use the extended literal syntax, per GHC proposal #596. Furthermore, it is
now possible to derive Show for datatypes containing fields of types Int64# and Word64+#.

* GHC Proposal #425 has been partially implemented. Namely, the @k-binders in type
declarations are now permitted:

type T :: forall k. k -> forall j. j -> Type
data T @k (a :: k) @(j :: Type) (b :: j)

This feature is guarded behind TypeAbstractions (page 380).

2.1.3 Compiler

* Added a new warning -Wterm-variable-capture (page 109) that helps to make code
compatible with the future extension RequiredTypeArguments.

* Rewrite rules now support a limited form of higher order matching when a pattern vari-
able is applied to distinct locally bound variables, as proposed in GHC Proposal #555.
For example:

forall f. foo (\x -> f x) |

Now matches:

’foo (\X =-> x*2 + Xx) ‘

* GHC Proposal #496 has been implemented, allowing {. .} syntax for constructors with-
out fields, for consistency. This is convenient for TH code generation, as you can now
uniformly use record wildcards regardless of number of fields.

* Specialisation of incoherent instance applications can now be disabled with
-fno-specialise-incoherents (page ??). This is necessary as the current specialisa-
tion implementation can result in in nondeterministic instance resolution in certain cases,
breaking the specification described in the documentation of the INCOHERENT (page 599)
pragma. See #22448 for further details.

» Fix a bug in TemplateHaskell evaluation causing excessive calls to setNumCapabilities
when -j[(n)] (page 72) is greater than -N (page 131). See #23049.

8 Chapter 2. Release notes

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0451-sized-literals.rst
https://github.com/ghc-proposals/ghc-proposals/pull/596
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0425-decl-invis-binders.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0555-template-patterns.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0496-empty-record-wildcards.rst
https://gitlab.haskell.org/ghc/ghc/issues/22448
https://gitlab.haskell.org/ghc/ghc/issues/23049

GHC User’s Guide Documentation, Release 9.8.1

* The -Wno- (wflag), -Werror={(wflag) and -Wwarn=(wflag) options are now defined sys-
tematically for all warning groups (for example, -Wno-default, -Werror=unused-binds
and -Wwarn=all are now accepted). See Warnings and sanity-checking (page 84).

* WARNING pragmas may now be annotated with a category, following GHC proposal
#541, in which case they are controlled with new -Wx-(category) flags rather than
-Wdeprecations (page 90). A new warning group -Wextended-warnings (page 89) in-
cludes all such warnings regardless of category. See WARNING and DEPRECATED prag-
mas (page 585).

* GHC is now better at disambiguating record updates in the presence of duplicate record
fields. The following program is now accepted

{-# LANGUAGE DuplicateRecordFields #-}

data R = MkR1 { foo :: Int }
| MkR2 { bar :: Int }
data S = MkS { foo :: Int, bar :: Int }

blah x = x { foo =5, bar = 6 }

The point is that only the type S has a constructor with both fields foo and bar, so this
record update is unambiguous.

* GHC Proposal #540 has been implemented. This adds the -jsem (page 72) flag, which
instructs GHC to act as a jobserver client. This enables multiple GHC processes run-
ning at once to share system resources with each other, communicating via the system
semaphore specified by the flag argument.

Complementary support for this feature in cabal-install will come soon.

* GHC Proposal #433 has been implemented. This adds the class Unsatisfiable ::
ErrorMessage -> Constraint to the GHC.TypeError module. Constraints of the form
Unsatisfiable msg provide a mechanism for custom type errors that reports the errors
in a more predictable behaviour than TypeError, as these constraints are handled purely
during constraint solving.

For example:

instance Unsatisfiable (Text "There is no Eq instance for functions") => Eq (a ->,
—b) where
(==) = unsatisfiable

This allows errors to be reported when users use the instance, even when type errors
are being deferred.

* GHC now deals with “insoluble Givens” in a consistent way. For example:

k :: (Int ~ Bool) => Int -> Bool
k x = x

GHC used to accept the contradictory Int~Bool in the type signature, but reject the
Int~Bool constraint that arises from typechecking the definition itself. Now it accepts
both. More details in #23413, which gives examples of the previous inconsistency. GHC
now implements the “PermissivePlan” described in that ticket.

* The -ddump-spec (page 255) flag has been split into -ddump-spec (page 255) and
-ddump-spec-constr (page 255), allowing only output from the typeclass specialiser
or data-constructor specialiser to be dumped if desired.

2.1. Version 9.8.1 9

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0541-warning-pragmas-with-categories.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0541-warning-pragmas-with-categories.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0540-jsem.rst
https://github.com/ghc-proposals/ghc-proposals/blob/0c7667673fcb33ea8b38503e16f88de5b8b3d270/proposals/0433-unsatisfiable.rst
./../libraries/base-@LIBRARY_base_UNIT_ID@/GHC-TypeError.html
https://gitlab.haskell.org/ghc/ghc/issues/23413

GHC User’s Guide Documentation, Release 9.8.1

* The compiler may now be configured to compress the debugging information included
in -finfo-table-map (page 665) enabled binaries. To do so, one must build GHC from
source (see here for directions) and supply the --enable-ipe-data-compression flag
to the configure script. Note: This feature requires that the machine building GHC
has libzstd version 1.4.0 or greater installed. The compression library libzstd may op-
tionally be statically linked in the resulting compiler (on non-darwin machines) using the
--enable-static-1libzstd configure flag.

In a test compiling GHC itself, the size of the -finfo-table-map (page 665) enabled
build results was reduced by over 20% when compression was enabled.

* GHC Proposal #134 has been implemented. This makes it possible to deprecate certain
names exported from a module, without deprecating the name itself. You can check the
full specification of the feature at WARNING and DEPRECATED pragmas (page 585).

For example

module X
({-# DEPRECATE D(D1) "D1 will not be exposed in a version 0.2 and later" #-}
D(D1, D2)
) where
data D = D1 | D2

This allows for changing the structure of a library without immediately breaking user
code, but instead being able to warn the user that a change in the library interface will
occur in the future.

* Guard polymorphic specialisation behind the flag -fpolymorphic-specialisation
(page 122). This optimisation has led to a number of incorrect runtime result bugs, so
we are disabling it by default for now whilst we consider more carefully an appropiate
fix. (See #23469, #23109, #21229, #23445)

* The warning about incompatible command line flags can now be controlled with the
-Winconsistent-flags (page 110). In particular this allows you to silence a warning
when using optimisation flags with --interactive (page 68) mode.

2.1.4 GHCi

* The deprecated :ctags and :etags GHCi commands have been removed. See this wiki
page if you want to add a macro to recover similar functionality.

2.1.5 Runtime system

* On POSIX systems that support timerfd, RTS shutdown no longer has to wait for the next
RTS ‘tick’ to occur before continuing the shutdown process. See #22692.

10

Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/-/wikis/building
https://github.com/facebook/zstd/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0134-deprecating-exports-proposal.rst
https://gitlab.haskell.org/ghc/ghc/issues/23469
https://gitlab.haskell.org/ghc/ghc/issues/23109
https://gitlab.haskell.org/ghc/ghc/issues/21229
https://gitlab.haskell.org/ghc/ghc/issues/23445
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/GHCi/Tags
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/GHCi/Tags
https://gitlab.haskell.org/ghc/ghc/issues/22692

GHC User’s Guide Documentation, Release 9.8.1

2.1.6 base library

Note that this is not an exhaustive list of changes in base. See the base changelog for full
details.

e Added {-# WARNING in "x-partial" #-} toData.List.{head,tail}.

e Data.Tuple now exports getSolo :: Solo a -> a.

* Updated to Unicode 15.1.0.

» Fixed exponent overflow/underflow bugs in the Read instances for Float and Double
(CLC proposal #192)

2.1.7 ghc-prim library

* Primitive pointer comparison functions are now levity-polymorphic, e.g.

sameArray# :: forall {1} (a :: TYPE (BoxedRep 1)). Array# a -> Array# a -> Int#

This change affects the following functions:

sameArray#, sameMutableArray#,

sameSmallArray#, sameSmallMutableArray#,
sameMutVar#, sameTVar#, sameMVar#
sameIOPort#, eqStableName#.

* New primops for fused multiply-add operations. These primops combine a multiplica-
tion and an addition, compiling to a single instruction when the -mfma (page 83) flag is
enabled and the architecture supports it.

The new primops are fmaddFloat#, fmsubFloat#, fnmaddFloat#, fnmsubFloat#
:: Float# -> Float# -> Float# -> Float# and fmaddDouble#, fmsubDouble#,
fnmaddDouble#, fnmsubDouble# :: Double# -> Double# -> Double# -> Double#.

These implement the following operations, while performing one single rounding at the
end, leading to a more accurate result:

- fmaddFloat# x y z, fmaddDouble# x y z compute x * y + z.
- fmsubFloat# x y z, fmsubDouble# x y z compute x * y - z.
- fnmaddFloat# x y z, fnmaddDouble# x y z compute - x * y + z.
- fnmsubFloat# x y z, fnmsubDouble# x y z compute - x * y - z.

Warning: on unsupported architectures, the software emulation provided by the fallback
to the C standard library is not guaranteed to be IEEE-compliant.

2.1. Version 9.8.1 11

./../libraries/base-@LIBRARY_base_UNIT_ID@/Data.html#t:Tuple
https://www.unicode.org/versions/Unicode15.1.0/
https://github.com/haskell/core-libraries-committee/issues/192

GHC User’s Guide Documentation, Release 9.8.1

2.1.8 ghc library

* The RecordUpd constructor of HsExpr now takes an HsRecUpdFields instead of
Either [LHsRecUpdField p] [LHsRecUpdProj pl. Instead of Left .., use the
constructor RegularRecUpdFields, and instead of Right .., use the constructor
OverloadedRecUpdFields.

* The loadWithCache function now takes an extra argument which allows API users to
embed GHC diagnostics in their own diagnostic type before they are printed. This al-
lows how messages are rendered and explained to users to be modified. We use this
functionality in GHCi to modify how some messages are displayed.

* The extensions fields of constructors of IE now take Maybe (WarningTxt p) in GhcPs
and GhcRn variants of the Syntax Tree. This represents the warning assigned to a certain
export item, which is used for deprecated exports (page 585).

2.1.9 template-haskell library

* Record fields now belong to separate NameSpaces, keyed by the parent of the record field.
This is the name of the first constructor of the parent type, even if this constructor does
not have the field in question. This change enables TemplateHaskell (page 507) support
for DuplicateRecordFields (page 405).

2.1.10 text library

The version of the text library included changes Data.Text.Array.Array to be a type syn-
onym of Data.Array.Byte.ByteArray. While its former data constructor, ByteArray, has
been replaced with a pattern synonym, it cannot be imported as bundled with the type con-
structor.

Consequently, imports like:

’import Data.Text.Array (Array(..))

will need to avoid using a bundled import (e.g. by qualification):

’import Data.Text.Array as A

2.1.11 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion

ghc 9.8.1 The compiler itself

Cabal-syntax 3.10.2.0 Dependency of ghc-pkg util-
ity

continues on next page

12 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.8.1

Table 1 - continued from previous page

Package Version Reason for inclusion

Cabal 3.10.2.0 Dependency of ghc-pkg util-
ity

Win32 2.13.4.0 Dependency of ghc library

array 0.5.6.0 Dependency of ghc library

base 4.19.0.0 Core library

binary 0.8.9.1 Dependency of ghc library

bytestring 0.12.0.2 Dependency of ghc library

containers 0.6.8 Dependency of ghc library

deepseq 1.5.0.0 Dependency of ghc library

directory 1.3.8.1 Dependency of ghc library

exceptions 0.10.7 Dependency of ghc and
haskeline library

filepath 1.4.100.4 Dependency of ghc library

ghc-boot-th 9.8.1 Internal compiler library

ghc-boot 9.8.1 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 9.8.1 GHC heap-walking library

ghc-prim 0.11.0 Core library

ghci 9.8.1 The REPL interface

haskeline 0.8.2.1 Dependency of ghci exe-
cutable

hpc 0.7.0.0 Dependency of hpc exe-
cutable

integer-gmp 1.1 Core library

mtl 2.3.1 Dependency of Cabal library

parsec 3.1.17.0 Dependency of Cabal library

pretty 1.1.3.6 Dependency of ghc library

continues on next page

2.1. Version 9.8.1

13

GHC User’s Guide Documentation, Release 9.8.1

Table 1 - continued from previous page

Package Version Reason for inclusion

process 1.6.18.0 Dependency of ghc library

semaphore-compat 1.0.0 Dependency of ghc library

stm 2.5.2.1 Dependency of haskeline li-
brary

template-haskell 2.21.0.0 Core library

terminfo 0.4.1.6 Dependency of haskeline li-
brary

text 2.1 Dependency of Cabal library

time 1.12.2 Dependency of ghc library

transformers 0.6.1.0 Dependency of ghc library

unix 2.8.3.0 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

14 Chapter 2. Release notes

CHAPTER
THREE

USING GHCI

GHCi' is GHC'’s interactive environment that includes an interactive debugger (see The GHCi
Debugger (page 32)).

GHCIi can
* interactively evaluate Haskell expressions
* interpret Haskell programs
* load GHC-compiled modules.

At the moment GHCi supports most of GHC’s language extensions.

3.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
ghci>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the promptis shown. As the banner says, you can type : ? (page 48) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 44).

Haskell expressions can be typed at the prompt:

ghci> 1+2

3

ghci> let x =42 in x / 9
4.666666666666667

ghci>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

1 The “i” stands for “Interactive”

15

GHC User’s Guide Documentation, Release 9.8.1

ghci> x = 42
ghci> x

42

ghci>

3.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

ghci> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the : load (page 50) command:

ghci> :load Main

Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.

*ghci>

GHCi has loaded the Main module, and the prompt has changed to *ghci> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 24)). So we
can now type expressions involving the functions from Main.hs:

*ghci> fac 17
355687428096000

”

Loading a multi-module program is just as straightforward; just give the name of the “topmost
module to the :load (page 50) command (hint: :load (page 50) can be abbreviated to :1).
The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-1loaded-modules
Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 50) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

16 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with :load (page 50),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the - i (page 198) option on the GHCi
command line, like so:

or it can be set using the :set (page 52) command from within GHCi (see Setting GHC
command-line options in GHCi (page 57))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

3.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 51) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 203)).

3.3 Loading compiled code

When you load a Haskell source module into GHCi, it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code
in GHCi; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with :load (page 50), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

4 Note that in GHCi, and - -make (page 68) mode, the -i (page 198) option is used to specify the search path for

source files, whereas in standard batch-compilation mode the -1i (page 198) option is used to specify the search path
for interface files, see The search path (page 198).

3.3. Loading compiled code 17

GHC User’s Guide Documentation, Release 9.8.1

A
/ N\
B C
\/

D

We can compile D, then load the whole program, like this:

ghci> :! ghc -c -dynamic D.hs
ghci> :load A
Compiling B

(interpreted)
Compiling C (
(

S,
s, interpreted)
s, interpreted)
D.o).

Compiling A
0Ok, modules loaded: A, B, C
*ghci>

B.h
C.h
A.h
D (

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 243) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command :show modules (page 54) to get a list of the modules
currently loaded into GHCi:

*ghci> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*ghci>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*ghci> :! touch D.hs
*ghci> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.
*ghci>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*ghci> :! ghc -c C.hs
*ghci> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

18 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C's object file. Ok, so let’s also compile D:

*ghci> :! ghc -c D.hs
*ghci> :reload
0Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 51), only : load (page 50):

*ghci> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 24)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : Load (page 50), for
example

ghci> :load *A
Compiling A (A.hs, interpreted)
*ghci>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module. If
you have already loaded a number of modules as object code and decide that you wanted to
interpret one of them, instead of re-loading the whole set you can use :add *M to specify that
you want M to be interpreted (note that this might cause other modules to be interpreted too,
because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 240) option (see Compiling to object code inside GHCi (page 60)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

3.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

ghci> reverse "hello"
"olleh"

ghci> 545

10

3.4. Interactive evaluation at the prompt 19

GHC User’s Guide Documentation, Release 9.8.1

3.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

ghci> "hello"

"hello"

ghci> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

ghci> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
ghci> putStrLn "hello"

hello

ghci> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

3.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

ghci> x <- return 42
ghci> print x

42

ghci>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 20) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

* The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

20 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

ghci> let x = 42
ghci> x

42

ghci>

Another important difference between the two types of binding is that the monadic bind (p
<- @) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

ghci> let x = error "help!"
ghci> print x

*** Exception: help!

ghci>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

ghci> add a b=a + b
ghci> add 1 2

3

ghci>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

ghci> f opn [l =n; fopn (h:it) =h "op” fopnt
ghci> f (+) 0 [1..3]

6

ghci>

:{
'}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

ghci> :{

ghci| gopn [] =n

ghci| g op n (h:t) =h "op gopnt
ghci| :}

ghci> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 58)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.)

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

3.4. Interactive evaluation at the prompt 21

./../libraries/base-@LIBRARY_base_UNIT_ID@/Control-Exception.html

GHC User’s Guide Documentation, Release 9.8.1

Warning: Temporary bindings introduced at the prompt only last until the next : load
(page 50), :reload (page 51), :add (page 44) or :unadd (page 55) command, at which
time they will be simply lost. However, they do survive a change of context with :module
(page 51): the temporary bindings just move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 53)
command:

ghci> :show bindings
x :: Int
ghci>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

ghci> :set +t

ghci> let (x:xs) = [1..]
x :: Integer

xs :: [Integer]

3.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

ghci> :set +m
ghci> let x = 42
ghci|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

ghci> :set +m

ghci> let x = 42
ghci| y =3
ghci|
ghci>

Explicit braces and semicolons can be used instead of layout:

ghci> do {

ghci| putStrLn "hello"
ghci| ;putStrLn "world"
ghci| }

hello

world

ghci>

22 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

ghci> flip evalStateT 0 $ do
ghci| i <- get

ghci| 1ift $ do

ghci| putStrLn "Hello World!"

ghci| print i
ghci|

"Hello World!"
0

ghci>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

ghci> do

ghci| putStrLn "Hello, World!"
ghci| ~C

ghci>

3.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type,
newtype, class, instance, deriving, and foreign declarations. For example:

ghci> data T = A | B | C deriving (Eq, Ord, Show, Enum)

ghci> [A ..]

[A,B,C]

ghci> i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

ghci> data T=A | B

ghci> let f A = True; f B = False
ghci>data T=A | B | C

ghci> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it =f A
ghci>

3.4. Interactive evaluation at the prompt 23

GHC User’s Guide Documentation, Release 9.8.1

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 332).) For example:

ghci> type family T a b
ghci> type instance T a b = a
ghci> let uc :: a -> T a b; uc = id

ghci> type instance Ta b =b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

ghci> type family T a b

-- This is a brand-new T, unrelated to the old one
ghci> type instance Ta b =b

ghci> uc 'a' :: Int

<interactive>:8:1: error:
* Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
* In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

3.4.5 What’'s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The : load (page 50), : reload (page 51), :add (page 44) and : unadd (page 55) commands
(The effect of :load on what is in scope (page 25)).

* The import declaration (Controlling what is in scope with import (page 25)).

* The :module (page 51) command (Controlling what is in scope with the :module com-
mand (page 26)).

The command :show imports (page 53) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

24 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.4.5.1 The effect of :1load on what is in scope

The :load (page 50), :reload (page 51), :add (page 44) and :unadd (page 55) commands
(Loading source files (page 16) and Loading compiled code (page 17)) affect the top-level
scope. Let’s start with the simple cases; when you start GHCi the prompt looks like this:

ghci>

By default, this means that everything from the module Prelude is currently in scope. Should
the prompt be set to %s> in the .ghci configuration file, we would be seeing Prelude> dis-
played. However, it is not the default mechanism due to the large space the prompt can take
if more imports are done.

The syntax in the prompt *module indicates that it is the full top-level scope of {(module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 50) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude and Bar (GHCi automatically
adds Prelude if it isn’t present and there aren’t any *-form modules). These automatically-
added imports can be seen with :show imports (page 53):

ghci> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0Ok, modules loaded: Main.

*ghci> :show imports

:module +*Main -- added automatically

*ghci>

and the automatically-added import is replaced the next time you use :load (page 50),
:reload (page 51), :add (page 44) or :unadd (page 55). It can also be removed by :module
(page 51) as with normal imports.

3.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

ghci> import System.IO
ghci> hPutStrLn stdout "hello\n"
hello

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 53):

3.4. Interactive evaluation at the prompt 25

GHC User’s Guide Documentation, Release 9.8.1

ghci> import System.IO

ghci> import Data.Map as Map
ghci Map> :show imports
import Prelude -- implicit
import System.IO

import Data.Map as Map

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

3.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 51) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 51) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 51) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

3.4.5.4 Qualified names

-fimplicit-import-qualified
Default on

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

26 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.4.5.5 :module and :load

It might seem that :module (page 51)/import and :load (page 50)/:add (page 44)/: reload
(page 51) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCIi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by :load (page 50),
:reload (page 51), :add (page 44) and :unadd (page 55), and can be shown with : show
modules (page 54).

* The set of modules that are currently in scope at the prompt. This set is modified by
import and :module (page 51), and it is also modified automatically after : Load (page 50),
:reload (page 51), :add (page 44) and :unadd (page 55), as described above. The set
of modules in scope can be shown with :show imports (page 53).

You can add a module to the scope (via :module (page 51) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 51)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

3.4.5.6 Shadowing and the Ghcil module name

Bindings on the prompt can shadow earlier bindings:

ghci> let foo = True
ghci> let foo = False
ghci> :show bindings
foo :: Bool = False

But the shadowed thing still exists, and may show up again later, for example in a type signa-
ture:

ghci> data T = A | B deriving Eq
ghci> let a = A

ghci> data T = ANewType

ghci> :t a

a :: Ghcil.T

Now the type of a is printed using the fully qualified name of T, using the module name Ghcil
(and Ghci2 for the next set of bindings, and so on). You can use these qualified names as well:

ghci> a == Ghcil.A

True

ghci> let a = False -- shadowing a
ghci> Ghci2.a == Ghcil.A

True

The command :show bindings only shows bindings that are not shadowed. Bindings that
define multiple names, such as a type constructor and its data constructors, are shown if any
defined name is still available without the need for qualification.

3.4. Interactive evaluation at the prompt 27

GHC User’s Guide Documentation, Release 9.8.1

3.4.6 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

ghci> 1+2

3

ghci> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

ghci> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eqg.:

ghci> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
ghci> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag -fno-it (page 28) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 23)).

-fno-it
When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

28 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.4.7 Type defaulting in GHCi

ExtendedDefaultRules
Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])
[1

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 29) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

* Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()

(continues on next page)

3.4. Interactive evaluation at the prompt 29

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 20) for how the monad of a computational expression
defaults to I0 if possible.

3.4.7.1 Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 29) is in effect) are:
any numeric class, Show, Eq, 0rd, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

3.4.7.2 Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 29), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

3.4.8 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (name) (page 30) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 45), :add (page 44), :unadd (page 55),
:load (page 50), :reload (page 51) or, :set (page 52).

-interactive-print (name)
Set the function used by GHCIi to print evaluation results. Given name must be of type C
a=>a -> 10 ().

30 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (name) (page 30) flag can also be used when running GHC in -e
mode:

3.4.9 Stack Traces in GHCi
[This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 60)) and runs it in profiling mode to collect call stack information. Note
that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 581)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t

3.4. Interactive evaluation at the prompt 31

GHC User’s Guide Documentation, Release 9.8.1

see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 632)).

3.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

* Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 40)).

-fbreak-points
Default enabled for GHCi

This flag’s purpose is to allow disabling breakpoint insertion with the reverse form.

3.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [1 =[]
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (qgsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

32 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

ghci> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
Ok, modules loaded: Main.
*ghci>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*ghci> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*ghci>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (gqsort left ++ [a] ++
gsort right).

Now, we run the program:

*ghci> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a:: a

left :: [a]
right :: [al

[gsort.hs:2:15-46] *ghci>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 50) command:

[gsort.hs:2:15-46] *ghci> :list

1 gsort [] =[]

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 50) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 54), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *ghci> left

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because gsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

3.5. The GHCi Debugger 33

GHC User’s Guide Documentation, Release 9.8.1

variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 51), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[gsort.hs:2:15-46] *ghci> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *ghci> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 51) does not force any evaluation.
The idea is that :print (page 51) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 37)). Rather than forcing thunks, :print (page 51) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

-fprint-evld-with-show
The flag -fprint-evld-with-show (page 34) instructs :print (page 51) to reuse avail-
able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 48) instead of :print (page 51). The : force (page 48) command behaves exactly like
:print (page 51), except that it forces the evaluation of any thunks it encounters:

[gsort.hs:2:15-46] *ghci> :force left
left = [4,0,3,1]

Now, since :force (page 48) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[gsort.hs:2:15-46] *ghci> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_tl1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[gsort.hs:2:15-46] *ghci> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 48). For example:

[gsort.hs:2:15-46] *ghci> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *ghci> seq _t1 ()
()

[gsort.hs:2:15-46] *ghci> :print right
right = 23 : (_t2::[Integer])

34 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 46) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] *ghci> :continue
Stopped at qsort.hs:2:15-46

_result :: [a]

a :: a

left :: [al

right :: [a]

[gsort.hs:2:15-46] *ghci>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

3.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied. If the function has several patterns, then a breakpoint will be set on
each of them.

By using qualified names, one can set breakpoints on all functions (top-level and nested) in
every loaded and interpreted module:

:break [ModQual.]topLevelldent[.nestedIdent]...[.nestedIdent]

(ModQual) is optional and is either the effective name of a module or the local alias of a
qualified import statement.

(topLevelldent) is the name of a top level function in the module referenced by (ModQual).

(nestedIdent) is optional and the name of a function nested in a let or where clause inside the
previously mentioned function (nestedIdent) or (topLevelldent).

If (ModQual) is a module name, then (topLevelldent) can be any top level identifier in this
module. If (ModQual) is missing or a local alias of a qualified import, then (topLevelldent)
must be in scope.

Breakpoints can be set on arbitrarily deeply nested functions, but the whole chain of nested
function names must be specified.

Consider the function foo in a module Main:

foo s = 'a' : add s
where add = (++"z")

The breakpoint on the function add can be set with one of the following commands:

:break Main.foo.add
:break foo.add

3.5. The GHCi Debugger 35

GHC User’s Guide Documentation, Release 9.8.1

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 100) in Warnings
and sanity-checking (page 84)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are breakpoint
locations, together with the bodies of functions, lambdas, case alternatives and binding state-
ments. There is normally no breakpoint on a let expression, but there will always be a break-
point on its body, because we are usually interested in inspecting the values of the variables
bound by the let.

3.5.1.2 Managing breakpoints

The list of breakpoints currently defined can be displayed using :show breaks (page 53):

*ghci> :show breaks
[0] Main gsort.hs:1:11-12 enabled
[1] Main qgsort.hs:2:15-46 enabled

To disable one or several defined breakpoint, use the :disable (page 47) command with one
or several blank separated numbers given in the output from :show breaks (page 53):. To
disable all breakpoints at once, use :disable *.

*ghci> :disable 0

*ghci> :show breaks

[0] Main qgsort.hs:1:11-12 disabled
[1] Main gsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 47) command. The param-
eters of the :disable (page 47) and :enable (page 47) commands are identical.

To delete a breakpoint, use the :delete (page 47) command with the number given in the
output from :show breaks (page 53):

*ghci> :delete 0
*ghci> :show breaks
[1] Main qgsort.hs:2:15-46 disabled

36 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

To delete all breakpoints at once, use :delete *.

3.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 54) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 54) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 54) to single step
only on breakpoints contained in the current module. For example:

*ghci> :step main
Stopped at qsort.hs:5:7-47
_result :: I0 ()

The command :step expr (page 54) begins the evaluation of {(expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 54)
and :stepmodule (page 54) commands work similarly.

The :1ist (page 50) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *ghci> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[qsort.hs:5:7-47] *ghci>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 50):

[gsort.hs:5:7-47] *ghci> :set stop :list
[qsort.hs:5:7-47] *ghci> :step

Stopped at gsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *ghci>

3.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[gsort.hs:2:15-46] *ghci> :st qgsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *ghci>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of gqsort).

3.5. The GHCi Debugger 37

GHC User’s Guide Documentation, Release 9.8.1

The prompt has changed, now prefixed with . .., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 53):

[qsort.hs:(1,0)-(3,55)] *ghci> :show context
--> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *ghci>

To abandon the current evaluation, use :abandon (page 44):

[gsort.hs:(1,0)-(3,55)] *ghci> :abandon
[qsort.hs:2:15-46] *ghci> :abandon
*ghci>

3.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then
just entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 54)). So it will probably be necessary to issue a : continue (page 46) immediately when
evaluating result. Alternatively, you can use :force (page 48) which ignores breakpoints.

3.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 629)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 54) command. For example, if
we set a breakpoint on the base case of gsort:

*ghci> :list qsort

1 gsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

4

*ghci> b 1

Breakpoint 1 activated at gsort.hs:1:11-12
*ghci>

38 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

and then run a small gsort with tracing:

*ghci> :trace qgsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *ghci>

We can now inspect the history of evaluation steps:

[gqsort.hs:1:11-12] *ghci> :hist
- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 44):

[qsort.hs:1:11-12] *ghci> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]

as :: [al

a::a

[-1: gsort.hs:3:24-38] *ghci>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 48) can be used to
traverse forward in the history.

The :trace (page 54) command can be used with or without an expression. When used with-
out an expression, tracing begins from the current breakpoint, just like : step (page 54).

The history is only available when using : trace (page 54); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)
Default 50
Modify the depth of the evaluation history tracked by GHCi.

3.5. The GHCi Debugger 39

GHC User’s Guide Documentation, Release 9.8.1

3.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 194)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 54) and :history (page 48) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 40) which causes the evaluator to stop when an exception is
thrown, and -fbreak-on-error (page 40), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 54), in order to log the
steps leading up to the exception. For example:

*ghci> :set -fbreak-on-exception

*ghci> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *ghci> :hist

- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *ghci> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [al

a:: a

[-1: gsort.hs:3:24-38] *ghci> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *ghci> :print as
as = 'b' : 'c' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-exception (page 40) breaks on all exceptions.

-fbreak-on-error
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 40) breaks on only those exceptions which would
otherwise be uncaught.

40 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*ghci> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*ghci> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]

X i a
f:ra->b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known

yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the

type of its first argument is the same as the type of x, and its result type is shared with
result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 32)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*ghci> seq x ()
*ghci> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*ghci> :t x

X :: Integer
*ghci> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*ghci> let b = f 10
*ghci> :t b
b ::b
*ghci> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0

(continues on next page)

3.5. The GHCi Debugger 41

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

*ghci> :p b

b= (_t2::a)

*ghci> seq b ()

()

*ghci> :t b

b :: a

*ghci> :p b

b = Just 10

*ghci> :t b

b :: Maybe Integer

*ghci> :t f

f :: Integer -> Maybe Integer
*ghci> f 20

Just 20

*ghci> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

3.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable
is under evaluation, so the new evaluation just waits for the result before continuing, but
of course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’'re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

* Implicit parameters (see Implicit parameters (page 496)) are only available at the scope
of a breakpoint if there is an explicit type signature.

3.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 44)). For example, to start GHCi
and load the program whose topmost module is in the file Main. hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 65)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

-flocal-ghci-history
By default, GHCi keeps global history in $XDG DATA HOME/ghc/ghci history or
%APPDATA%/<app>/ghci history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history

42 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

It will create .ghci-history in current folder where GHCIi is launched.

-fghci-leak-check
(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

3.6.1 Packages
Most packages (see Using Packages (page 216)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (pkg) (page 217) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
ghci>

The following command works to load new packages into a running GHCi:

ghci> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

3.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11lib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 17).) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 243) command-line option,

* The standard library search path for your system loader, which on some systems may be
overridden by setting the LD LIBRARY PATH environment variable.

* The linker standard library search can also be overridden on some systems using the
LIBRARY_PATH environment variable. Because of some implementation detail on Win-
dows, setting LIBRARY PATH will also extend the system loader path for any library it
finds. So often setting LIBRARY PATH is enough.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.dl1, liblib.
dl1l. GHCIi also has full support for import libraries, either Microsoft style .1ib, or GNU GCC
style .a and .dl1.a libraries. If you have an import library it is advisable to always specify
the import library instead of the .dl1l. e.g. use -lgcc’ instead of " -1libgcc s seh-1.
Again, GHCi will signal an error if it can’t find the library.

3.6. Invoking GHCi 43

GHC User’s Guide Documentation, Release 9.8.1

GHCi can also load plain object files (.0 or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 242)).

3.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

:add [*](module)
Add {module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types

List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 56) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable,
—SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 38) for more about GHCi’s debugging facilities. See also: :trace (page 54),
:history (page 48), : forward (page 48).

tbreak [(identifier) | [{(module)] (line) [{column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 35).

tbrowse[!] [[*] (module)]
Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What'’s really in scope at the prompt? (page 24)).

There are two variants of the browse command:

» If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of :browse (page 44) is

a4 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

available.

e Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

ghci> :browse! Data.Maybe
- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCIi session - see What’s really in scope
at the prompt? (page 24)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

ted (dir)
Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 54) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:emd (expr)
Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 45) command is useful with :def (page 46) and :set stop (page 53).

:complete (type) [(n)-1[{(m)] (string-literal)
This command allows to request command completions from GHCi even when interacting
over a pipe instead of a proper terminal and is designed for integrating GHCi’s comple-
tion with text editors and IDEs.

When called, :complete (page 45) prints the (n)* to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and {(m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 45) begins with a header line containing three space-
delimited fields:

3.7. GHCi commands 45

GHC User’s Guide Documentation, Release 9.8.1

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

ghci> :complete repl 0 ""

0 470 ""

ghci> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"
"Foreign.C.String"
"Foreign.C.Types"

ghci> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"
"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

ghci> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"
"Foreign.Storable"

ghci> :complete repl "map"

33"

"map"

"mapM"

"mapM_"

ghci> :complete repl 5-10 "map"
03"

:continue [{ignoreCount)]
Continue the current evaluation, when stopped at a breakpoint.

If an (ignoreCount) is specified, the program will ignore the current breakpoint for the
next (ignoreCount) iterations. See command :ignore (page 49).

:def[!] (name) (expr)
:def (page 46) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines anew GHCicommand :name, implemented by the Haskell expres-
sion (expr), which must have type String -> I0 String. When :name args is typed at
the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the
result must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

ghci> let date @ = Data.Time.getZonedTime >>= print >> return ""
ghci> :def date date

(continues on next page)

46 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

ghci> :date
2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 45):

ghci> let mycd d = System.Directory.setCurrentDirectory d >> return ""
ghci> :def mycd mycd
ghci> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

ghci> :def make (_ -> return ":! ghc --make Main")

We can define a command that reads GHCIi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

ghci> :def . readFile
ghci> :. cmds.ghci

Notice that we named the command :., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands :{, :} and :!.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 53) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | (num)
Disable one or more breakpoints by number (use :show breaks (page 53) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)

Displays the documentation for the given name. Currently the command is restricted to
displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

tedit (file)
Opens an editor to edit the file (file), or the most recently loaded module if {file) is omitted.
If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the VISUAL (page 47) or EDITOR
environment variables, or a default editor on your system if neither is not set. You can
change the editor using :set editor (page 52).

VISUAL
Hidden

:enable * | (num)
Enable one or more disabled breakpoints by number (use :show breaks (page 53) to
see the number and state of each breakpoint). The * form enables all the disabled break-
points. Enabling a break point will reset its ignore count to 0. (See :ignore (page 49))

3.7. GHCi commands a7

GHC User’s Guide Documentation, Release 9.8.1

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 51). Unlike :print
(page 51), :force (page 48) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 38) for more about GHCi’s debugging facilities. See also: :trace (page 54),
:history (page 48), :back (page 44).

thelp
:?

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with :trace (page 54); see Tracing and history (page 38). To set the number
of history entries stored by GHCIi, use the -fghci-hist-size=(n) (page 39) flag.

tinfo[!] (name)
Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name),
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : Lload (page 50) or :module (page 51) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {name) in their head.

:instances (type)
Displays all the class instances available to the argument (type). The command will
match (type) with the first parameter of every instance and then check that all constraints
are satisfiable.

When combined with PartialTypeSignatures (page 499), a user can insert wildcards
into a query and learn the constraints required of each wildcard for (type) match with
an instance.

The output is a listing of all matching instances, simplified and instantiated as much as
possible.

For example:

> :instances Maybe (Maybe Int)

instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

(continues on next page)

48 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

> :instances Maybe _
instance Eq _ => Eq (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Monoid (Maybe) -- Defined in ‘GHC.Base’
instance Ord _ => 0Ord (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Semigroup (Maybe) -- Defined in ‘GHC.Base’
instance Show _ => Show (Maybe) -- Defined in ‘GHC.Show’

instance Read = => Read (Maybe) -- Defined in ‘GHC.Read’

Only instances which could potentially be used will be displayed in the results. Instances
which require unsatisfiable constraints such as TypeError will not be included. In the
following example, the instance for A is not shown because it cannot be used.

ghci>:set -XDataKinds -XUndecidablelInstances

ghci>import GHC.TypelLits

ghci>class A a

ghci>instance (TypeError (Text "Not possible")) => A Bool
ghci>:instances Bool

instance Eq Bool -- Defined in ‘GHC.Classes’
instance Ord Bool -- Defined in ‘GHC.Classes’
instance Enum Bool -- Defined in ‘GHC.Enum’
instance Show Bool -- Defined in ‘GHC.Show’
instance Read Bool -- Defined in ‘GHC.Read’
instance Bounded Bool -- Defined in ‘GHC.Enum’

:issafe [(module)]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

:ignore (break) (ignoreCount)
Set the ignore count of the breakpoint with number (break) to (ignoreCount).

The next (ignoreCount) times the program hits the breakpoint {(break), this breakpoint
is ignored and the program doesn’t stop. Every time the breakpoint is ignored, the
ignore count is decremented by 1. When the ignore count is zero, the program again
stops at the break point.

You can also specify an (ignoreCount) on a :continue (page 46) command when you
resume execution of your program.

tkind[!] (type)
Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 49) even allows you to write a partial application of a type synonym (usually disal-
lowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T :: ¥ -> % > %

ghci> :k T Int

T Int :: * -> *

Free type variables are also implicitly quantified, same as if you wrote :k forall a.
[a] so this also works:

3.7. GHCi commands 49

GHC User’s Guide Documentation, Release 9.8.1

ghci> :k [al
[a] :: *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)
Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [{(module)] (line)
Lists the source code around the given line number of {module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*](module)
Recursively loads the specified (module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 50) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the -fdefer-type-errors (page 394) flag is set before loading
and unset after loading if the flag has not already been set before. See Deferring type
errors to runtime (page 394) for further motivation and details.

After a : load (page 50) command, the current context is set to:
* (module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 50), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [(name)]
Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hS:(8,7)'(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.
The :loc-at command requires :set +c (page 56) to be set.
imain (argl) ... (argn)
When a program is compiled and executed, it can use the getArgs IO action to access

the command-line arguments. However, we cannot simply pass the arguments to main
while we are testing in ghci, as main doesn’t take its arguments directly.

50 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

Instead, we can use the :main (page 50) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
[IIfOOII,IIbarII]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

ghci> :main foo "bar baz"
["foo","bar baz"]

ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other IO actions can be called, either with the -main-is flag or the : run (page 52)

command:
ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print

ghci> :set -main-is foo
ghci> :main foo "bar baz"

foo

["foo","bar baz"]

ghci> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What's really in scope at the prompt? (page 24)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 51) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 51) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 51) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 32) for more information.
See also the :sprint (page 54) command, which works like :print (page 51) but does
not bind new variables.

rquit
Quits GHCi. You can also quit by typing Control-D at the prompt.
:reload[!]
Attempts to reload the current target set (see : load (page 50)) if any of the modules in

the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the -fdefer-type-errors (page 394) flag is set before loading
and unset after loading if the flag has not already been set before. See Deferring type
errors to runtime (page 394) for further motivation and details.

3.7. GHCi commands 51

GHC User’s Guide Documentation, Release 9.8.1

irun
See :main (page 50).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. The syntax for file-name ar-
guments respects shell quoting rules, i.e., file names containing spaces can be enclosed
in double quotes or with spaces escaped with a backslash. This command is compatible
with multiline statements as set by :set +m (page 56)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 56) for a list of available
options and Interactive-mode options (page 141) for a list of GHCi-specific flags. The
:set (page 52) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.
Environment.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 47) to (cmd).

:set local-config (source|ignore)
If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.

Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 59) on the command line, or sourced via :script (page 52).

:set prog (prog)
Sets the string to be returned when the program calls System.Environment.
getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

* %S by the names of the modules currently in scope.

* %1 by the line number (as referenced in compiler messages) of the current prompt.
* %d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
* %t by the current time in 24-hour HH:MM:SS format.

* %T by the current time in 12-hour HH:MM:SS format.

* %@ by the current time in 12-hour am/pm format.

* %A by the current time in 24-hour HH:MM format.

* %u by the username of the current user.

e %w by the current working directory.

* %0 by the operating system.

* %a by the machine architecture.

* %N by the compiler name.

* %V by the compiler version.

* %scall(cmd [args]) by the result of calling cmd args.

52 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

. %% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont (prompt)
Sets the string to be used as the continuation prompt (used when using the : { (page 21)
command) in GHCIi.

:set prompt-function (prompt-function)
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What's really in
scope at the prompt? (page 24) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)
Sets the function to be used for the continuation prompt (used when using the :{
(page 21) command) displaying in GHCi.

:set stop (num) (cmd)
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 53) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 46) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t
want such a message, you can use the :disable (page 47) command. What’s more, with
cunning use of :def (page 46) and :cmd (page 45) you can use :set stop (page 53) to
implement conditional breakpoints:

*ghci> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else,
—return \":continue\"")
*ghci> :set stop 0 :cond (x < 3)

To ignore breakpoints for a specified number of iterations use the :ignore (page 49) or
the (ignoreCount) parameter of the :continue (page 46) command.

:seti [(option) ...]
Like :set (page 52), but options set with : seti (page 53) affect only expressions and com-
mands typed at the prompt, and not modules loaded with :load (page 50) (in contrast,
options set with :set (page 52) apply everywhere). See Setting options for interactive
evaluation only (page 57).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

3.7. GHCi commands 53

GHC User’s Guide Documentation, Release 9.8.1

:show imports
Show the imports that are currently in force, as created by import and :module (page 51)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 45) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 53)).

:show targets
Show list of currently loaded modules. This set of loaded modules can be modified by
:load (page 50), : reload (page 51), :add (page 44) and :unadd (page 55).

:show [args|prog|prompt|editor|stopl
Displays the specified setting (see :set (page 52)).

isprint (expr)
Prints a value without forcing its evaluation. :sprint (page 54) is similar to :print
(page 51), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {(expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 37).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at
the last breakpoint. Continuation with :steplocal (page 54) is not possible if this
last breakpoint was hit by an error (-fbreak-on-error (page 40)) or an exception
(-fbreak-on-exception (page 40)).

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 48).
See Tracing and history (page 38).

:type (expression)
Infers and prints the type of {expression), solving constraints and reducing type families
as much as possible. For polymorphic types, it does not instantiate any forall quantified
variables.

54 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

*X> :type length
length :: Foldable t ==t a -> Int

Type family reduction is skipped if the function is not fully instantiated, as this has been
observed to give more intuitive results. You may want to use :info (page 48) if you are
not applying any arguments, as that will return the original type of the function.

:type +d (expression)

Infers and prints the type of (expression), instantiating all the forall quantifiers, solv-
ing constraints, defaulting, and generalising. In this mode, if the inferred type is
constrained by any interactive class (Num, Show, Eq, Ord, Foldable, or Traversable),
the constrained type variable(s) are defaulted according to the rules described under
ExtendedDefaultRules (page 29). This mode is quite useful when the inferred type is
quite general (such as for foldr) and it may be helpful to see a more concrete instantia-
tion.

*X> :type +d length
length :: [a] -> Int

:type-at (path) (line) (col) (end-line) (end-col) [(name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames
(page 17) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case :type-at (page 55) falls back to a general : type
(page 54) like lookup.

The :type-at (page 55) command requires :set +c (page 56) to be set.

:unadd (module)
Removes {(module)(s) from the current target set, and perform a reload (see :add
(page 44) above).

:undef (name)
Undefines the user-defined command (name) (see :def (page 46) above).

:unset (option)
Unsets certain options. See The :set and :seti commands (page 56) for a list of available
options.

tuses (module) (line) (col) (end-line) {(end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)

(continues on next page)

3.7. GHCi commands 55

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 55) command requires :set +c (page 56) to be set.

(builtin-command)
Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of
builtin commands, excluding defined macros. See also: :def (page 46).

{command)
Executes the shell command (command).

3.8 The :set and :seti commands

The :set (page 52) command sets two types of options: GHCi options, which begin with “+~,
and “command-line” options, which begin with “-“.

Note: At the moment, the :set (page 52) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

3.8.1 GHCi options

GHCIi options may be set using :set (page 52) and unset using :unset (page 55).

The available GHCi options are:

:set +c

Collect type and location information after loading modules. The commands :all-types
(page 44), : loc-at (page 50), :type-at (page 55), and :uses (page 55) require +c to be
active.

:set +m

Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 22)).

:set +r

Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

:set +s

Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

56

Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

:set +t
Display the type of each variable bound after a statement is entered at the prompt. If the

statement is a single expression, then the only variable binding will be for the variable
it.

3.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 52). For example, to
turn on -Wmissing-signatures (page 96), you would say:

ghci> :set -Wmissing-signatures

GHCi will also accept any file-header pragmas it finds, such as {-# OPTIONS GHC ... #-}
and {-# LANGUAGE ... #-} (see Pragmas (page 583)). For example, instead of using :set
(page 52) to enable -Wmissing-signatures (page 96), you could instead write:

ghci> {-# OPTIONS GHC -Wmissing-signatures #-}

Any GHC command-line option that is designated as dynamic (see the table in Flag reference

(page 132)), may be set using :set (page 52). To unset an option, you can set the reverse
option:

’ghci> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 132) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 217), -I(dir) (page 237), -i(dir)[:{(dir)]*
(page 198), and -1 (lib) (page 242) in particular) will also work, but some may not take
effect until the next reload.

3.8.3 Setting options for interactive evaluation only

GHCIi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 52) command modifies both, but there is also a : seti (page 53) command (for
“set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

:seti -XMonoLocalBinds

It would be undesirable if MonoLocalBinds (page 505) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use :seti (page 53)
rather than :set (page 52), unless you really do want them to apply to all modules you load
in GHCi.

3.8. The :set and :seti commands 57

GHC User’s Guide Documentation, Release 9.8.1

The two sets of options can be inspected using the :set (page 52) and :seti (page 53) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

ghci> :seti

base language is: GHC2021

with the following modifiers:
-XExtendedDefaultRules
-XNoMonomorphismRestriction

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fexternal-dynamic-refs
-fignore-optim-changes
-fignore-hpc-changes
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 58). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 29)).

* The Monomorphism Restriction is disabled (see Switching off the Monomorphism Re-
striction (page 504)).

3.9 The .ghci and .haskeline files

3.9.1 The .ghci files

When it starts, unless the -ignore-dot-ghci (page 59) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ghcappdata/ghci.conf, where (ghcappdata) depends on your system, but is usually
something like $HOME/ . ghc or $XDG_CONFIG HOME/ghc on Unix or C:\Users{username}\
AppData\Roaming\ghc on Windows.

2. ./.ghci

The ghci. conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use :seti (page 53)
rather than :set (page 52) (see Setting options for interactive evaluation only (page 57)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

58 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.8.1

(Note that strictly speaking the -i (page 198) flag is a static one, but in fact it works to set it
using :set (page 52) like this. The changes won’t take effect until the next : Load (page 50),
though.)

Warning: Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary
commands that will be executed as the user. Use :set local-config (page 52) to inhibit
the processing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files, or
you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your .ghci file, you can use :source filetoread GHCicommands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 59) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script
Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 59) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:

1. You have a macro :time and enter :t 3
You get :type 3

2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter :t 3
You get :type 3 with your defined macro.

When giving priority to built-in commands, you can use :: (builtin-command) (page 56),
like : :type 3.

3.9. The .ghci and .haskeline files 59

https://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 9.8.1

3.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

3.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 240) flag either on the command line or with :set (page 52) (the
option -fbyte-code (page 240) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 51) command typically runs much faster than restart-
ing GHC with --make (page 68) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-
code modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

3.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 60) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 634) is in
effect, and in dynamically-linked mode if -dynamic (page 243) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with -fexternal-interpreter (page 60).

See also the -pgmi (cmd) (page 235) (Replacing the program for one or more phases
(page 234)) and -opti (option) (page 236) (Forcing options to a particular phase
(page 235)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 31)).

* When compiling Template Haskell code with -prof (page 634) we don’t need to compile
the modules without -prof (page 634) first (see Using Template Haskell with Profiling
(page 516)) because we can run the profiled object code in the interpreter.

60 Chapter 3. Using GHCi

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 9.8.1

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

3.12 Running the interpreter on a different host

When using the flag - fexternal-interpreter (page 60) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling) where
it is favourable to have the communication happen over the network. GHC provides two
utilities for this, which can be found in the utils directory.

* remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

* iserv-proxy needs to be built on the build machine by the build compiler.

After starting remote-iserv (tmp dir) (port) on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.

Providing -pgmi (/path/to/iserv-proxy) (page 235) and -opti (slave-ip) -opti
(slave-port) [-opti -v] (page 236)in addition to - fexternal-interpreter (page 60) will
then make ghc go through the proxy instead.

There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

3.13 Building GHCi libraries

When invoked in the static way, GHCi will use the GHC RTS’s static runtime linker to load
object files for imported modules when available. However, when these modules are built
with -split-sections (page 243) this linking can be quite expensive. To reduce this cost,
package managers and build systems may opt to produce a pre-linked GHCi object using
the --merge-objs (page 68) mode. This merges the per-module objects into a single object,
collapsing function sections into a single text section which can be efficiently loaded by the
runtime linker.

3.14 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 111) is ineffective in GHCi!

Before GHC 9.8, optimizations were considered too unstable to be used with the
bytecode interpreter. This restriction has been lifted, but is still regarded as exper-
imental and guarded by - funoptimized-core-for-interpreter (page 263), which
is enabled by default. In order to use optimizations, run:

ghci -fno-unoptimized-core-for-interpreter -0

3.12. Running the interpreter on a different host 61

GHC User’s Guide Documentation, Release 9.8.1

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page ??) switch, which
is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 50) or
:reload (page 51) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 681).
The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is

line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

62 Chapter 3. Using GHCi

CHAPTER
FOUR

USING RUNGHC

runghc/runhaskell allows you to run Haskell programs using the interpreter, instead of hav-
ing to compile them first.

4.1 Usage

The runghc command-line looks like:

’runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized by
both runghc and GHC but you want to pass it to GHC then you can place it after a - - separator.
Flags after the separator are treated as GHC only flags. Alternatively you can use the runghc
option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

4.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

* --version: print version information.

63

GHC User’s Guide Documentation, Release 9.8.1

4.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, - f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case
* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

64 Chapter 4. Using runghc

CHAPTER
FIVE

USING GHC

5.1 Using GHC

5.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

’main = putStrLn "Hello, World!" ‘

To compile the program, use GHC like this:

’$ ghc hello.hs ‘

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 76) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

65

GHC User’s Guide Documentation, Release 9.8.1

5.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

5.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -v0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -0 foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

In addition to passing arguments via the command-line, arguments can be passed via GNU-
style response files. For instance,

$ cat response-file
-01

Hello.hs

-0 Hello

$ ghc @response-file

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag implica-
tion. For instance, consider - fno-specialise (page 122) and -01 (page 111) (which implies
-fspecialise (page 122)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overridden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

5.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 584)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

66 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 584)).
Only dynamic flags can be used in an OPTIONS GHC pragma (see Dynamic and Mode options
(page 67)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 201) and have OPTION flags in your module, the OPTIONS GHC will get put into the gen-
erated . hc file).

5.1.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 52) command.

5.1.3 Dynamic and Mode options

Each of GHC’s command line options is classified as dynamic or mode:

Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, - -make (page 68) or -E (page 68). The available modes are listed
in Modes of operation (page 68).

Dynamic: A dynamic flag may be used on the command line, in a OPTIONS GHC
pragma in a source file, or set using :set (page 52) in GHCIi.

The flag reference tables (Flag reference (page 132)) lists the status of each flag.

5.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hie An extended Haskell interface file, produced by the Haskell compiler.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.

.S An assembly-language source file, usually produced by the compiler.

5.1. Using GHC 67

GHC User’s Guide Documentation, Release 9.8.1

.0 An object file, produced by an assembler.
Files with other suffixes (or without suffixes) are passed straight to the linker.
5.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 68) mode (Using ghc --make
(page 71)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCIi (page 15).

--run (file)
Run a script’s main entry-point. Similar to runghc/runhaskell this will by default use the
bytecode interpreter. If the command-line contains a - - argument then all arguments
that follow will be passed to the script. All arguments that precede - - are interpreted
as GHC arguments.

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to be
much easier, and faster, than using make. Make mode is described in Using ghc --make
(page 71).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 68) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. This flag
may be given multiple times, in which case each expression is evaluated sequentially.
See Expression evaluation mode (page 74) for more details.

-E
Stop after preprocessing (.hspp file)
-C
Stop after generating C (. hc file)
-S
Stop after generating assembly (. s file)
-C
Stop after generating object (.o0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 75).
--merge-objs

Merge a set of static object files into a library optimised for loading in GHCi. See Building
GHCIi libraries (page 61).

68 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

-M
Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 213).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 623) for details.

-shared
Create a shared object (or, on Windows, DLL). See Creating a DLL (page 684).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

--supported-extensions
--supported-languages
Print the supported language extensions.

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-booter-version
Print the numeric version of the GHC binary used to bootstrap the build of this compiler.

--print-build-platform
Print the target string of the build platform, on which GHC was built, as generated by
GNU Autotools. The format is cpu-manufacturer-operating system- (kernel), e.g.,
x86_ 64-unknown-linux.

--print-c-compiler-flags
List the flags passed to the C compiler during GHC build.

--print-c-compiler-link-flags
List the flags passed to the C compiler for the linking step during GHC build.

--print-debug-on
Print True if GHC was built with -DDebug flag. This enables assertions and extra debug
code. The flag can be set in GhcStagelHcOpts and/or GhcStage2HcOpts and is automat-
ically set for devell and devel?2 build flavors.

--print-global-package-db
Print the path to GHC’s global package database directory. A package database stores
details about installed packages as a directory containing a file for each package. This
flag prints the path to the global database shipped with GHC, and looks something like
/usr/1lib/ghc/package.conf.d on Unix. There may be other package databases, e.g.,
the user package databse. For more details see Package Databases (page 220).

5.1. Using GHC 69

GHC User’s Guide Documentation, Release 9.8.1

--print-have-interpreter
Print YES if GHC was compiled to include the interpreter, NO otherwise. If this GHC does
not have the interpreter included, running it in interactive mode (see --interactive
(page 68)) will throw an error. This only pertains the use of GHC interactively, not any
separate GHCIi binaries (see Using GHCi (page 15)).

--print-have-native-code-generator
Print YES if native code generator supports the target platform, NO otherwise. (See Na-
tive Code Generator (-fasm) (page 233))

--print-host-platform
Print the target string of the host platform, i.e., the one on which GHC
is supposed to run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system- (kernel), e.g., x86_64-unknown-1linux.

--print-leading-underscore
Print YES if GHC was compiled to use symbols with leading underscores in object files,
NO otherwise. This is usually atarget platform dependent.

--print-libdir
Print the path to GHC’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 216)).

--print-1d-flags
Print linke flags used to compile GHC.

--print-object-splitting-supported
Print YES if GHC was compiled with support for splitting generated object files into
smaller objects, NO otherwise. This feature uses platform specific techniques and may
not be available on all platforms. See -split-objs (page 241) for details.

--print-project-git-commit-id
Print the Git commit id from which this GHC was built. This can be used to trace the
current binary back to a specific revision, which is especially useful during development
on GHC itself. It is set by the configure script.

--print-project-version
Print the version set in the configure script during build. This is simply the GHC version.
--print-rts-ways
Packages, like the Runtime System, can be built in a number of ways: - profiling - with
profiling support - dynamic - with dynamic linking - logging - RTS event logging - threaded
- mulithreaded RTS - debug - RTS with debug information

Various combinations of these flavours are possible.

--print-stage
GHC is built using GHC itself and this build happens in stages, which are numbered.

» Stage 0 is the GHC you have installed. The “GHC you have installed” is also called
“the bootstrap compiler”.

* Stage 1 is the first GHC we build, using stage 0. Stage 1 is then used to build the
packages.

» Stage 2 is the second GHC we build, using stage 1. This is the one we normally
install when you say make install.

* Stage 3 is optional, but is sometimes built to test stage 2.

70 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Stage 1 does not support interactive execution (GHCi) and Template Haskell.

--print-support-smp
Print YES if GHC was built with multiporcessor support, NO otherwise.

--print-tables-next-to-code
Print YES if GHC was built with the flag - -enable-tables-next-to-code, NO otherwise.
This option is on by default, as it generates a more efficient code layout.

--print-target-platform
Print the target string of the target platform, i.e., the one on which gen-
erated binaries will run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system-(kernel), e.g., x86 64-unknown-1linux.

--print-unregisterised
Print YES if this GHC was built in unregisterised mode, NO otherwise. “Unregisterised”
means that GHC will disable most platform-specific tricks and optimisations. Only
the LLVM and C code generators will be available. See Unregisterised compilation
(page 234) for more details.

5.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

’ ghc --make Main.hs

|

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

’ghc Main.hs

|

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -j[(n)] (page 72) flag, you can compile modules in parallel. Specify -j (n) to
compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of processors.

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you'll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 66)).

5.1. Using GHC 71

GHC User’s Guide Documentation, Release 9.8.1

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 68), the linking phase is omitted (same as - -make -no-1ink).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -i (page 198)
option can be used to add directories to the search path (see The search path (page 198)).

-il{n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

5.1.5.2 GHC Jobserver Protocol

The GHC Jobserver Protocol was specified in GHC proposal #540.

This protocol allows a server to dynamically invoke many instances of a client process, while
restricting all of those instances to use no more than <n> capabilities. This is achieved by
coordination over a system semaphore (either a POSIX semaphore in the case of Linux and
Darwin, or a Win32 semaphore in the case of Windows platforms).

There are two kinds of participants in the GHC Jobserver protocol:
* The jobserver creates a system semaphore with a certain number of available tokens.

Each time the jobserver wants to spawn a new jobclient subprocess, it must first acquire
a single token from the semaphore, before spawning the subprocess. This token must
be released once the subprocess terminates.

Once work is finished, the jobserver must destroy the semaphore it created.
* A jobclient is a subprocess spawned by the jobserver or another jobclient.

Each jobclient starts with one available token (its implicit token, which was acquired
by the parent which spawned it), and can request more tokens through the Jobserver
Protocol by waiting on the semaphore.

Each time a jobclient wants to spawn a new jobclient subprocess, it must pass on a
single token to the child jobclient. This token can either be the jobclient’s implicit token,
or another token which the jobclient acquired from the semaphore.

Each jobclient must release exactly as many tokens as it has acquired from the
semaphore (this does not include the implicit tokens).

GHC itself acts as a jobclient which can be enabled by using the flag - jsem.

-jsem
Perform compilation in parallel when possible, coordinating with other processes
through the semaphore (sem) (specified as a string). Error if the semaphore doesn’t
exist.

Use of -jsem will override use of :ghc-flag:-j[{n)], and vice-versa.

72 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0540-jsem.rst

GHC User’s Guide Documentation, Release 9.8.1

5.1.5.3 Multiple Home Units

The compiler also has support for building multiple units in a single compiler invocation. In
modern projects it is common to work on multiple interdependent packages at once, using
the support for multiple home units you can load all these local packages into one ghc session
and quickly get feedback about how changes affect other dependent packages.

In order to specify multiple units, the -unit @(filename) (page 73) is given multiple times
with a response file containing the arguments for each unit. The response file contains a
newline separated list of arguments.

ghc -unit @unitA -unit @unitB

where the unitA response file contains the normal arguments that you would pass to - -make
mode.

-this-unit-id a-0.1.0.0
-i

-isrc

Al

A2

Then when the compiler starts in - -make mode it will compile both units a and b.

There is also very basic support for multiple home units in GHCi, at the moment you can start
a GHCi session with multiple units but only the : reload (page 51) is supported.

-unit @(filename)
This option is passed multiple times to inform the compiler about all the home units
which it will compile. The options for each unit are supplied in a response file which
contains a newline separated list of normal arguments.

There are a few extra flags which have been introduced to make working with multiple units
easier.

-working-dir (dir)
It is common to assume that a package is compiled in the directory where its cabal file
resides. Thus, all paths used in the compiler are assumed to be relative to this directory.
When there are multiple home units the compiler is often not operating in the standard
directory and instead where the cabal.project file is located. In this case the -working-dir
option can be passed which specifies the path from the current directory to the directory
the unit assumes to be its root, normally the directory which contains the cabal file.

When the flag is passed, any relative paths used by the compiler are offset by the working
directory. Notably this includes -1 (page 198) and -I(dir) (page 237) flags.

This option can also be queried by the getPackageRoot Template Haskell function. It is
intended to be used with helper functions such as makeRelativeToProject which make
relative filepaths relative to the compilation directory rather than the directory which
contains the .cabal file.

-this-package-name (unit-id)
This flag papers over the awkward interaction of the PackageImports (page 313) and
multiple home units. When using PackageImports you can specify the name of the pack-
age in an import to disambiguate between modules which appear in multiple packages
with the same name.

5.1. Using GHC 73

GHC User’s Guide Documentation, Release 9.8.1

This flag allows a home unit to be given a package name so that you can also disambiguate
between multiple home units which provide modules with the same name.

-hidden-module (module name)
This flag can be supplied multiple times in order to specify which modules in a home unit
should not be visible outside of the unit it belongs to.

The main use of this flag is to be able to recreate the difference between an exposed and
hidden module for installed packages.

-reexported-module (module name)
This flag can be supplied multiple times in order to specify which modules are not defined
in a unit but should be reexported. The effect is that other units will see this module as
if it was defined in this unit.

The use of this flag is to be able to replicate the reexported modules feature of packages
with multiple home units.

The home unit closure requirement

There is one very important closure property which you must ensure when using multiple
home units.

Any external unit must not depend on any home unit.

This closure property is checked by the compiler but it’s up to the tool invoking GHC to ensure
that the supplied list of home units obeys this invariant.

For example, if we have three units, p, g and r, where p depends on g and q depends on r,
then the closure property states that if we load p and r as home units then we must also load
g, because q depends on the home unit r and we need q because p depends on it.

5.1.5.4 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

74 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

5.1.5.5 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

Phase of the compilation | Suffix saying “start | Flag saying “stop | (suffix of) output
system here” after” file

literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -G, -S .hc, .s

C compiler (opt.) .hcor .c -S .S

assembler .S -C .0

linker (other) a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo. hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 233) for more details.

Note: Pre-processing is optional, the -cpp (page 237) flag turns it on. See Options affecting
the C pre-processor (page 237) for more details.

Note: The option -E (page 68) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 68) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 234) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 75) option:

-x {(suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -X hs M.my-hs.

5.1. Using GHC 75

GHC User’s Guide Documentation, Release 9.8.1

5.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Modes
of operation (page 68).

-V
The -v (page 76) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).
Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v(n)

To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0 Disable all non-essential messages (this is the default).

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 68) or --interactive (page 68) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 252)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some of the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 76)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC'’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:

-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the
UnicodeSyntax (page 271) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ® Monad m=Vab. ma—-mb-—-mb

-fprint-explicit-foralls
Using -fprint-explicit-foralls (page 76) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x
ghci> :t f
f:ra->a

(continues on next page)

76 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

ghci> :set -fprint-explicit-foralls
ghci> :t f
f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

* For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using -fprint-explicit-kinds (page 77) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds

ghci> data T a (b :: 1) = MKT

ghci> :t MkT

MKT :: forall k L (a :: k) (b :: 1). Tab

ghci> :set -fprint-explicit-kinds

ghci> :t MkT

MKT :: forall k 1 (a :: k) (b :: 1). T @{k} @L a b
ghci> :set -XNoPolyKinds

ghci> :t MkT

MKT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and 1) and two type vari-
ables (a and b). Note that k is an inferred variable and 1 is a specified variable (see
Inferred vs. specified type variables (page 377)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of 1 (with @l) is the
standard syntax for visible type application (see Visible type application (page 376)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when - fprint-explicit-kinds (page 77) is enabled.

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 77) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-axiom-incomps
Using -fprint-axiom-incomps (page 77) tells GHC to display incompatibilities be-
tween closed type families’ equations, whenever they are printed by :info (page 48)
or --show-iface (file) (page 69).

5.1. Using GHC 77

GHC User’s Guide Documentation, Release 9.8.1

ghci> :i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
==) (f a) (g b) = (f == g) & (a == b)
==) a a = 'True
==) 1 2 = 'False
ghci> :set -fprint-axiom-incomps
ghci> :1i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
{- #0 -} (==) (f a) (g b) = (f == g) & (a == D)
{- #1 -} (==) a a = 'True
-- incompatible with: #0
{- #2 -} (==) 1 2 = 'False
-- incompatible with: #1, #0

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations

Using -fprint-equality-relations (page 78) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC'’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 78), GHC prints all of these as ~. See also Equality
constraints (page 478).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

type Foo Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-redundant-promotion-ticks
The DataKinds (page 351) extension allows us to use data constructors at the type level:

type B = True -- refers to the data constructor True (of type Bool)

78 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

When there is a type constructor of the same name, it takes precedence during name
resolution:

data True = MKT
type B = True -- now refers to the type constructor (of kind Type)

We can tell GHC to prefer the data constructor over the type constructor using special
namespace disambiguation syntax that we call a promotion tick:

data True = MKT
type B = 'True
-- refers to the data constructor True (of type Bool)
-- even in the presence of a type constructor of the same name

Note that the promotion tick is not a promotion operator. Its only purpose is to instruct
GHC to prefer the promoted data constructor over a type constructor in case of a name
conflict. Therefore, GHC will not print the tick when the name conflict is absent:

ghci> type B = False
ghci> :kind! B

B :: Bool
= False -- no promotion tick here
ghci> data False -- introduce a name conflict

ghci> :kind! B
B :: Bool
= 'False -- promotion tick resolves the name conflict

The - fprint-redundant-promotion-ticks (page 78) instructs GHC to print the promo-
tion tick unconditionally.

-fprint-typechecker-elaboration
When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- (%) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
o< (%)
return
let
AbsBinds [] []
{Exports: [a <= a

(continues on next page)

5.1. Using GHC 79

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics
Causes GHC to group diagnostic messages by severity and output them after other mes-
sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with --make (page 68) and -j[(n)]
(page 72). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=(always|auto|never)
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
* message
- header
* warning
* error
* fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret
Default on

Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault.

-fshow-error-context

Default on

80 Chapter 5. Using GHC

https://en.wikipedia.org/wiki/ANSI_escape_code#SGR

GHC User’s Guide Documentation, Release 9.8.1

Controls whether GHC displays information about the context in which an error occurred.
This controls whether the part of the error message which says “In the equation..”, “In
the pattern..” etc is displayed or not.

-ferror-spans
Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

’test.hs:3:6: parse error on input “where'

becomes:

’test296.hs:3:6-10: parse error on input “where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going
Since 8.10.1

Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j[{(n)] (page 72)) is in use.

-freverse-errors
Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 181).

5.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-mavx
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 233) may use AVX if your processor supports it, but detects
this automatically, so no flag is required.

-mavx2
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

5.1. Using GHC 81

GHC User’s Guide Documentation, Release 9.8.1

The LLVM backend (page 233) may use AVX2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512cd
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 233) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512er
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 233) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512f
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512pf
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 233). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 233) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-msse
(x86 only) Use the SSE registers and instruction set to implement floating point opera-
tions when using the native code generator (page 233). This gives a substantial perfor-
mance improvement for floating point, but the resulting compiled code will only run on
processors that support SSE (Intel Pentium 3 and later, or AMD Athlon XP and later).
The LLVM backend (page 233) will also use SSE if your processor supports it but detects
this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default. Even when setting this flag, SSE2 will be used instead.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 233). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 233) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default.

-msse3
(x86 only) Use the SSE3 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 233).

Note that the current version does not use SSE3 specific instructions and only requires
SSE2 processor support.

82 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

The LLVM backend (page 233) will also use SSE3 if your processor supports it but detects
this automatically so no flag is required.

-msse4
(x86 only) Use the SSE4 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 233).

Note that the current version does not use SSE4 specific instructions and only requires
SSE2 processor support.

The LLVM backend (page 233) will also use SSE4 if your processor supports it but detects
this automatically so no flag is required.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 233). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 233) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

-mbmi
(x86 only) Use the BMI1 instruction set to implement some bit operations when using
the native code generator (page 233).

Note that the current version does not use BMI specific instructions, so using this flag
has no effect.

-mbmi2
(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 233). The resulting compiled code
will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

-mfma
Since 9.8.1

Use native FMA instructions to implement the fused multiply-add floating-point oper-
ations of the form x * y + z. This allows computing a multiplication and addition in
a single instruction, without an intermediate rounding step. Supported architectures:
X86 with the FMAS instruction set (this includes most consumer processors since 2013),
PowerPC and AArch64.

When this flag is disabled, GHC falls back to the C implementation of fused multiply-
add, which might perform non-IEEE-compliant software emulation on some platforms
(depending on the implementation of the C standard library).

5.1.8 Haddock

-haddock
By default, GHC ignores Haddock comments (-- | ... and -- ...) and does not
check that they’'re associated with a valid term, such as a top-level type-signature. With
this flag GHC will parse Haddock comments and include them in the interface file it
produces.

N

Consider using -Winvalid-haddock (page 106) to be informed about discarded docu-
mentation comments.

5.1. Using GHC 83

GHC User’s Guide Documentation, Release 9.8.1

5.1.9 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s pack-
age database does not contain the rts package, or one wants to specify a specific
ghcversions.h to be included. This option can be used to specify the path to the
ghcversions.h file to be included. This is primarily intended to be used by GHC'’s build
system.

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 181).

5.1.9.1 Other environment variables

GHC can also be configured using various environment variables.

GHC_NO_UNICODE
When non-empty, disables Unicode diagnostics output regardless of locale settings.

GHC_CHARENC
When set to UTF-8 the compiler will always print UTF-8-encoded output, regardless of
the current locale.

5.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. Some options control individual
warnings and others control collections of warnings. Use -W(wflag) to turn on an individual
warning or a collection, or use -Wno- (wflag) to turn it off. Use -Werror to make all warnings
into fatal errors, or -Werror={(wflag) to make a specific warning into an error. Reverse this
with -Wwarn to make all warnings non-fatal, or -Wwarn=(wflag) to make a specific warning
non-fatal.

Note: In GHC < 8 the syntax for -W(wflag) was -fwarn-{wflag) (e.g.
-fwarn-incomplete-patterns). This spelling is deprecated, but still accepted for
backwards compatibility. Likewise, -Wno-{wflag) used to be fno-warn-(wflag) (e.g.
-fno-warn-incomplete-patterns).

84 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

5.2.1 Warning groups

The following flags are simple ways to select standard “packages” of warnings. They can be
reversed using -Wno-{group), which has the same effect as -Wno-... for every individual
warning in the group.

-Wdefault
Since 8.0

By default, you get a standard set of warnings which are generally likely to indicate bugs
in your program. These are:

* -Woverlapping-patterns (page 98)

* -Wwarnings-deprecations (page 90)

* -Wdeprecations (page 90)

e -Wdeprecated-flags (page 91)

e -Wunrecognised-pragmas (page 88)
e -Wduplicate-exports (page 93)

* -Wderiving-defaults (page 92)

e -Woverflowed-literals (page 92)
e -Wempty-enumerations (page 92)

* -Wmissing-fields (page 95)

* -Wmissing-methods (page 96)

* -Wwrong-do-bind (page 105)

e -Wsimplifiable-class-constraints (page 100)
* -Wtyped-holes (page 88)

e -Wdeferred-type-errors (page 88)
e -Wpartial-type-signatures (page 88)
* -Wunsupported-calling-conventions (page 91)

e -Wdodgy-foreign-imports (page 91)

* -Winline-rule-shadowing (page 105)

e -Wunsupported-1lvm-version (page 101)

* -Wmissed-extra-shared-1lib (page 101)

* -Wtabs (page 100)

* -Wunrecognised-warning-flags (page 87)

e -Winaccessible-code (page 99)

e -Wstar-binder (page 100)

e -Wstar-is-type (page 100)

* -Woperator-whitespace-ext-conflict (page 106)

* -Wambiguous-fields (page 107)

e -Wunicode-bidirectional-format-characters (page 108)
e -Wforall-identifier (page 107)

e -Wgadt-mono-local-binds (page 108)

* -Wtype-equality-requires-operators (page 109)

e -Winconsistent-flags (page 110)

-W
Provides the standard warnings plus

e -Wunused-binds (page 101)

* -Wunused-matches (page 103)

* -Wunused-foralls (page 103)

* -Wunused-imports (page 102)

e -Wincomplete-patterns (page 94)
* -Wdodgy-exports (page 91)

* -Wdodgy-imports (page 92)

5.2. Warnings and sanity-checking 85

GHC User’s Guide Documentation, Release 9.8.1

* -Wunbanged-strict-patterns (page 105)

-Wextra
Alias for -W (page 85)

-Wall
Turns on all warning options that indicate potentially suspicious code. They include all
warnings in -Wextra (page 86), plus:

-Whi-shadowing (page 93)
-Wincomplete-record-updates (page 95)
-Wincomplete-uni-patterns (page 94)
-Wmissing-pattern-synonym-signatures (page 97)
-Wmissing-signatures (page 96)
-Wname-shadowing (page 98)

-Worphans (page 98)
-Wredundant-record-wildcards (page 104)
-Wstar-is-type (page 100)
-Wtrustworthy-safe (page 566)
-Wtype-defaults (page 100)
-Wunused-do-bind (page 103)
-Wunused-record-wildcards (page 104)
-Wincomplete-export-warnings (page 110)

-Weverything
Since 8.0
Turns on every single warning supported by the compiler.
-Wcompat
Since 8.0

Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

* -Wsemigroup (page 91)
-Wnoncanonical-monoid-instances (page 90)
-Wnoncanonical-monad-instances (page 90)
-Wcompat-unqualified-imports (page 87)
-Wtype-equality-out-of-scope (page 108)
-Wimplicit-rhs-quantification (page 109)

-w
Turns off all warnings, including the standard ones and those that -Wall (page 86)
doesn’t enable.

-Wnot
Deprecated alias for -w (page 86)

When a warning is emitted, the specific warning flag which controls it is shown, but the group
can optionally be shown as well:

-fshow-warning-groups
Default off

86 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

5.2.2 Treating warnings as fatal errors

These options control which warnings are considered fatal and cause compilation to abort.
-Werror
Since 6.8 (-Wwarn)

Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn={wflag) to stop treating specific warnings as errors.

-Werror=(wflag)
Implies -W(wflag)

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn={(wflag).

-Werror=(group) has the same effect as -Werror=. .. for each warning flag in the group
(for example, -Werror=compat will turn every warning in the -Wcompat (page 86) group
into a fatal error).

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page ??) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=(wflag) - the warning will still
be enabled.

-Wwarn={group) has the same effect as -Wwarn=. .. for each warning flag in the group
(for example, -Wwarn=compat will mark every warning in the -Wcompat (page 86) group
as non-fatal).

-Wno-error=(wflag)
Alternative spelling for -Wwarn=(wflag).

5.2.3 Individual warning options

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Since 8.0
Default on
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.
-Wcompat-unqualified-imports
Since 8.10

5.2. Warnings and sanity-checking 87

GHC User’s Guide Documentation, Release 9.8.1

Warns on unqualified imports of core library modules which are subject to change in
future GHC releases. Currently the following modules are covered by this warning:

e Data.List due to the future addition of Data.List.singleton and specialisation of
exports to the [] type. See the mailing list for details.

This warning can be addressed by either adding an explicit import list or using a
qualified import.

-Wprepositive-qualified-module
Since 8.10

Normally, imports are qualified prepositively: import qualified M. By wusing
ImportQualifiedPost (page 314), the qualified keyword can be used after the module
name. Like so: import M qualified. This will warn when the first, prepositive syntax
is used.

-Wtyped-holes
Since 7.8
Default on

Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 298) and Deferring
type errors to runtime (page 394).

-Wdeferred-type-errors
Since 8.0
Default on

Causes a warning to be reported when a type error is deferred until runtime. See Defer-
ring type errors to runtime (page 394).

-Wdeferred-out-of-scope-variables
Since 8.0

Warn when a deferred out-of-scope variable is encountered. See Deferring type errors
to runtime (page 394).

-Wpartial-type-signatures
Since 7.10
Default on

Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 499) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 499).

-fhelpful-errors
Since 7.4
Default on

When a name or package is not found in scope, make suggestions for the name or package
you might have meant instead.

-Wunrecognised-pragmas
Since 6.10

88 Chapter 5. Using GHC

https://groups.google.com/forum/#!topic/haskell-core-libraries/q3zHLmzBa5E

GHC User’s Guide Documentation, Release 9.8.1

Default on

Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

-Wmisplaced-pragmas
Since 9.4
Default on

Warn when a pragma that should only appear in the header of a module, such as a LAN-
GUAGE or OPTIONS GHC pragma, appears in the body of the module instead.

-Wmissed-specialisations
Since 8.0
Default off

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as
INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page ??).

-Wmissed-specializations
Alias for -Wmissed-specialisations (page 89)

-Wall-missed-specialisations
Since 8.0
Default off

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page ??).

-Wall-missed-specializations
Alias for -Wall-missed-specialisations (page 89)

-Wextended-warnings
Since 9.8.1
Default on

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used, regardless of the category which may be associated with
the pragma. See WARNING and DEPRECATED pragmas (page 585) for more details on
the pragmas. This implies -Wdeprecations (page 90) and all -Wx- (category) flags.

-Wx- (category)
Since 9.8.1

Default on

5.2. Warnings and sanity-checking 89

GHC User’s Guide Documentation, Release 9.8.1

Causes a warning to be emitted when a module, function or type with a WARNING in
"x-{category)" pragma is used. See WARNING and DEPRECATED pragmas (page 585)
for more details on the pragmas.

-Wdeprecations

Default on

Causes a warning to be emitted when a module, function or type with DEPRECATED
pragma, or a WARNING pragma with the deprecated category, is used. See WARNING
and DEPRECATED pragmas (page 585) for more details on the pragmas.

-Wwarnings-deprecations
Since 6.10

Default on

Causes a warning to be emitted when a module, function or type with DEPRECATED
pragma, or a WARNING pragma with the deprecated category, is used. See WARNING
and DEPRECATED pragmas (page 585) for more details on the pragmas. An alias for
-Wdeprecations (page 90).

-Wnoncanonical-monad-instances
Since 8.0
Default on
Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
e If (>>) is defined it must be canonical (i.e. (>>) = (*>)).
Moreover, in Applicative instance declarations:
e Warn if pure is defined backwards (i.e. pure

e Warn if (*>) is defined backwards (i.e. (*>)

return).
(>>)).
This warning is part of the -Wcompat (page 86) option group.

-Wnoncanonical-monadfail-instances
Since 8.0

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used
during the transition period of the MonadFail proposal, to detect when an instance of the
Monad class was not defined via MonadFail, or when a MonadFail instance was defined
backwards, using the method in Monad.

-Wnoncanonical-monoid-instances
Since 8.0
Default on
Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:

In Monoid instances declarations warn if any of the following conditions does not hold:

90 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

e If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
* Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is part of the -Wcompat (page 86) option group.
-Wmissing-monadfail-instances
Since 8.0

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used during
the transition period of the MonadFail proposal, to warn when a failable pattern is used
in a do-block that does not have a MonadFail instance.

-Wsemigroup
Since 8.0

Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 86) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Since 6.10
Default on
Causes a warning to be emitted when a deprecated command-line flag is used.
-Wunsupported-calling-conventions
Since 7.6

Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Since 6.10

Causes a warning to be emitted for foreign imports of the following form:

’foreign import "f" f :: FunPtr t

on the grounds that it probably should be

’foreign import "&f" f :: FunPtr t

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports

5.2. Warnings and sanity-checking 91

GHC User’s Guide Documentation, Release 9.8.1

Since 6.12

Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports
Since 6.8
Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

« When an import statement hides an entity that is not exported.
-Woverflowed-literals
Since 7.8
Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.
-Wempty-enumerations
Since 7.8
Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].
-Wderiving-defaults
Since 8.10

Causes a warning when both DeriveAnyClass (page 433) and
GeneralizedNewtypeDeriving (page 427) are enabled and no explicit deriving strategy
is in use. For example, this would result a warning:

class C a
newtype T a = MkT a deriving C

-Wduplicate-constraints
Since 7.8

Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 92).
-Wredundant-constraints
Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

f:: (Eq a, Ord a) =>a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.

92 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

* A constraint in the type signature is not used in the code it covers:

f :: EQq a =a->a ->Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, you can suppress it on a per-module basis with
-Wno-redundant-constraints (page 92). Occasionally you may specifically want
a function to have a more constrained signature than necessary, perhaps to leave
yourself wiggle-room for changing the implementation without changing the API. In
that case, you can suppress the warning on a per-function basis, using a call in a dead
binding. For example:

f:: EQa=>a->a ->Bool
f xy = True
where
_ =X == X -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Since at least 5.04
Default on

Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

-Whi-shadowing
Since at least 5.04, deprecated

Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities
Since 7.2

Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars
Since 8.6

This warning is deprecated. It no longer has any effect since GHC 8.10. It was used
to detect if a kind variable is not explicitly quantified over. For instance, the following
would produce a warning:

f :: forall (a :: k). Proxy a

5.2. Warnings and sanity-checking 93

GHC User’s Guide Documentation, Release 9.8.1

This is now an error and can be fixed by explicitly quantifying over k:

’f :: forall k (a :: k). Proxy a

or

]f :: forall {k} (a :: k). Proxy a

-Wimplicit-lift
Since 9.2
Template Haskell quotes referring to local variables bound outside of the quote are im-
plicitly converted to use lift. For example, f x = [| reverse x |] becomes f x =
[| reverse $(lift x) |]1). This flag issues a warning for every such implicit addition

of Lift. This can be useful when debugging more complex staged programs, where an
implicit 1ift can accidentally conceal a variable used at a wrong stage.

-Wimplicit-prelude

Since 6.8

Default off
Have the compiler warn if the Prelude is implicitly imported. This happens unless ei-
ther the Prelude module is explicitly imported with an import ... Prelude ... line, or

this implicit import is disabled (either by NoImplicitPrelude (page 289) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
NoImplicitPrelude (page 289) would change whether it refers to the Prelude. For
example, no warning is given when 368 means Prelude.fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

-Wincomplete-patterns
Since 5.04

The option -Wincomplete-patterns (page 94) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 94) is enabled.

g [1=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 85).

-Wincomplete-uni-patterns
Since 7.2

The flag -Wincomplete-uni-patterns (page 94) is similar to -Wincomplete-patterns
(page 94), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] -> 2
Just k = fy

94 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Furthermore, this flag also applies to lazy patterns, since they are syntactic sugar for
pattern bindings. For example, f ~(Just x) = (x,x) is equivalentto f y = let Just
X =y in (x,X).

-fmax-pmcheck-models=(n)
Since 8.10
Default 30

The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y buty is
not 4.

This can be exponential in the arity of the pattern and in the number of guards in some
cases. The -fmax-pmcheck-models=(n) (page 95) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates
Since 6.4

The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 95) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies
Since 8.8.1
Default off

The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When
-Wmissing-deriving-strategies (page 95) is enabled, the compiler will emit a warning
about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the
warning is enabled, but DerivingStrategies (page 435) is not enabled, the compiler
will suggest turning on the DerivingStrategies (page 435) extension.

-Wmissing-fields
Since at least 5.04

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error

5.2. Warnings and sanity-checking 95

GHC User’s Guide Documentation, Release 9.8.1

(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists
Since 8.4

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X =X

The -Wmissing-export-lists (page 96) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists
Since 7.0

This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°Ffxx

The -Wmissing-import-lists (page 96) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z's exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
Since at least 5.04
Default on

This option warns you whenever an instance declaration is missing one or more methods,
and the corresponding class declaration has no default declaration for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 587).

-Wmissing-signatures
Since at least 5.04
Default off

If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 96) option. As part of the warning GHC also re-
ports the inferred type.

-Wmissing-exported-sigs
Since 7.10

This option is now deprecated in favour of -Wmissing-exported-signatures (page 96).

96 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

-Wmissing-exported-signatures
Since 8.0
Default off

If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 96) option. If this option is used in conjunction with -Wmissing-signatures
(page 96) then every top-level function/value must have a type signature. As part of
the warning GHC also reports the inferred type.

-Wmissing-local-sigs
Since 7.0
This option is now deprecated in favour of -Wmissing-local-signatures (page 97).
-Wmissing-local-signatures
Since 8.0

If you use the -Wmissing-local-signatures (page 97) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
Since 8.0
Default off

If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 97) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 96) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type.

-Wmissing-kind-signatures
Since 9.2
Default off

If you would like GHC to check that every data, type family, type-class defi-
nition has a standalone kind signature (page 360) or a CUSK (page 358), use
the -Wmissing-kind-signatures (page 97) option. You can specify the kind via
StandaloneKindSignatures (page 360) or CUSKs (page 358).

Note that -Wmissing-kind-signatures (page 97) does not warn about associated type
families, as GHC considers an associated type family declaration to have a CUSK if its en-
closing class has a CUSK. (See Complete user-supplied kind signatures and polymorphic
recursion (page 358) for more on this point.) Therefore, giving the parent class a stan-
dalone kind signature or CUSK is sufficient to fix the warning for the class’s associated
type families as well.

-Wmissing-poly-kind-signatures
Since 9.8
Default off

This is a restricted version of -Wmissing-kind-signatures (page 97).

5.2. Warnings and sanity-checking 97

GHC User’s Guide Documentation, Release 9.8.1

It warns when a declaration defines a type constructor that lacks a standalone kind signa-
ture (page 360) and whose inferred kind is polymorphic (which happens with -PolyKinds.
For example

data T a = MKT (a -> Int) -- T :: Type -> Type
-- Not polymorphic, hence no warning
data W f a = MkW (f a) -- W :: forall k. (k->Type) -> k -> Type

-- Polymorphic, hence warning!

It is useful to catch accidentally polykinded types, or to make that polymorphism explicit,
without requiring a kind signature for every type.

-Wmissing-exported-pattern-synonym-signatures

Default off

If you would like GHC to check that every exported pattern synonym has
a type signature, but not check unexported pattern synonyms, use the
-Wmissing-exported-pattern-synonym-signatures (page 98) option. If this op-
tion is used in conjunction with -Wmissing-pattern-synonym-signatures (page 97)
then every pattern synonym must have a type signature. As part of the warning GHC
also reports the inferred type.

-Wname-shadowing

Since at least 5.04

This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callinf = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; ignore <- that; return (the other) }

-Worphans

Since 6.4

These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 214) for details.

The flag -Worphans (page 98) warns about user-written orphan rules or instances.

-Woverlapping-patterns

Since at least 5.04

By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
Il =0

(continues on next page)

98

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

f (_:xs)

1
.f ||2|| 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

If the programmer is dead set on keeping a redundant clause, for example to prevent
bitrot, they can make use of a guard scrutinising GHC.Exts.considerAccessible to pre-
vent the checker from flagging the parent clause as redundant:

:: String -> Int
[]
(_:xs)

g
g
g (_
g "2" | considerAccessible

0
1
2

-- No warning!

Note that considerAccessible should come as the last statement of the guard in order
not to impact the results of the checker. E.g., if you write

h :: Bool -> Int
h x = case (x, x) of
(True, True) ->1
(False, False) -> 2
(True, False) | considerAccessible, False <- x -> 3

The pattern-match checker takes you by your word, will conclude that False <- x might
fail and warn that the pattern-match is inexhaustive. Put considerAccessible last to
avoid such confusions.

Note that due to technical limitations, considerAccessible will not suppress
-Winaccessible-code (page 99) warnings.

-Winaccessible-code
Since 8.6

By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.

Take, for example, the following program

{-# LANGUAGE GADTs #-}

data Foo a where
Fool :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool

step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

5.2. Warnings and sanity-checking 99

GHC User’s Guide Documentation, Release 9.8.1

The Just Refl case in step?2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type
Since 8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 369) ex-
tension, which in a future release will be turned off by default and then possibly removed.
The reasons for this and the deprecation schedule are described in GHC proposal #143.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

-Wstar-binder
Since 8.6

Under StarIsType (page 369), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a + b
type family a * b

While a + b is parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bisparsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

type family (*) a b

This is a rather fragile arrangement, as generally a programmer expects (*) a b to
be equivalent to a * b. With -Wstar-binder (page 100) we warn when this special
treatment of (*) takes place.

-Wsimplifiable-class-constraints
Since 8.2
Default on

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

’f::Eq[a]=>a->a ‘

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f:: EQa=>a->a

-Wtabs
Since 6.8

Have the compiler warn if there are tabs in your source file.

100 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0143-remove-star-kind.rst

GHC User’s Guide Documentation, Release 9.8.1

-Wtype-defaults
Since at least 5.04
Default off

Have the compiler warn/inform you where in your source the Haskell defaulting mecha-
nism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

-Wmonomorphism-restriction
Since 6.8
Default off

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

-Wunsupported-1llvm-version
Since 7.8
Warn when using - fllvm (page 240) with an unsupported version of LLVM.
-Wmissed-extra-shared-lib
Since 8.8

Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors
Since 7.10
Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.

This also applies to list literals since 9.4. For example:

type L = [Int, Char, Bool]

will raise a warning, because [Int, Char, Bool] is a promoted list which lacks a tick.
-Wunused-binds
Since at least 5.04
Report any function definitions (and local bindings) which are unused. An alias for

* -Wunused-top-binds (page 102)

5.2. Warnings and sanity-checking 101

GHC User’s Guide Documentation, Release 9.8.1

e -Wunused-local-binds (page 102)
* -Wunused-pattern-binds (page 102)
-Wunused-top-binds
Since 8.0
Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
» It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where
f = let (p,q) = rhsl in t p -- No warning: g is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g=nhx -- Warning: g unused
h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding
~w = True -- No warning: w starts with an underscore

-Wunused-local-binds
Since 8.0

Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: g is unused

g=nhx -- No warning: g is unused, but is a top-level,
—binding

-Wunused-pattern-binds
Since 8.0

Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_,) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

1'() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= Xx::Int. A banged pattern (see Bang patterns and Strict Haskell (page 519)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Since at least 5.04

102 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches

Since at least 5.04

Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore, thus:

f x = True

Note that -Wunused-matches (page 103) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 103) flag.

-Wunused-do-bind

Since 6.12

Report expressions occurring in do and mdo blocks that appear to silently throw informa-
tion away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

’do { _ <- mapM popInt xs ; return 10 } ‘

Of course, in this particular situation you can do even better:

’do { mapM_ popInt xs ; return 10 } ‘

-Wunused-type-patterns

Since 8.0

Report all unused implicitly bound type variables which arise from patterns in type family
and data family instances. For instance:

’type instance F x y = [] ‘

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

’type instance F _x y = [] ‘

When ExplicitForAll (page 485) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

’type instance forall x y. F x y = []

would still report x and y as unused on the right hand side

Unlike -Wunused-matches (page 103), -Wunused-type-patterns (page 103) is not im-
plied by -Wall (page 86). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

5.2. Warnings and sanity-checking 103

GHC User’s Guide Documentation, Release 9.8.1

Since 8.0

Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and ¢ as unused.
-Wunused-record-wildcards
Since 8.10

Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl1P{..} =1+ 3

would report that the P{. .} match is unused.
-Wredundant-bang-patterns

Since 9.2

Report dead bang patterns, where dead bangs are bang patterns that under no circum-
stances can force a thunk that wasn’t already forced. Dead bangs are a form of redundant
bangs. The new check is performed in pattern-match coverage checker along with other
checks (namely, redundant and inaccessible RHSs). Given

f :: Bool -> Int
f True = 1
f Ix =2

The bang pattern on !x is dead. By the time the x in the second equation is reached, x
will already have been forced due to the first equation (f True = 1). Moreover, there is
no way to reach the second equation without going through the first one.

Note that -Wredundant-bang-patterns will not warn about dead bangs that appear on
a redundant clause. That is because in that case, it is recommended to delete the clause
wholly, including its leading pattern match.

Dead bang patterns are redundant. But there are bang patterns which are redundant
that aren’t dead, for example:

fi()=20

the bang still forces the argument, before we attempt to match on (). But it is redun-
dant with the forcing done by the () match. Currently such redundant bangs are not
considered dead, and -Wredundant-bang-patterns will not warn about them.

-Wredundant-record-wildcards
Since 8.10

Report all record wildcards where the wild card match binds no patterns. For instance:

104 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{x,y,..} =x +y

would report that the P{x, y, ..} match has a redundant use of ...
-Wredundant-strictness-flags
Since 9.4

Report strictness flags applied to unlifted types. An unlifted type is always strict, and
applying a strictness flag has no effect.

For example:

data T = T !'Int#

-Wwrong-do-bind
Since 6.12

Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

’do { _ <- return (popInt 10) ; return 10 } ‘

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

’do { popInt 10 ; return 10 } ‘

-Winline-rule-shadowing
Since 7.8

Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 572).

-Wcpp-undef
Since 8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
Since 8.2

This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 533) for information about unlifted types.

-Wmissing-home-modules

Since 8.2

5.2. Warnings and sanity-checking 105

GHC User’s Guide Documentation, Release 9.8.1

When a module provided by the package currently being compiled (i.e. the “home” pack-
age) is imported, but not explicitly listed in command line as a target. Useful for Cabal
to ensure GHC won't pick up modules, not listed neither in exposed-modules, nor in
other-modules.

-Wpartial-fields

Since 8.4

The option -Wpartial-fields (page 106) warns about a record field f that is defined in
some, but not all, the contructors of a data type, because f’s record selector function may
fail. For exampe, the record selector function f, defined in the Foo constructor record
below, will fail when applied to Bar, so the compiler will emit a warning at its definition
when -Wpartial-fields (page 106) is enabled.

The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

-Wunused-packages

Since 8.10

The option -Wunused-packages (page 106) warns about packages, specified on command
line via -package (pkg) (page 217)or -package-id (unit-id) (page 218), but were not
needed during compilation. If the warning fires it means the specified package wasn’t
needed for compilation.

This warning interacts poorly with GHCi because most invocations will pass a large num-
ber of -package arguments on the initial load. Therefore if you modify the targets using
:load or :cd then the warning will be silently disabled if it’s enabled (see #21110).

-Winvalid-haddock

Since 9.0

When the -haddock option is enabled, GHC collects documentation comments and asso-
ciates them with declarations, function arguments, data constructors, and other syntac-
tic elements. Documentation comments in invalid positions are discarded:

myValue =
-- | Invalid (discarded) comment in an expression
2 + 2

This warning informs you about discarded documentation comments. It has no effect
when -haddock (page 83) is disabled.

-Woperator-whitespace-ext-conflict

Since 9.2

When TemplateHaskell (page 507) is enabled, f $xis parsed as f applied to an untyped
splice. But when the extension is disabled, the expression is parsed as a use of the $
infix operator.

To make it easy to read f $x without checking the enabled extensions, one could rewrite
itas f $ x, which is what this warning suggests.

Currently, it detects the following cases:
* $x could mean an untyped splice under TemplateHaskell (page 507)
* $$x could mean a typed splice under TemplateHaskell (page 507)

106

Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/21110

GHC User’s Guide Documentation, Release 9.8.1

* %m could mean a multiplicity annotation under LinearTypes (page 390)

It only covers extensions that currently exist. If you want to enforce a stricter policy
and always require whitespace around all infix operators, use -Woperator-whitespace
(page 107).

-Woperator-whitespace
Since 9.2

There are four types of infix operator occurrences, as defined by GHC Proposal #229:

a'!b --
a'b --
alb --
alb --

loose infix occurrence
tight infix occurrence
prefix occurrence
suffix occurrence

[« I« <))]

A loose infix occurrence of any operator is always parsed as an infix operator, but other
occurrence types may be assigned a special meaning. For example, a prefix ! denotes a
bang pattern, and a prefix $ denotes a TemplateHaskell (page 507) splice.

This warning encourages the use of loose infix occurrences of all infix operators, to pre-
vent possible conflicts with future language extensions.

-Wauto-orphans
Since 7.4
Does nothing.
-Wmissing-space-after-bang
Since 8.8
Does nothing.
-Wderiving-typeable
Since 7.10

This flag warns when Typeable is listed in a deriving clause or derived with
StandaloneDeriving (page 416).

Since GHC 7.10, Typeable is automatically derived for all types. Thus, deriving Typeable
yourself is redundant.

-Wambiguous-fields
Since 9.2

When DuplicateRecordFields (page 405) is enabled, the option -Wambiguous-fields
(page 107) warns about occurrences of fields in selectors or updates that depend on
the deprecated mechanism for type-directed disambiguation. This mechanism will be
removed in a future GHC release, at which point these occurrences will be rejected as
ambiguous. See the proposal DuplicateRecordFields without ambiguous field access and
the documentation on DuplicateRecordFields (page 405) for further details.

This warning has no effect when DuplicateRecordFields (page 405) is disabled.
-Wforall-identifier
Since 9.4

In a future GHC release, forall will become a keyword regardless of enabled extensions.
This will make definitions such as the following illegal:

5.2. Warnings and sanity-checking 107

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst

GHC User’s Guide Documentation, Release 9.8.1

-- from constraints-0.13
forall :: forall p. (forall a. Dict (p a)) -> Dict (Forall p)
forall d = ...

Library authors are advised to use a different identifier, such as forAll, forall , or
for all:

forall :: forall p. (forall a. Dict (p a)) -> Dict (Forall p)
forall d = ...

The warning is only triggered at definition sites where it can be addressed by using a
different name.

Users of a library that exports forall as an identifier cannot address the issue them-
selves, so the warning is not reported at use sites.

-Wunicode-bidirectional-format-characters

Since 9.0.2

Explicit unicode bidirectional formatting characters can cause source code to be ren-
dered misleadingly in many viewers. We warn if any such character is present in the
source.

Specifically, the characters disallowed by this warning are those which are a part of the
‘Explicit Formatting™ category of the Unicode Bidirectional Character Type Listing

-Wgadt-mono-local-binds

Since 9.4.1

This warning is triggered on pattern matching involving GADTs, if MonoLocalBinds
(page 505) is disabled. Type inference can be fragile in this case.

See the Outsideln(X) paper (section 4.2) and Let-generalisation (page 505) for more
details.

To resolve this warning, you can enable MonoLocalBinds (page 505) or an extension
implying it (GADTs (page 328) or TypeFamilies (page 332)).

The warning is also triggered when matching on GADT-like pattern synonyms (i.e. pat-
tern synonyms containing equalities in provided constraints).

In previous versions of GHC (9.2 and below), it was an error to pattern match on a GADT
if neither GADTs (page 328) nor TypeFamilies (page 332) were enabled.

-Wtype-equality-out-of-scope

Since 9.4.1

In accordance with GHC Proposal #371, the type equality syntax a ~ b is no longer built-
in. Instead, ~ is a regular type operator that can be imported from Data.Type.Equality
or Prelude.

To minimize breakage, a compatibility fallback is provided: whenever ~ is used but is not
in scope, the compiler assumes that it stands for a type equality constraint. The warning
is triggered by any code that relies on this fallback. It can be addressed by bringing ~
into scope explicitly.

The likely culprit is that you use NoImplicitPrelude (page 289) and a custom Prelude.
In this case, consider updating your custom Prelude to re-export ~ from Data.Type.
Equality.

108

Chapter 5. Using GHC

https://www.unicode.org/reports/tr9/#Bidirectional_Character_Types
https://www.microsoft.com/en-us/research/publication/outsideinx-modular-type-inference-with-local-assumptions/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0371-non-magical-eq.md

GHC User’s Guide Documentation, Release 9.8.1

Being part of the -Wcompat (page 86) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wtype-equality-requires-operators
Since 9.4.1

In accordance with GHC Proposal #371, the type equality syntaxa ~ bis nolonger built-
in. Instead, ~ is a regular type operator that requires the TypeOperators (page 316)
extension.

To minimize breakage, ~ specifically (unlike other type operators) can be used even when
TypeOperators (page 316) is disabled. The warning is triggered whenever this happens,
and can be addressed by enabling the extension.

-Wloopy-superclass-solve
Since 9.6.1

As explained in Undecidable instances and loopy superclasses (page 464), when using
UndecidableInstances (page 464) it is possible for GHC to construct non-terminating
evidence for certain superclass constraints.

This behaviour is scheduled to be removed in a future GHC version. In the meantime,
GHC emits this warning to inform users of potential non-termination. Users can manu-
ally add the required constraint to the context to avoid the problem (thus silencing the
warning).

-Wterm-variable-capture
Since 9.8.1

In accordance with GHC Proposal #281, a new extension RequiredTypeArguments will
be introduced in a future GHC release.

Under RequiredTypeArguments, implicit quantification of type variables does not take
place if there is a term variable of the same name in scope.

For example:

a=15
f::ra->a -- Does ‘a’ refer to the term-level binding
- or is it implicitly quantified?

)

When -Wterm-variable-capture (page 109) is enabled, GHC warns against implicit
quantification that would stop working under RequiredTypeArguments.

-Wmissing-role-annotations
Since 9.8.1
Default off

If you would like GHC to check that every data type definition has a role annotation
(page 398), use the -Wmissing-role-annotations (page 109) option. You can specify
the role via RoleAnnotations (page 398).

GHC will not warn about type class definitions with missing role annotations, as their
default roles are the strictest: all nominal. In other words the type-class role cannot be
accidentally left representational or phantom, which could affected the code correctness.

-Wimplicit-rhs-quantification
Since 9.8.1

5.2. Warnings and sanity-checking 109

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0371-non-magical-eq.md
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0281-visible-forall.rst

GHC User’s Guide Documentation, Release 9.8.1

Default off

In accordance with GHC Proposal #425, GHC will stop implicitly quantifying over type
variables that occur free on the right-hand side of a type synonym but are not mentioned
on the left-hand side. Type synonym declarations that rely on this form of quantification
should be rewritten with invisible binders.

For example:

type Tl :: forall a . Maybe a
type T1 'Nothing :: Maybe a -- old
type T1 @a 'Nothing :: Maybe a -- new

This warning detects code that will be affected by this breaking change.
-Wincomplete-export-warnings
Since 9.8.1

Ino accordance with GHC Proposal #134, it is now possible to deprecate certain exports
of a name without deprecating the name itself.

As explained in WARNING and DEPRECATED pragmas (page 585), when a name is ex-
ported in several ways in the same module, but only some of those ways have a warning,
it will not end up deprecated when imported in another module.

For example:

module A (x) where

x :: Int
X =2

module M (
{-# WARNING x "deprecated" #-} x
module A
)
import A

When :ghc-flag: -Wincomplete-export-warnings™ is enabled, GHC warns about exports
that are not deprecating a name that is deprecated with another export in that,
—module.

-Winconsistent-flags
Since 9.8.1
Default on
Warn when command line options are inconsistent in some way.

For example, when using GHCI, optimisation flags are ignored and a warning is issued.
Another example is -dynamic (page 243) is ignored when -dynamic-too (page 241) is
passed.

-Winconsistent-flags
Since 9.8.1
Default on

Warn when command line options are inconsistent in some way.

110 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0425-decl-invis-binders.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0134-deprecating-exports-proposal.rst

GHC User’s Guide Documentation, Release 9.8.1

For example, when using GHCIi, optimisation flags are ignored and a warning is issued.
Another example is -dynamic (page 243) is ignored when -dynamic-too (page 241) is
passed.

If you're feeling really paranoid, the -dcore-1int (page 261) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

5.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off” (be-
ginning with the prefix no-). For instance, while -fspecialise enables specialisation,
-fno-specialise disables it. When multiple flags for the same option appear in the command-
line they are evaluated from left to right. For instance, - fno-specialise -fspecialise will
enable specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies -fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

5.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ""-O*""-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -¢ Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

5.3. Optimisation (code improvement) 111

GHC User’s Guide Documentation, Release 9.8.1

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-0(n)
Any -On where n > 2 is the same as -O2.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 76), then stand
back in amazement.

5.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
at all optimisation levels by default, and as such you shouldn’t need to set any of them explicitly.
A flag - fwombat can be negated by saying - fno-wombat.

-fcore-constant-folding
Default off but enabled by -0 (page 111).

Enables Core-level constant folding, i.e. propagation of values that can be computed at
compile time.

-fcase-merge
Default off but enabled by -0 (page 111).

Merge immediately-nested case expressions that scrutinise the same variable. For ex-

ample,
case x of
Red -> el
_ => case x of
Blue -> e2

Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcase-folding
Default off but enabled by -0 (page 111).

Allow constant folding in case expressions that scrutinise some primops: For example,

case X ~minusWord#® 10## of
10## -> el
20## -> e2
\% -> e3

Is transformed to,

112 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

case x of
20## -> el
30## -> e2
-> let v = x “minusWord#® 10## in e3

-fcall-arity
Default off but enabled by -0 (page 111).
Enable call-arity analysis.
-fexitification
Default off but enabled by -0 (page 111).
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default off but enabled by -0 (page 111).

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default off but enabled by -0 (page 111).

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcmm-static-pred
Default off but enabled by -0 (page 111).

This enables static control flow prediction on the final Cmm code. If enabled GHC will
apply certain heuristics to identify loops and hot code paths. This information is then
used by the register allocation and code layout passes.

-fcmm-control-flow
Default off but enabled by -0 (page 111).

Enables some control flow optimisations in the Cmm code generator, merging basic
blocks and avoiding jumps right after jumps.

-fasm-shortcutting
Default off but enabled by -02 (page 111).

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at
-02 this flag runs the pass again at the assembly stage to catch these. Note that due to
platform limitations (#21972) this flag does nothing on macOS.

-fblock-layout-cfg
Default off but enabled by -0 (page 111).

The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to

5.3. Optimisation (code improvement) 113

https://gitlab.haskell.org/ghc/ghc/issues/21972

GHC User’s Guide Documentation, Release 9.8.1

find hot code paths and place them sequentially leading to better cache utilization and
performance.

This is expected to improve performance on average, but actual performance difference
can vary.

If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights

This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.

If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

-fblock-layout-weightless

Default off

When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.

With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.

When this flag is enabled and - fblock-layout-cfg (page 113) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal

Default off but enabled by -0 (page 111).

Turn on CPR analysis, which enables the worker/wrapper transformation (cf.
-fworker-wrapper (page 129)) to unbox the result of a function, such as

sum :: [Int] -> Int
sum [] =0
sum (X:Xs) = X + sum XS

CPR analysis will see that each code path produces a constructed product such as I#
0# in the first branch (where GHC.Exts.I# is the data constructor of Int, boxing up the
primitive integer literal 0# of type Int#) and optimise to

sum xs = I# ($wsum Xxs)
$wsum [] 0#
$wsum (I# x:xs) X# +# $wsum XS

and then sum can inline to potentially cancel away the I# box.

Here’s an example of the function that does not return a constructed product:

f :: [Int] -> (Int -> Int) -> Int
Il g go
f (x:xs) g x + f xsg

The expression g 0 is not a constructed product, because we don’t know anything about
g.
CPR analysis also works nestedly, for example

114

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

sumIO :: [Int] -> IO Int
sumIO [] = return 0
sumI0 (x:xs) = do

r <- sumIO xs

return $! x + r

Note the use of $!: Without it, GHC would be unable to see that evaluation of r and x
terminates (and rapidly, at that). An alternative would be to evaluate both with a bang
pattern or a seq, but the return $! <res> idiom should work more reliably and needs
less thinking. The above example will be optimised to

sumIO :: [Int] -> IO Int

sumI0 xs = I0 $ \s -> case $wsum xs s of
(#s', r#) -> (#s', I# r #)

$wsumIO :: [Int] -> (# RealWorld#, Int# #)

$wsumIO [] S (# s, O# #)

$wsumIO (I# x:xs) s case $wsumIO xs of
(# s', r #) => (# s', x +# r#)

And the latter can inline sumIO and cancel away the I# constructor. Unboxing the result
of a State action should work similarly.

-fcse
Default off but enabled by -0 (page 111).

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-

up.
-fstg-cse
Default off but enabled by -0 (page 111).

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off but enabled by -02 (page 111).
Make dictionaries strict.

This enables WW to fire on dictionary constraints which usually results in better runtime.
In niche cases it can lead to significant compile time regressions because of changed
inlining behaviour. Rarely this can also affect runtime negatively.

If enabling this flag leads to regressions try increasing the unfolding threshold using
-funfolding-use-threshold=(n) (page 128) by a modest amount (~30) as this is likely
a result of a known limitation described in #18421.

-fdmd-tx-dict-sel

Default on

5.3. Optimisation (code improvement) 115

GHC User’s Guide Documentation, Release 9.8.1

Use a special demand transformer for dictionary selectors. Behaviour is unconditionally
enabled starting with 9.2

-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 130) for a discussion on its use.
-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 703).

-fexpose-all-unfoldings
Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default off but enabled by -0 (page 111).

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness
Default off but enabled by -0 (page 111).

116 Chapter 5. Using GHC

https://simonmar.github.io/bib/papers/multiproc.pdf
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/

GHC User’s Guide Documentation, Release 9.8.1

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP’96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full laziness. Although GHC'’s full-laziness op-
timisation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these transfor-
mations are not applied consistently, so don’t rely on them.

-ffun-to-thunk
Default off

Worker/wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

This flag was ineffective in the presence of -ffull-laziness (page 116), which would
flout a thunk out of a constant worker function even though - ffun-to-thunk (page 117)
was off.

Hence use of this flag is deprecated since GHC 9.4.1 and we rather suggest to pass
-fno-full-laziness instead. That implies there’s no way for worker/wrapper to turn a
function into a thunk in the presence of -fno-full-laziness. If that is inconvenient for
you, please leave a comment on the issue tracker (#21204).

-fignore-asserts
Default off but enabled by -0 (page 111).

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 580)).

-fignore-interface-pragmas
Default Implied by -00 (page ??), otherwise off.

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like -fspec-constr (page 121) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case
Default off but enabled by -02 (page 111).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (- fspec-constr (page 121)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)

5.3. Optimisation (code improvement) 117

https://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
https://gitlab.haskell.org/ghc/ghc/-/issues/21204
https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 9.8.1

Default 2000
Set the size threshold for the liberate-case transformation.
-floopification
Default off but enabled by -0 (page 111).

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs
Default on

This flag has no effect since GHC 8.8 - its behavior is always on. It used to instruct GHC
to use the platform’s native vector registers to pass vector arguments during function
calls.

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=(n)
Default 32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.
-fmax-relevant-binds=(n)
Default 6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with
-fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but - fno-max-relevant-binds
includes them too.

-fmax-uncovered-patterns=(n)
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by
-Wincomplete-patterns (page 94) and -Wincomplete-uni-patterns (page 94).

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-flocal-float-out
Default on
Enable local floating of bindings from the RHS of a let(rec) in the simplifier. For example

118 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

let x
==>
let y = rhs y in let x = rhs _x in blah

let y = rhs_y in rhs _x in blah

See the paper “Let-floating: moving bindings to give faster programs”, Partain, Santos,
and Peyton Jones; ICFP 1996. https://www.microsoft.com/en-us/research/publication/
let-floating-moving-bindings-to-give-faster-programs/

Note: This is distinct from the global floating pass which can be disabled with
-fno-full-laziness (page ??).

-flocal-float-out-top-level
Default on

Enable local floating of top-level bindings from the RHS of a let(rec) in the simplifier. For
example

x=lety=ein (a,b) ===>y =¢; x = (a,b)

See the paper “Let-floating: moving bindings to give faster programs”, Partain, Santos,
and Peyton Jones; ICFP 1996. https://www.microsoft.com/en-us/research/publication/
let-floating-moving-bindings-to-give-faster-programs/

Note that if -fno-local-float-out (page ??) is set, that will take precedence.

Note: This is distinct from the global floating pass which can be disabled with
-fno-full-laziness (page ??).

-fmax-worker-args=(n)
Default 10

A function will not be split into worker and wrapper if the number of value arguments of
the resulting worker exceeds both that of the original function and this setting.

-fno-opt-coercion
Default coercion optimisation enabled.
Turn off the coercion optimiser.
-fno-pre-inlining
Default pre-inlining enabled
Turn off pre-inlining.
-fno-state-hack
Default state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas

Default Implied by -00 (page ??), otherwise off.

5.3. Optimisation (code improvement) 119

https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/

GHC User’s Guide Documentation, Release 9.8.1

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields
Default on (yields are not inserted)

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms
Default off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 119)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (#7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 120) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)
Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 568)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 703)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

120 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/7679

GHC User’s Guide Documentation, Release 9.8.1

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fdmd -unbox-width=(n)
Default 3

Boxity analysis optimistically pretends that a function returning a record with at most
-fdmd-unbox-width fields has only call sites that don’t need the box of the returned
record. That may in turn allow more argument unboxing to happen. Set to 0 to be com-
pletely conservative (which guarantees that no reboxing will happen due to this mecha-
nism).

-fspec-constr
Default off but enabled by -02 (page 111).
Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a

last []1 = error "last"
last (x = [1) = x

last (x : xs) = last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [1 = error "last"
last (x : xs) = last' x xs
where
last' x [1 = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when an argument is strict in the recursive call to itself but not on the initial
entry. A strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a => b -> a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> z

5.3. Optimisation (code improvement) 121

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 9.8.1

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)
Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)
Default 2000
Set the size threshold for the SpecConstr transformation.
-fspecialise
Default off but enabled by -0 (page 111).

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If -fcross-module-specialise (page 122) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 590)) will
be specialised as well.
-fspecialise-aggressively
Default off
By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-

sively increase code size. It can be used in conjunction with -fexpose-all-unfoldings
(page 116) if you want to ensure all calls are specialised.

-fcross-module-specialise
Default off but enabled by -0 (page 111).

Specialise INLINABLE (INLINABLE pragma (page 590)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-fpolymorphic-specialisation
Default off

Warning, this feature is highly experimental and may lead to incorrect runtime results.
Use at your own risk (#23469, #23109, #21229, #23445).

122 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/23469
https://gitlab.haskell.org/ghc/ghc/issues/23109
https://gitlab.haskell.org/ghc/ghc/issues/21229
https://gitlab.haskell.org/ghc/ghc/issues/23445

GHC User’s Guide Documentation, Release 9.8.1

Enable specialisation of function calls to known dictionaries with free type variables. The
created specialisation will abstract over the type variables free in the dictionary.

-flate-specialise
Default off

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-fspecialise-incoherents
Default on

Enable specialisation of overloaded functions in cases when the selected instance is in-
coherent. This makes the choice of instance non-deterministic, so it is only safe to do
if there is no observable runtime behaviour difference between potentially unifying in-
stances. Turning this flag off ensures the incoherent instance selection adheres to the
algorithm described in IncoherentInstances (page 466) at the cost of optimisation op-
portunities arising from specialisation.

-finline-generics
Default off but enabled by -0 (page 111).
Since 9.2.1

Annotate methods of derived Generic and Genericl instances with INLINE[1] pragmas
based on heuristics dependent on the size of the data type in question. Improves per-
formance of generics-based algorithms as GHC is able to optimize away intermediate
representation more often.

-finline-generics-aggressively
Default off
Since 9.2.1

Annotate methods of all derived Generic and Genericl instances with INLINE[1] prag-
mas.

This flag should only be used in modules deriving Generic instances that weren’t con-
sidered appropriate for INLINE[1] annotations by heuristics of -finline-generics
(page 123), yet you know that doing so would be beneficial.

When enabled globally it will most likely lead to worse compile times and code size
blowup without runtime performance gains.

-fsolve-constant-dicts
Default off but enabled by -0 (page 111).
When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

class M a b wherem :: a -> b

type Ca b = (Num a, M a b)

(continues on next page)

5.3. Optimisation (code improvement) 123

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

f :: CIntb=>b ->1Int ->Int
f X =x+1

The body of f requires a Num Int instance. We could solve this constraint from the context
because we have C Int b and that provides us a solution for Num Int. However, we can
often produce much better code by directly solving for an available Num Int dictionary
we might have at hand. This removes potentially many layers of indirection and crucially
allows other optimisations to fire as the dictionary will be statically known and selector
functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams
Default off but enabled by -02 (page 111).

Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-1ift-lams-known
Default off

Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-1lift-lams-non-rec-args
Default 5

Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86 64.

-fstg-lift-lams-rec-args
Default 5

Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86 64.

-fstrictness
Default off but enabled by -0 (page 111).
Turn on demand analysis.

A Demand describes an evaluation context of an expression. Demand analysis tries to
find out what demands a function puts on its arguments when called: If an argument is
scrutinised on every code path, the function is strict in that argument and GHC is free
to use the more efficient call-by-value calling convention, as well as pass parameters
unboxed.

124 Chapter 5. Using GHC

https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/

GHC User’s Guide Documentation, Release 9.8.1

Apart from strictness analysis, demand analysis also performs usage analysis: Where
strict translates to “evaluated at least once”, usage analysis asks whether arguments
and bindings are “evaluated at most once” or not at all (“evaluated at most zero times”),
e.g. absent. For the former, GHC may use call-by-name instead of call-by-need, effec-
tively turning thunks into non-memoised functions. For the latter, no code needs to be
generated at all: An absent argument can simply be replaced by a dummy value at the
call site or omitted altogether.

The worker/wrapper transformation (- fworker-wrapper (page 129)) is responsible for
exploiting unboxing opportunities and replacing absent arguments by dummies. For
arguments that can’t be unboxed, opportunities for call-by-value and call-by-name are
exploited in CorePrep when translating to STG.

It’s not only interesting to look at how often a binding is evaluated, but also how often
a function is called. If a function is called at most once, we may freely eta-expand it,
even if doing so destroys shared work if the function was called multiple times. This
information translates into OneShotInfo annotations that the Simplifier acts on.

Notation

So demand analysis is about conservatively inferring lower and upper bounds about how
many times something is evaluated/called. We call the “how many times” part a cardinal-
ity. In the compiler and debug output we differentiate the following cardinality intervals
as approximations to cardinality:

Interval | Set of denoted | Syntax | Explanation tying syntax to semantics
cardinalities

[1,0] {} B Bottom element

[0,0] {0} A Absent

[0,1] {0,1} M Used at most once (“Maybe”)

[0,w] {0,1,w} L Lazy. Top element, no information, used at

least 0, at most many times
[1,1] {1} 1 Strict, used exactly once
[1,w] {1,w} S Strict, used possibly many times

Note that it’s never interesting to differentiate between a cardinality of 2 and 3, or even
4232123. We just approximate the >1 case with w, standing for “many times”.

Apart from the cardinality describing how often an argument is evaluated, a demand also
carries a sub-demand, describing how deep something is evaluated beyond a simple seq-
like evaluation.

This is the full syntax for cardinalities, demands and sub-demands in BNF:

card ::=B | A| M| L|1]|S semantics as in the table above

d ::= card sd card = how often, sd = how deep
| card abbreviation: Same as "card card"

sd 1= card polymorphic sub-demand, card at every level
| P(d,d,..) product sub-demand
| C(card,sd) call sub-demand

For example, fst is strictin its argument, and also in the first component of the argument.
It will not evaluate the argument’s second component. That is expressed by the demand
1P(1L,A). The Pis for “product sub-demand”, which has a demand for each product field.
The notation 1L just says “evaluated strictly (1), with everything nested inside evaluated

5.3. Optimisation (code improvement) 125

GHC User’s Guide Documentation, Release 9.8.1

according to L” - e.g., no information, because that would depend on the evaluation
context of the call site of fst. The role of L in 1L is that of a polymorphic sub-demand,
being semantically equivalent to the sub-demand P(LP(. .)), which we simply abbreviate
by the (consequently overloaded) cardinality notation L.

For another example, the expression x + 1 evaluates x according to demand 1P(L). We
have seen single letters stand for cardinalities and polymorphic sub-demands, but what
does the single letter L mean for a demand? Such a single letter demand simply expands
to a cardinality and a polymorphic sub-demand of the same letter: E.g. L is equivalent to
LL by expansion of the single letter demand, which is equivalent to LP(LP(..)), so Ls all
the way down. It is always clear from context whether we talk about about a cardinality,
sub-demand or demand.

Demand signatures

We summarise a function’s demand properties in its demand signature. This is the gen-
eral syntax:

{x->dx,y->dy,z->dz...}<d1l><d2><d3>...<dn>div

A ~ ~

I \--odoo oo /|

| I I
demand on free demand on divergence
variables arguments information
(omitted if empty) (omitted if

no information)

We summarise fst’s demand properties in its demand signature <1P (1L, A)>, which just
says “If fst is applied to one argument, that argument is evaluated according to 1P (1L,
A)”. For another example, the demand signature of seq would be <1A><1L> and that of
+ would be <1P(L)><1P(L)>.

If not omitted, the divergence information can be b (surely diverges) or x (surely di-
verges or throws a precise exception). For example, error has demand signature <S>b
and throwIO (which is the only way to throw precise exceptions) has demand signature
< ><L><L>x (leaving out the complicated demand on the Exception dictionary).

Call sub-demands

Consider maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing n
maybe _ s (Just a) s a

We give it demand signature <L><MC(M, L)><1L>. The C(M,L) is a call sub-demand that
says “Called at most once, where the result is used according to L”. The expression f
“seq’ f 1 puts f under demand SC(1,L) and serves as an example where the upper
bound on evaluation cardinality doesn’t coincide with that of the call cardinality.

Cardinality is always relative to the enclosing call cardinality, sog 1 2 + g 3 4 puts g
under demand SC(S,C(1,L)), which says “called multiple times (S), but every time it is
called with one argument, it is applied exactly once to another argument (1)”.

-fstrictness-before=(n)
Run an additional demand analysis before simplifier phase (n).

-funbox-small-strict-fields

126 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Default off but enabled by -0 (page 111).

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible. It
is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 596)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A A 'Int
data B B 'A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 533)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 597)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 596)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 597)).

Alternatively you can use - funbox-small-strict-fields (page 126) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
a. nothing larger than this will be inlined (unless it has an INLINE pragma)
b. nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The -funfolding-use-threshold=(n) (page 128) is more useful.

-funfolding-dict-discount=(n)
Default 30

How eager should the compiler be to inline dictionaries?

5.3. Optimisation (code improvement) 127

GHC User’s Guide Documentation, Release 9.8.1

-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?

-funfolding-keeness-factor=(n)
This factor was deprecated in GHC 9.0.1. See #15304 for details. Users who need to
control inlining should rather consider - funfolding-use-threshold=(n) (page 128).

-funfolding-use-threshold=(n)
Default 80

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and -funfolding-creation-threshold=(n) (page 127) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-funfolding-case-threshold=(n)
Default 2

GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.

As it happened in #18730.

Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes a specific (maybe quite high!) threshold of nesting is to be expected.

In such cases this flag can be used to ignore the first (n) levels of nesting when computing
the penalty.

This flag in combination with -funfolding-case-scaling=(n) (page 128) can be used
to break inlining loops without disabling inlining completely. For this purpose a smaller
value is more likely to break such loops although often adjusting the scaling is enough
and preferably.

-funfolding-case-scaling=(n)
Default 30

GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.

As it happened in #18730.

Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes we are ok with inlining a lot in the name of performance.

128 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/15304

GHC User’s Guide Documentation, Release 9.8.1

In such cases this flag can be used to tune how hard we penalize inlining into deeply
nested cases beyond the threshold set by - funfolding-case-threshold=(n) (page 128).
Cases are only counted against the nesting level if they have more than one alternative.

We use 1/n to scale the penalty. That is a higher value gives a lower penalty.

This can be used to break inlining loops. For this purpose a lower value is recommended.
Values in the range 10 <= n <= 20 allow some inlining to take place while still allowing
GHC to compile modules containing such inlining loops.

-fworker-wrapper
Default off but enabled by -0 (page 111).
Enable the worker/wrapper transformation after a demand analysis pass.

Exploits strictness and absence information by unboxing strict arguments and replacing
absent fields by dummy values in a wrapper function that will inline in all relevant sce-
narios and thus expose a specialised, unboxed calling convention of the worker function.

Implied by -0 (page 111), and by -fstrictness (page 124). Disabled by
-fno-strictness (page ??). Enabling - fworker-wrapper (page 129) while demand anal-
ysis is disabled (by -fno-strictness (page ??)) has no effect.

-fworker-wrapper-cbv
Disabling this flag prevents a W/W split if the only benefit would be call-by-value for
some arguments.

Otherwise this exploits strictness information by passing strict value arguments call-by-
value to the functions worker. Even for functions who would otherwise not get a worker.

This avoids (potentially repeated) checks for evaluatedness of arguments in the rhs of
the worker by pushing this check to the call site. If the argument is statically visible to
be a value at the call site the overhead for the check disappears completely.

This can cause slight codesize increases. It will also cause many more functions to get a
worker/wrapper split which can play badly with rules (see #20364) which is why it’s cur-
rently disabled by default. In particular if you depend on rules firing on functions marked
as NOINLINE without marking use sites of these functions as INLINE or INLINEABLE
then things will break unless this flag is disabled.

While WorkerWrapper is disabled this has no effect.
-fbinary-blob-threshold=(n)
Default 500000

The native code-generator can either dump binary blobs (e.g. string literals) into the
assembly file (by using “.asciz” or “.string” assembler directives) or it can dump them
as binary data into a temporary file which is then included by the assembler (using the
“.incbin” assembler directive).

This flag sets the size (in bytes) threshold above which the second approach is used. You
can disable the second approach entirely by setting the threshold to 0.

5.3. Optimisation (code improvement) 129

https://gitlab.haskell.org/ghc/ghc/issues/20364

GHC User’s Guide Documentation, Release 9.8.1

5.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page ??) option (see Options
affecting linking (page 242). This provides two benefits:

* It enables the -N (x) (page 131) to be used, which allows threads to run in parallel on
a multi-processor or multi-core machine. See Using SMP parallelism (page 130).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 552).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -CO or -C, context switches will occur as often as possible (at every
heap block allocation).

5.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Parallel and Concurrent (page 528) we describe the language
features that affect parallelism.

5.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page ??) option (see Options affecting linking (page 242)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly

130 Chapter 5. Using GHC

./../libraries/base-@LIBRARY_base_UNIT_ID@/Control-Concurrent.html

GHC User’s Guide Documentation, Release 9.8.1

it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 116) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

We recommend compiling any code that is intended to be run in parallel with the
-feager-blackholing (page 116) flag.

5.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 131)
options.

-N (x)
-N
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 552)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine’. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

Omitting -N{x) entirely means -N1.

With -maxN({x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors
are in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 181)).

The current value of the -N option is available to the Haskell program via Control.
Concurrent.getNumCapabilities, and it may be changed while the program is running
by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

5.5. Using SMP parallelism 131

./../libraries/base-@LIBRARY_base_UNIT_ID@/Control-Concurrent.html#v:setNumCapabilities
./../libraries/base-@LIBRARY_base_UNIT_ID@/Control-Concurrent.html#v:setNumCapabilities

GHC User’s Guide Documentation, Release 9.8.1

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.
When this option is enabled, the OS threads for a capability i are bound to the CPU core
i using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qgm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

5.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 188) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 131) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 181)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

5.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
mode/dynamic status (see Dynamic and Mode options (page 67)), and the flag’s opposite (if
available).

5.6.1 Verbosity options

More details in Verbosity options (page 76)

Flag Description Type Reverse
-fabstract-refinement-holedéfatdt: off. Toggles | dynamic| -fno-abstract-refin
(page 304) whether refinements (page ??)

where one or more of the
holes are abstract are
reported.

ement-hole-

continues on next page

132 Chapter 5. Using GHC

./../libraries/base-@LIBRARY_base_UNIT_ID@/Control-Concurrent.html#v:forkOn

GHC User’s Guide Documentation, Release 9.8.1

Table 1 - continued from previous page

Flag Description Type Reverse
-fdefer-diagnostics Defer and group diagnos- | dynamic
(page 80) tic messages by severity
-fdiagnostics-color=(alwgydseucolorsvér)error mes- | dynamic
(page 80) sages
-fdiagnostics-show-caret | Whether to show snippets | dynamic| -fno-diagnostics-shpw-caret
(page 80) of original source code (page ??)
-ferror-spans (page 81) Output full span in error | dynamic

messages
-fhide-source-paths hide module source and | dynamic
(page 76) object paths
-fkeep-going (page 81) Continue compilation as | dynamic

far as possible on errors
-fmax-refinement-hole-fitfsdéfault: 6. Set the max- | dynamic| -fno-max-refinementrhole-fits
(page 304) imum number of refine- (page ??)
ment hole fits for typed
holes to display in type er-
ror messages.

-fmax-relevant-binds=(n) | default: 6. Set the maxi- | dynamic| -fno-max-relevant-binds

(page 118) mum number of bindings (page ??)

to display in type error

messages.
-fmax-valid-hole-fits=(n) default: 6. Set the maxi- | dynamic| -fno-max-valid-holerfits
(page 302) mum number of valid hole (page ??)

fits for typed holes to dis-
play in type error mes-

sages.
-fno-show-valid-hole-fitg Disables showing a list of | dynamic
(page 302) valid hole fits for typed

holes in type error mes-

sages.
-fno-sort-valid-hole-fitg Disables the sorting of the | dynamic| -fsort-valid-hole-fits
(page 305) list of valid hole fits for (page ??)

typed holes in type error

messages.
-fprint-axiom-incomps Display equation incom- | dynamic| -fno-print-axiom-ingcomps
(page 77) patibilities in closed type (page ??)

families
-fprint-equality-relationsDistinguish between | dynamic| -fno-print-equalitytrelations
(page 78) equality relations when (page ??)

printing
-fprint-expanded-synonymg In type errors, also print | dynamic| -fno-print-expandedfsynonyms
(page 78) type-synonym-expanded (page ??)

types.
-fprint-explicit-coercionsPrint coercions in types dynamic| -fno-print-explicitftcoercions
(page 77) (page ??)

continues on next page

5.6. Flag reference 133

GHC User’s Guide Documentation, Release 9.8.1

Table 1 - continued from previous page

Fforalls

Fkinds

Fruntime-re

L-instances

t-promotion

ker-elabora

syntax

el-hole-fit

ple-fits

text

Flag Description Type Reverse
-fprint-explicit-foralls | Print explicit forall | dynamic| -fno-print-explicit
(page 76) quantification in types. (page ??)

See also ExplicitForAll

(page 485)
-fprint-explicit-kinds Print explicit kind | dynamic| -fno-print-explicit
(page 77) foralls and kind argu- (page ??)

ments in types. See

also KindSignatures

(page 490)
-fprint-explicit-runtime-{rBpint RuntimeRep and | dynamic| -fno-print-explicit
(page 374) Levity variables in (page ??)

types which are runtime-

representation polymor-

phic.
-fprint-potential-instanqedisplay all available in-| dynamic| -fno-print-potentia
(page 76) stances in type error mes- (page ??)

sages
-fprint-redundant-promotioBRrintcks redundant | dynamic| -fno-print-redundan
(page 78) DataKinds (page 351) (page ??)

promotion ticks
-fprint-typechecker-elabqrBtindn extra information | dynamic| -fno-print-typechec
(page 79) from typechecker. (page ??)
-fprint-unicode-syntax Use unicode syntax when | dynamic| -fno-print-unicode-
(page 76) printing expressions, (page ??)

types and kinds. See

also UnicodeSyntax

(page 271)
-frefinement-level-hole-flidefafult: off. Sets the level | dynamic| -fno-refinement-lev
(page 304) of refinement of the refine- (page ??)

ment hole fits, where level

n means that hole fits of up

to n holes will be consid-

ered.
-freverse-errors Output errors in reverse | dynamic| -fno-reverse-errors
(page 81) order (page ??)
-fshow-docs-of-hole-fits | Toggles whether to show | dynamic| -fno-show-docs-of-h
(page 302) the documentation of the (page ??)

valid hole fits in the out-

put.
-fshow-error-context Whether to show textual | dynamic| -fno-show-error-con
(page 80) information about error (page ??)

context
-fshow-hole-constraints | Show constraints when re- | dynamic
(page 301) porting typed holes.
-fshow-hole-matches-of-hqlEedgles whether to show | dynamic| -fno-show-hole-matc

(page 304)

the type of the additional
holes in refinement hole
fits.

(page ??)

hes-of-hole

continues on next page

134

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 1 - continued from previous page

e-of-hole-f.

pf-hole-fit

vars-of-hol

ple-fits

ple-fits

ption-hole-

Flag Description Type Reverse
-fshow-provenance-of-holg-Taggles whether to show | dynamic| -fno-show-provenanc
(page 302) the provenance of the (page ??)
valid hole fits in the
output.
-fshow-type-app-of-hole-fifeggles whether to show | dynamic| -fno-show-type-app-
(page 302) the type application of the (page ??)
valid hole fits in the out-
put.
-fshow-type-app-vars-of-HoTegdless whether to show | dynamic| -fno-show-type-app-
(page 302) what type each quantified (page ??)
variable takes in a valid
hole fit.
-fshow-type-of-hole-fits | Toggles whether to show | dynamic| -fno-show-type-of-h
(page 302) the type of the valid hole (page ??)
fits in the output.
-fsort-by-size-hole-fits | Sort valid hole fits by size. | dynamic| -fno-sort-by-size-h
(page 305) (page ??)
-fsort-by-subsumption-holeSdrttwalid hole fits by sub- | dynamic| -fno-sort-by-subsum
(page 305) sumption. (page ??)
-funclutter-valid-hole-fit&nclutter the list of valid | dynamic
(page 302) hole fits by not showing
provenance nor type appli-
cations of suggestions.
-Rghc-timing (page 81) Summarise timing stats | dynamic
for GHC (same as +RTS
-tstderr).
-V (page 76) verbose mode (equivalent | dynamic
to -v3)
-v(n) (page 76) set verbosity level dynamic
5.6.2 Alternative modes of operation
More details in Modes of operation (page 68)
Flag Description Type Reverse
--frontend (module) run GHC with the given | mode
(page 69) frontend plugin; see Fron-
tend plugins (page 623)
for details.
--help (page 69), -7 | Display help mode
(page 69)
--info (page 69) display information about | mode
the compiler

continues on next page

5.6. Flag reference

135

GHC User’s Guide Documentation, Release 9.8.1

Table 2 - continued from previous page

GHC

Flag Description Type Reverse

--interactive (page 68) | Interactive mode - nor-| mode
mally used by just run-
ning ghci; see Using GHCi
(page 15) for details.

- -make (page 68) Build a multi-module | mode
Haskell program, auto-
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc --make
(page 71) for details.

--numeric-version display GHC version (nu- | mode

(page 69) meric only)

--print-booter-version| display bootstrap compiler | mode

(page 69) version

--print-build-platform| display platform on which | mode

(page 69) GHC was built

--print-c-compiler-flag®L compiler flags used to | mode

(page 69) build GHC

--print-c-compiler-link@Q limker flags used to build | mode

(page 69) GHC

--print-debug-on print whether GHC was | mode

(page 69) built with -DDEBUG

--print-global-packagetdlisplay GHC's global pack- | mode

(page 69) age database directory

--print-have-interpret¢display whether GHC was | mode

(page 69) built with interactive sup-
port

--print-have-native-codaligplegratwhether target | mode

(page 70) platform has NCG support

--print-host-platform | display host platform of | mode

(page 70) GHC

--print-1d-flags display linker flags used to | mode

(page 70) compile GHC

--print-leading-unders¢alisplay use of leading | mode

(page 70) underscores on symbol
names

--print-libdir display GHC library direc- | mode

(page 70) tory

--print-object-splittinglisplayowteether GHC sup- | mode

(page 70) ports object splitting

--print-project-git-commdisplay Git commitid GHC | mode

(page 70) is built from

--print-project-version display GHC version mode

(page 70)

--print-rts-ways display which way RTS | mode

(page 70) was built

--print-stage (page 70) | display stage number of | mode

continues on next page

136

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 2 - continued from previous page

Flag Description Type Reverse
--print-support-smp display whether GHC was | mode
(page 71) compiled with SMP sup-
port
--print-tables-next-to{didplay whether GHC | mode
(page 71) was compiled with
--enable-tables-next-to4{code
--print-target-platform display target platform of | mode
(page 71) GHC
--print-unregisterised| display whether this GHC | mode
(page 71) was built in unregisterised
mode
--run (file) (page 68) Run a Haskell program. mode
--show-iface (file) display the contents of an | mode
(page 69) interface file.
--show-options display the supported com- | mode
(page 69) mand line options
--supported-extensions| display the supported lan- | mode
(page 69), | guage extensions
- -supported-languages
(page 69)
--version (page 69), -V | display GHC version mode
(page 69)
-e (expr) (page 68) Evaluate expr; see Ex-| mode
pression evaluation mode
(page 74) for details.
-M (page 68) generate dependency | mode
information suitable for
use in a Makefile; see
Dependency generation
(page 213) for details.
-shared (page 69) Create a shared object. mode
5.6.3 Which phases to run
More details in Batch compiler mode (page 75)
Flag Description Type Reverse
--merge-objs (page 68) | Merge a set of objects into | mode
a GHCi library.
-C (page 68) Stop after generating C (.| mode
hc file)
-C (page 68) Stop after generating ob- | mode
ject (.0) file
-E (page 68) Stop after preprocessing (.| mode

hspp file)

continues on next page

5.6. Flag reference

137

GHC User’s Guide Documentation, Release 9.8.1

Table 3 - continued from previous page

Flag Description Type Reverse
-F (page 239) Enable the use of a pre-| dynamic
processor (page 239)
(set with -pgmF (cmd)
(page 235))
-S (page 68) Stop after generating as- | mode
sembly (.s file)
-x (suffix) (page 75) Override default be- | dynamic
haviour for source files
5.6.4 Redirecting output
More details in Redirecting the compilation output(s) (page 198)
Flag Description Type Reverse
-dep-makefile (file) Use (file) as the makefile dynamic
(page 214)
-dep-suffix (suffix) Make dependencies that | dynamic
(page 214) declare that files with suf-
fix .(suf)(osuf) depend
on interface files with suf-
fix . (suf)hi
-dumpdir (dir) redirect dump files dynamic
(page 200)
-dynhisuf (suffix) set the suffix to use for dy- | dynamic
(page 200) namic interface files
-dyno (file) (page 199) | set dynamic output file- | dynamic
name
-dynohi (file) set the filename in which | dynamic
(page 199) to put the dynamic inter-
face
-dynosuf (suffix) set the dynamic output file | dynamic
(page 200) suffix
-hcsuf (suffix) set the suffix to use for in- | dynamic
(page 200) termediate C files
-hidir (dir) (page 199) | set directory for interface | dynamic
files
-hiedir (dir) set directory for extended | dynamic
(page 200) interface files
-hiesuf (suffix) set the suffix to use for ex- | dynamic
(page 200) tended interface files
-hisuf (suffix) set the suffix to use for in- | dynamic
(page 200) terface files
-0 (file) (page 198) set output filename dynamic
-odir (dir) (page 199) | set directory for object | dynamic
files
-ohi (file) (page 199) | set the filename in which | dynamic

to put the interface

continues on next page

138

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 4 - continued from previous page

Flag Description Type Reverse
-osuf (suffix) set the output file suffix dynamic
(page 200)
-outputdir (dir) set output directory dynamic
(page 200)
-stubdir (dir) redirect FFI stub files dynamic
(page 200)
5.6.5 Keeping intermediate files
More details in Keeping Intermediate Files (page 201)
Flag Description Type Reverse
-keep-hc-file Retain intermediate .hc | dynamic
(page 201), | files.
-keep-hc-files
(page 201)
-keep-hi-files Retain intermediate .hi | dynamic| -no-keep-hi-files
(page 201) files (the default). (page ??)
-keep-hscpp-file Retain intermediate dynamic
(page 201), | hscpp files.
-keep-hscpp-files
(page 201)
-keep-llvm-file Retain intermediate LLVM | dynamic
(page 201), | .11 files. Implies -fllvm
-keep-1lvm-files (page 240).
(page 201)
-keep-o-files Retain intermediate .o | dynamic| -no-keep-o-files
(page 201) files (the default). (page ??)
-keep-s-file Retain intermediate .s | dynamic
(page 201), | files.
-keep-s-files
(page 201)
-keep-tmp-files Retain all intermediate | dynamic
(page 201) temporary files.
5.6.6 Temporary files
More details in Redirecting temporary files (page 201)
Flag Description Type Reverse
-tmpdir (dir) set the directory for tem- | dynamic
(page 201) porary files

5.6. Flag reference

139

GHC User’s Guide Documentation, Release 9.8.1

5.6.7 Finding imports

More details in The search path (page 198)

Flag Description Type Reverse
-1 (page 198) Empty the import direc- | dynamic
tory list
-i(dir)[:(dir)]* add (dir), (dir2), etc. to im- | dynamic
(page 198) port path
5.6.8 Interface file options
More details in Other options related to interface files (page 202)
Flag Description Type Reverse
--show-iface (file) See Modes of operation | mode
(page 69) (page 68).
-ddump-hi (page 202) Dump the new interface to | dynamic
stdout
-ddump-hi-diffs Show the differences vs.| dynamic
(page 202) the old interface
-ddump-minimal-imports| Dump a minimal set of im- | dynamic

(page 202)

ports

5.6.9 Extended interface file options

More details in Options related to extended interface files (page 202)

Flag Description Type Reverse
-fvalidate-ide-info Perform some sanity | dynamic

(page 202) checks on the extended

interface files

-fwrite-ide-info Write out extended inter- | dynamic

(page 202) face files
5.6.10 Recompilation checking
More details in The recompilation checker (page 203)

Flag Description Type Reverse
-exclude-module=(file)| Regard (file) as ”sta-| dynamic

(page 214)

ble”; i.e., exclude it from
having dependencies on it.

continues on next page

140

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 10 - continued from previous page

Flag Description Type Reverse
-fforce-recomp Turn off recompilation | dynamic| -fno-force-recomp
(page 203) checking. This is implied (page ??)

by any -ddump-X option
when compiling a single
file (i.e. when using -c

(page 68)).
-fignore-hpc-changes Do not recompile modules | dynamic| -fno-ignore-hpc-changes
(page 203) just to match changes to (page ??)

HPC flags. This is espe-
cially useful for avoiding
recompilation when using
GHCi, and is enabled by

default for GHCi.
-fignore-optim-changes| Do not recompile modules | dynamic| -fno-ignore-optim-changes
(page 203) just to match changes to (page ??)

optimisation flags. This is
especially useful for avoid-
ing recompilation when us-
ing GHCi, and is enabled

by default for GHCi.
-include-cpp-deps Include preprocessor de-| dynamic
(page 214) pendencies
-include-pkg-deps Regard modules imported | dynamic
(page 214) from packages as unstable

5.6.11 Interactive-mode options

More details in The .ghci and .haskeline files (page 58)

Flag Description Type Reverse
-fbreak-on-error Break on uncaught excep- | dynamic| -fno-break-on-error
(page 40) tions and errors (page 40) (page ??)
-fbreak-on-exception Break on any exception | dynamic| -fno-break-on-exceptian
(page 40) thrown (page 40) (page ??)
-fbreak-points Insert breakpoints in the | dynamic| -fno-break-points
(page 32) GHCi debugger (page 32) (page ??)
-fghci-hist-size=(n) Set the number of entries | dynamic
(page 39) GHCi keeps for :history.

See The GHCi Debugger

(page 32).
-fghci-leak-check (Debugging only) check | dynamic| -fno-ghci-leak-check
(page 43) for space leaks when load- (page ??)

ing new modules in GHCi.
-fimplicit-import-qualifPuddin scope qualified iden- | dynamic| -fno-implicit-import-qualified
(page 26) tifiers for every loaded (page ??)
module

continues on next page

5.6. Flag reference 141

GHC User’s Guide Documentation, Release 9.8.1

Table 11 - continued from previous page

Flag Description Type Reverse
-flocal-ghci-history Use current directory for | dynamic| -fno-local-ghci-histor
(page 42) the GHCi command his- (page ??)
tory file .ghci-history.
-fno-1it (page 28) No longer set the special | dynamic| -fno-no-it (page ??)
variable it.
-fprint-bind-result Turn on printing of | dynamic| -fno-print-bind-result
(page 20) binding results in GHCi (page ??)
(page 20)
-fprint-evld-with-show| Instruct :print (page 51) | dynamic
(page 34) to use Show instances
where possible.
-fshow-loaded-modules | Show the names of mod- | dynamic
(page 16) ules that GHCi loaded af-
ter a : load (page 50) com-
mand.
-ghci-script (page 59) | Read additional .ghci | dynamic
files
-ignore-dot-ghci Disable reading of .ghci | dynamic| -no-ignore-dot-ghci
(page 59) files (page ??)
-interactive-print Select the function to | dynamic
(name) (page 30) use for printing evalu-
ated expressions in GHCi
(page 30)
5.6.12 Packages
More details in Packages (page 216)
Flag Description Type Reverse
-clear-package-db Clear the package db | dynamic
(page 221) stack.
-distrust (pkg) Expose package (pkg) and | dynamic
(page 564) set it to be distrusted. See
Safe Haskell (page 556).
-distrust-all-packages| Distrust all packages by | dynamic
(page 564) default. See Safe Haskell
(page 556).
-fpackage-trust Enable Safe Haskell | dynamic
(page 566) (page 556) trusted pack-
age requirement for
trustworthy modules.
-global-package-db Add the global package db | dynamic
(page 221) to the stack.
-hide-all-packages Hide all packages by de- | dynamic
(page 218) fault
-hide-package (pkg) Hide package (pkg) dynamic
(page 218)
continues on next page
142 Chapter 5. Using GHC

y

GHC User’s Guide Documentation, Release 9.8.1

Table 12 - continued from previous page

Flag Description Type Reverse
-ignore-package (pkg) | Ignore package (pkg) dynamic
(page 218)
-no-auto-link-packages| Don't automatically link in | dynamic
(page 219) the base and rts packages.
-no-global-package-db | Remove the global pack- | dynamic
(page 221) age db from the stack.
-no-user-package-db Remove the user's pack-| dynamic
(page 221) age db from the stack.
-package (pkg) Expose package (pkg) dynamic
(page 217)
-package-db (file) Add (file) to the package | dynamic
(page 221) db stack.
-package-env Use the specified package | dynamic
(file) | (name) environment.
(page 223)
-package-id (unit-id) | Expose package by id | dynamic
(page 218) (unit-id)
-this-unit-id Compile to be part of unit | dynamic
(unit-id) (page 219) (i.e. package) (unit-id)
-trust (pkg) (page 564) | Expose package (pkg) and | dynamic
set it to be trusted. See
Safe Haskell (page 556).
-user-package-db Add the user's package db | dynamic

(page 221)

to the stack.

5.6.13 Language opt

ions

Language options can be enabled either by a command-line option -Xblah, or by a {-#
LANGUAGE blah #-} pragma in the file itself. See Controlling extensions (page 265).

5.6.14 Warnings

More details in Warnings and sanity-checking (page 84)

Flag Description Type Reverse
-fenable-th-splice-warn¥bemerate warnings for | dynamic| -fno-enable-th-splice-
(page 513) Template Haskell splices (page ??)
-fhelpful-errors Make suggestions for mis- | dynamic| -fno-helpful-errors
(page 88) spelled names. (page ??)
-fmax-pmcheck-models=(nsoft limit on the number | dynamic

(page 95)

of parallel models the pat-
tern match checker should
check a pattern match
clause against

continues on next page

5.6. Flag reference

143

warnings

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

psS

lisations

lizations

2d-imports

Flag Description Type Reverse
-fshow-warning-groups | show which group an emit- | dynamic| -fno-show-warning-grol
(page 86) ted warning belongs to. (page ??)
-fvia-C (page 233) use the C code generator | dynamic
-W (page 85) enable normal warnings dynamic| -Wno-extra (page ??)
-w (page 86) disable all warnings dynamic
-Wall (page 86) enable almost all warnings | dynamic| -Wno-all (page ??)
(details in Warnings and
sanity-checking (page 84))
-Wall-missed-specialisatwans when specialisation | dynamic| -Wno-all-missed-specia
(page 89) of any overloaded function (page ??)
fails.
-Wall-missed-specializatalass for | dynamic| -Wno-all-missed-specig
(page 89) -Wall-missed-specialisaftions (page ??)
(page 89)
-Wambiguous-fields warn about ambiguous | dynamic
(page 107) field selectors or updates
-Wauto-orphans (deprecated) Does nothing | dynamic
(page 107)
-Wcompat (page 86) enable future compati-| dynamic| -Wno-compat (page ??)
bility warnings (details
in Warnings and sanity-
checking (page 84))
-Wcompat-unqualified-im@Report unqualified im- | dynamic| -Wno-compat-unqualifie
(page 87) ports of core libraries (page ??)
which are expected to
cause compatibility prob-
lems in future releases.
-Wcpp-undef (page 105) | warn on uses of the #if di- | dynamic
rective on undefined iden-
tifiers
-Wdefault (page 85) enable default flags dynamic| -Wno-default (page ??)
-Wdeferred-out-of-scop¢ Reportb legarnings when | dynamic| -Wno-deferred-out-of-

(page 88)

variable out-of-scope er-
rors are deferred until
runtime (page 394). See
-fdefer-out-of-scope-va
(page 394).

riables

(page ??)

cope-variat

-Wdeferred-type-errors
(page 88)

when
errors

Report warnings
deferred type
(page 394) are en-
abled. This option is
enabled by default. See
-fdefer-type-errors
(page 394).

dynamic

-Wno-deferred-type-err

(page ??)

ors

continues on next page

144

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

Flag Description Type Reverse
-Wdeprecated-flags warn about uses of com- | dynamic| -Wno-deprecated-flags
(page 91) mandline flags that are (page ??)

deprecated
-Wdeprecations warn about uses of func- | dynamic| -Wno-deprecations
(page 90) tions & types that have (page ??)

DEPRECATED pragmas,

or WARNING pragmas

with the deprecated

category.
-Wderiving-defaults warn about default | dynamic| -Wno-deriving-defaults
(page 92) deriving when using (page ??)

both DeriveAnyClass

(page 433) and

GeneralizedNewtypeDeriviing

(page 427)
-Wderiving-typeable warn when Typeable is de- | dynamic| -Wno-deriving-typeable
(page 107) rived (page ??)
-Wdodgy-exports warn about dodgy exports | dynamic| -Wno-dodgy-exports
(page 91) (page ??)
-Wdodgy-foreign-import$ warn about dodgy foreign | dynamic| -Wno-dodgy-foreign-img
(page 91) imports (page ??)
-Wdodgy-imports warn about dodgy imports | dynamic| -Wno-dodgy-imports
(page 92) (page ??)
-Wduplicate-constraint$ warn when a constraint ap- | dynamic| -Wno-duplicate-constra
(page 92) pears duplicated in a type (page ??)

signature
-Wduplicate-exports warn when an entity is ex- | dynamic| -Wno-duplicate-exports
(page 93) ported multiple times (page ??)
-Wempty-enumerations warn about enumerations | dynamic| -Wno-empty-enumeration
(page 92) that are empty (page ??)
-Werror (page ??) make warnings fatal dynamic| -Wwarn (page 87)
-Weverything (page 86) | enable all warnings sup- | dynamic| -w (page 86)

ported by GHC
-Wextended-warnings warn about uses of func- | dynamic| -Wno-extended-warnings
(page 89) tions & types that have (page ??)

WARNING or DEPRE-

CATED pragmas, across

all categories
-Wextra (page 86) alias for -W (page 85) dynamic| -Wno-extra (page ??)
-Wforall-identifier warn when forall is used | dynamic| -Wno-forall-identifier

(page 107)

as an identifier (at defini-
tion sites)

(page ??)

continues on next page

5.6. Flag reference

145

orts

ints

GHC User’s Guide Docum

entation, Release 9.8.1

Table 13 - continued from previous page

Flag Description Type Reverse
-Wgadt-mono-local-bind$ warn when pattern match- | dynamic| -Wno-gadt-mono-local-h
(page 108) ing on a GADT without (page ??)

MonoLocalBinds
-Whi-shadowing (deprecated) warn when a | dynamic| -Wno-hi-shadowing
(page 93) .hi file in the current di- (page ??)

rectory shadows a library
-Widentities (page 93) | warn about uses of Pre-| dynamic| -Wno-identities

lude numeric conversions (page ??)

that are probably the iden-

tity (and hence could be

omitted)
-Wimplicit-kind-vars (deprecated) warn when | dynamic| -Wno-implicit-kind-var
(page 93) kind variables are implic- (page ??)

itly quantified over.
-Wimplicit-lift warn about implicit lift | dynamic| -Wno-implicit-lift
(page 94) in Template Haskell (page ??)

quotes
-Wimplicit-prelude warn when the Prelude is | dynamic| -Wno-implicit-prelude
(page 94) implicitly imported (page ??)
-Wimplicit-rhs-quantifiesdmwmwhen type variables | dynamic| -Wno-implicit-rhs-quan
(page 109) on the RHS of a type syn- (page ??)

onym are implicitly quanti-

fied
-Winaccessible-code warn about inaccessible | dynamic| -Wno-inaccessible-code
(page 99) code (page ??)
-Wincomplete-export-warngags when some but not | dynamic| -Wno-incomplete-export
(page 110) all of exports for a name (page ??)

are warned about
-Wincomplete-patterns | warn when a pattern | dynamic| -Wno-incomplete-patter
(page 94) match could fail (page ??)
-Wincomplete-record-updataen when a record up- | dynamic| -Wno-incomplete-record
(page 95) date could fail (page ??)
-Wincomplete-uni-patterngarn when a pattern | dynamic| -Wno-incomplete-uni-pa
(page 94) match in a lambda expres- (page ??)

sion, pattern binding or a

lazy pattern could fail
-Winconsistent-flags warn when command line | dynamic| -Wno-inconsistent-flag
(page 110) options are inconsistent in (page ??)

some way.
-Winconsistent-flags warn when command line | dynamic| -Wno-inconsistent-flag
(page 110) options are inconsistent in (page ??)

some way.
-Winferred-safe-import$ warn when an explicitly | dynamic| -Wno-inferred-safe-imq

(page 566) Safe Haskell module im- (page ??)
ports a Safe-Inferred one
continues on next page
146 Chapter 5. Using GHC

inds

tification

-warnings

ns

-updates

tterns

orts

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

wing

solve

tions

Flag Description Type Reverse
-Winline-rule-shadowing Warn if a rewrite RULE | dynamic| -Wno-inline-rule-shadq
(page 105) might fail to fire because (page ??)

the function might be in-

lined before the rule has

a chance to fire. See

How rules interact with

INLINE/NOINLINE prag-

mas (page 572).
-Winvalid-haddock warn when a Haddock | dynamic| -Wno-invalid-haddock
(page 106) comment occurs in an in- (page ??)

valid position
-Wloopy-superclass-solyawarn = when creating | dynamic| -Wno-loopy-superclass-
(page 109) potentially-loopy super- (page ??)

class constraint evidence
-Wmisplaced-pragmas warn about uses of file | dynamic| -Wno-misplaced-pragmas
(page 89) header pragmas in the (page ??)

module body
-Wmissed-extra-shared-|1MWarn when GHCi can't | dynamic| -Wno-missed-extra-shared-1lib
(page 101) load a shared lib. (page ??)
-Wmissed-specialisationswvarn when specialisation | dynamic| -Wno-missed-specialisa
(page 89) of an imported, over- (page ??)

loaded function fails.
-Wmissed-specializationalias for | dynamic| -Wno-missed-specializg

(page 89)

-Wmissed-specialisation
(page 89)

)

(page ??)

-Wmissing-deriving-strategmes when a deriving

dynamic

-Wno-missing-derivingH

(page 95) clause is missing a deriv- (page ??)
ing strategy
-Wmissing-export-lists| warn when a module dec- | dynamic| -Wno-missing-export-1i
(page 96) laration does not explicitly (page ??)
list all exports
-Wmissing-exported-pattevarsyabowb- pagteanusyn- | dynamic| -Wno-missing-exported-

(page 98)

onyms without signatures,
only if they are exported

(page ??)

-Wmissing-exported-signatareabout top-level func-

(page 96)

tions without signatures,
only if they are exported

dynamic

-Wno-missing-exported-
(page ??)

-Wmissing-exported-sig$ (deprecated) warn about

(page 96)

top-level functions with-

out signatures, only
if they are exported.
takes precedence over

-Wmissing-signatures

dynamic

-Wno-missing-exported-
(page ??)

-Wmissing-fields
(page 95)

warn when fields of a
record are uninitialised

dynamic

-Wno-missing-fields
(page ??)

continues on next page

5.6. Flag reference

147

tions

strategies

sts

pattern-syr

signatures

sigs

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

Flag Description Type Reverse
-Wmissing-home-modules| warn when encountering | dynamic| -Wno-missing-home-mody
(page 105) a home module imported, (page ??)

but not listed on the

command line. Useful

for cabal to ensure GHC

won't pick up modules,

not listed neither in

exposed-modules, nor in

other-modules.
-Wmissing-import-lists| warn when an import dec- | dynamic| -Wno-missing-import-1i
(page 96) laration does not explicitly (page ??)

list all the names brought

into scope
-Wmissing-kind-signaturesarn when type declara- | dynamic| -Wno-missing-kind-sign
(page 97) tions don't have kind sig- (page ??)

natures nor CUSKs
-Wmissing-local-signatiimearn about polymorphic | dynamic| -Wno-missing-local-sig
(page 97) local bindings without sig- (page ??)

natures
-Wmissing-local-sigs (deprecated) warn about | dynamic| -Wno-missing-local-sig
(page 97) polymorphic local bind- (page ??)

ings without signatures
-Wmissing-methods warn when class methods | dynamic| -Wno-missing-methods
(page 96) are undefined (page ??)
-Wmissing-monadfail-insYdeprecated) Warn when | dynamic| -Wno-missing-monadfail
(page 91) a failable pattern is used (page ??)

in a do-block that does

not have a MonadFail in-

stance.
-Wmissing-pattern-synonywasigmdirirepattern syn- | dynamic| -Wno-missing-pattern-s
(page 97) onyms do not have type (page ??)

signatures
-Wmissing-poly-kind-signedmres when inferred | dynamic| -Wno-missing-poly-kind
(page 97) polykinded type or class (page ??)

declaration don't have

kind signatures nor

CUSKs
-Wmissing-role-annotatiomarn when type declara- | dynamic| -Wno-role-annotations-
(page 109) tions don't have role anno- (page ??)

tations
-Wmissing-safe-haskellimeaen when the Safe | dynamic| -Wno-missing-safe-hask
(page 567) Haskell mode is not explic- (page ??)

itly specified.
-Wmissing-signatures warn about top-level func- | dynamic| -Wno-missing-signatures
(page 96) tions without signatures (page ??)
-Wmissing-space-after-bddeprecated) Does nothing | dynamic

(page 107)

continues on next page

148

Chapter 5. Using GHC

les

sts

atures

natures

-instances

ynonym-sigr

-signatures

signatures

ell-mode

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

riction

d-instances

dfail-inste

id-instance

ce

ce-ext-con

1s

*Irns

Flag Description Type Reverse
-Wmonomorphism-restrictmarn when the Monomor- | dynamic| -Wno-monomorphism-rest
(page 101) phism Restriction is ap- (page ??)

plied
-Wname-shadowing warn when names are | dynamic| -Wno-name-shadowing
(page 98) shadowed (page ??)
-Wnoncanonical-monad-instarmewhen Applicative | dynamic| -Wno-noncanonical-mona
(page 90) or Monad instances have (page ??)

noncanonical definitions

of return, pure, (>>), or

(*>). See flag description

in Warnings and sanity-

checking (page 84) for

more details.
-Wnoncanonical-monadfal (depsteated) warn when | dynamic| -Wno-noncanonical-mona
(page 90) Monad or MonadFail in- (page ??)

stances have noncanoni-

cal definitions of fail.
-Wnoncanonical-monoid-ingdemcoghen Semigroup or | dynamic| -Wno-noncanonical-mong
(page 90) Monoid instances have (page ??)

noncanonical definitions

of (<>) or mappend. See

flag description in Warn-

ings and sanity-checking

(page 84) for more details.
-Wnot (page 86) (deprecated) Alias for -w | dynamic

(page 86)
-Woperator-whitespace | warn on prefix, suffix, and | dynamic| -Wno-operator-whitespa
(page 107) tight infix uses of infix op- (page ??)

erators
-Woperator-whitespace-¢xwarmonluses of infix oper- | dynamic| -Wno-operator-whitespa
(page 106) ators that would be parsed (page ??)

differently were a particu-

lar GHC extension enabled
-Worphans (page 98) warn when the module | dynamic| -Wno-orphans (page ??)

contains orphan instance

declarations or rewrite

rules (page 214)
-Woverflowed-literals | warn about literals that | dynamic| -Wno-overflowed-litersa
(page 92) will overflow their type (page ??)
-Woverlapping-patterns| warn about overlapping | dynamic| -Wno-overlapping-patte
(page 98) patterns (page ??)
-Wpartial-fields warn when defining a par- | dynamic| -Wno-partial-fields

(page 106)

tial record field.

(page ??)

continues on next page

5.6. Flag reference

149

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

atures

| fied-module

tterns

ints

wildcards

ess-flags

s-constrair

Flag Description Type Reverse
-Wpartial-type-signaturasarn about holes in par- | dynamic| -Wno-partial-type-sign
(page 88) tial type signatures when (page ??)

PartialTypeSignatures

(page 499) is enabled.

Not applicable when

PartialTypeSignatures

(page 499) is not enabled,

in which case errors are

generated for such holes.
-Wprepositive-qualified Reporttamports with alead- | dynamic| -Wno-prepositive-quali
(page 88) ing/prepositive “qualified” (page ??)
-Wredundant-bang-patter¥arn about redundant | dynamic| -Wno-redundant-bang-pa
(page 104) bang patterns. (page ??)
-Wredundant-constraints Have the compiler warn | dynamic| -Wno-redundant-constra
(page 92) about redundant con- (page ??)

straints in type signa-

tures.
-Wredundant-record-wilddads about record wild- | dynamic| -Wno-redundant-record-
(page 104) card matches when the (page ??)

wildcard binds no pat-

terns.
-Wredundant-strictness{fWags about redundant | dynamic| -Wno-redundant-strictn
(page 105) strictness flags. (page ??)
-Wsafe (page 566) warn if the module being | dynamic| -Wno-safe (page ??)

compiled is regarded to be

safe.
-Wsemigroup (page 91) warn when a Monoid is not | dynamic| -Wno-semigroup

Semigroup, and on non- (page ??)

Semigroup definitions of

(<>)?
-Wsimplifiable-class-coWaraindlsout class con- | dynamic| -Wno-simplifiable-clas
(page 100) straints in a type signa- (page ??)

ture that can be simplified

using a top-level instance

declaration.
-Wstar-binder warn about binding the | dynamic| -Wno-star-binder
(page 100) (*) type operator despite (page ??)

StarIsType (page 369)
-Wstar-is-type warn when * is used to | dynamic| -Wno-star-is-type
(page 100) mean Data.Kind.Type (page ??)
-Wtabs (page 100) warn if there are tabs in | dynamic| -Wno-tabs (page ??)

the source file
-Wterm-variable-capture warn when an implicitly | dynamic

(page 109)

quantified type variable
captures a term's name

continues on next page

150

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

-of-scope

uires-operc

ing-flags

Ing-convent]

version

Flag Description Type Reverse
-Wtrustworthy-safe warn if the module being | dynamic| -Wno-safe (page ??)
(page 566) compiled is marked as

Trustworthy (page 565)

but it could instead

be marked as Safe

(page 565), a more in-

formative bound.
-Wtype-defaults warn when defaulting hap- | dynamic| -Wno-type-defaults
(page 100) pens (page ??)
-Wtype-equality-out-of{srape when type equality a | dynamic| -Wno-type-equality-out
(page 108) ~ b is used despite being (page ??)

out of scope
-Wtype-equality-requir¢svane meliemr $ype equality a | dynamic| -Wno-type-equality-req
(page 109) ~ b is used despite being (page ??)

out of scope
-Wtyped-holes (page 88) | Report warnings when | dynamic| -Wno-typed-holes

typed hole (page 298) (page ??)

errors are deferred until

runtime (page 394). See

-fdefer-typed-holes

(page 394).
-Wunbanged-strict-patté¢émmarn on pattern bind of un- | dynamic| -Wno-unbanged-strict-patterns
(page 105) lifted variable that is nei- (page ??)

ther bare nor banged
-Wunicode-bidirectional warmadbobht thetasage of | dynamic
(page 108) unicode bidirectional lay-

out override characters
-Wunrecognised-pragmas| warn about uses of prag- | dynamic| -Wno-unrecognised-pragmas
(page 88) mas that GHC doesn't (page ??)

recognise
-Wunrecognised-warningt th#gw a warning when an | dynamic| -Wno-unrecognised-warr
(page 87) unrecognised -W. .. flagis (page ??)

encountered on the com-

mand line.
-Wunsafe (page 566) warn if the module being | dynamic| -Wno-unsafe (page ??)

compiled is regarded to be

unsafe. See Safe Haskell

(page 556)
-Wunsupported-calling-¢omaemahost use of an un- | dynamic| -Wno-unsupported-calli
(page 91) supported calling conven- (page ??)

tion
-Wunsupported-llvm-ver$Warn when using -fllvm | dynamic| -Wno-unsupported-1lvm
(page 101) (page 240) with an unsup- (page ??)

ported version of LLVM.
-Wunticked-promoted-conskamttdfs promoted con- | dynamic| -Wno-unticked-promoteq

(page 101)

structors are not ticked

(page ??)

-constructc

continues on next page

5.6. Flag reference

151

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

nds

dcards

*Irns

Flag Description Type Reverse
-Wunused-binds warn about bindings that | dynamic| -Wno-unused-binds
(page 101) are unused. Alias for (page ??)

-Wunused-top-binds

(page 102),

-Wunused-local-binds

(page 102) and

-Wunused-pattern-binds

(page 102)
-Wunused-do-bind warn about do bindings | dynamic| -Wno-unused-do-bind
(page 103) that appear to throw away (page ??)

values of types other than

()
-Wunused-foralls warn about type variables | dynamic| -Wno-unused-foralls
(page 103) in user-written forall\s (page ??)

that are unused
-Wunused-imports warn about unnecessary | dynamic| -Wno-unused-imports
(page 102) imports (page ??)
-Wunused-local-binds warn about local bindings | dynamic| -Wno-unused-local-bing
(page 102) that are unused (page ??)
-Wunused-matches warn about variables in | dynamic| -Wno-unused-matches
(page 103) patterns that aren't used (page ??)
-Wunused-packages warn when package is re- | dynamic| -Wno-unused-packages
(page 106) quested on command line, (page ??)

but not needed.
-Wunused-pattern-binds| warn about pattern match | dynamic| -Wno-unused-pattern-bi
(page 102) bindings that are unused (page ??)
-Wunused-record-wildcard¥arn about record wild- | dynamic| -Wno-unused-record-wil
(page 104) card matches when none (page ??)

of the bound variables are

used.
-Wunused-top-binds warn about top-level bind- | dynamic| -Wno-unused-top-binds
(page 102) ings that are unused (page ??)
-Wunused-type-patterns| warn about unused type | dynamic| -Wno-unused-type-patte
(page 103) variables which arise from (page ??)

patterns in in type family

and data family instances
-Wwarn (page 87) make warnings non-fatal dynamic| -Werror (page ??)

continues on next page

152

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 13 - continued from previous page

Flag

Description

Type

Reverse

-Wwarnings-deprecations
(page 90)

warn about uses of
functions & types that
have DEPRECATED
pragmas, or WARN-
ING pragmas with the
deprecated category.
Alias for -Wdeprecations
(page 90).

dynamic

-Wno-warnings-deprecat
(page ??)

-Wwrong-do-bind
(page 105)

warn about do bindings
that appear to throw away
monadic values that you
should have bound instead

dynamic

-Wno-wrong-do-bind
(page ??)

-Wx-{(category)
(page 89)

warn about uses of func-
tions & types that have
WARNING pragmas with
the given category

dynamic

-Wno-x-(category)
(page ??)

5.6.15 Optimisation |

evels

These options are described in more detail in Optimisation (code improvement) (page 111).

See Individual optimisations (page 153) for a list of optimisations enabled on level 1 and level

2.

Flag Description Type Reverse

-0 (page 111), -01 | Enable level 1 optimisa-| dynamic| -00 (page ??)

(page 111) tions

-00 (page ??) Disable optimisations (de- | dynamic
fault)

-02 (page 111) Enable level 2 optimisa-| dynamic| -00 (page ??)
tions

-0(n) (page 112) Any -On where n > 2 is the | dynamic| -00 (page ??)

same as -02.

5.6.16 Individual opt

imisations

These options are described in more detail in -f*: platform-independent flags (page 112). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

(page 129)

sembly generator for bi-
nary blobs.

Flag Description Type Reverse
-fasm-shortcutting Enable shortcutting on as- | dynamic| -fno-asm-shortcutting
(page 113) sembly. Implied by -02 (page ??)

(page 111).
-fbinary-blob-threshold=default: 500K. Tweak as- | dynamic

continues on next page

5.6. Flag reference

153

ions

GHC User’s Guide Docum

entation, Release 9.8.1

Table 15 - continued from previous page

Flag Description Type Reverse
-fblock-layout-cfg Use the new cfg based | dynamic| -fno-block-layout-cfg
(page 113) block layout algorithm. (page ??)
Implied by -0 (page 111).
-fblock-layout-weightle¢dgnore cfg weights for | dynamic| -fno-block-layout-weightless
(page 114) code layout. (page ??)
-fblock-layout-weights| Sets edge weights used by | dynamic
(page 114) the new code layout algo-
rithm.
-fcall-arity (page 113) | Enable call-arity optimi- | dynamic| -fno-call-arity
sation. Implied by -0 (page ??)
(page 111).
-fcase-folding Enable constant folding in | dynamic| -fno-case-folding
(page 112) case expressions. Implied (page ??)
by -0 (page 111).
-fcase-merge (page 112) | Enable case-merging. Im- | dynamic| -fno-case-merge
plied by -0 (page 111). (page ??)
-fcmm-control-flow Enable control flow op-| dynamic| -fno-cmm-control-flow
(page 113) timisation in the Cmm (page ??)
backend. Implied by -0
(page 111).
-fcmm-elim-common-blockEnable Cmm common | dynamic| -fno-cmm-elim-common-blocks
(page 113) block elimination. Implied (page ??)
by -0 (page 111).
-fcmm-sink (page 113) Enable Cmm sinking. Im- | dynamic| -fno-cmm-sink
plied by -0 (page 111). (page ??)
-fcmm-static-pred Enable static control flow | dynamic| -fno-cmm-static-pred
(page 113) prediction. Implied by -0 (page ??)
(page 111).
-fcore-constant-folding Enable constant folding | dynamic| -fno-core-constant-folding
(page 112) in Core. Implied by -0 (page ??)
(page 111).
-fcpr-anal (page 114) Turn on Constructed Prod- | dynamic| -fno-cpr-anal
uct Result analysis. Im- (page ??)
plied by -0 (page 111).
-fcross-module-specialiskurn on specialisation | dynamic| -fno-cross-module-spec¢ialise
(page 122) of overloaded functions (page ??)
imported from other
modules. Implied by -0
(page 111).
-fcse (page 115) Enable common sub- | dynamic| -fno-cse (page ??)
expression elimination.
Implied by -0 (page 111).
-fdicts-cheap Make dictionary-valued | dynamic| -fno-dicts-cheap
(page 115) expressions seem cheap (page ??)
to the optimiser.
continues on next page
154 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 15 - continued from previous page

Flag Description Type Reverse
-fdicts-strict Make dictionaries strict. | dynamic| -fno-dicts-strict
(page 115) Implied by -02 (page 111). (page ??)
-fdmd-tx-dict-sel (deprecated) Use a spe-| dynamic| -fno-dmd-tx-dict-sel
(page 115) cial demand transformer (page ??)

for dictionary selectors.
-fdmd-unbox-width=(n) | default: 3. Boxity analy- | dynamic
(page 121) sis pretends that returned

records with this many

fields can be unboxed.
-fdo-eta-reduction Enable eta-reduction. Al-| dynamic| -fno-do-eta-reduction
(page 116) ways enabled by default. (page ??)
-fdo-lambda-eta-expansidinable lambda eta- | dynamic| -fno-do-lambda-eta-exy
(page 116) expansion. Always en- (page ??)

abled by default.
-feager-blackholing Turn on eager blackholing | dynamic
(page 116) (page 130)
-fenable-rewrite-rules| Switch on all rewrite rules | dynamic| -fno-enable-rewrite-ry
(page 568) (including rules generated (page ??)

by automatic specialisa-

tion of overloaded func-

tions). Implied by -0

(page 111).
-fexcess-precision Enable excess intermedi- | dynamic| -fno-excess-precision
(page 116) ate precision (page ??)
-fexitification Enables exitification opti- | dynamic| -fno-exitification
(page 113) misation. Implied by -0 (page ??)

(page 111).
-fexpose-all-unfolding$ Expose all unfoldings, | dynamic| -fno-expose-all-unfolg
(page 116) even for very large or (page ??)

recursive functions.
-ffloat-in (page 116) Turn on the float-in trans- | dynamic| -fno-float-in

formation. Implied by -0 (page ??)

(page 111).
-ffull-laziness Turn on full laziness (float- | dynamic| -fno-full-laziness
(page 116) ing bindings outwards). (page ??)

Implied by -0 (page 111).
-ffun-to-thunk (deprecated) superseded | dynamic| -fno-fun-to-thunk
(page 117) by -ffull-laziness. (page ??)
-fignore-asserts Ignore assertions in the | dynamic| -fno-ignore-asserts
(page 117) source. Implied by -0 (page ??)

(page 111).
-fignore-interface-pragighore pragmas in inter- | dynamic| -fno-ignore-interface-

(page 117)

face files. Implied by -00
(page ?7?) only.

(page ??)

continues on next page

5.6. Flag reference

155

ansion

les

ings

pragmas

GHC User’s Guide Docum

entation, Release 9.8.1

Table 15 - continued from previous page

ggressively

reshold

op-level

Flag Description Type Reverse
-finline-generics Annotate methods of | dynamic| -fno-inline-generics
(page 123) derived Generic and (page ??)

Genericl instances with

INLINE[1] pragmas based

on heuristics. Implied by

-0 (page 111).
-finline-generics-aggredsmnetiate methods of | dynamic| -fno-inline-generics-a
(page 123) all derived Generic and (page ??)

Genericl instances with

INLINE[1] pragmas.
-flate-dmd-anal Run demand analysis | dynamic| -fno-late-dmd-anal
(page 117) again, at the end of the (page ??)

simplification pipeline
-flate-specialise Run a late specialisation | dynamic| -fno-late-specialise
(page 123) pass (page ??)
-fliberate-case Turn on the liberate-case | dynamic| -fno-liberate-case
(page 117) transformation. Implied (page ??)

by -02 (page 111).
-fliberate-case-thresholdefanlt: 2000. Set the size | dynamic| -fno-liberate-case-thi
(page 117) threshold for the liberate- (page ??)

case transformation to (n)
-fllvm-pass-vectors-int fdeprecated) Does nothing | dynamic
(page 118)
-flocal-float-out Enable local floating defi- | dynamic| -fno-local-float-out
(page 118) nitions out of let-binds. (page ??)
-flocal-float-out-top-|dmdble local floating to | dynamic| -fno-local-float-out-t
(page 119) float top-level bindings (page ??)
-floopification Turn saturated self- | dynamic| -fno-loopification
(page 118) recursive tail-calls into (page ??)

local jumps in the gener-

ated assembly. Implied by

-0 (page 111).
-fmax-inline-alloc-size=default: 128. Set the maxi- | dynamic
(page 118) mum size of inline array al-

locations to (n) bytes (de-

fault: 128).
-fmax-inline-memcpy-insrdefanlt: 32. Inline memcpy | dynamic
(page 118) calls if they would gen-

erate no more than (n)

pseudo instructions.
-fmax-inline-memset-insrdefanlt: 32. Inline memset | dynamic
(page 118) calls if they would gen-

erate no more than (n)

pseudo instructions
-fmax-simplifier-iteratidefanlin)4. Set the max it- | dynamic

(page 118)

erations for the simplifier.

continues on next page

156

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 15 - continued from previous page

Flag Description Type Reverse
-fmax-uncovered-patterndefanlt: 4. Set the | dynamic
(page 118) maximum number of pat-
terns to display in warn-
ings about non-exhaustive
ones.
-fmax-worker-args=(n) | default: 10. Maximum | dynamic
(page 119) number of value argu-
ments for a worker.
-fno-opt-coercion Turn off the coercion opti- | dynamic
(page 119) miser
-fno-pre-inlining Turn off pre-inlining dynamic
(page 119)
-fno-state-hack Turn off the state hack-| dynamic
(page 119) whereby any lambda with
a real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.
-fomit-interface-pragmadon't generate interface | dynamic| -fno-omit-interface-pragmas
(page 119) pragmas. Implied by -00 (page ??)
(page ?7?) only.
-fomit-yields Omit heap checks when | dynamic| -fno-omit-yields
(page 120) no allocation is being per- (page ??)
formed.
-foptimal-applicative-ddJse a slower but better al- | dynamic| -fno-optimal-applicative-do
(page 277) gorithm for ApplicativeDo (page ??)
-fpedantic-bottoms Make GHC be more | dynamic| -fno-pedantic-bottoms
(page 120) precise about its treat- (page ??)
ment of bottom (but see
also -fno-state-hack
(page 119)). In particular,
GHC will not eta-expand
through a case expression.
-fpolymorphic-specialisadllow specialisation to ab- | dynamic| -fno-polymorphic-specialisation
(page 122) stract over free type vari- (page ??)
ables
-fregs-graph (page 120) | Use the graph colouring | dynamic| -fno-regs-graph
register allocator for regis- (page ??)
ter allocation in the native
code generator.
-fregs-iterative Use the iterative coalesc- | dynamic| -fno-regs-iterative
(page 120) ing graph colouring regis- (page ??)
ter allocator in the native
code generator.
-fsimpl-tick-factor=(n}) default: 100. Set the per- | dynamic

(page 120)

centage factor for simpli-

fier ticks.

continues on next page

5.6. Flag reference

157

GHC User’s Guide Docum

entation, Release 9.8.1

Table 15 - continued from previous page

cts

hold

sively

2rents

ransformati

Flag Description Type Reverse
-fsimplifier-phases=(n) default: 2. Set the num- | dynamic
(page 120) ber of phases for the sim-

plifier. Ignored with -00

(page ?7?).
-fsolve-constant-dicts| When solving constraints, | dynamic| -fno-solve-constant-di
(page 123) try to eagerly solve super (page ??)

classes using available dic-

tionaries. Implied by -0

(page 111).
-fspec-constr Turn on the SpecConstr | dynamic| -fno-spec-constr
(page 121) transformation. Implied (page ??)

by -02 (page 111).
-fspec-constr-count=(n) default: 3.* Set to (n) | dynamic| -fno-spec-constr-count
(page 122) the maximum number of (page ??)

specialisations that will be

created for any one func-

tion by the SpecConstr

transformation.
-fspec-constr-keen Specialize a call with an | dynamic| -fno-spec-constr-keen
(page 122) explicit constructor argu- (page ??)

ment, even if the argu-

ment is not scrutinised in

the body of the function
-fspec-constr-threshold=default: 2000. Set the size | dynamic| -fno-spec-constr-threg
(page 122) threshold for the Spec- (page ??)

Constr transformation to

(n).
-fspecialise (page 122) | Turn on specialisation of | dynamic| -fno-specialise

overloaded functions. Im- (page ??)

plied by -0 (page 111).
-fspecialise-aggressiveurn on specialisation of | dynamic| -fno-specialise-aggres
(page 122) overloaded functions re- (page ??)

gardless of size, if unfold-

ing is available
-fspecialise-incoherent¥nable specialisation on | dynamic| -fno-specialise-incohe
(page 123) incoherent instances (page ??)
-fstatic-argument-trans ffimmtawnthe static argu- | dynamic| -fno-static-argument-t
(page 124) ment transformation. (page ??)
-fstg-cse (page 115) Enable common sub-| dynamic| -fno-stg-cse (page ??)

expression elimination

on the STG intermediate

language. Implied by -0

(page 111).
-fstg-lift-lams Enable late lambda lifting | dynamic| -fno-stg-1ift-lams

(page 124) on the STG intermediate (page ??)
language. Implied by -02
(page 111).
continues on next page
158 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 15 - continued from previous page

wn

rC-args-any

"gs-any

t-fields

ds

Flag Description Type Reverse
-fstg-lift-lams-known | Allow turning known into | dynamic| -fno-stg-lift-1lams-kng
(page 124) unknown calls while per- (page ??)
forming late lambda lift-
ing.
-fstg-lift-lams-non-recGregte top-level non- | dynamic| -fstg-1ift-lams-non-re
(page 124) recursive functions with (page ??)
at most <n> parameters
while performing late
lambda lifting.
-fstg-lift-lams-rec-arg<Lreate top-level recursive | dynamic| -fstg-1ift-lams-rec-afy
(page 124) functions with at most (page ??)
<n> parameters while per-
forming late lambda lift-
ing.
-fstrictness (page 124) | Turn on demand anal- | dynamic| -fno-strictness
ysis. Implied by -0 (page ??)
(page 111). Implies
-fworker-wrapper
(page 129)
-fstrictness-before=(n) Run an additional demand | dynamic
(page 126) analysis before simplifier
phase (n)
-funbox-small-strict-fidlldsten strict constructor | dynamic| -fno-unbox-small-strig
(page 126) fields with a pointer-sized (page ??)
representation. Implied
by -0 (page 111).
-funbox-strict-fields | Flatten strict constructor | dynamic| -fno-unbox-strict-fiel
(page 127) fields (page ??)
-funfolding-case-scalingkefanlt: 30. Apply a | dynamic
(page 128) penalty of (inlining cost *
1/n) for each level of case
nesting.
-funfolding-case-threshaefatity 2. Reduce in-| dynamic
(page 128) lining for cases nested
deeper than n.
-funfolding-creation-thdetholid=(#50. Tweak un- | dynamic
(page 127) folding settings.
-funfolding-dict-discolyrdefaunlt: 30. Tweak unfold- | dynamic
(page 127) ing settings.
-funfolding-fun-discounidefailt: 60. Tweak unfold- | dynamic
(page 127) ing settings.
-funfolding-keeness-factihis(lhas been deprecated | dynamic
(page 128) in GHC 9.0.1.
-funfolding-use-thresholdefanlt: 80. Tweak unfold- | dynamic

(page 128)

ing settings.

continues on next page

5.6. Flag reference

159

GHC User’s Guide Documentation, Release 9.8.1

Table 15 - continued from previous page

Flag Description Type Reverse
-fworker-wrapper Enable the | dynamic
(page 129) worker/wrapper trans-

formation. Implied by

-0 (page 111) and by
-fstrictness (page 124).

-fworker-wrapper-cbv Enable w/w splits for wrap- | dynamic
(page 129) pers whos sole purpose is
evaluating arguments.

5.6.17 Profiling options

More details in Profiling (page 629)

Flag Description Type Reverse

-auto (page 636) (deprecated) Alias for | dynamic
-fprof-auto-exported
(page 635)

-auto-all (page 636) (deprecated) Alias for | dynamic
-fprof-auto (page 635)

-caf-all (page 636) (deprecated) Alias for | dynamic

-fprof-cafs (page 636)

-fno-prof-count-entries Do not collect entry counts | dynamic| - fprof-count-entries

(page 634) (page ??)
-fprof-auto (page 635) | Auto-add SCC\ s to all bind- | dynamic| -fno-prof-auto
ings not marked INLINE (page ??)
-fprof-auto-calls Auto-add SCC\ s to all call | dynamic| -fno-prof-auto
(page 635) sites (page ??)
-fprof-auto-exported Auto-add SCC\ s to all | dynamic| -fno-prof-auto
(page 635) exported bindings not (page ??)
marked INLINE (page 588)
-fprof-auto-top Auto-add SCC\ s to all top- | dynamic| -fno-prof-auto
(page 635) level bindings not marked (page ??)
INLINE
-fprof-cafs (page 636) | Auto-add SCC\s to all CAFs | dynamic| -fno-prof-cafs
(page ??)
-fprof-callers=(name) | Auto-add SCC\ s to all call- | dynamic
(page 635) sites of the named func-
tion.
-fprof-late (page 635) | Auto-add SCC\ s to all top | dynamic| -fno-prof-late
level bindings after the (page ??)
core pipeline has run.
-fprof-late-inline Auto-add SCC\ s to all top | dynamic| -fno-prof-late-inline
(page 636) level bindings after the op- (page ??)

timizer has run and retain
them when inlining.

continues on next page

160 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 16 - continued from previous page

Flag Description Type Reverse
-fprof-manual Process manual SCC anno- | dynamic| -fno-prof-manual
(page 636) tations. (page ??)
-no-auto (page 636) (deprecated) Alias for | dynamic
-fno-prof-auto (page ??)
-no-auto-all (page 636) | (deprecated) Alias for | dynamic
-fno-prof-auto (page ??)
-no-caf-all (page 636) (deprecated) Alias for | dynamic
-fno-prof-cafs (page ??)
-prof (page 634) Turn on profiling dynamic
-ticky (page 654) Turn on ticky-ticky profil- | dynamic
ing (page 654)
-ticky-allocd Track the number of times | dynamic
(page 654) each closure type is allo-
cated.
-ticky-ap-thunk Don't use standard AP | dynamic
(page 655) thunks on order to get
more reliable entry coun-
ters.
-ticky-dyn-thunk Track allocations of dy-| dynamic
(page 654) namic thunks
-ticky-LNE (page 654) Treat join point | dynamic
binders similar to
thunks/functions.
-ticky-tag-checks Emit dummy ticky coun- | dynamic
(page 655) ters to record how many
tag-inference checks tag
inference avoided.
5.6.18 Program coverage options
More details in Observing Code Coverage (page 648)
Flag Description Type Reverse
-fthpc (page 650) Turn on Haskell program | dynamic
coverage instrumentation
-hpcdir(dir) (page 650) | Set the directory where | dynamic

GHC places .mix files.

5.6. Flag reference

161

GHC User’s Guide Docum

entation, Release 9.8.1

5.6.19 C pre-processor options

More details in Options affecting the C pre-processor (page 237)

Flag Description Type Reverse
-cpp (page 237) Run the C pre-processor | dynamic
on Haskell source files
-D(symbol)[=(value)] Define a symbol in the C | dynamic| -U(symbol) (page 237)
(page 237) pre-processor
-I(dir) (page 237) Add (dir) to the directory | dynamic
search list for #include
files
-U(symbol) (page 237) Undefine a symbol in the C | dynamic

pre-processor

5.6.20 Code generation options

More details in Options affecting code generation (page 240)

(page 240)

taining the simplified core
of the module.

Flag Description Type Reverse
-dynamic-too (page 241) | Build dynamic object files | dynamic
as well as static object files
during compilation
-fasm (page ??) Use the native code gener- | dynamic| -flLlvm (page 240)
ator (page 233)
-fbyte-code (page 240) | Generate byte-code dynamic
-fbyte-code-and-objecttdaererate object code and | dynamic
(page 241) byte-code
-fexpose-internal-symboBroduce symbols for all | dynamic
(page 241) functions, including inter-
nal functions.
-fexternal-dynamic-refs$ Generate code for linking | dynamic
(page 241) against dynamic libraries
-fllvm (page 240) Compile using the LLVM | dynamic| -fasm (page ??)
code generator (page 233)
-fno-code (page 240) Omit code generation dynamic
-fobject-code Generate object code dynamic
(page 240)
-fPIC (page 241) Generate position- | dynamic
independent code (where
available)
-fPIE (page 241) Generate code for a | dynamic
position-independent exe-
cutable (where available)
-fprefer-byte-code Use byte-code if it is avail- | dynamic
(page 242) able to evaluate TH splices
-fwrite-if-simplified- ¢dNeite an interface file con- | dynamic

continues on next page

162

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 19 - continued from previous page

Flag Description Type Reverse
-fwrite-interface Always write interface | dynamic
(page 240) files
-split-objs (page 241) | Split generated object | dynamic
files into smaller files
5.6.21 Linking options
More details in Options affecting linking (page 242)
Flag Description Type Reverse
-C (page 68) Stop after generating object (.o0) file mode
-debug (page 244) Use the debugging runtime dynamic
-dylib-install-name Set the install name (via | dynamic
(path) (page 247) -install name passed to Apple's
linker), specifying the full install path
of the library file. Any libraries or
executables that link with it later will
pick up that path as their runtime
search location for it. (Darwin/OS X
only)
-dynamic (page 243) Build dynamically-linked object files | dynamic
and executables
-dynload (page 243) Selects one of a number of modes for | dynamic
finding shared libraries at runtime.
-eventlog (page 245) Enable runtime event tracing dynamic
-fcompact-unwind (page 248) | Instruct the linker to produce a com- | dynamic
pact unwind section.
-fkeep-cafs (page 248) Do not garbage-collect CAFs (top-level | dynamic
expressions) at runtime
-flink-rts (page 243) Link the runtime when generating a | dynamic
shared or static library
-fno-embed-manifest Do not embed the manifest in the exe- | dynamic
(page 246) cutable (Windows only)
-fno-gen-manifest Do not generate a manifest file (Win- | dynamic
(page 246) dows only)
-fno-shared-implib Don't generate an import library for a | dynamic
(page 247) DLL (Windows only)
-framework (name) On Darwin/OS X/iOS only, link in the | dynamic
(page 242) framework (name). This option corre-
sponds to the -framework option for
Apple's Linker.
-framework-path (dir) On Darwin/OS X/iOS only, add {(dir) | dynamic
(page 243) to the list of directories searched for
frameworks. This option corresponds
to the -F option for Apple's Linker.

continues on next page

5.6. Flag reference

163

GHC User’s Guide Documentation, Release 9.8.1

Table 20 - continued from previous page

Flag Description Type Reverse
-fsplit-sections Split sections for link-time dead-code | dynamic| -fno-sp
(page 243), -split-sections | stripping (page ?7?
(page 243)
-fuse-rpaths (page 243) Set the rpath based on -L flags dynamic
-fwhole-archive-hs-1ibs When linking a binary exe-| dynamic
(page 247) cutable, this inserts the flag -W1l,
--whole-archive Dbefore any -1
flags for Haskell libraries, and -W1,
--no-whole-archive afterwards
-L (dir) (page 243) Add (dir) to the list of directories | dynamic
searched for libraries
-1 (lib) (page 242) Link in library (lib) dynamic
-main-is (thing) (page 244) | Set main module and function dynamic
-no-hs-main (page 244) Don't assume this program contains | dynamic
main
-no-pie (page 247) Don't instruct the linker to produce a | dynamic| -pie
position-independent executable. (page ??
-no-rtsopts-suggestions Don't print RTS sugges- | dynamic
(page 246) tions about linking with
-rtsopts[=(none|some|all|ignore|ignoreAll)|]
(page 245).
-package (name) (page 242) | Expose package (pkg) dynamic
-pie (page ??) Instruct the linker to produce a | dynamic| -no-pie€
position-independent executable. (page 24
-rdynamic (page 247) This instructs the linker to add all | dynamic
symbols, not only used ones, to
the dynamic symbol table. Cur-
rently Linux and Windows/MinGW32
only. This is equivalent to using
-optl -rdynamic on Linux, and -optl
-export-all-symbols on Windows.

continues on next page

164

Chapter 5. Using GHC

lit-sections

)

~

7)

GHC User’s Guide Documentation, Release 9.8.1

Table 20 - continued from previous page

Flag Description Type Reverse
-rtsopts[=(none|some|all|igr@omtiol nwhethéy [the RTS behaviour | dynamic
(page 245) can be tweaked via command-line flags
and the GHCRTS environment variable.
Using none means no RTS flags can
be given; some means only a mini-
mum of safe options can be given (the
default); all (or no argument at all)
means that all RTS flags are permit-
ted; ignore means RTS flags can be
given, but are treated as regular argu-
ments and passed to the Haskell pro-
gram as arguments; ignoreAll is the
same as ignore, but GHCRTS is also
ignored. -rtsopts does not affect
-with-rtsopts behavior; flags passed
via -with-rtsopts are used regard-
less of -rtsopts.
-shared (page 69) Generate a shared library (as opposed | dynamic
to an executable)
-single-threaded (page 245) | Use the single-threaded runtime dynamic| -threaded
(page ??)
-static (page 243) Use static Haskell libraries dynamic
-staticlib (page 242) Generate a standalone static library | dynamic
(as opposed to an executable). This
is useful when cross compiling. The
library together with all its dependen-
cies ends up in in a single static library
that can be linked against.
-threaded (page ??) Use the threaded runtime dynamic| -singlg-threaded
(page 245)
-with-rtsopts=(opts) Set the default RTS options to {(opts). dynamic
(page 246)
5.6.22 Plugin options
More details in Compiler Plugins (page 603)
Flag Description Type Reverse
-fclear-plugins Clear the list of active plu- | dynamic
(page 604) gins
-fplugin-library=(file{{daddd a pre-compiled static | dynamic
(unit-id); (module); plugin from an external li-
(args) (page 604) brary

continues on next page

5.6. Flag reference

165

GHC User’s Guide Docum

entation, Release 9.8.1

Table 21 - continued from previous page

Flag Description Type Reverse
-fplugin-opt=(module): {d&iye) arguments to a | dynamic
(page 603) plugin module; mod-

ule must be specified

with -fplugin=(module)

(page 603)
-fplugin-trustworthy Trust the used plugins and | dynamic
(page 604) no longer mark the com-

piled module as unsafe
-fplugin=(module) Load a plugin exported by | dynamic
(page 603) a given module
-hide-all-plugin-packagddide all packages for plug- | dynamic
(page 605) ins by default
-plugin-package (pkg) | Expose (pkg) for plugins dynamic
(page 605)
-plugin-package-id Expose (pkg-id) for plug-| dynamic

(pkg-id) (page 605)

ms

5.6.23 Replacing phases

More details in Replacing the program for one or more phases (page 234)

Flag Description Type Reverse

-pgma {(cmd) (page 235) | Use {cmd) as the assem- | dynamic
bler

-pgmc {(cmd) (page 234) | Use {cmd) as the C com- | dynamic
piler

-pgmcxx {(cmd) Use (cmd) as the C++ | dynamic

(page 234) compiler

-pgmdll (cmd) Use (cmd) as the DLL gen- | dynamic

(page 235) erator

-pgmF (cmd) (page 235) | Use {cmd) as the pre-| dynamic
processor (with -F
(page 239) only)

-pgmi (cmd) (page 235) | Use (cmd) as the external | dynamic
interpreter command.

-pgminstall name tool | Use {(cmd) as the pro-| dynamic

(cmd) (page 235) gram to inject runpath
into mach-o dylibs on ma-
cOS

-pgmL (cmd) (page 234) | Use {(cmd) as the literate | dynamic
pre-processor

-pgml (cmd) (page 235) | Use (cmd) as the linker dynamic

-pgmlc (cmd) (page 235) | Use {(cmd) as the LLVM | dynamic
compiler

-pgmlm (cmd) (page 235) | Use {(cmd) as the linker | dynamic
when merging object files

-pgmlo (cmd) (page 235) | Use {(cmd) as the LLVM op- | dynamic

timiser

continues on next page

166

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 22 - continued from previous page

Flag Description Type Reverse
-pgmotool (cmd) Use {(cmd) as the program | dynamic
(page 235) to inspect mach-o dylibs
on macOS
-pgmP {(cmd) (page 234) | Use {(cmd) as the C pre- | dynamic
processor (with -cpp
(page 237) only)
-pgms (cmd) (page 235) | Use {cmd) as the splitter dynamic
-pgmwindres {cmd) Use {cmd) as the program | dynamic
(page 235) for embedding manifests
on Windows.
5.6.24 Forcing options to particular phases
More details in Forcing options to a particular phase (page 235)
Flag Description Type Reverse
-opta (option) pass (option) to the assem- | dynamic
(page 236) bler
-optc (option) pass {(option) to the C com- | dynamic
(page 235) piler
-optcxx (option) pass {option) to the C++ | dynamic
(page 236) compiler
-optF (option) pass (option) to the cus-| dynamic
(page 235) tom pre-processor
-opti (option) pass (option) to the inter- | dynamic
(page 236) preter sub-process.
-optL (option) pass (option) to the liter- | dynamic
(page 235) ate pre-processor
-optl (option) pass (option) to the linker | dynamic
(page 236)
-optlc (option) pass {(option) to the LLVM | dynamic
(page 236) compiler
-optlm (option) pass {option) to the linker | dynamic
(page 236) when merging object files.
-optlo (option) pass {(option) to the LLVM | dynamic
(page 236) optimiser
-optP (option) pass (option) to cpp (with | dynamic
(page 235) -cpp (page 237) only)
-optwindres (option) pass (option) to windres. dynamic
(page 236)
-pgmc-supports-no-pie | (deprecated) Indicate | dynamic
(page 236) that the linker supports
-no-pie
-pgml-supports-no-pie | Indicate that the linker | dynamic

(page 236)

supports -no-pie

5.6. Flag reference

167

GHC User’s Guide Documentation, Release 9.8.1

5.6.25 Platform-specific options

More details in Platform-specific Flags (page 81)

Flag Description Type Reverse
-mavx (page 81) (x86 only) Enable support | dynamic
for AVX SIMD extensions
-mavx2 (page 81) (x86 only) Enable support | dynamic
for AVX2 SIMD extensions
-mavx512cd (page 82) (x86 only) Enable support | dynamic
for AVX512-CD SIMD ex-
tensions
-mavx512er (page 82) (x86 only) Enable support | dynamic
for AVX512-ER SIMD ex-
tensions
-mavx512f (page 82) (x86 only) Enable support | dynamic
for AVX512-F SIMD exten-
sions
-mavx512pf (page 82) (x86 only) Enable support | dynamic
for AVX512-PF SIMD ex-
tensions
-mbmi (page 83) (x86 only) Use BMI1 for bit | dynamic
manipulation operations
-mbmi2 (page 83) (x86 only) Use BMI2 for bit | dynamic
manipulation operations
-mfma (page 83) Use native FMA instruc- | dynamic
tions for fused multiply-
add floating-point opera-
tions
-msse (page 82) (x86 only) Use SSE for | dynamic
floating-point operations
-msse2 (page 82) (x86 only) Use SSE2 for | dynamic
floating-point operations
-msse3 (page 82) (x86 only) Use SSE3 for | dynamic
floating-point operations
-msse4 (page 83) (x86 only) Use SSE4 for | dynamic
floating-point operations
-msse4.2 (page 83) (x86 only) Use SSE4.2 for | dynamic
floating-point operations
5.6.26 Compiler debugging options
More details in Debugging the compiler (page 251)
Flag Description Type Reverse
-dasm-lint (page 262) ASM pass sanity checking dynamic
-dcmm-lint (page 262) C-\- pass sanity checking dynamic
-dcore-lint (page 261) Turn on internal sanity checking dynamic

continues on next page

168

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page

Flag Description Type Reverse
-ddisable-js-minifier Generate pretty-printed JavaScript | dynamic
(page 259) code instead of minified (compacted)
code.
-ddump-asm (page 259) Dump final assembly dynamic
-ddump-asm-conflicts Dump register conflicts from the regis- | dynamic
(page 258) ter allocator.
-ddump-asm-liveness Dump assembly augmented with regis- | dynamic
(page 259) ter liveness
-ddump-asm-native Dump initial assembly dynamic
(page 258)
-ddump-asm-regalloc Dump the result of register allocation | dynamic
(page 259)
-ddump-asm-regalloc-stages| Dump the build/spill stages of the | dynamic
(page 259) -fregs-graph (page 120) register allo-
cator.
-ddump-asm-stats (page 259) | Dump statistics from the register allo- | dynamic
cator.
-ddump-bcos (page 259) Dump interpreter byte code dynamic
-ddump-c-backend (page 258) | Dump C code produced by the C (un- | dynamic
registerised) backend.
-ddump-call-arity Dump output of the call arity analysis | dynamic
(page 254) pass.
-ddump-cfg-weights Dump the assumed weights of the | dynamic
(page 258) CFG.
-ddump-cmm (page 258) Dump the final C-\- output dynamic
-ddump-cmm-caf (page 258) Dump the results of the C-\- CAF anal- | dynamic
ysis pass.
-ddump-cmm-cbe (page 257) Dump the results of common block | dynamic
elimination
-ddump-cmm-cfg (page 257) Dump the results of the C-\- control | dynamic
flow optimisation pass.
-ddump-cmm-cps (page 258) Dump the results of the CPS pass dynamic
-ddump-cmm-from-stg Dump STG-to-C-\- output dynamic
(page 257)
-ddump-cmm-info (page 258) | Dump the results of the C-\- info table | dynamic
augmentation pass.
-ddump-cmm-opt (page 258) Dump the results of C-\- to C-\- optimis- | dynamic
ing passes
-ddump-cmm-proc (page 257) | Dump the results of proc-point analysis | dynamic
-ddump-cmm-procmap Dump the results of the C-\- proc-point | dynamic
(page 258) map pass.
-ddump-cmm- raw (page 257) Dump raw C-\- dynamic
-ddump-cmm-sink (page 258) | Dump the results of the C-\- sinking | dynamic

pass.

continues on next page

5.6. Flag reference

169

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page
Flag Description Type Reverse
-ddump-cmm-sp (page 258) Dump the results of the C-\- stack lay- | dynamic
out pass.
-ddump-cmm-split (page 258) | Dump the results of the C-\- proc-point | dynamic
splitting pass.
-ddump-cmm-switch Dump the results of switch lowering | dynamic
(page 257) passes
-ddump-cmm-thread-sanitizef Dump the results of the C-\- Thread- | dynamic
(page 257) Sanitizer elaboration pass.
-ddump-cmm-verbose Write output from main C-\- pipeline | dynamic
(page 257) passes to files
-ddump-cmm-verbose-by-proc| Show output from main C-\- pipeline | dynamic
(page 257) passes (grouped by proc)
-ddump-core-stats Print a one-line summary of the size of | dynamic
(page 254) the Core program at the end of the op-
timisation pipeline
-ddump-cpr-signatures Dump CPR signatures dynamic
(page 256)
-ddump-cpranal (page 256) Dump CPR analysis output dynamic
-ddump-cs-trace (page 253) | Trace constraint solver dynamic
-ddump-cse (page 256) Dump CSE output dynamic
-ddump-debug (page 259) Dump generated DWARF debug infor- | dynamic
mation
-ddump-deriv (page 254) Dump deriving output dynamic
-ddump-ds (page 254), | Dump desugarer output. dynamic
-ddump-ds-preopt (page 254)
-ddump-ec-trace (page 253) | Trace exhaustiveness checker dynamic
-ddump-exitify (page 254) Dump output of the exitification pass. | dynamic
-ddump-faststrings Dump the whole FastString table when | dynamic
(page 253) finished
-ddump-file-prefix=(str) Set the prefix of the filenames used for | dynamic
(page 252) debugging output.
-ddump-float-in (page 256) | Dump float in output dynamic
-ddump-foreign (page 259) Dump foreign export stubs dynamic
-ddump-full-laziness Dump full laziness pass output dynamic
(page 256),
-ddump-float-out (page 256)
-ddump-hie (page 254) Dump the hie file syntax tree dynamic
-ddump-hpc (page 259) An alias for -ddump-ticked | dynamic
(page 259).
-ddump-if-trace (page 253) | Trace interface files dynamic

continues on next page

170

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page

Flag Description Type Reverse

-ddump-inlinings (page 255) | Dump inlinings performed by the sim- | dynamic
plifier.

-ddump-js (page 259) Dump final JavaScript code dynamic

-ddump-json (page 252) Dump error messages as JSON docu- | dynamic
ments

-ddump-late-cc (page 256) Dump core with late cost centres | dynamic
added

-ddump-liberate-case Dump liberate case output dynamic

(page 256)

-ddump-Llvm (page 258) Dump LLVM intermediate code. dynamic

-ddump-mod-map (page 259) Dump the state of the module mapping | dynamic
database.

-ddump-occur-anal Dump occurrence analysis output dynamic

(page 256)

-ddump-opt-cmm (page 258) Dump the results of C-\- to C-\- optimis- | dynamic
ing passes

-ddump-parsed (page 253) Dump parse tree dynamic

-ddump-parsed-ast Dump parser output as a syntax tree dynamic

(page 253)

-ddump-prep (page 256) Dump prepared core dynamic

-ddump-rn (page 254) Dump renamer output dynamic

-ddump-rn-ast (page 254) Dump renamer output as a syntax tree | dynamic

-ddump-rn-stats (page 253) | Renamer stats dynamic

-ddump-rn-trace (page 253) | Trace renamer dynamic

-ddump-rtti (page 259) Trace runtime type inference dynamic

-ddump-rule-firings Dump rule firing info dynamic

(page 255)

-ddump-rule-rewrites Dump detailed rule firing info dynamic

(page 255)

-ddump-rules (page 255) Dump rewrite rules dynamic

-ddump-simpl (page 255) Dump final simplifier output dynamic

-ddump-simpl-iterations Dump output from each simplifier iter- | dynamic

(page 254) ation

-ddump-simpl-stats Dump simplifier stats dynamic

(page 255)

-ddump-simpl-trace Dump trace messages in simplifier dynamic

(page 255)

-ddump-spec (page 255) Dump specialiser output dynamic

continues on next page

5.6. Flag reference

171

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page
Flag Description Type Reverse
-ddump-spec-constr Dump specialiser output from Spec-| dynamic
(page 255) Constr
-ddump-splices (page 254) Dump TH spliced expressions, and | dynamic
what they evaluate to
-ddump-static-argument-trapdhumpestatic argument transformation | dynamic
(page 256) output
-ddump-stg (page 257) (deprecated) Alias for | dynamic
-ddump-stg-from-core (page 257)
-ddump-stg-cg (page 257) Show output after Stg2Stg dynamic
-ddump-stg-final (page 257) | Show output of last STG pass. dynamic
-ddump-stg-from-core Show CoreToStg output dynamic
(page 257)
-ddump-stg-tags (page 257) | Show output of the tag inference pass. | dynamic
-ddump-stg-unarised Show unarised STG dynamic
(page 257)
-ddump-str-signatures Dump top-level demand signatures dynamic
(page 256)
-ddump-stranal (page 256) Dump demand analysis output dynamic
-ddump-tc (page 254) Dump typechecker output dynamic
-ddump-tc-ast (page 254) Dump typechecker output as a syntax | dynamic
tree
-ddump-tc-trace (page 253) | Trace typechecker dynamic
-ddump-ticked (page 259) Dump the code instrumented by | dynamic
HPC (Observing Code Coverage
(page 648)).
-ddump-timings (page 253) Dump per-pass timing and allocation | dynamic
statistics
-ddump-to-file (page 252) Dump to files instead of stdout dynamic
-ddump-types (page 254) Dump type signatures dynamic
-ddump-verbose-inlinings Dump all considered inlinings dynamic
(page 255)
-ddump-view-pattern-commonimump commoned view patterns dynamic
(page 256)
-ddump-worker-wrapper Dump worker-wrapper output dynamic
(page 256)
-dfaststring-stats Show statistics for fast string usage | dynamic
(page 252) when finished
-dhex-word-literals Print values of type Word# in hexadec- | dynamic
(page 260) imal.
-dinitial-unique=(s) Start UniqSupply allocation from (s). dynamic
(page 263)
continues on next page
172 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page

Flag Description Type Reverse

-dinline-check=(str) Dump information about inlining deci- | dynamic

(page 255) sions

-dkeep-comments (page 253) | Include comments in the parser.| dynamic
Useful in combination with
-ddump-parsed-ast (page 253).

-dlinear-core-lint Turn on internal sanity checking dynamic

(page 261)

-dlint (page 261) Enable several common internal sanity | dynamic
checkers

-dno-debug-output Suppress unsolicited debugging out- | dynamic| -ddebug

(page 260) put (page ?7?

-dno-typeable-binds Don't generate bindings for Typeable | dynamic

(page 263) methods

-dppr-case-as-let Print single alternative case expres-| dynamic

(page 260) sions as strict lets.

-dppr-cols=(n) (page 260) Set the width of debugging output. For | dynamic
example -dppr-cols200

-dppr-debug (page 253) Turn on debug printing (more verbose) | dynamic

-dppr-user-length Set the depth for printing expressions | dynamic

(page 260) in error msgs

-drule-check=(str) Dump information about potential rule | dynamic

(page 255) application

-dshow-passes (page 252) Print out each pass name as it happens | dynamic

-dstg-lint (page 261) STG pass sanity checking dynamic

-dsuppress-all (page 260) In dumps, suppress everything (except | dynamic
for uniques) that is suppressible.

-dsuppress-coercion-types | Suppress the printing of coercion | dynamic

(page 261) types in Core dumps to make them
shorter

-dsuppress-coercions Suppress the printing of coercions in | dynamic

(page 261) Core dumps to make them shorter

-dsuppress-core-sizes Suppress the printing of core size stats | dynamic

(page 261) per binding (since 9.4)

-dsuppress-idinfo Suppress extended information about | dynamic

(page 260) identifiers where they are bound

-dsuppress-module-prefixes| Suppress the printing of module quali- | dynamic

(page 261) fication prefixes

-dsuppress-stg-free-vars Suppress the printing of closure free | dynamic

(page 261) variable lists in STG output

-dsuppress-stg-reps Suppress rep annotations on STG args. | dynamic

(page 261)

-dsuppress-ticks (page 260) | Suppress “ticks” in the pretty-printer | dynamic
output.

-dsuppress-timestamps Suppress timestamps in dumps dynamic

(page 261)

continues on next page

5.6. Flag reference

173

-output

GHC User’s Guide Documentation, Release 9.8.1

Table 25 - continued from previous page

Flag Description Type Reverse
-dsuppress-type-applicationsSuppress type applications dynamic
(page 261)
-dsuppress-type-signatures| Suppress type signatures dynamic
(page 261)
-dsuppress-unfoldings Suppress the printing of the stable un- | dynamic
(page 260) folding of a variable at its binding site
-dsuppress-uniques Suppress the printing of uniques in de- | dynamic
(page 260) bug output (easier to use diff)
-dsuppress-var-kinds Suppress the printing of variable kinds | dynamic
(page 261)
-dtag-inference-checks Affirm tag inference results are correct | dynamic
(page 263) at runtime.
-dth-dec-file (page 254) Dump evaluated TH declarations into | dynamic
*.th.hs files
-dunique-increment=(1i) Set the increment for the generated | dynamic
(page 263) Unique's to (i).
-dverbose-core2core Show output from each core-to-core | dynamic
(page 255) pass
-dverbose-stg2stg Show output from each STG-to-STG | dynamic
(page 257) pass
-falignment-sanitisation Compile with alignment checks for all | dynamic
(page 262) info table dereferences.
-fcatch-nonexhaustive-cases Add a default error alternative to case | dynamic
(page 262) expressions without a default alterna-
tive.
-fcheck-prim-bounds Instrument array primops with bounds | dynamic
(page 262) checks.
-fcmm-thread-sanitizer Enable ThreadSanitizer instrumenta-| dynamic
(page 262) tion of memory accesses.
-fdistinct-constructor-tabld3enerate a fresh info table for each us- | dynamic
(page 665) age of a data constructor.
-fdump-with-ways (page 252) | Include the tag of the enabled ways in | dynamic
the extension of dump files.
-finfo-table-map (page 665) | Embed a lookup table in the generated | dynamic
binary which maps the address of an
info table to the source position the clo-
sure originated from.
-fllvm-fill-undef-with-garbdotruct LLVM to fill dead STG registers | dynamic
(page 262) with garbage
-fproc-alignment (page 262) | Align functions at given boundary. dynamic
-funoptimized-core-for-inteMisabée optimizations with the inter- | dynamic| -fno-un
(page 263) preter (page ??
-g (page 659), -g(n) | Produce DWARF debug information in | dynamic
(page 659) compiled object files. (n) can be 0, 1,
or 2, with higher numbers producing
richer output. If (n) is omitted, level 2
is assumed.
174 Chapter 5. Using GHC

optimized-cc

)

GHC User’s Guide Documentation, Release 9.8.1

5.6.27 Miscellaneous compiler options

Flag Description Type Reverse
-ddump-mod-cycles Dump module cycles dynamic
(page 214)
-fdefer-out-of-scope-variab@mvert variable out of scope vari- | dynamic| -fno-de
(page 394) ables errors into warnings. Im- (page ??
plied by -fdefer-type-errors
(page 394). See also
-Wdeferred-out-of-scope-variables
(page 88).
-fdefer-type-errors Turn type errors into warn- | dynamic| -fno-de
(page 394) ings, deferring the error until (page ?7?
runtime (page 394). Implies
-fdefer-typed-holes (page 394) and
-fdefer-out-of-scope-variables
(page 394). See also
-Wdeferred-type-errors (page 88).
-fdefer-typed-holes Convert typed hole (page 298) er-| dynamic| -fno-de
(page 394) rors into warnings, deferring the er- (page ??
ror until runtime (page 394). Implied
by -fdefer-type-errors (page 394).
See also -Wtyped-holes (page 88).
-fexternal-interpreter Run interpreted code in a separate pro- | dynamic
(page 60) cess
-ffamily-application-cache| Use a cache when reducing type family | dynamic| -fno-fa
(page 341) applications (page ??
-fglasgow-exts (page 267) Deprecated. Enable most language | dynamic| -fno-gl
extensions; see Controlling extensions (page ??
(page 265) for exactly which ones.
-fno-safe-haskell Disable Safe Haskell (page 556) dynamic
(page 566)
-ghcversion-file (path to | (GHC as a C compiler only) Use this | dynamic
ghcversion.h) (page 84) ghcversion.h file
-H (size) (page 84) Set the minimum size of the heap to | dynamic
(size)
-hidden-module (module A module which should not be visible | dynamic
name) (page 74) outside its unit.
-3[(n) T (page 72) When compiling with --make | dynamic
(page 68), compile (n) modules in
parallel.
-jsem (page 72) When compiling with --make | dynamic
(page 68), coordinate with other
processes through the semaphore
(sem) to compile modules in parallel.
-reexported-module A module which should be reexported | dynamic
(module name) (page 74) from this unit.
-this-package-name The name of the package which this | dynamic

(unit-id) (page 73)

module would be part of when in-
stalled.

continues on next page

5.6. Flag reference

175

fer-out-of-s

)

fer-type-eri
)

fer-typed-he
)

mily-applice
)

asgow-exts

)

GHC User’s Guide Documentation, Release 9.8.1

Table 26 - continued from previous page

Flag Description Type Reverse
-unit @(filename) (page 73) | Specify the options to build a specific | dynamic
unit.
-working-dir (dir) Specify the directory a unit is expected | dynamic
(page 73) to be compiled in.

5.7 Runtime system (RTS) options

To make an executable program, the GHC system compiles your code and then links it with a
non-trivial runtime system, which handles storage management, thread scheduling, profiling,
and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 176)) describes the various methods, and the following sections describe the
RTS options themselves.

5.7.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 176))

* at compile-time, using -with-rtsopts=(opts) (page 246) (Setting RTS options at com-
pile time (page 177))

» with the environment variable GHCRTS (page 177) (Setting RTS options with the GHCRTS
environment variable (page 177))

* by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 178))

5.7.1.1 Setting RTS options on the command line

If you set the -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 245) flag appropri-
ately when linking (see Options affecting linking (page 242)), you can give RTS options on
the command line when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

176 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

% hls -1tr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a - -RTS or - -. The difference is that - -RTS will not be passed
to the program, while - - will.

As always, for RTS options that take (size)s: If the last character of (size) is a K or k, multiply
by 1024; if an M or m, by 1024*1024; if a G or G, by 1024"3. (And any wraparound in the
counters is your fault!)

Giving a +RTS -7? RTS option will print out the RTS options actually available in your program
(which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

5.7.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the
-with-rtsopts flag (Options affecting linking (page 242)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

5.7.1.3 Setting RTS options with the GHCRTS environment variable

GHCRTS
If the - rtsopts flag is set to something other than none or ignoreAll when linking, RTS
options are also taken from the environment variable GHCRTS (page 177). For example,

to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like
shell):

GHCRTS="-M2G"
export GHCRTS

RTS options taken from the GHCRTS (page 177) environment variable can be overridden
by options given on the command line.

Tip: Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

5.7. Runtime system (RTS) options 177

GHC User’s Guide Documentation, Release 9.8.1

5.7.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defini-
tions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

J

You can change the messages printed when the runtime system “blows up,’
overflow. The hooks for these are as follows:

e.g., on stack

void OutOfHeapHook (unsigned long, unsigned long)
The heap-overflow message.

void StackOverflowHook (long int)
The stack-overflow message.

void MallocFailHook (long int)
The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -1 (flags) (page 192)) is
written through a custom EventLogWriter (page 178):

type size_t
Hidden

type EventLogWriter
A sink of event-log data.

void initEventLogWriter (void)
Initializes your EventLogWriter (page 178). This is optional.

bool writeEventLog(void *eventlog, size t (page 178) eventlog size)
Hands buffered event log data to your event log writer. Return true on success.
Required for a custom EventLogWriter (page 178).

Note that this function may be called by multiple threads simultaneously.

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 178). This can be NULL.

Note that this function may be called by multiple threads simultaneously.

void stopEventLogWriter(void)
Called when event logging is about to stop. This can be NULL.

To use an EventLogWriter (page 178) the RTS API provides the following functions:

EventLogStatus (page 179) eventLogStatus (void)
Query whether the current runtime system supports the eventlog (e.g. whether the
current executable was linked with -eventlog (page 245)) and, if it is supported, whether
it is currently logging.

178 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

bool startEventLogging(const EventLogWriter (page 178) *writer)
Start logging events to the given EventLogWriter (page 178). Returns true on success
or false if another writer has already been configured.

void endEventLogging()
Tear down the active EventLogWriter (page 178).

where the enum EventLogStatus (page 179) is:
type EventLogStatus

e EVENTLOG NOT SUPPORTED: The runtime system wasn’t compiled with eventlog sup-
port.

* EVENTLOG NOT CONFIGURED: An EventLogWriter (page 178) has not yet been config-
ured.

e EVENTLOG RUNNING: An EventLogWriter (page 178) has been configured and is run-
ning.

5.7.2 Miscellaneous RTS options

--install-signal-handlers=(yes|no)
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This
option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see -V (secs) (page 637)).

--install-seh-handlers=(yes|no)
If yes (the default), the RTS on Windows installs exception handlers to catch unhandled
exceptions using the Windows exception handling mechanism. This option is primarily
useful for when you are using the Haskell code as a DLL, and don’t want the RTS to
ungracefully terminate your application on errors such as segfaults.

--generate-crash-dumps
If yes (the default), the RTS on Windows will generate a core dump on any crash. These
dumps can be inspected using debuggers such as WinDBG. The dumps record all code,
registers and threading information at the time of the crash. Note that this implies
--install-seh-handlers=yes.

--generate-stack-traces=<yes|no>
If yes (the default), the RTS on Windows will generate a stack trace on crashes if excep-
tion handling are enabled. In order to get more information in compiled executables, C
code or DLLs symbols need to be available.

--disable-delayed-os-memory-return
If given, uses MADV_DONTNEED instead of MADV_FREE on platforms where this results in
more accurate resident memory usage of the program as shown in memory usage re-
porting tools (e.g. the RSS column in top and htop).

Using this is expected to make the program slightly slower.

On Linux, MADV FREE is newer and faster because it can avoid zeroing pages if they
are re-used by the process later (see man 2 madvise), but for the trade-off that memory

5.7. Runtime system (RTS) options 179

GHC User’s Guide Documentation, Release 9.8.1

-Xp

=Xm

-xq

inspection tools like top will not immediately reflect the freeing in their display of res-
ident memory (RSS column): Only under memory pressure will Linux actually remove
the freed pages from the process and update its RSS statistics. Until then, the pages
show up as LazyFree in /proc/PID/smaps (see man 5 proc).

The delayed RSS update can confuse programmers debugging memory issues, produc-
tion memory monitoring tools, and end users who may complain about undue memory
usage shown in reporting tools, so with this flag it can be turned off.

On 64-bit machines, the runtime linker usually needs to map object code into the low 2Gb
of the address space, due to the x86 64 small memory model where most symbol refer-
ences are 32 bits. The problem is that this 2Gb of address space can fill up, especially if
you're loading a very large number of object files into GHCi.

This flag offers a workaround, albeit a slightly convoluted one. To be able to load an
object file outside of the low 2Gb, the object code needs to be compiled with -fPIC
-fexternal-dynamic-refs. When the +RTS -xp flag is passed, the linker will assume
that all object files were compiled with - fPIC -fexternal-dynamic-refs and load them
anywhere in the address space. It’s up to you to arrange that the object files you load
(including all packages) were compiled in the right way. If this is not the case for an
object, the linker will probably fail with an error message when the problem is detected.

On some platforms where PIC is always the case, e.g. macOS and OpenBSD on x86 64,
and macOS and Linux on aarch64 this flag is enabled by default. One repercussion of
this is that referenced system libraries also need to be compiled with - fPIC if we need
to load them in the runtime linker.

(address)

Warning: This option is for working around memory allocation problems only. Do not
use unless GHCIi fails with a message like “failed to mmap() memory below 2Gb”.
Consider recompiling the objects with -fPIC -fexternal-dynamic-refs and using
the -xp flag instead. If you need to use this option to get GHCi working on your
machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to use
the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

(size)
Default 100k

This option relates to allocation limits; for more about this see
GHC.Conc.enableAllocationLimit. When a thread hits its allocation limit, the RTS
throws an exception to the thread, and the thread gets an additional quota of allocation
before the exception is raised again, the idea being so that the thread can execute its
exception handlers. The -xq controls the size of this additional quota.

180

Chapter 5. Using GHC

./../libraries/base-@LIBRARY_base_UNIT_ID@/GHC-Conc.html#v:enableAllocationLimit

GHC User’s Guide Documentation, Release 9.8.1

5.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.

--copying-gc

Default on
Since 8.10.2
Reverse -nonmoving-gc

Uses the generational copying garbage collector for all generations. This is the default.

--nonmoving-gc

=Xn

Default off
Since 8.10.1
Reverse -copying-gc

Enable the concurrent mark-and-sweep garbage collector for old generation collectors.
Typically GHC uses a stop-the-world copying garbage collector for all generations. This
can cause long pauses in execution during major garbage collections. --nonmoving-gc
(page 181) enables the use of a concurrent mark-and-sweep garbage collector for oldest
generation collections. Under this collection strategy oldest-generation garbage collec-
tion can proceed concurrently with mutation.

Note that --nonmoving-gc (page 181) cannot be used with -G1, profiling (page 642)
nor -c (page 183).

Default off
Since a long time ago
Reverse none

Uses a mark-region garbage collection strategy for the oldest-generation heap. Note
that this cannot be used in conjunction with heap profiling (-hT (page 191)) unless linked
against the profiling runtime system with -prof (page 634).

Default off
Since 8.10.1

An alias for - -nonmoving-gc (page 181)

-A (size)

Default 4MB

Set the allocation area size used by the garbage collector. The allocation area (actually
generation O step 0) is fixed and is never resized (unless youuse -H [(size)] (page 185),
below).

Optimal settings depend on the actual machine, program, and other RTS options. In-
creasing the allocation area size means worse cache behaviour but fewer garbage col-
lections and less promotion.

5.7.

Runtime system (RTS) options 181

GHC User’s Guide Documentation, Release 9.8.1

-AL

In general settings >= 4MB can reduce performance in some cases, in particular for
single threaded operation. However in a parallel setting increasing the allocation area
to 16MB, or even 64MB can increase gc throughput significantly.

With only 1 generation (e.g. -G1, see -G (generations) (page 183)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be
resized according to the amount of data in the heap (see -F (factor) (page 183), be-
low).

When heap profiling using a smaller allocation area can increase accuracy as more fre-
quent major garbage collections also results in more frequent heap snapshots

(size)
Default -A (page 181) value
Since 8.2.1

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 181) value.

Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.

To see whether you’'re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-0 (size)

Default 1m
Set the minimum size of the old generation.

The old generation is collected whenever it grows to this size or the value of the -F
(factor) (page 183) option multiplied by the size of the live data at the previous major
collection, whichever is larger.

-n (size)

Default 4m with -Al6m (page 181) or larger, otherwise 0.

Set the allocation area chunksize. Setting -n0 means the allocation area is not divided
into chunks.

[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.

This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating

182

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.

This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.

For a given heap size (using the -H [(size)] (page 185) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the
ratio of live data to heap size is high, say greater than 30%.

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c (n)
Default 30

Automatically enable compacting collection when the live data exceeds {n)% of the max-
imum heap size (see the -M (size) (page 186) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M (size) (page 186).

-F (factor)
Default 2

This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to
use -H (size) (see -H [(size)] (page 185)) than to increase -F (factor) (page 183).

The -F (factor) (page 183) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M (size) (page 186) setting) is approaching.

-Fd (factor)
Default 4

The inverse rate at which unused memory is returned to the OS when it is no longer
needed. After alarge amount of allocation the RTS will start by retaining a lot of allocated
blocks in case it will need them again shortly but then it will gradually release them
based on the -Fd (factor) (page 183). On each subsequent major collection which is
not caused by a heap overflow a little more memory will attempt to be returned until the
amount retained is similar to the amount of live bytes.

Increasing this factor will make the rate memory is returned slower, decreasing it will
make memory be returned more eagerly. Setting it to 0 will disable the memory return
(which will emulate the behaviour in releases prior to 9.2).

-G (generations)
Default 2

5.7. Runtime system (RTS) options 183

GHC User’s Guide Documentation, Release 9.8.1

-qg

-qb

-qn

Set the number of generations used by the garbage collector. The default of 2 seems to
be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A (size) (page 181) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [(size)] (page 185) option).

(gen)
Default 0
Since 6.12.1

Use parallel GC in generation {gen) and higher. Omitting (gen) turns off the parallel GC
completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those
using GHC.Conc.par, Strategies, or with multiple threads). However, it is sometimes
beneficial to enable the parallel GC for a single-threaded sequential program too, espe-
cially if the program has a large amount of heap data and GC is a significant fraction of
runtime. To use the parallel GC in a sequential program, enable the parallel runtime with
a suitable -N (x) (page 131) option, and additionally it might be beneficial to restrict
parallel GC to the old generation with -qgl.

(gen)
Default 1 for -A (page 181) < 32M, 0 otherwise
Since 6.12.1

Use load-balancing in the parallel GC in generation (gen) and higher. Omitting (gen)
disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used
to the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qgb.

(x)

Default the value of -N (page 131) or the number of CPU cores, whichever is
smaller.

Since 8.2.1
Set the number of threads to use for the parallel GC.

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.

The -qgn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-

184

Chapter 5. Using GHC

./../libraries/base-@LIBRARY_base_UNIT_ID@/GHC-Conc.html#v:par

GHC User’s Guide Documentation, Release 9.8.1

ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [(size)]
Default 0

This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A (size) (page 181) option. It says: I want to use at least {size) bytes, so
use whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.

If (size) is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the (size). This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I (seconds)
Default 0.3 seconds in the threaded runtime, 0 in the non-threaded runtime

Set the amount of idle time which must pass before a idle GC is performed. Setting -I0
disables the idle GC.

In the threaded and SMP versions of the RTS (see -threaded (page ??), Options affecting
linking (page 242)), a major GC is automatically performed if the runtime has been idle
(no Haskell computation has been running) for a period of time.

For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

The idle period timer only resets after some activity by a Haskell thread. If your program
is doing literally nothing then after the first idle collection is triggered then no more
future collections will be scheduled until more work is performed.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-Iw (seconds)
Default 0 seconds
Set the minimum wait time between runs of the idle GC.

By default, if idle GC is enabled in the threaded runtime, a major GC will be performed
every time the process goes idle for a sufficiently long duration (see -I (seconds)
(page 185)). For large server processes accepting regular but infrequent requests (e.g.,
once per second), an expensive, major GC may run after every request. As an alternative
to shutting off idle GC entirely (with -I0), a minimum wait time between idle GCs can
be specified with this flag. For example, -Iw60 will ensure that an idle GC runs at most
once per minute.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

5.7. Runtime system (RTS) options 185

GHC User’s Guide Documentation, Release 9.8.1

-ki

-kc

-kb

(size)
Default 1k
Set the initial stack size for new threads.

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

(size)
Default 32k

Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K (size)
(page 186) is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

(size)
Default 1k

Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc (size) (page 186)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K (size)

Default 80% of physical memory

Set the maximum stack size for an individual thread to (size) bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.

This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m (n)

Default 3%

Minimum % (n) of heap which must be available for allocation.

-M (size)

186

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

Default unlimited

Set the maximum heap size to (size) bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=(size)
Default 1M

If the program’s heap exceeds the value set by -M (size) (page 186), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa

- -numa=<mask>
Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux and Windows currently).

Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.

The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:

* Determine the number of NUMA nodes (N) by querying the OS.

* Manage separate memory pools for each node.

¢ Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
* Bind worker threads on a capability to the appropriate node.

* Allocate the nursery from node-local memory.

¢ Perform other memory allocation, including in the GC, from node-local memory.

* When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The - -numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.

Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts_setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is

5.7. Runtime system (RTS) options 187

GHC User’s Guide Documentation, Release 9.8.1

running on and the memory it is using while running Haskell code, which will negate
any benefits of - -numa.

If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, --numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

--long-gc-sync

--long-gc-sync=<seconds>
When a GC starts, all the running mutator threads have to stop and synchronise. The
period between when the GC is initiated and all the mutator threads are stopped is called
the GC synchronisation phase. If this phase is taking a long time (longer than 1ms is
considered long), then it can have a severe impact on overall throughput.

A long GC sync can be caused by a mutator thread that is inside an unsafe FFI call, or
running in a loop that doesn’t allocate memory and so doesn’t yield. To fix the former,
make the call safe, and to fix the latter, either avoid calling the code in question or
compile it with -fomit-yields (page 120).

By default, the flag will cause a warning to be emitted to stderr when the sync
time exceeds the specified time. This behaviour can be overridden, however: the
longGCSync () hook is called when the sync time is exceeded during the sync period,
and the LongGCSyncEnd () hook at the end. Both of these hooks can be overridden in the
RtsConfig when the runtime is started with hs init ghc(). The default implementa-
tions of these hooks (LongGcSync () and LongGCSyncEnd () respectively) print warnings
to stderr.

One way to use this flag is to set a breakpoint on LongGCSync () in the debugger, and find
the thread that is delaying the sync. You probably want to use -g (page 659) to provide
more info to the debugger.

The GC sync time, along with other GC stats, are available by calling the getRTSStats()
function from C, or GHC.Stats.getRTSStats from Haskell.

5.7.4 RTS options to produce runtime statistics

-T

-t [(file)]

-s [(file)]

=S [(file)]

--machine-readable

--internal-counters
These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection. Passing --internal-counters to a threaded runtime will cause a
detailed summary to include various internal counts accumulated during the run; note
that these are unspecified and may change between releases.

The output is placed in {file). If {file) is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

188 Chapter 5. Using GHC

./../libraries/base-@LIBRARY_base_UNIT_ID@/GHC-Stats.html

GHC User’s Guide Documentation, Release 9.8.1

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples),
< 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07,
—elapsed) :ghc>>

This tells you:
* The total number of bytes allocated by the program over the whole run.
* The total number of garbage collections performed.

* The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 191) RTS option (RTS options for profiling (page 191)).

* The peak memory the RTS has allocated from the OS.

* The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t
--machine-readable:

[("bytes allocated", "36169392")

, ("num_GCs", "69")

, ("average bytes used", "603392")
, ("max_bytes used", "1065272")

, ("num_byte usage samples", "2")

, ("peak megabytes allocated", "3")
,("init cpu seconds", "0.00")
,("init wall seconds", "0.00")

, ("mutator cpu seconds", "0.02")

, ("mutator wall seconds", "0.02")
, ("GC_cpu_seconds", "0.07")

, ("GC wall seconds", "0.07")

1

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))
54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s
MUT time 0.01s
GC time 0.07s
EXIT time 0.00s
Total time 0.08s

0.00s elapsed)
0.02s elapsed)
0.07s elapsed)
0.00s elapsed)
0.09s elapsed)

—~ e~~~ —~

(continues on next page)

5.7. Runtime system (RTS) options 189

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

%GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

* The “bytes allocated in the heap” is the total bytes allocated by the program over

the whole run.

* GHC uses a copying garbage collector by default. “bytes copied during GC” tells

you how many bytes it had to copy during garbage collection.

* The maximum space actually used by your program is the “bytes maximum resi-

dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.

* The “bytes maximum slop” tells you the most space that is ever wasted due to the

way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.

* The “total memory in use” tells you the peak memory the RTS has allocated from

the OS.

* Next there is information about the garbage collections done. For each generation it

says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.

¢ The SPARKS statistic refers to the use of Control.Parallel.par and related func-

tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.

* Next there is the CPU time and wall clock time elapsed broken down by what the

runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.

%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

[.

Alloc Copied Live GC GC TOT TOT Page Flts
bytes bytes bytes wuser elap user elap
528496 47728 141512 0.01 0.02 0.02 0.02 0 © (Gen: 1)

e
524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

190

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

For each garbage collection, we print:
* How many bytes we allocated this garbage collection.
* How many bytes we copied this garbage collection.
* How many bytes are currently live.
* How long this garbage collection took (CPU time and elapsed wall clock time).
* How long the program has been running (CPU time and elapsed wall clock time).
* How many page faults occurred this garbage collection.
* How many page faults occurred since the end of the last garbage collection.

* Which generation is being garbage collected.

5.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell (page 130),
and those for parallelism in RTS options for SMP parallelism (page 131).

5.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 634), and RTS options for heap profiling (page 642)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:

-hT

-h
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hp2ps - Rendering heap profiles to PostScript (page 646)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 629)). Can be shortened to -h
(page 191).

Note: The meaning of the shortened -h (page 191) is dependent on whether your
program was compiled for profiling. (See RTS options for heap profiling (page 642) for
details.)

-L (n)
Default 25 characters

Sets the maximum length of the cost-centre names listed in the heap profile.

5.7. Runtime system (RTS) options 191

GHC User’s Guide Documentation, Release 9.8.1

5.7.

7 Tracing

When the program is linked with the -eventlog (page 245) option (Options affecting linking
(page 242)), runtime events can be logged in several ways:

In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

As text to standard output, for debugging purposes.

-1 (flags)

Log events in binary format. Without any (flags) specified, this logs a default set of
events, suitable for use with tools like ThreadScope.

Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overridden with a custom EventLogWriter.

For some special use cases you may want more control over which events are included.
The (flags) is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:

* s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.

* g — GC events, including GC start/stop. Enabled by default.

* n — non-moving garbage collector (see - -nonmoving-gc (page 181)) events includ-
ing start and end of the concurrent mark and census information to characterise
heap fragmentation. Disabled by default.

e p — parallel sparks (sampled). Enabled by default.
* f — parallel sparks (fully accurate). Disabled by default.

e T — ticky-ticky profiler (page 654) events (see Ticky counters (page 723) for
details). Disabled by default.

* u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
* a — enable all event classes listed above
* -(x) — disable the given class of events, for any event class listed above
* -a — disable all classes
For example, -1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.

The format of the log file is described in this users guide in Eventlog encodings (page 707)
It can be parsed in Haskell using the ghc-events library. To dump the contents of a

192

Chapter 5. Using GHC

https://www.haskell.org/haskellwiki/ThreadScope
https://www.haskell.org/haskellwiki/ThreadScope
https://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 9.8.1

.eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

Each event is associated with a timestamp which is the number of nanoseconds since
the start of executation of the running program. This is the elapsed time, not the CPU
time.

-ol(filename)
Default (program).eventlog
Since 8.8
Sets the destination for the eventlog produced with the -1 (flags) (page 192) flag.
--eventlog-flush-interval=(seconds)
Default disabled
Since 9.2

When enabled, the eventlog will be flushed periodically every (seconds). This can be use-
ful in live-monitoring situations where the eventlog is consumed in real-time by another
process.

-v [(flags)]
Log events as text to standard output, instead of to the .eventlog file. The (flags) are the
same as for -1, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -1 option.

5.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!

-B
Sound the bell at the start of each garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office...”

-D (x)
An RTS debugging flag; only available if the program was linked with the -debug
(page 244) option. Various values of (x) are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -7 to find out which
debug flags are supported.

Full list of currently supported flags:
-Ds DEBUG: scheduler
-Di DEBUG: interpreter

5.7. Runtime system (RTS) options 193

https://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 9.8.1

-Dw
-DG
-Dg
-Db
-DS
-Dz
-Dt
-Dp
-Da
-D1
-DL
-Dm
-Dz
-Dc
-Dr
-DC
-Dk

DEBUG: weak
DEBUG: gccafs
DEBUG: gc

DEBUG: block

DEBUG: sanity

DEBUG: zero freed memory on GC
DEBUG: stable

DEBUG: prof

DEBUG: apply

DEBUG: linker

DEBUG: linker (verbose); implies :rts-flag: -DU°
DEBUG: stm

DEBUG: stack squeezing

DEBUG: program coverage

DEBUG: sparks

DEBUG: compact

DEBUG: continuation

Debug messages will be sent to the binary event log file instead of stdout if the -1
(flags) (page 192) option is added. This might be useful for reducing the overhead
of debug tracing.

To figure out what exactly they do, the least bad way is to grep the rts/ directory in the
ghc code for macros like DEBUG (scheduler or DEBUG_scheduler.

-r (file)

=XC

Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 244)). The (file) business works just like on the -S
[(file)] (page 188) RTS option, above

For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for imple-
mentors) (page 654).

(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with
-prof -fprof-auto (see -prof (page 634)) and running with +RTS -xc -RTS will tell you
exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table search,
called from Main.polynomial.theta index,

(continues on next page)

194

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.8.1

(continued from previous page)

called from Main.polynomial,

called from Main.zonal pressure,

called from Main.make pressure.p,

called from Main.make pressure,

called from Main.compute initial state.p,
called from Main.compute initial state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.

See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

Turn off update frame squeezing on context switch. (There’s no particularly good reason
to turn it off, except to ensure the accuracy of certain data collected regarding thunk
entry counts.)

5.7.9 Getting information about the RTS

--info
It is possible to ask the RTS to give some information about itself. To do this, use the
--info (page 195) flag, e.g.

$./a.out +RTS --info
[("GHC RTS", "YES")

, ("GHC version", "6.7")

, ("RTS way", "rts p")

, ("Host platform", "x86 64-unknown-1linux")

, ("Host architecture", "x86 64")

, ("Host 0S", "linux")

, ("Host vendor", "unknown")

, ("Build platform", "x86 64-unknown-linux")
, ("Build architecture", "x86 64")

, ("Build 0S", "linux")

, ("Build vendor", "unknown")

,("Target platform", "x86 64-unknown-linux")
, ("Target architecture", "x86 64")
, ("Target 0S", "linux")

, ("Target vendor", "unknown")
,("Word size", "64")

, ("Compiler unregisterised", "NO")
, ("Tables next to code", "YES")

, ("Flag -with-rtsopts", "")

1

5.7. Runtime system (RTS) options 195

GHC User’s Guide Documentation, Release 9.8.1

The information is formatted such that it can be read as a of type [(String, String)].
Currently the following fields are present:

GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts v
(vanilla), rts_thr (threaded runtime, i.e. linked using the -threaded (page ??) op-
tion) and rts_p (profiling runtime, i.e. linked using the -prof (page 634) option).
Other variants include debug (linked using -debug (page 244)), and dyn (the RTS
is linked in dynamically, i.e. a shared library,