
The Glasgow Haskell Compiler User’s
Guide, Version 4.08

The GHC Team



The Glasgow Haskell Compiler User’s Guide, Version 4.08
by The GHC Team



Table of Contents
The Glasgow Haskell Compiler License ........................................................................................... 9

1. Introduction to GHC .................................................................................................................... 10

1.1. The (batch) compilation system components..................................................................... 10
1.2. What really happens when I “compile” a Haskell program? ............................................. 11
1.3. Meta-information: Web sites, mailing lists, etc. ................................................................ 11
1.4. GHC version numbering policy ......................................................................................... 12
1.5. Release notes for version 4.08 (July 2000) ........................................................................ 13

1.5.1. User-visible compiler changes............................................................................... 13
1.5.2. User-visible library changes .................................................................................. 14
1.5.3. Internal changes..................................................................................................... 14

2. Installing from binary distributions............................................................................................ 16

2.1. Installing on Unix-a-likes................................................................................................... 16
2.1.1. Bundle structure..................................................................................................... 16

2.1.1.1. Installing ................................................................................................... 18
2.1.1.2. What bundles there are.............................................................................. 19
2.1.1.3. Testing that GHC seems to be working .................................................... 19

2.2. Installing on Windows........................................................................................................ 20
2.2.1. System requirements ............................................................................................. 20
2.2.2. Software required .................................................................................................. 20

2.2.2.1. The cygwin toolchain (1.1) ....................................................................... 21
2.2.2.2. Environment variables .............................................................................. 21
2.2.2.3. Perl5 .......................................................................................................... 22

2.2.3. Installing GHC....................................................................................................... 23
2.2.4. Installing ghc-win32 FAQ ..................................................................................... 24

2.3. Building the documentation ............................................................................................... 24
2.3.1. Installing the DocBook tools from RPMs ............................................................. 24
2.3.2. Installing from binaries on Windows .................................................................... 25
2.3.3. Installing the DocBook tools from source............................................................. 25

2.3.3.1. Jade ........................................................................................................... 25
2.3.3.2. DocBook and the DocBook stylesheets.................................................... 25

2.3.4. Configuring the DocBook tools............................................................................. 26
2.3.5. Remaining problems.............................................................................................. 26

3. Using GHC .................................................................................................................................... 27

3.1. Overall command-line structure......................................................................................... 27
3.2. Meaningful file suffixes...................................................................................................... 27
3.3. Help and verbosity options................................................................................................. 28
3.4. Running the right phases in the right order........................................................................ 28
3.5. Re-directing the compilation output(s) .............................................................................. 29

3.5.1. Keeping Intermediate Files.................................................................................... 29
3.5.2. Saving GHC’s standard error output ..................................................................... 30
3.5.3. Redirecting temporary files ................................................................................... 30

3



3.6. Warnings and sanity-checking ........................................................................................... 31
3.7. Separate compilation.......................................................................................................... 33

3.7.1. Interface files ......................................................................................................... 33
3.7.2. Finding interface files ............................................................................................ 34
3.7.3. Other options related to interface files................................................................... 35
3.7.4. The recompilation checker .................................................................................... 35
3.7.5. Using make ........................................................................................................... 36
3.7.6. Dependency generation ......................................................................................... 37
3.7.7. How to compile mutually recursive modules ........................................................ 39

3.8. Packages............................................................................................................................. 41
3.8.1. Listing the available packages ............................................................................... 41
3.8.2. Using a package..................................................................................................... 41
3.8.3. Building a package from Haskell source............................................................... 42
3.8.4. Package management ............................................................................................ 42

3.9. Optimisation (code improvement) ..................................................................................... 44
3.9.1. -O*: convenient “packages” of optimisation flags. ............................................... 44
3.9.2. -f*: platform-independent flags ........................................................................... 45
3.9.3. -m*: platform-specific flags................................................................................... 48
3.9.4. Code improvement by the C compiler. .................................................................. 48

3.10. Options related to a particular phase................................................................................ 49
3.10.1. The C pre-processor ............................................................................................ 49
3.10.2. Options affecting the C compiler (if applicable) ................................................. 50
3.10.3. Linking and consistency-checking ...................................................................... 51

3.11. Using Concurrent Haskell ................................................................................................ 52
3.12. Using Parallel Haskell...................................................................................................... 52

3.12.1. Dummy’s guide to using PVM............................................................................ 53
3.12.2. Parallelism profiles .............................................................................................. 53
3.12.3. Other useful info about running parallel programs ............................................. 54
3.12.4. RTS options for Concurrent/Parallel Haskell ...................................................... 54

3.13. Running a compiled program........................................................................................... 55
3.13.1. RTS options to control the garbage-collector ...................................................... 56
3.13.2. RTS options for profiling and Concurrent/Parallel Haskell................................. 58
3.13.3. RTS options for hackers, debuggers, and over-interested souls .......................... 58
3.13.4. “Hooks” to change RTS behaviour...................................................................... 59

3.14. Debugging the compiler ................................................................................................... 61
3.14.1. Replacing the program for one or more phases................................................... 61
3.14.2. Forcing options to a particular phase................................................................... 62
3.14.3. Dumping out compiler intermediate structures ................................................... 62
3.14.4. Checking for consistency..................................................................................... 65
3.14.5. How to read Core syntax (from some -ddump-* flags) ..................................... 66
3.14.6. Command line options in source files ................................................................. 68
3.14.7. Unregisterised compilation.................................................................................. 68

4. Profiling ......................................................................................................................................... 70

4.1. Cost centres and cost-centre stacks .................................................................................... 70

4



4.1.1. Inserting cost centres by hand ............................................................................... 72
4.1.2. Rules for attributing costs...................................................................................... 73

4.2. Profiling memory usage ..................................................................................................... 73
4.3. Graphical time/allocation profile ....................................................................................... 74
4.4. Compiler options for profiling ........................................................................................... 74
4.5. Runtime options for profiling............................................................................................. 75
4.6. hp2ps–heap profile to PostScript ....................................................................................... 76
4.7. Using “ticky-ticky” profiling (for implementors) .............................................................. 78

5. Advice on: sooner, faster, smaller, stingier ................................................................................. 82

5.1. Sooner: producing a program more quickly ...................................................................... 82
5.2. Faster: producing a program that runs quicker .................................................................. 83
5.3. Smaller: producing a program that is smaller .................................................................... 87
5.4. Stingier: producing a program that gobbles less heap space ............................................. 87

6. GHC Language Features.............................................................................................................. 89

6.1. Unboxed types and primitive operations............................................................................ 90
6.1.1. Unboxed types ....................................................................................................... 90
6.1.2. Unboxed Tuples..................................................................................................... 91
6.1.3. Character and numeric types ................................................................................. 92
6.1.4. Comparison operations.......................................................................................... 92
6.1.5. Primitive-character operations............................................................................... 92
6.1.6. Primitive-Int operations....................................................................................... 93
6.1.7. Primitive-Double and Float operations.............................................................. 93
6.1.8. Operations on/for Integers (interface to GMP) ................................................. 94
6.1.9. Words and addresses.............................................................................................. 95
6.1.10. Arrays .................................................................................................................. 96
6.1.11. Reading and writing ............................................................................................ 97
6.1.12. The state type....................................................................................................... 98
6.1.13. State of the world................................................................................................. 98
6.1.14. Mutable arrays ..................................................................................................... 98

6.1.14.1. Allocation................................................................................................ 99
6.1.14.2. Reading and writing................................................................................ 99
6.1.14.3. Equality ................................................................................................. 100
6.1.14.4. Freezing mutable arrays........................................................................ 100

6.1.15. Synchronizing variables (M-vars) ..................................................................... 100
6.2. Primitive state-transformer monad................................................................................... 100
6.3. Primitive arrays, mutable and otherwise .......................................................................... 101
6.4. Pattern guards................................................................................................................... 102
6.5. The foreign interface ........................................................................................................ 103

6.5.1. Using function headers ........................................................................................ 104
6.6. Multi-parameter type classes ........................................................................................... 104

6.6.1. Types.................................................................................................................... 105
6.6.2. Class declarations ................................................................................................ 106
6.6.3. Instance declarations ........................................................................................... 107

5



6.7. Explicit universal quantification....................................................................................... 109
6.7.1. Universally-quantified data type fields ................................................................ 110
6.7.2. Construction ........................................................................................................ 110
6.7.3. Pattern matching.................................................................................................. 111
6.7.4. The partial-application restriction ....................................................................... 112
6.7.5. Type signatures .................................................................................................... 112
6.7.6. Type synonyms and hoisting ............................................................................... 113

6.8. Existentially quantified data constructors ........................................................................ 114
6.8.1. Why existential? .................................................................................................. 115
6.8.2. Type classes ......................................................................................................... 115
6.8.3. Restrictions .......................................................................................................... 116

6.9. Assertions ........................................................................................................................ 117
6.10. Scoped Type Variables ................................................................................................... 118

6.10.1. Scope and implicit quantification ...................................................................... 118
6.10.2. Polymorphism.................................................................................................... 119
6.10.3. Result type signatures........................................................................................ 120
6.10.4. Pattern signatures on other constructs ............................................................... 120
6.10.5. Existentials ........................................................................................................ 121

6.11. Pragmas .......................................................................................................................... 122
6.11.1. INLINE pragma ............................................................................................... 122
6.11.2. NOINLINE pragma ........................................................................................... 123
6.11.3. SPECIALIZE pragma........................................................................................ 123
6.11.4. SPECIALIZE instance pragma.......................................................................... 124
6.11.5. LINE pragma ..................................................................................................... 124
6.11.6. RULES pragma.................................................................................................. 124

6.12. Rewrite rules ............................................................................................................... 124
6.12.1. Syntax ................................................................................................................ 125
6.12.2. Semantics........................................................................................................... 125
6.12.3. List fusion.......................................................................................................... 126
6.12.4. Specialisation..................................................................................................... 128
6.12.5. Controlling what’s going on .............................................................................. 128

6.13. Generic classes ............................................................................................................... 129
6.13.1. Using generics ................................................................................................... 130
6.13.2. Changes wrt the paper ....................................................................................... 130
6.13.3. Terminology and restrictions ............................................................................. 130
6.13.4. Another example................................................................................................ 131

6.14. Concurrent and Parallel Haskell..................................................................................... 132
6.14.1. Features specific to Parallel Haskell ................................................................. 132

6.14.1.1. The Parallel interface (recommended) ............................................ 133
6.14.1.2. Underlying functions and primitives ................................................... 133
6.14.1.3. Scheduling policy for concurrent/parallel threads .............................. 133

6.15. Haskell 98 vs. Glasgow Haskell: language non-compliance ......................................... 134
6.15.1. Expressions and patterns ................................................................................... 134
6.15.2. Declarations and bindings ................................................................................. 134

6



6.15.3. Module system and interface files ..................................................................... 135
6.15.4. Numbers, basic types, and built-in classes ........................................................ 135
6.15.5. In Prelude support.............................................................................................. 135

7. Foreign function interface.......................................................................................................... 136

7.1. Introduction ...................................................................................................................... 136
7.2. Calling foreign functions ................................................................................................. 136

7.2.1. Giving the external function a Haskell name ...................................................... 137
7.2.2. Naming the external function .............................................................................. 137
7.2.3. Calling conventions ............................................................................................. 138
7.2.4. External function types........................................................................................ 139

7.2.4.1. Argument types....................................................................................... 140
7.2.4.2. Result type .............................................................................................. 141

7.2.5. Type mapping ...................................................................................................... 142
7.2.6. Some foreign import wrinkles ...................................................................... 144

7.3. Invoking external functions via a pointer......................................................................... 144
7.4. Exposing Haskell functions.............................................................................................. 145

7.4.1. Exposing Haskell function values ....................................................................... 146
7.4.2. Code addresses .................................................................................................... 147

8. What to do when something goes wrong .................................................................................. 149

8.1. When the compiler “does the wrong thing”..................................................................... 149
8.2. When your program “does the wrong thing” ................................................................... 150
8.3. How to report a bug in the GHC system .......................................................................... 151
8.4. Hard-core debugging of GHC-compiled programs.......................................................... 152

9. Other Haskell utility programs ................................................................................................. 153

9.1. “Yacc for Haskell”: happy............................................................................................... 153
9.2. Writing Haskell interfaces to C code: hs2c...................................................................... 153

9.2.1. Command line syntax .......................................................................................... 153
9.2.2. Input syntax ......................................................................................................... 154
9.2.3. Custom constructs ............................................................................................... 156

10. Building and using Win32 DLLs ............................................................................................. 157

10.1. Linking with DLLs......................................................................................................... 157
10.2. Not linking with DLLs .................................................................................................. 157
10.3. Creating a DLL .............................................................................................................. 157
10.4. Making DLLs to be called from other languages .......................................................... 158

7



List of Tables
7-1. Mapping of Haskell types to C types ........................................................................................ 142

8



The Glasgow Haskell Compiler License
Copyright 1999, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR
THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9



Chapter 1. Introduction to GHC
This is a guide to using the Glasgow Haskell compilation (GHC) system. It is a batch compiler for
the Haskell 98 language, with support for various Glasgow-only extensions. In this document, we
assume that GHC has been installed at your site as ghc. A separate document, “Building and
Installing the Glasgow Functional Programming Tools Suite”, describes how to install ghc.

Many people will use GHC very simply: compile some modules—ghc -c -O Foo.hs Bar.hs;
and link them— ghc -o wiggle -O Foo.o Bar.o.

But if you need to do something more complicated, GHC can do that, too:

ghc -c -O -fno-foldr-build -dcore-lint -fvia-C -ddump-simpl Foo.lhs

Stay tuned—all will be revealed!

The rest of this section provide some tutorial information on batch-style compilation; if you’re
familiar with these concepts already, then feel free to skip to the next section.

1.1. The (batch) compilation system components
The Glorious Haskell Compilation System, as with most UNIX (batch) compilation systems, has
several interacting parts:

1. A driver ghc—which you usually think of as “the compiler”—is a program that merely
invokes/glues-together the other pieces of the system (listed below), passing the right options to
each, slurping in the right libraries, etc.

2. A literate pre-processor unlit that extracts Haskell code from a literate script; used if you
believe in that sort of thing.

3. The Haskellised C pre-processor hscpp, only needed by people requiring conditional
compilation, probably for large systems. The “Haskellised” part just means that #line
directives in the output have been converted into proper Haskell {-# LINE ... -} pragmas.
You must give an explicit -cpp option for the C pre-processor to be invoked.

4. The Haskell compiler hsc, which—in normal use—takes its input from the C pre-processor
and produces assembly-language output (sometimes: ANSI C output).

5. The ANSI C Haskell high-level assembler :-) compiles hsc’s C output into assembly language
for a particular target architecture. In fact, the only C compiler we currently support is gcc,
because we make use of certain extensions to the C language only supported by gcc. Version 2.x
is a must; we recommend version 2.7.2.1 for stability (we’ve heard both good and bad reports of
later versions).

6. The assembler—a standard UNIX one, probably as.

10



Chapter 1. Introduction to GHC

7. The linker—a standard UNIX one, probably ld.

8. A runtime system, including (most notably) a storage manager; the linker links in the code for
this.

9. The Haskell standard prelude, a large library of standard functions, is linked in as well.

10. Parts of other installed libraries that you have at your site may be linked in also.

1.2. What really happens when I “compile” a Haskell
program?

You invoke the Glasgow Haskell compilation system through the driver program ghc. For example,
if you had typed a literate “Hello, world!” program into hello.lhs, and you then invoked:

ghc hello.lhs

the following would happen:

1. The file hello.lhs is run through the literate-program code extractor unlit, feeding its output
to

2. The Haskell compiler proper hsc, which produces input for

3. The assembler (or that ubiquitous “high-level assembler,” a C compiler), which produces an
object file and passes it to

4. The linker, which links your code with the appropriate libraries (including the standard prelude),
producing an executable program in the default output file named a.out.

You have considerable control over the compilation process. You feed command-line arguments (call
them “options,” for short) to the driver, ghc; the “types” of the input files (as encoded in their
names’ suffixes) also matter.

Here’s hoping this is enough background so that you can read the rest of this guide!

1.3. Meta-information: Web sites, mailing lists, etc.
On the World-Wide Web, there are several URLs of likely interest:

• Haskell home page (http://www.haskell.org/)

• GHC home page (http://www.haskell.org/ghc/)

• comp.lang.functional FAQ (http://www.cs.nott.ac.uk/Department/Staff/mpj/faq.html)

11



Chapter 1. Introduction to GHC

We run two mailing lists about Glasgow Haskell. We encourage you to join, as you feel is
appropriate.

glasgow-haskell-users:

This list is for GHC users to chat among themselves. Subscribe by sending mail to
<majordomo@haskell.org>, with a message body (not header) like this:

subscribe glasgow-haskell-users MyName <m.y.self@bigbucks.com>

(The last bit is your all-important e-mail address, of course.)

To communicate with your fellow users, send mail to
<glasgow-haskell-users@haskell.org>.

To contact the list administrator, send mail to
<owner-glasgow-haskell-users@haskell.org>. An archive of the list is available on
the Web at the glasgow-haskell-users mailing list archive
(http://www.mail-archive.com/glasgow-haskell-users@haskell.org).

glasgow-haskell-bugs:

Send bug reports for GHC to this address! The sad and lonely people who subscribe to this list
will muse upon what’s wrong and what you might do about it.

Subscribe via <majordomo@haskell.org> with:

subscribe glasgow-haskell-bugs My Name <m.y.self@hackers.r.us>

Again, you may contact the list administrator at
<owner-glasgow-haskell-bugs@haskell.org>. And, yes, an archive of the list is
available on the Web at the glasgow-haskell-bugs mailing list archive
(http://www.mail-archive.com/glasgow-haskell-bugs@haskell.org)

There is also the general Haskell mailing list. Subscribe by sending email to
<majordomo@haskell.org>, with the usual message body:

subscribe haskell My Name <m.y.self@fp.rules.ok.org>

Some Haskell-related discussion takes place in the Usenet newsgroup comp.lang.functional.

1.4. GHC version numbering policy
As of GHC version 4.08, we have adopted the following policy for numbering GHC versions:

12



Chapter 1. Introduction to GHC

Stable Releases

These are numbered x.yy.z, where yy is even, and z is the patchlevel number (the trailing .z
can be omitted if z is zero). Patchlevels are bug-fix releases only, and never change the
programmer interface to any system-supplied code. However, if you install a new patchlevel
over an old one you may need to recompile any code that was compiled against the old libraries.

The value of __GLASGOW_HASKELL__ (see Section 3.10.1) for a major release x.yy.z is the
integer xyy.

Snapshots/unstable releases

We may make snapshot releases of the current development sources from time to time, and the
current sources are always available via the CVS repository (see the GHC web site for details).

Snapshot releases are named x.yy.YYYYMMDD where yy is odd, and YYYYMMDD is the date of
the sources from which the snapshot was built. In theory, you can check out the exact same
sources from the CVS repository using this date.

The value of __GLASGOW_HASKELL__ for a snapshot release is the integer xyy. You should
never write any conditional code which tests for this value, however: since interfaces change on
a day-to-day basis, and we don’t have finer granularity in the values of
__GLASGOW_HASKELL__, you should only conditionally compile using predicates which test
whether __GLASGOW_HASKELL__ is equal to, later than, or earlier than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the -version flag.

1.5. Release notes for version 4.08 (July 2000)

1.5.1. User-visible compiler changes

• New profiling subsystem, based on cost-centre stacks. See Chapter 4.

• The x86 native code generator has been reworked considerably, and now works reliably. Using the
NCG rather than compiling via C reduces compilation times by roughly a half while having
minimal effect on the run-time of the compiled program (about 2-4% slower, worse for
floating-point intensive programs).

The NCG is used by default for non-optimising compiles. You can use it with -O by adding the
-fasm-x86 flag to GHC’s command line, after -O.

• Implicit parameters. This Haskell extension gives a statically-typed version of dynamic scoping
that avoids the worst problems of dynamic scoping in lisp. See the POPL paper
(http://www.cse.ogi.ed/~jlewis/implicit.ps.gz) for more details. It is enabled by
-fglasgow-exts.

13



Chapter 1. Introduction to GHC

• New DEPRECATED pragma for marking outdated interfaces as deprecated.

• New flag: -ddump-minimal-imports, which dumps a file M.imports that contains the
(allegedly) minimal bunch of imports needed by the current module.

• New “package” system for libraries. See Section 3.8 for the details.

• The long-standing bug that caused some programs which used trace to exit with a deadlock error
has been fixed.

• Trying to put into a full MVar will now raise a PutFullMVar exception.

• If a thread is about to be garbage collected, because it is waiting on an MVar that no other thread
has access to, then it will now be sent the BlockedOnDeadMVar exception.

• A thread that is found to be blocked against itself (i.e. is black holed) is now sent a
NonTermination exception.

• Operations which may block, such as takeMVar, raiseInThread, and several I/O operations,
may now receive asynchronous exceptions even in the scope of a blockAsyncExceptions.
These are called interruptible operations. See Section 4.8.7.2 in Haskell Libraries for more details.

• Result type signatures now work.

• A truckload of bugfixes.

1.5.2. User-visible library changes

• The FFI has been revised and expanded; see Section 4.9 in Haskell Libraries, Section 4.5 in
Haskell Libraries, and Section 4.6 in Haskell Libraries .

• HaXml, a library for parsing and generating XML, has been added to the text package (Section
8.1 in Haskell Libraries).

• The QuickCheck library for performing functional testing has been added to the util package
(Section 9.3 in Haskell Libraries).

• Two new experimental interfaces to arrays: IArray for immutable arrays (Section 4.12 in Haskell
Libraries), and MArray for mutable arrays (Section 4.16 in Haskell Libraries). Comments on
these interfaces are welcome; eventually we’d like them to replace ByteArray, MutableArray,
IOArray, and STArray.

• New function: tryTakeMVar.

• hPutBuf, hPutBufBA, hGetBuf, and hGetBufBA, have been renamed to hPutBufFull,
hPutBufBAFull, hGetBufFull, and hGetBufBAFull. Functions with the old names still exist,
but have slightly different semantics. See Section 4.14.5 in Haskell Libraries for more details.

14



Chapter 1. Introduction to GHC

1.5.3. Internal changes

• Con is gone; the CoreExpr type is simpler.

• NoRepLits have gone.

• Better usage info in interface files, which means less recompilation.

• CCall primop is tidied up.

• Constant folding is now done by Rules.

• Lots of hackery in the simplifier.

• Improvements in CPR and strictness analysis.

15



Chapter 2. Installing from binary distributions
Installing from binary distributions is easiest, and recommended! (Why binaries? Because GHC is a
Haskell compiler written in Haskell, so you’ve got to “bootstrap” it, somehow. We provide
machine-generated C-files-from-Haskell for this purpose, but it’s really quite a pain to use them. If
you must build GHC from its sources, using a binary-distributed GHC to do so is a sensible way to
proceed. For the other fptools programs, many are written in Haskell, so binary distributions allow
you to install them without having a Haskell compiler.)

This guide is in two parts: installing on Unix-a-likes, and installing on Windows.

2.1. Installing on Unix-a-likes

2.1.1. Bundle structure

Binary distributions come in “bundles,” one bundle per file called
<bundle>-<platform>.tar.gz. (See the building guide for the definition of a platform.)
Suppose that you untar a binary-distribution bundle, thus:

% cd /your/scratch/space
% gunzip < ghc-x.xx-sun-sparc-solaris2.tar.gz | tar xvf -

Then you should find a single directory, fptools, with the following structure:

Makefile.in

the raw material from which the Makefile will be made (Section 2.1.1.1).

configure

the configuration script (Section 2.1.1.1).

README

Contains this file summary.

INSTALL

Contains this description of how to install the bundle.

ANNOUNCE

The announcement message for the bundle.

16



Chapter 2. Installing from binary distributions

NEWS

release notes for the bundle—a longer version of ANNOUNCE. For GHC, the release notes are
contained in the User Guide and this file isn’t present.

bin/<platform>

contains platform-specific executable files to be invoked directly by the user. These are the files
that must end up in your path.

lib/<platform>/

contains platform-specific support files for the installation. Typically there is a subdirectory for
each fptools project, whose name is the name of the project with its version number. For
example, for GHC there would be a sub-directory ghc-x.xx/ where x.xx is the version
number of GHC in the bundle.

These sub-directories have the following general structure:

libHSstd.a etc:

supporting library archives.

ghc-iface.prl etc:

support scripts.

import/

(.hi) for the prelude.

include/

A few C #include files.

share/

contains platform-independent support files for the installation. Again, there is a sub-directory
for each fptools project.

html/

contains HTML documentation files (one sub-directory per project).

man/

contains Unix manual pages.

This structure is designed so that you can unpack multiple bundles (including ones from different
releases or platforms) into a single fptools directory 1 :

% cd /your/scratch/space

17



Chapter 2. Installing from binary distributions

% gunzip < ghc-x.xx-sun-sparc-solaris2.tar.gz | tar xvf -
% gunzip < happy-x.xx-sun-sparc-sunos4.tar.gz | tar xvf -

When you do multiple unpacks like this, the top level Makefile, README, and INSTALL get
overwritten each time. That’s fine—they should be the same. Likewise, the ANNOUNCE-<bundle>
and NEWS-<bundle> files will be duplicated across multiple platforms, so they will be harmlessly
overwritten when you do multiple unpacks. Finally, the share/ stuff will get harmlessly overwritten
when you do multiple unpacks for one bundle on different platforms.

2.1.1.1. Installing

OK, so let’s assume that you have unpacked your chosen bundles into a scratch directory fptools.
What next? Well, you will at least need to run the configure script by changing your directory to
fptools and typing ./configure. That should convert Makefile.in to Makefile.

You can now either start using the tools in-situ without going through any installation process, just
type make in-place to set the tools up for this. You’ll also want to add the path which make will
now echo to your PATH environment variable. This option is useful if you simply want to try out the
package and/or you don’t have the necessary privileges (or inclination) to properly install the tools
locally. Note that if you do decide to install the package ‘properly’ at a later date, you have to go
through the installation steps that follows.

To install an fptools package, you’ll have to do the following:

1. Edit the Makefile and check the settings of the following variables:

platform

the platform you are going to install for.

bindir

the directory in which to install user-invokable binaries.

libdir

the directory in which to install platform-dependent support files.

datadir

the directory in which to install platform-independent support files.

infodir

the directory in which to install Emacs info files.

htmldir

the directory in which to install HTML documentation.

18



Chapter 2. Installing from binary distributions

dvidir

the directory in which to install DVI documentation.

The values for these variables can be set through invocation of the configure script that comes with
the distribution, but doing an optical diff to see if the values match your expectations is always a
Good Idea.

Instead of running configure, it is perfectly OK to copy Makefile.in to Makefile and set all
these variables directly yourself. But do it right!

2. Run make install. This should work with ordinary Unix make—no need for fancy stuff like
GNU make.

3. rehash (t?csh or zsh users), so your shell will see the new stuff in your bin directory.

4. Once done, test your “installation” as suggested in Section 2.1.1.3. Be sure to use a -v option,
so you can see exactly what pathnames it’s using. If things don’t work as expected, check the list
of known pitfalls in the building guide.

When installing the user-invokable binaries, this installation procedure will install GHC as
ghc-x.xx where x.xx is the version number of GHC. It will also make a link (in the binary
installation directory) from ghc to ghc-x.xx. If you install multiple versions of GHC then the last
one “wins”, and “ghc” will invoke the last one installed. You can change this manually if you want.
But regardless, ghc-x.xx should always invoke GHC version x.xx.

2.1.1.2. What bundles there are

There are plenty of “non-basic” GHC bundles. The files for them are called
ghc-x.xx-<bundle>-<platform>.tar.gz, where the <platform> is as above, and <bundle>

is one of these:

prof:

Profiling with cost-centres. You probably want this.

par:

Parallel Haskell features (sits on top of PVM). You’ll want this if you’re into that kind of thing.

gran:

The “GranSim” parallel-Haskell simulator (hmm. . . mainly for implementors).

ticky:

“Ticky-ticky” profiling; very detailed information about “what happened when I ran this
program”—really for implementors.

19



Chapter 2. Installing from binary distributions

One likely scenario is that you will grab two binary bundles—basic, and profiling. We don’t usually
make the rest, although you can build them yourself from a source distribution.

2.1.1.3. Testing that GHC seems to be working

The way to do this is, of course, to compile and run this program (in a file Main.hs):

main = putStr "Hello, world!\n"

Compile the program, using the -v (verbose) flag to verify that libraries, etc., are being found
properly:

% ghc -v -o hello Main.hs

Now run it:

% ./hello
Hello, world!

Some simple-but-profitable tests are to compile and run the notorious nfib program, using different
numeric types. Start with nfib :: Int -> Int, and then try Integer, Float, Double,
Rational and perhaps the overloaded version. Code for this is distributed in
ghc/misc/examples/nfib/ in a source distribution.

For more information on how to “drive” GHC, either do ghc -help or consult the User’s Guide
(distributed in several pre-compiled formats with a binary distribution, or in source form in
ghc/docs/users_guide in a source distribution).

2.2. Installing on Windows
Getting the Glasgow Haskell Compiler (GHC) to run on Windows platforms can be a bit of a trying
experience. This document tries to simplify the task by enumerating the steps you need to follow in
order to set up and configure your machine to run GHC (at least that’s the intention ;-)

2.2.1. System requirements
An installation of GHC requires ca. 200M of disk space, which is split roughly 50-50 between GHC
and the supporting software. To run GHC comfortably, your machine should have at least 64M of
memory.

20



Chapter 2. Installing from binary distributions

2.2.2. Software required
You need two chunks of software other than GHC itself: the Cygwin toolchain, and Perl. Here’s how
to get and install them.

2.2.2.1. The cygwin toolchain (1.1)

GHC depends at the moment on the cygwin tools to operate, which dresses up the Win32
environment into something more UNIX-like. (notably, it provides gcc, as and ld), so you’ll need to
install these tools first. You also need Cygwin to use CVS. (We don’t yet support later versions of
Cygwin.)

Important grungy information about Cygwin:

• Cygwin doesn’t deal well with filenames that include spaces. "Program Files" and "Local
files" are common gotchas.

• Cygwin implements a symbolic link as a text file with some magical text in it. So programs that
don’t use Cygwin’s I/O libraries won’t recognise such files as symlinks. In particular, programs
compiled by GHC are meant to be runnable without having Cygwin, so they don’t use the Cygwin
library, so they don’t recognise symlinks.

Here’s how to install Cygwin.

• Install Cygwin 1.1 from sources.redhat.com (http://sources.redhat.com/cygwin/) Install this into
your root directory (C:\), despite the warnings (but you may want to back up C:\bin, C:\etc,
C:\lib, C:\usr and C:\var first) and choose DOS text mode. If you’re upgrading from Cygwin
B20.1, running mount –import-old-mounts immediately after installation may help. Either way,
you want to end up with your main drive mounted in textmode, and only the bin directories
mounted in binmode (you can check by running mount).

• Create the following directories (if they aren’t already there; substitute the drive you installed
Cygwin on for c:):

• c:/Temp

• c:/etc

• c:/bin

• c:/usr/local/bin

(using mkdir -p /bin, etc.)

• If you’re an Emacs user and want to be able to run bash from within a shell buffer, see the NT
Emacs home page (http://www.cs.washington.edu/homes/voelker/ntemacs.html) for instructions
on how to set this up.

21



Chapter 2. Installing from binary distributions

2.2.2.2. Environment variables

In case you don’t already know how to set environment variables on a Windows machine, here’s
how. On WinNT/Win2k, to edit your PATH variable (for example), do the following:

• Press Start/Settings/Control Panels

• Double-click System

• Press Advanced

• Press Environment Variables

• Under System Variables, select PATH

• Press Edit

• Add ";C:/whatever/" to the end of the string (for example)

• Press OK

Some environment variables are “user variables” and some are “system variables”. I’m not sure of
the difference but both are changed though the same dialogue.

In addition, when running bash you can set environment variables in your .bashrc file. But it is
better to set your environment variables from the control panel (they get inherited by bash) because
then they are visible to applications that aren’t started by bash. For example, when you’re invoking
CVS (and ssh) via Emacs keybindings; it invokes cvs.exe without going via bash.

On a Win9x machine you need to edit autoexec.bat using Windows/system/Sysedit. You
must reboot to make the new settings take effect.

The following environment variables must be set:

TMPDIRUser Set to c:/tmp. For some reason, Win2k invisibly sets this variable

to point to a temporary directory in your profile, that contains embedded

spaces. If GHC sees the TMPDIR variable set, it tries to use it for

temporary files, but Cygwin doesn’t grok filenames with spaces, so

disaster results. Furthermore, it seems that TMPDIR must be set to a

directory in the same file system in which you invoke GHC. Otherwise you

get very weird messages when you invoke GHC, such as:
does not exist Action: openFile Reason: file does not exist /tmp/ghc11068.cpp

We think this is due to a bug in Cygwin.

In addition, we’ve had problems in the past with certain environment variables being set that seem to
have bad effects on GHC. If you have installed other systems ported from Unix, you might too. If
you get weird inexplicable failures to build GHC, then it might be worth weeding out unused
environment variables. Known culprits from the past include GCC_EXEC_PREFIX and INCLUDE.

22



Chapter 2. Installing from binary distributions

2.2.2.3. Perl5

The driver script is written in Perl, so you’ll need to have this installed too. However, the ghc binary
distribution includes a perl binary for you to make use of, should you not already have a cygwin
compatible one. Note: GHC does not work with the ActiveState port of perl.

2.2.3. Installing GHC
Download a GHC distribution:

ghc-4.08—InstallShield installer, 15M: http (http://www.haskell.org/ghc/download.html)

It is packaged up using an installer that should be familiar-looking to Windows users.

Note: The cygwin support for long file names containing spaces is not 100%, so make sure that
you install ghc in a directory that has no embedded spaces (i.e., resist the temptation to put it in
/Program Files/!)

When the installer has completed, make sure you add the location of the ghc bin/ directory to
your path (i.e. /path/to/wherever/ghc-4.08/bin ). You need to do this in order to bring
the various GHC DLLs into scope; if not, then you need to copy the DLLs into a directory that
is (the system directory, for example).

Note: If you haven’t got perl already installed, you will have to manually copy the perl.exe
binary from the ghc bin/ into your /bin directory before continuing—the installer will not
currently do this.

Make sure that you set all the environment variables described above under Cygwin installation,
including TMPDIR

To test the fruits of your labour, try now to compile a simple Haskell program:

bash$ cat main.hs
module Main(main) where

main = putStrLn "Hello, world!"
bash$ /path/to/the/ghc/bin/directory/ghc-4.08 -o main main.hs
..
bash$ ./main
Hello, world!
bash$

OK, assuming that worked, you’re all set. Go forth and write useful Haskell programs :-) If not,
consult the installation FAQ (Section 2.2.4); if that still doesn’t help then please report the problems
you’re experiencing (see Chapter 8).

Further information on using GHC under Windows can be found in Sigbjørn Finne’s pages
(http://www.dcs.gla.ac.uk/~sof/ghc-win32.html). Note: ignore the installation instructions, which are

23



Chapter 2. Installing from binary distributions

rather out of date; the Miscellaneous section at the bottom of the page is of most interest, covering
topics beyond the scope of this manual.

2.2.4. Installing ghc-win32 FAQ

1. Invoking ghc doesn’t seem to do anything, it immediately returns without having compiled the
input file.

One cause of this is that /bin/sh is missing. To verify, open up a bash session and type ls -l
/bin/sh.exe. If sh.exe is reported as not being there, copy bash.exe (which you’ll find inside the
cygwin installation tree as bin/bash.exe) to /bin/sh.exe.

All being well, ghc should then start to function.

2. I’m having trouble with symlinks.

Symlinks only work under Cygwin (Section 2.1.1.1), so binaries not linked to the Cygwin DLL, in
particular those built for Mingwin, will not work with symlinks.

3. I’m getting “permission denied” messages from rm or mv.

This can have various causes: trying to rename a directory when an Explorer window is open on it
tends to fail. Closing the window generally cures the problem, but sometimes its cause is more
mysterious, and logging off and back on or rebooting may be the quickest cure.

4. I get errors when trying to build GHC 4.08 with GHC 4.05.

This seems to work better if you don’t use -O in GhcHcOpts. It’s a bug in 4.05, unfortunately.
Anyway, better to install 4.08 binaries and use those.

2.3. Building the documentation
We use the DocBook DTD, which is widely used. Most shrink-wrapped distributions seem to be
broken in one way or another; thanks to heroic efforts by Sven Panne and Manuel Chakravarty, we
now support most of them, plus properly installed versions.

Instructions on installing and configuring the DocBook tools follow.

2.3.1. Installing the DocBook tools from RPMs
If you’re using a system that can handle RedHat RPM packages, you can probably use the Cygnus
DocBook tools (http://sourceware.cygnus.com/docbook-tools/), which is the most shrink-wrapped
SGML suite that we could find. You need all the RPMs except for psgml (i.e. docbook, jade,

24



Chapter 2. Installing from binary distributions

jadetex, sgmlcommon and stylesheets). Note that most of these RPMs are architecture neutral,
so are likely to be found in a noarch directory. The SuSE RPMs also work; the RedHat ones don’t
as of version 6.2, but they are easy to fix: just make a symlink from
/usr/lib/sgml/stylesheets/nwalsh-modular/lib/dblib.dsl to
/usr/lib/sgml/lib/dblib.dsl.

2.3.2. Installing from binaries on Windows
It’s a good idea to use Norman Walsh’s installation notes
(http://nwalsh.com/docbook/dsssl/doc/install.html) as a guide. You should get version 3.1 of
DocBook, and note that his file test.sgm won’t work, as it needs version 3.0. You should unpack
Jade into \Jade, along with the entities, DocBook into \docbook, and the DocBook stylesheets
into \docbook\stylesheets (so they actually end up in \docbook\stylesheets\docbook).

2.3.3. Installing the DocBook tools from source

2.3.3.1. Jade

Install OpenJade (http://openjade.sourceforge.net/) (Windows binaries are available as well as
sources). If you want DVI, PS, or PDF then install JadeTeX from the dsssl subdirectory. (If you get
the error:

! LaTeX Error: Unknown option implicit=false’ for package hyperref’.

your version of hyperref is out of date; download it from CTAN
(macros/latex/contrib/supported/hyperref), and make it, ensuring that you have first
removed or renamed your old copy. If you start getting file not found errors when making the test for
hyperref, you can abort at that point and proceed straight to make install, or enter them as
../filename.)

Make links from virtex to jadetex and pdfvirtex to pdfjadetex (otherwise DVI, PostScript
and PDF output will not work). Copy dsssl/*.{dtd,dsl} and catalog to
/usr/[local/]lib/sgml.

2.3.3.2. DocBook and the DocBook stylesheets

Get a Zip of DocBook (http://www.oasis-open.org/docbook/sgml/3.1/index.html) and install the
contents in /usr/[local/]/lib/sgml.

Get the DocBook stylesheets (http://nwalsh.com/docbook/dsssl/) and install in
/usr/[local/]lib/sgml/stylesheets (thereby creating a subdirectory docbook). For
indexing, copy or link collateindex.pl from the DocBook stylesheets archive in bin into a
directory on your PATH.

25



Download the ISO entities (http://www.oasis-open.org/cover/ISOEnts.zip) into
/usr/[local/]lib/sgml.

2.3.4. Configuring the DocBook tools
Once the DocBook tools are installed, the configure script will detect them and set up the build
system accordingly. If you have a system that isn’t supported, let us know, and we’ll try to help.

2.3.5. Remaining problems
If you install from source, you’ll get a pile of warnings of the form

DTDDECL catalog entries are not supported

every time you build anything. These can safely be ignored, but if you find them tedious you can get
rid of them by removing all the DTDDECL entries from docbook.cat.

Notes
1. this doesn’t work at the moment



Chapter 3. Using GHC
GHC is a command-line compiler: in order to compile a Haskell program, GHC must be invoked on
the source file(s) by typing a command to the shell. The steps involved in compiling a program can
be automated using the make tool (this is especially useful if the program consists of multiple source
files which depend on each other). This section describes how to use GHC from the command-line.

3.1. Overall command-line structure

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO is different from -v -O.
Options need not precede filenames: e.g., ghc *.o -o foo. All options are processed and then applied
to all files; you cannot, for example, invoke ghc -c -O1 Foo.hs -O2 Bar.hs to apply different
optimisation levels to the files Foo.hs and Bar.hs. For conflicting options, e.g., -c -S, we reserve
the right to do anything we want. (Usually, the last one applies.)

3.2. Meaningful file suffixes

File names with “meaningful” suffixes (e.g., .lhs or .o) cause the “right thing” to happen to those
files.

.lhs:

A “literate Haskell” module.

.hs:

A not-so-literate Haskell module.

.hi:

A Haskell interface file, probably compiler-generated.

.hc:

Intermediate C file produced by the Haskell compiler.

27



Chapter 3. Using GHC

.c:

A C file not produced by the Haskell compiler.

.s:

An assembly-language source file, usually produced by the compiler.

.o:

An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

3.3. Help and verbosity options

A good option to start with is the -help (or -?) option. GHC spews a long message to standard
output and then exits.

The -v option makes GHC verbose: it reports its version number and shows (on stderr) exactly how
it invokes each phase of the compilation system. Moreover, it passes the -v flag to most phases; each
reports its version number (and possibly some other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the right bits in the
right order is always the first thing we want to verify.

If you’re just interested in the compiler version number, the -version option prints out a one-line
string containing the requested info.

3.4. Running the right phases in the right order
The basic task of the ghc driver is to run each input file through the right phases (compiling, linking,
etc.).

The first phase to run is determined by the input-file suffix, and the last phase is determined by a flag.
If no relevant flag is present, then go all the way through linking. This table summarises:

Phase of the compilation
system

Suffix saying “start here”Flag saying “stop after” (suffix of) output file

literate pre-processor .lhs - -

C pre-processor (opt.) - - -

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hc or .c -S .s

assembler .s -c .o

28



Chapter 3. Using GHC

linker other - a.out

Thus, a common invocation would be: ghc -c Foo.hs

Note: What the Haskell compiler proper produces depends on whether a native-code generator is
used (producing assembly language) or not (producing C).

The option -cpp must be given for the C pre-processor phase to be run, that is, the pre-processor
will be run over your Haskell source file before continuing.

The option -E runs just the pre-processing passes of the compiler, outputting the result on stdout
before stopping. If used in conjunction with -cpp, the output is the code blocks of the original
(literal) source after having put it through the grinder that is the C pre-processor. Sans -cpp, the
output is the de-litted version of the original source.

The option -optcpp-E runs just the pre-processing stage of the C-compiling phase, sending the
result to stdout. (For debugging or obfuscation contests, usually.)

3.5. Re-directing the compilation output(s)

GHC’s compiled output normally goes into a .hc, .o, etc., file, depending on the last-run
compilation phase. The option -o foo re-directs the output of that last-run phase to file foo.

Note: this “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the intermediate C code
in the file foo.o, name notwithstanding!

EXOTICA: But the -o option isn’t of much use if you have several input files. . . Non-interface
output files are normally put in the same directory as their corresponding input file came from. You
may specify that they be put in another directory using the -odir <dir> (the “Oh, dear” option).
For example:

% ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir ‘arch‘

The output files, Foo.o, Bar.o, and Bumble.o would be put into a subdirectory named after the
architecture of the executing machine (sun4, mips, etc). The directory must already exist; it won’t
be created.

Note that the -odir option does not affect where the interface files are put. In the above example,
they would still be put in parse/Foo.hi, parse/Bar.hi, and gurgle/Bumble.hi.

MORE EXOTICA: The -osuf <suffix> will change the .o file suffix for object files to whatever
you specify. (We use this in compiling the prelude.). Similarly, the -hisuf <suffix> will change
the .hi file suffix for non-system interface files (see Section 3.7.3).

29



Chapter 3. Using GHC

The -hisuf/-osuf game is useful if you want to compile a program with both GHC and HBC (say)
in the same directory. Let HBC use the standard .hi/.o suffixes; add -hisuf g_hi -osuf g_o to
your make rule for GHC compiling. . .

3.5.1. Keeping Intermediate Files
The following options are useful for keeping certain intermediate files around, when normally GHC
would throw these away after compilation:

-keep-hc-files

Keep intermediate .hc files when doing .hs-to-.o compilations via C (NOTE: .hc files aren’t
generated when using the native code generator, you may need to use -fvia-C to force them to
be produced).

-keep-s-files

Keep intermediate .s files.

-keep-raw-s-files

Keep intermediate .raw-s files. These are the direct output from the C compiler, before GHC
does “assembly mangling” to produce the .s file. Again, these are not produced when using the
native code generator.

-keep-tmp-files

Instructs the GHC driver not to delete any of its temporary files, which it normally keeps in
/tmp (or possibly elsewhere; see Section 3.5.3). Running GHC with -v will show you what
temporary files were generated along the way.

3.5.2. Saving GHC’s standard error output

Sometimes, you may cause GHC to be rather chatty on standard error; with -v, for example. You
can instruct GHC to append this output to a particular log file with a -odump <blah> option.

3.5.3. Redirecting temporary files
If you have trouble because of running out of space in /tmp (or wherever your installation thinks
temporary files should go), you may use the -tmpdir <dir> option to specify an alternate
directory. For example, -tmpdir . says to put temporary files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory where
temporary files should be put. GCC and other programs will honour the TMPDIR variable as well.

30



Chapter 3. Using GHC

Even better idea: Set the TMPDIR variable when building GHC, and never worry about TMPDIR
again. (see the build documentation).

3.6. Warnings and sanity-checking
GHC has a number of options that select which types of non-fatal error messages, otherwise known
as warnings, can be generated during compilation. By default, you get a standard set of warnings
which are generally likely to indicate bugs in your program. These are:
-fwarn-overlpapping-patterns, -fwarn-duplicate-exports, and
-fwarn-missing-methods. The following flags are simple ways to select standard “packages” of
warnings:

-Wnot:

Turns off all warnings, including the standard ones.

-w:

Synonym for -Wnot.

-W:

Provides the standard warnings plus -fwarn-incomplete-patterns,
-fwarn-unused-imports and -fwarn-unused-binds.

-Wall:

Turns on all warning options.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -fno-warn-... option on the command line.

-fwarn-name-shadowing:

This option causes a warning to be emitted whenever an inner-scope value has the same name
as an outer-scope value, i.e. the inner value shadows the outer one. This can catch typographical
errors that turn into hard-to-find bugs, e.g., in the inadvertent cyclic definition let x = ... x

... in.

Consequently, this option does not allow cyclic recursive definitions.

-fwarn-overlapping-patterns:

By default, the compiler will warn you if a set of patterns are overlapping, i.e.,

f :: String -> Int

31



Chapter 3. Using GHC

f [] = 0
f (_:xs) = 1
f "2" = 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps it. More
often than not, redundant patterns is a programmer mistake/error, so this option is enabled by
default.

-fwarn-incomplete-patterns:

Similarly for incomplete patterns, the function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -fwarn-incomplete-patterns is
enabled.

g [] = 2

This option isn’t enabled be default because it can be a bit noisy, and it doesn’t always indicate
a bug in the program. However, it’s generally considered good practice to cover all the cases in
your functions.

-fwarn-missing-methods:

This option is on by default, and warns you whenever an instance declaration is missing one
or more methods, and the corresponding class declaration has no default declaration for them.

-fwarn-missing-fields:

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initializers for one or more fields. While not an error (the
missing fields are initialised with bottoms), it is often an indication of a programmer error.

-fwarn-unused-imports:

Report any objects that are explicitly imported but never used.

-fwarn-unused-binds:

Report any function definitions (and local bindings) which are unused. For top-level
functions, the warning is only given if the binding is not exported.

-fwarn-unused-matches:

Report all unused variables which arise from pattern matches, including patterns consisting of
a single variable. For instance f x y = [] would report x and y as unused. To eliminate the
warning, all unused variables can be replaced with wildcards.

-fwarn-duplicate-exports:

Have the compiler warn about duplicate entries in export lists. This is useful information if
you maintain large export lists, and want to avoid the continued export of a definition after

32



Chapter 3. Using GHC

you’ve deleted (one) mention of it in the export list.

This option is on by default.

-fwarn-type-defaults:

Have the compiler warn/inform you where in your source the Haskell defaulting mechanism
for numeric types kicks in. This is useful information when converting code from a context that
assumed one default into one with another, e.g., the ‘default default’ for Haskell 1.4 caused the
otherwise unconstrained value 1 to be given the type Int, whereas Haskell 98 defaults it to
Integer. This may lead to differences in performance and behaviour, hence the usefulness of
being non-silent about this.

This warning is off by default.

-fwarn-missing-signatures:

If you would like GHC to check that every top-level function/value has a type signature, use
the -fwarn-missing-signatures option. This option is off by default.

If you’re feeling really paranoid, the -dcore-lint option is a good choice. It turns on heavyweight
intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

3.7. Separate compilation
This section describes how GHC supports separate compilation.

3.7.1. Interface files

When GHC compiles a source file F which contains a module A, say, it generates an object F.o, and
a companion interface file A.hi. The interface file is not intended for human consumption, as you’ll
see if you take a look at one. It’s merely there to help the compiler compile other modules in the
same program.

NOTE: Having the name of the interface file follow the module name and not the file name, means
that working with tools such as make become harder. make implicitly assumes that any output files
produced by processing a translation unit will have file names that can be derived from the file name
of the translation unit. For instance, pattern rules becomes unusable. For this reason, we recommend
you stick to using the same file name as the module name.

The interface file for A contains information needed by the compiler when it compiles any module B
that imports A, whether directly or indirectly. When compiling B, GHC will read A.hi to find the
details that it needs to know about things defined in A.

33



Chapter 3. Using GHC

Furthermore, when compiling module C which imports B, GHC may decide that it needs to know
something about A—for example, B might export a function that involves a type defined in A. In this
case, GHC will go and read A.hi even though C does not explicitly import A at all.

The interface file may contain all sorts of things that aren’t explicitly exported from A by the
programmer. For example, even though a data type is exported abstractly, A.hi will contain the full
data type definition. For small function definitions, A.hi will contain the complete definition of the
function. For bigger functions, A.hi will contain strictness information about the function. And so
on. GHC puts much more information into .hi files when optimisation is turned on with the -O flag.
Without -O it puts in just the minimum; with -O it lobs in a whole pile of stuff.

A.hi should really be thought of as a compiler-readable version of A.o. If you use a .hi file that
wasn’t generated by the same compilation run that generates the .o file the compiler may assume all
sorts of incorrect things about A, resulting in core dumps and other unpleasant happenings.

3.7.2. Finding interface files

In your program, you import a module Foo by saying import Foo. GHC goes looking for an
interface file, Foo.hi. It has a builtin list of directories (notably including .) where it looks.

-i<dirs>

This flag prepends a colon-separated list of dirs to the “import directories” list. See also
Section 3.7.4 for the significance of using relative and absolute pathnames in the -i list.

-i

resets the “import directories” list back to nothing.

-fno-implicit-prelude

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a
-fno-implicit-prelude option. The idea is that you can then import a Prelude of your own.
(But don’t call it Prelude; the Haskell module namespace is flat, and you must not conflict
with any Prelude module.)

Even though you have not imported the Prelude, all the built-in syntax still refers to the built-in
Haskell Prelude types and values, as specified by the Haskell Report. For example, the type
[Int] still means Prelude.[] Int; tuples continue to refer to the standard Prelude tuples;
the translation for list comprehensions continues to use Prelude.map etc.

With one group of exceptions! You may want to define your own numeric class hierarchy. It
completely defeats that purpose if the literal "1" means "Prelude.fromInteger 1", which is
what the Haskell Report specifies. So the -fno-implicit-prelude flag causes the following
pieces of built-in syntax to refer to whatever is in scope, not the Prelude versions:

34



Chapter 3. Using GHC

• Integer and fractional literals mean "fromInteger 1" and "fromRational 3.2", not the
Prelude-qualified versions; both in expressions and in patterns.

• Negation (e.g. "- (f x)") means "negate (f x)" (not Prelude.negate).

• In an n+k pattern, the standard Prelude Ord class is used for comparison, but the necessary
subtraction uses whatever "(-)" is in scope (not "Prelude.(-)").

-I<dir>

Once a Haskell module has been compiled to C (.hc file), you may wish to specify where
GHC tells the C compiler to look for .h files. (Or, if you are using the -cpp option, where it
tells the C pre-processor to look. . . ) For this purpose, use a -I option in the usual C-ish way.

3.7.3. Other options related to interface files
The interface output may be directed to another file bar2/Wurble.iface with the option -ohi
bar2/Wurble.iface (not recommended).

To avoid generating an interface file at all, use a -nohi option.

The compiler does not overwrite an existing .hi interface file if the new one is byte-for-byte the
same as the old one; this is friendly to make. When an interface does change, it is often enlightening
to be informed. The -hi-diffs option will make GHC run diff on the old and new .hi files. You
can also record the difference in the interface file itself, the -keep-hi-diffs option takes care of
that.

The .hi files from GHC contain “usage” information which changes often and uninterestingly. If
you really want to see these changes reported, you need to use the -hi-diffs-with-usages
option.

Interface files are normally jammed full of compiler-produced pragmas, which record arities,
strictness info, etc. If you think these pragmas are messing you up (or you are doing some kind of
weird experiment), you can tell GHC to ignore them with the -fignore-interface-pragmas
option.

When compiling without optimisations on, the compiler is extra-careful about not slurping in data
constructors and instance declarations that it will not need. If you believe it is getting it wrong and
not importing stuff which you think it should, this optimisation can be turned off with
-fno-prune-tydecls and -fno-prune-instdecls.

See also Section 3.10.3, which describes how the linker finds standard Haskell libraries.

3.7.4. The recompilation checker

35



Chapter 3. Using GHC

-recomp

(On by default) Turn on recompilation checking. This will stop compilation early, leaving an
existing .o file in place, if it can be determined that the module does not need to be recompiled.

-no-recomp

Turn off recompilation checking.

In the olden days, GHC compared the newly-generated .hi file with the previous version; if they
were identical, it left the old one alone and didn’t change its modification date. In consequence,
importers of a module with an unchanged output .hi file were not recompiled.

This doesn’t work any more. In our earlier example, module C does not import module A directly, yet
changes to A.hi should force a recompilation of C. And some changes to A (changing the definition
of a function that appears in an inlining of a function exported by B, say) may conceivably not
change B.hi one jot. So now. . .

GHC keeps a version number on each interface file, and on each type signature within the interface
file. It also keeps in every interface file a list of the version numbers of everything it used when it last
compiled the file. If the source file’s modification date is earlier than the .o file’s date (i.e. the source
hasn’t changed since the file was last compiled), and the -recomp is given on the command line,
GHC will be clever. It compares the version numbers on the things it needs this time with the version
numbers on the things it needed last time (gleaned from the interface file of the module being
compiled); if they are all the same it stops compiling rather early in the process saying “Compilation
IS NOT required”. What a beautiful sight!

Patrick Sansom had a workshop paper about how all this is done (though the details have changed
quite a bit). Ask him (mailto:sansom@dcs.gla.ac.uk) if you want a copy.

3.7.5. Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name your
source files the same as your modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

cool_pgm : $(OBJS)
rm $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

# Standard suffix rules

36



Chapter 3. Using GHC

.o.hi:
@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

.hs.o:
$(HC) -c $< $(HC_OPTS)

# Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

(Sophisticated make variants may achieve some of the above more elegantly. Notably, gmake’s
pattern rules let you write the more comprehensible:

%.o : %.lhs
$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with any make.)

Note the cheesy .o.hi rule: It records the dependency of the interface (.hi) file on the source. The
rule says a .hi file can be made from a .o file by doing. . . nothing. Which is true.

Note the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks for a
rule to do so; one of the preceding suffix rules does the job nicely.

3.7.6. Dependency generation
Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required dependencies.
Add the following to your Makefile:

depend :
ghc -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do make
depend before you do make cool_pgm. ghc -M will append the needed dependencies to your
Makefile.

In general, if module A contains the line

37



Chapter 3. Using GHC

import B ...blah...

then ghc -M will generate a dependency line of the form:

A.o : B.hi

If module A contains the line

import {-# SOURCE #-} B ...blah...

then ghc -M will generate a dependency line of the form:

A.o : B.hi-boot

(See Section 3.7.1 for details of interface files.) If A imports multiple modules, then there will be
multiple lines with A.o as the target.

By default, ghc -M generates all the dependencies, and then concatenates them onto the end of
makefile (or Makefile if makefile doesn’t exist) bracketed by the lines "# DO NOT DELETE:

Beginning of Haskell dependencies" and "# DO NOT DELETE: End of Haskell

dependencies". If these lines already exist in the makefile, then the old dependencies are deleted
first.

Internally, GHC uses a script to generate the dependencies, called mkdependHS. This script has
some options of its own, which you might find useful. Options can be passed directly to
mkdependHS with GHC’s -optdep option. For example, to generate the dependencies into a file
called .depend instead of Makefile:

ghc -M -optdep-f optdep.depend ...

The full list of options accepted by mkdependHS is:

-w

Turn off warnings about interface file shadowing.

-f blah

Use blah as the makefile, rather than makefile or Makefile. If blah doesn’t exist,
mkdependHS creates it. We often use -f .depend to put the dependencies in .depend and
then include the file .depend into Makefile.

-o <osuf>

Use .<osuf> as the "target file" suffix ( default: o). Multiple -o flags are permitted (GHC2.05
onwards). Thus "-o hc -o o" will generate dependencies for .hc and .o files.

-s <suf>

Make extra dependencies that declare that files with suffix .<suf>_<osuf> depend on
interface files with suffix .<suf>_hi, or (for {-# SOURCE #-} imports) on .hi-boot.

38



Chapter 3. Using GHC

Multiple -s flags are permitted. For example, -o hc -s a -s b will make dependencies for
.hc on .hi, .a_hc on .a_hi, and .b_hc on .b_hi. (Useful in conjunction with NoFib
"ways".)

-exclude-module=<file>

Regard <file> as "stable"; i.e., exclude it from having dependencies on it.

-x

same as -exclude-module

-exclude-directory=<dirs>

Regard the colon-separated list of directories <dirs> as containing stable, don’t generate any
dependencies on modules therein.

-xdirs

same as -exclude-directory.

-include-module=<file>

Regard <file> as not "stable"; i.e., generate dependencies on it (if any). This option is
normally used in conjunction with the -exclude-directory option.

-include-prelude

Regard prelude libraries as unstable, i.e., generate dependencies on the prelude modules used
(including Prelude). This option is normally only used by the various system libraries. If a
-package option is used, dependencies will also be generated on the library’s interfaces.

3.7.7. How to compile mutually recursive modules

Currently, the compiler does not have proper support for dealing with mutually recursive modules:

module A where

import B

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x
-----
module B where

import A

39



Chapter 3. Using GHC

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

When compiling either module A and B, the compiler will try (in vain) to look for the interface file
of the other. So, to get mutually recursive modules off the ground, you need to hand write an
interface file for A or B, so as to break the loop. These hand-written interface files are called
hi-boot files, and are placed in a file called <module>.hi-boot. To import from an hi-boot file
instead of the standard .hi file, use the following syntax in the importing module:

import {-# SOURCE #-} A

The hand-written interface need only contain the bare minimum of information needed to get the
bootstrapping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module that imports A recursively.

For the example at hand, the boot interface file for A would look like the following:

__interface A 1 404 where
__export A TA{MkTA} ;
1 newtype TA = MkTA PrelBase.Int ;

The syntax is essentially the same as a normal .hi file (unfortunately), but you can usually tailor an
existing .hi file to make a .hi-boot file.

Notice that we only put the declaration for the newtype TA in the hi-boot file, not the signature for
f, since f isn’t used by B.

The number “1” after “__interface A” gives the version number of module A; it is incremented
whenever anything in A’s interface file changes. The “404” is the version number of the interface file
syntax; we change it when we change the syntax of interface files so that you get a better error
message when you try to read an old-format file with a new-format compiler.

The number “1” at the beginning of a declaration is the version number of that declaration: for the
purposes of .hi-boot files these can all be set to 1. All names must be fully qualified with the
original module that an object comes from: for example, the reference to Int in the interface for A
comes from PrelBase, which is a module internal to GHC’s prelude. It’s a pain, but that’s the way
it is.

If you want an hi-boot file to export a data type, but you don’t want to give its constructors (because
the constructors aren’t used by the SOURCE-importing module), you can write simply:

__interface A 1 404 where
__export A TA;
1 data TA

40



Chapter 3. Using GHC

(You must write all the type parameters, but leave out the ’=’ and everything that follows it.)

Note: This is all a temporary solution, a version of the compiler that handles mutually recursive
modules properly without the manual construction of interface files, is (allegedly) in the works.

3.8. Packages
Packages are collections of libraries, conveniently grouped together as a single entity. The package
system is flexible: a package may consist of Haskell code, foreign language code (eg. C libraries), or
a mixture of the two. A package is a good way to group together related Haskell modules, and is
essential if you intend to make the modules into a Windows DLL (see below).

Because packages can contain both Haskell and C libraries, they are also a good way to provide
convenient access to a Haskell layer over a C library.

GHC comes with several packages (see Haskell Libraries), and packages can be added/removed
from an existing GHC installation.

3.8.1. Listing the available packages
To see what packages are currently installed, use the -list-packages option:

$ ghc -list-packages
gmp, rts, std, lang, concurrent, data, net, posix, text, util

Note that your GHC installation might have a slightly different set of packages installed.

The gmp and rts packages are always present, and represent the multi-precision integer and runtime
system libraries respectively. The std package contains the Haskell prelude. The rest of the
packages are optional libraries.

3.8.2. Using a package
To use a package, add the -package flag to the command line:

-package <lib>

This option brings into scope all the modules from package <lib> (they still have to be
imported in your Haskell source, however). It also causes the relevant libraries to be linked
when linking is being done.

Some packages depend on other packages, for example the text package makes use of some of the
modules in the lang package. The package system takes care of all these dependencies, so that when
you say -package text on the command line, you automatically get -package lang too.

41



Chapter 3. Using GHC

3.8.3. Building a package from Haskell source
It takes some special considerations to build a new package:

• A package may contain several Haskell modules. A package may span many directories, or many
packages may exist in a single directory. Packages may not be mutually recursive.

• A package has a name (e.g. std)

• The Haskell code in a package may be built into one or more Unix libraries (e.g. libHSfoo.a), or
a single DLL on Windows (e.g. HSfoo.dll). The restriction to a single DLL on Windows is that
the package system is used to tell the compiler when it should make an inter-DLL call rather than
an intra-DLL call (inter-DLL calls require an extra indirection).

• GHC does not maintain detailed cross-package dependency information. It does remember which
modules in other packages the current module depends on, but not which things within those
imported things.

To compile a module which is to be part of a new package, use the -package-name option:

-package-name <foo>

This option is added to the command line when compiling a module that is destined to be part
of package foo. If this flag is omitted then the default package Main is assumed.

Failure to use the -package-name option when compiling a package will result in disaster on
Windows, but is relatively harmless on Unix at the moment (it will just cause a few extra
dependencies in some interface files). However, bear in mind that we might add support for Unix
shared libraries at some point in the future.

It is worth noting that on Windows, because each package is built as a DLL, and a reference to a
DLL costs an extra indirection, intra-package references are cheaper than inter-package references.
Of course, this applies to the Main package as well.

3.8.4. Package management
GHC uses a package configuration file, called packages.conf, which can be found in your GHC
install directory. This file isn’t intended to be edited directly, instead GHC provides options for
adding & removing packages:

-add-package

Reads a package specification (see below) on stdin, and adds it to the database of installed
packages. The package specification must be a package that isn’t already installed.

-delete-package <foo>

Removes the specified package from the installed configuration.

42



Chapter 3. Using GHC

In both cases, the old package configuration file is saved in packages.conf.old in your GHC
install directory, so in an emergency you can always copy this file into package.conf to restore the
old settings.

A package specification looks like this:

Package {
name = "mypkg",
import_dirs = ["/usr/local/lib/imports/mypkg"],
library_dirs = ["/usr/local/lib"],
hs_libraries = ["HSmypkg" ],
extra_libraries = ["HSmypkg_cbits"],
include_dirs = [],
c_includes = ["HsMyPkg.h"],
package_deps = ["text", "data"],
extra_ghc_opts = [],
extra_cc_opts = [],
extra_ld_opts = ["-lmy_clib"]

}

Components of a package specification may be specified in any order, and are:

name

The package’s name, for use with the -package flag and as listed in the -list-packages list.

import_dirs

A list of directories containing interface files (.hi files) for this package.

library_dirs

A list of directories containing libraries for this package.

hs_libraries

A list of libraries containing Haskell code for this package, with the .a or .dll suffix omitted.
On Unix, the lib prefix is also omitted.

extra_libraries

A list of extra libraries for this package. The difference between hs_libraries and
extra_libraries is that hs_libraries normally have several versions, to support
profiling, parallel and other build options. The various versions are given different suffixes to
distinguish them, for example the profiling version of the standard prelude library is named
libHSstd_p.a, with the _p indicating that this is a profiling version. The suffix is added
automatically by GHC for hs_libraries only, no suffix is added for libraries in
extra_libraries.

43



Chapter 3. Using GHC

Also, extra_libraries are placed on the linker command line before the hs_libraries
for the same package. If your package has dependencies in the other direction, you might need
to make two separate packages.

include_dirs

A list of directories containing C includes for this package (maybe the empty list).

c_includes

A list of files to include for via-C compilations using this package. Typically this include file
will contain function prototypes for any C functions used in the package, in case they end up
being called as a result of Haskell functions from the package being inlined.

package_deps

A list of packages which this package depends on.

extra_ghc_opts

Extra arguments to be added to the GHC command line when this package is being used.

extra_cc_opts

Extra arguments to be added to the gcc command line when this package is being used (only for
via-C compilations).

extra_ld_opts

Extra arguments to be added to the gcc command line (for linking) when this package is being
used.

For examples of more package specifications, take a look at the package.conf in your GHC
installation.

3.9. Optimisation (code improvement)

The -O* options specify convenient “packages” of optimisation flags; the -f* options described
later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

3.9.1. -O*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only have a
general goal, something like “Compile quickly” or “Make my program run like greased lightning.”
The following “packages” of optimisations (or lack thereof) should suffice.

44



Chapter 3. Using GHC

Once you choose a -O* “package,” stick with it—don’t chop and change. Modules’ interfaces will
change with a shift to a new -O* option, and you may have to recompile a large chunk of all
importing modules before your program can again be run safely (see Section 3.7.4).

No -O*-type option specified:

This is taken to mean: “Please compile quickly; I’m not over-bothered about compiled-code
quality.” So, for example: ghc -c Foo.hs

-O or -O1:

Means: “Generate good-quality code without taking too long about it.” Thus, for example: ghc
-c -O Main.lhs

-O2:

Means: “Apply every non-dangerous optimisation, even if it means significantly longer compile
times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse if
you’re unlucky. They are normally turned on or off individually.

At the moment, -O2 is unlikely to produce better code than -O.

-O2-for-C:

Says to run GCC with -O2, which may be worth a few percent in execution speed. Don’t forget
-fvia-C, lest you use the native-code generator and bypass GCC altogether!

-Onot:

This option will make GHC “forget” any -Oish options it has seen so far. Sometimes useful; for
example: make all EXTRA_HC_OPTS=-Onot.

-Ofile <file>:

For those who need absolute control over exactly what options are used (e.g., compiler writers,
sometimes :-), a list of options can be put in a file and then slurped in with -Ofile.

In that file, comments are of the #-to-end-of-line variety; blank lines and most whitespace is
ignored.

Please ask if you are baffled and would like an example of -Ofile!

At Glasgow, we don’t use a -O* flag for day-to-day work. We use -O to get respectable speed; e.g.,
when we want to measure something. When we want to go for broke, we tend to use -O -fvia-C

-O2-for-C (and we go for lots of coffee breaks).

The easiest way to see what -O (etc.) “really mean” is to run with -v, then stand back in amazement.
Alternatively, just look at the HsC_minus<blah> lists in the GHC driver script.

45



Chapter 3. Using GHC

3.9.2. -f*: platform-independent flags

Flags can be turned off individually. (NB: I hope you have a good reason for doing this. . . ) To turn
off the -ffoo flag, just use the -fno-foo flag. So, for example, you can say -O2

-fno-strictness, which will then drop out any running of the strictness analyser.

The options you are most likely to want to turn off are:

• -fno-strictness (strictness analyser, because it is sometimes slow),

• -fno-specialise (automatic specialisation of overloaded functions, because it can make your
code bigger) (US spelling also accepted), and

• -fno-cpr-analyse switches off the CPR (constructed product result) analyser.

Should you wish to turn individual flags on, you are advised to use the -Ofile option, described
above. Because the order in which optimisation passes are run is sometimes crucial, it’s quite hard to
do with command-line options.

Here are some “dangerous” optimisations you might want to try:

-fvia-C:

Compile via C, and don’t use the native-code generator. (There are many cases when GHC does
this on its own.) You might pick up a little bit of speed by compiling via C (e.g. for
floating-point intensive code on Intel). If you use _casm_s (which are utterly deprecated), you
probably have to use -fvia-C.

The lower-case incantation, -fvia-c, is synonymous.

Compiling via C will probably be slower (in compilation time) than using GHC’s native code
generator.

-funfolding-interface-threshold<n>:

(Default: 30) By raising or lowering this number, you can raise or lower the amount of
pragmatic junk that gets spewed into interface files. (An unfolding has a “size” that reflects the
cost in terms of “code bloat” of expanding that unfolding in another module. A bigger function
would be assigned a bigger cost.)

-funfolding-creation-threshold<n>:

(Default: 30) This option is similar to -funfolding-interface-threshold, except that it
governs unfoldings within a single module. Increasing this figure is more likely to result in
longer compile times than faster code. The next option is more useful:

46



Chapter 3. Using GHC

-funfolding-use-threshold<n>:

(Default: 8) This is the magic cut-off figure for unfolding: below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for a
function depends on two things: the actual size of the expression minus any discounts that apply
(see -funfolding-con-discount).

-funfolding-update-in-place<n>:

Switches on an experimental "optimisation". Switching it on makes the compiler a little keener
to inline a function that returns a constructor, if the context is that of a thunk.

x = plusInt a b

If we inlined plusInt we might get an opportunity to use update-in-place for the thunk ’x’.

-funbox-strict-fields:

This option causes all constructor fields which are marked strict (i.e. “!”) to be unboxed or
unpacked if possible. For example:

data T = T !Float !Float

will create a constructor T containing two unboxed floats if the -funbox-strict-fields flag
is given. This may not always be an optimisation: if the T constructor is scrutinised and the
floats passed to a non-strict function for example, they will have to be reboxed (this is done
automatically by the compiler).

This option should only be used in conjunction with -O, in order to expose unfoldings to the
compiler so the reboxing can be removed as often as possible. For example:

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxing f1 and f2 by inlining + on floats, but only when -O is on.

Any single-constructor data is eligible for unpacking; for example

data T = T !(Int,Int)

will store the two Ints directly in the T constructor, by flattening the pair. Multi-level
unpacking is also supported:

data T = T !S
data S = S !Int !Int

will store two unboxed Int#s directly in the T constructor.

47



Chapter 3. Using GHC

-fsemi-tagging:

This option (which does not work with the native-code generator) tells the compiler to add extra
code to test for already-evaluated values. You win if you have lots of such values during a run of
your program, you lose otherwise. (And you pay in extra code space.)

We have not played with -fsemi-tagging enough to recommend it. (For all we know, it
doesn’t even work anymore. . . Sigh.)

-fexcess-precision:

When this option is given, intermediate floating point values can have a greater precision/range
than the final type. Generally this is a good thing, but some programs may rely on the exact
precision/range of Float/Double values and should not use this option for their compilation.

3.9.3. -m*: platform-specific flags

Some flags only make sense for particular target platforms.

-mv8:

(SPARC machines) Means to pass the like-named option to GCC; it says to use the Version 8
SPARC instructions, notably integer multiply and divide. The similiar -m* GCC options for
SPARC also work, actually.

-mlong-calls:

(HPPA machines) Means to pass the like-named option to GCC. Required for Very Big
modules, maybe. (Probably means you’re in trouble. . . )

-monly-[32]-regs:

(iX86 machines) GHC tries to “steal” four registers from GCC, for performance reasons; it
almost always works. However, when GCC is compiling some modules with four stolen
registers, it will crash, probably saying:

Foo.hc:533: fixed or forbidden register was spilled.
This may be due to a compiler bug or to impossible asm
statements or clauses.

Just give some registers back with -monly-N-regs. Try ‘3’ first, then ‘2’. If ‘2’ doesn’t work,
please report the bug to us.

3.9.4. Code improvement by the C compiler.

The C compiler (GCC) is run with -O turned on. (It has to be, actually).

48



Chapter 3. Using GHC

If you want to run GCC with -O2—which may be worth a few percent in execution speed—you can
give a -O2-for-C option.

3.10. Options related to a particular phase

3.10.1. The C pre-processor

The C pre-processor cpp is run over your Haskell code only if the -cpp option is given. Unless you
are building a large system with significant doses of conditional compilation, you really shouldn’t
need it.

-D<foo>:

Define macro <foo> in the usual way. NB: does not affect -D macros passed to the C compiler
when compiling via C! For those, use the -optc-Dfoo hack. . . (see Section 3.14.2).

-U<foo>:

Undefine macro <foo> in the usual way.

-I<dir>:

Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs
files):

__HASKELL98__:

If defined, this means that GHC supports the language defined by the Haskell 98 report.

__HASKELL__=98:

In GHC 4.04 and later, the __HASKELL__ macro is defined as having the value 98.

__HASKELL1__:

If defined to n, that means GHC supports the Haskell language defined in the Haskell report
version 1.n. Currently 5. This macro is deprecated, and will probably disappear in future
versions.

__GLASGOW_HASKELL__:

For version n of the GHC system, this will be #defined to 100n. So, for version 4.00, it is 400.

49



Chapter 3. Using GHC

With any luck, __GLASGOW_HASKELL__ will be undefined in all other implementations that
support C-style pre-processing.

(For reference: the comparable symbols for other systems are: __HUGS__ for Hugs and
__HBC__ for Chalmers.)

NB. This macro is set when pre-processing both Haskell source and C source, including the C
source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__CONCURRENT_HASKELL__:

This symbol is defined when pre-processing Haskell (input) and pre-processing C (GHC
output). Since GHC from verion 4.00 now supports concurrent haskell by default, this symbol is
always defined.

__PARALLEL_HASKELL__:

Only defined when -parallel is in use! This symbol is defined when pre-processing Haskell
(input) and pre-processing C (GHC output).

Options other than the above can be forced through to the C pre-processor with the -opt flags (see
Section 3.14.2).

A small word of warning: -cpp is not friendly to “string gaps”.. In other words, strings such as the
following:

strmod = "\
\ p \
\ "

don’t work with -cpp; /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp and
possibly other cpps) leaves the backslash-space pairs alone and the string gap works as expected.

3.10.2. Options affecting the C compiler (if applicable)

At the moment, quite a few common C-compiler options are passed on quietly to the C compilation
of Haskell-compiler-generated C files. THIS MAY CHANGE. Meanwhile, options so sent are:

-ansi do ANSI C (not K&R)

-pedantic be so

-dgcc-lint (hack) short for “make GCC very paranoid”

If you are compiling with lots of foreign calls, you may need to tell the C compiler about some

50



Chapter 3. Using GHC

#include files. There is no real pretty way to do this, but you can use this hack from the
command-line:

% ghc -c ’-#include <X/Xlib.h>’ Xstuff.lhs

3.10.3. Linking and consistency-checking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-supplied,
and system-supplied (-lm math library, for example).

-l<FOO>:

Link in a library named lib<FOO>.a which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter. Thus: ghc
-lbar *.o is almost certainly wrong, because it will search libbar.a before it has collected
unresolved symbols from the *.o files. ghc *.o -lbar is probably better.

The linker will of course be informed about some GHC-supplied libraries automatically; these
are:

-l equivalent description

-lHSrts,-lHSclib basic runtime libraries

-lHS standard Prelude library

-lHS_cbits C support code for standard Prelude library

-lgmp GNU multi-precision library (for Integers)

-package <name>:

If you are using a Haskell “package” (e.g., the POSIX library), just use the -package posix

option, and the correct code should be linked in. See Section 3.8 for more details.

-L<dir>:

Where to find user-supplied libraries. . . Prepend the directory <dir> to the library directories
path.

-static:

Tell the linker to avoid shared libraries.

51



Chapter 3. Using GHC

-no-link-chk and -link-chk:

By default, immediately after linking an executable, GHC verifies that the pieces that went
into it were compiled with compatible flags; a “consistency check”. (This is to avoid mysterious
failures caused by non-meshing of incompatibly-compiled programs; e.g., if one .o file was
compiled for a parallel machine and the others weren’t.) You may turn off this check with
-no-link-chk. You can turn it (back) on with -link-chk (the default).

-no-hs-main:

In the event you want to include ghc-compiled code as part of another (non-Haskell) program,
the RTS will not be supplying its definition of main() at link-time, you will have to. To signal
that to the driver script when linking, use -no-hs-main.

Notice that since the command-line passed to the linker is rather involved, you probably want to
use the ghc driver script to do the final link of your ‘mixed-language’ application. This is not a
requirement though, just try linking once with -v on to see what options the driver passes
through to the linker.

3.11. Using Concurrent Haskell

GHC (as of version 4.00) supports Concurrent Haskell by default, without requiring a special option
or libraries compiled in a certain way. To get access to the support libraries for Concurrent Haskell
(i.e. Concurrent and friends), use the -package concurrent option.

Three RTS options are provided for modifying the behaviour of the threaded runtime system. See the
descriptions of -C[<us>], -q, and -t<num> in Section 3.12.4.

Concurrent Haskell is described in more detail in Chapter 2 in Haskell Libraries.

3.12. Using Parallel Haskell

[You won’t be able to execute parallel Haskell programs unless PVM3 (Parallel Virtual Machine,
version 3) is installed at your site.]

To compile a Haskell program for parallel execution under PVM, use the -parallel option, both
when compiling and linking. You will probably want to import Parallel into your Haskell
modules.

To run your parallel program, once PVM is going, just invoke it “as normal”. The main extra RTS
option is -N<n>, to say how many PVM “processors” your program to run on. (For more details of
all relevant RTS options, please see Section 3.12.4.)

52



Chapter 3. Using GHC

In truth, running Parallel Haskell programs and getting information out of them (e.g., parallelism
profiles) is a battle with the vagaries of PVM, detailed in the following sections.

3.12.1. Dummy’s guide to using PVM
Before you can run a parallel program under PVM, you must set the required environment variables
(PVM’s idea, not ours); something like, probably in your .cshrc or equivalent:

setenv PVM_ROOT /wherever/you/put/it
setenv PVM_ARCH ‘$PVM_ROOT/lib/pvmgetarch‘
setenv PVM_DPATH $PVM_ROOT/lib/pvmd

Creating and/or controlling your “parallel machine” is a purely-PVM business; nothing specific to
Parallel Haskell.

You use the pvm command to start PVM on your machine. You can then do various things to
control/monitor your “parallel machine;” the most useful being:

Control-D exit pvm, leaving it running

halt kill off this “parallel machine” & exit

add <host> add <host> as a processor

delete <host> delete <host>

reset kill what’s going, but leave PVM up

conf list the current configuration

ps report processes’ status

pstat <pid> status of a particular process

The PVM documentation can tell you much, much more about pvm!

3.12.2. Parallelism profiles

With Parallel Haskell programs, we usually don’t care about the results—only with “how parallel” it
was! We want pretty pictures.

Parallelism profiles (à la hbcpp) can be generated with the -q RTS option. The per-processor
profiling info is dumped into files named <full-path><program>.gr. These are then munged
into a PostScript picture, which you can then display. For example, to run your program a.out on 8
processors, then view the parallelism profile, do:

% ./a.out +RTS -N8 -q
% grs2gr *.???.gr > temp.gr # combine the 8 .gr files into one

53



Chapter 3. Using GHC

% gr2ps -O temp.gr # cvt to .ps; output in temp.ps
% ghostview -seascape temp.ps # look at it!

The scripts for processing the parallelism profiles are distributed in ghc/utils/parallel/.

3.12.3. Other useful info about running parallel programs
The “garbage-collection statistics” RTS options can be useful for seeing what parallel programs are
doing. If you do either +RTS -Sstderr or +RTS -sstderr, then you’ll get mutator,
garbage-collection, etc., times on standard error. The standard error of all PE’s other than the ‘main
thread’ appears in /tmp/pvml.nnn, courtesy of PVM.

Whether doing +RTS -Sstderr or not, a handy way to watch what’s happening overall is: tail -f
/tmp/pvml.nnn.

3.12.4. RTS options for Concurrent/Parallel Haskell

Besides the usual runtime system (RTS) options (Section 3.13), there are a few options particularly
for concurrent/parallel execution.

-N<N>:

(PARALLEL ONLY) Use <N> PVM processors to run this program; the default is 2.

-C[<us>]:

Sets the context switch interval to <s> seconds. A context switch will occur at the next heap
block allocation after the timer expires (a heap block allocation occurs every 4k of allocation).
With -C0 or -C, context switches will occur as often as possible (at every heap block
allocation). By default, context switches occur every 20ms milliseconds. Note that GHC’s
internal timer ticks every 20ms, and the context switch timer is always a multiple of this timer,
so 20ms is the maximum granularity available for timed context switches.

-q[v]:

(PARALLEL ONLY) Produce a quasi-parallel profile of thread activity, in the file
<program>.qp. In the style of hbcpp, this profile records the movement of threads between
the green (runnable) and red (blocked) queues. If you specify the verbose suboption (-qv), the
green queue is split into green (for the currently running thread only) and amber (for other
runnable threads). We do not recommend that you use the verbose suboption if you are planning
to use the hbcpp profiling tools or if you are context switching at every heap check (with -C).

54



Chapter 3. Using GHC

-t<num>:

(PARALLEL ONLY) Limit the number of concurrent threads per processor to <num>. The
default is 32. Each thread requires slightly over 1K words in the heap for thread state and stack
objects. (For 32-bit machines, this translates to 4K bytes, and for 64-bit machines, 8K bytes.)

-d:

(PARALLEL ONLY) Turn on debugging. It pops up one xterm (or GDB, or something. . . ) per
PVM processor. We use the standard debugger script that comes with PVM3, but we
sometimes meddle with the debugger2 script. We include ours in the GHC distribution, in
ghc/utils/pvm/.

-e<num>:

(PARALLEL ONLY) Limit the number of pending sparks per processor to <num>. The default
is 100. A larger number may be appropriate if your program generates large amounts of
parallelism initially.

-Q<num>:

(PARALLEL ONLY) Set the size of packets transmitted between processors to <num>. The
default is 1024 words. A larger number may be appropriate if your machine has a high
communication cost relative to computation speed.

3.13. Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with a
non-trivial runtime system (RTS), which handles storage management, profiling, etc.

You have some control over the behaviour of the RTS, by giving special command-line arguments to
your program.

When your Haskell program starts up, its RTS extracts command-line arguments bracketed between
+RTS and -RTS as its own. For example:

% ./a.out -f +RTS -p -S -RTS -h foo bar

The RTS will snaffle -p -S for itself, and the remaining arguments -f -h foo bar will be handed
to your program if/when it calls System.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command line, as
in this example:

% hls -ltr /usr/etc +RTS -A5m

55



Chapter 3. Using GHC

If you absolutely positively want all the rest of the options in a command line to go to the program
(and not the RTS), use a -RTS.

As always, for RTS options that take <size>s: If the last character of size is a K or k, multiply by
1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in the
counters is your fault!)

Giving a +RTS -f option will print out the RTS options actually available in your program (which
vary, depending on how you compiled).

NOTE: to send RTS options to the compiler itself, you need to prefix the option with -optCrts, eg.
to increase the maximum heap size for a compilation to 128M, you would add -optCrts-M128m to
the command line. The compiler understands some options directly without needing -optCrts:
these are -H and -K.

3.13.1. RTS options to control the garbage-collector

There are several options to give you precise control over garbage collection. Hopefully, you won’t
need any of these in normal operation, but there are several things that can be tweaked for maximum
performance.

-A<size>:

[Default: 256k] Set the allocation area size used by the garbage collector. The allocation area
(actually generation 0 step 0) is fixed and is never resized (unless you use -H, below).

Increasing the allocation area size may or may not give better performance (a bigger allocation
area means worse cache behaviour but fewer garbage collections and less promotion).

With only 1 generation (-G1) the -A option specifies the minimum allocation area, since the
actual size of the allocation area will be resized according to the amount of data in the heap (see
-F, below).

-F<factor>:

[Default: 2] This option controls the amount of memory reserved for the older generations (and
in the case of a two space collector the size of the allocation area) as a factor of the amount of
live data. For example, if there was 2M of live data in the oldest generation when we last
collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to use
-H<size> than to increase -F<factor>.

The -F setting will be automatically reduced by the garbage collector when the maximum heap
size (the -M<size> setting) is approaching.

56



Chapter 3. Using GHC

-G<generations>:

[Default: 2] Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything larger
than about 4 is probably not a good idea unless your program runs for a long time, because the
oldest generation will never get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A option (see above) specifies the minimum allocation area
size, since the allocation area will grow with the amount of live data in the heap. In a
multi-generational collector the allocation area is a fixed size (unless you use the -H option, see
below).

-H<size>:

[Default: 0] This option provides a "suggested heap size" for the garbage collector. The garbage
collector will use about this much memory until the program residency grows and the heap size
needs to be expanded to retain reasonable performance.

By default, the heap will start small, and grow and shrink as necessary. This can be bad for
performance, so if you have plenty of memory it’s worthwhile supplying a big -H<size>. For
improving GC performance, using -H<size> is usually a better bet than -A<size>.

-k<size>:

[Default: 1k] Set the initial stack size for new threads. Thread stacks (including the main
thread’s stack) live on the heap, and grow as required. The default value is good for concurrent
applications with lots of small threads; if your program doesn’t fit this model then increasing
this option may help performance.

The main thread is normally started with a slightly larger heap to cut down on unnecessary
stack growth while the program is starting up.

-K<size>:

[Default: 1M] Set the maximum stack size for an individual thread to <size> bytes. This
option is there purely to stop the program eating up all the available memory in the machine if it
gets into an infinite loop.

-m<n>:

Minimum % <n> of heap which must be available for allocation. The default is 3%.

57



Chapter 3. Using GHC

-M<size>:

[Default: 64M] Set the maximum heap size to <size> bytes. The heap normally grows and
shrinks according to the memory requirements of the program. The only reason for having this
option is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating system.

-s<file> or -S<file>:

Write modest (-s) or verbose (-S) garbage-collector statistics into file <file>. The default
<file> is <program>@.stat. The <file> stderr is treated specially, with the output really
being sent to stderr.

This option is useful for watching how the storage manager adjusts the heap size based on the
current amount of live data.

3.13.2. RTS options for profiling and Concurrent/Parallel Haskell
The RTS options related to profiling are described in Section 4.5; and those for concurrent/parallel
stuff, in Section 3.12.4.

3.13.3. RTS options for hackers, debuggers, and over-interested
souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”, or
(c) because you feel like it. Not recommended for everyday use!

-B:

Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul Callaghan,
writes: “Some people here use it for a variety of purposes—honestly!—e.g., confirmation that
the code/machine is doing something, infinite loop detection, gauging cost of recently added
code. Certain people can even tell what stage [the program] is in by the beep pattern. But the
major use is for annoying others in the same office. . . ”

-r<file>:

Produce “ticky-ticky” statistics at the end of the program run. The <file> business works just
like on the -S RTS option (above).

58



Chapter 3. Using GHC

“Ticky-ticky” statistics are counts of various program actions (updates, enters, etc.) The
program must have been compiled using -ticky (a.k.a. “ticky-ticky profiling”), and, for it to
be really useful, linked with suitable system libraries. Not a trivial undertaking: consult the
installation guide on how to set things up for easy “ticky-ticky” profiling. For more information,
see Section 4.7.

-D<num>:

An RTS debugging flag; varying quantities of output depending on which bits are set in <num>.
Only works if the RTS was compiled with the DEBUG option.

-Z:

Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly good
reason to turn it off, except to ensure the accuracy of certain data collected regarding thunk
entry counts.)

3.13.4. “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over the RTS settings for any given program, by
compiling in a “hook” that is called by the run-time system. The RTS contains stub definitions for all
these hooks, but by writing your own version and linking it on the GHC command line, you can
override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the program is
built dynamically.

The function defaultsHook lets you change various RTS options. The commonest use for this is to
give your program a default heap and/or stack size that is greater than the default. For example, to set
-H8m -K1m:

#include "Rts.h"
#include "RtsFlags.h"
void defaultsHook (void) {

RTSflags.GcFlags.stksSize = 1000002 / sizeof(W_);
RTSflags.GcFlags.heapSize = 8000002 / sizeof(W_);

}

Don’t use powers of two for heap/stack sizes: these are more likely to interact badly with
direct-mapped caches. The full set of flags is defined in ghc/rts/RtsFlags.h the the GHC source
tree.

You can also change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:

59



Chapter 3. Using GHC

void ErrorHdrHook (FILE *):

What’s printed out before the message from error.

void OutOfHeapHook (unsigned long, unsigned long):

The heap-overflow message.

void StackOverflowHook (long int):

The stack-overflow message.

void MallocFailHook (long int):

The message printed if malloc fails.

void PatErrorHdrHook (FILE *):

The message printed if a pattern-match fails (the failures that were not handled by the Haskell
programmer).

void PreTraceHook (FILE *):

What’s printed out before a trace message.

void PostTraceHook (FILE *):

What’s printed out after a trace message.

For example, here is the “hooks” code used by GHC itself:

#include <stdio.h>
#define W_ unsigned long int
#define I_ long int

void
ErrorHdrHook (FILE *where)
{

fprintf(where, "\n"); /* no "Fail: " */
}

void
OutOfHeapHook (W_ request_size, W_ heap_size) /* both sizes in bytes */
{

fprintf(stderr, "GHC’s heap exhausted;\nwhile trying to
allocate %lu bytes in a %lu-byte heap;\nuse the ‘-H<size>’
option to increase the total heap size.\n",
request_size,
heap_size);

}

void
StackOverflowHook (I_ stack_size) /* in bytes */

60



Chapter 3. Using GHC

{
fprintf(stderr, "GHC stack-space overflow: current size

%ld bytes.\nUse the ‘-K<size>’ option to increase it.\n",
stack_size);

}

void
PatErrorHdrHook (FILE *where)
{

fprintf(where, "\n*** Pattern-matching error within GHC!\n\n
This is a compiler bug; please report it to
glasgow-haskell-bugs@haskell.org.\n\nFail: ");

}

void
PreTraceHook (FILE *where)
{

fprintf(where, "\n"); /* not "Trace On" */
}

void
PostTraceHook (FILE *where)
{

fprintf(where, "\n"); /* not "Trace Off" */
}

3.14. Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

3.14.1. Replacing the program for one or more phases.
You may specify that a different program be used for one of the phases of the compilation system, in
place of whatever the driver ghc has wired into it. For example, you might want to try a different
assembler. The -pgm<phase-code><program-name> option to ghc will cause it to use
<program-name> for phase <phase-code>, where the codes to indicate the phases are:

code phase

L literate pre-processor

P C pre-processor (if -cpp only)

C Haskell compiler

61



Chapter 3. Using GHC

c C compiler

a assembler

l linker

dep Makefile dependency generator

3.14.2. Forcing options to a particular phase.

The preceding sections describe driver options that are mostly applicable to one particular phase.
You may also force a specific option <option> to be passed to a particular phase <phase-code>
by feeding the driver the option -opt<phase-code><option>. The codes to indicate the phases
are the same as in the previous section.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver
-opta-Ewurble (the dash before the E is required).

Besides getting options to the Haskell compiler with -optC<blah>, you can get options through to
its runtime system with -optCrts<blah>.

So, for example: when I want to use my normal driver but with my profiled compiler binary, I use
this script:

#! /bin/sh
exec /local/grasp_tmp3/simonpj/ghc-BUILDS/working-alpha/ghc/driver/ghc \

-pgmC/local/grasp_tmp3/simonpj/ghc-BUILDS/working-hsc-prof/hsc \
-optCrts-i0.5 \
-optCrts-PT \
"$@"

3.14.3. Dumping out compiler intermediate structures

-noC:

Don’t bother generating C output or an interface file. Usually used in conjunction with one or
more of the -ddump-* options; for example: ghc -noC -ddump-simpl Foo.hs

-hi:

Do generate an interface file. This would normally be used in conjunction with -noC, which
turns off interface generation; thus: -noC -hi.

62



Chapter 3. Using GHC

-dshow-passes:

Prints a message to stderr as each pass starts. Gives a warm but undoubtedly misleading feeling
that GHC is telling you what’s happening.

-ddump-<pass>:

Make a debugging dump after pass <pass> (may be common enough to need a short form. . . ).
You can get all of these at once (lots of output) by using -ddump-all, or most of them with
-ddump-most. Some of the most useful ones are:

-ddump-parsed:

parser output

-ddump-rn:

renamer output

-ddump-minimal-imports:

Dump to the file "M.imports" (where M is the module being compiled) a "minimal" set of
import declarations. You can safely replace all the import declarations in "M.hs" with those
found in "M.imports". Why would you want to do that? Because the "minimal" imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can be
quite painful to maintain this property by hand, so this flag is intended to reduce the labour.

-ddump-hi-diffs:

Dump to stdout a summary of the differences between the existing interface file (if any) for
this module, and the new one.

-ddump-tc:

typechecker output

-ddump-types:

Dump a type signature for each value defined at the top level of the module. The list is
sorted alphabetically. Using -dppr-debug dumps a type signature for all the imported
and system-defined things as well; useful for debugging the compiler.

-ddump-deriv:

derived instances

-ddump-ds:

desugarer output

63



Chapter 3. Using GHC

-ddump-spec:

output of specialisation pass

-ddump-rules:

dumps all rewrite rules (including those generated by the specialisation pass)

-ddump-simpl:

simplifer output (Core-to-Core passes)

-ddump-usagesp:

UsageSP inference pre-inf and output

-ddump-cpranal:

CPR analyser output

-ddump-stranal:

strictness analyser output

-ddump-workwrap:

worker/wrapper split output

-ddump-occur-anal:

‘occurrence analysis’ output

-ddump-stg:

output of STG-to-STG passes

-ddump-absC:

unflattened Abstract C

-ddump-flatC:

flattened Abstract C

-ddump-realC:

same as what goes to the C compiler

-ddump-asm:

assembly language from the native-code generator

64



Chapter 3. Using GHC

-dverbose-simpl and -dverbose-stg:

Show the output of the intermediate Core-to-Core and STG-to-STG passes, respectively. (Lots
of output!) So: when we’re really desperate:

% ghc -noC -O -ddump-simpl -dverbose-simpl -dcore-lint Foo.hs

-ddump-simpl-iterations:

Show the output of each iteration of the simplifier (each run of the simplifier has a maximum
number of iterations, normally 4). Used when even -dverbose-simpl doesn’t cut it.

-dppr-{user,debug}:

Debugging output is in one of several “styles.” Take the printing of types, for example. In the
“user” style, the compiler’s internal ideas about types are presented in Haskell source-level
syntax, insofar as possible. In the “debug” style (which is the default for debugging output), the
types are printed in with explicit foralls, and variables have their unique-id attached (so you can
check for things that look the same but aren’t).

-ddump-simpl-stats:

Dump statistics about how many of each kind of transformation too place. If you add
-dppr-debug you get more detailed information.

-ddump-raw-asm:

Dump out the assembly-language stuff, before the “mangler” gets it.

-ddump-rn-trace:

Make the renamer be *real* chatty about what it is upto.

-dshow-rn-stats:

Print out summary of what kind of information the renamer had to bring in.

-dshow-unused-imports:

Have the renamer report what imports does not contribute.

3.14.4. Checking for consistency

-dcore-lint:

Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks GHC’s
sanity, not yours.)

65



Chapter 3. Using GHC

-dstg-lint:

Ditto for STG level.

-dusagesp-lint:

Turn on checks around UsageSP inference (-fusagesp). This verifies various simple
properties of the results of the inference, and also warns if any identifier with a used-once
annotation before the inference has a used-many annotation afterwards; this could indicate a
non-worksafe transformation is being applied.

3.14.5. How to read Core syntax (from some -ddump-* flags)

Let’s do this by commenting an example. It’s from doing -ddump-ds on this code:

skip2 m = m : skip2 (m+2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are
identified by their “Uniques.” These are of the form ‘letter’ plus ‘number’ (both loosely interpreted).
The ‘letter’ gives some idea of where the Unique came from; e.g., _ means “built-in type variable”; t
means “from the typechecker”; s means “from the simplifier”; and so on. The ‘number’ is printed
fairly compactly in a ‘base-62’ format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usually printed out when debugging, in some form or
another. So here we go. . .

Desugared:
Main.skip2{-r1L6-} :: _forall_ a$_4 =>{{Num a$_4}} -> a$_4 -> [a$_4]

-# ‘r1L6’ is the Unique for Main.skip2;
-# ‘_4’ is the Unique for the type-variable (template) ‘a’
-# ‘{{Num a$_4}}’ is a dictionary argument

_NI_

-# ‘_NI_’ means "no (pragmatic) information" yet; it will later
-# evolve into the GHC_PRAGMA info that goes into interface files.

Main.skip2{-r1L6-} =
/\ _4 -> \ d.Num.t4Gt ->

let {
{- CoRec -}
+.t4Hg :: _4 -> _4 -> _4
_NI_
+.t4Hg = (+{-r3JH-} _4) d.Num.t4Gt

fromInt.t4GS :: Int{-2i-} -> _4

66



Chapter 3. Using GHC

_NI_
fromInt.t4GS = (fromInt{-r3JX-} _4) d.Num.t4Gt

-# The ‘+’ class method (Unique: r3JH) selects the addition code
-# from a ‘Num’ dictionary (now an explicit lamba’d argument).
-# Because Core is 2nd-order lambda-calculus, type applications
-# and lambdas (/\) are explicit. So ‘+’ is first applied to a
-# type (‘_4’), then to a dictionary, yielding the actual addition
-# function that we will use subsequently...

-# We play the exact same game with the (non-standard) class method
-# ‘fromInt’. Unsurprisingly, the type ‘Int’ is wired into the
-# compiler.

lit.t4Hb :: _4
_NI_
lit.t4Hb =

let {
ds.d4Qz :: Int{-2i-}
_NI_
ds.d4Qz = I#! 2#

} in fromInt.t4GS ds.d4Qz

-# ‘I# 2#’ is just the literal Int ‘2’; it reflects the fact that
-# GHC defines ‘data Int = I# Int#’, where Int# is the primitive
-# unboxed type. (see relevant info about unboxed types elsewhere...)

-# The ‘!’ after ‘I#’ indicates that this is a *saturated*
-# application of the ‘I#’ data constructor (i.e., not partially
-# applied).

skip2.t3Ja :: _4 -> [_4]
_NI_
skip2.t3Ja =

\ m.r1H4 ->
let { ds.d4QQ :: [_4]

_NI_
ds.d4QQ =

let {
ds.d4QY :: _4
_NI_
ds.d4QY = +.t4Hg m.r1H4 lit.t4Hb

} in skip2.t3Ja ds.d4QY
} in
:! _4 m.r1H4 ds.d4QQ

{- end CoRec -}
} in skip2.t3Ja

67



Chapter 3. Using GHC

(“It’s just a simple functional language” is an unregisterised trademark of Peyton Jones Enterprises,
plc.)

3.14.6. Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line options it
requires quite tight. For instance, if a (Glasgow) Haskell source file uses casms, the C back-end
often needs to be told about which header files to include. Rather than maintaining the list of files the
source depends on in a Makefile (using the -#include command-line option), it is possible to do
this directly in the source file using the OPTIONS pragma :

{-# OPTIONS -#include "foo.h" #-}
module X where

...

OPTIONS pragmas are only looked for at the top of your source files, upto the first
(non-literate,non-empty) line not containing OPTIONS. Multiple OPTIONS pragmas are recognised.
Note that your command shell does not get to the source file options, they are just included literally
in the array of command-line arguments the compiler driver maintains internally, so you’ll be
desperately disappointed if you try to glob etc. inside OPTIONS.

NOTE: the contents of OPTIONS are prepended to the command-line options, so you do have the
ability to override OPTIONS settings via the command line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some
circumstances, the OPTIONS pragma is the Right Thing. (If you use -keep-hc-file-too and have
OPTION flags in your module, the OPTIONS will get put into the generated .hc file).

3.14.7. Unregisterised compilation
The term "unregisterised" really means "compile via vanilla C", disabling some of the
platform-specific tricks that GHC normally uses to make programs go faster. When compiling
unregisterised, GHC simply generates a C file which is compiled via gcc.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the
prerequisite tools to gcc, as, and ld and nothing more, and furthermore the amount of
platform-specific code that needs to be written in order to get unregisterised compilation going is
usually fairly small.

-unreg:

Compile via vanilla ANSI C only, turning off platform-specific optimisations. NOTE: in order
to use -unreg, you need to have a set of libraries (including the RTS) built for unregisterised

68



Chapter 3. Using GHC

compilation. This amounts to building GHC with way "u" enabled.

69



Chapter 4. Profiling
Glasgow Haskell comes with a time and space profiling system. Its purpose is to help you improve
your understanding of your program’s execution behaviour, so you can improve it.

Any comments, suggestions and/or improvements you have are welcome. Recommended “profiling
tricks” would be especially cool!

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the -prof option, and probably one of the -auto
or -auto-all options. These options are described in more detail in Section 4.4

2. Run your program with one of the profiling options -p or -h. This generates a file of profiling
information.

3. Examine the generated profiling information, using one of GHC’s profiling tools. The tool to
use will depend on the kind of profiling information generated.

4.1. Cost centres and cost-centre stacks
GHC’s profiling system assigns costs to cost centres. A cost is simply the time or space required to
evaluate an expression. Cost centres are program annotations around expressions; all costs incurred
by the annotated expression are assigned to the enclosing cost centre. Furthermore, GHC will
remember the stack of enclosing cost centres for any given expression at run-time and generate a
call-graph of cost attributions.

Let’s take a look at an example:

main = print (nfib 25)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as follows:

$ ghc -prof -auto-all -o Main Main.hs
$ ./Main +RTS -p
121393
$

When a GHC-compiled program is run with the -p RTS option, it generates a file called
<prog>.prof. In this case, the file will contain something like this:

Fri May 12 14:06 2000 Time and Allocation Profiling Report (Fi-
nal)

Main +RTS -p -RTS

total time = 0.14 secs (7 ticks @ 20 ms)

70



Chapter 4. Profiling

total alloc = 8,741,204 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

nfib Main 100.0 100.0

individual inherited
COST CENTRE MODULE scc %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0
CAF Main 6 0.0 0.0 100.0 100.0
main Main 1 0.0 0.0 100.0 100.0
nfib Main 242785 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total memory
allocation measured during the run of the program (note that the total memory allocation figure isn’t
the same as the amount of live memory needed by the program at any one time; the latter can be
determined using heap profiling, which we will describe shortly).

The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namely nfib, and it
was responsible for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is roughly
a call-graph profile of the program. In the example above, it is clear that the costly call to nfib came
from main.

The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone, and
“inherited”, which includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 25 + g 25)
f n = nfib n
g n = nfib (n ‘div‘ 2)
nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

COST CENTRE MODULE scc %time %alloc %time %alloc

MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 0 0.0 0.0 0.0 0.0
CAF PrelHandle 3 0.0 0.0 0.0 0.0
CAF PrelAddr 1 0.0 0.0 0.0 0.0

71



Chapter 4. Profiling

CAF Main 9 0.0 0.0 100.0 100.0
main Main 1 0.0 0.0 100.0 100.0
g Main 1 0.0 0.0 0.0 0.2
nfib Main 465 0.0 0.2 0.0 0.2

f Main 1 0.0 0.0 100.0 99.8
nfib Main 242785 100.0 99.8 100.0 99.8

Now although we had two calls to nfib in the program, it is immediately clear that it was the call
from f which took all the time.

The actual meaning of the various columns in the output is:

entries

The number of times this particular point in the call graph was entered.

individual %time

The percentage of the total run time of the program spent at this point in the call graph.

individual %alloc

The percentage of the total memory allocations (excluding profiling overheads) of the program
made by this call.

inherited %time

The percentage of the total run time of the program spent below this point in the call graph.

inherited %alloc

The percentage of the total memory allocations (excluding profiling overheads) of the program
made by this call and all of its sub-calls.

In addition you can use the -P RTS option to get the following additional information:

ticks

The raw number of time “ticks” which were attributed to this cost-centre; from this, we get the
%time figure mentioned above.

bytes

Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number
from which we get the %alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs
attributed? Well, although GHC does keep information about which groups of functions called each
other recursively, this information isn’t displayed in the basic time and allocation profile, instead the
call-graph is flattened into a tree. The XML profiling tool (described in Section 4.3) will be able to
display real loops in the call-graph.

72



Chapter 4. Profiling

4.1.1. Inserting cost centres by hand
Cost centres are just program annotations. When you say -auto-all to the compiler, it
automatically inserts a cost centre annotation around every top-level function in your program, but
you are entirely free to add the cost centre annotations yourself.

The syntax of a cost centre annotation is

_scc_ "name" <expression>

where "name" is an aribrary string, that will become the name of your cost centre as it appears in the
profiling output, and <expression> is any Haskell expression. An _scc_ annotation extends as far
to the right as possible when parsing.

4.1.2. Rules for attributing costs
The cost of evaluating any expression in your program is attributed to a cost-centre stack using the
following rules:

• If the expression is part of the one-off costs of evaluating the enclosing top-level definition, then
costs are attributed to the stack of lexically enclosing _scc_ annotations on top of the special CAF
cost-centre.

• Otherwise, costs are attributed to the stack of lexically-enclosing _scc_ annotations, appended to
the cost-centre stack in effect at the call site of the current top-level definition1. Notice that this is
a recursive definition.

What do we mean by one-off costs? Well, Haskell is a lazy language, and certain expressions are
only ever evaluated once. For example, if we write:

x = nfib 25

then x will only be evaluated once (if at all), and subsequent demands for x will immediately get to
see the cached result. The definition x is called a CAF (Constant Applicative Form), because it has
no arguments.

For the purposes of profiling, we say that the expression nfib 25 belongs to the one-off costs of
evaluating x.

Since one-off costs aren’t strictly speaking part of the call-graph of the program, they are attributed
to a special top-level cost centre, CAF. There may be one CAF cost centre for each module (the
default), or one for each top-level definition with any one-off costs (this behaviour can be selected by
giving GHC the -caf-all flag).

If you think you have a weird profile, or the call-graph doesn’t look like you expect it to, feel free to
send it (and your program) to us at <glasgow-haskell-bugs@haskell.org>.

73



Chapter 4. Profiling

4.2. Profiling memory usage
In addition to profiling the time and allocation behaviour of your program, you can also generate a
graph of its memory usage over time. This is useful for detecting the causes of space leaks, when
your program holds on to more memory at run-time that it needs to. Space leaks lead to longer
run-times due to heavy garbage collector ativity, and may even cause the program to run out of
memory altogether.

To generate a heap profile from your program, compile it as before, but this time run it with the -h
runtime option. This generates a file <prog>.hp file, which you then process with hp2ps to produce
a Postscript file <prog>.ps. The Postscript file can be viewed with something like ghostview, or
printed out on a Postscript-compatible printer.

For the RTS options that control the kind of heap profile generated, see Section 4.5. Details on the
usage of the hp2ps program are given in Section 4.6

4.3. Graphical time/allocation profile
You can view the time and allocation profiling graph of your program graphically, using ghcprof.
This is a new tool with GHC 4.08, and will eventually be the de-facto standard way of viewing GHC
profiles.

To run ghcprof, you need daVinci installed, which can be obtained from The Graph Visualisation
Tool daVinci (http://www.tzi.de/~davinci/). Install one of the binary distributions2, and set your
DAVINCIHOME environment variable to point to the installation directory.

ghcprof uses an XML-based profiling log format, and you therefore need to run your program with a
different option: -px. The file generated is still called <prog>.prof. To see the profile, run ghcprof
like this:

$ ghcprof <prog>.prof

which should pop up a window showing the call-graph of your program in glorious detail. More
information on using ghcprof can be found at The Cost-Centre Stack Profiling Tool for GHC
(http://www.dcs.warwick.ac.uk/people/academic/Stephen.Jarvis/profiler/index.html).

4.4. Compiler options for profiling
To make use of the cost centre profiling system all modules must be compiled and linked with the
-prof option. Any _scc_ constructs you’ve put in your source will spring to life.

Without a -prof option, your _scc_s are ignored; so you can compiled _scc_-laden code without
changing it.

74



Chapter 4. Profiling

There are a few other profiling-related compilation options. Use them in addition to -prof. These
do not have to be used consistently for all modules in a program.

-auto:

GHC will automatically add _scc_ constructs for all top-level, exported functions.

-auto-all:

All top-level functions, exported or not, will be automatically _scc_’d.

-caf-all:

The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre. With
this option, all CAFs get their own cost-centre. An “if all else fails” option. . .

-ignore-scc:

Ignore any _scc_ constructs, so a module which already has _scc_s can be compiled for
profiling with the annotations ignored.

4.5. Runtime options for profiling
It isn’t enough to compile your program for profiling with -prof!

When you run your profiled program, you must tell the runtime system (RTS) what you want to
profile (e.g., time and/or space), and how you wish the collected data to be reported. You also may
wish to set the sampling interval used in time profiling.

Executive summary: ./a.out +RTS -pT produces a time profile in a.out.prof; ./a.out +RTS -hC
produces space-profiling info which can be mangled by hp2ps and viewed with ghostview (or
equivalent).

Profiling runtime flags are passed to your program between the usual +RTS and -RTS options.

-p or -P:

The -p option produces a standard time profile report. It is written into the file
<program>.prof.

The -P option produces a more detailed report containing the actual time and allocation data as
well. (Not used much.)

-px:

The -px option generates profiling information in the XML format understood by our new
profiling tool, see Section 4.3.

75



Chapter 4. Profiling

-i<secs>:

Set the profiling (sampling) interval to <secs> seconds (the default is 1 second). Fractions are
allowed: for example -i0.2 will get 5 samples per second. This only affects heap profiling;
time profiles are always sampled on a 1/50 second frequency.

-h<break-down>:

Produce a detailed heap profile of the heap occupied by live closures. The profile is written to
the file <program>.hp from which a PostScript graph can be produced using hp2ps (see
Section 4.6).

The heap space profile may be broken down by different criteria:

-hC:

cost centre which produced the closure (the default).

-hM:

cost centre module which produced the closure.

-hD:

closure description—a string describing the closure.

-hY:

closure type—a string describing the closure’s type.

-hx:

The -hx option generates heap profiling information in the XML format understood by our new
profiling tool (NOTE: heap profiling with the new tool is not yet working! Use hp2ps-style
heap profiling for the time being).

4.6. hp2ps–heap profile to PostScript
Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps converts a heap profile as produced by the -h<break-down> runtime option
into a PostScript graph of the heap profile. By convention, the file to be processed by hp2ps has a
.hp extension. The PostScript output is written to <file>@.ps. If <file> is omitted entirely, then
the program behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally
developed by Dave Wakeling as part of the HBC/LML heap profiler.

76



Chapter 4. Profiling

The flags are:

-d

In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier. The
default sort ordering is for the bands with the largest area to be stacked on top of the smaller
ones. The -d option causes rougher bands (those representing series of values with the largest
standard deviations) to be stacked on top of smoother ones.

-b

Normally, hp2ps puts the title of the graph in a small box at the top of the page. However, if the
JOB string is too long to fit in a small box (more than 35 characters), then hp2ps will choose to
use a big box instead. The -b option forces hp2ps to use a big box.

-e<float>[in|mm|pt]

Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually, the
PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches high, and
hp2ps arranges for this area to be approximately centred on a sheet of a4 paper. This format is
convenient of studying the graph in detail, but it is unsuitable for inclusion in LaTeX
documents. The -e option causes the graph to be drawn in portrait mode, with float specifying
the width in inches, millimetres or points (the default). The resulting PostScript file conforms to
the Encapsulated PostScript (EPS) convention, and it can be included in a LaTeX document
using Rokicki’s dvi-to-PostScript converter dvips.

-g

Create output suitable for the gs PostScript previewer (or similar). In this case the graph is
printed in portrait mode without scaling. The output is unsuitable for a laser printer.

-l

Normally a profile is limited to 20 bands with additional identifiers being grouped into an
OTHER band. The -l flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with many
bands.

-m<int>

Normally a profile is limited to 20 bands with additional identifiers being grouped into an
OTHER band. The -m flag specifies an alternative band limit (the maximum is 20).

-m0 requests the band limit to be removed. As many bands as necessary are produced. However
no key is produced as it won’t fit! It is useful for displaying creation time profiles with many
bands.

77



Chapter 4. Profiling

-p

Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series of graphs
for use in a presentation, it is often useful to draw a new graph using the same scale, shading
and ordering as a previous one. The -p flag causes the graph to be drawn using the parameters
determined by a previous run of hp2ps on file. These are extracted from file@.aux.

-s

Use a small box for the title.

-t<float>

Normally trace elements which sum to a total of less than 1% of the profile are removed from
the profile. The -t option allows this percentage to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring that all the data will be
displayed.

-c

Generate colour output.

-y

Ignore marks.

-?

Print out usage information.

4.7. Using “ticky-ticky” profiling (for implementors)
(ToDo: document properly.)

It is possible to compile Glasgow Haskell programs so that they will count lots and lots of interesting
things, e.g., number of updates, number of data constructors entered, etc., etc. We call this
“ticky-ticky” profiling, because that’s the sound a Sun4 makes when it is running up all those
counters (slowly).

Ticky-ticky profiling is mainly intended for implementors; it is quite separate from the main
“cost-centre” profiling system, intended for all users everywhere.

To be able to use ticky-ticky profiling, you will need to have built appropriate libraries and things
when you made the system. See “Customising what libraries to build,” in the installation guide.

To get your compiled program to spit out the ticky-ticky numbers, use a -r RTS option. See Section
3.13.

78



Chapter 4. Profiling

Compiling your program with the -ticky switch yields an executable that performs these counts.
Here is a sample ticky-ticky statistics file, generated by the invocation foo +RTS -rfoo.ticky.

foo +RTS -rfoo.ticky

ALLOCATIONS: 3964631 (11330900 words total: 3999476 ad-
min, 6098829 goods, 1232595 slop)

to-
tal words: 2 3 4 5 6+

69647 ( 1.8%) function val-
ues 50.0 50.0 0.0 0.0 0.0
2382937 ( 60.1%) thunks 0.0 83.9 16.1 0.0 0.0
1477218 ( 37.3%) data val-
ues 66.8 33.2 0.0 0.0 0.0

0 ( 0.0%) big tuples
2 ( 0.0%) black holes 0.0 100.0 0.0 0.0 0.0
0 ( 0.0%) prim things

34825 ( 0.9%) partial applica-
tions 0.0 0.0 0.0 100.0 0.0

2 ( 0.0%) thread state ob-
jects 0.0 0.0 0.0 0.0 100.0

Total storage-manager allocations: 3647137 (11882004 words)
[551104 words lost to speculative heap-checks]

STACK USAGE:

ENTERS: 9400092 of which 2005772 (21.3%) direct to the entry code
[the rest indirected via Node’s info ptr]

1860318 ( 19.8%) thunks
3733184 ( 39.7%) data values
3149544 ( 33.5%) function values

[of which 1999880 (63.5%) bypassed arg-satisfaction chk]
348140 ( 3.7%) partial applications
308906 ( 3.3%) normal indirections

0 ( 0.0%) permanent indirections

RETURNS: 5870443
2137257 ( 36.4%) from entering a new constructor

[the rest from entering an existing constructor]
2349219 ( 40.0%) vectored [the rest unvectored]

RET_NEW: 2137257: 32.5% 46.2% 21.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_OLD: 3733184: 2.8% 67.9% 29.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_UNBOXED_TUP: 2: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

RET_VEC_RETURN : 2349219: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

79



Chapter 4. Profiling

UPDATE FRAMES: 2241725 (0 omitted from thunks)
SEQ FRAMES: 1
CATCH FRAMES: 1
UPDATES: 2241725

0 ( 0.0%) data values
34827 ( 1.6%) partial applications

[2 in place, 34825 allocated new space]
2206898 ( 98.4%) updates to existing heap objects (46 by squeezing)
UPD_CON_IN_NEW: 0: 0 0 0 0 0 0 0 0 0
UPD_PAP_IN_NEW: 34825: 0 0 0 34825 0 0 0 0 0

NEW GEN UPDATES: 2274700 ( 99.9%)

OLD GEN UPDATES: 1852 ( 0.1%)

Total bytes copied during GC: 190096

**************************************************
3647137 ALLOC_HEAP_ctr
11882004 ALLOC_HEAP_tot

69647 ALLOC_FUN_ctr
69647 ALLOC_FUN_adm
69644 ALLOC_FUN_gds
34819 ALLOC_FUN_slp
34831 ALLOC_FUN_hst_0
34816 ALLOC_FUN_hst_1

0 ALLOC_FUN_hst_2
0 ALLOC_FUN_hst_3
0 ALLOC_FUN_hst_4

2382937 ALLOC_UP_THK_ctr
0 ALLOC_SE_THK_ctr

308906 ENT_IND_ctr
0 E!NT_PERM_IND_ctr requires +RTS -Z

[... lots more info omitted ...]
0 GC_SEL_ABANDONED_ctr
0 GC_SEL_MINOR_ctr
0 GC_SEL_MAJOR_ctr
0 GC_FAILED_PROMOTION_ctr

47524 GC_WORDS_COPIED_ctr

The formatting of the information above the row of asterisks is subject to change, but hopefully
provides a useful human-readable summary. Below the asterisks all counters maintained by the
ticky-ticky system are dumped, in a format intended to be machine-readable: zero or more spaces, an
integer, a space, the counter name, and a newline.

In fact, not all counters are necessarily dumped; compile- or run-time flags can render certain
counters invalid. In this case, either the counter will simply not appear, or it will appear with a
modified counter name, possibly along with an explanation for the omission (notice
ENT_PERM_IND_ctr appears with an inserted ! above). Software analysing this output should

80



Chapter 4. Profiling

always check that it has the counters it expects. Also, beware: some of the counters can have large
values!

Notes
1. The call-site is just the place in the source code which mentions the particular function or

variable.

2. daVinci is sadly not open-source :-(.

81



Chapter 5. Advice on: sooner, faster, smaller,
stingier

Please advise us of other “helpful hints” that should go here!

5.1. Sooner: producing a program more quickly

Don’t use -O or (especially) -O2:

By using them, you are telling GHC that you are willing to suffer longer compilation times for
better-quality code.

GHC is surprisingly zippy for normal compilations without -O!

Use more memory:

Within reason, more memory for heap space means less garbage collection for GHC, which
means less compilation time. If you use the -Rgc-stats option, you’ll get a garbage-collector
report. (Again, you can use the cheap-and-nasty -optCrts-Sstderr option to send the GC
stats straight to standard error.)

If it says you’re using more than 20% of total time in garbage collecting, then more memory
would help.

If the heap size is approaching the maximum (64M by default), and you have lots of memory,
try increasing the maximum with the -M<size> option, e.g.: ghc -c -O -M1024m Foo.hs.

Increasing the default allocation area size used by the compiler’s RTS might also help: use the
-A<size> option.

If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory!

As soon as GHC plus its “fellow citizens” (other processes on your machine) start using more
than the real memory on your machine, and the machine starts “thrashing,” the party is over.
Compile times will be worse than terrible! Use something like the csh-builtin time command to
get a report on how many page faults you’re getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t know the
memory configuration of your machine, don’t try to be clever about memory use: you’ll just
make your life a misery (and for other people, too, probably).

82



Chapter 5. Advice on: sooner, faster, smaller, stingier

Try to use local disks when linking:

Because Haskell objects and libraries tend to be large, it can take many real seconds to slurp the
bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using remotely-mounted disks; then link
on a slow machine that had your disks directly mounted.

Don’t derive/use Read unnecessarily:

It’s ugly and slow.

GHC compiles some program constructs slowly:

Deeply-nested list comprehensions seem to be one such; in the past, very large constant tables
were bad, too.

We’d rather you reported such behaviour as a bug, so that we can try to correct it.

The part of the compiler that is occasionally prone to wandering off for a long time is the
strictness analyser. You can turn this off individually with -fno-strictness.

To figure out which part of the compiler is badly behaved, the -dshow-passes option is your
friend.

If your module has big wads of constant data, GHC may produce a huge basic block that will
cause the native-code generator’s register allocator to founder. Bring on -fvia-C (not that
GCC will be that quick about it, either).

Avoid the consistency-check on linking:

Use -no-link-chk; saves effort. This is probably safe in a I-only-compile-things-one-way
setup.

Explicit import declarations:

Instead of saying import Foo, say import Foo (...stuff I want...).

Truthfully, the reduction on compilation time will be very small. However, judicious use of
import declarations can make a program easier to understand, so it may be a good idea
anyway.

5.2. Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately in Chapter 4. There is no substitute for finding where your program’s
time/space is really going, as opposed to where you imagine it is going.

83



Chapter 5. Advice on: sooner, faster, smaller, stingier

Another point to bear in mind: By far the best way to improve a program’s performance dramatically
is to use better algorithms. Once profiling has thrown the spotlight on the guilty time-consumer(s), it
may be better to re-think your program than to try all the tweaks listed below.

Another extremely efficient way to make your program snappy is to use library code that has been
Seriously Tuned By Someone Else. You might be able to write a better quicksort than the one in the
HBC library, but it will take you much longer than typing import QSort. (Incidentally, it doesn’t
hurt if the Someone Else is Lennart Augustsson.)

Please report any overly-slow GHC-compiled programs. The current definition of “overly-slow” is
“the HBC-compiled version ran faster”. . .

Optimise, using -O or -O2:

This is the most basic way to make your program go faster. Compilation time will be slower,
especially with -O2.

At present, -O2 is nearly indistinguishable from -O.

Compile via C and crank up GCC:

Even with -O, GHC tries to use a native-code generator, if available. But the native
code-generator is designed to be quick, not mind-bogglingly clever. Better to let GCC have a
go, as it tries much harder on register allocation, etc.

So, when we want very fast code, we use: -O -fvia-C -O2-for-C.

Overloaded functions are not your friend:

Haskell’s overloading (using type classes) is elegant, neat, etc., etc., but it is death to
performance if left to linger in an inner loop. How can you squash it?

Give explicit type signatures:

Signatures are the basic trick; putting them on exported, top-level functions is good
software-engineering practice, anyway. (Tip: using -fwarn-missing-signatures can
help enforce good signature-practice).

The automatic specialisation of overloaded functions (with -O) should take care of
overloaded local and/or unexported functions.

Use SPECIALIZE pragmas:

Specialize the overloading on key functions in your program. See Section 6.11.3 and
Section 6.11.4.

84



Chapter 5. Advice on: sooner, faster, smaller, stingier

“But how do I know where overloading is creeping in?”:

A low-tech way: grep (search) your interface files for overloaded type signatures; e.g.,:

% egrep ’^[a-z].*::.*=>’ *.hi

Strict functions are your dear friends:

and, among other things, lazy pattern-matching is your enemy.

(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of lets to get stricter code (a good
thing):

f (Wibble x y) # beautiful but slow
= let

(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y

in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->

case (unpackFoo y) of { (a2, b2, c2) ->
...
}}

GHC loves single-constructor data-types:

It’s all the better if a function is strict in a single-constructor type (a type with only one
data-constructor; for example, tuples are single-constructor types).

Newtypes are better than datatypes:

If your datatype has a single constructor with a single field, use a newtype declaration instead
of a data declaration. The newtype will be optimised away in most cases.

“How do I find out a function’s strictness?”

Don’t guess—look it up.

Look for your function in the interface file, then for the third field in the pragma; it should say
__S <string>. The <string> gives the strictness of the function’s arguments. L is lazy

85



Chapter 5. Advice on: sooner, faster, smaller, stingier

(bad), S and E are strict (good), P is “primitive” (good), U(...) is strict and “unpackable”
(very good), and A is absent (very good).

For an “unpackable” U(...) argument, the info inside tells the strictness of its components.
So, if the argument is a pair, and it says U(AU(LSS)), that means “the first component of the
pair isn’t used; the second component is itself unpackable, with three components (lazy in the
first, strict in the second \& third).”

If the function isn’t exported, just compile with the extra flag -ddump-simpl; next to the
signature for any binder, it will print the self-same pragmatic information as would be put in an
interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads):

Placing INLINE pragmas on certain functions that are used a lot can have a dramatic effect. See
Section 6.11.1.

Explicit export list:

If you do not have an explicit export list in a module, GHC must assume that everything in that
module will be exported. This has various pessimising effects. For example, if a bit of code is
actually unused (perhaps because of unfolding effects), GHC will not be able to throw it away,
because it is exported and some other module may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not exported.

Look at the Core syntax!

(The form in which GHC manipulates your code.) Just run your compilation with
-ddump-simpl (don’t forget the -O).

If profiling has pointed the finger at particular functions, look at their Core code. lets are bad,
cases are good, dictionaries (d.<Class>.<Unique>) [or anything overloading-ish] are bad,
nested lambdas are bad, explicit data constructors are good, primitive operations (e.g., eqInt#)
are good,. . .

Use unboxed types (a GHC extension):

When you are really desperate for speed, and you want to get right down to the “raw bits.”
Please see Section 6.1.1 for some information about using unboxed types.

Use foreign import (a GHC extension) to plug into fast libraries:

This may take real work, but. . . There exist piles of massively-tuned library code, and the best
thing is not to compete with it, but link with it.

Section 6.5 describes the foreign calling interface.

86



Chapter 5. Advice on: sooner, faster, smaller, stingier

Don’t use Floats:

We don’t provide specialisations of Prelude functions for Float (but we do for Double). If you
end up executing overloaded code, you will lose on performance, perhaps badly.

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern machines
will use the same floating-point unit for both. With Doubles, you are much less likely to hang
yourself with numerical errors.

One time when Float might be a good idea is if you have a lot of them, say a giant array of
Floats. They take up half the space in the heap compared to Doubles. However, this isn’t true
on a 64-bit machine.

Use a bigger heap!

If your program’s GC stats (-S RTS option) indicate that it’s doing lots of garbage-collection
(say, more than 20% of execution time), more memory might help—with the -M<size> or
-A<size> RTS options (see Section 3.13.1).

5.3. Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a
-funfolding-use-threshold0 option for the extreme case. (“Only unfoldings with zero cost
should proceed.”) Warning: except in certain specialiised cases (like Happy parsers) this is likely to
actually increase the size of your program, because unfolding generally enables extra simplifying
optimisations to be performed.

Avoid Read.

Use strip on your executables.

5.4. Stingier: producing a program that gobbles less
heap space

“I think I have a space leak. . . ” Re-run your program with +RTS -Sstderr, and remove all doubt!
(You’ll see the heap usage get bigger and bigger. . . ) [Hmmm. . . this might be even easier with the
-G1 RTS option; so. . . ./a.out +RTS -Sstderr -G1...]

Once again, the profiling facilities (Chapter 4) are the basic tool for demystifying the space
behaviour of your program.

87



Chapter 5. Advice on: sooner, faster, smaller, stingier

Strict functions are good for space usage, as they are for time, as discussed in the previous section.
Strict functions get right down to business, rather than filling up the heap with closures (the system’s
notes to itself about how to evaluate something, should it eventually be required).

88



Chapter 6. GHC Language Features
As with all known Haskell systems, GHC implements some extensions to the language. To use them,
you’ll need to give a -fglasgow-exts option.

Virtually all of the Glasgow extensions serve to give you access to the underlying facilities with
which we implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write some
non-standard code at a more primitive level. You need not be “stuck” on performance because of the
implementation costs of Haskell’s “high-level” features—you can always code “under” them. In an
extreme case, you can write all your time-critical code in C, and then just glue it together with
Haskell!

Executive summary of our extensions:

Unboxed types and primitive operations:

You can get right down to the raw machine types and operations; included in this are “primitive
arrays” (direct access to Big Wads of Bytes). Please see Section 6.1.1 and following.

Multi-parameter type classes:

GHC’s type system supports extended type classes with multiple parameters. Please see Section
6.6.

Local universal quantification:

GHC’s type system supports explicit universal quantification in constructor fields and function
arguments. This is useful for things like defining runST from the state-thread world. See
Section 6.7.

Extistentially quantification in data types:

Some or all of the type variables in a datatype declaration may be existentially quantified. More
details in Section 6.8.

Scoped type variables:

Scoped type variables enable the programmer to supply type signatures for some nested
declarations, where this would not be legal in Haskell 98. Details in Section 6.10.

Pattern guards

Instead of being a boolean expression, a guard is a list of qualifiers, exactly as in a list
comprehension. See Section 6.4.

Foreign calling:

Just what it sounds like. We provide lots of rope that you can dangle around your neck. Please
see Chapter 7.

89



Chapter 6. GHC Language Features

Pragmas

Pragmas are special instructions to the compiler placed in the source file. The pragmas GHC
supports are described in Section 6.11.

Rewrite rules:

The programmer can specify rewrite rules as part of the source program (in a pragma). GHC
applies these rewrite rules wherever it can. Details in Section 6.12.

Generic classes:

Generic class declarations allow you to define a class whose methods say how to work over an
arbitrary data type. Then it’s really easy to make any new type into an instance of the class. This
generalises the rather ad-hoc "deriving" feature of Haskell 98. Details in Section 6.13.

Before you get too carried away working at the lowest level (e.g., sloshing MutableByteArray#s
around your program), you may wish to check if there are libraries that provide a “Haskellised
veneer” over the features you want. See Haskell Libraries.

6.1. Unboxed types and primitive operations
This module defines all the types which are primitive in Glasgow Haskell, and the operations
provided for them.

6.1.1. Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a pointer to a
heap object. The representation of a Haskell Int, for example, is a two-word heap object. An
unboxed type, however, is represented by the value itself, no pointers or heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int),
Double# (double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are what
you might expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we all know and
love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and
compiler. Primitive types are always unlifted; that is, a value of a primitive type cannot be bottom.
We use the convention that primitive types, values, and operations have a # suffix.

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#. But
this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples include Array#, the type of primitive arrays. A primitive array is
heap-allocated because it is too big a value to fit in a register, and would be too expensive to copy
around; in a sense, it is accidental that it is represented by a pointer. If a pointer represents a

90



Chapter 6. GHC Language Features

primitive value, then it really does point to that value: no unevaluated thunks, no
indirections. . . nothing can be at the other end of the pointer than the primitive value.

There are some restrictions on the use of primitive types, the main one being that you can’t pass a
primitive value to a polymorphic function or store one in a polymorphic data type. This rules out
things like [Int#] (i.e. lists of primitive integers). The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an unboxed integer is stored in one of
these, the garbage collector would attempt to follow it, leading to unpredictable space leaks. Or a seq
operation on the polymorphic component may attempt to dereference the pointer, with disastrous
results. Even worse, the unboxed value might be larger than a pointer (Double# for instance).

Nevertheless, A numerically-intensive program using unboxed types can go a lot faster than its
“standard” counterpart—we saw a threefold speedup on one example.

6.1.2. Unboxed Tuples
Unboxed tuples aren’t really exported by PrelGHC, they’re available by default with
-fglasgow-exts. An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an unboxed
tuple looks the same.

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap
allocation normally associated with using fully-fledged tuples. When an unboxed tuple is returned,
the components are put directly into registers or on the stack; the unboxed tuple itself does not have a
composite representation. Many of the primitive operations listed in this section return unboxed
tuples.

There are some pretty stringent restrictions on the use of unboxed tuples:

• Unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they may not
be stored in polymorphic data structures or passed to polymorphic functions.

• Unboxed tuples may only be constructed as the direct result of a function, and may only be
deconstructed with a case expression. eg. the following are valid:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

but the following are invalid:

f x y = g (# x, y #)
g (# x, y #) = x + y

• No variable can have an unboxed tuple type. This is illegal:

f :: (# Int, Int #) -> (# Int, Int #)

91



Chapter 6. GHC Language Features

f x = x

because x has an unboxed tuple type.

Note: we may relax some of these restrictions in the future.

The IO and ST monads use unboxed tuples to avoid unnecessary allocation during sequences of
operations.

6.1.3. Character and numeric types
There are the following obvious primitive types:

type Char#
type Int#
type Word#
type Addr#
type Float#
type Double#
type Int64#
type Word64#

If you really want to know their exact equivalents in C, see ghc/includes/StgTypes.h in the
GHC source tree.

Literals for these types may be written as follows:

1# an Int#
1.2# a Float#
1.34## a Double#
’a’# a Char#; for weird characters, use e.g. ’\o<octal>’#
"a"# an Addr# (a ‘char *’); only characters ’\0’..’\255’ al-
lowed

6.1.4. Comparison operations

{>,>=,==,/=,<,<=}# :: Int# -> Int# -> Bool

{gt,ge,eq,ne,lt,le}Char# :: Char# -> Char# -> Bool
- ditto for Word# and Addr#

92



Chapter 6. GHC Language Features

6.1.5. Primitive-character operations

ord# :: Char# -> Int#
chr# :: Int# -> Char#

6.1.6. Primitive-Int operations

{+,-,*,quotInt,remInt,gcdInt}# :: Int# -> Int# -> Int#
negateInt# :: Int# -> Int#

iShiftL#, iShiftRA#, iShiftRL# :: Int# -> Int# -> Int#
- shift left, right arithmetic, right logical

addIntC#, subIntC#, mulIntC# :: Int# -> Int# -> (# Int#, Int# #)
- add, subtract, multiply with carry

Note: No error/overflow checking!

6.1.7. Primitive-Double and Float operations

{+,-,*,/}## :: Double# -> Double# -> Double#
{<,<=,==,/=,>=,>}## :: Double# -> Double# -> Bool
negateDouble# :: Double# -> Double#
double2Int# :: Double# -> Int#
int2Double# :: Int# -> Double#

{plus,minux,times,divide}Float# :: Float# -> Float# -> Float#
{gt,ge,eq,ne,lt,le}Float# :: Float# -> Float# -> Bool
negateFloat# :: Float# -> Float#
float2Int# :: Float# -> Int#
int2Float# :: Int# -> Float#

And a full complement of trigonometric functions:

expDouble# :: Double# -> Double#
logDouble# :: Double# -> Double#
sqrtDouble# :: Double# -> Double#
sinDouble# :: Double# -> Double#
cosDouble# :: Double# -> Double#
tanDouble# :: Double# -> Double#

93



Chapter 6. GHC Language Features

asinDouble# :: Double# -> Double#
acosDouble# :: Double# -> Double#
atanDouble# :: Double# -> Double#
sinhDouble# :: Double# -> Double#
coshDouble# :: Double# -> Double#
tanhDouble# :: Double# -> Double#
powerDouble# :: Double# -> Double# -> Double#

similarly for Float#.

There are two coercion functions for Float#/Double#:

float2Double# :: Float# -> Double#
double2Float# :: Double# -> Float#

The primitive version of decodeDouble (encodeDouble is implemented as an external C
function):

decodeDouble# :: Double# -> PrelNum.ReturnIntAndGMP

(And the same for Float#s.)

6.1.8. Operations on/for Integers (interface to GMP)

We implement Integers (arbitrary-precision integers) using the GNU multiple-precision (GMP)
package (version 2.0.2).

The data type for Integer is either a small integer, represented by an Int, or a large integer
represented using the pieces required by GMP’s MP_INT in gmp.h (see gmp.info in
ghc/includes/runtime/gmp). It comes out as:

data Integer = S# Int# - small integers
| J# Int# ByteArray# - large integers

The primitive ops to support large Integers use the “pieces” of the representation, and are as
follows:

negateInteger# :: Int# -> ByteArray# -> Integer

{plus,minus,times}Integer#, gcdInteger#,
quotInteger#, remInteger#, divExactInteger#

:: Int# -> ByteArray#
-> Int# -> ByteArray#
-> (# Int#, ByteArray# #)

94



Chapter 6. GHC Language Features

cmpInteger#
:: Int# -> ByteArray#

-> Int# -> ByteArray#
-> Int# - -1 for <; 0 for ==; +1 for >

cmpIntegerInt#
:: Int# -> ByteArray#

-> Int#
-> Int# - -1 for <; 0 for ==; +1 for >

gcdIntegerInt# ::
:: Int# -> ByteArray#

-> Int#
-> Int#

divModInteger#, quotRemInteger#
:: Int# -> ByteArray#
-> Int# -> ByteArray#
-> (# Int#, ByteArray#,

Int#, ByteArray# #)

integer2Int# :: Int# -> ByteArray# -> Int#

int2Integer# :: Int# -> Integer - NB: no error-checking on these two!
word2Integer# :: Word# -> Integer

addr2Integer# :: Addr# -> Integer
- the Addr# is taken to be a ‘char *’ string
- to be converted into an Integer.

6.1.9. Words and addresses

A Word# is used for bit-twiddling operations. It is the same size as an Int#, but has no sign nor any
arithmetic operations.

type Word# - Same size/etc as Int# but *unsigned*
type Addr# -
A pointer from outside the "Haskell world" (from C, probably);

- described under "arrays"

Word#s and Addr#s have the usual comparison operations. Other unboxed-Word ops (bit-twiddling
and coercions):

{gt,ge,eq,ne,lt,le}Word# :: Word# -> Word# -> Bool

95



Chapter 6. GHC Language Features

and#, or#, xor# :: Word# -> Word# -> Word#
- standard bit ops.

quotWord#, remWord# :: Word# -> Word# -> Word#
- word (i.e. unsigned) versions are different from int
- versions, so we have to provide these explicitly.

not# :: Word# -> Word#

shiftL#, shiftRL# :: Word# -> Int# -> Word#
- shift left, right logical

int2Word# :: Int# -> Word# - just a cast, really
word2Int# :: Word# -> Int#

Unboxed-Addr ops (C casts, really):

{gt,ge,eq,ne,lt,le}Addr# :: Addr# -> Addr# -> Bool

int2Addr# :: Int# -> Addr#
addr2Int# :: Addr# -> Int#
addr2Integer# :: Addr# -> (# Int#, ByteArray# #)

The casts between Int#, Word# and Addr# correspond to null operations at the machine level, but
are required to keep the Haskell type checker happy.

Operations for indexing off of C pointers (Addr#s) to snatch values are listed under “arrays”.

6.1.10. Arrays

The type Array# elt is the type of primitive, unpointed arrays of values of type elt.

type Array# elt

Array# is more primitive than a Haskell array—indeed, the Haskell Array interface is implemented
using Array#—in that an Array# is indexed only by Int#s, starting at zero. It is also more
primitive by virtue of being unboxed. That doesn’t mean that it isn’t a heap-allocated object—of
course, it is. Rather, being unboxed means that it is represented by a pointer to the array itself, and
not to a thunk which will evaluate to the array (or to bottom). The components of an Array# are
themselves boxed.

The type ByteArray# is similar to Array#, except that it contains just a string of (non-pointer)
bytes.

type ByteArray#

96



Chapter 6. GHC Language Features

Arrays of these types are useful when a Haskell program wishes to construct a value to pass to a C
procedure. It is also possible to use them to build (say) arrays of unboxed characters for internal use
in a Haskell program. Given these uses, ByteArray# is deliberately a bit vague about the type of its
components. Operations are provided to extract values of type Char#, Int#, Float#, Double#, and
Addr# from arbitrary offsets within a ByteArray#. (For type Foo#, the $i$th offset gets you the
$i$th Foo#, not the Foo# at byte-position $i$. Mumble.) (If you want a Word#, grab an Int#, then
coerce it.)

Lastly, we have static byte-arrays, of type Addr# [mentioned previously]. (Remember the duality
between arrays and pointers in C.) Arrays of this types are represented by a pointer to an array in the
world outside Haskell, so this pointer is not followed by the garbage collector. In other respects they
are just like ByteArray#. They are only needed in order to pass values from C to Haskell.

6.1.11. Reading and writing
Primitive arrays are linear, and indexed starting at zero.

The size and indices of a ByteArray#, Addr#, and MutableByteArray# are all in bytes. It’s up to
the program to calculate the correct byte offset from the start of the array. This allows a
ByteArray# to contain a mixture of values of different type, which is often needed when preparing
data for and unpicking results from C. (Umm. . . not true of indices. . . WDP 95/09)

Should we provide some sizeOfDouble# constants?

Out-of-range errors on indexing should be caught by the code which uses the primitive operation; the
primitive operations themselves do not check for out-of-range indexes. The intention is that the
primitive ops compile to one machine instruction or thereabouts.

We use the terms “reading” and “writing” to refer to accessing mutable arrays (see Section 6.1.14),
and “indexing” to refer to reading a value from an immutable array.

Immutable byte arrays are straightforward to index (all indices in bytes):

indexCharArray# :: ByteArray# -> Int# -> Char#
indexIntArray# :: ByteArray# -> Int# -> Int#
indexAddrArray# :: ByteArray# -> Int# -> Addr#
indexFloatArray# :: ByteArray# -> Int# -> Float#
indexDoubleArray# :: ByteArray# -> Int# -> Double#

indexCharOffAddr# :: Addr# -> Int# -> Char#
indexIntOffAddr# :: Addr# -> Int# -> Int#
indexFloatOffAddr# :: Addr# -> Int# -> Float#
indexDoubleOffAddr# :: Addr# -> Int# -> Double#
indexAddrOffAddr# :: Addr# -> Int# -> Addr#
- Get an Addr# from an Addr# offset

The last of these, indexAddrOffAddr#, extracts an Addr# using an offset from another Addr#,
thereby providing the ability to follow a chain of C pointers.

97



Chapter 6. GHC Language Features

Something a bit more interesting goes on when indexing arrays of boxed objects, because the result
is simply the boxed object. So presumably it should be entered—we never usually return an
unevaluated object! This is a pain: primitive ops aren’t supposed to do complicated things like enter
objects. The current solution is to return a single element unboxed tuple (see Section 6.1.2).

indexArray# :: Array# elt -> Int# -> (# elt #)

6.1.12. The state type

The primitive type State# represents the state of a state transformer. It is parameterised on the
desired type of state, which serves to keep states from distinct threads distinct from one another. But
the only effect of this parameterisation is in the type system: all values of type State# are
represented in the same way. Indeed, they are all represented by nothing at all! The code generator
“knows” to generate no code, and allocate no registers etc, for primitive states.

type State# s

The type GHC.RealWorld is truly opaque: there are no values defined of this type, and no
operations over it. It is “primitive” in that sense - but it is not unlifted! Its only role in life is to be the
type which distinguishes the IO state transformer.

data RealWorld

6.1.13. State of the world
A single, primitive, value of type State# RealWorld is provided.

realWorld# :: State# RealWorld

(Note: in the compiler, not a PrimOp; just a mucho magic Id. Exported from GHC, though).

6.1.14. Mutable arrays
Corresponding to Array# and ByteArray#, we have the types of mutable versions of each. In each
case, the representation is a pointer to a suitable block of (mutable) heap-allocated storage.

type MutableArray# s elt
type MutableByteArray# s

98



Chapter 6. GHC Language Features

6.1.14.1. Allocation

Mutable arrays can be allocated. Only pointer-arrays are initialised; arrays of non-pointers are filled
in by “user code” rather than by the array-allocation primitive. Reason: only the pointer case has to
worry about GC striking with a partly-initialised array.

newArray# :: Int# -> elt -> State# s -
> (# State# s, MutableArray# s elt #)

newCharArray# :: Int# -> State# s -
> (# State# s, MutableByteArray# s elt #)
newIntArray# :: Int# -> State# s -
> (# State# s, MutableByteArray# s elt #)
newAddrArray# :: Int# -> State# s -
> (# State# s, MutableByteArray# s elt #)
newFloatArray# :: Int# -> State# s -
> (# State# s, MutableByteArray# s elt #)
newDoubleArray# :: Int# -> State# s -
> (# State# s, MutableByteArray# s elt #)

The size of a ByteArray# is given in bytes.

6.1.14.2. Reading and writing

readArray# :: MutableArray# s elt -> Int# -> State# s -
> (# State# s, elt #)
readCharArray# :: MutableByteArray# s -> Int# -> State# s -
> (# State# s, Char# #)
readIntArray# :: MutableByteArray# s -> Int# -> State# s -
> (# State# s, Int# #)
readAddrArray# :: MutableByteArray# s -> Int# -> State# s -
> (# State# s, Addr# #)
readFloatArray# :: MutableByteArray# s -> Int# -> State# s -
> (# State# s, Float# #)
readDoubleArray# :: MutableByteArray# s -> Int# -> State# s -
> (# State# s, Double# #)

writeArray# :: MutableArray# s elt -> Int# -> elt -> State# s -
> State# s
writeCharArray# :: MutableByteArray# s -> Int# -> Char# -> State# s -
> State# s
writeIntArray# :: MutableByteArray# s -> Int# -> Int# -> State# s -
> State# s
writeAddrArray# :: MutableByteArray# s -> Int# -> Addr# -> State# s -
> State# s

99



Chapter 6. GHC Language Features

writeFloatArray# :: MutableByteArray# s -> Int# -> Float# -> State# s -
> State# s
writeDoubleArray# :: MutableByteArray# s -> Int# -> Double# -> State# s -
> State# s

6.1.14.3. Equality

One can take “equality” of mutable arrays. What is compared is the name or reference to the mutable
array, not its contents.

sameMutableArray# :: MutableArray# s elt -> MutableArray# s elt -
> Bool
sameMutableByteArray# :: MutableByteArray# s -> MutableByteArray# s -
> Bool

6.1.14.4. Freezing mutable arrays

Only unsafe-freeze has a primitive. (Safe freeze is done directly in Haskell by copying the array and
then using unsafeFreeze.)

unsafeFreezeArray# :: MutableArray# s elt -> State# s -
> (# State# s, Array# s elt #)
unsafeFreezeByteArray# :: MutableByteArray# s -> State# s -
> (# State# s, ByteArray# #)

6.1.15. Synchronizing variables (M-vars)

Synchronising variables are the primitive type used to implement Concurrent Haskell’s MVars (see
the Concurrent Haskell paper for the operational behaviour of these operations).

type MVar# s elt - primitive

newMVar# :: State# s -> (# State# s, MVar# s elt #)
takeMVar# :: SynchVar# s elt -> State# s -> (# State# s, elt #)
putMVar# :: SynchVar# s elt -> State# s -> State# s

100



Chapter 6. GHC Language Features

6.2. Primitive state-transformer monad

This monad underlies our implementation of arrays, mutable and immutable, and our
implementation of I/O, including “C calls”.

The ST library, which provides access to the ST monad, is described in Section 4.21 in Haskell
Libraries.

6.3. Primitive arrays, mutable and otherwise

GHC knows about quite a few flavours of Large Swathes of Bytes.

First, GHC distinguishes between primitive arrays of (boxed) Haskell objects (type Array# obj)
and primitive arrays of bytes (type ByteArray#).

Second, it distinguishes between. . .

Immutable:

Arrays that do not change (as with “standard” Haskell arrays); you can only read from them.
Obviously, they do not need the care and attention of the state-transformer monad.

Mutable:

Arrays that may be changed or “mutated.” All the operations on them live within the
state-transformer monad and the updates happen in-place.

“Static” (in C land):

A C routine may pass an Addr# pointer back into Haskell land. There are then primitive
operations with which you may merrily grab values over in C land, by indexing off the “static”
pointer.

“Stable” pointers:

If, for some reason, you wish to hand a Haskell pointer (i.e., not an unboxed value) to a C
routine, you first make the pointer “stable,” so that the garbage collector won’t forget that it
exists. That is, GHC provides a safe way to pass Haskell pointers to C.

Please see Section 4.24 in Haskell Libraries for more details.

“Foreign objects”:

A “foreign object” is a safe way to pass an external object (a C-allocated pointer, say) to
Haskell and have Haskell do the Right Thing when it no longer references the object. So, for
example, C could pass a large bitmap over to Haskell and say “please free this memory when
you’re done with it.”

Please see Section 4.10 in Haskell Libraries for more details.

101



Chapter 6. GHC Language Features

The libraries documentatation gives more details on all these “primitive array” types and the
operations on them.

6.4. Pattern guards
The discussion that follows is an abbreviated version of Simon Peyton Jones’s original proposal
(http://research.microsoft.com/~simonpj/Haskell/guards.html). (Note that the proposal was written
before pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returns Nothing if the supplied key is not in the domain of the mapping, and (Just v)

otherwise, where v is the value that the key maps to. Now consider the following definition:

clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise = var1 + var2
where

m1 = lookup env var1
m2 = lookup env var2
ok1 = maybeToBool m1
ok2 = maybeToBool m2
val1 = expectJust m1
val2 = expectJust m2

The auxiliary functions are

maybeToBool :: Maybe a -> Bool
maybeToBool (Just x) = True
maybeToBool Nothing = False

expectJust :: Maybe a -> a
expectJust (Just x) = x
expectJust Nothing = error "Unexpected Nothing"

What is clunky doing? The guard ok1 && ok2 checks that both lookups succeed, using
maybeToBool to convert the Maybe types to booleans. The (lazily evaluated) expectJust calls
extract the values from the results of the lookups, and binds the returned values to val1 and val2

respectively. If either lookup fails, then clunky takes the otherwise case and returns the sum of its
arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the
desired effect. Arguably, a more direct way to write clunky would be to use case expressions:

clunky env var1 var1 = case lookup env var1 of
Nothing -> fail

102



Chapter 6. GHC Language Features

Just val1 -> case lookup env var2 of
Nothing -> fail
Just val2 -> val1 + val2

where
fail = val1 + val2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded
equations as case expressions; that is precisely what the compiler does when compiling equations!
The reason that Haskell provides guarded equations is because they allow us to write down the cases
we want to consider, one at a time, independently of each other. This structure is hidden in the case
version. Two of the right-hand sides are really the same (fail), and the whole expression tends to
become more and more indented.

Here is how I would write clunky:

clunky env var1 var1
| Just val1 <- lookup env var1
, Just val2 <- lookup env var2
= val1 + val2

...other equations for clunky...

The semantics should be clear enough. The qualifers are matched in order. For a <- qualifier, which I
call a pattern guard, the right hand side is evaluated and matched against the pattern on the left. If the
match fails then the whole guard fails and the next equation is tried. If it succeeds, then the
appropriate binding takes place, and the next qualifier is matched, in the augmented environment.
Unlike list comprehensions, however, the type of the expression to the right of the <- is the same as
the type of the pattern to its left. The bindings introduced by pattern guards scope over all the
remaining guard qualifiers, and over the right hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern
guards. For example:

f x | [y] <- x
, y > 3
, Just z <- h y
= ...

Haskell’s current guards therefore emerge as a special case, in which the qualifier list has just one
element, a boolean expression.

6.5. The foreign interface
The foreign interface consists of the following components:

• The Foreign Function Interface language specification (included in this manual, in Chapter 7).

103



Chapter 6. GHC Language Features

• The Foreign module (see Section 4.9 in Haskell Libraries) collects together several interfaces
which are useful in specifying foreign language interfaces, including the following:

• The ForeignObj module (see Section 4.10 in Haskell Libraries), for managing pointers from
Haskell into the outside world.

• The StablePtr module (see Section 4.24 in Haskell Libraries), for managing pointers into
Haskell from the outside world.

• The CTypes module (see Section 4.5 in Haskell Libraries) gives Haskell equivalents for the
standard C datatypes, for use in making Haskell bindings to existing C libraries.

• The CTypesISO module (see Section 4.6 in Haskell Libraries) gives Haskell equivalents for C
types defined by the ISO C standard.

• The Storable library, for primitive marshalling of data types between Haskell and the foreign
language.

The following sections also give some hints and tips on the use of the foreign function interface in
GHC.

6.5.1. Using function headers

When generating C (using the -fvia-C directive), one can assist the C compiler in detecting type
errors by using the -#include directive to provide .h files containing function headers.

For example,

#include "HsFFI.h"

void initialiseEFS (HsInt size);
HsInt terminateEFS (void);
HsForeignObj emptyEFS(void);
HsForeignObj updateEFS (HsForeignObj a, HsInt i, HsInt x);
HsInt lookupEFS (HsForeignObj a, HsInt i);

The types HsInt, HsForeignObj etc. are described in Table 7-1.

Note that this approach is only essential for returning floats (or if sizeof(int) !=

sizeof(int *) on your architecture) but is a Good Thing for anyone who cares about writing
solid code. You’re crazy not to do it.

6.6. Multi-parameter type classes
This section documents GHC’s implementation of multi-parameter type classes. There’s lots of
background in the paper Type classes: exploring the design space

104



Chapter 6. GHC Language Features

(http://research.microsoft.com/~simonpj/multi.ps.gz) (Simon Peyton Jones, Mark Jones, Erik
Meijer).

I’d like to thank people who reported shorcomings in the GHC 3.02 implementation. Our default
decisions were all conservative ones, and the experience of these heroic pioneers has given useful
concrete examples to support several generalisations. (These appear below as design choices not
implemented in 3.02.)

I’ve discussed these notes with Mark Jones, and I believe that Hugs will migrate towards the same
design choices as I outline here. Thanks to him, and to many others who have offered very useful
feedback.

6.6.1. Types
There are the following restrictions on the form of a qualified type:

forall tv1..tvn (c1, ...,cn) => type

(Here, I write the "foralls" explicitly, although the Haskell source language omits them; in Haskell
1.4, all the free type variables of an explicit source-language type signature are universally
quantified, except for the class type variables in a class declaration. However, in GHC, you can give
the foralls if you want. See Section 6.7).

1. Each universally quantified type variable tvi must be mentioned (i.e. appear free) in type.
The reason for this is that a value with a type that does not obey this restriction could not be
used without introducing ambiguity. Here, for example, is an illegal type:

forall a. Eq a => Int

When a value with this type was used, the constraint Eq tv would be introduced where tv is a fresh
type variable, and (in the dictionary-translation implementation) the value would be applied to a
dictionary for Eq tv. The difficulty is that we can never know which instance of Eq to use
because we never get any more information about tv.

2. Every constraint ci must mention at least one of the universally quantified type variables tvi.
For example, this type is OK because C a b mentions the universally quantified type variable b:

forall a. C a b => burble

The next type is illegal because the constraint Eq b does not mention a:

forall a. Eq b => burble

The reason for this restriction is milder than the other one. The excluded types are never useful or
necessary (because the offending context doesn’t need to be witnessed at this point; it can be
floated out). Furthermore, floating them out increases sharing. Lastly, excluding them is a
conservative choice; it leaves a patch of territory free in case we need it later.

These restrictions apply to all types, whether declared in a type signature or inferred.

105



Chapter 6. GHC Language Features

Unlike Haskell 1.4, constraints in types do not have to be of the form (class type-variables). Thus,
these type signatures are perfectly OK

f :: Eq (m a) => [m a] -> [m a]
g :: Eq [a] => ...

This choice recovers principal types, a property that Haskell 1.4 does not have.

6.6.2. Class declarations

1. Multi-parameter type classes are permitted. For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

2. The class hierarchy must be acyclic. However, the definition of "acyclic" involves only the
superclass relationships. For example, this is OK:

class C a where {
op :: D b => a -> b -> b

}

class C a => D a where { ... }

Here, C is a superclass of D, but it’s OK for a class operation op of C to mention D. (It would not be
OK for D to be a superclass of C.)

3. There are no restrictions on the context in a class declaration (which introduces superclasses),
except that the class hierarchy must be acyclic. So these class declarations are OK:

class Functor (m k) => FiniteMap m k where
...

class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a

4. In the signature of a class operation, every constraint must mention at least one type variable
that is not a class type variable. Thus:

class Collection c a where
mapC :: Collection c b => (a->b) -> c a -> c b

is OK because the constraint (Collection a b) mentions b, even though it also mentions the
class variable a. On the other hand:

class C a where
op :: Eq a => (a,b) -> (a,b)

106



Chapter 6. GHC Language Features

is not OK because the constraint (Eq a) mentions on the class type variable a, but not b. However,
any such example is easily fixed by moving the offending context up to the superclass context:

class Eq a => C a where
op ::(a,b) -> (a,b)

A yet more relaxed rule would allow the context of a class-op signature to mention only class type
variables. However, that conflicts with Rule 1(b) for types above.

5. The type of each class operation must mention all of the class type variables. For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type of empty doesn’t mention a. This rule is a consequence of Rule 1(a),
above, for types, and has the same motivation. Sometimes, offending class declarations exhibit
misunderstandings. For example, Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

which makes the connection between the type of a collection of a’s (namely (s a)) and the element
type a. Occasionally this really doesn’t work, in which case you can split the class like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

6.6.3. Instance declarations

1. Instance declarations may not overlap. The two instance declarations

instance context1 => C type1 where ...
instance context2 => C type2 where ...

"overlap" if type1 and type2 unify However, if you give the command line option
-fallow-overlapping-instances then two overlapping instance declarations are permitted
iff

• EITHER type1 and type2 do not unify

• OR type2 is a substitution instance of type1 (but not identical to type1)

• OR vice versa

Notice that these rules

107



Chapter 6. GHC Language Features

• make it clear which instance decl to use (pick the most specific one that matches)

• do not mention the contexts context1, context2 Reason: you can pick which instance
decl "matches" based on the type.

Regrettably, GHC doesn’t guarantee to detect overlapping instance declarations if they appear in
different modules. GHC can "see" the instance declarations in the transitive closure of all the
modules imported by the one being compiled, so it can "see" all instance decls when it is
compiling Main. However, it currently chooses not to look at ones that can’t possibly be of use
in the module currently being compiled, in the interests of efficiency. (Perhaps we should
change that decision, at least for Main.)

2. There are no restrictions on the type in an instance head, except that at least one must not be a
type variable. The instance "head" is the bit after the "=>" in an instance decl. For example,
these are OK:

instance C Int a where ...

instance D (Int, Int) where ...

instance E [[a]] where ...

Note that instance heads may contain repeated type variables. For example, this is OK:

instance Stateful (ST s) (MutVar s) where ...

The "at least one not a type variable" restriction is to ensure that context reduction terminates: each
reduction step removes one type constructor. For example, the following would make the type
checker loop if it wasn’t excluded:

instance C a => C a where ...

There are two situations in which the rule is a bit of a pain. First, if one allows overlapping instance
declarations then it’s quite convenient to have a "default instance" declaration that applies if
something more specific does not:

instance C a where
op = ... - Default

Second, sometimes you might want to use the following to get the effect of a "class synonym":

class (C1 a, C2 a, C3 a) => C a where { }

instance (C1 a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: C a => ...

instead of

f :: (C1 a, C2 a, C3 a) => ...

I’m on the lookout for a simple rule that preserves decidability while allowing these idioms. The
experimental flag -fallow-undecidable-instances lifts this restriction, allowing all the
types in an instance head to be type variables.

108



Chapter 6. GHC Language Features

3. Unlike Haskell 1.4, instance heads may use type synonyms. As always, using a type synonym is
just shorthand for writing the RHS of the type synonym definition. For example:

type Point = (Int,Int)
instance C Point where ...
instance C [Point] where ...

is legal. However, if you added

instance C (Int,Int) where ...

as well, then the compiler will complain about the overlapping (actually, identical) instance
declarations. As always, type synonyms must be fully applied. You cannot, for example, write:

type P a = [[a]]
instance Monad P where ...

This design decision is independent of all the others, and easily reversed, but it makes sense to me.

4. The types in an instance-declaration context must all be type variables. Thus

instance C a b => Eq (a,b) where ...

is OK, but

instance C Int b => Foo b where ...

is not OK. Again, the intent here is to make sure that context reduction terminates. Voluminous
correspondence on the Haskell mailing list has convinced me that it’s worth experimenting with
a more liberal rule. If you use the flag -fallow-undecidable-instances can use arbitrary
types in an instance context. Termination is ensured by having a fixed-depth recursion stack. If
you exceed the stack depth you get a sort of backtrace, and the opportunity to increase the stack
depth with -fcontext-stackN.

6.7. Explicit universal quantification
GHC now allows you to write explicitly quantified types. GHC’s syntax for this now agrees with
Hugs’s, namely:

forall a b. (Ord a, Eq b) => a -> b -> a

The context is, of course, optional. You can’t use forall as a type variable any more!

Haskell type signatures are implicitly quantified. The forall allows us to say exactly what this
means. For example:

g :: b -> b

means this:

109



Chapter 6. GHC Language Features

g :: forall b. (b -> b)

The two are treated identically.

6.7.1. Universally-quantified data type fields
In a data or newtype declaration one can quantify the types of the constructor arguments. Here are
several examples:

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])

The constructors now have so-called rank 2 polymorphic types, in which there is a for-all in the
argument types.:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)

-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle

Notice that you don’t need to use a forall if there’s an explicit context. For example in the first
argument of the constructor MkSwizzle, an implicit "forall a." is prefixed to the argument type.
The implicit forall quantifies all type variables that are not already in scope, and are mentioned in
the type quantified over.

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write
this:

data T a = MkT (Either a b) (b -> b)

it’s just as if you had written this:

data T a = MkT (forall b. Either a b) (forall b. b -> b)

That is, since the type variable b isn’t in scope, it’s implicitly universally quantified. (Arguably, it
would be better to require explicit quantification on constructor arguments where that is what is
wanted. Feedback welcomed.)

110



Chapter 6. GHC Language Features

6.7.2. Construction
You construct values of types T1, MonadT, Swizzle by applying the constructor to suitable
values, just as usual. For example,

(T1 (\xy->x) 3) :: T Int

(MkSwizzle sort) :: Swizzle
(MkSwizzle reverse) :: Swizzle

(let r x = Just x
b m k = case m of

Just y -> k y
Nothing -> Nothing

in
MkMonad r b) :: MonadT Maybe

The type of the argument can, as usual, be more general than the type required, as (MkSwizzle
reverse) shows. (reverse does not need the Ord constraint.)

6.7.3. Pattern matching
When you use pattern matching, the bound variables may now have polymorphic types. For example:

f :: T a -> a -> (a, Char)
f (T1 f k) x = (f k x, f ’c’ ’d’)

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

In the function h we use the record selectors return and bind to extract the polymorphic bind and
return functions from the MonadT data structure, rather than using pattern matching.

You cannot pattern-match against an argument that is polymorphic. For example:

newtype TIM s a = TIM (ST s (Maybe a))

runTIM :: (forall s. TIM s a) -> Maybe a
runTIM (TIM m) = runST m

111



Chapter 6. GHC Language Features

Here the pattern-match fails, because you can’t pattern-match against an argument of type (forall
s. TIM s a). Instead you must bind the variable and pattern match in the right hand side:

runTIM :: (forall s. TIM s a) -> Maybe a
runTIM tm = case tm of { TIM m -> runST m }

The tm on the right hand side is (invisibly) instantiated, like any polymorphic value at its occurrence
site, and now you can pattern-match against it.

6.7.4. The partial-application restriction
There is really only one way in which data structures with polymorphic components might surprise
you: you must not partially apply them. For example, this is illegal:

map MkSwizzle [sort, reverse]

The restriction is this: every subexpression of the program must have a type that has no for-alls,
except that in a function application (f e1. . . en) the partial applications are not subject to this rule.
The restriction makes type inference feasible.

In the illegal example, the sub-expression MkSwizzle has the polymorphic type (Ord b => [b]

-> [b]) -> Swizzle and is not a sub-expression of an enclosing application. On the other hand,
this expression is OK:

map (T1 (\a b -> a)) [1,2,3]

even though it involves a partial application of T1, because the sub-expression T1 (\a b -> a)

has type Int -> T Int.

6.7.5. Type signatures
Once you have data constructors with universally-quantified fields, or constants such as runST that
have rank-2 types, it isn’t long before you discover that you need more! Consider:

mkTs f x y = [T1 f x, T1 f y]

mkTs is a fuction that constructs some values of type T, using some pieces passed to it. The trouble is
that since f is a function argument, Haskell assumes that it is monomorphic, so we’ll get a type error
when applying T1 to it. This is a rather silly example, but the problem really bites in practice. Lots of
people trip over the fact that you can’t make "wrappers functions" for runST for exactly the same
reason. In short, it is impossible to build abstractions around functions with rank-2 types.

112



Chapter 6. GHC Language Features

The solution is fairly clear. We provide the ability to give a rank-2 type signature for ordinary
functions (not only data constructors), thus:

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

This type signature tells the compiler to attribute f with the polymorphic type (forall b. b ->

b -> b) when type checking the body of mkTs, so now the application of T1 is fine.

There are two restrictions:

• You can only define a rank 2 type, specified by the following grammar:

rank2type ::= [forall tyvars .] [context =>] funty
funty ::= ([forall tyvars .] [context =>] ty) -> funty

| ty
ty ::= ...current Haskell monotype syntax...

Informally, the universal quantification must all be right at the beginning, or at the top level of a
function argument.

• There is a restriction on the definition of a function whose type signature is a rank-2 type: the
polymorphic arguments must be matched on the left hand side of the "=" sign. You can’t define
mkTs like this:

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs = \ f x y -> [T1 f x, T1 f y]

The same partial-application rule applies to ordinary functions with rank-2 types as applied to data
constructors.

6.7.6. Type synonyms and hoisting
GHC also allows you to write a forall in a type synonym, thus:

type Discard a = forall b. a -> b -> a

f :: Discard a
f x y = x

However, it is often convenient to use these sort of synonyms at the right hand end of an arrow, thus:

type Discard a = forall b. a -> b -> a

g :: Int -> Discard Int
g x y z = x+y

Simply expanding the type synonym would give

113



Chapter 6. GHC Language Features

g :: Int -> (forall b. Int -> b -> Int)

but GHC "hoists" the forall to give the isomorphic type

g :: forall b. Int -> Int -> b -> Int

In general, the rule is this: to determine the type specified by any explicit user-written type (e.g. in a
type signature), GHC expands type synonyms and then repeatedly performs the transformation:

type1 -> forall a. type2
==>

forall a. type1 -> type2

(In fact, GHC tries to retain as much synonym information as possible for use in error messages, but
that is a usability issue.) This rule applies, of course, whether or not the forall comes from a
synonym. For example, here is another valid way to write g’s type signature:

g :: Int -> Int -> forall b. b -> Int

6.8. Existentially quantified data constructors
The idea of using existential quantification in data type declarations was suggested by Laufer (I
believe, thought doubtless someone will correct me), and implemented in Hope+. It’s been in
Lennart Augustsson’s hbc Haskell compiler for several years, and proved very useful. Here’s the
idea. Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself, which is
plain Foo. For example, the following expression is fine:

[MkFoo 3 even, MkFoo ’c’ isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool;
and MkFoo ’c’ isUpper packages a character with a compatible function. These two things are
each of type Foo and can be put in a list.

114



Chapter 6. GHC Language Features

What can we do with a value of type Foo?. In particular, what happens when we pattern-match on
MkFoo?

f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, the only (useful) thing we can do
with them is to apply fn to val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogenous values together with a bunch of functions that
manipulate them, and then treat that collection of packages in a uniform manner. You can express
quite a bit of object-oriented-like programming this way.

6.8.1. Why existential?
What has this to do with existential quantification? Simply that MkFoo has the (nearly) isomorphic
type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given above,
thereby avoiding adding a new existential quantification construct.

6.8.2. Type classes
An easy extension (implemented in hbc) is to allow arbitrary contexts before the constructor. For
example:

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and when
pattern matching on Baz2 the first matched value can be converted to a string (as well as applying
the function to it). So this program is legal:

115



Chapter 6. GHC Language Features

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz1 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must store
the dictionaries for Eq and Show respectively, and extract it on pattern matching.

Notice the way that the syntax fits smoothly with that used for universal quantification earlier.

6.8.3. Restrictions
There are several restrictions on the ways in which existentially-quantified constructors can be use.

• When pattern matching, each pattern match introduces a new, distinct, type for each existential
type variable. These types cannot be unified with any other type, nor can they escape from the
scope of the pattern match. For example, these fragments are incorrect:

f1 (MkFoo a f) = a

Here, the type bound by MkFoo "escapes", because a is the result of f1. One way to see why this is
wrong is to ask what type f1 has:

f1 :: Foo -> a - Weird!

What is this "a" in the result type? Clearly we don’t mean this:

f1 :: forall a. Foo -> a - Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It’s ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types arising from
the two Baz1 constructors.

• You can’t pattern-match on an existentially quantified constructor in a let or where group of
bindings. So this is illegal:

f3 x = a==b where { Baz1 a b = x }

You can only pattern-match on an existentially-quantified constructor in a case expression or in the
patterns of a function definition. The reason for this restriction is really an implementation one.
Type-checking binding groups is already a nightmare without existentials complicating the
picture. Also an existential pattern binding at the top level of a module doesn’t make sense,
because it’s not clear how to prevent the existentially-quantified type "escaping". So for now,
there’s a simple-to-state restriction. We’ll see how annoying it is.

• You can’t use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

116



Chapter 6. GHC Language Features

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and a value of type
t. That contradicts the idea that newtype should have no concrete representation. You can get just
the same efficiency and effect by using data instead of newtype. If there is no overloading
involved, then there is more of a case for allowing an existentially-quantified newtype, because
the data because the data version does carry an implementation cost, but single-field
existentially quantified constructors aren’t much use. So the simple restriction (no existential stuff
on newtype) stands, unless there are convincing reasons to change it.

• You can’t use deriving to define instances of a data type with existentially quantified data
constructors. Reason: in most cases it would not make sense. For example:#

data T = forall a. MkT [a] deriving( Eq )

To derive Eq in the standard way we would need to have equality between the single component of
two MkT constructors:

instance Eq T where
(MkT a) == (MkT b) = ???

But a and b have distinct types, and so can’t be compared. It’s just about possible to imagine
examples in which the derived instance would make sense, but it seems altogether simpler simply
to prohibit such declarations. Define your own instances!

6.9. Assertions
If you want to make use of assertions in your standard Haskell code, you could define a function like
the following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message – an assertion failed, but which and
where?

One way out is to define an extended assert function which also takes a descriptive string to
include in the error message and perhaps combine this with the use of a pre-processor which inserts
the source location where assert was used.

Ghc offers a helping hand here, doing all of this for you. For every use of assert in the user’s
source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source location where the assertion was made,

117



Chapter 6. GHC Language Features

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Exception.assert, so
you can still define and use your own versions of assert, should you so wish. If not, import
Exception to make use assert in your code.

To have the compiler ignore uses of assert, use the compiler option -fignore-asserts. That is,
expressions of the form assert pred e will be rewritten to e.

Assertion failures can be caught, see the documentation for the Exception library (Section 4.8 in
Haskell Libraries) for the details.

6.10. Scoped Type Variables
A pattern type signature can introduce a scoped type variable. For example

f (xs::[a]) = ys ++ ys
where

ys :: [a]
ys = reverse xs

The pattern (xs::[a]) includes a type signature for xs. This brings the type variable a into scope;
it scopes over all the patterns and right hand sides for this equation for f. In particular, it is in scope
at the type signature for y.

At ordinary type signatures, such as that for ys, any type variables mentioned in the type signature
that are not in scope are implicitly universally quantified. (If there are no type variables in scope, all
type variables mentioned in the signature are universally quantified, which is just as in Haskell 98.)
In this case, since a is in scope, it is not universally quantified, so the type of ys is the same as that
of xs. In Haskell 98 it is not possible to declare a type for ys; a major benefit of scoped type
variables is that it becomes possible to do so.

Scoped type variables are implemented in both GHC and Hugs. Where the implementations differ
from the specification below, those differences are noted.

So much for the basic idea. Here are the details.

6.10.1. Scope and implicit quantification

• All the type variables mentioned in the patterns for a single function definition equation, that are
not already in scope, are brought into scope by the patterns. We describe this set as the type
variables bound by the equation.

118



Chapter 6. GHC Language Features

• The type variables thus brought into scope may be mentioned in ordinary type signatures or
pattern type signatures anywhere within their scope.

• In ordinary type signatures, any type variable mentioned in the signature that is in scope is not
universally quantified.

• Ordinary type signatures do not bring any new type variables into scope (except in the type
signature itself!). So this is illegal:

f :: a -> a
f x = x::a

It’s illegal because a is not in scope in the body of f, so the ordinary signature x::a is equivalent to
x::forall a.a; and that is an incorrect typing.

• There is no implicit universal quantification on pattern type signatures, nor may one write an
explicit forall type in a pattern type signature. The pattern type signature is a monotype.

• The type variables in the head of a class or instance declaration scope over the methods
defined in the where part. For example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

in
head ys

(Not implemented in Hugs yet, Dec 98).

6.10.2. Polymorphism

• Pattern type signatures are completely orthogonal to ordinary, separate type signatures. The two
can be used independently or together. There is no scoping associated with the names of the type
variables in a separate type signature.

f :: [a] -> [a]
f (xs::[b]) = reverse xs

• The function must be polymorphic in the type variables bound by all its equations. Operationally,
the type variables bound by one equation must not:

• Be unified with a type (such as Int, or [a]).

• Be unified with a type variable free in the environment.

• Be unified with each other. (They may unify with the type variables bound by another equation
for the same function, of course.)

119



Chapter 6. GHC Language Features

For example, the following all fail to type check:

f (x::a) (y::b) = [x,y] - a unifies with b

g (x::a) = x + 1::Int - a unifies with Int

h x = let k (y::a) = [x,y] - a is free in the
in k x - environment

k (x::a) True = ... - a unifies with Int
k (x::Int) False = ...

w :: [b] -> [b]
w (x::a) = x - a unifies with [b]

• The pattern-bound type variable may, however, be constrained by the context of the principal
type, thus:

f (x::a) (y::a) = x+y*2

gets the inferred type: forall a. Num a => a -> a -> a.

6.10.3. Result type signatures

• The result type of a function can be given a signature, thus:

f (x::a) :: [a] = [x,x,x]

The final :: [a] after all the patterns gives a signature to the result type. Sometimes this is the only
way of naming the type variable you want:

f :: Int -> [a] -> [a]
f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)

in \xs -> map g (reverse xs ‘zip‘ xs)

Result type signatures are not yet implemented in Hugs.

6.10.4. Pattern signatures on other constructs

• A pattern type signature can be on an arbitrary sub-pattern, not just on a variable:

f ((x,y)::(a,b)) = (y,x) :: (b,a)

• Pattern type signatures, including the result part, can be used in lambda abstractions:

120



Chapter 6. GHC Language Features

(\ (x::a, y) :: a -> x)

Type variables bound by these patterns must be polymorphic in the sense defined above. For
example:

f1 (x::c) = f1 x - ok
f2 = \(x::c) -> f2 x - not ok

Here, f1 is OK, but f2 is not, because c gets unified with a type variable free in the environment, in
this case, the type of f2, which is in the environment when the lambda abstraction is checked.

• Pattern type signatures, including the result part, can be used in case expressions:

case e of { (x::a, y) :: a -> x }

The pattern-bound type variables must, as usual, be polymorphic in the following sense: each case
alternative, considered as a lambda abstraction, must be polymorphic. Thus this is OK:

case (True,False) of { (x::a, y) -> x }

Even though the context is that of a pair of booleans, the alternative itself is polymorphic. Of course,
it is also OK to say:

case (True,False) of { (x::Bool, y) -> x }

• To avoid ambiguity, the type after the “::” in a result pattern signature on a lambda or case must
be atomic (i.e. a single token or a parenthesised type of some sort). To see why, consider how one
would parse this:

\ x :: a -> b -> x

• Pattern type signatures that bind new type variables may not be used in pattern bindings at all. So
this is illegal:

f x = let (y, z::a) = x in ...

But these are OK, because they do not bind fresh type variables:

f1 x = let (y, z::Int) = x in ...
f2 (x::(Int,a)) = let (y, z::a) = x in ...

However a single variable is considered a degenerate function binding, rather than a degerate pattern
binding, so this is permitted, even though it binds a type variable:

f :: (b->b) = \(x::b) -> x

Such degnerate function bindings do not fall under the monomorphism restriction. Thus:

g :: a -> a -> Bool = \x y. x==y

Here g has type forall a. Eq a => a -> a -> Bool, just as if g had a separate type
signature. Lacking a type signature, g would get a monomorphic type.

121



Chapter 6. GHC Language Features

6.10.5. Existentials

• Pattern type signatures can bind existential type variables. For example:

data T = forall a. MkT [a]

f :: T -> T
f (MkT [t::a]) = MkT t3

where
t3::[a] = [t,t,t]

6.11. Pragmas
GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas
don’t affect the meaning of the program, but they might affect the efficiency of the generated code.

6.11.1. INLINE pragma
GHC (with -O, as always) tries to inline (or “unfold”) functions/values that are “small enough,” thus
avoiding the call overhead and possibly exposing other more-wonderful optimisations.

You will probably see these unfoldings (in Core syntax) in your interface files.

Normally, if GHC decides a function is “too expensive” to inline, it will not do so, nor will it export
that unfolding for other modules to use.

The sledgehammer you can bring to bear is the INLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)

#ifdef __GLASGOW_HASKELL__
{-# INLINE key_function #-}
#endif

(You don’t need to do the C pre-processor carry-on unless you’re going to stick the code through
HBC—it doesn’t like INLINE pragmas.)

The major effect of an INLINE pragma is to declare a function’s “cost” to be very low. The normal
unfolding machinery will then be very keen to inline it.

An INLINE pragma for a function can be put anywhere its type signature could be put.

INLINE pragmas are a particularly good idea for the then/return (or bind/unit) functions in a
monad. For example, in GHC’s own UniqueSupply monad code, we have:

122



Chapter 6. GHC Language Features

#ifdef __GLASGOW_HASKELL__
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
#endif

6.11.2. NOINLINE pragma

The NOINLINE pragma does exactly what you’d expect: it stops the named function from being
inlined by the compiler. You shouldn’t ever need to do this, unless you’re very cautious about code
size.

6.11.3. SPECIALIZE pragma

(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB: more
code space) specialised to particular types. Thus, if you have an overloaded function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists with Widget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

To get very fancy, you can also specify a named function to use for the specialised value, by adding =
blah, as in:

{-# SPECIALIZE hammeredLookup :: ...as before... = blah #-}

It’s Your Responsibility to make sure that blah really behaves as a specialised version of
hammeredLookup!!!

NOTE: the =blah feature isn’t implemented in GHC 4.xx.

An example in which the = blah form will Win Big:

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# SPECIALIZE toDouble :: Int -> Double = i2d #-}
i2d (I# i) = D# (int2Double# i) - uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an intermediate
Rational—is obscenely expensive by comparison.

123



Chapter 6. GHC Language Features

By using the US spelling, your SPECIALIZE pragma will work with HBC, too. Note that HBC
doesn’t support the = blah form.

A SPECIALIZE pragma for a function can be put anywhere its type signature could be put.

6.11.4. SPECIALIZE instance pragma
Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where { ... usual stuff ... }

{-# SPECIALIZE instance Eq (Foo [(Int, Bar)] #-}

Compatible with HBC, by the way.

6.11.5. LINE pragma

This pragma is similar to C’s #line pragma, and is mainly for use in automatically generated
Haskell code. It lets you specify the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you’d generated the current file from something called Foo.vhs and this line corresponds to line
42 in the original. GHC will adjust its error messages to refer to the line/file named in the LINE
pragma.

6.11.6. RULES pragma
The RULES pragma lets you specify rewrite rules. It is described in Section 6.12.

6.12. Rewrite rules
The programmer can specify rewrite rules as part of the source program (in a pragma). GHC applies
these rewrite rules wherever it can.

Here is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

124



Chapter 6. GHC Language Features

6.12.1. Syntax
From a syntactic point of view:

• Each rule has a name, enclosed in double quotes. The name itself has no significance at all. It is
only used when reporting how many times the rule fired.

• There may be zero or more rules in a RULES pragma.

• Layout applies in a RULES pragma. Currently no new indentation level is set, so you must lay out
your rules starting in the same column as the enclosing definitions.

• Each variable mentioned in a rule must either be in scope (e.g. map), or bound by the forall
(e.g. f, g, xs). The variables bound by the forall are called the pattern variables. They are
separated by spaces, just like in a type forall.

• A pattern variable may optionally have a type signature. If the type of the pattern variable is
polymorphic, it must have a type signature. For example, here is the foldr/build rule:

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Since g has a polymorphic type, it must have a type signature.

• The left hand side of a rule must consist of a top-level variable applied to arbitrary expressions.
For example, this is not OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True

In "wrong1", the LHS is not an application; in "wrong2", the LHS has a pattern variable in the
head.

• A rule does not need to be in the same module as (any of) the variables it mentions, though of
course they need to be in scope.

• Rules are automatically exported from a module, just as instance declarations are.

6.12.2. Semantics
From a semantic point of view:

• Rules are only applied if you use the -O flag.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a
substitution instance of the LHS of a rule, it replaces the expression by the
(appropriately-substituted) RHS. By "a substitution instance" we mean that the LHS can be made
equal to the expression by substituting for the pattern variables.

• The LHS and RHS of a rule are typechecked, and must have the same type.

125



Chapter 6. GHC Language Features

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the same
meaning. That is undecideable in general, and infeasible in most interesting cases. The
responsibility is entirely the programmer’s!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For example:

"loop" forall x,y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.

• If more than one rule matches a call, GHC will choose one arbitrarily to apply.

• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule LHS with an
expression. It seeks a substitution which makes the LHS and expression syntactically equal
modulo alpha conversion. The pattern (rule), but not the expression, is eta-expanded if necessary.
(Eta-expanding the epression can lead to laziness bugs.) But not beta conversion (that’s called
higher-order matching).

Matching is carried out on GHC’s intermediate language, which includes type abstractions and
applications. So a rule only matches if the types match too. See Section 6.12.4 below.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

let s = map f
t = map g

in
s (t xs)

The expression s (t xs) does not match the rule "map/map", but GHC will substitute for s and t,
giving an expression which does match. If s or t was (a) used more than once, and (b) large or a
redex, then it would not be substituted, and the rule would not fire.

• In the earlier phases of compilation, GHC inlines nothing that appears on the LHS of a rule,
because once you have substituted for something you can’t match against it (given the simple
minded matching). So if you write the rule

"map/map" forall f,g. map f . map g = map (f.g)

this won’t match the expression map f (map g xs). It will only match something written with
explicit use of ".". Well, not quite. It will match the expression

wibble f g xs

where wibble is defined:

wibble f g = map f . map g

because wibble will be inlined (it’s small). Later on in compilation, GHC starts inlining even things
on the LHS of rules, but still leaves the rules enabled. This inlining policy is controlled by the
per-simplification-pass flag -finline-phasen.

• All rules are implicitly exported from the module, and are therefore in force in any module that
imports the module that defined the rule, directly or indirectly. (That is, if A imports B, which
imports C, then C’s rules are in force when compiling A.) The situation is very similar to that for
instance declarations.

126



Chapter 6. GHC Language Features

6.12.3. List fusion
The RULES mechanism is used to implement fusion (deforestation) of common list functions. If a
"good consumer" consumes an intermediate list constructed by a "good producer", the intermediate
list should be eliminated entirely.

The following are good producers:

• List comprehensions

• Enumerations of Int and Char (e.g. [’a’..’z’]).

• Explicit lists (e.g. [True, False])

• The cons constructor (e.g 3:4:[])

• ++

• map

• filter

• iterate, repeat

• zip, zipWith

The following are good consumers:

• List comprehensions

• array (on its second argument)

• length

• ++ (on its first argument)

• map

• filter

• concat

• unzip, unzip2, unzip3, unzip4

• zip, zipWith (but on one argument only; if both are good producers, zip will fuse with one but
not the other)

• partition

• head

• and, or, any, all

• sequence_

• msum

• sortBy

127



Chapter 6. GHC Language Features

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are not
included, please tell us.

If you want to write your own good consumers or producers, look at the Prelude definitions of the
above functions to see how to do so.

6.12.4. Specialisation
Rewrite rules can be used to get the same effect as a feature present in earlier version of GHC:

{-# SPECIALIZE fromIntegral :: Int8 -> Int16 = int8ToInt16 #-}

This told GHC to use int8ToInt16 instead of fromIntegral whenever the latter was called with
type Int8 -> Int16. That is, rather than specialising the original definition of fromIntegral the
programmer is promising that it is safe to use int8ToInt16 instead.

This feature is no longer in GHC. But rewrite rules let you do the same thing:

{-# RULES
"fromIntegral/Int8/Int16" fromIntegral = int8ToInt16

#-}

This slightly odd-looking rule instructs GHC to replace fromIntegral by int8ToInt16 whenever
the types match. Speaking more operationally, GHC adds the type and dictionary applications to get
the typed rule

forall (d1::Integral Int8) (d2::Num Int16) .
fromIntegral Int8 Int16 d1 d2 = int8ToInt16

What is more, this rule does not need to be in the same file as fromIntegral, unlike the SPECIALISE
pragmas which currently do (so that they have an original definition available to specialise).

6.12.5. Controlling what’s going on

• Use -ddump-rules to see what transformation rules GHC is using.

• Use -ddump-simpl-stats to see what rules are being fired. If you add -dppr-debug you get a
more detailed listing.

• The defintion of (say) build in PrelBase.lhs looks llike this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

128



Chapter 6. GHC Language Features

{-# INLINE build #-}
build g = g (:) []

Notice the INLINE! That prevents (:) from being inlined when compiling PrelBase, so that an
importing module will “see” the (:), and can match it on the LHS of a rule. INLINE prevents any
inlining happening in the RHS of the INLINE thing. I regret the delicacy of this.

• In ghc/lib/std/PrelBase.lhs look at the rules for map to see how to write rules that will do
fusion and yet give an efficient program even if fusion doesn’t happen. More rules in
PrelList.lhs.

6.13. Generic classes
The ideas behind this extension are described in detail in "Derivable type classes", Ralf Hinze and
Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. An example will give the
idea:

class Bin a where
toBin :: a -> [Int]
fromBin :: [Int] -> (a, [Int])

toBin {| Unit |} Unit = []
toBin {| a :+: b |} (Inl x) = 0 : toBin x
toBin {| a :+: b |} (Inr y) = 1 : toBin y
toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y

fromBin {| Unit |} bs = (Unit, bs)
fromBin {| a :+: b |} (0:bs) = (Inl x, bs’) where (x,bs’) = from-

Bin bs
fromBin {| a :+: b |} (1:bs) = (Inr y, bs’) where (y,bs’) = from-

Bin bs
fromBin {| a :*: b |} bs

= (x :*: y, bs”) where (x,bs’ ) = fromBin bs
(y,bs”) = fromBin bs’

This class declaration explains how toBin and fromBin work for arbitrary data types. They do so
by giving cases for unit, product, and sum, which are defined thus:

data Unit = Unit
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b

Now you can make a data type into an instance of Bin like this:

instance (Bin a, Bin b) => Bin (a,b)
instance Bin a => Bin [a]

129



Chapter 6. GHC Language Features

That is, just leave off the "where" clasuse. Of course, you can put in the where clause and over-ride
whichever methods you please.

6.13.1. Using generics
To use generics you need to

• Use the -fgenerics flag.

• Import the module Generics from the lang package. This import brings into scope the data
types Unit, :*:, and :+:. (You don’t need this import if you don’t mention these types explicitly;
for example, if you are simply giving instance declarations.)

6.13.2. Changes wrt the paper
Note that the type constructors :+: and :*: can be written infix (indeed, you can now use any
operator starting in a colon as an infix type constructor). Also note that the type constructors are not
exactly as in the paper (Unit instead of 1, etc). Finally, note that the syntax of the type patterns in the
class declaration uses "{|" and "{|" brackets; curly braces alone would ambiguous when they
appear on right hand sides (an extension we anticipate wanting).

6.13.3. Terminology and restrictions
Terminology. A "generic default method" in a class declaration is one that is defined using type
patterns as above. A "polymorphic default method" is a default method defined as in Haskell 98. A
"generic class declaration" is a class declaration with at least one generic default method.

Restrictions:

• Alas, we do not yet implement the stuff about constructor names and field labels.

• A generic class can have only one parameter; you can’t have a generic multi-parameter class.

• A default method must be defined entirely using type patterns, or entirely without. So this is
illegal:

class Foo a where
op :: a -> (a, Bool)
op {| Unit |} Unit = (Unit, True)
op x = (x, False)

However it is perfectly OK for some methods of a generic class to have generic default methods and
others to have polymorphic default methods.

• The type variable(s) in the type pattern for a generic method declaration scope over the right hand
side. So this is legal (note the use of the type variable “p” in a type signature on the right hand side:

130



Chapter 6. GHC Language Features

class Foo a where
op :: a -> Bool
op {| p :*: q |} (x :*: y) = op (x :: p)
...

• The type patterns in a generic default method must take one of the forms:

a :+: b
a :*: b
Unit

where "a" and "b" are type variables. Furthermore, all the type patterns for a single type constructor
(:*:, say) must be identical; they must use the same type variables. So this is illegal:

class Foo a where
op :: a -> Bool
op {| a :+: b |} (Inl x) = True
op {| p :+: q |} (Inr y) = False

The type patterns must be identical, even in equations for different methods of the class. So this too
is illegal:

class Foo a where
op1 :: a -> Bool
op {| a :*: b |} (Inl x) = True

op2 :: a -> Bool
op {| p :*: q |} (Inr y) = False

(The reason for this restriction is that we gather all the equations for a particular type consructor into
a single generic instance declaration.)

• A generic method declaration must give a case for each of the three type constructors.

• In an instance declaration for a generic class, the idea is that the compiler will fill in the methods
for you, based on the generic templates. However it can only do so if

• The instance type is simple (a type constructor applied to type variables, as in Haskell 98).

• No constructor of the instance type has unboxed fields.

(Of course, these things can only arise if you are already using GHC extensions.) However, you can
still give an instance declarations for types which break these rules, provided you give explicit
code to override any generic default methods.

The option -ddump-deriv dumps incomprehensible stuff giving details of what the compiler does
with generic declarations.

6.13.4. Another example
Just to finish with, here’s another example I rather like:

131



Chapter 6. GHC Language Features

class Tag a where
nCons :: a -> Int
nCons {| Unit |} _ = 1
nCons {| a :*: b |} _ = 1
nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)

tag :: a -> Int
tag {| Unit |} _ = 1
tag {| a :*: b |} _ = 1
tag {| a :+: b |} (Inl x) = tag x
tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y

6.14. Concurrent and Parallel Haskell
Concurrent and Parallel Haskell are Glasgow extensions to Haskell which let you structure your
program as a group of independent ‘threads’.

Concurrent and Parallel Haskell have very different purposes.

Concurrent Haskell is for applications which have an inherent structure of interacting, concurrent
tasks (i.e. ‘threads’). Threads in such programs may be required. For example, if a concurrent thread
has been spawned to handle a mouse click, it isn’t optional—the user wants something done!

A Concurrent Haskell program implies multiple ‘threads’ running within a single Unix process on a
single processor.

You will find at least one paper about Concurrent Haskell hanging off of Simon Peyton Jones’s Web
page (http://research.microsoft.com/~simonpj/).

Parallel Haskell is about speed—spawning threads onto multiple processors so that your program
will run faster. The ‘threads’ are always advisory—if the runtime system thinks it can get the job
done more quickly by sequential execution, then fine.

A Parallel Haskell program implies multiple processes running on multiple processors, under a PVM
(Parallel Virtual Machine) framework.

Parallel Haskell is still relatively new; it is more about “research fun” than about “speed.” That will
change.

Again, check Simon’s Web page for publications about Parallel Haskell (including “GUM”, the key
bits of the runtime system).

Some details about Parallel Haskell follow. For more information about concurrent Haskell, see
Chapter 2 in Haskell Libraries.

132



Chapter 6. GHC Language Features

6.14.1. Features specific to Parallel Haskell

6.14.1.1. The Parallel interface (recommended)

GHC provides two functions for controlling parallel execution, through the Parallel interface:

interface Parallel where
infixr 0 ‘par‘
infixr 1 ‘seq‘

par :: a -> b -> b
seq :: a -> b -> b

The expression (x ‘par‘ y) sparks the evaluation of x (to weak head normal form) and returns y.
Sparks are queued for execution in FIFO order, but are not executed immediately. At the next heap
allocation, the currently executing thread will yield control to the scheduler, and the scheduler will
start a new thread (until reaching the active thread limit) for each spark which has not already been
evaluated to WHNF.

The expression (x ‘seq‘ y) evaluates x to weak head normal form and then returns y. The seq
primitive can be used to force evaluation of an expression beyond WHNF, or to impose a desired
execution sequence for the evaluation of an expression.

For example, consider the following parallel version of our old nemesis, nfib:

import Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (seq n2 (n1 + n2 + 1))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values of n greater than 1, we use par to spark a thread to evaluate nfib (n-1), and then we
use seq to force the parent thread to evaluate nfib (n-2) before going on to add together these
two subexpressions. In this divide-and-conquer approach, we only spark a new thread for one branch
of the computation (leaving the parent to evaluate the other branch). Also, we must use seq to
ensure that the parent will evaluate n2 before n1 in the expression (n1 + n2 + 1). It is not
sufficient to reorder the expression as (n2 + n1 + 1), because the compiler may not generate code
to evaluate the addends from left to right.

6.14.1.2. Underlying functions and primitives

133



Chapter 6. GHC Language Features

The functions par and seq are wired into GHC, and unfold into uses of the par# and seq#
primitives, respectively. If you’d like to see this with your very own eyes, just run GHC with the
-ddump-simpl option. (Anything for a good time. . . )

6.14.1.3. Scheduling policy for concurrent/parallel threads

Runnable threads are scheduled in round-robin fashion. Context switches are signalled by the
generation of new sparks or by the expiry of a virtual timer (the timer interval is configurable with
the -C[<num>] RTS option). However, a context switch doesn’t really happen until the current heap
block is full. You can’t get any faster context switching than this.

When a context switch occurs, pending sparks which have not already been reduced to weak head
normal form are turned into new threads. However, there is a limit to the number of active threads
(runnable or blocked) which are allowed at any given time. This limit can be adjusted with the
-t<num> RTS option (the default is 32). Once the thread limit is reached, any remaining sparks are
deferred until some of the currently active threads are completed.

6.15. Haskell 98 vs. Glasgow Haskell: language
non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98. See also the
“when things go wrong” section (Chapter 8) for information about crashes, space leaks, and other
undesirable phenomena.

The limitations here are listed in Haskell-Report order (roughly).

6.15.1. Expressions and patterns

Very long String constants:

May not go through. If you add a “string gap” every few thousand characters, then the strings
can be as long as you like.

Bear in mind that string gaps and the -cpp option don’t mix very well (see Section 3.10.1).

Single quotes in module names:

It might work, but it’s just begging for trouble.

134



Chapter 6. GHC Language Features

6.15.2. Declarations and bindings
None known.

6.15.3. Module system and interface files

Namespace pollution

Several modules internal to GHC are visible in the standard namespace. All of these modules
begin with Prel, so the rule is: don’t use any modules beginning with Prel in your program,
or you will be comprehensively screwed.

6.15.4. Numbers, basic types, and built-in classes

Unchecked arithmetic:

Arguably not an infelicity, but. . . Bear in mind that operations on Int, Float, and Double

numbers are unchecked for overflow, underflow, and other sad occurrences. (note, however that
some architectures trap floating-point overflow and loss-of-precision and report a floating-point
exception, probably terminating the program).

Use Integer, Rational, etc., numeric types if this stuff keeps you awake at night.

Multiply-defined array elements—not checked:

This code fragment should elicit a fatal error, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

6.15.5. In Prelude support

Arbitrary-sized tuples:

Plain old tuples of arbitrary size do work.

HOWEVER: standard instances for tuples (Eq, Ord, Bounded, Ix Read, and Show) are
available only up to 5-tuples.

These limitations are easily subvertible, so please ask if you get stuck on them.

135



Chapter 7. Foreign function interface

7.1. Introduction
The motivation behind this foreign function interface (FFI) specification is to make it possible to
describe in Haskell source code the interface to foreign functionality in a Haskell system independent
manner. It builds on experiences made with the previous foreign function interfaces provided by
GHC and Hugs. However, the FFI specified in this document is not in the market of trying to
completely bridge the gap between the actual type of an external function, and what is a convenient
type for that function to the Haskell programmer. That is the domain of tools like HaskellDirect or
Green Card, both of which are capable of generating Haskell code that uses this FFI.

Generally, the FFI consists of three parts:

1. extensions to the base language Haskell 98 (most notably foreign import and foreign

export declarations), which are specified in the present document,

2. a low-level marshalling library, which is part of the Language part of the Haskell Extension
Library (see Section 4.25 in Haskell Libraries), and a

3. a high-level marshalling library, which is still under development.

Before diving into the details of the language extension coming with the FFI, let us briefly outline
the two other components of the interface.

The low-level marshalling library consists of a portion that is independent of the targeted foreign
language and dedicated support for Haskell bindings to C libraries (special support for other
languages may be added in the future). The language independent part is given by the module
Foreign module (see Section 4.9 in Haskell Libraries). It provides support for handling references
to foreign structures, for passing references to Haskell structures out to foreign routines, and for
storing primitive data types in raw memory blocks in a portable manner. The support for C libraries
essentially provides Haskell representations for all basic types of C (see Section 4.5 in Haskell
Libraries and Section 4.6 in Haskell Libraries).

The high-level library, of which the interface definition is not yet finalised, provides routines for
marshalling complex Haskell structures as well as handling out and in-out parameters in a
convenient, yet protable way.

In the following, we will discuss the language extensions of the FFI (ie, the first point above). They
can be split up into two complementary halves; one half that provides Haskell constructs for
importing foreign functionality into Haskell, the other which lets you expose Haskell functions to the
outside world. We start with the former, how to import external functionality into Haskell.

136



Chapter 7. Foreign function interface

7.2. Calling foreign functions
To bind a Haskell variable name and type to an external function, we introduce a new construct:
foreign import. It defines the type of a Haskell function together with the name of an external
function that actually implements it. The syntax of foreign import construct is as follows:

topdecl
: ...
..
| ’foreign’ ’import’ [callconv] [ext_fun] [’un-

safe’] varid ’::’ prim_type

A foreign import declaration is only allowed as a toplevel declaration. It consists of two parts,
one giving the Haskell type (prim_type), Haskell name (varid) and a flag indicating whether the
primitive is unsafe, the other giving details of the name of the external function (ext_fun) and its
calling interface (callconv.)

Giving a Haskell name and type to an external entry point is clearly an unsafe thing to do, as the
external name will in most cases be untyped. The onus is on the programmer using foreign

import to ensure that the Haskell type given correctly maps on to the type of the external function.
Section Section 7.2.5 specifies the mapping from Haskell types to external types.

7.2.1. Giving the external function a Haskell name
The external function has to be given a Haskell name. The name must be a Haskell varid, so the
language rules regarding variable names must be followed, i.e., it must start with a lower case letter
followed by a sequence of alphanumeric (‘in the Unicode sense’) characters or ’. 1

varid : small ( small | large | udigit | ’ )*

7.2.2. Naming the external function
The name of the external function consists of two parts, one specifying its location, the other its
name:

ext_fun : ext_loc ext_name
| ext_name

ext_name : string
ext_loc : string

For example,

137



Chapter 7. Foreign function interface

foreign import stdcall "Advapi32" "RegCloseKey" regCloseKey :: Addr -
> IO ()

states that the external function named RegCloseKey at location Advapi32 should be bound to the
Haskell name regCloseKey. For a Win32 Haskell implementation that supports the loading of
DLLs on-the-fly, this declaration will most likely cause the run-time system to load the
Advapi32.dll DLL before looking up the function RegCloseKey() therein to get at the function
pointer to use when invoking regCloseKey.

Compiled implementations may do something completely different, i.e., mangle "RegCloseKey" to
convert it into an archive/import library symbol, that’s assumed to be in scope when linking. The
details of which are platform (and compiler command-line) dependent.

If the location part is left out, the name of the external function specifies a symbol that is assumed to
be in scope when linking.

The location part can either contain an absolute ‘address’ (i.e., path) of the archive/DLL, or just its
name, leaving it up to the underlying system (system meaning both RTS/compiler and OS) to resolve
the name to its real location.

An implementation is expected to be able to intelligently transform the ext_loc location to fit
platform-specific practices for naming dynamic libraries. For instance, given the declaration

foreign import "Foo" "foo" foo :: Int -> Int -> IO ()

an implementation should map Foo to "Foo.dll" on a Win32 platform, and libFoo.so on ELF
platforms. If the lookup of the dynamic library with this transformed location name should fail, the
implementation should then attempt to use the original name before eventually giving up. As part of
their documentation, implementations of foreign import should specify the exact details of how
ext_locs are transformed and resolved, including the list of directories searched (and the order in
which they are.)

In the case the Haskell name of the imported function is identical to the external name, the ext_fun
can be omitted. i.e.,

foreign import sin :: Double -> IO Double

is identical to

foreign import "sin" sin :: Double -> IO Double

7.2.3. Calling conventions
The number of calling conventions supported is fixed:

138



Chapter 7. Foreign function interface

callconv : ccall | stdcall

ccall

The ’default’ calling convention on a platform, i.e., the one used to do (C) function calls.

In the case of x86 platforms, the caller pushes function arguments from right to left on the C
stack before calling. The caller is responsible for popping the arguments off of the C stack on
return.

stdcall

A Win32 specific calling convention. The same as ccall, except that the callee cleans up the C
stack before returning. 2

Some remarks:

• Interoperating well with external code is the name of the game here, so the guiding principle when
deciding on what calling conventions to include in callconv is that there’s a demonstrated need
for a particular calling convention. Should it emerge that the inclusion of other calling conventions
will generally improve the quality of this Haskell FFI, they will be considered for future inclusion
in callconv.

• Supporting stdcall (and perhaps other platform-specific calling conventions) raises the issue of
whether a Haskell FFI should allow the user to write platform-specific Haskell code. The calling
convention is clearly an integral part of an external function’s interface, so if the one used differs
from the standard one specified by the platform’s ABI and that convention is used by a non-trivial
amount of external functions, the view of the FFI authors is that a Haskell FFI should support it.

• For foreign import (and other foreign declarations), supplying the calling convention is
optional. If it isn’t supplied, it is treated as if ccall was specified. Users are encouraged to leave
out the specification of the calling convention, if possible.

7.2.4. External function types
The range of types that can be passed as arguments to an external function is restricted (as are the
range of results coming back):

prim_type : IO prim_result
| prim_result
| prim_arg ’->’ prim_type

139



Chapter 7. Foreign function interface

• If you associate a non-IO type with an external function, you have the same ’proof obligations’ as
when you make use of IOExts.unsafePerformIO in your Haskell programs.

• The external function is strict in all its arguments.

• GHC only: The GHC FFI implementation provides one extension to prim_type:

prim_type : ...
| unsafe_arr_ty ’->’ prim_type

unsafe_arr_ty : ByteArray a
| MutableByteArray i s a

GHC permits the passing of its byte array primitive types to external functions. There’s some
restrictions on when they can be used; see Section Section 7.2.4.1 for more details.

Section Section 7.2.4.2 defines prim_result; Section Section 7.2.4.1 defines prim_arg.

7.2.4.1. Argument types

The external function expects zero or more arguments. The set of legal argument types is restricted
to the following set:

prim_arg : ext_ty | new_ty | ForeignObj

new_ty : a Haskell newtype of a prim_arg.

ext_ty : int_ty | word_ty | float_ty
| Addr | Char | StablePtr a
| Bool

int_ty : Int | Int8 | Int16 | Int32 | Int64
word_ty : Word8 | Word16 | Word32 | Word64
float_ty : Float | Double

• ext_ty represent the set of basic types supported by C-like languages, although the numeric
types are explicitly sized. The stable pointer StablePtr type looks out of place in this list of
C-like types, but it has a well-defined and simple C mapping, see Section Section 7.2.5 for details.

• prim_arg represent the set of permissible argument types. In addition to ext_ty, ForeignObj
is also included. The ForeignObj type represent values that are pointers to some external
entity/object. It differs from the Addr type in that ForeignObjs are finalized, i.e., once the
garbage collector determines that a ForeignObj is unreachable, it will invoke a finalising
procedure attached to the ForeignObj to notify the outside world that we’re through with using
it.

• Haskell newtypes that wrap up a prim_arg type can also be passed to external functions.

140



Chapter 7. Foreign function interface

• Haskell type synonyms for any of the above can also be used in foreign import declarations.
Qualified names likewise, i.e. Word.Word32 is legal.

• foreign import does not support the binding to external constants/variables. A foreign

import declaration that takes no arguments represent a binding to a function with no arguments.

• GHC only: GHC’s implementation of the FFI provides two extensions:

• Support for passing heap allocated byte arrays to an external function

prim_type : ...
| prim_arg ’->’ prim_type
| unsafe_arr_ty ’->’ prim_type

unsafe_arr_ty : ByteArray a
| MutableByteArray i s a

GHC’s ByteArray and MutableByteArray primitive types are (im)mutable chunks of memory
allocated on the Haskell heap, and pointers to these can be passed to foreign imported
external functions provided they are marked as unsafe. Since it is inherently unsafe to hand
out references to objects in the Haskell heap if the external call may cause a garbage collection
to happen, you have to annotate the foreign import declaration with the attribute unsafe.
By doing so, the user explicitly states that the external function won’t provoke a garbage
collection, so passing out heap references to the external function is allright.

• Another GHC extension is the support for unboxed types:

prim_arg : ... | unboxed_h_ty
ext_ty : .... | unboxed_ext_ty

unboxed_ext_ty : Int# | Word# | Char#
| Float# | Double# | Addr#

| StablePtr# a
unboxed_h_ty : MutableByteArray# | ForeignObj#

| ByteArray#

Clearly, if you want to be portable across Haskell systems, using system-specific extensions such
as this is not advisable; avoid using them if you can. (Support for using unboxed types might be
withdrawn sometime in the future.)

7.2.4.2. Result type

An external function is permitted to return the following range of types:

prim_result : ext_ty | new_ext_ty | ()

new_ext_ty : a Haskell newtype of an ext_ty.

where () represents void / no result.

141



Chapter 7. Foreign function interface

• External functions cannot raise exceptions (IO exceptions or non-IO ones.) It is the responsibility
of the foreign import user to layer any error handling on top of an external function.

• Only external types (ext_ty) can be passed back, i.e., returning ForeignObjs is not
supported/allowed.

• Haskell newtypes that wrap up ext_ty are also permitted.

7.2.5. Type mapping
For the FFI to be of any practical use, the properties and sizes of the various types that can be
communicated between the Haskell world and the outside, needs to be precisely defined. We do this
by presenting a mapping to C, as it is commonly used and most other languages define a mapping to
it. Table Table 7-1 defines the mapping between Haskell and C types.

Table 7-1. Mapping of Haskell types to C types

Haskell type C type requirement range (9)

Char HsChar unspec. integral type HS_CHAR_MIN ..

HS_CHAR_MAX

Int HsInt signed integral of
unspec. size(4)

HS_INT_MIN ..

HS_INT_MAX

Int8 (2) HsInt8 8 bit signed integral HS_INT8_MIN ..

HS_INT8_MAX

Int16 (2) HsInt16 16 bit signed integral HS_INT16_MIN ..

HS_INT16_MAX

Int32 (2) HsInt32 32 bit signed integral HS_INT32_MIN ..

HS_INT32_MAX

Int64 (2,3) HsInt64 64 bit signed integral
(3)

HS_INT64_MIN ..

HS_INT64_MAX

Word8 (2) HsWord8 8 bit unsigned integral 0 .. HS_WORD8_MAX

Word16 (2) HsWord16 16 bit unsigned
integral

0 .. HS_WORD16_MAX

Word32 (2) HsWord32 32 bit unsigned
integral

0 .. HS_WORD32_MAX

Word64 (2,3) HsWord64 64 bit unsigned
integral (3)

0 .. HS_WORD64_MAX

Float HsFloat floating point of
unspec. size (5)

(10)

Double HsDouble floating point of
unspec. size (5)

(10)

Bool HsBool unspec. integral type (11)

142



Chapter 7. Foreign function interface

Addr HsAddr void* (6)

ForeignObj HsForeignObj void* (7)

StablePtr HsStablePtr void* (8)

Some remarks:

1. A Haskell system that implements the FFI will supply a header file HsFFI.h that includes target
platform specific definitions for the above types and values.

2. The sized numeric types Hs{Int,Word}{8,16,32,64} have a 1-1 mapping to ISO C 99’s
{,u}int{8,16,32,64}_t. For systems that doesn’t support this revision of ISO C, a best-fit
mapping onto the supported C types is provided.

3. An implementation which does not support 64 bit integral types on the C side should implement
Hs{Int,Word}64 as a struct. In this case the bounds HS_INT64_{MIN,MAX} and
HS_WORD64_MAX are undefined.

4. A valid Haskell representation of Int has to be equal to or wider than 30 bits. The HsInt
synonym is guaranteed to map onto a C type that satisifies Haskell’s requirement for Int.

5. It is guaranteed that Hs{Float,Double} are one of C’s floating-point types
float/double/long double.

6. It is guaranteed that HsAddr is of the same size as void*, so any other pointer type can be
converted to and from HsAddr without any loss of information (K&R, Appendix A6.8).

7. Foreign objects are handled like Addr by the FFI, so there is again the guarantee that
HsForeignObj is the same as void*. The separate name is meant as a reminder that there is a
finalizer attached to the object pointed to.

8. Stable pointers are passed as addresses by the FFI, but this is only because a void* is used as a
generic container in most APIs, not because they are real addresses. To make this special case
clear, a separate C type is used here.

9. The bounds are preprocessor macros, so they can be used in #if and for array bounds.

10. Floating-point limits are a little bit more complicated, so preprocessor macros mirroring ISO
C’s float.h are provided:

HS_{FLOAT,DOUBLE}_RADIX
HS_{FLOAT,DOUBLE}_ROUNDS
HS_{FLOAT,DOUBLE}_EPSILON
HS_{FLOAT,DOUBLE}_DIG
HS_{FLOAT,DOUBLE}_MANT_DIG
HS_{FLOAT,DOUBLE}_MIN
HS_{FLOAT,DOUBLE}_MIN_EXP
HS_{FLOAT,DOUBLE}_MIN_10_EXP
HS_{FLOAT,DOUBLE}_MAX
HS_{FLOAT,DOUBLE}_MAX_EXP

143



Chapter 7. Foreign function interface

HS_{FLOAT,DOUBLE}_MAX_10_EXP

11. It is guaranteed that Haskell’s False/True map to C’s 0/1, respectively, and vice versa. The
mapping of any other integral value to Bool is left unspecified.

12. To avoid name clashes, identifiers starting with Hs and macros starting with HS_ are reserved for
the FFI.

13. GHC only: The GHC specific types ByteArray and MutableByteArray both map to char*.

7.2.6. Some foreign import wrinkles

• By default, a foreign import function is safe. A safe external function may cause a Haskell
garbage collection as a result of being called. This will typically happen when the imported
function end up calling Haskell functions that reside in the same ’Haskell world’ (i.e., shares the
same storage manager heap) – see Section Section 7.4 for details of how the FFI let’s you call
Haskell functions from the outside. If the programmer can guarantee that the imported function
won’t call back into Haskell, the foreign import can be marked as ’unsafe’ (see Section
Section 7.2 for details of how to do this.) Unsafe calls are cheaper than safe ones, so
distinguishing the two classes of external calls may be worth your while if you’re extra conscious
about performance.

• A foreign imported function should clearly not need to know that it is being called from
Haskell. One consequence of this is that the lifetimes of the arguments that are passed from
Haskell must equal that of a normal C call. For instance, for the following decl,

foreign import "mumble" mumble :: ForeignObj -> IO ()

f :: Addr -> IO ()
f ptr = do

fo <- newForeignObj ptr myFinalizer
mumble fo

The ForeignObj must live across the call to mumble even if it is not subsequently used/reachable.
Why the insistence on this? Consider what happens if mumble calls a function which calls back
into the Haskell world to execute a function, behind our back as it were. This evaluation may
possibly cause a garbage collection, with the result that fo may end up being finalised. By
guaranteeing that fo will be considered live across the call to mumble, the unfortunate situation
where fo is finalised (and hence the reference passed to mumble is suddenly no longer valid) is
avoided.

144



Chapter 7. Foreign function interface

7.3. Invoking external functions via a pointer
A foreign import declaration imports an external function into Haskell. (The name of the
external function is statically known, but the loading/linking of it may very well be delayed until
run-time.) A foreign import declaration is then (approximately) just a type cast of an external
function with a statically known name.

An extension of foreign import is the support for dynamic type casts of external
names/addresses:

topdecl
: ...
..
| ’foreign’ ’import’ [callconv] ’dynamic’ [’unsafe’]

varid :: Addr -> (prim_args -> IO prim_result)

i.e., identical to a foreign import declaration, but for the specification of dynamic instead of the
name of an external function. The presence of dynamic indicates that when an application of varid
is evaluated, the function pointed to by its first argument will be invoked, passing it the rest of
varid’s arguments.

What are the uses of this? Native invocation of COM methods, 3 Haskell libraries that want to be
dressed up as C libs (and hence may have to support C callbacks), Haskell code that need to
dynamically load and execute code.

7.4. Exposing Haskell functions
So far we’ve provided the Haskell programmer with ways of importing external functions into the
Haskell world. The other half of the FFI coin is how to expose Haskell functionality to the outside
world. So, dual to the foreign import declaration is foreign export:

topdecl
: ...
..
| ’foreign’ ’export’ callconv [ext_name] varid :: prim_type

A foreign export declaration tells the compiler to expose a locally defined Haskell function to
the outside world, i.e., wrap it up behind a calling interface that’s useable from C. It is only permitted
at the toplevel, where you have to specify the type at which you want to export the function, along
with the calling convention to use. For instance, the following export declaration:

foreign export ccall "foo" bar :: Int -> Addr -> IO Double

will cause a Haskell system to generate the following C callable function:

145



Chapter 7. Foreign function interface

HsDouble foo(HsInt arg1, HsAddr arg2);

When invoked, it will call the Haskell function bar, passing it the two arguments that was passed to
foo().

• The range of types that can be passed as arguments and results is restricted, since varid has got a
prim_type.

• It is not possible to directly export operator symbols.

• The type checker will verify that the type given for the foreign export declaration is
compatible with the type given to function definition itself. The type in the foreign export

may be less general than that of the function itself. For example, this is legal:

f :: Num a => a -> a
foreign export ccall "fInt" f :: Int -> Int
foreign export ccall "fFloat" f :: Float -> Float

These declarations export two C-callable procedures fInt and fFloat, both of which are
implemented by the (overloaded) Haskell function f.

• The foreign exported IO action must catch all exceptions, as the FFI does not address how to
signal Haskell exceptions to the outside world.

7.4.1. Exposing Haskell function values
The foreign export declaration gives the C programmer access to statically defined Haskell
functions. It does not allow you to conveniently expose dynamically-created Haskell function values
as C function pointers though. To permit this, the FFI supports dynamic foreign exports:

topdecl
: ...
..
| ’foreign’ ’export’ [callconv] ’dynamic’ varid :: prim_type -> IO Addr

A foreign export dynamic declaration declares a C function pointer generator. Given a Haskell
function value of some restricted type, the generator wraps it up behind an externally callable
interface, returning an Addr to an externally callable (C) function pointer.

When that function pointer is eventually called, the corresponding Haskell function value is applied
to the function pointer’s arguments and evaluated, returning the result (if any) back to the caller.

The mapping between the argument to a foreign export dynamic declaration and its
corresponding C function pointer type, is as follows:

typedef cType[[Res]] (*Varid_FunPtr)
(cType[[Ty_1]] ,.., cType[[Ty_n]]);

146



Chapter 7. Foreign function interface

where cType[[]] is the Haskell to C type mapping presented in Section Section 7.2.5.

To make it all a bit more concrete, here’s an example:

foreign export dynamic mkCallback :: (Int -> IO Int) -> IO Addr

foreign import registerCallback :: Addr -> IO ()

exportCallback :: (Int -> IO Int) -> IO ()
exportCallback f = do

fx <- mkCallback f
registerCallback fx

The exportCallback lets you register a Haskell function value as a callback function to some
external library. The C type of the callback that the external library expects in
registerCallback(), is: 4

typedef HsInt (*mkCallback_FunPtr) (HsInt arg1);

Creating the view of a Haskell closure as a C function pointer entails registering the Haskell closure
as a ’root’ with the underlying Haskell storage system, so that it won’t be garbage collected. The FFI
implementation takes care of this, but when the outside world is through with using a C function
pointer generated by a foreign export dynamic declaration, it needs to be explicitly freed. This
is done by calling:

void freeHaskellFunctionPtr(void *ptr);

In the event you need to free these function pointers from within Haskell, a standard ’foreign
import’ed binding of the above C entry point is also provided,

Foreign.freeHaskellFunctionPtr :: Addr -> IO ()

7.4.2. Code addresses
The foreign import declaration allows us to invoke an external function by name from within the
comforts of the Haskell world, while foreign import dynamic lets us invoke an external
function by address. However, there’s no way of getting at the code address of some particular
external label though, which is at times useful, e.g. for the construction of method tables for, say,
Haskell COM components. To support this, the FFI has got foreign labels:

foreign label "freeAtLast" addrOf_freeAtLast :: Addr

147



Chapter 7. Foreign function interface

The meaning of this declaration is that addrOf_freeAtLast will now contain the address of the
label freeAtLast.

Notes
1. Notice that with Haskell 98, underscore (’_’) is included in the character class small.

2. The stdcall is a Microsoft Win32 specific wrinkle; it used throughout the Win32 API, for
instance. On platforms where stdcall isn’t meaningful, it should be treated as being equal to
ccall.

3. Or the interfacing to any other software component technologies.

4. An FFI implementation is encouraged to generate the C typedef corresponding to a foreign
export dynamic declaration, but isn’t required to do so.

148



Chapter 8. What to do when something goes
wrong

If you still have a problem after consulting this section, then you may have found a bug—please
report it! See Section 8.3 for a list of things we’d like to know about your bug. If in doubt, send a
report—we love mail from irate users :-!

(Section 6.15, which describes Glasgow Haskell’s shortcomings vs. the Haskell language definition,
may also be of interest.)

8.1. When the compiler “does the wrong thing”

“Help! The compiler crashed (or ‘panic’d)!”

These events are always bugs in the GHC system—please report them.

“The compiler ran out of heap (or stack) when compiling itself!”

It happens. We try to supply reasonable -H<n> flags for ghc/compiler/ and ghc/lib/, but
GHC’s memory consumption can vary by platform (e.g., on a 64-bit machine).

Just say make all EXTRA_HC_OPTS=-H<a reasonable number> and see how you get
along.

Note that this is less likely to happen if you are compiling with GHC 4.00 or later, since the
introduction of the dynamically expanding heap.

“The compiler died with a pattern-matching error.”

This is a bug just as surely as a “panic.” Please report it.

“This is a terrible error message.”

If you think that GHC could have produced a better error message, please report it as a bug.

“What about these ‘trace’ messages from GHC?”

Almost surely not a problem. About some specific cases. . .

Simplifier still going after N iterations:

Sad, but harmless. You can change the number with a
-fmax-simplifier-iterations<N> option (no space); and you can see what actions
took place in each iteration by turning on the -fshow-simplifier-progress option.

If the simplifier definitely seems to be “looping,” please report it.

149



Chapter 8. What to do when something goes wrong

“What about this warning from the C compiler?”

For example: “. . . warning: ‘Foo’ declared ‘static’ but never defined.” Unsightly, but shouldn’t
be a problem.

Sensitivity to .hi interface files:

GHC is very sensitive about interface files. For example, if it picks up a non-standard
Prelude.hi file, pretty terrible things will happen. If you turn on -fno-implicit-prelude,
the compiler will almost surely die, unless you know what you are doing.

Furthermore, as sketched below, you may have big problems running programs compiled using
unstable interfaces.

“I think GHC is producing incorrect code”:

Unlikely :-) A useful be-more-paranoid option to give to GHC is -dcore-lint; this causes a
“lint” pass to check for errors (notably type errors) after each Core-to-Core transformation pass.
We run with -dcore-lint on all the time; it costs about 5% in compile time.

“Why did I get a link error?”

If the linker complains about not finding _<something>_fast, then something is
inconsistent: you probably didn’t compile modules in the proper dependency order.

“What’s a ‘consistency error’?”

(These are reported just after linking your program.)

You tried to link incompatible object files, e.g., normal ones (registerised, Appel
garbage-collector) with profiling ones (two-space collector). Or those compiled by a previous
version of GHC with an incompatible newer version.

If you run nm -o *.o | egrep ’t (cc|hsc)\.’ (or, on unregisterised files: what *.o), you’ll see all
the consistency tags/strings in your object files. They must all be the same! (ToDo: tell you
what they mean. . . )

“Is this line number right?”

On this score, GHC usually does pretty well, especially if you “allow” it to be off by one or
two. In the case of an instance or class declaration, the line number may only point you to the
declaration, not to a specific method.

Please report line-number errors that you find particularly unhelpful.

8.2. When your program “does the wrong thing”

(For advice about overly slow or memory-hungry Haskell programs, please see Chapter 5).

150



Chapter 8. What to do when something goes wrong

“Help! My program crashed!”

(e.g., a ‘segmentation fault’ or ‘core dumped’)

If your program has no foreign calls in it, then a crash is always a BUG in the GHC system,
except in one case: If your program is made of several modules, each module must have been
compiled after any modules on which it depends (unless you use .hi-boot files, in which case
these must be correct with respect to the module source).

For example, if an interface is lying about the type of an imported value then GHC may well
generate duff code for the importing module. This applies to pragmas inside interfaces too! If
the pragma is lying (e.g., about the “arity” of a value), then duff code may result. Furthermore,
arities may change even if types do not.

In short, if you compile a module and its interface changes, then all the modules that import that
interface must be re-compiled.

A useful option to alert you when interfaces change is -hi-diffs. It will run diff on the
changed interface file, before and after, when applicable.

If you are using make, GHC can automatically generate the dependencies required in order to
make sure that every module is up-to-date with respect to its imported interfaces. Please see
Section 3.7.6.

If you are down to your last-compile-before-a-bug-report, we would recommend that you add a
-dcore-lint option (for extra checking) to your compilation options.

So, before you report a bug because of a core dump, you should probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -hi-
diffs to highlight changes;

# as mentioned above, use -dcore-
lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets are off, because you can trash
the heap, the stack, or whatever.

If you are interested in hard-core debugging of a crashing GHC-compiled program, please see
Section 8.4.

“My program entered an ‘absent’ argument.”

This is definitely caused by a bug in GHC. Please report it.

“What’s with this ‘arithmetic (or ‘floating’) exception’ ”?

Int, Float, and Double arithmetic is unchecked. Overflows, underflows and loss of precision
are either silent or reported as an exception by the operating system (depending on the
architecture). Divide-by-zero may cause an untrapped exception (please report it if it does).

151



Chapter 8. What to do when something goes wrong

8.3. How to report a bug in the GHC system

Glasgow Haskell is a changing system so there are sure to be bugs in it. Please report them to
<glasgow-haskell-bugs@haskell.org>! (However, please check the earlier part of this section
to be sure it’s not a known not-really-a problem.)

The name of the bug-reporting game is: facts, facts, facts. Don’t omit them because “Oh, they won’t
be interested. . . ”

1. What kind of machine are you running on, and exactly what version of the operating system are
you using? (uname -a or cat /etc/motd will show the desired information.)

2. What version of GCC are you using? gcc -v will tell you.

3. Run the sequence of compiles/runs that caused the offending behaviour, capturing all the
input/output in a “script” (a UNIX command) or in an Emacs shell window. We’d prefer to see
the whole thing.

4. Be sure any Haskell compilations are run with a -v (verbose) flag, so we can see exactly what
was run, what versions of things you have, etc.

5. What is the program behaviour that is wrong, in your opinion?

6. If practical, please send enough source files for us to duplicate the problem.

7. If you are a Hero and track down the problem in the compilation-system sources, please send us
patches relative to a known released version of GHC, or whole files if you prefer.

8.4. Hard-core debugging of GHC-compiled programs

If your program is crashing, you should almost surely file a bug report, as outlined in previous
sections.

This section suggests ways to Make Further Progress Anyway.

The first thing to establish is: Is it a garbage-collection (GC) bug? Try your program with a very
large heap and a -Sstderr RTS flag.

• If it crashes without garbage-collecting, then it is definitely not a GC bug.

• If you can make it crash with one heap size but not with another, then it probably is a GC bug.

• If it crashes with the normal collector, but not when you force two-space collection (-G1 runtime
flag), then it probably is a GC bug.

If it is a GC bug, you may be able to avoid it by using a particular heap size or by using a -G1
runtime flag. (But don’t forget to report the bug!!!)

ToDo: more here?

152



Chapter 9. Other Haskell utility programs
This section describes other program(s) which we distribute, that help with the Great Haskell
Programming Task.

9.1. “Yacc for Haskell”: happy
Andy Gill and Simon Marlow have written a parser-generator for Haskell, called happy. Happy is
to Haskell what Yacc is to C.

You can get happy from the Happy Homepage (http://www.haskell.org/happy/).

Happy is at its shining best when compiled by GHC.

9.2. Writing Haskell interfaces to C code: hs2c
The hs2c command can be used to automate some parts of the process of writing Haskell bindings to
C code. It reads an almost-Haskell source with embedded special constructs, and outputs a real
Haskell file with these constructs processed, based on information taken from some C headers. The
extra constructs deal with accessing C data from Haskell.

It may also output a C file which contains additional C functions to be linked into the program,
together with a C header that gets included into the C code to which the Haskell module will be
compiled (when compiled via C) and into the C file. These two files are created when the #def
construct is used.

Actually hs2c does not output the Haskell file directly. It creates a C program that includes the
headers, gets automatically compiled and run. That program outputs the Haskell code.

In the following, “Haskell file” is the main output (usually a .hs file), “compiled Haskell file” is the
Haskell file after ghc has compiled it to C (i.e. a .hc file), “C program” is the program that outputs
the Haskell file, “C file” is the optionally generated C file, and “C header” is its header file.

9.2.1. Command line syntax
glue-hsc takes input files as arguments, and flags that modify its behavior:

-t FILE or -template=FILE

The template file (see below).

-cc=PROG

The C compiler to use (default: ghc)

153



Chapter 9. Other Haskell utility programs

-ld=PROG

The linker to use (default: gcc).

-cflag=FLAG

An extra flag to pass to the C compiler.

-lflag=FLAG

An extra flag to pass to the linker.

-help

Display a summary of the available flags.

The input file should end with .hsc. Output files get names with the .hsc suffix replaced:

.hs Haskell file

_hsc.h C header

_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path to HsFFI.h

which is automatically included into the C program.

9.2.2. Input syntax
All special processing is triggered by the # character. To output a literal #, write it twice: ##.

Otherwise # is followed by optional spaces and tabs, an alphanumeric key that describes the kind of
processing, and its arguments. Arguments look like C expressions and extend up to the nearest
unmatched ), ], or }, or to the end of line outside any () [] {} ” "" /* */. Any character may
be preceded by a backslash and will not be treated specially.

Meanings of specific keys:

#include <file.h>

#include "file.h"

The specified file gets included into the C program, the compiled Haskell file, and the C header.
<HsFFI.h> is included automatically.

#define name

#define name value

Similar to #include. Note that #includes and #defines may be put in the same file twice
so they should not assume otherwise.

154



Chapter 9. Other Haskell utility programs

#option opt

The specified Haskell compiler command-line option is placed in the {-# OPTIONS #-}

pragma at the top of the Haskell file (see Section 3.14.6). This is needed because glue-hsc emits
its own OPTIONS pragma, and only one such pragma is interpreted by GHC.

#def C_definition

The definition (of a function, variable, struct or typedef) is written to the C file, and its
prototype or extern declaration to the C header. Inline functions are handled correctly. struct
definitions and typedefs are written to the C program too. The inline, struct or typedef
keyword must come just after def.

#if condition

#ifdef name

#ifndef name

#elif condition

#else

#endif

Conditional compilation directives are passed unmodified to the C program, C file, and C
header. Putting them in the C program means that appropriate parts of the Haskell file will be
skipped.

#const C_expression

The expression must be convertible to long or unsigned long. Its value (literal or negated
literal) will be output.

#const_str C_expression

The expression must be convertible to const char pointer. Its value (string literal) will be output.

#type C_type

A Haskell equivalent of the C numeric type will be output. It will be one of
{Int,Word}{8,16,32,64}, Float, Double, LDouble.

#peek struct_type, field

A function that peeks a field of a C struct will be output. It will have the type Storable b =>

Ptr a -> IO b. The intention is that #peek and #poke can be used for implementing the
operations of class Storable for a given C struct (see Section 4.25 in Haskell Libraries).

#poke struct_type, field

Similarly for poke. It will have the type Storable b => Ptr a -> b -> IO ().

#ptr struct_type, field

Makes a pointer to a field struct. It will have the type Ptr a -> Ptr b.

155



Chapter 9. Other Haskell utility programs

9.2.3. Custom constructs
#const, #type, #peek, #poke and #ptr are not hardwired into the hs2c, but are defined in a C
template that is included in the C program: template-hsc.h. Custom constructs and templates can
be used too. Any #-construct with unknown key is expected to be handled by a C template.

A C template should define a macro or function with name prefixed by hsc_ that handles the
construct by emitting the expansion to stdout. See template-hsc.h for examples.

156



Chapter 10. Building and using Win32 DLLs
On Win32 platforms, the compiler is capable of both producing and using dynamic link libraries
(DLLs) containing ghc-compiled code. This section shows you how to make use of this facility.

Until recently, strip didn’t work reliably on DLLs, so you should test your version with care, or
make sure you have the latest binutils. Unfortunately, we don’t know exactly which version of
binutils cured the problem (it was supposedly fixed some years ago).

10.1. Linking with DLLs
The default on Win32 platforms is to link applications in such a way that the executables will use the
Prelude and system libraries DLLs, rather than contain (large chunks of) them. This is transparent at
the command-line, so

sh$ cat main.hs
module Main where
main = putStrLn "hello, world!"
sh$ ghc -o main main.hs
ghc: module version changed to 1; reason: no old .hi file
sh$ strip main.exe
sh$ ls -l main.exe
-rwxr-xr-x 1 544 everyone 4608 May 3 17:11 main.exe*
sh$ ./main
hello, world!
sh$

will give you a binary as before, but the main.exe generated will use the Prelude and RTS DLLs
instead of linking them in statically.

4K for a "hello, world" application—not bad, huh? :-)

10.2. Not linking with DLLs
If you want to build an executable that doesn’t depend on any ghc-compiled DLLs, use the -static
option to link in the code statically.

Notice that you cannot mix code that has been compiled with -static and not, so you have to use
the -static option on all the Haskell modules that make up your application.

10.3. Creating a DLL

157



Chapter 10. Building and using Win32 DLLs

Sealing up your Haskell library inside a DLL is straightforward; compile up the object files that
make up the library, and then build the DLL by issuing a command of the form:

ghc -mk-dll -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option -mk-dll, it will build a DLL rather than produce an
executable. The DLL will consist of all the object files and archives given on the command line.

To create a ‘static’ DLL, i.e. one that does not depend on the GHC DLLs, use the -static when
compiling up your Haskell code and building the DLL.

A couple of things to notice:

• Since DLLs correspond to packages (see Section 3.8) you need to use -package-name
dll-name when compiling modules that belong to a DLL if you’re going to call them from
Haskell. Otherwise, Haskell code that calls entry points in that DLL will do so incorrectly, and
crash. For similar reasons, you can only compile a single module tree into a DLL, as
startupHaskell needs to be able to call its initialisation function, and only takes one such
argument (see Section 10.4). Hence the modules you compile into a DLL must have a common
root.

• By default, the entry points of all the object files will be exported from the DLL when using
-mk-dll. Should you want to constrain this, you can specify the module definition file to use on
the command line as follows:

ghc -mk-dll -o .... -optdll-def -optdllMyDef.def

See Microsoft documentation for details, but a module definition file simply lists what entry points
you want to export. Here’s one that’s suitable when building a Haskell COM server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the -mk-dll option also creates an import library. The import
library name is derived from the name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool_imp.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-existence of
import libraries with ordinary static libraries (e.g., libHSfoo.a and libHSfoo_imp.a.
Additionally, when the compiler driver is linking in non-static mode, it will rewrite occurrence of
-lHSfoo on the command line to -lHSfoo_imp. By doing this for you, switching from
non-static to static linking is simply a question of adding -static to your command line.

158



Chapter 10. Building and using Win32 DLLs

10.4. Making DLLs to be called from other languages
If you want to package up Haskell code to be called from other languages, such as Visual Basic or
C++, there are some extra things it is useful to know. The dirty details are in the Foreign Function
Interface definition, but it can be tricky to work out how to combine this with DLL building, so
here’s an example:

• Use foreign export declarations to export the Haskell functions you want to call from the
outside. For example,

module Adder where

adder :: Int -> Int -> IO Int - gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

• Compile it up:

ghc -c adder.hs -fglasgow-exts

This will produce two files, adder.o and adder_stub.o

• compile up a DllMain() that starts up the Haskell RTS—a possible implementation is:

#include <windows.h>
#include <Rts.h>

EXTFUN(__init_Adder);

static char* args[] = { "ghcDll", NULL };
/* N.B. argv arrays must end with NULL */

BOOL
STDCALL
DllMain

( HANDLE hModule
, DWORD reason
, void* reserved
)

{
if (reason == DLL_PROCESS_ATTACH) {

/* By now, the RTS DLL should have been hoisted in, but we need to start it up. */
startupHaskell(1, args, __init_Adder);
return TRUE;

}
return TRUE;

}

Here, Adder is the name of the root module in the module tree (as mentioned above, there must be a
single root module, and hence a single module tree in the DLL). Compile this up:

gcc -c dllMain.c

159



Chapter 10. Building and using Win32 DLLs

• Construct the DLL:

ghc -mk-dll -o adder.dll adder.o adder_stub.o dllMain.o

• Start using adder from VBA—here’s how I would Declare it:

Private Declare Function adder Lib "adder.dll" Alias "adder@8"
(ByVal x As Long, ByVal y As Long) As Long

Since this Haskell DLL depends on a couple of the DLLs that come with GHC, make sure that they
are in scope/visible.

Building statically linked DLLs is the same as in the previous section: it suffices to add -static
to the commands used to compile up the Haskell source and build the DLL.

160



Haskell Libraries

The GHC Team

161



Haskell Libraries
by The GHC Team



Table of Contents
1. Introduction................................................................................................................................. 167

1.1. Naming conventions ........................................................................................................ 167
1.1.1. Constructor names .............................................................................................. 167
1.1.2. Accessor names .................................................................................................. 167
1.1.3. Modificator names .............................................................................................. 168
1.1.4. Predicate names .................................................................................................. 168
1.1.5. Names for conversions ....................................................................................... 168
1.1.6. Miscellaneous naming conventions .................................................................... 168

1.2. Miscellaneous conventions ............................................................................................. 169
1.3. Known inconsistencies .................................................................................................... 169

2. The concurrent category: concurrency support .................................................................. 171

2.1. Concurrent Haskell........................................................................................................... 171
2.2. Concurrency Basics ......................................................................................................... 171
2.3. Scheduling........................................................................................................................ 172

2.3.1. Thread Waiting .................................................................................................... 172
2.3.2. Blocking .............................................................................................................. 173

2.4. Concurrency abstractions ................................................................................................ 173
2.4.1. Chan: Channels .................................................................................................. 173
2.4.2. CVar: Channel variables...................................................................................... 173
2.4.3. MVar: Synchronising variables ........................................................................... 174
2.4.4. QSem: General semaphores ................................................................................. 175
2.4.5. QSemN: Quantity semaphores ............................................................................. 175
2.4.6. SampleVar: Sample variables ........................................................................... 175
2.4.7. Merging Streams.................................................................................................. 176

2.5. The Concurrent library interface .................................................................................. 176
2.6. GHC-specific concurrency issues .................................................................................... 177

3. The data category: datatypes.................................................................................................... 179

3.1. Edison............................................................................................................................... 179
3.2. The FiniteMap type ....................................................................................................... 179
3.3. The Set type .................................................................................................................... 181

4. The lang category: language support ...................................................................................... 182

4.1. Addr ................................................................................................................................. 182
4.1.1. Address Type and Arithmetic .............................................................................. 182
4.1.2. The Standard C-side Interface ............................................................................. 182
4.1.3. Deprecated Functions .......................................................................................... 183
4.1.4. Hugs Specifics ..................................................................................................... 184

4.2. Bits ................................................................................................................................. 184
4.3. ByteArray ...................................................................................................................... 185
4.4. CCall ............................................................................................................................... 186
4.5. CTypes............................................................................................................................. 186

4.5.1. Integral types ....................................................................................................... 186

163



Chapter 10. Building and using Win32 DLLs

4.5.2. Floating types ...................................................................................................... 187
4.6. CTypesISO ...................................................................................................................... 187

4.6.1. Integral types ....................................................................................................... 187
4.6.2. Numeric types...................................................................................................... 187
4.6.3. Misc types............................................................................................................ 188

4.7. Dynamic........................................................................................................................... 188
4.7.1. Representing types............................................................................................... 189
4.7.2. The Typeable class............................................................................................... 189
4.7.3. Utility functions................................................................................................... 190

4.8. Exception ...................................................................................................................... 190
4.8.1. Kinds of exception............................................................................................... 191
4.8.2. Throwing exceptions ........................................................................................... 194
4.8.3. The catch functions ........................................................................................... 195
4.8.4. The try functions................................................................................................ 196
4.8.5. Dynamic Exceptions............................................................................................ 196
4.8.6. Other Utilities ...................................................................................................... 196
4.8.7. Asynchronous exceptions .................................................................................... 197

4.8.7.1. Applying block to an exception handler ............................................... 197
4.8.7.2. Interruptible operations........................................................................... 198

4.9. Foreign........................................................................................................................... 198
4.10. ForeignObj .................................................................................................................. 199

4.10.1. The Standard Interface ...................................................................................... 200
4.10.2. The Standard C-side Interface ........................................................................... 200
4.10.3. Deprecated Functions ........................................................................................ 201

4.11. GlaExts......................................................................................................................... 202
4.12. IArray........................................................................................................................... 202

4.12.1. IArray and HasBounds type classes ............................................................... 203
4.12.2. UArray: immutable unboxed arrays ................................................................. 203
4.12.3. Useful combinators............................................................................................ 203

4.13. Int ................................................................................................................................ 204
4.13.1. Notes.................................................................................................................. 205
4.13.2. Deprecated Functions ........................................................................................ 205

4.14. IOExts........................................................................................................................... 206
4.14.1. IO monad extensions ......................................................................................... 206
4.14.2. Mutable Variables.............................................................................................. 206
4.14.3. Mutable Arrays.................................................................................................. 207
4.14.4. Extended file modes .......................................................................................... 207
4.14.5. Bulk transfers..................................................................................................... 207
4.14.6. Terminal control ................................................................................................ 208
4.14.7. Redirecting handles ........................................................................................... 208
4.14.8. Trace .................................................................................................................. 208
4.14.9. Miscellany ......................................................................................................... 208

4.15. LazyST........................................................................................................................... 209
4.16. MArray........................................................................................................................... 209

164



Chapter 10. Building and using Win32 DLLs

4.16.1. Freezing and thawing arrays.............................................................................. 210
4.16.2. Useful combinators............................................................................................ 211

4.17. MutableArray.............................................................................................................. 211
4.17.1. Mutable arrays .................................................................................................. 212
4.17.2. Mutable byte arrays .......................................................................................... 212

4.18. NumExts......................................................................................................................... 214
4.19. PackedString.............................................................................................................. 216
4.20. ShowFunctions ........................................................................................................... 217
4.21. ST ................................................................................................................................... 217
4.22. Stable........................................................................................................................... 218
4.23. StableName .................................................................................................................. 218
4.24. StablePtr .................................................................................................................... 219

4.24.1. The Standard Interface ...................................................................................... 220
4.24.2. The Standard C-side Interface ........................................................................... 221
4.24.3. Deprecated Functions ........................................................................................ 221

4.25. Storable ...................................................................................................................... 222
4.25.1. The Type Class Storable ................................................................................ 222
4.25.2. Allocation and Deallocation of Memory Blocks............................................... 224

4.26. Weak ............................................................................................................................... 224
4.26.1. Module Signature .............................................................................................. 225
4.26.2. Weak pointers .................................................................................................... 225
4.26.3. The simple interface .......................................................................................... 226
4.26.4. The general interface ......................................................................................... 227
4.26.5. A precise semantics ........................................................................................... 227
4.26.6. Finalization for foreign objects ......................................................................... 228

4.27. Word ............................................................................................................................... 229
4.27.1. Notes.................................................................................................................. 229
4.27.2. Implementation notes ........................................................................................ 230

5. The net category: networking support .................................................................................... 231

5.1. BSD: System database info .............................................................................................. 231
5.2. Socket: The high-level networking interface ................................................................. 233
5.3. SocketPrim: The low-level socket binding ................................................................... 233
5.4. URI ................................................................................................................................... 237

6. The num category: numeric operations ..................................................................................... 238

7. The posix category: POSIX support ....................................................................................... 239

7.1. Posix data types................................................................................................................ 239
7.2. Posix Process Primitives .................................................................................................. 243
7.3. Posix Process Environment.............................................................................................. 248
7.4. Posix operations on files and directories.......................................................................... 252
7.5. Posix Input and Output Primitives ................................................................................... 256
7.6. Posix, Device- and Class-Specific Functions................................................................... 258
7.7. Posix System Databases................................................................................................... 260
7.8. POSIX Errors ................................................................................................................... 261

165



Chapter 10. Building and using Win32 DLLs

8. The text category: text manipulation...................................................................................... 263

8.1. HaXml: Handling XML data ........................................................................................... 263
8.2. MatchPS: The Perl-like matching interface .................................................................... 263
8.3. Parsec: Parsing combinators ......................................................................................... 264
8.4. Pretty: Pretty printing combimators ............................................................................. 264
8.5. Regex: The low-level regex matching interface .............................................................. 266
8.6. RegexString: Regex matching made simple................................................................. 267

9. The util category: miscellaneous utilities............................................................................... 269

9.1. GetOpt: Command line parsing ..................................................................................... 269
9.2. Memo: Fast memo functions ............................................................................................ 270
9.3. QuickCheck .................................................................................................................... 271
9.4. Readline: Command line editing................................................................................... 271
9.5. Select: Synchronous I/O multiplexing ......................................................................... 272

10. Win32 ......................................................................................................................................... 274

166



Chapter 1. Introduction
Hugs and GHC provide a common set of libraries to aid portability. This document specifies the
interfaces to these libraries and documents known differences. It is the hope of the GHC team that
these libraries in the long run become part of every Haskell system.

To make both writing new libraries and reading programs using them easier, a few conventions the
set of interfaces specified in this document try to adhere to are listed in the following sections. Note
that because of compatibility issues and the evolving nature of this library collection, there are still a
few exceptions, but hopefully they vanish in the future.

These conventions are not carved into stone for eternity, they are just a collection of thoughts people
involved in the development of these libraries had at some point in time. They were formed after
quite some discussions and are heavily based on an initial suggestion of Marcin Kowalczyk
<qrczak@knm.org.pl>. Feel free to discuss them, the Haskell mailing list
<haskell@haskell.org> is probably the right place for this.

1.1. Naming conventions
This is what people like discussing about most: names. Note that the conventions are not mutually
exclusive, e.g. should the function creating a set from a list of elements have the name set or
listToSet? (Alas, it currently has neither name.)

The following nomenclature is used: Pure, i.e. non-monadic functions are simply called, well,
functions. Monadic functions, i.e. functions having a type ... -> m a for some Monad m are called
actions.

1.1.1. Constructor names

• Empty values of type X have the name emptyX, e.g. emptySet.

• Actions creating a new empty value of type X have the name newEmptyX, e.g. newEmptyMVar.

• Functions creating an arbitrary value of type X have the name X itself, e.g. array. (TODO: This
often collides with xToY convention, how should this be resolved?)

• Actions creating new values arbitrary values of type X have the name newX, e.g. newIORef.

1.1.2. Accessor names

• Functions getting an attribute of an value or a part of it have the name of the attribute itself, e.g.

167



Chapter 1. Introduction

length, bounds.

• Actions accessing some kind of reference or state have the name getX, where X is the type of the
contents or the name of the part being accessed, e.g. getChar, getEnv. An alternative naming
scheme is readY, where Y is the type of the reference or container, e.g. readIORef.

• Functions or actions getting a value via a pointer-like type X should be named deRefX, e.g.
deRefStablePtr, deRefWeak.

1.1.3. Modificator names

• Functions returning an value with attribute X set to a new value should be named setX. (TODO:
Add Examples.)

• Actions setting some kind of reference or state have the name putX, where X is the type of the
contents or the name of the part being accessed, e.g. putChar. An alternative naming scheme is
writeY, where Y is the type of the reference or container, e.g. writeIORef.

• Actions in the IO monad setting some global state X are traditionally named setX, too, although
putX would be more appropriate, e.g. y, setReadlineName.

• Functions returning a container X modified by a function of type a -> a have the name
updateX. (TODO: Add Examples.)

• Actions modifying a container X by a function of type a -> a have the name modifyX, e.g.
modifySTRef.

1.1.4. Predicate names

• Predicates, both non-monadic and monadic, testing a property X have the name isX.

1.1.5. Names for conversions

• Functions converting a value of type X to a value of type Y have the name xToY with all leading
uppercase characters of X converted to lower case, e.g. stToIO.

• Overloaded conversion functions of type C a => a -> X have the name toX, e.g. toInteger.

• Overloaded conversion functions of type C a => X -> a have the name fromX, e.g.
fromInteger.

168



Chapter 1. Introduction

1.1.6. Miscellaneous naming conventions

• An action that is identical to another one called X, but discards the return value has the name X_,
e.g. mapM and mapM_.

• Functions and actions which are potentially dangerous to use and leave some kind of proof
obligation to the programmer have the name unsafeX, e.g. unsafePerformIO.

• There are two conventions for binary and N-ary variants of an associative operation: One
convention uses an operator or a short name for the binary operation and a long name for the
N-ary variant, e.g. (+) and sum, max and maximum. The other convention suffixes the N-ary
variant with Many. (TODO: Add Examples.)

• If possible, names are chosen such that either plain application or arg1 ‘operation‘ arg2 is
correct English, e.g. isPrefixOf is good for use in backquotes.

1.2. Miscellaneous conventions

• Actions setting and modifying a kind of reference or state return (), getting the value is separate,
e.g. writeIORef and modifyIORef both return (), only readIORef returns the value in an
IORef

• A function or action taking a some kind of state and returning a pair consisting of a result and a
new state, the result is the first element of the pair and the new state is the second, see e.g. Random

• A module defining a data type X has the itself the name X, e.g. StablePtr. For convenience there
are modules simply re-exporting modules which are often used together, e.g. Foreign.

• When the type Either is used to encode an error condition and a normal result, Left is used for
the former and Right for the latter, see e.g. MonadEither.

• A module corresponding to a class (e.g. Bits) contains the class definition, perhaps some
auxiliary functions, and all sensible instances for Prelude types, but nothing more. Other modules
containing types for which an instance for the class in question makes sense contain the code for
the instance itself.

• Record-like C bit fields or structs have a record-like interface, i.e. pure getting and setting of
fields. (TODO: Clarify a little bit. Add examples.)

• Although the possibility of partial application suggests the type attr -> object -> object

for functions setting an attribute or value, infix notation with backquotes implies object ->

attr -> object. (TODO: Add Examples.)

169



Chapter 1. Introduction

1.3. Known inconsistencies
TODO.

170



Chapter 2. The concurrent category:
concurrency support

2.1. Concurrent Haskell
GHC and Hugs both provide concurrency extensions, as described in Concurrent Haskell
(http://www.haskell.org/ghc/docs/papers/concurrent-haskell.ps.gz).

Concurrency in GHC and Hugs is "lightweight", which means that both thread creation and context
switching overheads are extremely low. Scheduling of Haskell threads is done internally in the
Haskell runtime system, and doesn’t make use of any operating system-supplied thread packages.

Haskell threads can communicate via MVars, a kind of synchronised mutable variable (see Section
2.4.3). Several common concurrency abstractions can be built from MVars, and these are provided by
the Concurrent library, which is described in the later sections. Threads may also communicate via
exceptions.

2.2. Concurrency Basics
To gain access to the concurrency primitives, just import Concurrent in your Haskell module. In
GHC, you also need to add the -syslib concurrent option to the command line.

To create a new thread, use forkIO:

forkIO :: IO () -> IO ThreadId

This sparks off a new thread to run the IO computation passed as the first argument.

The returned ThreadId is an abstract type representing a handle to the newly created thread. The
ThreadId type is an instance of both Eq and Ord, where the Ord instance implements an arbitrary
total ordering over ThreadIds.

Threads may also be killed via the ThreadId:

killThread :: ThreadId -> IO ()

this terminates the given thread (Note: killThread is not implemented in Hugs yet). Any work
already done by the thread isn’t lost: the computation is suspended until required by another thread.
The memory used by the thread will be garbage collected if it isn’t referenced from anywhere else.

More generally, an arbitrary exception (see Section 4.8) may be raised in any thread for which we
have a ThreadId, with throwTo:

171



Chapter 2. The concurrent category: concurrency support

throwTo :: ThreadId -> Exception -> IO ()

Actually killThread just raises the ThreadKilled exception in the target thread, the normal
action of which is to just terminate the thread. The target thread will stop whatever it was doing
(even if it was blocked on an MVar or other computation) and handle the exception.

One important property of throwTo (and therefore killThread) is that they are synchronous, in
the sense that after performing a throwTo operation, the calling thread can be certain that the target
thread has received the exception. In other words, the target thread cannot perform any more
processing unless it handles the exception that has just been raised in it. This is a useful property to
know when dealing with race conditions: eg. if there are two threads that can kill each other, it is
guaranteed that only one of the threads will get to kill the other.

The ThreadId for the current thread can be obtained with myThreadId:

myThreadId :: IO ThreadId

NOTE: if you have a ThreadId, you essentially have a pointer to the thread itself. This means the
thread itself can’t be garbage collected until you drop the ThreadId. This misfeature will hopefully
be corrected at a later date.

2.3. Scheduling
GHC uses preemptive multitasking: context switches can occur at any time. At present, Hugs uses
cooperative multitasking: context switches only occur when you use one of the primitives defined in
this module. This means that programs such as:

main = forkIO (write ’a’) » write ’b’
where write c = putChar c » write c

will print either aaaaaaaaaaaaaa... or bbbbbbbbbbbb..., instead of some random interleaving
of as and bs. In practice, cooperative multitasking is sufficient for writing simple graphical user
interfaces.

The yield action forces a context-switch to any other currently runnable threads (if any), and is
occasionally useful when implementing concurrency abstractions:

yield :: IO ()

2.3.1. Thread Waiting
There are operations to delay a concurrent thread, and to make one wait:

172



Chapter 2. The concurrent category: concurrency support

threadDelay :: Int -> IO ()
threadWaitRead :: Int -> IO ()
threadWaitWrite :: Int -> IO ()

The threadDelay operation will cause the current thread to suspend for a given number of
microseconds. Note that the resolution used by the Haskell runtime system’s internal timer together
with the fact that the thread may take some time to be rescheduled after the time has expired, means
that the accuracy is more like 1/50 second.

threadWaitRead and threadWaitWrite can be used to block a thread until I/O is available on a
given file descriptor. These primitives are used by the I/O subsystem to ensure that a thread waiting
on I/O doesn’t hang the entire system.

2.3.2. Blocking
Calling a foreign C procedure (such as getchar) that blocks waiting for input will block all threads,
in both GHC and Hugs. The GHC I/O system uses non-blocking I/O internally to implement
thread-friendly I/O, so calling standard Haskell I/O functions blocks only the thead making the call.

2.4. Concurrency abstractions

2.4.1. Chan: Channels
A Channel is an unbounded channel:

data Chan a
newChan :: IO (Chan a)
writeChan :: Chan a -> a -> IO ()
readChan :: Chan a -> IO a
dupChan :: Chan a -> IO (Chan a)
unGetChan :: Chan a -> a -> IO ()
getChanContents :: Chan a -> IO [a]
writeList2Chan :: Chan a -> [a] -> IO ()

2.4.2. CVar: Channel variables
A channel variable (CVar) is a one-element channel, as described in the paper:

data CVar a
newCVar :: IO (CVar a)

173



Chapter 2. The concurrent category: concurrency support

putCVar :: CVar a -> a -> IO ()
getCVar :: CVar a -> IO a

2.4.3. MVar: Synchronising variables
The MVar interface provides access to “MVars” (pronounced “em-vars”), which are synchronising
variables. An MVar is simply a box, which may be empty or full. The basic operations available over
MVars are given below:

data MVar a - abstract
instance Eq (MVar a)

newEmptyMVar :: IO (MVar a)
newMVar :: a -> IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a
swapMVar :: MVar a -> a -> IO a
tryTakeMVar :: MVar a -> IO (Maybe a)
isEmptyMVar :: MVar a -> IO Bool

newEmptyMVar

newMVar

New empty MVars can be created with newEmptyMVar. To create an MVar with an initial value,
use newMVar.

takeMVar

The takeMVar operation returns the contents of the MVar if it was full, or waits until it
becomes full otherwise.

putMVar

The putMVar operation puts a value into an empty MVar. Calling putMVar on an already full
MVar results in a PutFullMVar exception being raised (see Section 4.8).

tryTakeMVar

The tryTakeMVar is a non-blocking version of takeMVar. If the MVar is full, then it returns
Just a (where a is the contents of the MVar) and empties the MVar. If the MVar is empty, it
immediately returns Nothing.

isEmptyMVar

The operation isEmptyMVar returns a flag indicating whether the MVar is currently empty or
filled in, i.e., will a thread block when performing a takeMVar on that MVar or not?

174



Chapter 2. The concurrent category: concurrency support

Please notice that the Boolean value returned from isEmptyMVar represent just a snapshot of
the state of the MVar. By the time a thread gets to inspect the result and act upon it, other
threads may have accessed the MVar and changed the ’filled-in’ status of the variable. The same
proviso applies to isEmptyChan (next sub-section).

readMVar

This is a combination of takeMVar and putMVar; ie. it takes the value from the MVar, puts it
back, and also returns it.

swapMVar

swapMVar swaps the contents of an MVar for a new value.

2.4.4. QSem: General semaphores

data QSem
newQSem :: Int -> IO QSem
waitQSem :: QSem -> IO ()
signalQSem :: QSem -> IO ()

2.4.5. QSemN: Quantity semaphores

data QSemN
newQSemN :: Int -> IO QSemN
signalQSemN :: QSemN -> Int -> IO ()
waitQSemN :: QSemN -> Int -> IO ()

2.4.6. SampleVar: Sample variables
A sample variable (SampleVar) is slightly different from a normal MVar:

• Reading an empty SampleVar causes the reader to block (same as takeMVar on empty MVar).

• Reading a filled SampleVar empties it and returns value. (same as takeMVar)

• Writing to an empty SampleVar fills it with a value, and potentially, wakes up a blocked reader
(same as for putMVar on empty MVar).

• Writing to a filled SampleVar overwrites the current value. (different from putMVar on full
MVar.)

175



Chapter 2. The concurrent category: concurrency support

type SampleVar a = MVar (Int, MVar a)

emptySampleVar :: SampleVar a -> IO ()
newSampleVar :: IO (SampleVar a)
readSample :: SampleVar a -> IO a
writeSample :: SampleVar a -> a -> IO ()

2.4.7. Merging Streams
Merging streams—binary and n-ary:

mergeIO :: [a] -> [a] -> IO [a]
nmergeIO :: [[a]] -> IO [a]

These actions fork one thread for each input list that concurrently evaluates that list; the results are
merged into a single output list.

Note: Hugs does not provide the functions mergeIO or nmergeIO since these require preemptive
multitasking.

2.5. The Concurrent library interface
The full interface for the Concurrent library is given below for reference:

data ThreadId - thread identifiers
instance Eq ThreadId
instance Ord ThreadId

forkIO :: IO () -> IO ThreadId
myThreadId :: IO ThreadId
killThread :: ThreadId -> IO ()
par :: a -> b -> b
seq :: a -> b -> b
fork :: a -> b -> b
yield :: IO ()

threadDelay :: Int -> IO ()
threadWaitRead :: Int -> IO ()
threadWaitWrite :: Int -> IO ()

mergeIO :: [a] -> [a] -> IO [a]
nmergeIO :: [[a]] ->y IO [a]

176



Chapter 2. The concurrent category: concurrency support

module Chan
module CVar
module MVar
module QSem
module QSemN
module SampleVar

2.6. GHC-specific concurrency issues
In a standalone GHC program, only the main thread is required to terminate in order for the process
to terminate. Thus all other forked threads will simply terminate at the same time as the main thread
(the terminology for this kind of behaviour is “daemonic threads”).

If you want the program to wait for child threads to finish before exiting, you need to program this
yourself. A simple mechanism is to have each child thread write to an MVar when it completes, and
have the main thread wait on all the MVars before exiting:

myForkIO :: IO () -> IO (MVar ())
myForkIO io = do

mvar <- newEmptyMVar
forkIO (io ‘finally‘ putMVar mvar ())
return mvar

Note that we use finally from the Exception module to make sure that the MVar is written to
even if the thread dies or is killed for some reason.

A better method is to keep a global list of all child threads which we should wait for at the end of the
program:

children :: MVar [MVar ()]
children = unsafePerformIO (newMVar [])

waitForChildren :: IO ()
waitForChildren = do

(mvar:mvars) <- takeMVar children
putMVar children mvars
takeMVar mvar
waitForChildren

forkChild :: IO () -> IO ()
forkChild io = do

mvar <- newEmptyMVar
forkIO (p ‘finally‘ putMVar mvar ())
childs <- takeMVar children
putMVar children (mvar:childs)

177



Chapter 2. The concurrent category: concurrency support

later = flip finally

main =
later waitForChildren $
...

178



Chapter 3. The data category: datatypes

3.1. Edison
Edison is a complete package of data structures for Haskell. Documentation can currently be found
at The Edison home page (http://www.cs.columbia.edu/~cdo/edison/).

3.2. The FiniteMap type

What functional programmers call a finite map, everyone else calls a lookup table.

Out code is derived from that in this paper: “S Adams "Efficient sets: a balancing act" Journal of
functional programming 3(4) Oct 1993, pages 553-562” Guess what? The implementation uses
balanced trees.

data FiniteMap key elt - abstract

- BUILDING
emptyFM :: FiniteMap key elt
unitFM :: key -> elt -> FiniteMap key elt
listToFM :: Ord key => [(key,elt)] -> FiniteMap key elt

- In the case of duplicates, the last is taken

- ADDING AND DELETING
- Throws away any previous binding
-

In the list case, the items are added starting with the
- first one in the list

addToFM :: Ord key => FiniteMap key elt -> key -> elt -
> FiniteMap key elt
addListToFM :: Ord key => FiniteMap key elt -> [(key,elt)] -
> FiniteMap key elt

- Combines with previous binding
- In the combining function, the first argument is
- the "old" element, while the second is the "new" one.

addToFM_C :: Ord key => (elt -> elt -> elt)
-> FiniteMap key elt -> key -> elt
-> FiniteMap key elt

addListToFM_C :: Ord key => (elt -> elt -> elt)
-> FiniteMap key elt -> [(key,elt)]
-> FiniteMap key elt

179



Chapter 3. The data category: datatypes

-
Deletion doesn’t complain if you try to delete something

- which isn’t there
delFromFM :: Ord key => FiniteMap key elt -> key -
> FiniteMap key elt
delListFromFM :: Ord key => FiniteMap key elt -> [key] -
> FiniteMap key elt

- COMBINING
- Bindings in right argument shadow those in the left

plusFM :: Ord key => FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt

-
Combines bindings for the same thing with the given function
plusFM_C :: Ord key => (elt -> elt -> elt)

-> FiniteMap key elt -> FiniteMap key elt -
> FiniteMap key elt

minusFM :: Ord key => FiniteMap key elt -> FiniteMap key elt -
> FiniteMap key elt

-
(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: Ord key => FiniteMap key elt -> FiniteMap key elt -
> FiniteMap key elt
intersectFM_C :: Ord key => (elt1 -> elt2 -> elt3)

-> FiniteMap key elt1 -> FiniteMap key elt2 -
> FiniteMap key elt3

- MAPPING, FOLDING, FILTERING
foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -
> FiniteMap key elt2
filterFM :: Ord key => (key -> elt -> Bool)

-> FiniteMap key elt -> FiniteMap key elt

- INTERROGATING
sizeFM :: FiniteMap key elt -> Int
isEmptyFM :: FiniteMap key elt -> Bool

elemFM :: Ord key => key -> FiniteMap key elt -> Bool
lookupFM :: Ord key => FiniteMap key elt -> key -> Maybe elt
lookupWithDefaultFM

:: Ord key => FiniteMap key elt -> elt -> key -> elt
- lookupWithDefaultFM supplies a "default" elt
- to return for an unmapped key

- LISTIFYING

180



Chapter 3. The data category: datatypes

fmToList :: FiniteMap key elt -> [(key,elt)]
keysFM :: FiniteMap key elt -> [key]
eltsFM :: FiniteMap key elt -> [elt]

3.3. The Set type

Our implementation of sets (key property: no duplicates) is just a variant of the FiniteMap module.

data Set - abstract
- instance of: Eq

emptySet :: Set a
mkSet :: Ord a => [a] -> Set a
setToList :: Set a -> [a]
unitSet :: a -> Set a
singletonSet :: a -> Set a - deprecated, use unitSet.

union :: Ord a => Set a -> Set a -> Set a
unionManySets :: Ord a => [Set a] -> Set a
minusSet :: Ord a => Set a -> Set a -> Set a
mapSet :: Ord a => (b -> a) -> Set b -> Set a
intersect :: Ord a => Set a -> Set a -> Set a

elementOf :: Ord a => a -> Set a -> Bool
isEmptySet :: Set a -> Bool

cardinality :: Set a -> Int

181



Chapter 4. The lang category: language
support

4.1. Addr
This library provides machine addresses, i.e., handles to chunks of raw memory. It is primarily
intended for use with the Foreign Function Interface (FFI) and will usually be imported via the
module Foreign (see Section 4.9).

4.1.1. Address Type and Arithmetic

data Addr - abstract handle for memory addresses
- instance of: Eq, Ord, Show, Typeable

data AddrOff - abstract handle of address offsets
-

instance of: Eq, Ord, Show, Enum, Num, Real, Integral, Typeable

nullAddr :: Addr
alignAddr :: Addr -> Int -> Addr
plusAddr :: Addr -> AddrOff -> Addr
minusAddr :: Addr -> Addr -> AddrOff

The following specifies the behaviour of the four function definitions.

nullAddr :: Addr

The constant nullAddr contains a distinguished value of Addr that is not associated with a
valid memory location.

alignAddr :: Addr -> Int -> Addr

Given an arbitrary address and an alignment constraint, alignAddr yields the next higher
address that fulfills the alignment constraint. An alignment constraint x is fulfilled by any
address divisible by x. This operation is idempotent.

plusAddr :: Addr -> AddrOff -> Addr

Advances the given address by the given address offset.

minusAddr :: Addr -> Addr -> AddrOff

Computes the offset required to get from the first to the second argument. We have

a2 == a1 ‘plusAddr‘ (a2 ‘minusAddr‘ a1)

182



Chapter 4. The lang category: language support

4.1.2. The Standard C-side Interface
The following definition is available to C programs inter-operating with Haskell code when
including the header HsFFI.h.

typedef void* HsAddr; /* C representation of an Addr */

4.1.3. Deprecated Functions
The following functions are deprecated in the new FFI. Use the module Storable (Section 4.25)
instead.

- read value out of _immutable_ memory
indexCharOffAddr :: Addr -> Int -> Char
indexIntOffAddr :: Addr -> Int -> Int
indexAddrOffAddr :: Addr -> Int -> Addr
indexFloatOffAddr :: Addr -> Int -> Float
indexDoubleOffAddr :: Addr -> Int -> Double
indexWord8OffAddr :: Addr -> Int -> Word8
indexWord16OffAddr :: Addr -> Int -> Word16
indexWord32OffAddr :: Addr -> Int -> Word32
indexWord64OffAddr :: Addr -> Int -> Word64
indexInt8OffAddr :: Addr -> Int -> Int8
indexInt16OffAddr :: Addr -> Int -> Int16
indexInt32OffAddr :: Addr -> Int -> Int32
indexInt64OffAddr :: Addr -> Int -> Int64
indexStablePtrOffAddr :: Addr -> Int -> StablePtr a

- read value out of mutable memory
readCharOffAddr :: Addr -> Int -> IO Char
readIntOffAddr :: Addr -> Int -> IO Int
readAddrOffAddr :: Addr -> Int -> IO Addr
readFloatOffAddr :: Addr -> Int -> IO Float
readDoubleOffAddr :: Addr -> Int -> IO Double
readWord8OffAddr :: Addr -> Int -> IO Word8
readWord16OffAddr :: Addr -> Int -> IO Word16
readWord32OffAddr :: Addr -> Int -> IO Word32
readWord64OffAddr :: Addr -> Int -> IO Word64
readInt8OffAddr :: Addr -> Int -> IO Int8
readInt16OffAddr :: Addr -> Int -> IO Int16
readInt32OffAddr :: Addr -> Int -> IO Int32
readInt64OffAddr :: Addr -> Int -> IO Int64
readStablePtrOffAddr :: Addr -> Int -> IO (StablePtr a)

- write value into mutable memory
writeCharOffAddr :: Addr -> Int -> Char -> IO ()
writeIntOffAddr :: Addr -> Int -> Int -> IO ()

183



Chapter 4. The lang category: language support

writeAddrOffAddr :: Addr -> Int -> Addr -> IO ()
writeFloatOffAddr :: Addr -> Int -> Float -> IO ()
writeDoubleOffAddr :: Addr -> Int -> Double -> IO ()
writeWord8OffAddr :: Addr -> Int -> Word8 -> IO ()
writeWord16OffAddr :: Addr -> Int -> Word16 -> IO ()
writeWord32OffAddr :: Addr -> Int -> Word32 -> IO ()
writeWord64OffAddr :: Addr -> Int -> Word64 -> IO ()
writeInt8OffAddr :: Addr -> Int -> Int8 -> IO ()
writeInt16OffAddr :: Addr -> Int -> Int16 -> IO ()
writeInt32OffAddr :: Addr -> Int -> Int32 -> IO ()
writeInt64OffAddr :: Addr -> Int -> Int64 -> IO ()
writeForeignObjOffAddr :: Addr -> Int -> ForeignObj -> IO ()
writeStablePtrOffAddr :: Addr -> Int -> StablePtr a -> IO ()

- conversion to/from Int, a little bit doubtful...
addrToInt :: Addr -> Int
intToAddr :: Int -> Addr

- completely deprecated
data Word = W# Word#
wordToInt :: Word -> Int
intToWord :: Int -> Word

4.1.4. Hugs Specifics
Hugs provides Addr and nullAddr but does not provide any of the index, read or write functions.
They can be implemented using GreenCard if required.

4.2. Bits
This module defines bitwise operations for signed and unsigned ints. Instances of class Bits can
be obtained from the Int (Section 4.13) and Word (Section 4.27) modules.

infixl 8 ‘shift‘, ‘rotate‘
infixl 7 .&.
infixl 6 ‘xor‘
infixl 5 .|.

class Bits a where
(.&.), (.|.), xor :: a -> a -> a
complement :: a -> a
shift :: a -> Int -> a
rotate :: a -> Int -> a
bit :: Int -> a

184



Chapter 4. The lang category: language support

setBit :: a -> Int -> a
clearBit :: a -> Int -> a
complementBit :: a -> Int -> a
testBit :: a -> Int -> Bool
bitSize :: a -> Int
isSigned :: a -> Bool

shiftL, shiftR :: Bits a => a -> Int -> a
rotateL, rotateR :: Bits a => a -> Int -> a
shiftL a i = shift a i
shiftR a i = shift a (-i)
rotateL a i = rotate a i
rotateR a i = rotate a (-i)

Notes:

• bitSize and isSigned are like floatRadix and floatDigits—they return parameters of the
type of their argument rather than of the particular argument they are applied to. bitSize returns
the number of bits in the type; and isSigned returns whether the type is signed or not.

• shift performs sign extension on signed number types. That is, right shifts fill the top bits with 1
if the number is negative and with 0 otherwise.

• Bits are numbered from 0 with bit 0 being the least significant bit.

• shift x i and rotate x i shift to the left if i is positive and to the right otherwise.

• bit i is the value with the i’th bit set.

4.3. ByteArray
NOTE: The ByteArray interface is deprecated, please use IArray (Section 4.12) or MArray
(Section 4.16) instead.

ByteArrays are chunks of immutable Haskell heap:

data ByteArray ix - abstract

instance Eq (ByteArray ix)

newByteArray :: Ix ix => (ix,ix) -> ST s (ByteArray ix)

indexCharArray :: Ix ix => ByteArray ix -> ix -> Char
indexIntArray :: Ix ix => ByteArray ix -> ix -> Int
indexWordArray :: Ix ix => ByteArray ix -> ix -> Word
indexAddrArray :: Ix ix => ByteArray ix -> ix -> Addr
indexFloatArray :: Ix ix => ByteArray ix -> ix -> Float

185



Chapter 4. The lang category: language support

indexDoubleArray :: Ix ix => ByteArray ix -> ix -> Double
indexStablePtrArray :: Ix ix => ByteArray ix -> ix -> (StablePtr a)

sizeofByteArray :: Ix ix => ByteArray ix -> Int
boundsOfByteArray :: Ix ix => ByteArray ix -> (ix, ix)

Remarks:

• The operation newByteArray creates a byte array of length equal to the range of its indices in
bytes.

• sizeofByteArray returns the size of the byte array, in bytes.

• Equality on byte arrays is value equality, not pointer equality (as is the case for its mutable
variant.) Two byte arrays are equal if they’re of the same length and they’re pairwise equal.

4.4. CCall
This module is deprecated. Use the Foreign Function Interface instead.

The CCall module defines the classes CCallable and CReturnable, along with instances for the
primitive types (Int, Int#, Float, Float# etc.) GHC knows to import this module if you use
_ccall_, but if you need to define your own instances of these classes, you will need to import
CCall explicitly.

4.5. CTypes
This module is part of the language-dependent part of the Foreign Function Interface (FFI) - for the
language-independent part, see Section 4.9. It defines Haskell types that can hold the primitive types
of C and can directly be used in foreign import and export declarations.

Every type has a constructor of the same name, which is currently exported, too. Given the large set
of instances for each type, it is not clear if access to the concrete representation is really necessary.
Some experience is needed before a final decision can be made in this respect.

4.5.1. Integral types
The following integral types have instances for the classes Eq, Ord, Num, Read, Show, Enum,
Typeable, Storable, Bounded, Real, Integral, and Bits:

newtype CChar - char
newtype CSChar - signed char
newtype CUChar - unsigned char

186



Chapter 4. The lang category: language support

newtype CShort - short
newtype CUShort - unsigned short
newtype CInt - int
newtype CUInt - unsigned int
newtype CLong - long
newtype CULong - unsigned long
newtype CLLong - long long
newtype CULLong - unsigned long long

4.5.2. Floating types
The following floating types have instances for the classes Eq, Ord, Num, Read, Show, Enum,
Typeable, Storable, Real, Fractional, Floating, RealFrac, and RealFloat:

newtype CFloat - float
newtype CDouble - double
newtype CLDouble - long double

4.6. CTypesISO
This module is part of the language-dependent part of the Foreign Function Interface (FFI) - for the
language-independent part, see Section 4.9. It defines Haskell types corresponding the most
important ISO types of C that are not covered in the module CTypes.

Every type has a constructor of the same name, which is currently exported, too. Given the large set
of instances for each type, it is not clear if access to the concrete representation is really necessary.
Some experience is needed before a final decision can be made in this respect.

4.6.1. Integral types
The following integral types have instaces for the classes Eq, Ord, Num, Read, Show, Enum,
Typeable, Storable, Bounded, Real, Integral, and Bits:

newtype CPtrdiff - ptrdiff_t
newtype CSize - size_t
newtype CWChar - wchar_t
newtype CSigAtomic - sig_atomic_t

4.6.2. Numeric types

187



Chapter 4. The lang category: language support

The following numeric types have instances for the classes Eq, Ord, Num, Read, Show, Enum,
Typeable, and Storable:

newtype CClock - clock_t
newtype CTime - time_t

4.6.3. Misc types
The following types have instances for the classes: ???

newtype CFile - FILE
newtype CFpos - fpos_t
newtype CJmpBuf - jmp_buf

4.7. Dynamic
The Dynamic library provides cheap-and-cheerful dynamic types for Haskell. A dynamically typed
value is one which carries type information with it at run-time, and is represented here by the
abstract type Dynamic. Values can be converted into Dynamic ones, which can then be combined
and manipulated by the program using the operations provided over the abstract, dynamic type. One
of these operations allows you to (try to) convert a dynamically-typed value back into a value with
the same (monomorphic) type it had before converting it into a dynamically-typed value. If the
dynamically-typed value isn’t of the desired type, the coercion will fail.

The Dynamic library is capable of dealing with monomorphic types only; no support for
polymorphic dynamic values, but hopefully that will be added at a later stage.

Examples where this library may come in handy (dynamic types, really - hopefully the library
provided here will suffice) are: persistent programming, interpreters, distributed programming etc.

The following operations are provided over the Dynamic type:

data Dynamic - abstract, instance of: Show, Typeable
instance Show Dynamic

toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a

• toDyn converts a value into a dynamic one, provided toDyn knows the (concrete) type
representation of the value. The Typeable type class is used to encode this, overloading a
function that returns the type representation of a value. More on this below.

188



Chapter 4. The lang category: language support

• There’s two ways of going from a dynamic value to one with a concrete type: fromDyn, tries to
convert the dynamic value into a value with the same type as its second argument. If this fails, the
default second argument is just returned. fromDynamic returns a Maybe type instead, Nothing
coming back if the conversion was not possible.

• The Dynamic type has got a Show instance which returns a pretty printed string of the type of the
dynamic value. (Useful when debugging).

4.7.1. Representing types
Haskell types are represented as terms using the TypeRep abstract type:

data TypeRep - abstract, instance of: Eq, Show, Typeable
data TyCon - abstract, instance of: Eq, Show, Typeable

mkTyCon :: String -> TyCon
mkAppTy :: TyCon -> [TypeRep] -> TypeRep
mkFunTy :: TypeRep -> TypeRep -> TypeRep
applyTy :: TypeRep -> TypeRep -> Maybe TypeRep

• mkAppTy applies a type constructor to a sequence of types, returning a type.

• mkFunTy is a special case of mkAppTy, applying the function type constructor to a pair of types.

• applyTy applies a type to a function type. If possible, the result type is returned.

• Type constructors are represented by the abstract type, TyCon.

• Most importantly, TypeReps can be compared for equality. Type equality is used when converting
a Dynamic value into a value of some specific type, comparing the type representation that the
Dynamic value embeds with equality of the type representation of the type we’re trying to convert
the dynamically-typed value into.

• To allow comparisons between TypeReps to be implemented efficiently, the abstract TyCon type
is used, with the constructor function mkTyCon provided:

mkTyCon :: String -> TyCon

An implementation of the Dynamic interface guarantees the following,

mkTyCon "a" == mkTyCon "a"

A really efficient implementation is possible if we guarantee/demand that the strings are unique, and
for a particular type constructor, the application mkTyCon to the string that represents the type
constructor is never duplicated. Q: Would this constraint be unworkable in practice?

• Both TyCon and TypeRep are instances of the Show type classes. To have tuple types be shown in
infix form, the Show instance guarantees that type constructors consisting of n-commas, i.e.,
(mkTyCon "„„"), is shown as an (n+1) tuple in infix form.

189



Chapter 4. The lang category: language support

4.7.2. The Typeable class
To ease the construction of Dynamic values, we introduce the following type class to help working
with TypeReps:

class Typeable a where
typeOf :: a -> TypeRep

• The typeOf function is overloaded to return the type representation associated with a type.

• Important: The argument to typeOf is only used to carry type information around so that
overloading can be resolved. Typeable instances should never, ever look at this argument.

• The Dynamic library provides Typeable instances for all Prelude types and all types from the
lang package (given that their component types are themselves Typeable). They are:

Prelude types:
[a], (), (a,b), (a,b,c), (a,b,c,d), (a,b,c,d,e), (a->b),
(Array a b), Bool, Char, (Complex a), Double, (Either a b),
Float, Handle, Int, Integer, (IO a), (Maybe a), Ordering

Hugs/GHC types:
Addr, AddrOff, Dynamic, ForeignObj, (IORef a),
Int8, Int16, Int32, Int64, (ST s a), (StablePtr a),
TyCon, TypeRep, Word8, Word16, Word32, Word64

GHC types:
ArithException, AsyncException, (ByteArray i), CChar, CClock,
CDouble, CFile, CFloat, CFpos, CInt, CJmpbuf, CLDouble,
CLLong, CLong, CPtrdiff, CSChar, CShort, CSigAtomic, CSize,
CTime, CUChar, CUInt, CULLong, CULong, CUShort, CWchar,
Exception, (IOArray i e), (IOUArray i e), (MutableByteArray s i),
PackedString, (STArray s i e), (STUArray s i e), (StableName a),
(UArray i e), (Weak a)

Note: GHC’s libraries currently contain the Typeable instances for the data types in the modules
Exception, CTypes, and CTypesISO in those modules themselves. This is probably anyway the
right way to go, Dynamic should only contain instances for Prelude types.

4.7.3. Utility functions
Operations for applying a dynamic function type to a dynamically typed argument are commonly
useful, and also provided:

dynApply :: Dynamic -> Dynamic -> Dynamic - unsafe.
dynApplyMb :: Dynamic -> Dynamic -> Maybe Dynamic

190



Chapter 4. The lang category: language support

4.8. Exception
The Exception library provides an interface for raising and catching both built-in and user defined
exceptions.

Exceptions are defined by the (non-abstract) Exception datatype. The standard Haskell IOError
type is a synonym for Exception.

- instance of Eq, Ord, Show, Typeable
data Exception

= IOException IOException - IO exceptions
| ArithException ArithException - Arithmetic exceptions
| ArrayException ArrayException - Array-related exceptions
| ErrorCall String - Calls to ’error’
| NoMethodError String - A non-existent method was invoked
| PatternMatchFail String - A pattern match failed
| RecSelError String - Selecting a non-existent field
| RecConError String - Field missing in record construction
| RecUpdError String - Record doesn’t contain updated field
| AssertionFailed String - Assertions
| DynException Dynamic - Dynamic exceptions
| AsyncException AsyncException - Externally generated errors
| PutFullMVar - Put on a full MVar
| BlockedOnDeadMVar - Blocking on a dead MVar
| NonTermination - Program is in an infinite loop
| UserError String - General purpose exception

- instance of Eq, Ord, Show, Typeable
data ArithException

= Overflow
| Underflow
| LossOfPrecision
| DivideByZero
| Denormal

- instance of Eq, Ord, Show, Typeable
data AsyncException

= StackOverflow
| HeapOverflow
| ThreadKilled

- instance of Eq, Ord, Show, Typeable
data ArrayException

= IndexOutOfBounds String - out-of-range array access
| UndefinedElement String - evaluating an undefined element

191



Chapter 4. The lang category: language support

4.8.1. Kinds of exception
An implementation should raise the appropriate exception when once of the following conditions
arises:

IOException

These are the standard IO exceptions generated by Haskell’s IO operations.

ArithException

Exceptions raised by arithmetic operations1:

Overflow

Underflow

LossOfPrecision

DivisionByZero

Denormal

ArrayException

Exceptions raised by array-related operations2:

IndexOutOfBounds

An attempt was made to index an array outside its declared bounds.

UndefinedElement

An attempt was made to evaluate an element of an array that had not been initialized.

ErrorCall

The ErrorCall exception is thrown by error. The String argument of ErrorCall is the
string passed to error when it was called.

192



Chapter 4. The lang category: language support

NoMethodError

An attempt was made to invoke a class method which has no definition in this instance, and
there was no default definition given in the class declaration. GHC issues a warning when you
compile an instance which has missing methods.

PatternMatchFail

A pattern matching failure. The String argument should contain a descriptive message
including the function name, source file and line number.

RecSelError

A field selection was attempted on a constructor that doesn’t have the requested field. This can
happen with multi-constructor records when one or more fields are missing from some of the
constructors. The String argument gives the location of the record selection in the source
program.

RecConError

An attempt was made to evaluate a field of a record for which no value was given at construction
time. The String argument gives the location of the record construction in the source program.

RecUpdError

An attempt was made to update a field in a record, where the record doesn’t have the requested
field. This can only occur with multi-constructor records, when one or more fields are missing
from some of the constructors. The String argument gives the location of the record update in
the source program.

AssertionFailed

This exception is thrown by the assert operation when the condition fails. The String
argument contains the location of the assertion in the source program.

DynException

Dynamically typed exceptions, described in Section 4.8.5.

AsyncException

Asynchronous exceptions. These are described in more detail in Section 4.8.7. The types of
asynchronous exception are:

StackOverflow

The current thread’s stack exceeded its limit. Since an exception has been raised, the
thread’s stack will certainly be below its limit again, but the programmer should take
remedial action immediately.

193



Chapter 4. The lang category: language support

HeapOverflow

The program’s heap is reaching its limit, and the program should take action to reduce the
amount of live data it has34.

ThreadKilled

This exception is raised by another thread calling killThread (see Section 2.2), or by the
system if it needs to terminate the thread for some reason.

PutFullMVar

A call to putMVar (Section 2.4.3) was passed a full MVar .

BlockedOnDeadMVar

The current thread was executing a call to takeMVar (Section 2.4.3) that could never return,
because there are no other references to this MVar.

NonTermination

The current thread is stuck in an infinite loop. This exception may or may not be thrown when
the program is non-terminating.

UserError

The UserError exception is reserved for the user, and may be thrown with IO.userError.

4.8.2. Throwing exceptions
Exceptions may be thrown explicitly from anywhere:

throw :: Exception -> a

From the IO monad, exceptions may be thrown using ioError (from module IO):

ioError :: IOError -> IO a

(recall that IOError is a synonym for Exception.

You may be wondering what the difference between these two functions is, after all the type of
ioError is just an instance of the type of throw, so you could use throw everywhere and forget
about ioError, right? This is mostly true, but there is one subtle difference between the two
functions:

throw e ‘seq‘ return () ===> throw e
ioError e ‘seq‘ return () ===> return ()

The first example will cause the exception e to be raised, whereas the second one won’t. In fact,
ioError will only cause an exception to be raised when it is used within the IO monad.

194



Chapter 4. The lang category: language support

4.8.3. The catch functions
There are several functions for catching and examining exceptions; all of them may only be used
from within the IO monad. Firstly the catch family of functions:

catch :: IO a -> (Exception -> IO a) -> IO a
catchJust :: (Exception -> Maybe b) -> IO a -> (b -> IO a) -> IO a

The simplest version is catch. It takes a single argument, runs it, and if an exception is raised the
"handler" is executed passing the value of the exception. Otherwise, the result is returned as normal.
For example:

catch (openFile f ReadMode)
(\e -> hPutStr stderr ("Couldn’t open "++f++": " ++ show e))

For catching exceptions in pure (non-IO) expressions, the function evaluate is provided:

evaluate :: a -> IO a
evaluate a = a ‘seq‘ return a

evaluate simply forces its argument to be evaluated, then returns the result in the IO monad. This
is useful with catch:

do
...
let value = read str
catch (evaluate value)

(\e -> hPutStr stderr ("Failed to parse: " ++ show e)

Note that due to Haskell’s unspecified evaluation order, an expression may return one of several
possible exceptions: consider the expression error "urk" + 1 ‘div‘ 0. Does catch execute
the handler passing ErrorCall "urk", or ArithError DivideByZero?

The answer is "either": catch makes a non-deterministic choice about which exception to catch. If
you call it again, you might get a different exception back. This is ok, because catch is an IO
computation.

The function catchJust takes an extra argument which is an exception predicate, a function which
selects which type of exceptions we’re interested in. The full set of exception predicates is given
below:

ioErrors :: Exception -> Maybe IOError
arithExceptions :: Exception -> Maybe ArithException
errorCalls :: Exception -> Maybe String
dynExceptions :: Exception -> Maybe Dynamic
assertions :: Exception -> Maybe String
asyncExceptions :: Exception -> Maybe AsyncException

For example, to catch just calls to error we could use something like

195



Chapter 4. The lang category: language support

result <- catchJust errorCalls thing_to_try handler

Any other exceptions which aren’t matched by the predicate are re-raised, and may be caught by an
enclosing catch or catchJust.

Also, don’t forget to import Prelude hiding (catch) when using this library, to avoid the
name clash between Exception.catch and IO.catch.

4.8.4. The try functions
The try family is similar to the catch family:

try :: IO a -> IO (Either Exception a)
tryJust :: (Exception -> Maybe b) -> IO a -> IO (Either b a)

The difference is that instead of executing a handler when an exception is caught, these functions
return an Either result, with Right a indicating success, and Left e indicating that exception e
was raised.

4.8.5. Dynamic Exceptions
Because the Exception datatype isn’t extensible, we added an interface for throwing and catching
exceptions of type Dynamic (see Section 4.7), which allows exception values of any type in the
Typeable class to be thrown and caught.

throwDyn :: Typeable exception => exception -> b
catchDyn :: Typeable exception => IO a -> (exception -> IO a) -> IO a

The catchDyn function only catches exceptions of the required type; all other exceptions are
re-thrown as with catchIO and friends above.

4.8.6. Other Utilities
The bracket functions are useful for making sure that resources are released properly by code that
may raise exceptions:

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket_ :: IO a -> IO b -> IO c -> IO c
finally :: IO a -> IO b -> IO b

For example, to open a file, do some work on it and then close it again, we might use something like:

process_file =
bracket

(openFile "filename" ReadMode)

196



Chapter 4. The lang category: language support

(closeFile)
(do { ... })

bracket works as follows: it executes its first argument ("open"), then its third argument, followed
finally by its second argument ("close"). If the third argument happened to raise an exception, then
the close operation will still be performed, and the exception will be re-raised.

This means that in the example above the file will always be closed, even if an error occurs during
processing.

The arguments to bracket are in this order so that we can partially apply it, like:

withFile name = bracket (openFile name) closeFile

The bracket_ function is a variant of bracket that throws away the result of the open, and
finally is an even simpler version where we just want some closing code.

4.8.7. Asynchronous exceptions
Asynchronous exceptions are so-called because they arise due to external influences, and can be
raised at any point during execution. StackOverflow and HeapOverflow are two examples of
system-generated asynchronous exceptions.

The primary source of asynchronous exceptions, however, is throwTo, from the Concurrent
library (see Section 2.2):

throwTo :: ThreadId -> Exception -> IO ()

throwTo allows one running thread to raise an arbitrary exception in another thread. The exception
is therefore asynchronous with respect to the target thread, which could be doing anything at the time
it receives the exception. Great care should be taken with asynchronous exceptions; it is all too easy
to introduce race conditions by the over zealous use of throwTo.

There are two functions which allow a thread to control the delivery of asynchronous exceptions
during critical sections:

block :: IO () -> IO ()
unblock :: IO () -> IO ()

Applying block to a computation will execute that computation with asynchronous exceptions
blocked. That is, any thread which attempts to raise an exception in the current thread will be
blocked until asynchronous exceptions are enabled again. There’s no need to worry about
re-enabling asynchronous exceptions; that’s done automatically on exiting the scope of block.

To re-enable asynchronous exceptions inside the scope of block, unblock can be used. It scopes in
exactly the same way, so on exit from unblock asynchronous exception delivery will be disabled
again.

197



Chapter 4. The lang category: language support

For some examples of the use of these functions, see the definitions of finally and bracket in the
sources to the Exception module.

4.8.7.1. Applying block to an exception handler

There’s an implied block around every exception handler in a call to one of the catch family of
functions. This is because that’s what you want most of the time - it eliminates a common race
condition in starting an exception handler, because there may be no exception handler on the stack to
handle another exception if one arrives immediately. If asynchronous exceptions are blocked on
entering the handler, though, we have time to install a new exception handler before being
interrupted. If this weren’t the default, you’d have to write something like

block (
catch (unblock (...))

(\e -> handler)
)

If you need to unblock asynchronous exceptions again in the exceptions handler, just use unblock
as normal.

Note that try and friends don’t have a similar default, because there is no exception handler in this
case. If you want to use try in an asynchronous-exception-safe way, you’ll need to use block.

4.8.7.2. Interruptible operations

Some operations are interruptible, which means that they can receive asynchronous exceptions even
in the scope of a block. Any function which may itself block is defined as interruptible; this
includes takeMVar, and most I/O-performing operations. The reason for having interruptible
operations is so that we can write things like

block (
a <- takeMVar m
catch (unblock (...))

(\e -> ...)
)

if the takeMVar wasn’t interruptible, then this particular combination could lead to deadlock,
because the thread itself would be blocked in a state where it can’t receive any asynchronous
exceptions. With takeMVar interruptible, however, we can be safe in the knowledge that the thread
can receive exceptions right up until the point when the takeMVar succeeds. Similar arguments
apply for other interruptible operations like IO.openFile.

198



Chapter 4. The lang category: language support

4.9. Foreign
The Foreign Function Interface (FFI) consists of three parts:

1. foreign import and export declarations (defined in an extra document A Haskell Foreign
Function Interface),

2. a low-level marshalling library (see Section 4.13, Section 4.27, Section 4.1, Section 4.10,
Section 4.24, Section 4.25, Section 4.5, and Section 4.6), and

3. a high-level marshalling library (this is still under development and not included in the current
distribution).

The module Foreign provides the interface to the language independent portion of the second
component, i.e., the modules Int (Section 4.13), Word (Section 4.27), Addr (Section 4.1),
ForeignObj (Section 4.10), StablePtr (Section 4.24), and Storable (Section 4.25). The two
modules CTypes (Section 4.5) and CTypesISO (Section 4.6) are specific to code interfacing with C
- especially, for implementing portable Haskell bindings to C libraries. However, currently there is
no dedicated support for languages other than C, so that Foreign will usually be used in
conjunction with CTypes and CTypesISO.

The code for marshalling of Haskell structures into a foreign representation and vice versa can
generally be implemented in either Haskell or the foreign language. At least if the foreign language
is a significantly lower level language, such as C, there are good reasons for doing the marshalling in
Haskell:

• Haskell’s lazy evaluation strategy would require any foreign code that attempts to access Haskell
structures to force the evaluation of the structures before accessing them. This would lead to
complicated code in the foreign language, but does not need any extra consideration when coding
the marshalling in Haskell.

• Despite the fact that marshalling code in Haskell tends to look like C in Haskell syntax, the strong
type system still catches many errors that would otherwise lead to difficult to debug runtime faults.

• Direct access to Haskell heap structures from a language like C - especially, when marshalling
from C to Haskell, i.e., when Haskell structures are created - carries the risk of corrupting the
heap, which usually leads to faults that are very hard to debug. (Paradox as it may seem, the cause
for corrupted C structures is usually easier to locate, at least when a conventional debugger like
gdb is at hand.)

Consequently, the Haskell FFI emphasises Haskell-side marshalling.

4.10. ForeignObj
This module is part of the Foreign Function Interface (FFI) and will usually be imported via the
module Foreign (see Section 4.9). The type ForeignObj represents references to objects that are

199



Chapter 4. The lang category: language support

maintained in a foreign language, i.e., that are not part of the data structures usually managed by the
Haskell storage manager. The essential difference between ForeignObjs and vanilla memory
references of type Addr (Section 4.1) is that the former may be associated with finalisers. A finaliser
is a routine that is invoked when the Haskell storage manager detects that - within the Haskell heap
and stack - there are no more references left that are pointing to the ForeignObj. Typically, the
finaliser will, then, invoke routines in the foreign language that free the resources bound by the
foreign object.

4.10.1. The Standard Interface

data ForeignObj - abstract handle to foreign object
instance Eq ForeignObj

newForeignObj :: Addr -> IO () -> IO ForeignObj
addForeignFinalizer :: ForeignObj -> IO () -> IO ()
foreignObjToAddr :: ForeignObj -> Addr - *unsafe* operation

The behaviour of the functions is as follows:

newForeignObj :: Addr -> IO () -> IO ForeignObj

Turns a plain memory reference into a foreign object by associating a finaliser - given by the
monadic operation - with the reference. The finaliser will be executed after the last reference to
the foreign object is dropped. Note that there is no guarantee on how soon the finaliser is
executed after the last reference was dropped; this depends on the details of the Haskell storage
manager. The only guarantee is that the finaliser runs before the program terminates.

addForeignFinalizer :: ForeignObj -> IO () -> IO ()

This function adds another finaliser to the given foreign object. No guarantees are made on the
order in which multiple finalisers for a single object are run.

foreignObjToAddr :: ForeignObj -> Addr

Extract the plain memory reference contained in a foreign object.

This routine should be handled with a lot of care: The reference to the foreign object that is
passed in a call to foreignObjToAddr may be the last reference to the object that exists in
Haskell land. In this case, the finalisers of the foreign object may be activated any time after the
call to foreignObjToAddr is evaluated. If the finalisers, for example, trigger deallocation of
the foreign object’s memory area, the Addr obtained by the call to foreignObjToAddr may
be rendered invalid when garbage collection hits after the call. Whether this is a problem or not
depends on the details of the finaliser code and the operations subsequently performed on the
Addr.

If it must be guaranteed that the finalisers are not yet run, a stable pointer (Section 4.24) should
be used to establish a guaranteed reference to the foreign object. The finalisers will, then,
certainly not be run before StablePtr.freeStablePtr is used.

200



Chapter 4. The lang category: language support

4.10.2. The Standard C-side Interface
The following definition is available to C programs inter-operating with Haskell code when
including the header HsFFI.h.

typedef void* HsForeignObj; /* C representation of a ForeignObj */

4.10.3. Deprecated Functions
The following functions are deprecated in the new FFI. Do not use the following functions if you are
interested in portability. Instead of the indexXXX, readXXX, and writeXXX functions, use the
module Storable (Section 4.25).

Most of these functions are here for legacy reasons and may just vanish one day. You have been
warned.

writeForeignObj :: ForeignObj -> Addr{-new value-} -> IO ()
makeForeignObj :: Addr -> Addr -> IO ForeignObj

indexCharOffForeignObj :: ForeignObj -> Int -> Char
indexIntOffForeignObj :: ForeignObj -> Int -> Int
indexWordOffForeignObj :: ForeignObj -> Int -> Word
indexAddrOffForeignObj :: ForeignObj -> Int -> Addr
indexFloatOffForeignObj :: ForeignObj -> Int -> Float
indexDoubleOffForeignObj :: ForeignObj -> Int -> Double
indexWord8OffForeignObj :: ForeignObj -> Int -> Word8
indexWord16OffForeignObj :: ForeignObj -> Int -> Word16
indexWord32OffForeignObj :: ForeignObj -> Int -> Word32
indexWord64OffForeignObj :: ForeignObj -> Int -> Word64

indexInt8OffForeignObj :: ForeignObj -> Int -> Int8
indexInt16OffForeignObj :: ForeignObj -> Int -> Int16
indexInt32OffForeignObj :: ForeignObj -> Int -> Int32
indexInt64OffForeignObj :: ForeignObj -> Int -> Int64

- read value out of mutable memory
readCharOffForeignObj :: ForeignObj -> Int -> IO Char
readIntOffForeignObj :: ForeignObj -> Int -> IO Int
readWordOffForeignObj :: ForeignObj -> Int -> IO Word
readAddrOffForeignObj :: ForeignObj -> Int -> IO Addr
readFloatOffForeignObj :: ForeignObj -> Int -> IO Float
readDoubleOffForeignObj :: ForeignObj -> Int -> IO Double
readWord8OffForeignObj :: ForeignObj -> Int -> IO Word8
readWord16OffForeignObj :: ForeignObj -> Int -> IO Word16
readWord32OffForeignObj :: ForeignObj -> Int -> IO Word32
readWord64OffForeignObj :: ForeignObj -> Int -> IO Word64
readInt8OffForeignObj :: ForeignObj -> Int -> IO Int8
readInt16OffForeignObj :: ForeignObj -> Int -> IO Int16

201



Chapter 4. The lang category: language support

readInt32OffForeignObj :: ForeignObj -> Int -> IO Int32
readInt64OffForeignObj :: ForeignObj -> Int -> IO Int64

writeCharOffForeignObj :: ForeignObj -> Int -> Char -> IO ()
writeIntOffForeignObj :: ForeignObj -> Int -> Int -> IO ()
writeWordOffForeignObj :: ForeignObj -> Int -> Word -> IO ()
writeAddrOffForeignObj :: ForeignObj -> Int -> Addr -> IO ()
writeFloatOffForeignObj :: ForeignObj -> Int -> Float -> IO ()
writeDoubleOffForeignObj :: ForeignObj -> Int -> Double -> IO ()
writeWord8OffForeignObj :: ForeignObj -> Int -> Word8 -> IO ()
writeWord16OffForeignObj :: ForeignObj -> Int -> Word16 -> IO ()
writeWord32OffForeignObj :: ForeignObj -> Int -> Word32 -> IO ()
writeWord64OffForeignObj :: ForeignObj -> Int -> Word64 -> IO ()
writeInt8OffForeignObj :: ForeignObj -> Int -> Int8 -> IO ()
writeInt16OffForeignObj :: ForeignObj -> Int -> Int16 -> IO ()
writeInt32OffForeignObj :: ForeignObj -> Int -> Int32 -> IO ()
writeInt64OffForeignObj :: ForeignObj -> Int -> Int64 -> IO ()

4.11. GlaExts
The GlaExts interface provides access to extensions that only GHC implements. These currently
are: unboxed types, including the representations of the primitive types (Int, Float, etc.), and the
GHC primitive operations (+#, ==#, etc.).

This module used to provide access to all the Glasgow extensions, but these have since been moved
into separate libraries for compatibility with Hugs (version 2.09: in fact, you can still get at this stuff
via GlaExts for compatibility, but this facility will likely be removed in the future).

- the representation of some basic types:
data Char = C# Char#
data Int = I# Int#
data Addr = A# Addr#
data Word = W# Word#
data Float = F# Float#
data Double = D# Double#
data Integer = S# Int# - small integers

| J# Int# ByteArray# - large integers

module GHC - all primops and primitive types.

4.12. IArray

202



Chapter 4. The lang category: language support

This module provides a family of immutable array data types, and is intended to be a replacement for
Haskell’s standard Array module. In addition, a family of mutable array types is provided by the
MArray module (see Section 4.16).

4.12.1. IArray and HasBounds type classes
Two new type classes are provided, HasBounds and IArray:

class HasBounds a where
bounds :: Ix ix => a ix e -> (ix,ix)

class HasBounds a => IArray a e where
(!) :: Ix ix => a ix e -> ix -> e
array :: Ix ix => (ix,ix) -> [(ix,e)] -> a ix e

instance HasBounds (Array.Array)
instance IArray Array.Array e

where the type variable a denotes the array type constructor, ix denotes the index type, and e is the
element type.

The Array, (!), and bounds methods provided are exactly analoguous to those provided by the
Haskell 98 Array module, and indeed instances of HasBounds and IArray are provided for the
standard Array type.

4.12.2. UArray: immutable unboxed arrays
The UArray type is a flat, strict, unboxed array type, which has instances of IArray for common
integral element types:

data UArray ix e
instance HasBounds UArray
instance IArray UArray Char
instance IArray UArray Int
instance IArray UArray Word
instance IArray UArray Addr
instance IArray UArray Float
instance IArray UArray Double

The idea here is that any code which currently uses a standard non-strict polymorphic Array with
one of these element types can be easily converted to use UArray by simply importing IArray and
changing the type of the array from Array to UArray. The application will then get the performance
benefit of strict unboxed arrays, whithout making significant changes to the existing code.

203



Chapter 4. The lang category: language support

4.12.3. Useful combinators
The IArray module also provides versions of the standard array combinators from Haskell 98’s
Array module:

assocs :: (Ix ix, IArray a e) => a ix e -> [(ix,e)]

indices :: (Ix ix, IArray a e) => a ix e -> [ix]

(//) :: (Ix ix, IArray a e) => a ix e -> [(ix,e)] -> a ix e

listArray :: (Ix ix, IArray a e) => (ix,ix) -> [e] -> a ix e

elems :: (Ix ix, IArray a e) => a ix e -> [e]

amap :: (Ix ix, IArray a x, IArray a y) =>
(x -> y) -> a ix x -> a ix y

accum :: (Ix ix, IArray a e) =>
(e->f->e) -> a ix e -> [(ix,f)] -> a ix e

accumArray :: (Ix ix, IArray a e) =>
(e->f->e) -> e -> (ix,ix) -> [(ix,f)] -> a ix e

ixmap :: (Ix ix, Ix iy) =>
(ix,ix) -> (ix->iy) -> a iy e -> a ix e

4.13. Int
This interface provides a collection of sized, signed integers. The types supported are as follows:

type number of bits

Int8 8

Int16 16

Int32 32

Int64 64

For each type I above, we provide the following instances.

data I - Signed Ints
instance Eq I
instance Ord I

204



Chapter 4. The lang category: language support

instance Show I
instance Read I
instance Bounded I
instance Num I
instance Real I
instance Integral I
instance Enum I
instance Ix I
instance Bits I

4.13.1. Notes

• All arithmetic is performed modulo 2^n.

• For coercing between various integer types, use fromIntegral, which is specialized for all the
common cases so should be fast enough.

• The rules that hold for Enum instances over a bounded type such as Int (see the section of the
Haskell report dealing with arithmetic sequences) also hold for the Enum instances over the
various Int types defined here.

• Right and left shifts by amounts greater than or equal to the width of the type result in either zero
or -1, depending on the sign of the value being shifted. This is contrary to the behaviour in C,
which is undefined; a common interpretation is to truncate the shift count to the width of the type,
for example 1 « 32 == 1 in some C implementations.

• Hugs does not provide Int64 at the moment.

4.13.2. Deprecated Functions
The following functions are deprecated in the new FFI. Do not use the following functions if you are
interested in portability. Most of these functions are here for legacy reasons and may just vanish one
day. You have been warned.

The Int module also exports the overloaded operations for converting to and from Haskell Ints.
However, for coercing between various integer types, better use fromIntegral, which is
specialized for all the common cases so should be fast enough.

toInt :: (Integral a) => a -> Int
fromInt :: (Num a) => Int -> a

Portability note: both Hugs98 and all releases of GHC prior to ghc-4.05 also exports these two via
the Prelude. So, to have code that uses toInt and fromInt be maximally portable, make sure you

205



Chapter 4. The lang category: language support

add an import on Int (even if the version of Hugs or GHC you’re currently using may not export
these two from there.)

4.14. IOExts
This library is the home for miscellaneous IO-related extensions.

4.14.1. IO monad extensions

fixIO :: (a -> IO a) -> IO a

fixIO allows recursive IO operations to be defined. The first argument to fixIO should be a
function that takes its own output as an argument (sometimes called "tying the knot").

unsafePerformIO :: IO a -> a

This is the "back door" into the IO monad, allowing IO computation to be performed at any
time. For this to be safe, the IO computation should be free of side effects and independent of
its environment.

If the I/O computation wrapped in unsafePerformIO performs side effects, then the relative
order in which those side effects take place (relative to the main I/O trunk, or other calls to
unsafePerformIO) is indeterminate.

However, it is less well known that unsafePerformIO is not type safe. For example:

test :: IORef [a]
test = unsafePerformIO $ newIORef []

main = do
writeIORef test [42]
bang <- readIORef test
print (bang :: [Char])

This program will core dump. This problem with polymorphic references is well known in the
ML community, and does not arise with normal monadic use of references. There is no easy
way to make it impossible once you use unsafePerformIO. Indeed, it is possible to write
coerce :: a -> b with the help of unsafePerformIO. So be careful!

unsafeInterleaveIO :: IO a -> IO a

unsafeInterleaveIO allows IO computation to be deferred lazily. When passed a value of
type IO a, the IO will only be performed when the value of the a is demanded. This is used to
implement lazy file reading, see IO.hGetContents.

206



Chapter 4. The lang category: language support

4.14.2. Mutable Variables

data IORef - instance of: Eq
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()
mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))

- deprecated, use modifyIORef
updateIORef :: IORef a -> (a -> a) -> IO ()

4.14.3. Mutable Arrays

data IOArray - instance of: Eq
newIOArray :: Ix ix => (ix,ix) -> elt -> IO (IOArray ix elt)
boundsIOArray :: Ix ix => IOArray ix elt -> (ix, ix)
readIOArray :: Ix ix => IOArray ix elt -> ix -> IO elt
writeIOArray :: Ix ix => IOArray ix elt -> ix -> elt -> IO ()
freezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
thawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)
unsafeFreezeIOArray :: Ix ix => IOArray ix elt -> IO (Array ix elt)
unsafeThawIOArray :: Ix ix => Array ix elt -> IO (IOArray ix elt)

Note: unsafeFreezeIOArray and unsafeThawIOArray are not provided by Hugs.

4.14.4. Extended file modes

data IOModeEx
= BinaryMode IOMode
| TextMode IOMode
deriving (Eq, Read, Show)

openFileEx :: FilePath -> IOModeEx -> IO Handle
hSetBinaryMode :: Handle -> Bool -> IO Bool

openFileEx extends the standard openFile action with support for opening binary files.

4.14.5. Bulk transfers

hGetBuf :: Handle -> Addr -> Int -> IO Int
hGetBufFull :: Handle -> Addr -> Int -> IO Int

hPutBuf :: Handle -> Addr -> Int -> IO Int

207



Chapter 4. The lang category: language support

hPutBufFull :: Handle -> Addr -> Int -> IO ()

These functions read and write chunks of data to/from a handle. The versions without a Full suffix
may return early if the request would have blocked; in this case they will return the number of
characters actually transfered. The versions with a Full suffix will return only when either the full
buffer has been transfered, or the end of file is reached (in the case of hGetBufFull.

If the end of file is reached when reading, then the operation will return a short read, and hIsEof

will henceforthe return True for the handle. It isn’t possible to tell whether the end of file is reached
using hGetBuf alone, because a short read may indicate blocking.

hGetBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO Int
hGetBufBAFull :: Handle -> MutableByteArray RealWorld a -> Int -> IO Int

hPutBufBA :: Handle -> MutableByteArray RealWorld a -> Int -> IO ()
hPutBufBAFull :: Handle -> MutableByteArray RealWorld a -> Int -> IO ()

These (GHC-only) functions mirror the previous set of functions, but operate on
MutableByteArrays instead of Addrs. This may be more convenient and/or faster, depending on
the circumstances.

4.14.6. Terminal control

hIsTerminalDevice :: Handle -> IO Bool
hSetEcho :: Handle -> Bool -> IO ()
hGetEcho :: Handle -> IO Bool

4.14.7. Redirecting handles

withHandleFor :: Handle -> Handle -> IO a -> IO a
withStdout :: Handle -> IO a -> IO a
withStdin :: Handle -> IO a -> IO a
withStderr :: Handle -> IO a -> IO a

4.14.8. Trace

trace :: String -> a -> a

When called, trace prints the string in its first argument to standard error, before returning the
second argument as its result. The trace function is not referentially transparent, and should only be
used for debugging, or for monitoring execution. Some implementations of trace may decorate the
string that’s output to indicate that you’re tracing.

208



Chapter 4. The lang category: language support

trace is implemented using unsafePerformIO.

4.14.9. Miscellany

unsafePtrEq :: a -> a -> Bool
slurpFile :: FilePath -> IO (Addr, Int)
hConnectTo :: Handle -> Handle -> IO ()
performGC :: IO ()
freeHaskellFunctionPtr :: Addr -> IO ()

performGC triggers an immediate garbage collection

unsafePtrEq compares two values for pointer equality without evaluating them. The results are not
referentially transparent and may vary significantly from one compiler to another or in the face of
semantics-preserving program changes. However, pointer equality is useful in creating a number of
referentially transparent constructs such as this simplified memoisation function:

> cache :: (a -> b) -> (a -> b)
> cache f = \x -> unsafePerformIO (check x)
> where
> ref = unsafePerformIO (newIORef (error "cache", error "cache"))
> check x = readIORef ref »= \ (x’,a) ->
> if x ‘unsafePtrEq‘ x’ then
> return a
> else
> let a = f x in
> writeIORef ref (x, a) »
> return a

4.15. LazyST
This library is identical to ST except that the ST monad instance is lazy. The lazy ST monad tends to
be more prone to space leaks than the strict version, so most programmers will use the former unless
laziness is explicitly required. LazyST provides two additional operations:

lazyToStrictST :: LazyST.ST s a -> ST.ST s a
strictToLazyST :: ST.ST s a -> LazyST.ST s a

These are used to convert between lazy and strict state threads. The semantics with respect to
laziness are as you would expect: the strict state thread passed to strictToLazyST is not
performed until the result of the lazy state thread it returns is demanded.

209



Chapter 4. The lang category: language support

4.16. MArray
The MArray module provides a class of mutable arrays, parameterised over the array type, element
type and the monad in which the array can be used:

class (Monad m, HasBounds a) => MArray a e m where
readArray :: Ix ix => a ix e -> ix -> m e
writeArray :: Ix ix => a ix e -> ix -> e -> m ()
newArray :: Ix ix => (ix,ix) -> m (a ix e)

The readArray and writeArray operations allow for reading and writing to/from the array, and
newArray is used for building a new array. All indices in the newly created array will contain
undefined elements.

The IOArray (Section 4.14.3) and STArray (Section 4.21) types are both instances of MArray:

data STArray s ix e
instance HasBounds (STArray s)
instance MArray (STArray s) e (ST s)

data IOArray ix e
instance HasBounds IOArray
instance MArray IOArray e IO

There are also strict unboxed versions of IOArray and STArray, namely IOUArray STUArray and
instances of MArray for these types with common integral element types:

data STUArray s ix e
instance HasBounds (STUArray s)
instance MArray (STArray s) Char (ST s)
instance MArray (STArray s) Int (ST s)
instance MArray (STArray s) Word (ST s)
instance MArray (STArray s) Addr (ST s)
instance MArray (STArray s) Float (ST s)
instance MArray (STArray s) Double (ST s)
instance MArray (STArray s) StablePtr (ST s)

data IOUArray ix e
instance HasBounds IOUArray
instance MArray IOArray Char IO
instance MArray IOArray Int IO
instance MArray IOArray Word IO
instance MArray IOArray Addr IO
instance MArray IOArray Float IO
instance MArray IOArray Double IO
instance MArray IOArray StablePtr IO

210



Chapter 4. The lang category: language support

4.16.1. Freezing and thawing arrays
An MArray can be converted into an IArray (Section 4.12), by freezing it:

freeze :: (Ix ix, MArray a e m, IArray b e) => a ix e -> m (b ix e)

The IArray returned is independent of the original MArray, so further modifications to the mutable
version won’t affect the frozen one. The usual implementation of freeze is to make a copy of the
array.

In many cases, the additional copy is unnecessary, for example when freezing is the last operation on
the mutable version of the array. For these cases, an unsafe version of freeze is provided which
may not copy5 the array:

unsafeFreeze :: (Ix ix, MArray a e m, IArray b e) => a ix e -
> m (b ix e)

The dual to freeze is thaw, which converts an IArray into an MArray:

thaw :: (Ix ix, IArray a e, MArray b e m) => a ix e -> m (b ix e)

As with freeze, thaw needs to make a copy of the array. For the cases when you know the copy is
unnecessary, we also provide unsafeThaw:

unsafeThaw :: (Ix ix, IArray a e, MArray b e m) => a ix e -> m (b ix e)

4.16.2. Useful combinators
MArray also provides versions of the following standard array combinators. Note that they have
slightly different types from the versions in Array and IArray, mostly to accomodate the
requirement that an MArray must be used within a monad:

assocs :: (Ix ix, MArray a e m) => a ix e -> m [(ix,e)]

indices :: (Ix ix, IArray a e) => a ix e -> [ix]

(//) :: (Ix ix, MArray a e m) => a ix e -> [(ix,e)] -> m ()

amap :: (Ix ix, MArray a x m, MArray a y m) =>
(x->y) -> a ix x -> m (a ix y)

listArray :: (Ix ix, MArray a e m) => (ix,ix) -> [e] -> m (a ix e)

elems :: (Ix ix, MArray a e m) => a ix e -> m [e]

ixmap :: (Ix ix, Ix iy, MArray a e m) =>
(ix,ix) -> (ix->iy) -> a iy e -> m (a ix e)

211



Chapter 4. The lang category: language support

4.17. MutableArray
NOTE: The MutableArray interface is deprecated, please use MArray (Section 4.16) instead.

The MutableArray interface provide operations for reading and writing values to mutable arrays.
There’s two kinds of mutable arrays, the mutatable version of Haskell Arrays and mutable byte
arrays, chunks of memory containing values of some basic type.

4.17.1. Mutable arrays
The mutable array section of the API provides the following operations:

- mutable arrays:
newArray :: Ix ix -> (ix,ix) -> elt -> ST s (MutableArray s ix elt)
boundsOfArray :: Ix ix => MutableArray s ix elt -> (ix, ix)
readArray :: Ix ix => MutableArray s ix elt -> ix -> ST s elt
writeArray :: Ix ix => MutableArray s ix elt -> ix -> elt -> ST s ()
freezeArray :: Ix ix => MutableArray s ix elt -> ST s (Array ix elt)
thawArray :: Ix ix => Array ix elt -> ST s (MutableArray s ix elt)

unsafeFreezeArray :: Ix ix => MutableArray s ix elt -
> ST s (Array ix elt)
unsafeThawArray :: Ix ix => Array ix elt -
> ST s (MutableArray s ix elt)

Remarks:

• The freezeArray action converts a mutable array into an immutable one by copying, whereas
unsafeFreezeArray returns an immutable array that is effectively just the type cast version of
the mutable array. Should you write to the mutable array after it has been (unsafely) frozen, you’ll
side-effect the immutable array in the process. Please don’t :-)

• The operation thawArray goes the other way, converting an immutable Array into a mutable
one. This is done by copying. The operation unsafeThawArray is also provided, which places
the same kind of proof obligation on the programmer as unsafeFreezeArray does.

4.17.2. Mutable byte arrays

- creators:
newCharArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
newAddrArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
newIntArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
newWordArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
newFloatArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)

212



Chapter 4. The lang category: language support

newDoubleArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
newStablePtrArray :: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)

boundsOfMutableByteArray
:: Ix ix => MutableByteArray s ix -> (ix, ix)

readCharArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Char
readIntArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Int
readAddrArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Addr
readFloatArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Float
readDoubleArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Double
readStablePtrArray :: Ix ix => MutableByteArray s ix -> ix -
> ST s (StablePtr a)
readWord8Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Word8
readWord16Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Word16
readWord32Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Word32
readWord64Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Word64
readInt8Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Int8
readInt16Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Int16
readInt32Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Int32
readInt64Array :: Ix ix => MutableByteArray s ix -> ix -> ST s Int64

writeCharArray :: Ix ix => MutableByteArray s ix -> ix -> Char -
> ST s ()
writeIntArray :: Ix ix => MutableByteArray s ix -> ix -> Int -
> ST s ()
writeAddrArray :: Ix ix => MutableByteArray s ix -> ix -> Addr -
> ST s ()
writeFloatArray :: Ix ix => MutableByteArray s ix -> ix -> Float -
> ST s ()
writeDoubleArray :: Ix ix => MutableByteArray s ix -> ix -> Double -
> ST s ()
writeStablePtrArray :: Ix ix => MutableByteArray s ix -> ix -
> StablePtr a -> ST s ()
writeWord8Array
:: Ix ix => MutableByteArray s ix -> ix -> Word8 -> ST s ()
writeWord16Array :: Ix ix => MutableByteArray s ix -> ix -> Word16 -
> ST s ()
writeWord32Array :: Ix ix => MutableByteArray s ix -> ix -> Word32 -
> ST s ()
writeWord64Array :: Ix ix => MutableByteArray s ix -> ix -> Word64 -
> ST s ()
writeInt8Array
:: Ix ix => MutableByteArray s ix -> ix -> Int8 -> ST s ()
writeInt16Array :: Ix ix => MutableByteArray s ix -> ix -> Int16 -
> ST s ()
writeInt32Array
:: Ix ix => MutableByteArray s ix -> ix -> Int32 -> ST s ()

213



Chapter 4. The lang category: language support

writeInt64Array
:: Ix ix => MutableByteArray s ix -> ix -> Int64 -> ST s ()

freezeByteArray :: Ix ix => MutableByteArray s ix -
> ST s (ByteArray ix)
unsafeFreezeByteArray :: Ix ix => MutableByteArray s ix -
> ST s (ByteArray ix)

sizeofMutableByteArray :: Ix ix => MutableByteArray s ix -> Int

thawByteArray :: Ix ix => ByteArray ixt -
> ST s (MutableByteArray s ix)
unsafeThawByteArray :: Ix ix => ByteArray ixt -
> ST s (MutableByteArray s ix)

Remarks:

• A Mutable byte array is created by specifying its size in units of some basic type. For example,

mkPair :: ST s (MutableByteArray s Int)
mkPair = newIntArray (0,1)

creates a mutable array capable of storing two Ints. Notice that the range size is not in bytes, but in
units of the basic type.

• A mutable byte array is not parameterised over the kind of values it contains. A consequence of
this is that it is possible to have byte arrays containing a mix of basic types, or even read a value
from the array at a different type from which it was written, e.g.,

isLitteEndian :: IO Bool
isLitteEndian = stToIO $ do

x <- newIntArray (0,1)
writeIntArray x 1
v <- readCharArray x 0
return (v == chr 1)

It’s left as an exercise for the reader to determine whether having byte arrays not be parameterised
over the type of values they contain is a bug or a feature..

• As for mutable arrays, operations for turning mutable byte arrays into immutable byte arrays are
also provided by the freeze* class of actions. There’s also the non-copying
unsafeFreezeByteArray.

• Operations for going the other way, where an immutable byte array is ’thawed’ are also provided.
thawByteArray does this by copying, whereas unsafeThawByteArray does not

• The operation sizeofMutableByteArray returns the size of the array, in bytes.

214



Chapter 4. The lang category: language support

4.18. NumExts
The NumExts interface collect together various numeric operations that have proven to be
commonly useful

- Going between Doubles and Floats:
doubleToFloat :: Double -> Float
floatToDouble :: Float -> Double

showHex :: Integral a => a -> ShowS
showOct :: Integral a => a -> ShowS
showBin :: Integral a => a -> ShowS

showIntAtBase :: Integral a
=> a - base
-> (a -> Char) - digit to char
-> a - number to show.
-> ShowS

showListWith :: (a -> ShowS) -> [a] -> ShowS

Notes:

• If doubleToFloat is applied to a Double that is within the representable range for Float, the
result may be the next higher or lower representable Float value. If the Double is out of range,
the result is undefined.

• No loss of precision occurs in the other direction with floatToDouble, the floating value
remains unchanged.

• showOct, showHex and showBin will prefix 0o, 0x and 0b, respectively. Like
Numeric.showInt, these show functions work on positive numbers only.

• showIntAtBase is the more general function for converting a number at some base into a series
of characters. The above show* functions use it, for instance, here’s how showHex could be
defined

showHex :: Integral a => a -> ShowS
showHex n r =
showString "0x" $
showIntAtBase 16 (toChrHex) n r
where
toChrHex d

| d < 10 = chr (ord ’0’ + fromIntegral d)
| otherwise = chr (ord ’a’ + fromIntegral (d - 10))

• showListWith is strictly speaking not a ’NumExts’ kind of function, but it’s sometimes useful in
conjunction with the other show* functions that NumExts exports. It is the non-overloaded version
of showList, allowing you to supply the shows function to use per list element. For instance,

215



Chapter 4. The lang category: language support

putStrLn (NumExts.showListWith NumExts.showHex [0..16])

will print out the elements of [1..16] in hexadecimal form.

4.19. PackedString
You need to import PackedString and heave in your -syslib ghc to use PackedStrings.

The basic type and functions available are:

data PackedString - abstract

packString :: [Char] -> PackedString
packStringST :: [Char] -> ST s PackedString
packCBytesST :: Int -> Addr -> ST s PackedString
packBytesForCST :: [Char] -> ST s (ByteArray Int)
byteArrayToPS :: ByteArray Int -> PackedString
unsafeByteArrayToPS :: ByteArray a -> Int -> PackedString
psToByteArray :: PackedString -> ByteArray Int
psToByteArrayST :: PackedString -> ST s (ByteArray Int)

unpackPS :: PackedString -> [Char]

We also provide a wad of list-manipulation-like functions:

nilPS :: PackedString
consPS :: Char -> PackedString -> PackedString

headPS :: PackedString -> Char
tailPS :: PackedString -> PackedString
nullPS :: PackedString -> Bool
appendPS :: PackedString -> PackedString -> PackedString
lengthPS :: PackedString -> Int
indexPS :: PackedString -> Int -> Char

- 0-origin indexing into the string
mapPS :: (Char -> Char) -> PackedString -> PackedString
filterPS :: (Char -> Bool) -> PackedString -> PackedString
foldlPS :: (a -> Char -> a) -> a -> PackedString -> a
foldrPS :: (Char -> a -> a) -> a -> PackedString -> a
takePS :: Int -> PackedString -> PackedString
dropPS :: Int -> PackedString -> PackedString
splitAtPS :: Int -> PackedString -> (PackedString, PackedString)
takeWhilePS :: (Char -> Bool) -> PackedString -> PackedString
dropWhilePS :: (Char -> Bool) -> PackedString -> PackedString
spanPS :: (Char -> Bool) -> PackedString -
> (PackedString, PackedString)

216



Chapter 4. The lang category: language support

breakPS :: (Char -> Bool) -> PackedString -
> (PackedString, PackedString)
linesPS :: PackedString -> [PackedString]
wordsPS :: PackedString -> [PackedString]
reversePS :: PackedString -> PackedString
concatPS :: [PackedString] -> PackedString
elemPS :: Char -> PackedString -> Bool

- Perl-style split&join
splitPS :: Char -> PackedString -> [PackedString]
splitWithPS :: (Char -> Bool) -> PackedString -> [PackedString]
joinPS :: PackedString -> [PackedString] -> PackedString

substrPS :: PackedString -> Int -> Int -> PackedString
- pluck out a piece of a PackedString
- start and end chars you want; both 0-origin-specified

4.20. ShowFunctions
The ShowFunctions module contains the following instance of Show for function types

instance Show (a -> b) where
showsPrec _ _ = showString "<function>"

4.21. ST
This library provides support for strict state threads, as described in the PLDI ’94 paper by John
Launchbury and Simon Peyton Jones [LazyStateThreads]. In addition to the monad ST, it also
provides mutable variables STRef and mutable arrays STArray.

module ST( module ST, module Monad ) where
import Monad

data ST s a - abstract type
runST :: forall a. (forall s. ST s a) -> a
fixST :: (a -> ST s a) -> ST s a
unsafeInterleaveST :: ST s a -> ST s a
instance Functor (ST s)
instance Monad (ST s)

data STRef s a - mutable variables in state thread s
- containing values of type a.

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

217



Chapter 4. The lang category: language support

writeSTRef :: STRef s a -> a -> ST s ()
modifySTRef :: STRef s a -> (a -> a) -> ST s ()

- deprecated, use modifySTRef
updateSTRef :: STRef s a -> (a -> a) -> ST s ()
instance Eq (STRef s a)

data STArray s ix elt - mutable arrays in state thread s
- indexed by values of type ix
- containing values of type a.

newSTArray :: Ix ix => (ix,ix) -> elt -> ST s (STArray s ix elt)
boundsSTArray :: Ix ix => STArray s ix elt -> (ix, ix)
readSTArray :: Ix ix => STArray s ix elt -> ix -> ST s elt
writeSTArray :: Ix ix => STArray s ix elt -> ix -> elt -> ST s ()
thawSTArray :: Ix ix => Array ix elt -> ST s (STArray s ix elt)
freezeSTArray :: Ix ix => STArray s ix elt -> ST s (Array ix elt)
unsafeFreezeSTArray :: Ix ix => STArray s ix elt -> ST s (Array ix elt)
instance Eq (STArray s ix elt)

unsafeIOToST :: IO a -> ST s a
stToIO :: ST s a -> IO a

Notes:

• GHC also supports ByteArrays — these aren’t supported by Hugs yet.

• The operations freezeSTArray and thawSTArray convert mutable arrays to and from
immutable arrays. Semantically, they are identical to copying the array and they are usually
implemented that way. The operation unsafeFreezeSTArray is a faster version of
freezeSTArray which omits the copying step. It’s a safe substitute for freezeSTArray if you
don’t modify the mutable array after freezing it.

• Hugs provides thenLazyST and thenStrictST so that you can import LazyST (say) and still
use the strict instance in those places where it matters. GHC implements LazyST and ST using
different types, so this isn’t possible.

• Operations for coercing an ST action into an IO one, and vice versa are also provided. Notice that
coercing an IO action into an ST action is ’lossy’, since any exception raised within the IO action
will not be caught within the ST monad, as it doesn’t support (monadic) exceptions.

4.22. Stable
This module is deprecated, use either StablePtr (see Section 4.24) or StableName (see Section
4.23).

218



Chapter 4. The lang category: language support

4.23. StableName
A haskell object can be given a stable name by calling makeStableName on it. Stable names solve
the following problem: suppose you want to build a hash table with Haskell objects as keys, but you
want to use pointer equality for comparison; maybe because the keys are large and hashing would be
slow, or perhaps because the keys are infinite in size. We can’t build a hash table using the address of
the object as the key, because objects get moved around by the garbage collector, meaning a re-hash
would be necessary after every garbage collection.

Enter stable names. A stable name is an abstract entity that supports equality and hashing, with the
following interface:

data StableName a - abstract, instance Eq.
makeStableName :: a -> IO (StableName a)
hashStableName :: StableName a -> Int

All these operations run in constant time.

Stable names have the following properties:

1. If sn1 :: StablePtr and sn2 :: StablePtr and sn1 == sn2 then sn1 and sn2 are
either the same stable name, or they were created by calls to makeStableName on the same
object.

2. The reverse is not necessarily true: if two stable names are not equal, it doesn’t mean that they
don’t refer to the same Haskell object (although they probably don’t).

3. There is no freeStableName operation. Stable names are reclaimed by the runtime system
when they are no longer needed.

4. There is no deRefStableName operation. You can’t get back from a stable name to the original
Haskell object. The reason for this is that the existence of a stable name for an object doesn’t
guarantee the existence of the object itself; it can still be garbage collected.

5. There is a hashStableName operation, which converts a stable name to an Int. The Int
returned is not necessarily unique (that is, it doesn’t satisfy property (1) above), but it can be
used for building hash tables of stable names.

Properties (1) and (2) are similar to stable pointers, but the key differences are that you can’t get
back to the original object from a stable name, and you can convert one to an Int for hashing.

4.24. StablePtr
This module is part of the Foreign Function Interface (FFI) and will usually be imported via the
module Foreign (see Section 4.9). A stable pointer is a reference to a Haskell expression that is
guaranteed not to be affected by garbage collection, i.e., it will neither be deallocated nor will the

219



Chapter 4. The lang category: language support

value of the stable pointer itself change during garbage collection (ordinary references may be
relocated during garbage collection). Consequently, stable pointers can be passed to foreign code,
which can handle it as an opaque reference to a Haskell value.

4.24.1. The Standard Interface

module StablePtr where

data StablePtr a - abstract stable reference to a Haskell value
instance Eq StablePtr

makeStablePtr :: a -> IO (StablePtr a)
deRefStablePtr :: StablePtr a -> IO a
freeStablePtr :: StablePtr a -> IO ()
stablePtrToAddr :: StablePtr a -> Addr
addrToStablePtr :: Addr -> StablePtr a

The behaviour of the functions is as follows:

makeStablePtr :: a -> IO (StablePtr a)

Creates a stable pointer referring to the given Hasell value.

deRefStablePtr :: StablePtr a -> IO a

Obtains the Haskell value referenced by a stable pointer, i.e., the same value that was passed to
the corresponding call to makeStablePtr.

freeStablePtr :: StablePtr a -> IO ()

Dissolve the association between the stable pointer and the Haskell value. Afterwards, if the
stable pointer is passed to deRefStablePtr or freeStablePtr, the behaviour is undefined.
However, the stable pointer may still be passed to stablePtrToAddr, but the Addr value
returned by stablePtrToAddr, in this case, is undefined (in particular, it may be
Addr.nullAddr). Nevertheless, the call is guaranteed not to diverge.

stablePtrToAddr :: StablePtr a -> Addr

Coerces a stable pointer to an address. No guarantees are made about the resulting value, except
that the original stable pointer can be recovered by addrToStablePtr. In particular, the
address may not refer to a valid memory address and any attempt to pass it to the member
functions of the class Storable (Section 4.25) will most likely lead to disaster.

addrToStablePtr :: Addr -> StablePtr a

The inverse of stablePtrToAddr, i.e., we have the identity

sp == addrToStablePtr (stablePtrToAddr sp)

for any stable pointer sp on which freeStablePtr has not been executed yet.

220



Chapter 4. The lang category: language support

Care must be taken to free stable pointers that are no longer required using the function
freeStablePtr; otherwise, two bad things can happen:

• The object referenced by the stable pointer will be retained in the heap.

• The runtime system’s internal stable pointer table will grow, which imposes an overhead on
garbage collection.

4.24.2. The Standard C-side Interface
The following definition is available to C programs inter-operating with Haskell code when
including the header HsFFI.h.

typedef void* HsStablePtr; /* C representation of a StablePtr */

Note that no assumptions may be made about the values representing stable pointer. In fact, they
need not even be valid memory addresses. The only guarantee provided is that if they are passed
back to Haskell land, the function deRefStablePtr will be able to reconstruct the Haskell value
refereed to by the stable pointer.

4.24.3. Deprecated Functions
The following functions are deprecated in the new FFI and the assertions regarding the equality of
stable pointers are not guaranteed. Do not use the following functions if you are interested in
portability. Most of these functions are here for legacy reasons and may just vanish one day. You
have been warned.

Notes:

• If sp1 :: StablePtr and sp2 :: StablePtr and sp1 == sp2 then sp1 and sp2 are either
the same stable pointer, or they were created by calls to makeStablePtr on the same object.
Another way to say this is "every time you call makeStablePtr on an object you get back the
same stable pointer".

• The reverse is not necessarily true: if two stable pointers are not equal, it doesn’t mean that they
don’t refer to the same Haskell object (although they probably don’t).

The C interface (which is brought into scope by #include <Stable.h>) is as follows:

typedef StablePtr /* abstract, probably an unsigned long */
extern StgPtr deRefStablePtr(StgStablePtr stable_ptr);
static void freeStablePtr(StgStablePtr sp);
static StgStablePtr splitStablePtr(StgStablePtr sp);

221



Chapter 4. The lang category: language support

The functions deRefStablePtr and freeStablePtr are equivalent to the Haskell functions of
the same name above.

The function splitStablePtr allows a stable pointer to be duplicated without making a new one
with makeStablePtr. The stable pointer won’t be removed from the runtime system’s internal table
until freeStablePtr is called on both pointers.

4.25. Storable
The module Storable provides most elementary support for marshalling and is part of the low-level
portion of the Foreign Function Interface (FFI) - see also Section 4.9. It serves two functions:

1. It provides operations to allocate and deallocate blocks of raw memory (i.e., unstructured
chunks of memory outside of the area maintained by the Haskell storage manager). These
memory blocks are commonly used to pass compound data structures to foreign functions or to
provide space in which compound result values are obtained from foreign functions. For
example, Haskell lists are typically passed as C arrays to C functions; the storage space for such
an array can be allocated by functions (such as malloc) contained in the present module.

2. It provides a class Storable and instances of this class for all primitive types that can be stored
in raw memory. The member functions of this class facilitate writing values of primitive types to
raw memory (which may have been allocated with the above mentioned routines) and reading
values from blocks of raw memory. The class, furthermore, includes support for computing the
storage requirements and alignment restrictions of storable types.

4.25.1. The Type Class Storable

All marshalling between Haskell and a foreign language ultimately boils down to translating Haskell
data structures into the binary representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is necessary to manipulate primtive
data types stored in unstructured memory blocks. The class Storable facilitates this manipulation
on all types for which it is instantiated, which are the standard basic types of Haskell, the fixed size
IntXX (Section 4.13) and WordXX (Section 4.27) types, stable pointers (Section 4.24), all types from
CTypes (Section 4.5) and CTypesISO (Section 4.6), as well as addresses (Section 4.1).

class Storable a where
sizeOf :: a -> Int
alignment :: a -> Int

peekElemOff :: Addr -> Int -> IO a
pokeElemOff :: Addr -> Int -> a -> IO ()

222



Chapter 4. The lang category: language support

peekByteOff :: Addr -> AddrOff -> IO a
pokeByteOff :: Addr -> AddrOff -> a -> IO ()

peek :: Addr -> IO a
poke :: Addr -> a -> IO ()

Minimal complete definition: sizeOf, alignment, one of peek, peekElemOff or peekByteOff,
and one of poke, pokeElemOff and pokeByteOff. The behaviour of the member functions is as
follows:

sizeOf :: a -> Int

alignment :: a -> Int

The function sizeOf computes the storage requirements (in bytes) of the argument, and
alignment computes the alignment constraint of the argument. An alignment constraint x is
fulfilled by any address divisible by x. Both functions do not evaluate their argument, but
compute the result on the basis of the type of the argument alone.

peekElemOff :: Addr -> Int -> IO a

Read a value from a memory area regarded as an array of values of the same kind. The first
argument specifies the start address of the array and the second the index into the array (the first
element of the array has index 0). The following equality holds,

peekElemOff addr idx = IOExts.fixIO $ \result ->
let off = fromIntegral (idx * sizeOf result)
in peek (addr ‘plusAddr‘ off)

Note that this is only a specification, but not necessarily the concrete implementation of the
function.

pokeElemOff :: Addr -> Int -> a -> IO ()

Write a value to a memory area regarded as an array of values of the same kind. The following
equality holds,

pokeElemOff addr idx x =
let off = fromIntegral (idx * sizeOf x)
in poke (addr ‘plusAddr‘ off) x

peekByteOff :: Addr -> AddrOff -> IO a

Read a value from a memory location given by a base address and offset. The following
equality holds,

peekByteOff addr off = peek (addr ‘plusAddr‘ off)

pokeByteOff :: Addr -> AddrOff -> a -> IO ()

Write a value to a memory location given by a base address and offset. The following equality
holds,

223



Chapter 4. The lang category: language support

pokeByteOff addr off x = poke (addr ‘plusAddr‘ off) x

peek :: Addr -> IO a

Read a value from the given memory location

poke :: Addr -> a -> IO ()

Write the given value to the given memory location.

Note that the peek and poke functions might require properly aligned addresses to function correctly.
This is architecture dependent; thus, portable code should ensure that when peeking or poking values
of some type a, the alignment constraint for a, as given by the function alignment is fulfilled.

4.25.2. Allocation and Deallocation of Memory Blocks

malloc :: Int -> IO Addr
mallocElem :: Storable a => a -> IO Addr
mallocElems :: Storable a => a -> Int -> IO Addr
realloc :: Addr -> Int -> IO Addr
free :: Addr -> IO ()

alloca :: Int -> (Addr -> IO a) -> IO a
allocaElem :: Storable a => a -> (Addr -> IO b) -> IO b
allocaElems :: Storable a => a -> Int -> (Addr -> IO b) -> IO b

The functions malloc, realloc, and free correspond to the standard C functions malloc(),
realloc(), and free(), respectively. The function mallocElem essentially behaves like malloc,
but allocates a block of memory that exactly holds values of its argument type. The function
mallocElems is similar, but allocates storage for an array of values, where the size of the array is
given in the second argument. More precisely, these last two functions behave as if defined as
follows:

mallocElem = malloc . sizeOf
mallocElems x n = malloc (n * sizeOf x)

Note that, due to the definition of sizeOf, the first argument of both mallocElem and
mallocElems is not evaluated.

The remaining three functions sandwich a given operation between allocation and deallocation of
one block of memory in an exception-safe way. They behave as if defined as

alloca n op = bracket (malloc n) free op
allocaElem x op = alloca (sizeOf x) op
allocaElems x n op = alloca (n * sizeOf x) op

224



Chapter 4. The lang category: language support

4.26. Weak
The Weak library provides a "weak pointer" abstraction, giving the user some control over the
garbage collection of specified objects, and allowing objects to be "finalized" with an arbitrary
Haskell IO computation when they die.

Weak pointers partially replace the old foreign object interface, as we will explain later.

4.26.1. Module Signature

module Weak (
Weak, - abstract
- instance Eq (Weak v)

mkWeak, - :: k -> v -> Maybe (IO ()) -> IO (Weak v)
deRefWeak, - :: Weak v -> IO (Maybe v)
finalize, - :: Weak v -> IO ()

- Not yet implemented
- replaceFinalizer - :: Weak v -> IO () -> IO ()

mkWeakPtr, - :: k -> Maybe (IO ()) -> IO (Weak k)
mkWeakPair, - :: k -> v -> Maybe (IO ()) -> IO (Weak (k,v))
addFinalizer, - :: k -> IO () -> IO ()
addForeignFinalizer - :: ForeignObj -> IO () -> IO ()

) where

4.26.2. Weak pointers
In general terms, a weak pointer is a reference to an object that is not followed by the garbage
collector — that is, the existence of a weak pointer to an object has no effect on the lifetime of that
object. A weak pointer can be de-referenced to find out whether the object it refers to is still alive or
not, and if so to return the object itself.

Weak pointers are particularly useful for caches and memo tables. To build a memo table, you build
a data structure mapping from the function argument (the key) to its result (the value). When you
apply the function to a new argument you first check whether the key/value pair is already in the
memo table. The key point is that the memo table itself should not keep the key and value alive. So
the table should contain a weak pointer to the key, not an ordinary pointer. The pointer to the value
must not be weak, because the only reference to the value might indeed be from the memo table.

So it looks as if the memo table will keep all its values alive for ever. One way to solve this is to
purge the table occasionally, by deleting entries whose keys have died.

225



Chapter 4. The lang category: language support

The weak pointers in this library support another approach, called finalization. When the key
referred to by a weak pointer dies, the storage manager arranges to run a programmer-specified
finalizer. In the case of memo tables, for example, the finalizer could remove the key/value pair from
the memo table.

Another difficulty with the memo table is that the value of a key/value pair might itself contain a
pointer to the key. So the memo table keeps the value alive, which keeps the key alive, even though
there may be no other references to the key so both should die. The weak pointers in this library
provide a slight generalisation of the basic weak-pointer idea, in which each weak pointer actually
contains both a key and a value. We describe this in more detail below.

4.26.3. The simple interface

mkWeakPtr :: a -> Maybe (IO ()) -> IO (Weak a)
deRefWeak :: Weak a -> IO (Maybe a)
addFinalizer :: a -> IO () -> IO ()

mkWeakPtr takes a value of any type a, and maybe a finalizer of type IO (), and returns a weak
pointer object referring to the value, of type Weak a. It is in the IO monad because it has the side
effect of arranging that the finalizer (if there is one) will be run when the object dies. In what
follows, a “weak pointer object”, or “weak pointer” for short, means precisely “a Haskell value of
type Weak t” for some type t. A weak pointer (object) is a first-class Haskell value; it can be passed
to functions, stored in data structures, and so on.

deRefWeak dereferences a weak pointer, returning Just v if the value is still alive. If the key has
already died, then deRefWeak returns Nothing; that’s why it’s in the IO monad—the return value
of deRefWeak depends on when the garbage collector runs.

addFinalizer is just another name for mkWeakPtr except that it throws the weak pointer itself
away. (The runtime system will remember that the weak pointer and hence the finalizer exists even if
the program has forgotten it.)

addFinalizer :: a -> IO () -> IO ()
addFinalizer v f = do { mkWeakPtr v f; return () }

The effect of addFinalizer is simply that the finalizer runs when the referenced object dies.

The following properties hold:

• deRefWeak returns the original object until that object is considered dead; it returns Nothing
subsequently.

• Every finalizer will eventually be run, exactly once, either soon after the object dies, or at the end
of the program. There is no requirement for the programmer to hold onto the weak pointer itself;
finalization is completely unaffected by whether the weak pointer itself is alive.

226



Chapter 4. The lang category: language support

• There may be multiple weak pointers to a single object. In this case, the finalizers for each of these
weak pointers will all be run in some arbitrary order, or perhaps concurrently, when the object
dies. If the programmer specifies a finalizer that assumes it has the only reference to an object (for
example, a file that it wishes to close), then the programmer must ensure that there is only one
such finalizer.

• The storage manager attempts to run the finalizer(s) for an object soon after the object dies, but
promptness is not guaranteed. (What is guaranteed is that the finalizer will eventually run, exactly
once.)

• At the moment when a finalizer is run, a call to deRefWeak will return Nothing.

• A finalizer may contain a pointer to the object, but that pointer will not keep the object alive. For
example:

f :: Show a => a -> IO a
f x = addFinalizer x (print (show x))

Here the finalizer print (show x) contains a reference to x itself, but that does not keep x alive.
When that is the only reference to x, the finalizer is run; and the message appears on the screen.

• A finalizer may even resurrect the object, by (say) storing it in some global data structure.

4.26.4. The general interface
The Weak library offers a slight generalisation of the simple weak pointers described so far:

mkWeak :: k -> v -> Maybe (IO ()) -> IO (Weak v)

mkWeak takes a key of any type k and a value of any type v, as well as a finalizer, and returns a weak
pointer of type Weak v.

deRefWeak returns the value only, not the key, as its type (given above) implies:

deRefWeak :: Weak a -> IO (Maybe a)

However, deRefWeak returns Nothing if the key, not the value, has died. Furthermore, references
from the value to the key do not keep the key alive, in the same way that the finalizer does not keep
the key alive.

Simple weak pointers are readily defined in terms of these more general weak pointers:

mkWeakPtr :: a -> Maybe (IO ()) -> IO (Weak a)
mkWeakPtr v f = mkWeak v v f

These more general weak pointers are enough to implement memo tables properly.

A weak pointer can be finalized early, using the finalize operation:

finalize :: Weak v -> IO ()

227



Chapter 4. The lang category: language support

4.26.5. A precise semantics
The above informal specification is fine for simple situations, but matters can get complicated. In
particular, it needs to be clear exactly when a key dies, so that any weak pointers that refer to it can
be finalized. Suppose, for example, the value of one weak pointer refers to the key of another...does
that keep the key alive?

The behaviour is simply this:

• If a weak pointer (object) refers to an unreachable key, it may be finalized.

• Finalization means (a) arrange that subsequent calls to deRefWeak return Nothing; and (b) run
the finalizer.

This behaviour depends on what it means for a key to be reachable. Informally, something is
reachable if it can be reached by following ordinary pointers from the root set, but not following
weak pointers. We define reachability more precisely as follows A heap object is reachable if:

• It is a member of the root set.

• It is directly pointed to by a reachable object, other than a weak pointer object.

• It is a weak pointer object whose key is reachable.

• It is the value or finalizer of an object whose key is reachable.

The root set consists of all runnable threads, and all stable pointers (see Section 4.24). NOTE:
currently all top-level objects are considered to be reachable, although we hope to remove this
restriction in the future. A Char or small Int will also be constantly reachable, since the garbage
collector replaces heap-resident Chars and small Ints with pointers to static copies.

Notice that a pointer to the key from its associated value or finalizer does not make the key
reachable. However, if the key is reachable some other way, then the value and the finalizer are
reachable, and so, therefore, are any other keys they refer to directly or indirectly.

4.26.6. Finalization for foreign objects
A foreign object is some data that lives outside the Haskell heap, for example some malloced data
in C land. It’s useful to be able to know when the Haskell program no longer needs the malloced
data, so it can be freed. We can use weak pointers and finalizers for this, but we have to be careful:
the foreign data is usually referenced by an address, ie. an Addr (see Section 4.1), and we must
retain the invariant that if the Haskell program still needs the foreign object, then it retains the Addr
object in the heap. This invariant isn’t guaranteed to hold if we use Addr, because an Addr consists
of a box around a raw address Addr#. If the Haskell program can manipulate the Addr# object
independently of the heap-resident Addr, then the foreign object could be inadvertently finalized
early, because a weak pointer to the Addr would find no more references to its key and trigger the
finalizer despite the fact that the program still holds the Addr# and intends to use it.

228



Chapter 4. The lang category: language support

To avoid this somewhat subtle race condition, we use another type of foreign address, called
ForeignObj (see Section 4.9). Historical note: ForeignObj is identical to the old ForeignObj

except that it no longer supports finalization - that’s provided by the weak pointer/finalization
mechanism above.

A ForeignObj is basically an address, but the ForeignObj itself is a heap-resident object and can
therefore be watched by weak pointers. A ForeignObj can be passed to C functions (in which case
the C function gets a straightforward pointer), but it cannot be decomposed into an Addr#.

4.27. Word
This library provides unsigned integers of various sizes. The types supported are as follows:

type number of bits

Word8 8

Word16 16

Word32 32

Word64 64

For each type W above, we provide the following functions and instances. The type I refers to the
signed integer type of the same size.

data W - Unsigned Ints
instance Eq W
instance Ord W
instance Show W
instance Read W
instance Bounded W
instance Num W
instance Real W
instance Integral W
instance Enum W
instance Ix W
instance Bits W

4.27.1. Notes

• All arithmetic is performed modulo 2^n. One non-obvious consequence of this is that negate

229



Chapter 4. The lang category: language support

should not raise an error on negative arguments.

• For coercing between any two integer types, use fromIntegral, which is specialized for all the
common cases so should be fast enough. Coercing word types to and from integer types preserves
representation, not sign.

• It would be very natural to add a type a type Natural providing an unbounded size unsigned
integer—just as Integer provides unbounded size signed integers. We do not do that yet since
there is no demand for it. Doing so would require Bits.bitSize to return Maybe Int.

• The rules that hold for Enum instances over a bounded type such as Int (see the section of the
Haskell report dealing with arithmetic sequences) also hold for the Enum instances over the
various Word types defined here.

• Right and left shifts by amounts greater than or equal to the width of the type result in a zero result.
This is contrary to the behaviour in C, which is undefined; a common interpretation is to truncate
the shift count to the width of the type, for example 1 « 32 == 1 in some C implementations.

4.27.2. Implementation notes

• Hugs only provides Eq, Ord, Read and Show instances for Word64 at the moment.

Notes
1. GHC currently does not throw ArithExceptions.

2. GHC currently does not throw ArrayExceptions.

3. Which thread receives this exception is currently undefined.

4. GHC currently does not throw HeapOverflow exceptions.

5. The default implementation of unsafeFreeze is freeze, but it is expected that specialised
versions which omit the copy are provided for the common array types.

230



Chapter 5. The net category: networking
support

(Darren Moffat supplied the initial version of this library.)

5.1. BSD: System database info
The BSD module provides functions to get at system-database info; pretty straightforward if you’re
into this sort of thing:

type HostName = String

getHostName :: IO Hostname

data ServiceEntry = ServiceEntry {
serviceName :: ServiceName, - Official Name
serviceAliases :: [ServiceName], - aliases
servicePort :: PortNumber, - Port Number (network byte order)
serviceProtocol :: ProtocolName - Protocol

}
type ServiceName = String

getServiceByName :: ServiceName -> ProtocolName -> IO ServiceEntry
getServiceByPort :: PortNumber -> ProtocolName -> IO ServiceEntry
getServicePortNumber :: ServiceName -> IO PortNumber

- not available con Cygwin/Mingw
getServiceEntry :: IO ServiceEntry
setServiceEntry :: Bool -> IO ()
endServiceEntry :: IO ()
getServiceEntries :: Bool -> IO [ServiceEntry]

type ProtocolName = String
type ProtocolNumber = Int - from SocketPrim

data ProtocolEntry = ProtocolEntry {
protoName :: ProtocolName, - Official Name
protoAliases :: [ProtocolName], - aliases
protoNumber :: ProtocolNumber - Protocol Number

}

getProtocolByName :: ProtocolName -> IO ProtocolEntry
getProtocolByNumber :: ProtocolNumber -> IO ProtcolEntry
getProtocolNumber :: ProtocolName -> ProtocolNumber

231



Chapter 5. The net category: networking support

- not available con Cygwin/Mingw
setProtocolEntry :: Bool -> IO ()
getProtocolEntry :: IO ProtocolEntry
endProtocolEntry :: IO ()
getProtocolEntries :: Bool -> IO [ProtocolEntry]

- from SocketPrim
newtype PortNumber = -
instance of Eq, Ord, Enum, Num, Real, Integral, Show

PNum Int - 16-bit value stored in network byte order.
mkPortNumber :: Int -> PortNumber

data HostEntry = HostEntry {
hostName :: HostName, - Official Name
hostAliases :: [HostName], - aliases
hostFamily :: Family, - Host Type (currently AF_INET)
hostAddresses :: [HostAddress] -

Set of Network Addresses (in network byte order)
}

getHostByName :: HostName -> IO HostEntry
getHostByAddr :: HostAddress -> Family -> IO HostEntry
hostAddress :: HostEntry -> HostAddress

- not available con Cygwin/Mingw
setHostEntry :: Bool -> IO ()
getHostEntry :: IO HostEntry
endHostEntry :: IO ()
getHostEntries :: Bool -> IO [HostEntry]

type NetworkAddr = Word - host byte order
type NetworkName = String

data NetworkEntry =
NetworkEntry {

networkName :: NetworkName, - official name
networkAliases :: [NetworkName], - aliases
networkFamily :: Family, - type
networkAddress :: NetworkAddr

}

- not available con Cygwin/Mingw
getNetworkByName :: NetworkName -> IO NetworkEntry
getNetworkByAddr :: NetworkAddr -> Family -> IO NetworkEntry
setNetworkEntry :: Bool -> IO ()
getNetworkEntry :: IO NetworkEntry
endNetworkEntry :: IO ()
getNetworkEntries :: Bool -> IO [NetworkEntry]

232



Chapter 5. The net category: networking support

- if available
symlink :: String -> String -> IO ()
readlink :: String -> IO String

5.2. Socket: The high-level networking interface
The Socket interface is a “higher-level” interface to sockets, and it is what we recommend. Please
tell us if the facilities it offers are inadequate to your task! The interface is relatively modest:

data Socket - instance of: Eq, Show

data PortID =
Service String - Service Name eg "ftp"

| PortNumber PortNumber - User defined Port Number
| UnixSocket String - Unix family socket in file system,

- not available con Cygwin/Mingw
type Hostname = String

connectTo :: Hostname -> PortID -> IO Handle
listenOn :: PortID -> IO Socket

accept :: Socket -> IO (Handle, HostName, PortNumber)

sendTo :: Hostname -> PortID -> String -> IO ()
recvFrom :: Hostname -> PortID -> IO String

socketPort :: Socket -> IO PortID

withSocketsDo :: IO a -> IO a

data PortNumber - instance of Eq, Ord, Enum, Num, Real, Integral, Show
mkPortNumber :: Int -> PortNumber

NOTE: on Unix, when reading from a socket and the writing end is closed by the remote client, the
program is normally sent a SIGHUP by the operating system. The default behaviour when a
SIGHUP is received is to terminate the program silently, which can be somewhat confusing if you
haven’t encountered this before. The solution is to specify that SIGHUP is to be ignored, using the
POSIX library (Section 7.2):

import Posix

...
installHandler sigPIPE Ignore Nothing
...

233



Chapter 5. The net category: networking support

Having done this, a read operation on a socket whose writing end has been closed will yield the
expected ResourceVanished IO exception.

5.3. SocketPrim: The low-level socket binding
The SocketPrim module is for when you want full control over the sockets, exposing the C socket
API. Your best bet for documentation is to look at the code—really!— normally in
fptools/hslibs/net/SocketPrim.lhs.

data Socket - instance of: Eq, Show

- your mileage may vary depending on the OS you use...
data Family = instance of: Eq, Ord, Ix, Show

AF_802 - IEEE 802.2, also ISO 8802
| AF_APPLETALK - Apple Talk
| AF_ARP - (rev.) addr. res. prot. (RFC 826)
| AF_AX25
| AF_CCITT - CCITT protocols, X.25 etc
| AF_CHAOS - mit CHAOS protocols
| AF_CNT - Computer Network Technology
| AF_COIP - connection-oriented IP, aka ST II
| AF_CTF - Common Trace Facility
| AF_DATAKIT - datakit protocols
| AF_DECnet - DECnet
| AF_DLI - DEC Direct data link interface
| AF_ECMA - european computer manufacturers
| AF_GOSSIP - US Government OSI
| AF_HYLINK - NSC Hyperchannel
| AF_IMPLINK - arpanet imp addresses
| AF_INET - internetwork: UDP, TCP, etc
| AF_INET6 - IPv6
| AF_INTF - Debugging use only
| AF_IPX - Novell Internet Protocol
| AF_ISDN - Integrated Services Digital Network
| AF_ISO - ISO protocols
| AF_LAT - LAT
| AF_LINK - Link layer interface
| AF_MAX
| AF_NATM - native ATM access
| AF_NBS - nbs protocols
| AF_NDD
| AF_NETBIOS - NetBios-style addresses
| AF_NETMAN - DNA Network Management
| AF_NETWARE
| AF_NIT - Network Interface Tap
| AF_NS - XEROX NS protocols
| AF_OSI - OSI protocols

234



Chapter 5. The net category: networking support

| AF_OSINET - AFI
| AF_PUP - pup protocols: e.g. BSP
| AF_RAW - Link layer interface
| AF_RIF - raw interface
| AF_ROUTE - Internal Routing Protocol
| AF_SIP - Simple Internet Protocol
| AF_SNA - IBM SNA
| AF_UNIX - local to host (pipes, portals
| AF_UNSPEC - unspecified
| AF_WAN - Wide Area Network protocols
| AF_X25 - CCITT X.25
| Pseudo_AF_HDRCMPLT - Used by BPF to not rewrite hdrs in iface output
| Pseudo_AF_KEY - Internal key-management function
| Pseudo_AF_PIP - Help Identify PIP packets
| Pseudo_AF_RTIP - Help Identify RTIP packets
| Pseudo_AF_XTP - eXpress Transfer Protocol (no AF)

data Socket
= MkSocket Int - File Descriptor

Family
SocketType
Int - Protocol Number
(IORef SocketStatus) - Status Flag

data SockAddr
= SockAddrUnix String - not available con Cygwin/Mingw
| SockAddrInet PortNumber HostAddress

type HostAddress = Word

data ShutdownCmd = ShutdownReceive | ShutdownSend | ShutdownBoth

type ProtocolNumber = Int

socket :: Family -> SocketType -> ProtocolNumber -> IO Socket
connect :: Socket -> SockAddr -> IO ()
bindSocket :: Socket -> SockAddr -> IO ()
listen :: Socket -> Int -> IO ()
accept :: Socket -> IO (Socket, SockAddr)
getPeerName :: Socket -> IO SockAddr
getSocketName :: Socket -> IO SockAddr

socketPort :: Socket -> IO PortNumber

writeSocket :: Socket -> String -> IO Int
readSocket :: Socket -> Int -> IO (String, Int)
readSocketAll :: Socket -> IO String

socketToHandle :: Socket -> IO Handle

235



Chapter 5. The net category: networking support

sendTo :: Socket -> String -> SockAddr -> IO Int
recvFrom :: Socket -> Int -> IO (String, Int, SockAddr)

inet_addr :: String -> IO HostAddress
inet_ntoa :: HostAddress -> IO String

sIsConnected :: Socket -> IO Bool
sIsBound :: Socket -> IO Bool
sIsListening :: Socket -> IO Bool
sIsReadable :: Socket -> IO Bool
sIsWritable :: Socket -> IO Bool
shutdown :: Socket -> ShutdownCmd -> IO ()
sClose :: Socket -> IO ()

data SocketType
- NOTE: not all of the socket types are supported on every platform.
= Stream
| Datagram
| Raw
| RDM
| SeqPacket
| Packet
deriving (Eq, Ord, Ix, Show)

data SocketOption =
Debug - SO_DEBUG

| ReuseAddr - SO_REUSEADDR
| Type - SO_TYPE
| SoError - SO_ERROR
| DontRoute - SO_DONTROUTE
| Broadcast - SO_BROADCAST
| SendBuffer - SO_SNDBUF
| RecvBuffer - SO_RCVBUF
| KeepAlive - SO_KEEPALIVE
| OOBInline - SO_OOBINLINE
| MaxSegment - TCP_MAXSEG, not available con Cygwin/Mingw
| NoDelay - TCP_NODELAY

getSocketOption :: Socket -> SocketOption -> IO Int
setSocketOption :: Socket -> SocketOption -> Int -> IO ()

newtype PortNumber = -
instance of Eq, Ord, Enum, Num, Real, Integral, Show

PNum Int - 16-bit value stored in network byte order.

mkPortNumber :: Int -> PortNumber

aNY_PORT :: PortNumber

236



Chapter 5. The net category: networking support

iNADDR_ANY :: HostAddress
sOMAXCONN :: Int
maxListenQueue :: Int

5.4. URI
The URI library provides utilities for parsing and manipulating Uniform Resource Identifiers (a more
general form of Uniform Resource Locators, or URLs). URIs are described in RFC 2396
(http://www.faqs.org/rfcs/rfc2396.html).

module URI where

data URI {
scheme, :: String,
authority, :: String,
path, :: String,
query, :: String,
fragment :: String
}

instance Show URI

parseURI :: String -> Maybe URI

relativeTo :: URI -> URI -> Maybe URI

- support for putting strings into URI-friendly
- escaped format and getting them back again.
- Can’t be done transparently, because certain characters
- have different meanings in different kinds of URI.

reserved :: Char -> Bool
unreserved :: Char -> Bool
isAllowedInURI :: Char -> Bool
escapeString :: String -> (Char->Bool) -> String
unEscapeString :: String -> String

237



Chapter 6. The num category: numeric
operations

This category is currently empty.

238



Chapter 7. The posix category: POSIX
support

The Posix interface gives you access to the set of OS services standardised by POSIX 1003.1b (or
the IEEE Portable Operating System Interface for Computing Environments - IEEE Std. 1003.1).
The interface is accessed by import Posix and adding -package posix on your command-line.

7.1. Posix data types

data ByteCount - instances of : Eq Ord Num Real Integral Ix Enum Show

A ByteCount is a primitive of type unsigned. At a minimum, an conforming implementation must
support values in the range [0, UINT_MAX].

data ClockTick - instances of : Eq Ord Num Real Integral Ix Enum Show

A ClockTick is a primitive of type clock_t, which is used to measure intervals of time in
fractions of a second. The resolution is determined by getSysVar ClockTick.

data DeviceID - instances of : Eq Ord Num Real Integral Ix Enum Show

A DeviceID is a primitive of type dev_t. It must be an arithmetic type.

data EpochTime - instances of : Eq Ord Num Real Integral Ix Enum Show

A EpochTime is a primitive of type time_t, which is used to measure seconds since the Epoch. At
a minimum, the implementation must support values in the range [0, INT_MAX].

data FileID - instances of : Eq Ord Num Real Integral Ix Enum Show

A FileID is a primitive of type ino_t. It must be an arithmetic type.

data FileMode - instance of : Eq

A FileMode is a primitive of type mode_t. It must be an arithmetic type.

data FileOffset - instances of : Eq Ord Num Real Integral Ix Enum Show

239



Chapter 7. The posix category: POSIX support

A FileOffset is a primitive of type off_t. It must be an arithmetic type.

data GroupID - instances of : Eq Ord Num Real Integral Ix Enum Show

A GroupID is a primitive of type gid_t. It must be an arithmetic type.

data Limit - instances of : Eq Ord Num Real Integral Ix Enum Show

A Limit is a primitive of type long. At a minimum, the implementation must support values in the
range [LONG_MIN, LONG_MAX].

data LinkCount - instances of : Eq Ord Num Real Integral Ix Enum Show

A LinkCount is a primitive of type nlink_t. It must be an arithmetic type.

data ProcessID - instances of : Eq Ord Num Real Integral Ix Enum Show
type ProcessGroupID = ProcessID

A ProcessID is a primitive of type pid_t. It must be a signed arithmetic type.

data UserID - instances of : Eq Ord Num Real Integral Ix Enum Show

A UserID is a primitive of type uid_t. It must be an arithmetic type.

data DirStream

A DirStream is a primitive of type DIR *.

data FileStatus

A FileStatus is a primitive of type struct stat.

data GroupEntry

A GroupEntry is a primitive of type struct group.

data ProcessTimes

ProcessTimes is a primitive structure containing a clock_t and a struct tms.

data SignalSet

An SignalSet is a primitive of type sigset_t.

240



Chapter 7. The posix category: POSIX support

data SystemID

A SystemID is a primitive of type struct utsname.

data TerminalAttributes

TerminalAttributes is a primitive of type struct termios.

data UserEntry

A UserEntry is a primitive of type struct passwd.

data BaudRate = B0 | B50 | B75 | B110 | B134 | B150 | B200 | B300 | B600
| B1200 | B1800 | B2400 | B4800 | B9600 | B19200 | B38400
deriving (Eq, Show)

data Fd

intToFd :: Int -> Fd - use with care.
fdToInt :: Fd -> Int - ditto.

data FdOption = AppendOnWrite
| CloseOnExec
| NonBlockingRead

data ControlCharacter = EndOfFile
| EndOfLine
| Erase
| Interrupt
| Kill
| Quit
| Suspend
| Start
| Stop

type ErrorCode = Int

type FileLock = (LockRequest, SeekMode, FileOffset, FileOffset)
- whence start length

data FlowAction = SuspendOutput | RestartOutput | Transmit-
Stop | TransmitStart

data Handler = Default | Ignore | Catch (IO ())

data LockRequest = ReadLock | WriteLock | Unlock
deriving (Eq, Show)

241



Chapter 7. The posix category: POSIX support

data OpenMode = ReadOnly | WriteOnly | ReadWrite

data PathVar = LinkLimit
| InputLineLimit
| InputQueueLimit
| FileNameLimit
| PathNameLimit
| PipeBufferLimit
| SetOwnerAndGroupIsRestricted
| FileNamesAreNotTruncated

data QueueSelector = InputQueue | OutputQueue | BothQueues

type Signal = Int

data SysVar = ArgumentLimit
| ChildLimit
| ClockTick
| GroupLimit
| OpenFileLimit
| PosixVersion
| HasSavedIDs
| HasJobControl

data TerminalMode = InterruptOnBreak - BRKINT
| MapCRtoLF - ICRNL
| IgnoreBreak - IGNBRK
| IgnoreCR - IGNCR
| IgnoreParityErrors - IGNPAR
| MapLFtoCR - INLCR
| CheckParity - INPCK
| StripHighBit - ISTRIP
| StartStopInput - IXOFF
| StartStopOutput - IXON
| MarkParityErrors - PARMRK
| ProcessOutput - OPOST
| LocalMode - CLOCAL
| ReadEnable - CREAD
| TwoStopBits - CSTOPB
| HangupOnClose - HUPCL
| EnableParity - PARENB
| OddParity - PARODD
| EnableEcho - ECHO
| EchoErase - ECHOE
| EchoKill - ECHOK
| EchoLF - ECHONL
| ProcessInput - ICANON
| ExtendedFunctions - IEXTEN

242



Chapter 7. The posix category: POSIX support

| KeyboardInterrupts - ISIG
| NoFlushOnInterrupt - NOFLSH
| BackgroundWriteInterrupt - TOSTOP

data TerminalState = Immediately | WhenDrained | WhenFlushed

data ProcessStatus = Exited ExitCode
| Terminated Signal
| Stopped Signal
deriving (Eq, Show)

7.2. Posix Process Primitives

forkProcess :: IO (Maybe ProcessID)

forkProcess calls fork, returning Just pid to the parent, where pid is the ProcessID of the
child, and returning Nothing to the child.

executeFile :: FilePath - Command
-> Bool - Search PATH?
-> [String] - Arguments
-> Maybe [(String, String)] - Environment
-> IO ()

executeFile cmd args env calls one of the execv* family, depending on whether or not the
current PATH is to be searched for the command, and whether or not an environment is provided to
supersede the process’s current environment. The basename (leading directory names suppressed) of
the command is passed to execv* as arg[0]; the argument list passed to executeFile therefore
begins with arg[1].

Search PATH? Supersede environ? Call
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~
False False execv
False True execve
True False execvp
True True execvpe*

Note that execvpe is not provided by the POSIX standard, and must be written by hand. Care must
be taken to ensure that the search path is extracted from the original environment, and not from the
environment to be passed on to the new image.

NOTE: In general, sharing open files between parent and child processes is potential bug farm, and
should be avoided unless you really depend on this ‘feature’ of POSIX’ fork() semantics. Using

243



Chapter 7. The posix category: POSIX support

Haskell, there’s the extra complication that arguments to executeFile might come from files that
are read lazily (using hGetContents, or some such.) If this is the case, then for your own sanity,
please ensure that the arguments to executeFile have been fully evaluated before calling
forkProcess (followed by executeFile.) Consider yourself warned :-)

A successful executeFile overlays the current process image with a new one, so it only returns on
failure.

runProcess :: FilePath - Command
-> [String] - Arguments
-> Maybe [(String, String)] - Environment (Nothing -

> Inherited)
-> Maybe FilePath - Working directory (Nothing -

> inherited)
-> Maybe Handle - stdin (Nothing -> inherited)
-> Maybe Handle - stdout (Nothing -> inherited)
-> Maybe Handle - stderr (Nothing -> inherited)
-> IO ()

runProcess is our candidate for the high-level OS-independent primitive.

runProcess cmd args env wd inhdl outhdl errhdl runs cmd (searching the current
PATH) with arguments args. If env is Just pairs, the command is executed with the environment
specified by pairs of variables and values; otherwise, the command is executed with the current
environment. If wd is Just dir, the command is executed with working directory dir; otherwise,
the command is executed in the current working directory. If {in,out,errhdl} is Just handle,
the command is executed with the Fd for std{in,out,err} attached to the specified handle;
otherwise, the Fd for std{in,out,err} is left unchanged.

getProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> ProcessID
-> IO (Maybe ProcessStatus)

getProcessStatus blk stopped pid calls waitpid, returning Just tc, the
ProcessStatus for process pid if it is available, Nothing otherwise. If blk is False, then
WNOHANG is set in the options for waitpid, otherwise not. If stopped is True, then WUNTRACED is
set in the options for waitpid, otherwise not.

getGroupProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> ProcessGroupID
-> IO (Maybe (ProcessID, ProcessStatus))

getGroupProcessStatus blk stopped pgid calls waitpid, returning Just (pid, tc), the
ProcessID and ProcessStatus for any process in group pgid if one is available, Nothing

244



Chapter 7. The posix category: POSIX support

otherwise. If blk is False, then WNOHANG is set in the options for waitpid, otherwise not. If
stopped is True, then WUNTRACED is set in the options for waitpid, otherwise not.

getAnyProcessStatus :: Bool - Block?
-> Bool - Stopped processes?
-> IO (Maybe (ProcessID, ProcessStatus))

getAnyProcessStatus blk stopped calls waitpid, returning Just (pid, tc), the
ProcessID and ProcessStatus for any child process if one is available, Nothing otherwise. If
blk is False, then WNOHANG is set in the options for waitpid, otherwise not. If stopped is True,
then WUNTRACED is set in the options for waitpid, otherwise not.

exitImmediately :: ExitCode -> IO ()

exitImmediately status calls _exit to terminate the process with the indicated exit status.
The operation never returns.

getEnvironment :: IO [(String, String)]

getEnvironment parses the environment variable mapping provided by environ, returning
(variable, value) pairs. The operation never fails.

setEnvironment :: [(String, String)] -> IO ()

setEnvironment replaces the process environment with the provided mapping of (variable,
value) pairs.

getEnvVar :: String -> IO String

getEnvVar var returns the value associated with variable var in the current environment
(identical functionality provided through standard Haskell library function System.getEnv).

The operation may fail with:

NoSuchThing

The variable has no mapping in the current environment.

setEnvVar :: String -> String -> IO ()

setEnvVar var val sets the value associated with variable var in the current environment to be
val. Any previous mapping is superseded.

245



Chapter 7. The posix category: POSIX support

removeEnvVar :: String -> IO ()

removeEnvVar var removes any value associated with variable var in the current environment.
Deleting a variable for which there is no mapping does not generate an error.

nullSignal :: Signal
nullSignal = 0

backgroundRead, sigTTIN :: Signal
backgroundWrite, sigTTOU :: Signal
continueProcess, sigCONT :: Signal
floatingPointException, sigFPE :: Signal
illegalInstruction, sigILL :: Signal
internalAbort, sigABRT :: Signal
keyboardSignal, sigINT :: Signal
keyboardStop, sigTSTP :: Signal
keyboardTermination, sigQUIT :: Signal
killProcess, sigKILL :: Signal
lostConnection, sigHUP :: Signal
openEndedPipe, sigPIPE :: Signal
processStatusChanged, sigCHLD :: Signal
realTimeAlarm, sigALRM :: Signal
segmentationViolation, sigSEGV :: Signal
softwareStop, sigSTOP :: Signal
softwareTermination, sigTERM :: Signal
userDefinedSignal1, sigUSR1 :: Signal
userDefinedSignal2, sigUSR2 :: Signal

signalProcess :: Signal -> ProcessID -> IO ()

signalProcess int pid calls kill to signal process pid with interrupt signal int.

raiseSignal :: Signal -> IO ()

raiseSignal int calls kill to signal the current process with interrupt signal int.

signalProcessGroup :: Signal -> ProcessGroupID -> IO ()

signalProcessGroup int pgid calls kill to signal all processes in group pgid with interrupt
signal int.

setStoppedChildFlag :: Bool -> IO Bool

246



Chapter 7. The posix category: POSIX support

setStoppedChildFlag bool sets a flag which controls whether or not the NOCLDSTOP option
will be used the next time a signal handler is installed for SIGCHLD. If bool is True (the default),
NOCLDSTOP will not be used; otherwise it will be. The operation never fails.

queryStoppedChildFlag :: IO Bool

queryStoppedChildFlag queries the flag which controls whether or not the NOCLDSTOP option
will be used the next time a signal handler is installed for SIGCHLD. If NOCLDSTOP will be used, it
returns False; otherwise (the default) it returns True. The operation never fails.

emptySignalSet :: SignalSet
fullSignalSet :: SignalSet
addSignal :: Signal -> SignalSet -> SignalSet
deleteSignal :: Signal -> SignalSet -> SignalSet
inSignalSet :: Signal -> SignalSet -> Bool

installHandler :: Signal
-> Handler
-> Maybe SignalSet - other signals to block
-> IO Handler - old handler

installHandler int handler iset calls sigaction to install an interrupt handler for signal
int. If handler is Default, SIG_DFL is installed; if handler is Ignore, SIG_IGN is installed; if
handler is Catch action, a handler is installed which will invoke action in a new thread when
(or shortly after) the signal is received. See Section 2.1 for details on how to communicate between
threads.

If iset is Just s, then the sa_mask of the sigaction structure is set to s; otherwise it is cleared.
The previously installed signal handler for int is returned.

getSignalMask :: IO SignalSet

getSignalMask calls sigprocmask to determine the set of interrupts which are currently being
blocked.

setSignalMask :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_SETMASK to block all interrupts in mask.
The previous set of blocked interrupts is returned.

blockSignals :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_BLOCK to add all interrupts in mask to the
set of blocked interrupts. The previous set of blocked interrupts is returned.

247



Chapter 7. The posix category: POSIX support

unBlockSignals :: SignalSet -> IO SignalSet

setSignalMask mask calls sigprocmask with SIG_UNBLOCK to remove all interrupts in mask

from the set of blocked interrupts. The previous set of blocked interrupts is returned.

getPendingSignals :: IO SignalSet

getPendingSignals calls sigpending to obtain the set of interrupts which have been received
but are currently blocked.

awaitSignal :: Maybe SignalSet -> IO ()

awaitSignal iset suspends execution until an interrupt is received. If iset is Just s,
awaitSignal calls sigsuspend, installing s as the new signal mask before suspending execution;
otherwise, it calls pause. awaitSignal returns on receipt of a signal. If you have installed any
signal handlers with installHandler, it may be wise to call yield directly after awaitSignal to
ensure that the signal handler runs as promptly.

scheduleAlarm :: Int -> IO Int

scheduleAlarm i calls alarm to schedule a real time alarm at least i seconds in the future.

sleep :: Int -> IO ()

sleep i calls sleep to suspend execution of the program until at least i seconds have elapsed or a
signal is received.

7.3. Posix Process Environment

getProcessID :: IO ProcessID

getProcessID calls getpid to obtain the ProcessID for the current process.

getParentProcessID :: IO ProcessID

getProcessID calls getppid to obtain the ProcessID for the parent of the current process.

getRealUserID :: IO UserID

getRealUserID calls getuid to obtain the real UserID associated with the current process.

248



Chapter 7. The posix category: POSIX support

getEffectiveUserID :: IO UserID

getRealUserID calls geteuid to obtain the effective UserID associated with the current process.

setUserID :: UserID -> IO ()

setUserID uid calls setuid to set the real, effective, and saved set-user-id associated with the
current process to uid.

getLoginName :: IO String

getLoginName calls getlogin to obtain the login name associated with the current process.

getRealGroupID :: IO GroupID

getRealGroupID calls getgid to obtain the real GroupID associated with the current process.

getEffectiveGroupID :: IO GroupID

getEffectiveGroupID calls getegid to obtain the effective GroupID associated with the current
process.

setGroupID :: GroupID -> IO ()

setGroupID gid calls setgid to set the real, effective, and saved set-group-id associated with the
current process to gid.

getGroups :: IO [GroupID]

getGroups calls getgroups to obtain the list of supplementary GroupIDs associated with the
current process.

getEffectiveUserName :: IO String

getEffectiveUserName calls cuserid to obtain a name associated with the effective UserID of
the process.

getProcessGroupID :: IO ProcessGroupID

getProcessGroupID calls getpgrp to obtain the ProcessGroupID for the current process.

createProcessGroup :: ProcessID -> IO ProcessGroupID

249



Chapter 7. The posix category: POSIX support

createProcessGroup pid calls setpgid to make process pid a new process group leader.

joinProcessGroup :: ProcessGroupID -> IO ProcessGroupID

joinProcessGroup pgid calls setpgid to set the ProcessGroupID of the current process to
pgid.

setProcessGroupID :: ProcessID -> ProcessGroupID -> IO ()

setProcessGroupID pid pgid calls setpgid to set the ProcessGroupID for process pid to
pgid.

createSession :: IO ProcessGroupID

createSession calls setsid to create a new session with the current process as session leader.

systemName :: SystemID -> String
nodeName :: SystemID -> String
release :: SystemID -> String
version :: SystemID -> String
machine :: SystemID -> String

getSystemID :: IO SystemID

getSystemID calls uname to obtain information about the current operating system.

> epochTime :: IO EpochTime

epochTime calls time to obtain the number of seconds that have elapsed since the epoch (Jan 01
00:00:00 GMT 1970).

elapsedTime :: ProcessTimes -> ClockTick
userTime :: ProcessTimes -> ClockTick
systemTime :: ProcessTimes -> ClockTick
childUserTime :: ProcessTimes -> ClockTick
childSystemTime :: ProcessTimes -> ClockTick

getProcessTimes :: IO ProcessTimes

getProcessTimes calls times to obtain time-accounting information for the current process and
its children.

getControllingTerminalName :: IO FilePath

250



Chapter 7. The posix category: POSIX support

getControllingTerminalName calls ctermid to obtain a name associated with the controlling
terminal for the process. If a controlling terminal exists, getControllingTerminalName returns
the name of the controlling terminal.

The operation may fail with:

NoSuchThing

There is no controlling terminal, or its name cannot be determined.

SystemError

Various other causes.

getTerminalName :: Fd -> IO FilePath

getTerminalName fd calls ttyname to obtain a name associated with the terminal for Fd fd. If
fd is associated with a terminal, getTerminalName returns the name of the terminal.

The operation may fail with:

InappropriateType

The channel is not associated with a terminal.

NoSuchThing

The channel is associated with a terminal, but it has no name.

SystemError

Various other causes.

queryTerminal :: Fd -> IO Bool

queryTerminal fd calls isatty to determine whether or not Fd fd is associated with a terminal.

getSysVar :: SysVar -> IO Limit

getSysVar var calls sysconf to obtain the dynamic value of the requested configurable system
limit or option. For defined system limits, getSysVar returns the associated value. For defined
system options, the result of getSysVar is undefined, but not failure.

The operation may fail with:

251



Chapter 7. The posix category: POSIX support

NoSuchThing

The requested system limit or option is undefined.

7.4. Posix operations on files and directories

openDirStream :: FilePath -> IO DirStream

openDirStream dir calls opendir to obtain a directory stream for dir.

readDirStream :: DirStream -> IO String

readDirStream dp calls readdir to obtain the next directory entry (struct dirent) for the
open directory stream dp, and returns the d_name member of that structure.

The operation may fail with:

EOF

End of file has been reached.

SystemError

Various other causes.

rewindDirStream :: DirStream -> IO ()

rewindDirStream dp calls rewinddir to reposition the directory stream dp at the beginning of
the directory.

closeDirStream :: DirStream -> IO ()

closeDirStream dp calls closedir to close the directory stream dp.

getWorkingDirectory :: IO FilePath

getWorkingDirectory calls getcwd to obtain the name of the current working directory.

changeWorkingDirectory :: FilePath -> IO ()

changeWorkingDirectory dir calls chdir to change the current working directory to dir.

252



Chapter 7. The posix category: POSIX support

nullFileMode :: FileMode - ------
ownerReadMode :: FileMode - r-----
ownerWriteMode :: FileMode - -w-----
ownerExecuteMode :: FileMode - -x----
groupReadMode :: FileMode - --r---
groupWriteMode :: FileMode - ---w---
groupExecuteMode :: FileMode - ---x--
otherReadMode :: FileMode - ----r-
otherWriteMode :: FileMode - -----w-
otherExecuteMode :: FileMode - -----x
setUserIDMode :: FileMode - -S----
setGroupIDMode :: FileMode - ---S--

stdFileMode :: FileMode - rw-rw-rw-

ownerModes :: FileMode - rwx----
groupModes :: FileMode - --rwx--
otherModes :: FileMode - ----rwx
accessModes :: FileMode - rwxrwxrwx

unionFileModes :: FileMode -> FileMode -> FileMode
intersectFileModes :: FileMode -> FileMode -> FileMode

stdInput :: Fd
stdInput = intToFd 0

stdOutput :: Fd
stdOutput = intToFd 1

stdError :: Fd
stdError = intToFd 2

data OpenFileFlags =
OpenFileFlags {

append :: Bool,
exclusive :: Bool,
noctty :: Bool,
nonBlock :: Bool,
trunc :: Bool

}

openFd :: FilePath
-> OpenMode
-> Maybe FileMode - Just x => O_CREAT, Nothing => must exist
-> OpenFileFlags
-> IO Fd

openFd path acc mode (OpenFileFlags app excl noctty nonblock trunc) calls
open to obtain a Fd for the file path with access mode acc. If mode is Just m, the O_CREAT flag is

253



Chapter 7. The posix category: POSIX support

set and the file’s permissions will be based on m if it does not already exist; otherwise, the O_CREAT
flag is not set. The arguments app, excl, noctty, nonblock, and trunc control whether or not the
flags O_APPEND, O_EXCL, O_NOCTTY, O_NONBLOCK, and O_TRUNC are set, respectively.

createFile :: FilePath -> FileMode -> IO Fd

createFile path mode calls creat to obtain a Fd for file path, which will be created with
permissions based on mode if it does not already exist.

setFileCreationMask :: FileMode -> IO FileMode

setFileCreationMask mode calls umask to set the process’s file creation mask to mode. The
previous file creation mask is returned.

createLink :: FilePath -> FilePath -> IO ()

createLink old new calls link to create a new path, new, linked to an existing file, old.

createDirectory :: FilePath -> FileMode -> IO ()

createDirectory dir mode calls mkdir to create a new directory, dir, with permissions based
on mode.

createNamedPipe :: FilePath -> FileMode -> IO ()

createNamedPipe fifo mode calls mkfifo to create a new named pipe, fifo, with permissions
based on mode.

removeLink :: FilePath -> IO ()

removeLink path calls unlink to remove the link named path.

removeDirectory :: FilePath -> IO ()

removeDirectory dir calls rmdir to remove the directory named dir.

rename :: FilePath -> FilePath -> IO ()

rename old new calls rename to rename a file or directory from old to new.

fileMode :: FileStatus -> FileMode

fileID :: FileStatus -> FileID

254



Chapter 7. The posix category: POSIX support

deviceID :: FileStatus -> DeviceID

linkCount :: FileStatus -> LinkCount

fileOwner :: FileStatus -> UserID
fileGroup :: FileStatus -> GroupID
fileSize :: FileStatus -> FileOffset

accessTime :: FileStatus -> EpochTime
modificationTime :: FileStatus -> EpochTime
statusChangeTime :: FileStatus -> EpochTime

isDirectory :: FileStatus -> Bool
isCharacterDevice :: FileStatus -> Bool
isBlockDevice :: FileStatus -> Bool
isRegularFile :: FileStatus -> Bool
isNamedPipe :: FileStatus -> Bool

getFileStatus :: FilePath -> IO FileStatus

getFileStatus path calls stat to get the FileStatus information for the file path.

getFdStatus :: Fd -> IO FileStatus

getFdStatus fd calls fstat to get the FileStatus information for the file associated with Fd

fd.

queryAccess :: FilePath -> Bool -> Bool -> Bool -> IO Bool

queryAccess path r w x calls access to test the access permissions for file path. The three
arguments, r, w, and x control whether or not access is called with R_OK, W_OK, and X_OK

respectively.

queryFile :: FilePath -> IO Bool

queryFile path calls access with F_OK to test for the existence for file path.

setFileMode :: FilePath -> FileMode -> IO ()

setFileMode path mode calls chmod to set the permission bits associated with file path to mode.

setOwnerAndGroup :: FilePath -> UserID -> GroupID -> IO ()

setOwnerAndGroup path uid gid calls chown to set the UserID and GroupID associated with
file path to uid and gid, respectively.

255



Chapter 7. The posix category: POSIX support

setFileTimes :: FilePath -> EpochTime -> EpochTime -> IO ()

setFileTimes path atime mtime calls utime to set the access and modification times
associated with file path to atime and mtime, respectively.

touchFile :: FilePath -> IO ()

touchFile path calls utime to set the access and modification times associated with file path to
the current time.

getPathVar :: PathVar -> FilePath -> IO Limit

getPathVar var path calls pathconf to obtain the dynamic value of the requested configurable
file limit or option associated with file or directory path. For defined file limits, getPathVar
returns the associated value. For defined file options, the result of getPathVar is undefined, but not
failure. The operation may fail with:

NoSuchThing

The requested file limit or option is undefined.

SystemError

Various other causes.

getFdVar :: PathVar -> Fd -> IO Limit

getFdVar var fd calls fpathconf to obtain the dynamic value of the requested configurable file
limit or option associated with the file or directory attached to the open channel fd. For defined file
limits, getFdVar returns the associated value. For defined file options, the result of getFdVar is
undefined, but not failure.

The operation may fail with:

NoSuchThing

The requested file limit or option is undefined.

SystemError

Various other causes.

7.5. Posix Input and Output Primitives

256



Chapter 7. The posix category: POSIX support

createPipe :: IO (Fd, Fd)

createPipe calls pipe to create a pipe and returns a pair of Fds, the first for reading and the
second for writing.

dup :: Fd -> IO Fd

dup fd calls dup to duplicate Fd fd to another Fd.

dupTo :: Fd -> Fd -> IO ()

dupTo src dst calls dup2 to duplicate Fd src to Fd dst.

fdClose :: Fd -> IO ()

fdClose fd calls close to close Fd fd.

fdRead :: Fd -> ByteCount -> IO (String, ByteCount)

fdRead fd nbytes calls read to read at most nbytes bytes from Fd fd, and returns the result as
a string paired with the number of bytes actually read.

The operation may fail with:

EOF

End of file has been reached.

SystemError

Various other causes.

fdWrite :: Fd -> String -> IO ByteCount

fdWrite fd s calls write to write the string s to Fd fd as a contiguous sequence of bytes. It
returns the number of bytes successfully written.

queryFdOption :: FdOption -> Fd -> IO Bool

getFdOption opt fd calls fcntl to determine whether or not the flag associated with FdOption

opt is set for Fd fd.

setFdOption :: Fd -> FdOption -> Bool -> IO ()

257



Chapter 7. The posix category: POSIX support

setFdOption fd opt val calls fcntl to set the flag associated with FdOption opt on Fd fd to
val.

getLock :: Fd -> FileLock -> IO (Maybe (ProcessID, FileLock))

getLock fd lock calls fcntl to get the first FileLock for Fd fd which blocks the FileLock
lock. If no such FileLock exists, getLock returns Nothing. Otherwise, it returns Just (pid,

block), where block is the blocking FileLock and pid is the ProcessID of the process holding
the blocking FileLock.

setLock :: Fd -> FileLock -> IO ()

setLock fd lock calls fcntl with F_SETLK to set or clear a lock segment for Fd fd as indicated
by the FileLock lock. setLock does not block, but fails with SystemError if the request cannot
be satisfied immediately.

waitToSetLock :: Fd -> FileLock -> IO ()

waitToSetLock fd lock calls fcntl with F_SETLKW to set or clear a lock segment for Fd fd as
indicated by the FileLock lock. If the request cannot be satisfied immediately, waitToSetLock
blocks until the request can be satisfied.

fdSeek :: Fd -> SeekMode -> FileOffset -> IO FileOffset

fdSeek fd whence offset calls lseek to position the Fd fd at the given offset from the
starting location indicated by whence. It returns the resulting offset from the start of the file in bytes.

7.6. Posix, Device- and Class-Specific Functions

terminalMode :: TerminalMode -> TerminalAttributes -> Bool
withMode :: TerminalAttributes -> TerminalMode -
> TerminalAttributes
withoutMode :: TerminalAttributes -> TerminalMode -
> TerminalAttributes

bitsPerByte :: TerminalAttributes -> Int
withBits :: TerminalAttributes -> Int -> TerminalAttributes

controlChar :: TerminalAttributes -> ControlCharacter -> Maybe Char
withCC :: TerminalAttributes

-> (ControlCharacter, Char)
-> TerminalAttributes

258



Chapter 7. The posix category: POSIX support

withoutCC :: TerminalAttributes
-> ControlCharacter
-> TerminalAttributes

inputTime :: TerminalAttributes -> Int
withTime :: TerminalAttributes -> Int -> TerminalAttributes

minInput :: TerminalAttributes -> Int
withMinInput :: TerminalAttributes -> Int -> TerminalAttributes

inputSpeed :: TerminalAttributes -> BaudRate
withInputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

outputSpeed :: TerminalAttributes -> BaudRate
withOutputSpeed :: TerminalAttributes -> BaudRate -> TerminalAttributes

getTerminalAttributes :: Fd -> IO TerminalAttributes

getTerminalAttributes fd calls tcgetattr to obtain the TerminalAttributes associated
with Fd fd.

setTerminalAttributes :: Fd
-> TerminalAttributes
-> TerminalState
-> IO ()

setTerminalAttributes fd attr ts calls tcsetattr to change the TerminalAttributes
associated with Fd fd to attr, when the terminal is in the state indicated by ts.

sendBreak :: Fd -> Int -> IO ()

sendBreak fd duration calls tcsendbreak to transmit a continuous stream of zero-valued bits
on Fd fd for the specified implementation-dependent duration.

drainOutput :: Fd -> IO ()

drainOutput fd calls tcdrain to block until all output written to Fd fd has been transmitted.

discardData :: Fd -> QueueSelector -> IO ()

discardData fd queues calls tcflush to discard pending input and/or output for Fd fd, as
indicated by the QueueSelector queues.

controlFlow :: Fd -> FlowAction -> IO ()

259



Chapter 7. The posix category: POSIX support

controlFlow fd action calls tcflow to control the flow of data on Fd fd, as indicated by
action.

getTerminalProcessGroupID :: Fd -> IO ProcessGroupID

getTerminalProcessGroupID fd calls tcgetpgrp to obtain the ProcessGroupID of the
foreground process group associated with the terminal attached to Fd fd.

setTerminalProcessGroupID :: Fd -> ProcessGroupID -> IO ()

setTerminalProcessGroupID fd pgid calls tcsetpgrp to set the ProcessGroupID of the
foreground process group associated with the terminal attached to Fd fd to pgid.

7.7. Posix System Databases

groupName :: GroupEntry -> String
groupID :: GroupEntry -> GroupID
groupMembers :: GroupEntry -> [String]

getGroupEntryForID :: GroupID -> IO GroupEntry

getGroupEntryForID gid calls getgrgid to obtain the GroupEntry information associated
with GroupID gid.

The operation may fail with:

NoSuchThing

There is no group entry for the GroupID.

getGroupEntryForName :: String -> IO GroupEntry

getGroupEntryForName name calls getgrnam to obtain the GroupEntry information associated
with the group called name.

The operation may fail with:

NoSuchThing

There is no group entry for the name.

userName :: UserEntry -> String

260



Chapter 7. The posix category: POSIX support

userID :: UserEntry -> UserID
userGroupID :: UserEntry -> GroupID
homeDirectory :: UserEntry -> String
userShell :: UserEntry -> String

getUserEntryForID :: UserID -> IO UserEntry

getUserEntryForID gid calls getpwuid to obtain the UserEntry information associated with
UserID uid. The operation may fail with:

NoSuchThing

There is no user entry for the UserID.

getUserEntryForName :: String -> IO UserEntry

getUserEntryForName name calls getpwnam to obtain the UserEntry information associated
with the user login name.

The operation may fail with:

NoSuchThing

There is no user entry for the name.

7.8. POSIX Errors

getErrorCode :: IO ErrorCode

getErrorCode returns the current value of the external variable errno. It never fails.

setErrorCode :: ErrorCode -> IO ()

setErrorCode err sets the external variable errno to err. It never fails.

noError :: ErrorCode
noError = 0

argumentListTooLong, e2BIG :: ErrorCode
badFd, eBADF :: ErrorCode
brokenPipe, ePIPE :: ErrorCode
directoryNotEmpty, eNOTEMPTY :: ErrorCode

261



Chapter 7. The posix category: POSIX support

execFormatError, eNOEXEC :: ErrorCode
fileAlreadyExists, eEXIST :: ErrorCode
fileTooLarge, eFBIG :: ErrorCode
filenameTooLong, eNAMETOOLONG :: ErrorCode
improperLink, eXDEV :: ErrorCode
inappropriateIOControlOperation, eNOTTY :: ErrorCode
inputOutputError, eIO :: ErrorCode
interruptedOperation, eINTR :: ErrorCode
invalidArgument, eINVAL :: ErrorCode
invalidSeek, eSPIPE :: ErrorCode
isADirectory, eISDIR :: ErrorCode
noChildProcess, eCHILD :: ErrorCode
noLocksAvailable, eNOLCK :: ErrorCode
noSpaceLeftOnDevice, eNOSPC :: ErrorCode
noSuchOperationOnDevice, eNODEV :: ErrorCode
noSuchDeviceOrAddress, eNXIO :: ErrorCode
noSuchFileOrDirectory, eNOENT :: ErrorCode
noSuchProcess, eSRCH :: ErrorCode
notADirectory, eNOTDIR :: ErrorCode
notEnoughMemory, eNOMEM :: ErrorCode
operationNotImplemented, eNOSYS :: ErrorCode
operationNotPermitted, ePERM :: ErrorCode
permissionDenied, eACCES :: ErrorCode
readOnlyFileSystem, eROFS :: ErrorCode
resourceBusy, eBUSY :: ErrorCode
resourceDeadlockAvoided, eDEADLK :: ErrorCode
resourceTemporarilyUnavailable, eAGAIN :: ErrorCode
tooManyLinks, eMLINK :: ErrorCode
tooManyOpenFiles, eMFILE :: ErrorCode
tooManyOpenFilesInSystem, eNFILE :: ErrorCode

262



Chapter 8. The text category: text
manipulation

8.1. HaXml: Handling XML data
HaXml is a library for converting Haskell data structures into XML and vice versa. The
documentation hasn’t been incorporated into this book as yet, but for now it can be found at The
HaXml page (http://www.cs.york.ac.uk/fp/HaXml/).

8.2. MatchPS: The Perl-like matching interface
(Sigbjørn Finne supplied the regular-expressions interface.)

The MatchPS module provides Perl-like “higher-level” facilities to operate on PackedStrings

(Section 4.19). The regular expressions in question are in Perl syntax. The “flags” on various
functions can include: i for case-insensitive, s for single-line mode, and g for global. (It’s probably
worth your time to peruse the source code. . . )

matchPS :: PackedString - regexp
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch - info about what matched and where

searchPS :: PackedString - regexp
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch

- Perl-like match-and-substitute:
substPS :: PackedString - regexp

-> PackedString - replacement
-> [Char] - flags
-> PackedString - string
-> PackedString

- same as substPS, but no prefix and suffix:
replacePS :: PackedString - regexp

-> PackedString - replacement
-> [Char] - flags
-> PackedString - string
-> PackedString

263



Chapter 8. The text category: text manipulation

match2PS :: PackedString - regexp
-> PackedString - string1 to match
-> PackedString - string2 to match
-> [Char] - flags
-> Maybe REmatch

search2PS :: PackedString - regexp
-> PackedString - string to match
-> PackedString - string to match
-> [Char] - flags
-> Maybe REmatch

- functions to pull the matched pieces out of an REmatch:

getMatchesNo :: REmatch -> Int
getMatchedGroup :: REmatch -> Int -> PackedString -> PackedString
getWholeMatch :: REmatch -> PackedString -> PackedString
getLastMatch :: REmatch -> PackedString -> PackedString
getAfterMatch :: REmatch -> PackedString -> PackedString

- (reverse) brute-force string matching;
- Perl equivalent is index/rindex:
findPS, rfindPS :: PackedString -> PackedString -> Maybe Int

- Equivalent to Perl "chop" (off the last character, if any):
chopPS :: PackedString -> PackedString

- matchPrefixPS: tries to match as much as possible of strA starting
- from the beginning of strB (handy when matching fancy literals in
- parsers):
matchPrefixPS :: PackedString -> PackedString -> Int

8.3. Parsec: Parsing combinators
Parsec is a parsing combinator library. The documentation hasn’t been incorporated into this book as
yet, but for now it can be found at The Parsec page (http://www.cs.uu.nl/~daan/parsec.html).

8.4. Pretty: Pretty printing combimators
This library contains Simon Peyton Jones’ implementation of John Hughes’s pretty printer
combinators.

infixl 6 <>, <+>

264



Chapter 8. The text category: text manipulation

infixl 5 $$, $+$
data Doc - the document datatype, abstract, instance of Show

- primitive documents
empty :: Doc
semi, comma, colon :: Doc
space, equals :: Doc
lparen, rparen :: Doc
lbrack, rbrack :: Doc
lbrace, rbrace :: Doc

- converting values into documents
text :: String -> Doc
ptext :: String -> Doc
char :: Char -> Doc
int :: Int -> Doc
integer :: Integer -> Doc
float :: Float -> Doc
double :: Double -> Doc
rational :: Rational -> Doc

- wrapping documents into delimiters
parens, brackets, braces :: Doc -> Doc
quotes, doubleQuotes :: Doc -> Doc

- combining documents
(<>) :: Doc -> Doc -> Doc - Beside
hcat :: [Doc] -> Doc - List version of <>
(<+>) :: Doc -> Doc -> Doc - Beside, separated by space
hsep :: [Doc] -> Doc - List version of <+>
($$) :: Doc -> Doc -> Doc - Above; "dovetails" if no overlap
vcat :: [Doc] -> Doc - List version of $$
($+$) :: Doc -> Doc -> Doc - Above; never overlaps
cat :: [Doc] -> Doc - Either hcat or vcat
sep :: [Doc] -> Doc - Either hsep or vcat
fcat :: [Doc] -> Doc - "Paragraph fill" version of cat
fsep :: [Doc] -> Doc - "Paragraph fill" version of sep
nest :: Int -> Doc -> Doc - Nested
hang :: Doc -> Int -> Doc -> Doc
punctuate :: Doc -> [Doc] -> [Doc]
- punctuate p [d1, ... dn] = [d1 <> p, d2 <> p, ... dn-1 <> p, dn]

- default rendering (normal mode, line length 100, 1.5 ribbons per line)
render :: Doc -> String

- general rendering of documents
fullRender ::

Mode
-> Int - Line length

265



Chapter 8. The text category: text manipulation

-> Float - Ribbons per line
-> (TextDetails -> a -> a) - What to do with text
-> a - What to do at the end
-> Doc - The document to render
-> a - Result

data Mode =
PageMode - Normal

| ZigZagMode - With zig-zag cuts
| LeftMode - No indentation, infinitely long lines
| OneLineMode - All on one line

data TextDetails =
Chr Char

| Str String
| PStr String

- predicate on documents
isEmpty :: Doc -> Bool

8.5. Regex: The low-level regex matching interface

(Sigbjørn Finne supplied the regular-expressions interface.)

The Regex library provides quite direct interface to the GNU regular-expression library, for doing
manipulation on PackedStrings (Section 4.19). You probably need to see the GNU documentation
if you are operating at this level. Alternatively, you can use the simpler and higher-level
RegexString (Section 8.6) interface.

The datatypes and functions that Regex provides are:

data PatBuffer # just a bunch of bytes (mutable)

data REmatch
= REmatch (Array Int GroupBounds) - for $1, ... $n

GroupBounds - for $‘ (everything before match)
GroupBounds - for $& (entire matched string)
GroupBounds - for $’ (everything after)
GroupBounds - for $+ (matched by last bracket)

- GroupBounds hold the interval where a group
- matched inside a string, e.g.
-
- matching "reg(exp)" "a regexp" returns the pair (5,7) for the
- (exp) group. (PackedString indices start from 0)

266



Chapter 8. The text category: text manipulation

type GroupBounds = (Int, Int)

re_compile_pattern
:: PackedString - pattern to compile
-> Bool - True <=> assume single-line mode
-> Bool - True <=> case-insensitive
-> IO PatBuffer

re_match :: PatBuffer - compiled regexp
-> PackedString - string to match
-> Int - start position
-> Bool - True <=> record results in registers
-> IO (Maybe REmatch)

- Matching on 2 strings is useful when you’re dealing with multiple
- buffers, which is something that could prove useful for
- PackedStrings, as we don’t want to stuff the contents of a file
- into one massive heap chunk, but load (smaller chunks) on demand.

re_match2 :: PatBuffer - 2-string version
-> PackedString
-> PackedString
-> Int
-> Int
-> Bool
-> IO (Maybe REmatch)

re_search :: PatBuffer - compiled regexp
-> PackedString - string to search
-> Int - start index
-> Int - stop index
-> Bool - True <=> record results in registers
-> IO (Maybe REmatch)

re_search2 :: PatBuffer - Double buffer search
-> PackedString
-> PackedString
-> Int - start index
-> Int - range (?)
-> Int - stop index
-> Bool - True <=> results in registers
-> IO (Maybe REmatch)

8.6. RegexString: Regex matching made simple

267



Chapter 8. The text category: text manipulation

For simple regular expression operations, the Regex library is a little heavyweight. RegexString
permits regex matching on ordinary Haskell Strings.

The datatypes and functions that RegexString provides are:

data Regex - a compiled regular expression

mkRegex
:: String - regexp to compile
-> Regex - compiled regexp

mkRegexWithOpts
:: String - regexp to compile
-> Bool - single line mode?
-> Bool - case insensitive?
-> Regex

matchRegex
:: Regex - compiled regexp
-> String - string to match
-> Maybe [String] - text of $1, $2, ... (if matched)

matchRegexAll
:: Regex
-> String
-> Maybe ( String, - before

String, - entire
String, - after
String, - last bracket
[String] - $1..

)

mkRegex makes a regular expression with the default options (multi-line, case-sensitive), whereas
mkRegexWithOpts takes the values for these options as parameteres. The syntax of regular
expressions is otherwise that of Perl.

matchRegexperforms a simple match given a pattern and a string, returning either Nothing if the
match failed, or Just [s1...sn] if the match succeeded, where s1...sn are the bracketed
components of the pattern in left-to-right order. Note that there may be more components in the
returned list than were in the pattern, and that any component which either matched the empty string
or wasn’t matched at all (because it was part of an optional part of the pattern), will be empty.

matchRegexAll returns more information about the match, including the string before the matched
portion and the string after the matched portion.

268



Chapter 9. The util category: miscellaneous
utilities

9.1. GetOpt: Command line parsing
The GetOpt library contains Sven Panne’s Haskell implementation of getopt, providing features
nigh-on identical to GNU getopt:

module GetOpt where

- representing a single option:
data OptDescr a
= Option [Char] - list of short option characters

[String] - list of long option strings (without "-")
(ArgDescr a) - argument descriptor
String - explanation of option for user

- argument option:
data ArgDescr a

= NoArg a - no argument expected
| ReqArg (String -> a) String - option requires argument
| OptArg (Maybe String -> a) String - optional argument

usageInfo :: String - header
-> [OptDescr a] - options recognised
-> String - nicely formatted decription of options

getOpt :: ArgOrder a - non-option handling
-> [OptDescr a] - options recognised
-> [String] - the command-line
-> ( [a] - options

, [String] - non-options
,[String] - error messages
)

data ArgOrder a
= RequireOrder
| Permute
| ReturnInOrder (String -> a)

• The command-line options recognised is described by a list of OptDescr values. The OptDescr
describes the long and short strings that recognise the option, together with a help string and info
on whether the option takes extra arguments, if any.

269



Chapter 9. The util category: miscellaneous utilities

• From a list of option values, usageInfo returns a nicely formatted string that enumerates the
different options supported together with a short message about what

• To decode a command-line with respect to a list of options, getOpt is used. It processes the
command-line, and returns the list of values that matched (and those that didn’t). The first
argument to getOpt controls whether the user is to give the options in any old order or not.

To hopefully illuminate the role of the different GetOpt data structures, here’s the command-line
options for a (very simple) compiler:

module Opts where

import GetOpt
import Maybe ( fromMaybe )

data Flag
= Verbose | Version
| Input String | Output String | LibDir String

deriving Show

options :: [OptDescr Flag]
options =
[ Option [’v’] ["verbose"] (NoArg Verbose) "chatty out-

put on stderr"
, Option [’V’,’?’] ["version"] (NoArg Version) "show ver-

sion number"
, Option [’o’] ["output"] (OptArg outp "FILE") "output FILE"
, Option [’c’] [] (OptArg inp "FILE") "input FILE"
, Option [’L’] ["libdir"] (ReqArg LibDir "DIR") "library directory"
]

inp,outp :: Maybe String -> Flag
outp = Output . fromMaybe "stdout"
inp = Input . fromMaybe "stdout"

compilerOpts :: [String] -> IO ([Flag], [String])
compilerOpts argv =

case (getOpt Permute options argv) of
(o,n,[] ) -> return (o,n)
(_,_,errs) -

> fail (userError (concat errs ++ usageInfo header options))
where header = "Usage: ic [OPTION...] files..."

9.2. Memo: Fast memo functions
The Memo library provides fast polymorphic memo functions using hash tables. The interface is:

270



Chapter 9. The util category: miscellaneous utilities

memo :: (a -> b) -> a -> b

So, for example, memo f is a version of f that caches the results of previous calls.

The searching is very fast, being based on pointer equality. One consequence of this is that the
caching will only be effective if exactly the same argument is passed again to the memoised
function. This means not just a copy of a previous argument, but the same instance. It’s not useful to
memoise integer functions using this interface, because integers are generally copied a lot and two
instances of ’27’ are unlikely to refer to the same object.

This memoisation library works well when the keys are large (or even infinite).

The memo table implementation uses weak pointers and stable names (see the GHC/Hugs library
document) to avoid space leaks and allow hashing for arbitrary Haskell objects. NOTE: while
individual memo table entries will be garbage collected if the associated key becomes garbage, the
memo table itself will not be collected if the function becomes garbage. We plan to fix this in a
future version.

There’s another version of memo if you want to explicitly give a size for the hash table (the default
size is 1001 buckets):

memo_sized :: Int -> (a -> b) -> a -> b

9.3. QuickCheck
To do.

9.4. Readline: Command line editing

(Darren Moffat supplied the initial version of the Readline module.)

The Readline module is a straightforward interface to the GNU Readline library. As such, you will
need to look at the GNU documentation (and have a libreadline.a file around somewhere. . . )

The main function you’ll use is:

readline :: String{-the prompt-} -> IO (Maybe String)

If you want to mess around with Full Readline G(l)ory, we also provide:

type KeyCode = Char

type CallbackFunction =
(Int -> - Numeric Argument

271



Chapter 9. The util category: miscellaneous utilities

KeyCode -> - KeyCode of pressed Key
IO Int) - What’s this?

initialize :: IO ()
addHistory :: String -> IO ()
bindKey :: KeyCode -> CallbackFunction -> IO ()
addDefun :: String -> CallbackFunction -> Maybe KeyCode -> IO ()

getReadlineName :: IO String
setReadlineName :: String -> IO ()
getLineBuffer :: IO String
setLineBuffer :: String -> IO ()
getPoint :: IO Int
setPoint :: Int -> IO ()
getEnd :: IO Int
setEnd :: Int -> IO ()
getMark :: IO Int
setMark :: Int -> IO ()
setDone :: Bool -> IO ()
setPendingInput :: KeyCode -> IO ()
getPrompt :: IO String
getTerminalName :: IO String

inStream :: Handle
outStream :: Handle

(All those names are just Haskellised versions of what you will see in the GNU readline
documentation.)

9.5. Select: Synchronous I/O multiplexing
The Select interface provides a Haskell wrapper for the select() OS call supplied by many
modern UNIX variants. Select exports the following:

type TimeOut = Maybe Int
- Nothing => wait indefinitely.
- Just x | x >= 0 => block waiting for ’x’ micro seconds.
- | otherwise => block waiting for ’-x’ micro seconds.

hSelect :: [Handle]
-> [Handle]
-> [Handle]
-> TimeOut
-> IO SelectResult

type SelectResult

272



Chapter 9. The util category: miscellaneous utilities

= ( [Handle] - input handles ready
, [Handle] - output handles ready
, [Handle] - exc. handles ready
)

Here’s an example of how it could be used:

module Main(main) where

import Select
import IO

main :: IO ()
main = do

hSetBuffering stdin NoBuffering
putStrLn "waiting for input to appear"
hSelect [stdin] [] [] Nothing
putStrLn "input ready, let’s try reading"
x <- getChar
print x

where the call to hSelect makes the process go to sleep until there’s input available on stdin.

Notice that this particular use of hSelect is now really a no-op with GHC compiled code, as its
implementation of IO will take care to avoid blocking the process (i.e., all running Haskell threads),
and call select() for you, if needs be. However, hSelect exposes functionality that is useful in
other contexts (e.g., you want to wait for input on two Handles for 3 seconds, but no longer.)

273



Chapter 10. Win32
To do.

274




